- 
          
          
SparkDataFrame-class 
         
        - S4 class that represents a SparkDataFrame
 
      
- 
          
          
groupedData() 
         
        - S4 class that represents a GroupedData
 
      
- 
          
          
agg() summarize() 
         
        - summarize
 
      
- 
          
          
arrange() orderBy(<SparkDataFrame>,<characterOrColumn>) 
         
        - Arrange Rows by Variables
 
      
- 
          
          
approxQuantile(<SparkDataFrame>,<character>,<numeric>,<numeric>) 
         
        - Calculates the approximate quantiles of numerical columns of a SparkDataFrame
 
      
- 
          
          
as.data.frame() 
         
        - Download data from a SparkDataFrame into a R data.frame
 
      
- 
          
          
attach(<SparkDataFrame>) 
         
        - Attach SparkDataFrame to R search path
 
      
- 
          
          
broadcast() 
         
        - broadcast
 
      
- 
          
          
cache() 
         
        - Cache
 
      
- 
          
          
cacheTable() 
         
        - Cache Table
 
      
- 
          
          
checkpoint() 
         
        - checkpoint
 
      
- 
          
          
collect() 
         
        - Collects all the elements of a SparkDataFrame and coerces them into an R data.frame.
 
      
- 
          
          
coltypes() `coltypes<-`() 
         
        - coltypes
 
      
- 
          
          
colnames() `colnames<-`() columns() names(<SparkDataFrame>) `names<-`(<SparkDataFrame>) 
         
        - Column Names of SparkDataFrame
 
      
- 
          
          
count() n() 
         
        - Count
 
      
- 
          
          
createDataFrame() as.DataFrame() 
         
        - Create a SparkDataFrame
 
      
- 
          
          
createExternalTable() 
         
        - (Deprecated) Create an external table
 
      
- 
          
          
createOrReplaceTempView() 
         
        - Creates a temporary view using the given name.
 
      
- 
          
          
createTable() 
         
        - Creates a table based on the dataset in a data source
 
      
- 
          
          
crossJoin(<SparkDataFrame>,<SparkDataFrame>) 
         
        - CrossJoin
 
      
- 
          
          
crosstab(<SparkDataFrame>,<character>,<character>) 
         
        - Computes a pair-wise frequency table of the given columns
 
      
- 
          
          
cube() 
         
        - cube
 
      
- 
          
          
describe() 
         
        - describe
 
      
- 
          
          
distinct() unique(<SparkDataFrame>) 
         
        - Distinct
 
      
- 
          
          
dim(<SparkDataFrame>) 
         
        - Returns the dimensions of SparkDataFrame
 
      
- 
          
          
drop() 
         
        - drop
 
      
- 
          
          
dropDuplicates() 
         
        - dropDuplicates
 
      
- 
          
          
dropna() na.omit() fillna() 
         
        - A set of SparkDataFrame functions working with NA values
 
      
- 
          
          
dtypes() 
         
        - DataTypes
 
      
- 
          
          
except() 
         
        - except
 
      
- 
          
          
exceptAll() 
         
        - exceptAll
 
      
- 
          
          
explain() 
         
        - Explain
 
      
- 
          
          
filter() where() 
         
        - Filter
 
      
- 
          
          
getNumPartitions(<SparkDataFrame>) 
         
        - getNumPartitions
 
      
- 
          
          
group_by() groupBy() 
         
        - GroupBy
 
      
- 
          
          
head(<SparkDataFrame>) 
         
        - Head
 
      
- 
          
          
hint() 
         
        - hint
 
      
- 
          
          
histogram(<SparkDataFrame>,<characterOrColumn>) 
         
        - Compute histogram statistics for given column
 
      
- 
          
          
insertInto() 
         
        - insertInto
 
      
- 
          
          
intersect() 
         
        - Intersect
 
      
- 
          
          
intersectAll() 
         
        - intersectAll
 
      
- 
          
          
isLocal() 
         
        - isLocal
 
      
- 
          
          
isStreaming() 
         
        - isStreaming
 
      
- 
          
          
join(<SparkDataFrame>,<SparkDataFrame>) 
         
        - Join
 
      
- 
          
          
limit() 
         
        - Limit
 
      
- 
          
          
localCheckpoint() 
         
        - localCheckpoint
 
      
- 
          
          
merge() 
         
        - Merges two data frames
 
      
- 
          
          
mutate() transform() 
         
        - Mutate
 
      
- 
          
          
ncol(<SparkDataFrame>) 
         
        - Returns the number of columns in a SparkDataFrame
 
      
- 
          
          
count(<SparkDataFrame>) nrow(<SparkDataFrame>) 
         
        - Returns the number of rows in a SparkDataFrame
 
      
- 
          
          
orderBy() 
         
        - Ordering Columns in a WindowSpec
 
      
- 
          
          
persist() 
         
        - Persist
 
      
- 
          
          
pivot(<GroupedData>,<character>) 
         
        - Pivot a column of the GroupedData and perform the specified aggregation.
 
