Ice 3.4.2 Documentation

Lolce Manual 10
L1 ICE OVEIVIEW . o oot ettt et e e et e e e e e e e 12
11,1 1ce ArChItECIUNE . . . o 13
1.1 LA TErmMINOIOGY . . v v ettt et e e et e e e e e e 14
1.1.1.2 Slice (Specification Language for IC&) it e 21
1.1.1.3 Language Mappingso vttt e i e e e e e e e e e e 22
1.1.1.4 Client and SEerver StTUCIUIEttt et ettt e e e e e e 23
1.1.1.5 Overview of the Ice Protocol 25
L1.1.21C8 SEIVICES . . ottt ittt et et et e e e e 26
1.1.3 Architectural Benefits Of [Ce 28
1.2 Hello World APpPIICALION oot e e e e e e 30
1.2.1 Writing @ Slice Definition 31
1.2.2 Writing an Ice Application With CH+ . ..o 32
1.2.3 Writing an Ice Application with Java 39
1.2.4 Writing an Ice Application with C-Sharp e 45
1.2.5 Writing an Ice Application with Visual BasiCttt e e 50
1.2.6 Writing an Ice Application with ObJective-C e 56
1.2.7 Writing an Ice Application with Python 63
1.2.8 Writing an Ice Application With RUDY 68
1.2.9 Writing an Ice Application with PHP 71
1.3 The SHICE LANQUAGE ot ittt et et et e e e e e e e e e e e e e 74
1.3.1Slice Compilationo 75
1.3.2 SHiCe SOUICE FIlES . . . o 77
L33 LexiCal RUIES . .. 79
1.3 A MOTUIES . ..o 81
13,5 BaSIC TY PSS . .t ittt et e e 83
1.3.6 User-Defined TyYPeS . . oottt e e e e 85
1.3.6.1 ENUMETAtIONS . .. oottt et e e e e e e 86
1.3.6.2 SHUCIUIES . .ottt e et e e e e 87
1.3.6.3 SEUUENCES . . o ittt ettt e e e 89
1.3.6.4 DICHIONANIES . . oot ottt e e e e 91
1.3.6.5 Constants and LIteralst 93
1.3.7 Interfaces, Operations, and EXCEePLONS ot 96
L1.3.7. 1 OPEIatiONS . . .ot ettt e 97
1.3.7.2 USEr EXCEPLONS . . .ttt ittt e e et e e e 100
1.3. 7.3 RUN-TIME EXCEPLIONS . o .ottt ettt e e e e e e e e e e e e e e 104
L3 74 PrOXIES . . e 108
1.3.7.5 Interface INheritance 110
138 ClaSSES . o\ttt 117
1.3.8. 1 SIMPIE ClasSSES . . . ottt e e 118
1.3.8.2 Class INhertanCe 119
1.3.8.3 Class Inheritance SemantiCsttt e 121
1.3.8.4 Classes @S UNIONSottt ittt e e e e 123
1.3.8.5 Self-Referential Classes e 124
1.3.8.6 Classes VErsUS SIIUCIUIESo .ottt e ettt e e et e e e e e e e e 127
1.3.8.7 Classes With OPerationsottt e e e e e e e e e 128
1.3.8.8 Architectural Implications Of CIasSeSt 129
1.3.8.9 Classes Implementing INterfacest e e e 131
1.3.8.10 Class Inheritance LIMItations e 133
1.3.8.11 Pass-by-Value Versus Pass-by-Reference 134
1.3.8.12 Passing Interfaces by Value 136
1.3.9 Forward DeClarationsttt 137
L 3. 00 TYPE DS .ottt 138
1.3.11 Operations 0N ObJeCtot 139
13,02 LOCAI TYPES . ottt ittt et e e e e 141
1.3.13 Names @nd SCOPING . .« o vt ittt et e et e e e e e e e e e e e e e 142
1.3 14 Metadataot 148
1.3.15 Serializable ObJeCtSo 149
1.3.16 Deprecating Slice DefinitionNso 151
1.3.17 Using the Slice Compilers e e e e 152
1.3.18 Slice CheCKSUMS . . oottt e e et e e e e e e e e e e e e e 154
1.3.19 Generating Slice DOCUMENTALIONottt et e e e e e e e e e e e e e 155
1.3.20 SHiCE KEYWOIAS . . oottt et e e e e e e e e e e e e 161
1.3.21 Slice Metadata DIreClIVES ot 162
1.3.22 Slice for a Simple File System 167
1A CHt MaAPPING .« ottt e et e e e e 170
1.4.1 Client-Side Slice-to-C++ MapPiNgo ittt e e e e et e e e e e 171
1.4.1.1 C++ Mapping for ldentifiers 172
1.4.1.2 C++ Mapping for ModUIESo e 173
1.4.1.3 C++ Mapping for Built-In Types o 174
1.4.1.4 C++ Mapping for ENUMErationsttt e e e e 176
1.4.1.5 C++ Mapping for SIrUCIUIESo e e e e e e 177
1.4.1.6 C++ Mapping for SEQUENCES\ttt ettt e e e e e 181
1.4.1.7 C++ Mapping for DICtIONArieSo e 186
1.4.1.8 C++ Mapping for CONSIANTSottt e e e e e e 187

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

1.4.1.9 C++ Mapping for EXCEPLONSo 188
1.4.1.10 C++ Mapping for INterfaceso 192
1.4.1.11 C++ Mapping for OPerationSottt e e 200
1.4.1.12 C++ Mapping for Classesot 208
1.4.1.13 Smart Pointers for Classes i e 215
1.4.1.14 Asynchronous Method Invocation (AMI) in CH+ ... 227
1.4.1.15 slice2cpp Command-Line OPLIONSttt et e e e e 238
1.4.1.16 Using Slice ChecksUMS iN CH+ . ..o e e e e e e e e e e 243
1.4.1.17 Example of a File System Client in CH+ 244
1.4.2 Server-Side Slice-to-C++ MapPiNgo ottt et e et e 248
1.4.2.1 The Server-Side main FUNCLiON in CHt .. Lo 249
1.4.2.2 Server-Side C++ Mapping for Interfaces 260
1.4.2.3 Parameter Passing iN CH+ . ..o 263
1.4.2.4 Raising EXCEPLONS IN CHt Lo e e e 264
1.4.2.5 Object InCarnation iN CH+ L oL oo 265
1.4.2.6 Asynchronous Method Dispatch (AMD) in CH+ ...t e e e e e 269
1.4.2.7 Example of @ File System Serverin CH+ ... 273
1.4.3The C++ Utility LIDrary e e e e e e 287
1.4.3.1 The C++ AbstractMutex Class e e 288
1.4.3.2 The C++ Cache Template e e e 290
1.4.3.3 The C++ EXCEPLON ClIaSS . . . o\ttt ittt e e e e e e e e e e e e e e e 293
1.4.3.4 The C++ generateUUID FUNCHON oot e e e e e 294
1.4.3.5 The C++ Handle TEMPIAtet e e e 295
1.4.3.6 The C++ Handle Template Adaptors e e e 299
1.4.3.7 The C++ ScopedArray TempPlatet e e e e e e e 303
1.4.3.8 The C++ Shared and SimpleShared Classest e e 304
1.4.3.9The CH++ TIMeE Classottt it et e e e e e e 305
1.4.3.10 The C++ Timer and TimerTask Classes i e 309
1.4.3.11 Unicode and UTF-8 Conversion FUNCLIONS IN CH+ . ..o e e 311
1.4.3.12 Version INformation in CH+ . ..o o 312

1.5 JaVA MaPPING . o ottt e e e e e e 313
1.5.1 Client-Side Slice-t0-Java Mappingottt ettt e e e e 314
1.5.1.1 Java Mapping for Identifiers 315
1.5.1.2 Java Mapping for MOdUIESo 316
1.5.1.3 Java Mapping for BUilt-In TYPeSot 317
1.5.1.4 Java Mapping for ENUMEIatiONS ittt et e e e 318
1.5.1.5 Java Mapping for STFUCIUIESottt e e e e e e e e e e e e e e e e 319
1.5.1.6 Java Mapping for SEQUENCESttt et e 321
1.5.1.7 Java Mapping for DICHIONAIESt e e e 322
1.5.1.8 Java Mapping for CONSIANTSot e e 323
1.5.1.9 Java Mapping for EXCEPIONSottt 324
1.5.1.10 Java Mapping for Interfaces 328
1.5.1.11 Java Mapping for Operationsttt 336
1.5.1.12 Java Mapping for ClasSest 342
1.5.1.13 Serializable ObJECIS IN JAVA oottt 349
1.5.1.14 Customizing the Java Mappingttt e e e e 350
1.5.1.15 Asynchronous Method Invocation (AMI) IN Javat 359
1.5.1.16 Using the Slice Compiler for Javattt e 369
1.5.1.17 Using Slice CheCKkSUMS iN JAVAttt e e e e e e e e e e 372
1.5.1.18 Example of a File System Client in Javattt e e 373
1.5.2 Server-Side Slice-to-Java Mapping oottt e e 377
1.5.2.1 The Server-Side main Method in Javat e 378
1.5.2.2 Server-Side Java Mapping for Interfaces 383
1.5.2.3 Parameter PassSing iN JAVAottt ettt 386
1.5.2.4 Raising EXCEPLIONS IN JAVAo\ttt et e e e e e e e 387
1.5.25Tie ClassSeS iN JAVAottt et e e e e e e e e e 388
1.5.2.6 Object INCarNation iN JAVAttt it e e e e e 392
1.5.2.7 Asynchronous Method Dispatch (AMD) IN JaVAo i it e e 395
1.5.2.8 Example of a File System Serverin Javat 399
1.5.3The Java Utility Library 407
1.6 C-Sharp Mappingottt et e e e 410
1.6.1 Client-Side Slice-to-C-Sharp Mappingottt e e e 411
1.6.1.1 C-Sharp Mapping for [dentifiers 412
1.6.1.2 C-Sharp Mapping for ModUIESt e 413
1.6.1.3 C-Sharp Mapping for BUilt-In TYpesSt 414
1.6.1.4 C-Sharp Mapping for ENUMErationNSot e e e e e e 415
1.6.1.5 C-Sharp Mapping for StrUCIUIESot e e e e e 416
1.6.1.6 C-Sharp Mapping for SEQUENCESot e e e 421
1.6.1.7 C-Sharp Mapping for DICHONAIESttt e e e e e e e 427
1.6.1.8 C-Sharp Collection COMPAIISONottt ettt e et e e e e e e e e e 430
1.6.1.9 C-Sharp Mapping for CONSIANTSo\ttt et e e e e e e e e e 431
1.6.1.10 C-Sharp Mapping for EXCEPLIONSo e e e e 433
1.6.1.11 C-Sharp Mapping for INferfacest e e e 436
1.6.1.12 C-Sharp Mapping for Operations i e 442
1.6.1.13 C-Sharp Mapping for Classesttt e e e 448

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

1.6.1.14 Serializable Objects inN C-Sharp e 457
1.6.1.15 C-Sharp Specific Metadata DIreCtiVeS e 458
1.6.1.16 Asynchronous Method Invocation (AMI) in C-Sharp e 459
1.6.1.17 slice2cs Command-Line OPtiONS oot e 470
1.6.1.18 Using Slice Checksums in C-Sharpt e e e 471
1.6.1.19 Example of a File System Clientin C-Sharp i e 472
1.6.2 Server-Side Slice-to-C-Sharp Mappingo oottt e 476
1.6.2.1 The Server-Side main Method in C-Sharp e 477
1.6.2.2 Server-Side C-Sharp Mapping for Interfaces 482
1.6.2.3 Parameter Passing in C-Sharp 485
1.6.2.4 Raising EXCeptions iN C-Sharpt e e 486
1.6.2.5 Tie Classes iN C-SNarDot e e e e 487
1.6.2.6 Object Incarnation inN C-Sharpt e e 491
1.6.2.7 Asynchronous Method Dispatch (AMD) in C-Sharpt e 494
1.6.2.8 Example of a File System Serverin C-Sharp e 498
1.6.3 .NET Compact Framework SUPPOI e e e e e e e 506
1.6.4 The NET ULility LIDrary e e e e e e e e e e e e e e e 508
1.7 OBJECtiVE-C MAPPING - . o . ottt ettt et e e e e e e e e 510
1.7.1 Client-Side Slice-to-Objective-C Mappingottt e e e e e e e 511
1.7.1.1 Objective-C Mapping for ModUules 512
1.7.1.2 Objective-C Mapping for Identifiers e 514
1.7.1.3 Objective-C Mapping for Built-In TYPeSo e 516
1.7.1.4 Objective-C Mapping for ENUMErationNsottt e e e 517
1.7.1.5 Objective-C Mapping for SIrUCIUIESo o e e e e e 518
1.7.1.6 Objective-C Mapping for SEQUENCESttt it e e e e e e 521
1.7.1.7 Objective-C Mapping for DICHONArieS e 525
1.7.1.8 Objective-C Mapping for CONStANtSot e e 526
1.7.1.9 Objective-C Mapping for EXCEPLIONSo e 527
1.7.1.10 Objective-C Mapping for Interfaces 533
1.7.1.11 Objective-C Mapping for Operationsttt e e e e 537
1.7.1.12 Objective-C Mapping for Local Interfaces 546
1.7.1.13 Objective-C Mapping for ClasSesttt e e e e e 547
1.7.1.14 Objective-C Mapping for Interfaces by Value 556
1.7.1.15 Asynchronous Method Invocation (AMI) in Objective-C 557
1.7.1.16 slice2objc Command-Line OPptioNS 565
1.7.1.17 Example of a File System Client in Objective-C 566
1.7.2 Server-Side Slice-to-Objective-C Mappingo ottt e e e 570
1.7.2.1 The Server-Side main Function in Objective-C 571
1.7.2.2 Server-Side Objective-C Mapping for Interfaces e 574
1.7.2.3 Parameter Passing in ObJective-C 577
1.7.2.4 Raising EXceptions in ObJeCtive-C e 579
1.7.2.5 Object Incarnation in ObJeCtiVE-Co e 580
1.7.2.6 Example of a File System Serverin Objective-C 584