      
- 
          
          
printSchema() 
         
        - Print Schema of a SparkDataFrame
 
      
- 
          
          
randomSplit() 
         
        - randomSplit
 
      
- 
          
          
rbind() 
         
        - Union two or more SparkDataFrames
 
      
- 
          
          
rename() withColumnRenamed() 
         
        - rename
 
      
- 
          
          
registerTempTable() 
         
        - (Deprecated) Register Temporary Table
 
      
- 
          
          
repartition() 
         
        - Repartition
 
      
- 
          
          
repartitionByRange() 
         
        - Repartition by range
 
      
- 
          
          
rollup() 
         
        - rollup
 
      
- 
          
          
sample() sample_frac() 
         
        - Sample
 
      
- 
          
          
sampleBy() 
         
        - Returns a stratified sample without replacement
 
      
- 
          
          
saveAsTable() 
         
        - Save the contents of the SparkDataFrame to a data source as a table
 
      
- 
          
          
schema() 
         
        - Get schema object
 
      
- 
          
          
select() `$`(<SparkDataFrame>) `$<-`(<SparkDataFrame>) 
         
        - Select
 
      
- 
          
          
selectExpr() 
         
        - SelectExpr
 
      
- 
          
          
show(<Column>) show(<GroupedData>) show(<SparkDataFrame>) show(<WindowSpec>) show(<StreamingQuery>) 
         
        - show
 
      
- 
          
          
showDF() 
         
        - showDF
 
      
- 
          
          
str(<SparkDataFrame>) 
         
        - Compactly display the structure of a dataset
 
      
- 
          
          
storageLevel(<SparkDataFrame>) 
         
        - StorageLevel
 
      
- 
          
          
subset() `[[`(<SparkDataFrame>,<numericOrcharacter>) `[[<-`(<SparkDataFrame>,<numericOrcharacter>) `[`(<SparkDataFrame>) 
         
        - Subset
 
      
- 
          
          
summary() 
         
        - summary
 
      
- 
          
          
take() 
         
        - Take the first NUM rows of a SparkDataFrame and return the results as a R data.frame
 
      
- 
          
          
tableToDF() 
         
        - Create a SparkDataFrame from a SparkSQL table or view
 
      
- 
          
          
toJSON(<SparkDataFrame>) 
         
        - toJSON
 
      
- 
          
          
union() 
         
        - Return a new SparkDataFrame containing the union of rows
 
      
- 
          
          
unionAll() 
         
        - Return a new SparkDataFrame containing the union of rows.
 
      
- 
          
          
unionByName() 
         
        - Return a new SparkDataFrame containing the union of rows, matched by column names
 
      
- 
          
          
unpersist() 
         
        - Unpersist
 
      
- 
          
          
with() 
         
        - Evaluate a R expression in an environment constructed from a SparkDataFrame
 
      
- 
          
          
withColumn() 
         
        - WithColumn
 
      
 
      
      
      
      - 
          
          
read.df() loadDF() 
         
        - Load a SparkDataFrame
 
      
- 
          
          
read.jdbc() 
         
        - Create a SparkDataFrame representing the database table accessible via JDBC URL
 
      
- 
          
          
read.json() 
         
        - Create a SparkDataFrame from a JSON file.
 
      
- 
          
          
read.orc() 
         
        - Create a SparkDataFrame from an ORC file.
 
      
- 
          
          
read.parquet() 
         
        - Create a SparkDataFrame from a Parquet file.
 
      
- 
          
          
read.text() 
         
        - Create a SparkDataFrame from a text file.
 
      
- 
          
          
write.df() saveDF() write.df() 
         
        - Save the contents of SparkDataFrame to a data source.
 
      
- 
          
          
write.jdbc() 
         
        - Save the content of SparkDataFrame to an external database table via JDBC.
 
      
- 
          
          
write.json() 
         
        - Save the contents of SparkDataFrame as a JSON file
 
      
- 
          
          
write.orc() 
         
        - Save the contents of SparkDataFrame as an ORC file, preserving the schema.
 
      
- 
          
          
write.parquet() 
         
        - Save the contents of SparkDataFrame as a Parquet file, preserving the schema.
 
      
- 
          
          
write.text() 
         
        - Save the content of SparkDataFrame in a text file at the specified path.
 
      
 
      
      
      
      - 
          
          
approx_count_distinct() approxCountDistinct() collect_list() collect_set() count_distinct() countDistinct() grouping_bit() grouping_id() kurtosis() max_by() min_by() n_distinct() percentile_approx() product() sd() skewness() stddev() stddev_pop() stddev_samp() sum_distinct() sumDistinct() var() variance() var_pop() var_samp() max(<Column>) mean(<Column>) min(<Column>) sum(<Column>) 
         
        - Aggregate functions for Column operations
 
      
- 
          
          
from_avro() to_avro() 
         
        - Avro processing functions for Column operations
 
      
- 
          
          
column_collection_functions reverse,Column-method reverse to_json,Column-method to_json to_csv,Column-method to_csv concat,Column-method concat from_json,Column,characterOrstructTypeOrColumn-method from_json schema_of_json,characterOrColumn-method schema_of_json from_csv,Column,characterOrstructTypeOrColumn-method from_csv schema_of_csv,characterOrColumn-method schema_of_csv array_aggregate,characterOrColumn,Column,function-method array_aggregate array_contains,Column-method array_contains array_distinct,Column-method array_distinct array_except,Column,Column-method array_except array_except,Column-method array_exists,characterOrColumn,function-method array_exists array_filter,characterOrColumn,function-method array_filter array_forall,characterOrColumn,function-method array_forall array_intersect,Column,Column-method array_intersect array_intersect,Column-method array_join,Column,character-method array_join array_join,Column-method array_max,Column-method array_max array_min,Column-method array_min array_position,Column-method array_position array_remove,Column-method array_remove array_repeat,Column,numericOrColumn-method array_repeat array_sort,Column-method array_sort array_transform,characterOrColumn,function-method array_transform array_transform,characterOrColumn,characterOrColumn,function-method arrays_overlap,Column,Column-method arrays_overlap arrays_overlap,Column-method array_union,Column,Column-method array_union array_union,Column-method arrays_zip,Column-method arrays_zip arrays_zip_with,characterOrColumn,characterOrColumn,function-method arrays_zip_with shuffle,Column-method shuffle flatten,Column-method flatten map_concat,Column-method map_concat map_entries,Column-method map_entries map_filter,characterOrColumn,function-method map_filter map_from_arrays,Column,Column-method map_from_arrays map_from_arrays,Column-method map_from_entries,Column-method map_from_entries map_keys,Column-method map_keys transform_keys,characterOrColumn,function-method transform_keys transform_values,characterOrColumn,function-method transform_values map_values,Column-method map_values map_zip_with,characterOrColumn,characterOrColumn,function-method map_zip_with element_at,Column-method element_at explode,Column-method explode size,Column-method size slice,Column-method slice sort_array,Column-method sort_array posexplode,Column-method posexplode explode_outer,Column-method explode_outer posexplode_outer,Column-method posexplode_outer 
         
        - Collection functions for Column operations
 
      
- 
          
          
add_months() datediff() date_add() date_format() date_sub() from_utc_timestamp() months_between() next_day() to_utc_timestamp() 
         
        - Date time arithmetic functions for Column operations
 
      
- 
          
          
bin() bround() cbrt() ceil() conv() cot() csc() hex() hypot() pmod() rint() sec() shiftLeft() shiftleft() shiftRight() shiftright() shiftRightUnsigned() shiftrightunsigned() signum() degrees() toDegrees() radians() toRadians() unhex() abs(<Column>) acos(<Column>) acosh(<Column>) asin(<Column>) asinh(<Column>) atan(<Column>) atanh(<Column>) ceiling(<Column>) cos(<Column>) cosh(<Column>) exp(<Column>) expm1(<Column>) factorial(<Column>) floor(<Column>) log(<Column>) log10(<Column>) log1p(<Column>) log2(<Column>) round(<Column>) sign(<Column>) sin(<Column>) sinh(<Column>) sqrt(<Column>) tan(<Column>) tanh(<Column>) atan2(<Column>) 
         