1.8 PYthOon Mapping . ..ottt e e e e 595
1.8.1 Client-Side Slice-to-Python Mappingot 596
1.8.1.1 Python Mapping for Identifiers 597
1.8.1.2 Python Mapping for ModUIES o 598
1.8.1.3 Python Mapping for BuUilt-In TYPeSot e e e e e 599
1.8.1.4 Python Mapping for ENUMErationSsot e e e e e e e e 600
1.8.1.5 Python Mapping for STrUCIUIESo oo e e e e 602
1.8.1.6 Python Mapping for SEQUENCESottt e e 603
1.8.1.7 Python Mapping for DICHIONAIESo e 606
1.8.1.8 Python Mapping for CONSANTSottt e e e e e e e e e 607
1.8.1.9 Python Mapping for EXCEPLIONSottt e e e 608
1.8.1.10 Python Mapping for INtErfacest e e 611
1.8.1.11 Python Mapping for Operations e e 616
1.8.1.12 Python Mapping for Classesottt e e e e e 621
1.8.1.13 Asynchronous Method Invocation (AMI) in Python 626
1.8.1.14 Code Generation in PYythOn 634
1.8.1.15 Using Slice Checksums in PYython e 642
1.8.1.16 Example of a File System Client in Python 643
1.8.2 Server-Side Slice-to-Python Mappingottt 647
1.8.2.1 The Server-Side main Program in Python 648
1.8.2.2 Server-Side Python Mapping for Interfaces i e e 653
1.8.2.3 Parameter Passing in PYython 655
1.8.2.4 Raising EXCeptions in PYythono 657
1.8.2.5 Object Incarnation in PYthOn 658
1.8.2.6 Asynchronous Method Dispatch (AMD) in Python 661
1.8.2.7 Example of a File System Serverin Python 665

1O RUDY Mapping ..ottt et e e e 673
1.9.1 Client-Side Slice-to-Ruby Mappingot 674
1.9.1.1 Ruby Mapping for ldentifiers 675
1.9.1.2 Ruby Mapping for MOUIESo e 676
1.9.1.3 Ruby Mapping for BUilt-In TYPESo 677
1.9.1.4 Ruby Mapping for ENUMETAtiONSot e e e e e e 678

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

1.9.1.5 Ruby Mapping for StrUCLUIES o e e e e e e e e 680
1.9.1.6 Ruby Mapping for SEQUENCESottt e e 681
1.9.1.7 Ruby Mapping for DICHONAIIESot e e e e e e 683
1.9.1.8 Ruby Mapping for CONStANtSot e 684
1.9.1.9 Ruby Mapping for EXCEPLIONS oottt e e e e 685
1.9.1.10 Ruby Mapping for Interfaces 688
1.9.1.11 Ruby Mapping for Operationsttt et e e e e e 693
1.9.1.12 Ruby Mapping for ClasSest e e 698
1.9.1.13 Code Generation in RUDY 705
1.9.1.14 The main Program in RUDY 710
1.9.1.15 Using Slice Checksums in RUDY o e e 715
1.9.1.16 Example of a File System Client in RUDY 716
110 PHP MaAPPING .o oottt et e e et e e e e e 720
1.10.1 Client-Side Slice-to-PHP Mappingttt e e e e 721
1.10.1.1 PHP Mapping for ldentifiers 722
1.10.1.2 PHP Mapping for MOAUIES e e e e e e 723
1.10.1.3 PHP Mapping for Built-In TYPESo e e 724
1.10.1.4 PHP Mapping for ENUMEratiONSottt e e e e e e e e e 725
1.10.1.5 PHP Mapping for SITUCLUIES oottt e e e e e e e e e e e e e e e e e 726
1.10.1.6 PHP Mapping for SEQUENCESottt ettt e e et e e e e e e 727
1.10.1.7 PHP Mapping for DICtIONAIIESottt e e e e e e e 728
1.10.1.8 PHP Mapping for CONStaNtSot e e e e e 729
1.10.1.9 PHP Mapping for EXCEPLIONS ottt ettt e e e e e e e e e e 730
1.10.1.10 PHP Mapping for Interfaces 733
1.10.1.11 PHP Mapping for Operationsttt ettt e e e e e e e e e 739
1.10.1.12 PHP Mapping for Classesttt e e e e 744
1.10.1.13 slice2php Command-Line OPtioNSo\ttt e 749
1.10.1.14 Application NOtes for PHP 750
1.10.1.15 Using Slice Checksums in PHP 756
1.10.1.16 Example of a File System Client in PHP 757
1.11 Properties and Configuration it e e e e 761
1.10.1 PropertieS OVEIVIEW . .ottt et et e e e e et e e e e e e e e e 762
1.11.2 Configuration File SYNtaX 764
1.11.3 Setting Properties on the Command LiNe 766
1.11.4 Using Configuration FIles 767
1.11.5 Alternate Property STOrESottt e e 769
1.11.6 Command-Line Parsing and Initialization 770
1.11.7 The Properties INterface e e 773
1.11.8 Reading Propertiest 775
1.11.9 Setting PrOPerti®S oottt et e e e 776
1.10.10 Parsing Propertiest 780
1.12 Threads and ConcurrenCy With CH+ L .. et e e e e e e 784
1.12.1 The CH+ MULEX ClaSSot ittt et e e e e e e e e e e e e e 785
1.12.2 The C++ RECMULEX Class i e e e 791
1.12.3 The CH+ MONITOr ClaSS . . . ottt ettt e e et e e e e e e e e 793
1.12.4The CH+ CoNd Classottt e e e e e e e e e 799
1.12.5 The CH++ Thread Classesttt e e e e e e e 802
1.12.6 Priority INVErSION iN Gt Lo e e e e 810
1.12.7 Portable Signal Handling in G+ 811
1.13 The lce Run Time in Detailo e e e e e e 812
1.13.1 COMMUNICAIONS . . o ottt ettt e e e et et e e e et et e e e e e e e e e 813
1.13.2 Communicator Initialization 816
1.13.3 ObJECE AQAPLEIS . . o o ittt ettt e e e 818
1.13.3.1 The ACtive Servant Mapt e e e e e e e e 819
1.13.3.2 Creating an Object AQapterot e e e e e 821
1.13.3.3 Servant Activation and Deactivation e 822
1.13.3.4 ObjeCt Adapter StalES . .. oottt it e e 824
1.13.3.5 Object Adapter ENAPOINISottt e e e e 827
1.13.3.6 Creating Proxies with an Object Adapter 831
1.13.3.7 Using Multiple Object Adaplerst e e e e 833
1.13.4 ObJeCt IAENLILY . . . oottt 834
1.13.5 The CUITENt ODJECTottt e e e e e e e e e e e e e e e e e 837
1.13.6 Servant LOCALOrSttt et e e e e 839
1.13.6.1 The ServantLocator Interface i 840
1.13.6.2 Threading Guarantees for Servant LOCatorst e 842
1.13.6.3 Registering @ Servant LOCAOrttt et 843
1.13.6.4 Servant Locator EXample 845
1.13.6.5 Using Identity Categories with Servant LOCatorsttt i 849
1.13.6.6 Using Cookies with Servant LOCatOrSttt e e e 851
1.13.7 Default SErVants 852
1.13.8 Server Implementation TEChNIQUESottt e e e e e e e e 856
1.13.9 Servant EVICIOrS 862
1.13.9.1 Implementing a Servant EVICtOr in CH+o 864
1.13.9.2 Implementing a Servant EVICIOr iN Javattt 870
1.13.9.3 Implementing a Servant Evictor in C-Sharpo 876

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

1.13.10 The Ice Threading Model e e 883
1.13.10.2 Thread POOISo 884
1.13.10.2 Object Adapter Thread POOISo e 886
1.13.10.3 Thread Pool Design Considerationsttt e e e 887
1.13.10.4 Nested INVOCALIONSot e e e e e 889
1.13.10.5 Thread Safety 891
1.13.10.6 Dispatching Invocations to User Threadsttt e 896

113,11 USING PrOXIES . . oottt et e e e e e e e e e e e 907
1.13.11.1 ObtaiNiNg PrOXIE®S oottt e it et e e e e e e 908
1.13.11.2 Proxy Methodso e e 911
1.13.11.3 Proxy ENAPOINS .. .ot e 915
1.13.11.4 Filtering Proxy ENAPOINISot e 916
1.13.11.5 Proxy Defaults and OVerrides e 917
1.13.11.6 Proxy and ENdpoint SYNTAXttt et e e e 918

1.13.12 ReQUESE CONEXES . . o oot et et et e e e e e 924
1.13.12.1 EXpliCit REQUESE CONIEXIS . . o vttt ittt e et e e e e e e e e 925
1.13.12.2 Per-Proxy ReqUeSst CONtEXESttt e e e e e e e 927
1.13.12.3 Implicit REQUESE CONIEXES . . . o . ottt et e e e e e e e e e e e e e 928
1.13.12.4 Design Considerations for Request CONtexXtS it 930

1.13.13 ConNECtioN TIMEOULS . . . ot ittt ettt e e e et e e e e e e e e e e e e 932

1.13.14 Oneway INVOCALIONS ottt e ettt e e e e e e e e e 934

1.13.15 Datagram INVOCALIONSottt ettt e e et et e e e e e 937

1.13.16 Batched INVOCAtioNSo 939

O I o 1o £ 941
1.13.17.1 Locator Semantics for ClIeNtS 942
1.13.17.2 Locator Configuration for a ClIent e 946
1.13.17.3 Locator SEmMantiCs for SEIVEIS o 947
1.13.17.4 Locator Configuration for @ SEIVEr e 948

1.13.18 Administrative Facility 950
1.13.18.1 The @admin ObJECEottt e e e e e e 951
1.13.18.2 The Administrative Object Adapter e 952
1.13.18.3 Using the admin Object e e 953
1.13.18.4 The Process FacCet 955
1.13.18.5 The Properties Facet e e e 958
1.13.18.6 Filtering Administrative FaCetS 959
1.13.18.7 Custom Administrative FaCetst 960
1.13.18.8 Security Considerations for Administrative Facets i 961

1.13.19 Logger Facility 962
1.13.19.1 The Default LOGQerottt e e e e e e e e e e e e e e 963
1.13.19.2 CUSIOM LOQOEIS . o o ettt e et e e e e e e e e e e e e 964
1.13.19.3 BUIlt-iN LOQOEIS . . ottt ettt e e e e e 965
1.13.19.4 L0ogger PlUG-iNS . . .ot 966
1.13.19.5 The Per-ProCess LOgOerttt e e e e e 970
1.13.19.6 C++ Logger Utility ClasSeSttt e e e 971

1.13.20 Stats FacCility oo 973

1.13.21 LOCALION TFANSPAIEINCY . . o . v ottt et et e et et e e e e e e e e e e e e e e e e e 975

1.13.22 AUtOMALIC REtIIES . . oo 977

1.13.23 DiSPatCh INterCEPIOrS . .t ittt e e e e 981

1.13.24 C++ Strings and Character ENCOdiNgo ot 985
1.13.24.1 Installing String CONVEIEIS ottt ettt e et e e e e e e e e 986
1.13.24.2 UTF-8 CONVEISION . . o\ttt et it et e e e e e e e e e e e et e e e e e e e e 987
1.13.24.3 String Parametersin Local Calls 988
1.13.24.4 BUilt-in StriNg CONVEIEIS ottt ittt e et et e e e e e e e e e e e e e 989
1.13.24.5 String Conversion Convenience FUNCLONSottt e e e 990
1.13.24.6 The iconv String CONVEIET ottt ettt e e e et e e e e e e 991
1.13.24.7 The Ice String Converter PIUG-IN e 992
1.13.24.8 Custom String Converter PlUg-iNSt e e e 993

1.13.25 Plug-in FaCility . ..o 994
1.03.25. 0 PIUG-IN AP o 995
1.13.25.2 Plug-in Configurationttt e e e 997
1.13.25.3 Advanced PlUg-in TOPICSottt ittt e et e e e e e e 998

1.13.26 Custom Class LOAAEISottt et 1000

1.14 Facets and VErSIONING . . .o oottt et e e e e e e e e e e e e 1001

I Vo = Ao = o] £ 1002

1.14.2 The Versioning Problem 1008

1.14.3 Versioning With Facets 1012

1.5 Object Life CYCleo 1016

1.15.1 Understanding Object Life CyCle e 1017

1.15.2 Object Existence and NON-EXISIENCEo e e e e 1018

1.15.3 Life Cycle of Proxies, Servants, and Ice ObJECtS i e 1021

1.15.4 ObJECE CreatiOn . . . v ittt ettt e e e e et e e e 1023

1.15.5 ObJeCt DESIIUCLION ottt e et e e e e e e e e e 1027
1.15.5.1 Idempotency and Life Cycle Operationsttt e e e e e 1029
1.15.5.2 Implementing @ destroy OPerationttt 1030
1.15.5.3 Cleaning Up a Destroyed Servantttt e e 1032

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

1.15.5.4 Life Cycle and Collection Operationst e 1034
1.15.5.5 Life Cycle and Normal Operationsttt e e e e e 1038
1.15.6 Removing Cyclic DEPENAENCIES oottt e e e e e e e e 1042
1.15.6.1 Acquiring Locks without DeadloCKS e 1043
1.15.6.2 Reaping ObJeCtSottt e 1044
1.15.7 Object Identity and UNIQUENESS oottt et e e e e e e e e e e e 1048
1.15.8 Object Life Cycle for the File System Application e 1050
1.15.8.1 Implementing Object Life Cycle in CH+ 1052
1.15.8.2 Implementing Object Life Cycle in Java e 1059
1.15.9 Avoiding Server-Side Garbage 1067
1.16 DYNAMIC IC8 o .o oot 1074
1.16.1 Streaming INterfaCes 1075
1.16.1.1 C++ Streaming INterfaces 1076
1.16.1.1.1 The InputStream Interface in CH++ e 1077
1.16.1.1.2 The OutputStream Interface in CH+ e e 1083
1.16.1.1.3 Intercepting Object Insertion and Extraction in C++ i e 1088
1.16.1.1.4 Intercepting User Exception Insertion in C++ e 1089
1.16.1.2 Java Streaming INterfaces 1090
1.16.1.2.1 The InputStream Interface iN Java e 1091
1.16.1.2.2 The OutputStream Interface in Javat e 1095
1.16.1.2.3 Stream Helper FUNCLONS iNJAVA oottt e e e e e e e e 1098
1.16.1.2.4 Intercepting Object Insertion and Extraction inJavat 1100
1.16.1.2.5 Intercepting User Exception INSertion in Javattt 1101
1.16.1.3 C-Sharp Streaming INterfaces 1102
1.16.1.3.1 The InputStream Interface in C-Sharp i e e e e 1103
1.16.1.3.2 The OutputStream Interface in C-Sharp e e 1107
1.16.1.3.3 Stream Helper FuNctions in C-Sharpt e 1110
1.16.1.3.4 Intercepting Object Insertion and Extractionin C-Sharp 1113
1.16.1.3.5 Intercepting User Exception Insertion in C-Sharp i 1114