        - Math functions for Column operations
 
      
- 
          
          
assert_true() crc32() hash() md5() raise_error() sha1() sha2() xxhash64() 
         
        - Miscellaneous functions for Column operations
 
      
- 
          
          
array_to_vector() vector_to_array() 
         
        - ML functions for Column operations
 
      
- 
          
          
when() bitwise_not() bitwiseNOT() create_array() create_map() expr() greatest() input_file_name() isnan() least() lit() monotonically_increasing_id() nanvl() negate() rand() randn() spark_partition_id() struct() coalesce(<Column>) is.nan(<Column>) ifelse(<Column>) 
         
        - Non-aggregate functions for Column operations
 
      
- 
          
          
ascii() base64() bit_length() concat_ws() decode() encode() format_number() format_string() initcap() instr() levenshtein() locate() lower() lpad() ltrim() octet_length() overlay() regexp_extract() regexp_replace() repeat_string() rpad() rtrim() split_string() soundex() substring_index() translate() trim() unbase64() upper() length(<Column>) 
         
        - String functions for Column operations
 
      
- 
          
          
cume_dist() dense_rank() lag() lead() nth_value() ntile() percent_rank() rank() row_number() 
         
        - Window functions for Column operations
 
      
- 
          
          
alias(<Column>) alias(<SparkDataFrame>) 
         
        - alias
 
      
- 
          
          
asc() asc_nulls_first() asc_nulls_last() contains() desc() desc_nulls_first() desc_nulls_last() getField() getItem() isNaN() isNull() isNotNull() like() rlike() ilike() 
         
        - A set of operations working with SparkDataFrame columns
 
      
- 
          
          
avg() 
         
        - avg
 
      
- 
          
          
between() 
         
        - between
 
      
- 
          
          
cast() 
         
        - Casts the column to a different data type.
 
      
- 
          
          
column() 
         
        - S4 class that represents a SparkDataFrame column
 
      
- 
          
          
coalesce() 
         
        - Coalesce
 
      
- 
          
          
corr() 
         
        - corr
 
      
- 
          
          
cov() covar_samp() covar_pop() 
         
        - cov
 
      
- 
          
          
dropFields() 
         
        - dropFields
 
      
- 
          
          
endsWith() 
         
        - endsWith
 
      
- 
          
          
first() 
         
        - Return the first row of a SparkDataFrame
 
      
- 
          
          
last() 
         
        - last
 
      
- 
          
          
not() `!`(<Column>) 
         
        - !
 
      
- 
          
          
otherwise() 
         
        - otherwise
 
      
- 
          
          
startsWith() 
         
        - startsWith
 
      
- 
          
          
substr(<Column>) 
         
        - substr
 
      
- 
          
          
current_date() current_timestamp() date_trunc() dayofmonth() dayofweek() dayofyear() from_unixtime() hour() last_day() make_date() minute() month() quarter() second() timestamp_seconds() to_date() to_timestamp() unix_timestamp() weekofyear() window() year() trunc(<Column>) 
         
        - Date time functions for Column operations
 
      
- 
          
          
withField() 
         
        - withField
 
      
- 
          
          
over() 
         
        - over
 
      
- 
          
          
predict() 
         
        - Makes predictions from a MLlib model
 
      
- 
          
          
partitionBy() 
         
        - partitionBy
 
      
- 
          
          
rangeBetween() 
         
        - rangeBetween
 
      
- 
          
          
rowsBetween() 
         
        - rowsBetween
 
      
- 
          
          
windowOrderBy() 
         
        - windowOrderBy
 
      
- 
          
          
windowPartitionBy() 
         
        - windowPartitionBy
 
      
- 
          
          
WindowSpec-class 
         
        - S4 class that represents a WindowSpec
 
      
- 
          
          
`%in%`(<Column>) 
         
        - Match a column with given values.
 