1.16.2 Dynamic Invocation and DIiSpatCh 1115
1.16.2.1 Dynamic Invocation and Dispatch OVEIVIEW it e 1116
1.16.2.2 Dynamic Invocation and Dispatch in CH++ e 1119
1.16.2.3 Dynamic Invocation and Dispatch in Java 1124
1.16.2.4 Dynamic Invocation and Dispatch in C-Sharp 1128
1.16.3 Asynchronous Dynamic Invocation and DispatCh 1132
1.16.3.1 Asynchronous Dynamic Invocation and Dispatch in C++ 1133
1.16.3.2 Asynchronous Dynamic Invocation and Dispatch in Java 1138
1.16.3.3 Asynchronous Dynamic Invocation and Dispatch in C-Sharp 1141
1.17 Connection ManagemMENTttt ettt e e e e e 1144
1.17.1 Connection Establishment 1145
1.17.2 Active Connection Managementttt et e e e 1148
1.17.3 USING CONNECLIONS . . . oot ittt et e et e e e e e e e e e e e e e e e e e 1149
1.17.4 ConneCtion CIOSUIE ottt et e e e e e e et e e e e e e e 1155
1.17.5 Bidirectional CONNECLIONSttt et e et e e e e e e 1156
1,18 The 18 ProtoCOl e 1159
1.18.1 Data ENCOTING . . . o oottt et ettt e e e e e e e e 1160
1.18.1.1 Basic Data ENCOOINGo o e 1161
1.18.1.2 Data Encoding for EXCEPLIONSttt e 1164
1.18.1.3 Data Encoding for ClasSesttt e e 1166
1.18.1.3.1 Data Encoding for Class TYPe IDSottt e e e 1167
1.18.1.3.2 Simple Example of Class ENCOAINGottt 1168
1.18.1.3.3 Data Encoding for Class Graphst 1171
1.18.1.4 Data Encoding for INterfacest 1176
1.18.1.5 Data Encoding for ProXies 1177
1.18.2 ProtoCOl MESSAGES . . o . vttt ittt e e e e e e e 1180
1.18.3 Protocol COMPIESSIONottt et et e e e e e e e e e 1186
1.18.4 Protocol and ENCOdiNg VerSiOoNSottt e e e 1187
L9 ICEGHIA o e ettt e e 1189
1.19.1 1ceGrid ArChItECIUIE oot e e e e e e 1191
1.19.2 Getting Started With ICEGIA 1193
1.19.3 Using IceGrid Deploymento 1197
1.19.4 Well-Known ODJECES . .. oottt et e e e e e e e e 1203
1.19.51ceGrid TeMPIAtES oottt e 1209
1.19.6 IceBox Integration With ICEGIIA i e e e 1213
1.19.7 Object Adapter RepliCatioN e 1216
1.19.8 Load BalanCingt 1219
1.19.9 Resource Allocation using ICEGIA SESSIONSttt 1221
1.19.10 Registry RepliCAtiON 1226
1.19.11 Application DIStriDULION oo e 1230
1.19.12 IceGrid AdMINIStrative SESSIONSottt e e e 1236
1.19.13 Glacier2 Integration With ICEGIITt 1242
1.19.14 IceGrid XML RefErenCe o 1245
1.19.14.1 Adapter DescCriptor ElemMENto 1246
1.19.14.2 Allocatable Descriptor Element 1248
1.19.14.3 Application Descriptor Element 1249

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

1.19.14.4 DbENV Descriptor Elemento 1250
1.19.14.5 DbProperty Descriptor EIEmeNnt 1251
1.19.14.6 Description Descriptor EIement 1252
1.19.14.7 Directory DescCriptor Element 1253
1.19.14.8 Distrib Descriptor EIemMeNnto 1254
1.19.14.9 IceBox Descriptor EIemento 1255
1.19.14.10 IceGrid Descriptor Element 1256
1.19.14.11 Load-Balancing Descriptor Element 1257
1.19.14.12 Log Descriptor EIEMENTo 1258
1.19.14.13 Node Descriptor Element 1259
1.19.14.14 Object Descriptor EIEMENt 1260
1.19.14.15 Parameter Descriptor Element 1261
1.19.14.16 Properties Descriptor Element 1262
1.19.14.17 Property Descriptor EIEMENt 1263
1.19.14.18 Replica-Group Descriptor Element 1264
1.19.14.19 Server DescCriptor ElemeNnt e 1265
1.19.14.20 Server-Instance Descriptor Element 1267
1.19.14.21 Server-Template Descriptor Element 1268
1.19.14.22 Service Descriptor EIement 1269
1.19.14.23 Service-Instance Descriptor Element 1270
1.19.14.24 Service-Template Descriptor Element 1271
1.19.14.25 Variable Descriptor Element 1272
1.19.14.26 Using Command Line Options in DESCPIOrSttt 1273
1.19.14.27 Setting Environment Variables in DeSCHPIOrSot 1274
1.19.15 Using Descriptor Variables and Parametersottt e e 1276
1.19.16 IceGrid Property Set SEMANLICS oottt et e e e 1281
1.19.17 IceGrid XML FAUIESttt et et e e e e e e e e e 1285
1.19.18 IceGrid Server REfErenCe 1287
1.19.08. 0 ICegriaregistry . . .ot e 1288
1.19.18.20CegridnNOOeot e 1290
1.19.18.3 Well-Known Registry ObJeCtS i 1292
1.19.18.4 IceGrid Persistent DAtattt 1293
1.19.18.5 Promoting a RegiStry SIaVve 1295
1.19.19 IceGrid and the Administrative Facility 1296
1.19.20 Securing ICEGIIAot e 1302
1.19.21 IceGrid Administrative ULIIItIES 1306
1.19.22 IceGrid Server ACHIVALION 1311
1.19.23 IceGrid TroubleshOotingo 1314
120 FrEEZE . . .ot 1316
1.20.1 Freeze EVICIOrS . .. oot e e 1317
1.20.1.1 Freeze EVICIOr CONCEPIS . ..t vttt ettt e e et e et e e e et e e e e 1318
1.20.1.2 Background Save EVICIOr 1323
1.20.1.3 Transactional EVICIOr e 1326
1.20.1.4 Using a Freeze Evictor in the File System Server 1330
1.20.1.4.1 Adding an Evictor to the C++ File System Server 1332
1.20.1.4.2 Adding an Evictor to the Java File System Server 1340

1.20.2 FIrEEZE MaAPS . o o ettt e e et e e 1347
1.20.2.1 Freeze Map CONCEPIS . . .ottt e ettt et e e e e et e e 1348
1.20.2.2 Using @a Freeze Map in CHt Lo oo 1355
1.20.2.3 Using @ Freeze Map iN JAVAottt e 1363
1.20.2.4 Using a Freeze Map in the File System Server e 1375
1.20.2.4.1 Adding a Freeze Map to the C++ File System Server i 1377
1.20.2.4.2 Adding a Freeze Map to the Java File System Server 1387

1.20.3 Freeze Catalogsottt ittt 1396
1.20.4 Backing Up Freeze Databasesttt e e e et e 1398
B R =T =3 T) P 1399
1.21.1 Migrating @ Freeze Databasettt e 1400
1.21.1.1 Automatic Database MIgrationt 1401
1.21.1.2 Custom Database Migrationttt e e 1404
1.21.1.3 FreezeScript Transformation XML Reference e 1408
1.21.1.4 Using transformabo e 1414
1.21.2 Inspecting @ Freeze Databasettt 1420
1.20.2. 0 USiNg dumpdb ..o e 1421
1.21.2.2 FreezeScript Inspection XML Reference i e e e e 1427
1.21.3 FreezeScript Descriptor EXpression LANQUAGE oottt i e et e e e et e e e 1432
L 22 1B S S o it 1435
122, L USING ICBS S . .ttt 1437
1.22.2 Configuring [CES So 1440
1.22.3 Programming ICES Sot 1449
1.22.3.1 Programming [CESSL IN CHt L ..o e 1450
1.22.3.2 Programming ICESSL N Javat 1455
1.22.3.3 Programming [CeSSL IN INET 1459
1.22.4 AdVaNCed ICES S TOPICS . vttt it ettt ettt e e e e e e e e e 1463
1.22.5 Setting up a Certificate AUtNOKILYo 1470
123 GIACIEr2 . . ot 1474

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

1.23.1 Common Firewall Traversal ISSUES e e 1475
1.23.2 AbOUL GIACIEI2 . . . oot e e 1476
1.23.3 HOW Glacier2 WOrKS . ..o 1477
1.23.4 Getting Started with GIaCier2 1478
1.23.5 Callbacks through GIacier2 e e 1483
1.23.6 Glacier2 Helper ClIasSeSttt e et e e e e e e 1486
1.23.7 Securing @ GIaCier2 ROULETottt e e e e e et e e e 1492
1.23.8 Glacier2 Session Managementttt i e e e e 1498
1.23.9 Dynamic Request Filtering with Glacier2 1501
1.23.10 Glacier2 Request BUIferingo e 1503
1.23.11 How Glacier2 uses Request CONEXESttt e e e e e e e e 1504
1.23.12 Configuring Glacier2 behind an External Firewall 1506
1.23.13 Advanced Glacier2 Client Configurations i e 1507
1.23.14 IceGrid and Glacier2 Integrationt 1508

L 24 1CEBOX . .o e 1510
1.24.1 DeVeloping ICEBOX SEIVICES . . . vttt ittt et e e e e e e e e 1511
1.24.2 Configuring ICEBOX SEIVICES\ttt et e e et e e e e e e e e e 1515
1.24.3 Starting the [CeBOX SeIVer 1518
1.24.4 IceBox ADMINISIration 1520
72 (ot} (o T o P 1524
1.25.1 1CeSIOrM CONCEPLS . . . oot ittt et e e e e e e e e e e 1525
1.25.2 1ceStorm INterfaceso 1527
1,25, 3 USING ICB S OMM . oottt e 1529
1.25.3.1 Implementing an IceStorm Publisher 1530
1.25.3.2 Using an IceStorm Publisher Object e 1534
1.25.3.3 Implementing an IceStorm Subscriber 1536
1.25.3.4 Publishing to a Specific SUbSCriber 1541

1.25.4 Highly Available 1CeStorm 1543
1.25.5 [ceStorm AdmINIStratiOno 1547
1.25.6 TOPIC FEABIAtiON oottt e e e e e e 1549
1.25.7 IceStorm Quality Of ServICE 1553
1.25.8 1ceStorm Delivery MOOESottt e e e e e 1555
1.25.9 Configuring ICESIOMMo e e 1557
126 ICEPatCR . 1561
1.26.1 USINg iCepatCh2Call 1562
1.26.2 Running the ICEPAtCh2 Server 1564
1.26.3 Running the IcePatCh2 Client e e 1565
1.26.4 IcePatch2 Object Identitieso 1567
1.26.5 IcePatch2 Client Utility LIDraryo e e e e e e e 1568
1.27 Property RefereNCe 1571
1.27.1 Ice Configuration PropertYt e 1572
1.27.2 1Ce TraCe PrOpPertiESo ittt e e e e e e e 1573
1.27.3 1ce Warning Propertieso e 1576
1.27.4 Ice Object Adapter PrOPeIti®Sttt e e e e e e e 1578
1.27.5 Ice AdmInistrative Propertiesottt e e e e 1582
1.27.6 1C€ PIUG-IN Properti®Sottt et et e e e e e e 1584
1.27.7 Ice Thread Pool Properties e e e e e 1587
1.27.8 Ice Default and OVerride PropertieSttt ettt e e e e 1590
1.27.9 1Ce ProxXy Propertieso e e 1594
1.27.10 Ice Transport ProPertiESottt e e e 1597
1.27.11 Ice MisCellaneous Properties ittt et e e e e 1600
1.27.02 1CESSL PrOPerti®S . . oo ottt ettt e e e 1608
1.27.13 1CEBOX PrOPeItiES . . oo ittt 1620
1.27.14 1ceBOXAAMIN PrOPEItiES . . o\ ottt et e e e e e e e 1623
1.27.15 1CEGHIA PrOPEItIES . . o .ttt ittt e e e et e e e e e e e 1624
1.27.16 IceGrid Administrative Client Propertiest e 1639
127,17 1CES OIM PrOPEIIES . . o ottt e e e 1641
1.27.18 GIACIEr2 PrOPerti®S . . . o .t ittt et e e et e e e e e e e 1649
1.27.19 Fre@ze PrOPeItiES . . oo ittt ittt e et e e e e e 1659
1.27.20 1CPAtCN2 PropertiesSottt e 1665
1.28 WINAOWS SEIVICES . . .ottt et ettt e e e e e e e e e e e e e 1667
1.28.1 Installing @ WINAOWS SEIVICE o\ttt et ettt e e e e e e e e e e e 1668
1.28.2 Using the Ice Service INStaller 1669
1.28.3 Manually Installing @ SeIVICEt e e 1672
1.28.4 Troubleshooting WINAOWS SEIVICESottt e e e e e e e e e e 1678
1.29 Binary DistriDULIONS oo 1680
1.29.1 Ice Developer KitSo e 1681
1.29.2 Guidelines for Distributing Ice Applications 1682
1.30 Deprecated AMI Mappingo ottt et et e e e e e e e e 1685
1.30.1 Overview of Deprecated AMI Mappingottt e e e e e e 1686
1.30.2 Deprecated AMI Language MappingsSv vt u ittt e et e e e e 1690
1.30.3 Advanced Topics for Deprecated AMI Mappingttt e 1697
131 IDE INtEgrationottt ettt e e e 1704
1.31. 1 Visual Studio Add-iN . ..o 1705
1.31.2 ECliPSe PlIUG-IN oo 1708

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

1.31.3 XCOAE PlUG-IN . oo 1710

2. REIEASE NOES . . ottt 1712
2.1 New Features iN 18 3.4 ... 1713
2.2 Upgrading your Application from €8 3.4.X . . . oot 1719
2.3 Upgrading your Application from [Ce 3.3 1722
2.4 Upgrading your Application from Ice 3.2 or Earlier Releases 1737
2.5 Platform NOtes for ICe B.4.2 1743
2.6 KNnown Problems in [Ce 3.4, . . 1745
2.7 Using the Windows Binary Distribution 1747
2.8 UsINg the LINUX RPMSo e e e e e e e e 1756
2.9 Using the Mac OS X Binary Distribution 1761
2.10 Using the Solaris Binary DiStriDULIONSot e e e e e e e 1764

Copyright © 2011, ZeroC, Inc.

10

Ice 3.4.2 Documentation

lce Manual

Distributed Programming with Ice

The Internet Communications Engine (Ice) is a modern object-oriented toolkit that enables you to build distributed applications with minimal
effort. Ice allows you to focus your efforts on your application logic, and it takes care of all interactions with low-level network programming
interfaces. With Ice, there is no need to worry about details such as opening network connections, serializing and deserializing data for
network transmission, or retrying failed connection attempts.

The main design goals of Ice are:

Provide an object-oriented middleware platform suitable for use in heterogeneous environments.

Provide a full set of features that support development of realistic distributed applications for a wide variety of domains.
Avoid unnecessary complexity, making the platform easy to learn and to use.

Provide an implementation that is efficient in network bandwidth, memory use, and CPU overhead.

Provide an implementation that has built-in security, making it suitable for use over insecure public networks.

In simpler terms, the Ice design goals could be stated as "Let's build a powerful middleware platform that makes the developer's life easier.

) The acronym "Ice" is pronounced as a single syllable, like the word for frozen water.

Getting Help with Ice

If you have a question and you cannot find an answer in this manual, you can visit our developer forums to see if another developer has
encountered the same issue. If you still need help, feel free to post your question on the forum, which ZeroC's developers monitor regularly.
Note, however, that we can provide only limited free support in our forums. For guaranteed response and problem resolution times, we
highly recommend purchasing commercial support.

Feedback about the Manual

We would very much like to hear from you in case you find any bugs (however minor) in this manual. We also would like to hear your opinion
on the contents, and any suggestions as to how it might be improved. You can contact us via e-mail at icebook@zeroc.com.

Legal Notices

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book and ZeroC was aware of the trademark claim, the designations have been printed in initial caps or all caps.
The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

License

This manual is provided under one of two licenses, whichever you prefer:

® Creative Commons Attribution-No Derivative Works 3.0 Unported License.
This license does not permit you to make modifications.

® Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License.
This license permits you to make modifications. If you distribute this manual under this license, you must prominently include the
following text:

Copyright © 2011, ZeroC, Inc.

http://www.zeroc.com/forums
http://www.zeroc.com/support.html
http://creativecommons.org/licenses/by-nd/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

11

Ice 3.4.2 Documentation

This document is derived from ZeroC's Ice Manual, Copyright © ZeroC, Inc. 2003-2011.
You can find the latest version of this document at:
http://doc.zeroc.com/display/Ice/lce+Manual

Copyright

Copyright © 2003-2011 by ZeroC, Inc.
mailto:info@zeroc.com
http://www.zeroc.com

Copyright © 2011, ZeroC, Inc.

http://doc.zeroc.com/display/Ice/Ice+Manual
http://www.zeroc.com

12

Ice 3.4.2 Documentation

Ice Overview

The following topics provide a high-level overview of Ice:

® |ce Architecture introduces fundamental concepts and terminology, and outlines how Slice definitions, language mappings, and the
Ice run time and protocol work in concert to create clients and servers.

® |ce Services briefly presents the object services provided by Ice.

® Architectural Benefits of Ice outlines the benefits that result from the Ice architecture.

Topics

® |ce Architecture
® |ce Services
® Architectural Benefits of Ice

Copyright © 2011, ZeroC, Inc.

13

Ice 3.4.2 Documentation

Ice Architecture

Ice is an object-oriented middleware platform. Fundamentally, this means that Ice provides tools, APIs, and library support for building
object-oriented client-server applications. Ice applications are suitable for use in heterogeneous environments: client and server can be
written in different programming languages, can run on different operating systems and machine architectures, and can communicate using
a variety of networking technologies. The source code for these applications is portable regardless of the deployment environment.

Topics:

Terminology

Slice (Specification Language for Ice)
Language Mappings

Client and Server Structure

Overview of the Ice Protocol

See Also

® |ce Services
® Architectural Benefits of Ice

Copyright © 2011, ZeroC, Inc.

14

Ice 3.4.2 Documentation

Terminology

Every computing technology creates its own vocabulary as it evolves. Ice is no exception. However, the amount of new jargon used by Ice is
minimal. Rather than inventing new terms, we have used existing terminology as much as possible. If you have used another middleware
technology in the past, you will be familiar with much of what follows. (However, we suggest you at least skim the material because a few
terms used by Ice do differ from the corresponding terms used by other middleware.)

On this page:

Clients and Servers

Ice Objects

Proxies

Stringified Proxies

Direct Proxies

Indirect Proxies

Direct Versus Indirect Binding
Fixed Proxies

Routed Proxies

Replication

Replica Groups

Servants

At-Most-Once Semantics
Synchronous Method Invocation
Asynchronous Method Invocation
Asynchronous Method Dispatch
Oneway Method Invocation
Batched Oneway Method Invocation
Datagram Invocations

Batched Datagram Invocations
Run-Time Exceptions

User Exceptions

Properties

Clients and Servers

The terms client and server are not firm designations for particular parts of an application; rather, they denote roles that are taken by parts of
an application for the duration of a request:

® Clients are active entities. They issue requests for service to servers.
® Servers are passive entities. They provide services in response to client requests.

Frequently, servers are not "pure" servers, in the sense that they never issue requests and only respond to requests. Instead, servers often
act as a server on behalf of some client but, in turn, act as a client to another server in order to satisfy their client's request.

Similarly, clients often are not "pure" clients, in the sense that they only request service from an object. Instead, clients are frequently
client-server hybrids. For example, a client might start a long-running operation on a server; as part of starting the operation, the client can
provide a callback object to the server that is used by the server to notify the client when the operation is complete. In that case, the client
acts as a client when it starts the operation, and as a server when it is notified that the operation is complete.

Such role reversal is common in many systems, so, frequently, client-server systems could be more accurately described as peer-to-peer
systems.

Ice Objects

An Ice object is a conceptual entity, or abstraction. An Ice object can be characterized by the following points:

® An Ice object is an entity in the local or a remote address space that can respond to client requests.

® Asingle Ice object can be instantiated in a single server or, redundantly, in multiple servers. If an object has multiple simultaneous
instantiations, it is still a single Ice object.

® Each Ice object has one or more interfaces. An interface is a collection of named operations that are supported by an object. Clients
issue requests by invoking operations.

® An operation has zero or more parameters as well as a return value. Parameters and return values have a specific type. Parameters
are named and have a direction: in-parameters are initialized by the client and passed to the server; out-parameters are initialized
by the server and passed to the client. (The return value is simply a special out-parameter.)

® An Ice object has a distinguished interface, known as its main interface. In addition, an Ice object can provide zero or more alternate
interfaces, known as facets. Clients can select among the facets of an object to choose the interface they want to work with.

® Each Ice object has a unique object identity. An object's identity is an identifying value that distinguishes the object from all other

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

objects. The Ice object model assumes that object identities are globally unique, that is, no two objects within an Ice communication
domain can have the same object identity.

In practice, you need not use object identities that are globally unique, such as UUIDs, only identities that do not clash with any
other identity within your domain of interest. However, there are architectural advantages to using globally unique identifiers, which
we explore in our discussion of object life cycle.

Proxies

For a client to be able to contact an Ice object, the client must hold a proxy for the Ice object. A proxy is an artifact that is local to the client's
address space; it represents the (possibly remote) Ice object for the client. A proxy acts as the local ambassador for an Ice object: when the
client invokes an operation on the proxy, the Ice run time:

. Locates the Ice object

. Activates the Ice object's server if it is not running

. Activates the Ice object within the server

. Transmits any in-parameters to the Ice object

. Waits for the operation to complete

. Returns any out-parameters and the return value to the client (or throws an exception in case of an error)

O WNE

A proxy encapsulates all the necessary information for this sequence of steps to take place. In particular, a proxy contains:
® Addressing information that allows the client-side run time to contact the correct server

® An object identity that identifies which particular object in the server is the target of a request
® An optional facet identifier that determines which particular facet of an object the proxy refers to

Stringified Proxies

The information in a proxy can be expressed as a string. For example, the string:

Si nmpl ePrinter:default -p 10000

is a human-readable representation of a proxy. The Ice run time provides API calls that allow you to convert a proxy to its stringified form and
vice versa. This is useful, for example, to store proxies in database tables or text files.

Provided that a client knows the identity of an Ice object and its addressing information, it can create a proxy "out of thin air" by supplying

that information. In other words, no part of the information inside a proxy is considered opaque; a client needs to know only an object's
identity, addressing information, and (to be able to invoke an operation) the object's type in order to contact the object.

Direct Proxies

A direct proxy is a proxy that embeds an object's identity, together with the address at which its server runs. The address is completely
specified by:

® a protocol identifier (such TCP/IP or UDP)
® a protocol-specific address (such as a host name and port number)

To contact the object denoted by a direct proxy, the Ice run time uses the addressing information in the proxy to contact the server; the
identity of the object is sent to the server with each request made by the client.

Indirect Proxies

An indirect proxy has two forms. It may provide only an object's identity, or it may specify an identity together with an object adapter
identifier. An object that is accessible using only its identity is called a well-known object. For example, the string:

Si npl ePrinter

is a valid proxy for a well-known object with the identity Si npl ePri nter.

An indirect proxy that includes an object adapter identifier has the stringified form

Si npl ePri nter @rint er Adapt er

15 Copyright © 2011, ZeroC, Inc.

http://www.wikipedia.org/Uuid

Ice 3.4.2 Documentation

Any object of the object adapter can be accessed using such a proxy, regardless of whether that object is also a well-known object.

Notice that an indirect proxy contains no addressing information. To determine the correct server, the client-side run time passes the proxy
information to a location service. In turn, the location service uses the object identity or the object adapter identifier as the key in a lookup
table that contains the address of the server and returns the current server address to the client. The client-side run time now knows how to
contact the server and dispatches the client request as usual.

The entire process is similar to the mapping from Internet domain names to IP address by the Domain Name Service (DNS): when we use a
domain name, such as ww. zer oc. com to look up a web page, the host name is first resolved to an IP address behind the scenes and,
once the correct IP address is known, the IP address is used to connect to the server. With Ice, the mapping is from an object identity or
object adapter identifier to a protocol-address pair, but otherwise very similar. The client-side run time knows how to contact the location
service via configuration (just as web browsers know which DNS server to use via configuration).

Direct Versus Indirect Binding

The process of resolving the information in a proxy to protocol-address pair is known as binding. Not surprisingly, direct binding is used for
direct proxies, and indirect binding is used for indirect proxies.

The main advantage of indirect binding is that it allows us to move servers around (that is, change their address) without invalidating existing
proxies that are held by clients. In other words, direct proxies avoid the extra lookup to locate the server but no longer work if a server is
moved to a different machine. On the other hand, indirect proxies continue to work even if we move (or migrate) a server.

Fixed Proxies

A fixed proxy is a proxy that is bound to a particular connection: instead of containing addressing information or an adapter name, the proxy
contains a connection handle. The connection handle stays valid only for as long as the connection stays open so, once the connection is
closed, the proxy no longer works (and will never work again). Fixed proxies cannot be marshaled, that is, they cannot be passed as
parameters on operation invocations. Fixed proxies are used to allow bidirectional communication, so a server can make callbacks to a client
without having to open a new connection.

Routed Proxies

A routed proxy is a proxy that forwards all invocations to a specific target object, instead of sending invocations directly to the actual target.
Routed proxies are useful for implementing services such as Glacier2, which enables clients to communicate with servers that are behind a
firewall.

Replication

In Ice, replication involves making object adapters (and their objects) available at multiple addresses. The goal of replication is usually to
provide redundancy by running the same server on several computers. If one of the computers should happen to fail, a server still remains
available on the others.

The use of replication implies that applications are designed for it. In particular, it means a client can access an object via one address and
obtain the same result as from any other address. Either these objects are stateless, or their implementations are designed to synchronize
with a database (or each other) in order to maintain a consistent view of each object's state.

Ice supports a limited form of replication when a proxy specifies multiple addresses for an object. The Ice run time selects one of the
addresses at random for its initial connection attempt and tries all of them in the case of a failure. For example, consider this proxy:

SinplePrinter:tcp -h serverl -p 10001:tcp -h server2 -p 10002

The proxy states that the object with identity Si npl ePr i nt er is available using TCP at two addresses, one on the host ser ver 1 and
another on the host ser ver 2. The burden falls to users or system administrators to ensure that the servers are actually running on these
computers at the specified ports.

Replica Groups

In addition to the proxy-based replication described above, Ice supports a more useful form of replication known as replica groups that
requires the use of a location service.

A replica group has a unique identifier and consists of any number of object adapters. An object adapter may be a member of at most one
replica group; such an adapter is considered to be a replicated object adapter.

After a replica group has been established, its identifier can be used in an indirect proxy in place of an adapter identifier. For example, a
replica group identified as Pr i nt er Adapt er s can be used in a proxy as shown below:

Copyright © 2011, ZeroC, Inc.

17

Ice 3.4.2 Documentation

Si npl ePrinter @rinter Adapters

The replica group is treated by the location service as a "virtual object adapter." The behavior of the location service when resolving an
indirect proxy containing a replica group id is an implementation detail. For example, the location service could decide to return the
addresses of all object adapters in the group, in which case the client's Ice run time would select one of the addresses at random using the
limited form of replication discussed earlier. Another possibility is for the location service to return only one address, which it decided upon
using some heuristic.

Regardless of the way in which a location service resolves a replica group, the key benefit is indirection: the location service as a middleman
can add more intelligence to the binding process.

Servants

As we mentioned, an Ice Object is a conceptual entity that has a type, identity, and addressing information. However, client requests
ultimately must end up with a concrete server-side processing entity that can provide the behavior for an operation invocation. To put this
differently, a client request must ultimately end up executing code inside the server, with that code written in a specific programming
language and executing on a specific processor.

The server-side artifact that provides behavior for operation invocations is known as a servant. A servant provides substance for (or
incarnates) one or more Ice objects. In practice, a servant is simply an instance of a class that is written by the server developer and that is
registered with the server-side run time as the servant for one or more Ice objects. Methods on the class correspond to the operations on the
Ice object's interface and provide the behavior for the operations.

A single servant can incarnate a single Ice object at a time or several Ice objects simultaneously. If the former, the identity of the Ice object
incarnated by the servant is implicit in the servant. If the latter, the servant is provided the identity of the Ice object with each request, so it
can decide which object to incarnate for the duration of the request.

Conversely, a single Ice object can have multiple servants. For example, we might choose to create a proxy for an Ice object with two
different addresses for different machines. In that case, we will have two servers, with each server containing a servant for the same Ice
object. When a client invokes an operation on such an Ice object, the client-side run time sends the request to exactly one server. In other
words, multiple servants for a single Ice object allow you to build redundant systems: the client-side run time attempts to send the request to
one server and, if that attempt fails, sends the request to the second server. An error is reported back to the client-side application code only
if that second attempt also fails.