      
- 
          
          
`%<=>%` 
         
        - %<=>%
 
      
 
      Spark MLlib
      
      MLlib is Spark’s machine learning (ML) library
      
     
      
      
      
      - 
          
          
AFTSurvivalRegressionModel-class 
         
        - S4 class that represents a AFTSurvivalRegressionModel
 
      
- 
          
          
ALSModel-class 
         
        - S4 class that represents an ALSModel
 
      
- 
          
          
BisectingKMeansModel-class 
         
        - S4 class that represents a BisectingKMeansModel
 
      
- 
          
          
DecisionTreeClassificationModel-class 
         
        - S4 class that represents a DecisionTreeClassificationModel
 
      
- 
          
          
DecisionTreeRegressionModel-class 
         
        - S4 class that represents a DecisionTreeRegressionModel
 
      
- 
          
          
FMClassificationModel-class 
         
        - S4 class that represents a FMClassificationModel
 
      
- 
          
          
FMRegressionModel-class 
         
        - S4 class that represents a FMRegressionModel
 
      
- 
          
          
FPGrowthModel-class 
         
        - S4 class that represents a FPGrowthModel
 
      
- 
          
          
GBTClassificationModel-class 
         
        - S4 class that represents a GBTClassificationModel
 
      
- 
          
          
GBTRegressionModel-class 
         
        - S4 class that represents a GBTRegressionModel
 
      
- 
          
          
GaussianMixtureModel-class 
         
        - S4 class that represents a GaussianMixtureModel
 
      
- 
          
          
GeneralizedLinearRegressionModel-class 
         
        - S4 class that represents a generalized linear model
 
      
- 
          
          
glm(<formula>,<ANY>,<SparkDataFrame>) 
         
        - Generalized Linear Models (R-compliant)
 
      
- 
          
          
IsotonicRegressionModel-class 
         
        - S4 class that represents an IsotonicRegressionModel
 
      
- 
          
          
KMeansModel-class 
         
        - S4 class that represents a KMeansModel
 
      
- 
          
          
KSTest-class 
         
        - S4 class that represents an KSTest
 
      
- 
          
          
LDAModel-class 
         
        - S4 class that represents an LDAModel
 
      
- 
          
          
LinearRegressionModel-class 
         
        - S4 class that represents a LinearRegressionModel
 
      
- 
          
          
LinearSVCModel-class 
         
        - S4 class that represents an LinearSVCModel
 
      
- 
          
          
LogisticRegressionModel-class 
         
        - S4 class that represents an LogisticRegressionModel
 
      
- 
          
          
MultilayerPerceptronClassificationModel-class 
         
        - S4 class that represents a MultilayerPerceptronClassificationModel
 
      
- 
          
          
NaiveBayesModel-class 
         
        - S4 class that represents a NaiveBayesModel
 
      
- 
          
          
PowerIterationClustering-class 
         
        - S4 class that represents a PowerIterationClustering
 
      
- 
          
          
PrefixSpan-class 
         
        - S4 class that represents a PrefixSpan
 
      
- 
          
          
RandomForestClassificationModel-class 
         
        - S4 class that represents a RandomForestClassificationModel
 
      
- 
          
          
RandomForestRegressionModel-class 
         
        - S4 class that represents a RandomForestRegressionModel
 
      
- 
          
          
fitted() 
         
        - Get fitted result from a k-means model
 
      
- 
          
          
freqItems(<SparkDataFrame>,<character>) 
         
        - Finding frequent items for columns, possibly with false positives
 
      
- 
          
          
spark.als() summary(<ALSModel>) predict(<ALSModel>) write.ml(<ALSModel>,<character>) 
         
        - Alternating Least Squares (ALS) for Collaborative Filtering
 
      
- 
          
          
spark.bisectingKmeans() summary(<BisectingKMeansModel>) predict(<BisectingKMeansModel>) fitted(<BisectingKMeansModel>) write.ml(<BisectingKMeansModel>,<character>) 
         
        - Bisecting K-Means Clustering Model
 
      
- 
          
          
spark.decisionTree() summary(<DecisionTreeRegressionModel>) print(<summary.DecisionTreeRegressionModel>) summary(<DecisionTreeClassificationModel>) print(<summary.DecisionTreeClassificationModel>) predict(<DecisionTreeRegressionModel>) predict(<DecisionTreeClassificationModel>) write.ml(<DecisionTreeRegressionModel>,<character>) write.ml(<DecisionTreeClassificationModel>,<character>) 
         
        - Decision Tree Model for Regression and Classification
 
      
- 
          
          
spark.fmClassifier() summary(<FMClassificationModel>) predict(<FMClassificationModel>) write.ml(<FMClassificationModel>,<character>) 
         
        - Factorization Machines Classification Model
 
      
- 
          
          
spark.fmRegressor() summary(<FMRegressionModel>) predict(<FMRegressionModel>) write.ml(<FMRegressionModel>,<character>) 
         