At-Most-Once Semantics

Ice requests have at-most-once semantics: the Ice run time does its best to deliver a request to the correct destination and, depending on
the exact circumstances, may retry a failed request. Ice guarantees that it will either deliver the request, or, if it cannot deliver the request,
inform the client with an appropriate exception; under no circumstances is a request delivered twice, that is, retries are attempted only if it is
known that a previous attempt definitely failed.

One exception to this rule are datagram invocations over UDP transports. For these, duplicated UDP packets can lead to a
violation of at-most-once semantics.

At-most-once semantics are important because they guarantee that operations that are not idempotent can be used safely. An idempotent
operation is an operation that, if executed twice, has the same effect as if executed once. For example, x = 1; is an idempotent operation:
if we execute the operation twice, the end result is the same as if we had executed it once. On the other hand, x++; is not idempotent: if we
execute the operation twice, the end result is not the same as if we had executed it once.

Without at-most-once semantics, we can build distributed systems that are more robust in the presence of network failures. However,
realistic systems require non-idempotent operations, so at-most-once semantics are a necessity, even though they make the system less

robust in the presence of network failures. Ice permits you to mark individual operations as idempotent. For such operations, the Ice run time
uses a more aggressive error recovery mechanism than for non-idempotent operations.

Synchronous Method Invocation

By default, the request dispatch model used by Ice is a synchronous remote procedure call: an operation invocation behaves like a local
procedure call, that is, the client thread is suspended for the duration of the call and resumes when the call completes (and all its results are
available).

Asynchronous Method Invocation

Ice also supports asynchronous method invocation (AMI): clients can invoke operations asynchronously, that is, the client uses a proxy as

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

usual to invoke an operation but, in addition to passing the normal parameters, also passes a callback object and the client invocation
returns immediately. Once the operation completes, the client-side run time invokes a method on the callback object passed initially, passing
the results of the operation to the callback object (or, in case of failure, passing exception information).

The server cannot distinguish an asynchronous invocation from a synchronous one — either way, the server simply sees that a client has
invoked an operation on an object.

Asynchronous Method Dispatch

Asynchronous method dispatch (AMD) is the server-side equivalent of AMI. For synchronous dispatch (the default), the server-side run time
up-calls into the application code in the server in response to an operation invocation. While the operation is executing (or sleeping, for
example, because it is waiting for data), a thread of execution is tied up in the server; that thread is released only when the operation
completes.

With asynchronous method dispatch, the server-side application code is informed of the arrival of an operation invocation. However, instead
of being forced to process the request immediately, the server-side application can choose to delay processing of the request and, in doing
S0, releases the execution thread for the request. The server-side application code is now free to do whatever it likes. Eventually, once the
results of the operation are available, the server-side application code makes an API call to inform the server-side Ice run time that a request
that was dispatched previously is now complete; at that point, the results of the operation are returned to the client.

Asynchronous method dispatch is useful if, for example, a server offers operations that block clients for an extended period of time. For
example, the server may have an object with a get operation that returns data from an external, asynchronous data source and that blocks
clients until the data becomes available. With synchronous dispatch, each client waiting for data to arrive ties up an execution thread in the
server. Clearly, this approach does not scale beyond a few dozen clients. With asynchronous dispatch, hundreds or thousands of clients can
be blocked in the same operation invocation without tying up any threads in the server.

Another way to use asynchronous method dispatch is to complete an operation, so the results of the operation are returned to the client, but
to keep the execution thread of the operation beyond the duration of the operation invocation. This allows you to continue processing after
results have been returned to the client, for example, to perform cleanup or write updates to persistent storage.

Synchronous and asynchronous method dispatch are transparent to the client, that is, the client cannot tell whether a server chose to
process a request synchronously or asynchronously.

Oneway Method Invocation

Clients can invoke an operation as a oneway operation. A oneway invocation has "best effort" semantics. For a oneway invocation, the
client-side run time hands the invocation to the local transport, and the invocation completes on the client side as soon as the local transport
has buffered the invocation. The actual invocation is then sent asynchronously by the operating system. The server does not reply to oneway
invocations, that is, traffic flows only from client to server, but not vice versa.

Oneway invocations are unreliable. For example, the target object may not exist, in which case the invocation is simply lost. Similarly, the
operation may be dispatched to a servant in the server, but the operation may fail (for example, because parameter values are invalid); if so,
the client receives no notification that something has gone wrong.

Oneway invocations are possible only on operations that do not have a return value, do not have out-parameters, and do not throw user
exceptions.

To the application code on the server-side, oneway invocations are transparent, that is, there is no way to distinguish a twoway invocation
from a oneway invocation.

Oneway invocations are available only if the target object offers a stream-oriented transport, such as TCP/IP or SSL.

Note that, even though oneway operations are sent over a stream-oriented transport, they may be processed out of order in the server. This
can happen because each invocation may be dispatched in its own thread: even though the invocations are initiated in the order in which the
invocations arrive at the server, this does not mean that they will be processed in that order — the vagaries of thread scheduling can result in
a oneway invocation completing before other oneway invocations that were received earlier.

Batched Oneway Method Invocation

Each oneway invocation sends a separate message to the server. For a series of short messages, the overhead of doing so is considerable:
the client- and server-side run time each must switch between user mode and kernel mode for each message and, at the networking level,
each message incurs the overheads of flow-control and acknowledgement.

Batched oneway invocations allow you to send a series of oneway invocations as a single message: every time you invoke a batched
oneway operation, the invocation is buffered in the client-side run time. Once you have accumulated all the oneway invocations you want to
send, you make a separate API call to send all the invocations at once. The client-side run time then sends all of the buffered invocations in
a single message, and the server receives all of the invocations in a single message. This avoids the overhead of repeatedly trapping into
the kernel for both client and server, and is much easier on the network between them because one large message can be transmitted more
efficiently than many small ones.

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The individual invocations in a batched oneway message are dispatched by a single thread in the order in which they were placed into the
batch. This guarantees that the individual operations in a batched oneway message are processed in order in the server.

Batched oneway invocations are particularly useful for messaging services, such as IceStorm, and for fine-grained interfaces that offer set
operations for small attributes.

Datagram Invocations

Datagram invocations have "best effort" semantics similar to oneway invocations. However, datagram invocations require the object to offer
UDP as a transport (whereas oneway invocations require TCP/IP).

Like a oneway invocation, a datagram invocation can be made only if the operation does not have a return value, out-parameters, or user
exceptions. A datagram invocation uses UDP to invoke the operation. The operation returns as soon as the local UDP stack has accepted
the message; the actual operation invocation is sent asynchronously by the network stack behind the scenes.

Datagrams, like oneway invocations, are unreliable: the target object may not exist in the server, the server may not be running, or the
operation may be invoked in the server but fail due to invalid parameters sent by the client. As for oneway invocations, the client receives no
notification of such errors.

However, unlike oneway invocations, datagram invocations have a number of additional error scenarios:

® Individual invocations may simply be lost in the network.
This is due to the unreliable delivery of UDP packets. For example, if you invoke three operations in sequence, the middle invocation
may be lost. (The same thing cannot happen for oneway invocations — because they are delivered over a connection-oriented
transport, individual invocations cannot be lost.)

® |ndividual invocations may arrive out of order.
Again, this is due to the nature of UDP datagrams. Because each invocation is sent as a separate datagram, and individual
datagrams can take different paths through the network, it can happen that invocations arrive in an order that differs from the order
in which they were sent.

Datagram invocations are well suited for small messages on LANs, where the likelihood of loss is small. They are also suited to situations in
which low latency is more important than reliability, such as for fast, interactive internet applications. Finally, datagram invocations can be
used to multicast messages to multiple servers simultaneously.

Batched Datagram Invocations

As for batched oneway invocations, batched datagram invocations allow you to accumulate a number of invocations in a buffer and then
send the entire buffer as a single datagram by making an API call to flush the buffer. Batched datagrams reduce the overhead of repeated
system calls and allow the underlying network to operate more efficiently. However, batched datagram invocations are useful only for
batched messages whose total size does not substantially exceed the PDU limit of the network: if the size of a batched datagram gets too
large, UDP fragmentation makes it more likely that one or more fragments are lost, which results in the loss of the entire batched message.
However, you are guaranteed that either all invocations in a batch will be delivered, or none will be delivered. It is impossible for individual
invocations within a batch to be lost.

Batched datagrams use a single thread in the server to dispatch the individual invocations in a batch. This guarantees that the invocations
are made in the order in which they were queued — invocations cannot appear to be reordered in the server.

Run-Time Exceptions

Any operation invocation can raise a run-time exception. Run-time exceptions are pre-defined by the Ice run time and cover common error
conditions, such as connection failure, connection timeout, or resource allocation failure. Run-time exceptions are presented to the
application as native exceptions and so integrate neatly with the native exception handling capabilities of languages that support exception
handling.

User Exceptions

A server indicates application-specific error conditions by raising user exceptions to clients. User exceptions can carry an arbitrary amount of
complex data and can be arranged into inheritance hierarchies, which makes it easy for clients to handle categories of errors generically, by
catching an exception that is further up the inheritance hierarchy. Like run-time exceptions, user exceptions map to native exceptions.

Properties

Much of the Ice run time is configurable via properties. Properties are name-value pairs, such as | ce. Def aul t . Pr ot ocol =t cp.
Properties are typically stored in text files and parsed by the Ice run time to configure various options, such as the thread pool size, the level
of tracing, and various other configuration parameters.

Copyright © 2011, ZeroC, Inc.

20

See Also

The Slice Language
Proxies

Locators

Object Life Cycle
Bidirectional Connections
Glacier2

IceStorm

Ice 3.4.2 Documentation

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice (Specification Language for Ice)

Each Ice object has an interface with a number of operations. Interfaces, operations, and the types of data that are exchanged between
client and server are defined using the Slice language. Slice allows you to define the client-server contract in a way that is independent of a
specific programming language, such as C++, Java, or C#. The Slice definitions are compiled by a compiler into an API for a specific
programming language, that is, the part of the API that is specific to the interfaces and types you have defined consists of generated code.

See Also

® The Slice Language

21 Copyright © 2011, ZeroC, Inc.

22

Ice 3.4.2 Documentation

Language Mappings

The rules that govern how each Slice construct is translated into a specific programming language are known as language mappings. For
example, for the C++ mapping, a Slice sequence appears as an STL vector, whereas, for the Java mapping, a Slice sequence appears as a
Java array. In order to determine what the API for a specific Slice construct looks like, you only need the Slice definition and knowledge of
the language mapping rules. The rules are simple and regular enough to make it unnecessary to read the generated code to work out how to
use the generated API.

Of course, you are free to peruse the generated code. However, as a rule, that is inefficient because the generated code is not necessarily
suitable for human consumption. We recommend that you familiarize yourself with the language mapping rules; that way, you can mostly
ignore the generated code and need to refer to it only when you are interested in some specific detail.

Currently, Ice provides language mappings for C++, Java, C#, Python, Objective-C, and, for the client side, PHP and Ruby.
See Also

C++ Mapping

Java Mapping

C# Mapping
Objective-C Mapping
Python Mapping
Ruby Mapping

PHP Mapping

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Client and Server Structure

Ice clients and servers have the logical internal structure:

Client Application Server Application
A
Y
Proxy Skeleton Object
Code lce API lce AP Adapter
Client lce Core m Server lce Core
Metwork

|:| lce API

|:| Generated Code

Ice Client and Server Structure

Both client and server consist of a mixture of application code, library code, and code generated from Slice definitions:

23

® The Ice core contains the client- and server-side run-time support for remote communication. Much of this code is concerned with

the details of networking, threading, byte ordering, and many other networking-related issues that we want to keep away from
application code. The Ice core is provided as a number of libraries that client and server use.

The generic part of the Ice core (that is, the part that is independent of the specific types you have defined in Slice) is accessed
through the Ice API. You use the Ice API to take care of administrative chores, such as initializing and finalizing the Ice run time. The
Ice APl is identical for clients and servers (although servers use a larger part of the API than clients).

The proxy code is generated from your Slice definitions and, therefore, specific to the types of objects and data you have defined in
Slice. The proxy code has two major functions:
® |t provides a down-call interface for the client. Calling a function in the generated proxy API ultimately ends up sending an
RPC message to the server that invokes a corresponding function on the target object.
® |t provides marshaling and unmarshaling code. Marshaling is the process of serializing a complex data structure, such as a
sequence or a dictionary, for transmission on the wire. The marshaling code converts data into a form that is standardized
for transmission and independent of the endian-ness and padding rules of the local machine. Unmarshaling is the reverse
of marshaling, that is, deserializing data that arrives over the network and reconstructing a local representation of the data
in types that are appropriate for the programming language in use.

The skeleton code is also generated from your Slice definition and, therefore, specific to the types of objects and data you have
defined in Slice. The skeleton code is the server-side equivalent of the client-side proxy code: it provides an up-call interface that
permits the Ice run time to transfer the thread of control to the application code you write. The skeleton also contains marshaling and
unmarshaling code, so the server can receive parameters sent by the client, and return parameters and exceptions to the client.

The object adapter is a part of the Ice API that is specific to the server side: only servers use object adapters. An object adapter has
several functions:
® The object adapter maps incoming requests from clients to specific methods on programming-language objects. In other
words, the object adapter tracks which servants with what object identity are in memory.
® The object adapter is associated with one or more transport endpoints. If more than one transport endpoint is associated
with an adapter, the servants incarnating objects within the adapter can be reached via multiple transports. For example,
you can associate both a TCP/IP and a UDP endpoint with an adapter, to provide alternate quality-of-service and
performance characteristics.
® The object adapter is responsible for the creation of proxies that can be passed to clients. The object adapter knows about
the type, identity, and transport details of each of its objects and embeds the correct details when the server-side

Copyright © 2011, ZeroC, Inc.

24

Ice 3.4.2 Documentation

application code requests the creation of a proxy.
Note that, as far as the process view is concerned, there are only two processes involved: the client and the server. All the run time support

for distributed communication is provided by the Ice libraries and the code that is generated from Slice definitions. (For indirect proxies, a
third process, IceGrid, is required to resolve proxies to transport endpoints.)

See Also

® Hello World Application
® |ceGrid

Copyright © 2011, ZeroC, Inc.

25

Ice 3.4.2 Documentation

Overview of the Ice Protocol

Ice provides an RPC protocol that can use either TCP/IP or UDP as an underlying transport. In addition, Ice also allows you to use SSL as a
transport, so all communication between client and server is encrypted.

The Ice protocol defines:

® anumber of message types, such as request and reply message types,

® a protocol state machine that determines in what sequence different message types are exchanged by client and server, together
with the associated connection establishment and tear-down semantics for TCP/IP,

® encoding rules that determine how each type of data is represented on the wire,

® a header for each message type that contains details such as the message type, the message size, and the protocol and encoding
version in use.

Ice also supports compression on the wire: by setting a configuration parameter, you can arrange for all network traffic to be compressed to
conserve bandwidth. This is useful if your application exchanges large amounts of data between client and server.

The Ice protocol is suitable for building highly-efficient event forwarding mechanisms because it permits forwarding of a message without
knowledge of the details of the information inside a message. This means that messaging switches need not do any unmarshaling and
remarshaling of messages — they can forward a message by simply treating it as an opaque buffer of bytes.

The Ice protocol also supports bidirectional operation: if a server wants to send a message to a callback object provided by the client, the

callback can be made over the connection that was originally created by the client. This feature is especially important when the client is
behind a firewall that permits outgoing connections, but not incoming connections.

See Also

® The Ice Protocol
® |ceSSL
® Bidirectional Connections

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Ice Services

The Ice core provides a sophisticated client-server platform for distributed application development. However, realistic applications usually
require more than just a remoting capability: typically, you also need a way to start servers on demand, distribute proxies to clients, distribute
asynchronous events, configure your application, distribute patches for an application, and so on.

Ice ships with a number of services that provide these and other features. The services are implemented as Ice servers to which your
application acts as a client. None of the services use Ice-internal features that are hidden from application developers so, in theory, you
could develop equivalent services yourself. However, having these services available as part of the platform allows you to focus on
application development instead of having to build a lot of infrastructure first. Moreover, building such services is not a trivial effort, so it pays
to know what is available and use it instead of reinventing your own wheel.

On this page:

Freeze and FreezeScript
IceGrid Service

IceBox Server

IceStorm

IcePatch2

Glacier2

Freeze and FreezeScript

Ice has a built-in object persistence service, known as Freeze. Freeze makes it easy to store object state in a database: you define the state
stored by your objects in Slice, and the Freeze compiler generates code that stores and retrieves object state to and from a database.
Freeze uses Berkeley DB as its database.

Ice also offers a tool set collectively called FreezeScript that makes it easier to maintain databases and to migrate the contents of existing
databases to a new schema if the type definitions of objects change.

IceGrid Service

IceGrid is an implementation of an Ice location service that resolves the symbolic information in an indirect proxy to a protocol-address pair
for indirect binding. A location service is only the beginning of IceGrid's capabilities.

IceGrid:

® allows you to register servers for automatic start-up: instead of requiring a server to be running at the time a client issues a request,
IceGrid starts servers on demand, when the first client request arrives.

provides tools that make it easy to configure complex applications containing several servers.

supports replication and load-balancing.

automates the distribution and patching of server executables and dependent files.

provides a simple query service that allows clients to obtain proxies for objects they are interested in.

IceBox Server

IceBox is a simple application server that can orchestrate the starting and stopping of a number of application components. Application
components can be deployed as a dynamic library instead of as a process. This reduces overall system load, for example, by allowing you to
run several application components in a single Java virtual machine instead of having multiple processes, each with its own virtual machine.

IlceStorm

IceStorm is a publish-subscribe service that decouples clients and servers. Fundamentally, IceStorm acts as a distribution switch for events.
Publishers send events to the service, which, in turn, passes the events to subscribers. In this way, a single event published by a publisher
can be sent to multiple subscribers. Events are categorized by topic, and subscribers specify the topics they are interested in. Only events
that match a subscriber's topic are sent to that subscriber. The service permits selection of a number of quality-of-service criteria to allow
applications to choose the appropriate trade-off between reliability and performance.

IceStorm is particularly useful if you have a need to distribute information to large numbers of application components. (A typical example is
a stock ticker application with a large number of subscribers.) IceStorm decouples the publishers of information from subscribers and takes
care of the redistribution of the published events. In addition, lceStorm can be run as a federated service, that is, multiple instances of the
service can be run on different machines to spread the processing load over a number of CPUs.

Copyright © 2011, ZeroC, Inc.

http://www.oracle.com/technology/products/berkeley-db

27

Ice 3.4.2 Documentation

IcePatch2

IcePatch2 is a software patching service. It allows you to easily distribute software updates to clients. Clients simply connect to the
IcePatch2 server and request updates for a particular application. The service automatically checks the version of the client's software and
downloads any updated application components in a compressed format to conserve bandwidth. Software patches can be secured using the
Glacier2 service, so only authorized clients can download software updates.

lﬂl IcePatch2 supersedes IcePatch, which was a previous version of this service.

Glacier2

Glacier2 is the Ice firewall traversal service: it allows clients and servers to securely communicate through a firewall without compromising
security. Client-server traffic is SSL-encrypted using public key certificates and is bidirectional. Glacier2 offers support for mutual
authentication as well as secure session management.

lﬂ Glacier2 supersedes Glacier, which was a previous version of this service

See Also

IceGrid
Freeze
FreezeScript
Glacier2
IceBox
IceStorm
IcePatch2

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Architectural Benefits of Ice

The Ice architecture provides a number of benefits to application developers:

Object-oriented semantics
Ice fully preserves the object-oriented paradigm "across the wire." All operation invocations use late binding, so the implementation
of an operation is chosen depending on the actual run-time (not static) type of an object.

Support for synchronous and asynchronous messaging

Ice provides both synchronous and asynchronous operation invocation and dispatch, as well as publish-subscribe messaging via
IceStorm. This allows you to choose a communication model according to the needs of your application instead of having to
shoe-horn the application to fit a single model.

Support for multiple interfaces
With facets, objects can provide multiple, unrelated interfaces while retaining a single object identity across these interfaces. This
provides great flexibility, particularly as an application evolves but needs to remain compatible with older, already deployed clients.

Machine independence
Clients and servers are shielded form idiosyncrasies of the underlying machine architecture. Issues such as byte ordering and
padding are hidden from application code.

Language independence
Client and server can be developed independently and in different programming languages. The Slice definition used by both client
and server establishes the interface contract between them and is the only thing they need to agree on.

Implementation independence
Clients are unaware of how servers implement their objects. This means that the implementation of a server can be changed after
clients are deployed, for example, to use a different persistence mechanism or even a different programming language.

Operating system independence
The Ice APIs are fully portable, so the same source code compiles and runs under both Windows and Unix.

Threading support
The Ice run time is fully threaded and APIs are thread-safe. No effort (beyond synchronizing access to shared data) is required on
part of the application developer to develop threaded, high-performance clients and servers.

Transport independence
Ice currently offers both TCP/IP and UDP as transport protocols. Neither client nor server code are aware of the underlying
transport. (The desired transport can be chosen by a configuration parameter.)

Location and server transparency

The Ice run time takes care of locating objects and managing the underlying transport mechanism, such as opening and closing
connections. Interactions between client and server appear connection-less. Via IceGrid, you can arrange for servers to be started
on demand if they are not running at the time a client invokes an operation. Servers can be migrated to different physical addresses
without breaking proxies held by clients, and clients are completely unaware how object implementations are distributed over server
processes.

Security

Communications between client and server can be fully secured with strong encryption over SSL, so applications can use
unsecured public networks to communicate securely. Via Glacier2, you can implement secure forwarding of requests through a
firewall, with full support for callbacks.

Built-in persistence
With Freeze, creating persistent object implementations becomes trivial. Ice comes with built-in support for Berkeley DB, which is a
high-performance database.

Source code availability
The source code for Ice is available. While it is not necessary to have access to the source code to use the platform, it allows you to
see how things are implemented or port the code to a new operating system.

Overall, Ice provides a state-of-the art development and deployment environment for distributed computing that is more complete than any
other platform we are aware of.

See Also

28

Ice Architecture
Ice Services

Copyright © 2011, ZeroC, Inc.

http://www.oracle.com/technology/products/berkeley-db

29

Ice 3.4.2 Documentation

Copyright © 2011, ZeroC, Inc.

30

Ice 3.4.2 Documentation

Hello World Application

This section presents a very simple (but complete) client and server.
Writing an Ice application involves the following steps:

1. Write a Slice definition and compile it.
2. Write a server and compile it.
3. Write a client and compile it.

If someone else has written the server already and you are only writing a client, you do not need to write the Slice definition, only compile it
(and, obviously, you do not need to write the server in that case).

The application described here enables remote printing: a client sends the text to be printed to a server, which in turn sends that text to a
printer. For simplicity (and because we do not want to concern ourselves with the idiosyncrasies of print spoolers for various platforms), our
printer will simply print to a terminal instead of a real printer. This is no great loss: the purpose of the exercise is to show how a client can
communicate with a server; once the thread of control has reached the server application code, that code can of course do anything it likes
(including sending the text to a real printer). How to do this is independent of Ice and therefore not relevant here.

Much of the detail of the source code will remain unexplained for now. The intent is to show you how to get started and
give you a feel for what the development environment looks like; we will provide all the detail throughout the remainder of
this manual.

Topics

Writing a Slice Definition

Writing an Ice Application with C++

Writing an Ice Application with Java
Writing an Ice Application with C-Sharp
Writing an Ice Application with Visual Basic
Writing an Ice Application with Objective-C
Writing an Ice Application with Python
Writing an Ice Application with Ruby
Writing an Ice Application with PHP

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Writing a Slice Definition

The first step in writing any Ice application is to write a Slice definition containing the interfaces that are used by the application. For our
minimal printing application, we write the following Slice definition:

Slice

nmodul e Denp {
interface Printer {
void printString(string s);
b
b

We save this text in a file called Pri nter.ice.
Our Slice definitions consist of the module Deno containing a single interface called Pri nt er . For now, the interface is very simple and

provides only a single operation, called pri nt Stri ng. The pri nt St ri ng operation accepts a string as its sole input parameter; the text of
that string is what appears on the (possibly remote) printer.

See Also

® The Slice Language

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Writing an Ice Application with C++

This page shows how to create an Ice application with C++.
On this page:

® Compiling a Slice Definition for C++

® Writing and Compiling a Server in C++

L]

°

Writing and Compiling a Client in C++
Running Client and Server in C++

Compiling a Slice Definition for C++

The first step in creating our C++ application is to compile our Slice definition to generate C++ proxies and skeletons. Under Unix, you can
compile the definition as follows:

$ slice2cpp Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially
identical and therefore not shown.

The sl i ce2cpp compiler produces two C++ source files from this definition, Pri nter. h and Pri nt er. cpp.
® Printer.h
The Pri nt er . h header file contains C++ type definitions that correspond to the Slice definitions for our Pri nt er interface. This
header file must be included in both the client and the server source code.
® Printer.cpp
The Pri nt er. cpp file contains the source code for our Pri nt er interface. The generated source contains type-specific run-time
support for both clients and servers. For example, it contains code that marshals parameter data (the string passed to the

print St ring operation) on the client side and unmarshals that data on the server side.
The Pri nt er. cpp file must be compiled and linked into both client and server.

Writing and Compiling a Server in C++

The source code for the server takes only a few lines and is shown in full here:

32 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++
#i nclude <lce/lce. h>
#i nclude <Printer.h>
usi ng nanespace std;
usi ng namespace Denv;
class Printerl : public Printer {
public:
virtual void printString(const string& s, const Ice::Current&);
b
voi d
Printerl::
printString(const string& s, const Ice::Current&)
{
cout << s << endl;
}
int
mai n(int argc, char* argv[])
{
int status = 0;
I ce:: Communi catorPtr ic;
try {
ic = lce::initialize(argc, argv);
I ce:: Cbj ect AddapterPtr adapter =
i c->creat eCbj ect Adapt er Wt hEndpoi nt s(" Si npl ePri nter Adapter"”, "default -p 10000");
Ice::CbjectPtr object = new Printerl;
adapt er - >add(obj ect, ic->stringToldentity("SinplePrinter"));
adapt er->activate();
i c->wai t For Shut down() ;
} catch (const Ice::Exception& e) {
cerr << e << endl;
status = 1;
} catch (const char* nsg) {
cerr << msg << endl;
status = 1;
}
if (ic) {
try {
i c->destroy();
} catch (const |ce::Exception& e) {
cerr << e << endl;
status = 1,
}
}
return status;
}

There appears to be a lot of code here for something as simple as a server that just prints a string. Do not be concerned by this: most of the
preceding code is boiler plate that never changes. For this very simple server, the code is dominated by this boiler plate.

Every Ice source file starts with an include directive for | ce. h, which contains the definitions for the Ice run time. We also include

Pri nt er. h, which was generated by the Slice compiler and contains the C++ definitions for our printer interface, and we import the
contents of the st d and Deno namespaces for brevity in the code that follows:

Copyright © 2011, ZeroC, Inc.

34

Ice 3.4.2 Documentation

C++

#i nclude <lce/lce. h>
#i nclude <Printer.h>

usi ng nanespace std;
usi ng namespace Denv;

Our server implements a single printer servant, of type Pri nt er | . Looking at the generated code in Pri nt er . h, we find the following
(tidied up a little to get rid of irrelevant detail):

C++
nanespace Denpo {
class Printer : virtual public Ice:: Cbject {
public:
virtual void printString(const std::string& const lce::Current& = Ice::Current()) = O;
H
H

The Pri nt er skeleton class definition is generated by the Slice compiler. (Note that the pri nt St ri ng method is pure virtual so the
skeleton class cannot be instantiated.) Our servant class inherits from the skeleton class to provide an implementation of the pure virtual
print St ri ng method. (By convention, we use an | -suffix to indicate that the class implements an interface.)

C++

class Printerl : public Printer {
public:
virtual void printString(const string& s, const lce::Current&);

}

The implementation of the pri nt St ri ng method is trivial: it simply writes its string argument to st dout :

C++
voi d
Printerl::
printString(const string& s, const Ice::Current&)
{

cout << s << endl;

}

Note that pri nt St ri ng has a second parameter of type | ce: : Current . As you can see from the definition of Pri nter:: printString,
the Slice compiler generates a default argument for this parameter, so we can leave it unused in our implementation. (We will examine the
purpose of the | ce: : Curr ent parameter later.)

What follows is the server main program. Note the general structure of the code:

Copyright © 2011, ZeroC, Inc.

35

Ice 3.4.2 Documentation

C++

int
mai n(int argc, char* argv[])
{

int status = 0;

| ce:: Communi catorPtr ic;

try {

/1 Server inplenentation here...