        - Factorization Machines Regression Model
 
      
- 
          
          
spark.fpGrowth() spark.freqItemsets() spark.associationRules() predict(<FPGrowthModel>) write.ml(<FPGrowthModel>,<character>) 
         
        - FP-growth
 
      
- 
          
          
spark.gaussianMixture() summary(<GaussianMixtureModel>) predict(<GaussianMixtureModel>) write.ml(<GaussianMixtureModel>,<character>) 
         
        - Multivariate Gaussian Mixture Model (GMM)
 
      
- 
          
          
spark.gbt() summary(<GBTRegressionModel>) print(<summary.GBTRegressionModel>) summary(<GBTClassificationModel>) print(<summary.GBTClassificationModel>) predict(<GBTRegressionModel>) predict(<GBTClassificationModel>) write.ml(<GBTRegressionModel>,<character>) write.ml(<GBTClassificationModel>,<character>) 
         
        - Gradient Boosted Tree Model for Regression and Classification
 
      
- 
          
          
spark.glm() summary(<GeneralizedLinearRegressionModel>) print(<summary.GeneralizedLinearRegressionModel>) predict(<GeneralizedLinearRegressionModel>) write.ml(<GeneralizedLinearRegressionModel>,<character>) 
         
        - Generalized Linear Models
 
      
- 
          
          
spark.isoreg() summary(<IsotonicRegressionModel>) predict(<IsotonicRegressionModel>) write.ml(<IsotonicRegressionModel>,<character>) 
         
        - Isotonic Regression Model
 
      
- 
          
          
spark.kmeans() summary(<KMeansModel>) predict(<KMeansModel>) write.ml(<KMeansModel>,<character>) 
         
        - K-Means Clustering Model
 
      
- 
          
          
spark.kstest() summary(<KSTest>) print(<summary.KSTest>) 
         
        - (One-Sample) Kolmogorov-Smirnov Test
 
      
- 
          
          
spark.lda() spark.posterior() spark.perplexity() summary(<LDAModel>) write.ml(<LDAModel>,<character>) 
         
        - Latent Dirichlet Allocation
 
      
- 
          
          
spark.lm() summary(<LinearRegressionModel>) predict(<LinearRegressionModel>) write.ml(<LinearRegressionModel>,<character>) 
         
        - Linear Regression Model
 
      
- 
          
          
spark.logit() summary(<LogisticRegressionModel>) predict(<LogisticRegressionModel>) write.ml(<LogisticRegressionModel>,<character>) 
         
        - Logistic Regression Model
 
      
- 
          
          
spark.mlp() summary(<MultilayerPerceptronClassificationModel>) predict(<MultilayerPerceptronClassificationModel>) write.ml(<MultilayerPerceptronClassificationModel>,<character>) 
         
        - Multilayer Perceptron Classification Model
 
      
- 
          
          
spark.naiveBayes() summary(<NaiveBayesModel>) predict(<NaiveBayesModel>) write.ml(<NaiveBayesModel>,<character>) 
         
        - Naive Bayes Models
 
      
- 
          
          
spark.assignClusters() 
         
        - PowerIterationClustering
 
      
- 
          
          
spark.findFrequentSequentialPatterns() 
         
        - PrefixSpan
 
      
- 
          
          
spark.randomForest() summary(<RandomForestRegressionModel>) print(<summary.RandomForestRegressionModel>) summary(<RandomForestClassificationModel>) print(<summary.RandomForestClassificationModel>) predict(<RandomForestRegressionModel>) predict(<RandomForestClassificationModel>) write.ml(<RandomForestRegressionModel>,<character>) write.ml(<RandomForestClassificationModel>,<character>) 
         
        - Random Forest Model for Regression and Classification
 
      
- 
          
          
spark.survreg() summary(<AFTSurvivalRegressionModel>) predict(<AFTSurvivalRegressionModel>) write.ml(<AFTSurvivalRegressionModel>,<character>) 
         
        - Accelerated Failure Time (AFT) Survival Regression Model
 
      
- 
          
          
spark.svmLinear() predict(<LinearSVCModel>) summary(<LinearSVCModel>) write.ml(<LinearSVCModel>,<character>) 
         
        - Linear SVM Model
 
      
- 
          
          
read.ml() 
         
        - Load a fitted MLlib model from the input path.
 
      
- 
          
          
write.ml() 
         
        - Saves the MLlib model to the input path
 
      
 
      Spark Session and Context