} catch (const Ice::Exception& e) {
cerr << e << endl;
status = 1;
} catch (const char* nsg) {
cerr << meg << endl;
status = 1;
}
if (ic) {
try {
i c->destroy();
} catch (const Ice::Exception& e) {
cerr << e << endl;
status = 1;
}
}

return status;

The body of mai n contains the declaration of two variables, st at us and i c. The st at us variable contains the exit status of the program
and the i ¢ variable, of type | ce: : Comruni cat or Pt r, contains the main handle to the Ice run time.

Following these declarations is a t r y block in which we place all the server code, followed by two cat ch handlers. The first handler catches
all exceptions that may be thrown by the Ice run time; the intent is that, if the code encounters an unexpected Ice run-time exception
anywhere, the stack is unwound all the way back to mai n, which prints the exception and then returns failure to the operating system. The
second handler catches string constants; the intent is that, if we encounter a fatal error condition somewhere in our code, we can simply
throw a string literal with an error message. Again, this unwinds the stack all the way back to mai n, which prints the error message and then
returns failure to the operating system.

Following the t r y block, we see a bit of cleanup code that calls the dest r oy method on the communicator (provided that the communicator
was initialized). The cleanup call is outside the first t r y block for a reason: we must ensure that the Ice run time is finalized whether the
code terminates normally or terminates due to an exception.

'@ Failure to call dest r oy on the communicator before the program exits results in undefined behavior.

The body of the first t ry block contains the actual server code:

C++

ic =lce::initialize(argc, argv);
I ce:: Cbject AdapterPtr adapter =
i c- >creat eCbj ect Adapt er Wt hEndpoi nt s(" Si npl ePri nter Adapter”, "default -p 10000");
Ice::CbjectPtr object = new Printerl;
adapt er - >add(obj ect, ic->stringToldentity("SinplePrinter"));
adapt er - >acti vate();
i c->wai t For Shut down() ;

The code goes through the following steps:
1. We initialize the Ice run time by calling | ce: : i ni ti al i ze. (We pass ar gc and ar gv to this call because the server may have

command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni ti al i ze returns a smart pointer to an | ce: : Conmuni cat or object, which is the main object in the Ice

Copyright © 2011, ZeroC, Inc.

36

Ice 3.4.2 Documentation

run time.

2. We create an object adapter by calling cr eat eObj ect Adapt er Wt hEndpoi nt s on the Conmruni cat or instance. The arguments
we pass are " Si npl ePri nt er Adapt er" (which is the name of the adapter) and " def aul t -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nt er |
object.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er" is the name of the servant. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.) The server starts to process incoming requests from clients as soon as the adapter is activated.

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called | ce: : Appl i cat i on.) As far as actual
application code is concerned, the server contains only a few lines: six lines for the definition of the Pri nt er | class, plus three lines to
instantiate a Pri nt er | object and register it with the object adapter.

Assuming that we have the server code in a file called Ser ver . cpp, we can compile it as follows:

$ c++ -1. -1$ICE_HOWE/ include -c Printer.cpp Server.cpp

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the | CE_HOME environment
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in / opt / | ce, set | CE_HOVE to
that path.) Depending on your platform, you may have to add additional include directives or other options to the compiler; please see the
demo programs that ship with Ice for the details.

Finally, we need to link the server into an executable:

$ c++ -0 server Printer.o Server.o -L$ICE_ HOVE/ lib -llce -llceltil

Again, depending on the platform, the actual list of libraries you need to link against may be longer. The demo programs that ship with Ice
contain all the detail. The important point to note here is that the Ice run time is shipped in two libraries, | i bl ce and I i bl ceUti | .

Writing and Compiling a Client in C++

The client code looks very similar to the server. Here it is in full:

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

#i nclude <lce/lce. h>
#i nclude <Printer.h>

usi ng nanespace std;
usi ng namespace Denp;

int
mai n(int argc, char* argv[])
{
int status = 0;
I ce:: Communi catorPtr ic;
try {
ic =lce::initialize(argc, argv);
I ce::CbjectPrx base = ic->stringToProxy("SinplePrinter:default -p 10000");
PrinterPrx printer = PrinterPrx::checkedCast (base);
if (!printer)
throw "I nvalid proxy";

printer->printString("Hello World!l");
} catch (const Ice::Exception& ex) {
cerr << ex << endl;
status = 1;
} catch (const char* nsg) {
cerr << nmsg << endl;
status = 1;
}
if (ic)
i c->destroy();
return status;

Note that the overall code layout is the same as for the server: we include the headers for the Ice run time and the header generated by the
Slice compiler, and we use the same t ry block and cat ch handlers to deal with errors.

The code in the t r y block does the following:

1. As for the server, we initialize the Ice run time by calling I ce: :initiali ze.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

3. The proxy returned by st ri ngToPr oxy is of type | ce: : Obj ect Pr x, which is at the root of the inheritance tree for interfaces and
classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we need to
do a down-cast by calling Pri nt er Prx: : checkedCast . A checked cast sends a message to the server, effectively asking "is this
a proxy for a Pri nt er interface?" If so, the call returns a proxy to a Pr i nt er ; otherwise, if the proxy denotes an interface of some
other type, the call returns a null proxy.

4. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.

5. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o
Wor | d!'" string. The server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:

$ c++ -1. -1$ICE_HOWE/ include -c Printer.cpp dient.cpp
$ c++ -o client Printer.o Cient.o -L$ICE_ HOW/ lib -llce -Illceltil

Running Client and Server in C++

To run client and server, we first start the server in a separate window:

Copyright © 2011, ZeroC, Inc.

38

Ice 3.4.2 Documentation

$./server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$./client
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of | ce: : Appl i cation.)

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get:

Net wor k. cpp: 471: |ce:: Connect Fai | edExcepti on:
connect failed: Connection refused

Note that, to successfully run client and server, you will have to set some platform-dependent environment variables. For example, under
Linux, you need to add the Ice library directory to your LD_LI BRARY_PATH. Please have a look at the demo applications that ship with Ice
for the details for your platform.

See Also

Client-Side Slice-to-C++ Mapping
Server-Side Slice-to-C++ Mapping
The l ce: : Appl i cati on Class
The Current Object

IceGrid

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Writing an Ice Application with Java

This page shows how to create an Ice application with Java.
On this page:

Compiling a Slice Definition for Java

Writing and Compiling a Server in Java

°
L]
® Writing and Compiling a Client in Java
® Running Client and Server in Java

Compiling a Slice Definition for Java

The first step in creating our Java application is to compile our Slice definition to generate Java proxies and skeletons. Under Unix, you can
compile the definition as follows:

$ nkdir generated
$ slice2java --output-dir generated Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially
identical and therefore not shown.

The - - out put - di r option instructs the compiler to place the generated files into the gener at ed directory. This avoids cluttering the
working directory with the generated files. The sl i ce2j ava compiler produces a number of Java source files from this definition. The exact
contents of these files do not concern us for now — they contain the generated code that corresponds to the Pri nt er interface we defined
inPrinter.ice.

Writing and Compiling a Server in Java

To implement our Pri nt er interface, we must create a servant class. By convention, a servant class uses the name of its interface with an
| -suffix, so our servant class is called Pri nt er | and placed into a source file Printerl.java:

Java

public class Printerl extends Deno._PrinterDi sp {
public void
printString(String s, lce.Current current)
{
System out. println(s);

}

The Printerl class inherits from a base class called _Pri nt er Di sp, which is generated by the sl i ce2j ava compiler. The base class is
abstract and contains a pri nt St ri ng method that accepts a string for the printer to print and a parameter of type | ce. Cur r ent . (For now
we will ignore the | ce. Cur r ent parameter.) Our implementation of the pri nt St ri ng method simply writes its argument to the terminal.

The remainder of the server code is in a source file called Ser ver . j ava, shown in full here:

Copyright © 2011, ZeroC, Inc.

40

Ice 3.4.2 Documentation

Java

public class Server {
public static void
mai n(String[] args)
{
int status = 0
I ce. Communi cator ic = null;
try {
ic = lce. Wil.initialize(args)
| ce. Obj ect Adapt er adapter =
i c.createCbj ect Adapt er Wt hEndpoi nts(" Si npl ePrinter Adapter”,
I ce. Object object = new Printerl();
adapt er. add(obj ect, ic.stringToldentity("SinplePrinter"));
adapter.activate();
i c. wai t For Shut down() ;
} catch (Ice.Local Exception e) {
e.printStackTrace();
status = 1;
} catch (Exception e) {
Systemerr.println(e.get Message());
status = 1
}
if (ic!=null) {
/1 dean up
/1
try {
ic.destroy();
} catch (Exception e) {
Systemerr.println(e.get Message());
status = 1;
}
}

System exit(status);

"default -p 10000");

Note the general structure of the code:

Copyright © 2011, ZeroC, Inc.

41

Ice 3.4.2 Documentation

Java

public class Server {
public static void
mai n(String[] args)
{
int status = 0;
I ce. Communi cator ic = null;
try {

/1 Server inplenentation here...

} catch (lce.Local Exception e) {
e.printStackTrace();
status = 1;

} catch (Exception e) {
Systemerr.println(e.get Message());
status = 1;

}

if (ic!=null) {

/1 Cean up

11

try {
ic.destroy();

} catch (Exception e) {
Systemerr.println(e.get Message());
status = 1;

}

}

System exit(status);

The body of mai n contains a t ry block in which we place all the server code, followed by two cat ch blocks. The first block catches all
exceptions that may be thrown by the Ice run time; the intent is that, if the code encounters an unexpected Ice run-time exception anywhere,
the stack is unwound all the way back to mai n, which prints the exception and then returns failure to the operating system. The second block
catches Except i on exceptions; the intent is that, if we encounter a fatal error condition somewhere in our code, we can simply throw an
exception with an error message. Again, this unwinds the stack all the way back to mai n, which prints the error message and then returns

failure to the operating system.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program must call dest r oy on any communicator it has created; otherwise, undefined behavior results.

The body of our t ry block contains the actual server code:

Java

ic =lce.Wil.initialize(args);
I ce. Obj ect Adapter adapter =

i c.createCbj ect Adapt er Wt hEndpoi nts(" Si npl ePrinter Adapter”, "default -p 10000");
I ce. Object object = new Printerl();
adapt er. add(obj ect, ic.stringToldentity("SinplePrinter"));
adapter. activate();
i c. wai t For Shut down() ;
The code goes through the following steps:
1. We initialize the Ice run time by calling I ce. Uti |l .initialize.(We pass ar gs to this call because the server may have

command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni ti al i ze returns an | ce. Conmmuni cat or reference, which is the main object in the Ice run time.

2. We create an object adapter by calling cr eat eCbj ect Adapt er Wt hEndpoi nt s on the Conmruni cat or instance. The arguments
we pass are " Si npl ePri nt er Adapt er " (which is the name of the adapter) and "def ault -p 10000", which instructs the

adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nt er |

Copyright © 2011, ZeroC, Inc.

42

Ice 3.4.2 Documentation

object.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nter" is the name of the servant. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.)

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called | ce. Appl i cati on.) As far as actual
application code is concerned, the server contains only a few lines: seven lines for the definition of the Pri nt er | class, plus three lines to
instantiate a Pri nt er | object and register it with the object adapter.

We can compile the server code as follows:

$ nkdir classes
$ javac -d classes -classpath classes: $I CE HOVE/ | i b/lce.jar \
Server.java Printerl.java generated/ Denpo/*.java

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the | CE_HOME environment
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in / opt / | ce, set | CE_HOVE to
that path.) Note that Ice for Java uses the ant build environment to control building of source code. (ant is similar to nake, but more flexible
for Java applications.) You can have a look at the demo code that ships with Ice to see how to use this tool.

Writing and Compiling a Client in Java

The client code, in d i ent . j ava, looks very similar to the server. Here it is in full:

Copyright © 2011, ZeroC, Inc.

43

Ice 3.4.2 Documentation

public class dient {
public static void
mai n(String[] args)
{

int status = O;
I ce. Cormuni cator ic = null;
try {
ic =lce.Wil.initialize(args);
Ice. CbjectPrx base = ic.stringToProxy("SinplePrinter:default -p 10000");
Deno. PrinterPrx printer = Denp. PrinterPrxHel per.checkedCast (base);
if (printer == null)
throw new Error("lInvalid proxy");

printer.printString("Hello World!l");
} catch (Ice.Local Exception e) {
e.printStackTrace();
status = 1;
} catch (Exception e) {
Systemerr.println(e. get Message());
status = 1;

}
if (ic!=null) {
/1 dean up
11
try {
ic.destroy();
} catch (Exception e) {
Systemerr.println(e.get Message());
status = 1;
}
}

System exit(status);

Note that the overall code layout is the same as for the server: we use the same t ry and cat ch blocks to deal with errors. The code in the
t ry block does the following:

1.
2.

As for the server, we initialize the Ice run time by calling I ce. Uti |l .initialize.

The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce. Obj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we need to
do a down-cast by calling Pri nt er Pr xHel per. checkedCast . A checked cast sends a message to the server, effectively asking
"is this a proxy for a Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er ; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ javac -d classes -classpath classes: $ICE HOW/ lib/lce.jar \
Client.java Printerl.java generated/ Deno/*.java

Running Client and Server in Java

To run client and server, we first start the server in a separate window:

Copyright © 2011, ZeroC, Inc.

44

Ice 3.4.2 Documentation

$ java Server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ java Cient
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of | ce. Appl i cati on.)

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

| ce. Connect i onRef usedExcepti on
error =0
at |celnternal.Connect Request Handl er. get Connecti on(Connect Request Handl er . j ava: 240)
at |celnternal.Connect Request Handl er. sendRequest (Connect Request Handl er . j ava: 138)
at Icelnternal.Qutgoing.invoke(Qutgoing.java: 66)
at lce._QObjectDel Mice_i sA(_ObjectDel Mjava: 30)
at |ce. Qbj ect PrxHel perBase. i ce_i sA(bj ect PrxHel per Base. j ava: 111)
at |ce. Obj ect PrxHel perBase. i ce_i SA(Obj ect PrxHel per Base. j ava: 77)
at Denp. Hel | oPr xHel per. checkedCast (Hel | oPr xHel per.j ava: 228)
at Cient.run(Cient.java: 65)
Caused by: java.net.Connect Exception: Connection refused

Note that, to successfully run client and server, your CLASSPATH must include the Ice library and the classes directory, for example:

$ export CLASSPATH=$CLASSPATH: ./ cl asses: $| CE_HOVE/ | i b/ | ce. j ar

Please have a look at the demo applications that ship with Ice for the details for your platform.

See Also

Client-Side Slice-to-Java Mapping
Server-Side Slice-to-Java Mapping
The | ce. Appl i cati on Class
The Current Object

IceGrid

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Writing an Ice Application with C-Sharp

This page shows how to create an Ice application with C#.
On this page:

Compiling a Slice Definition for C#

Writing and Compiling a Server in C#

°
L]
® Writing and Compiling a Client in C#
® Running Client and Server in C#

Compiling a Slice Definition for C#

The first step in creating our C# application is to compile our Slice definition to generate C# proxies and skeletons. You can compile the
definition as follows:

$ nkdir generated
$ slice2cs --output-dir generated Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially
identical and therefore not shown.

The - - out put - di r option instructs the compiler to place the generated files into the gener at ed directory. This avoids cluttering the
working directory with the generated files. The sl i ce2cs compiler produces a single source file, Pri nt er . cs, from this definition. The
exact contents of this file do not concern us for now — it contains the generated code that corresponds to the Pri nt er interface we defined
inPrinter.ice.

Writing and Compiling a Server in C#

To implement our Pri nt er interface, we must create a servant class. By convention, a servant class uses the name of its interface with an
| -suffix, so our servant class is called Pri nt er | and placed into a source file Server. cs:

C#

usi ng System

public class Printerl : Deno.PrinterDisp_
{
public override void printString(string s, Ice.Current current)
{
Consol e. WiteLine(s);
}

The Printerl class inherits from a base class called Pri nt er Di sp_, which is generated by the sl i ce2cs compiler. The base class is
abstract and contains a pri nt St ri ng method that accepts a string for the printer to print and a parameter of type | ce. Cur r ent . (For now
we will ignore the | ce. Cur r ent parameter.) Our implementation of the pri nt St ri ng method simply writes its argument to the terminal.

The remainder of the server code follows in Ser ver. cs and is shown in full here:

Copyright © 2011, ZeroC, Inc.

46

Ice 3.4.2 Documentation

C#

public class Server

{

public static void Main(string[] args)

{

int status = 0;
I ce. Communi cator ic = null;
try {
ic = lce.UWil.initialize(ref args);
| ce. Obj ect Adapt er adapter =
i c.createCbj ect Adapt er Wt hEndpoi nts(" Si npl ePrinter Adapter”,
Ice. Cbject obj = new Printerl();
adapt er. add(obj, ic.stringToldentity("SinplePrinter"));
adapter.activate();
i c. wai t For Shut down() ;
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
if (ic!=null) {
/1 dean up
/1
try {
ic.destroy();
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
}

Envi ronnment . Exi t (st atus);

"default -p 10000");

Note the general structure of the code:

Copyright © 2011, ZeroC, Inc.

47

Ice 3.4.2 Documentation

C#
public class Server
{
public static void Main(string[] args)
{
int status = 0;
I ce. Communi cator ic = null;
try {
/1 Server inplenentation here...
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
if (ic!=null) {
/1 dean up
11
try {
ic.destroy();
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
}
Envi ronnent . Exi t (status);
}
}

The body of Mai n contains a t ry block in which we place all the server code, followed by a cat ch block. The catch block catches all
exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere, the stack
is unwound all the way back to Mai n, which prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program must call dest r oy on any communicator it has created; otherwise, undefined behavior results.

The body of our t ry block contains the actual server code:

C#

ic = lce. Uil.initialize(ref args);
| ce. Obj ect Adapt er adapter =
i c.createObject Adapt er Wt hEndpoi nts("Si npl ePrinterAdapter”, "default -p 10000");
Ice. Object obj = new Printerl();
adapt er. add(obj, ic.stringToldentity("SinmplePrinter"));
adapter. activate();
i c. wai t For Shut down() ;

The code goes through the following steps:

1. We initialize the Ice run time by calling I ce. Uti |l .initial i ze. (We pass ar gs to this call because the server may have
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni tial i ze returns an | ce. Communi cat or reference, which is the main object in the Ice run time.

2. We create an object adapter by calling cr eat eObj ect Adapt er Wt hEndpoi nt s on the Conmruni cat or instance. The arguments
we pass are " Si nmpl ePri nt er Adapt er" (which is the name of the adapter) and "def aul t -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nt er |
object.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er" is the name of the servant. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been

Copyright © 2011, ZeroC, Inc.

48

Ice 3.4.2 Documentation

instantiated.)

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called | ce. Appl i cati on.) As far as actual
application code is concerned, the server contains only a few lines: seven lines for the definition of the Pri nt er | class, plus three lines to
instantiate a Pri nt er | object and register it with the object adapter.

We can compile the server code as follows:

$ csc /reference:lce.dll /lib:% CE_HOVE% bin Server.cs generated\Printer.cs

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the | CE_HOVE environment
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in C: \ | ce, set | CE_HOME to that

path.)

Writing and Compiling a Client in C#

The client code, in C i ent . cs, looks very similar to the server.

Here it is in full:

C#
usi ng System
usi ng Denvp;
public class dient
{
public static void Main(string[] args)
{
int status = 0;
| ce. Conmruni cator ic = null;
try {
ic = lce. UWil.initialize(ref args);
lce.ObjectPrx obj = ic.stringToProxy("SinplePrinter:default -p 10000");
PrinterPrx printer = PrinterPrxHel per.checkedCast (obj);
if (printer == null)
t hrow new ApplicationException("Invalid proxy");
printer.printString("Hello World!'");
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
if (ic!=null) {
/1 dean up
11
try {
ic.destroy();
} catch (Exception e) {
Consol e. Error. WiteLine(e);
status = 1;
}
}
Envi ronnent . Exi t (status);
}
}

Note that the overall code layout is the same as for the server: we use the same t ry and cat ch blocks to deal with errors. The code in the
t ry block does the following:

Copyright © 2011, ZeroC, Inc.

49

Compil

Ice 3.4.2 Documentation

. As for the server, we initialize the Ice run time by calling I ce. Wil .initialize.
. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with

the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.

. The proxy returned by st ri ngToPr oxy is of type | ce. Cbj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we need to
do a down-cast by calling Pri nt er Pr xHel per. checkedCast . A checked cast sends a message to the server, effectively asking
"is this a proxy for a Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er ; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

ing the client looks much the same as for the server:

$ csc /reference:lce.dll /lib:% CE_HOVE®%bin Cient.cs generated\Printer.cs

Run

To run

ning Client and Server in C#

client and server, we first start the server in a separate window:

$ server. exe

At this

point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ client.exe
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Worl d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of | ce. Appl i cati on.)

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

I ce. Connect i onRef usedExcepti on
error =0
at lcelnternal.ProxyFactory.checkRetryAfterException(Local Exception ex, Reference ref, Int32 cnt)

Note that, to successfully run client and server, the C# run time must be able to locate the | ce. dl | library. (Under Windows, one way to

ensure this is to copy the library into the current directory. Please consult the documentation for your C# run time to see how it locates
libraries.)
See Also

® Client-Side Slice-to-C-Sharp Mapping

® Server-Side Slice-to-C-Sharp Mapping

® Thelce. Application Class

® The Current Object

® |ceGrid

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Writing an Ice Application with Visual Basic

This page shows how to create an Ice application with Visual Basic.
On this page:

Visual Basic Development Process

Compiling a Slice Definition for Visual Basic
Writing and Compiling a Server in Visual Basic
Writing and Compiling a Client in Visual Basic
Running Client and Server in Visual Basic

Visual Basic Development Process

As of version 3.3, Ice no longer includes a separate compiler to create Visual Basic source code from Slice definitions. Instead, you need to
use the Slice-to-C# compiler sl i ce2cs to create C# source code and compile the generated C# source code with a C# compiler into a DLL
that contains the compiled generated code for your Slice definitions. Your Visual Basic application then links with this DLL and the Ice for
.NETDLL (I ce. dl |).

This approach works not only with Visual Basic, but with any language that targets the .NET run time. However, ZeroC
does not provide support for languages other than C# and Visual Basic.

The following illustration demonstrates this development process:

i - ic Slice-to-C# rinter.cs ;
Printer.ice| | b » Frinter.c »| C# Compiler
Compiler

e —

Slice Developer

Y

Client.vb .| Visual Basic N Client n Stub & Skeleton

] Compiler | Executabls | DLL

Client Developer

RPC

Server.vb C++ [ce Run-time Server Stub & Skeleton

Library | Executabls [DLL
-._r//-_'_‘-““

Developing a Visual Basic application with Ice.

Server Developer

Compiling a Slice Definition for Visual Basic

The first step in creating our VB application is to compile our Slice definition to generate proxies and skeletons. You can compile the
definition as follows:

> nkdi r generated
> slice2cs --output-dir generated Printer.ice

The - - out put - di r option instructs the compiler to place the generated files into the gener at ed directory. This avoids cluttering the
working directory with the generated files. The sl i ce2cs compiler produces a single source file, Pri nt er . cs, from this definition. The
exact contents of this file do not concern us for now — it contains the generated code that corresponds to the Pri nt er interface we defined
inPrinter.ice.

We now need to compile this generated code into a DLL:

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

> csc /reference:lce.dll /lib:% CE_HOVE%Wbin /t:library /out:Printer.dl|l generated\Printer.cs

This creates a DLL called Pri nter. dl | that contains the code we generated from the Slice definitions.

Writing and Compiling a Server in Visual Basic

To implement our Pri nt er interface, we must create a servant class. By convention, a servant class uses the name of its interface with an
| -suffix, so our servant class is called Pri nt er | and placed into a source file Ser ver. vb:

Visual Basic

I nports System
I mports Deno

Public Cass Printerl
Inherits PrinterDisp_

Public Overloads Overrides Sub printString(_
ByVal s As String, _
ByVal current As Ice.Current)
Consol e. Wi teLine(s)
End Sub

End d ass

The Printerl class inherits from a base class called Pri nt er Di sp_, which is generated by the sl i ce2cs compiler. The base class is
abstract and contains a pri nt St ri ng method that accepts a string for the printer to print and a parameter of type | ce. Cur r ent . (For now
we will ignore the | ce. Cur r ent parameter.) Our implementation of the pri nt St ri ng method simply writes its argument to the terminal.

The remainder of the server code follows in Ser ver . vb and is shown in full here:

Copyright © 2011, ZeroC, Inc.

52

Ice 3.4.2 Documentation

Visual Basic

Modul e Server
Public Sub Main(ByVal args() As String)

Dimstatus As Integer = 0
Dimic As |ce. Communi cator = Nothing
Try
ic = lce. Wil.initialize(args)
Di m adapter As |ce. Cbject Adapter = _
i c.createCbj ect Adapt er Wt hEndpoi nts(" Si npl ePrinter Adapter”,
Dimobj As Ice.oject = New Printerl
adapt er. add(obj, ic.stringToldentity("SinplePrinter"))
adapter. activate()
i c. wai t For Shut down()
Catch e As Exception
Consol e. Error. WiteLine(e)

status = 1

End Try

If Not ic I's Nothing Then
' Cean up
Try

ic.destroy()
Catch e As Exception
Consol e. Error. WiteLine(e)
status = 1
End Try
End | f
Envi ronment . Exi t (st at us)
End Sub

End nodul e

"default -p 10000")

Note the general structure of the code:

Copyright © 2011, ZeroC, Inc.

53

Ice 3.4.2 Documentation

Visual Basic

Modul e Server
Public Sub Main(ByVal args() As String)

Dimstatus As Integer = 0
Dimic As |ce. Communi cator = Nothing
Try

Server inplenentation here...

Catch e As Exception
Consol e. Error. WiteLine(e)
status =1

End Try

If Not ic I's Nothing Then
' Clean up
Try

ic.destroy()
Catch e As Exception
Consol e. Error. WiteLine(e)
status = 1
End Try
End | f
Envi ronnent . Exi t (st at us)
End Sub

End nodul e

The body of Mai n contains a Try block in which we place all the server code, followed by a Cat ch block. The catch block catches all
exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere, the stack
is unwound all the way back to Mai n, which prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program must call dest r oy on any communicator it has created; otherwise, undefined behavior results.

The body of our Try block contains the actual server code:

Visual Basic

ic = lce. . Uil.initialize(args)
Di m adapter As |ce. Cbject Adapter = _
i c.createObject Adapt er Wt hEndpoi nts(" Si npl ePrinter Adapter”, "default -p 10000")
Dimobj As lce.Object = New Printerl
adapt er. add(obj, ic.stringToldentity("SinplePrinter"))
adapter. activate()
i c. wai t For Shut down()

The code goes through the following steps:

1. We initialize the Ice run time by calling I ce. Util .initialize.(We pass ar gs to this call because the server may have
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi nitial i ze returns an | ce: : Communi cat or reference, which is the main object in the Ice run time.

2. We create an object adapter by calling cr eat eObj ect Adapt er Wt hEndpoi nt s on the Conmuni cat or instance. The arguments
we pass are " Si nmpl ePri nt er Adapt er" (which is the name of the adapter) and "def aul t -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nt er |
object.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er" is the name of the servant. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we

Copyright © 2011, ZeroC, Inc.

54

Ice 3.4.2 Documentation

have many servants that share the same adapter and do not want requests to be processed until after all the servants have been

instantiated.)

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line

when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called | ce. Appl i cati on.) As far as actual
application code is concerned, the server contains only a few lines: ten lines for the definition of the Pri nt er | class, plus three lines to

instantiate a Pri nt er | object and register it with the object adapter.

We can compile the server code as follows:

> vbc /reference:lce.dll /libpath: % CE_HOVEW bin /reference: Printer.dl|

/out:server.exe Server.vb

This compiles our application code and links it with the Ice run time and the DLL we generated earlier. We assume that the | CE_HOVE
environment variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in C: \ | ce, set

| CE_HOME to that path.)

Writing and Compiling a Client in Visual Basic

The client code, in C i ent . vb, looks very similar to the server. Here it is in full:

Visual Basic

I nports System
I mports Deno

Mbdul e d i ent

Public Sub Main(ByVal args() As String)
Dimstatus As Integer = 0
Dimic As |ce.Communicator = Nothing
Try
ic = lce. . Uil.initialize(args)

If printer Is Nothing Then
Throw New Appl i cati onException("Invalid proxy")
End | f

printer.printString("Hello World!'")
Catch e As Exception

Consol e. Error. WiteLine(e)

status = 1

End Try
If Not ic I's Nothing Then
Cl ean up
Try

ic.destroy()
Catch e As Exception
Consol e. Error. WiteLine(e)
status = 1
End Try
End | f
Envi ronnent . Exi t (st at us)
End Sub

End Modul e

Dimobj As Ice.ObjectPrx = ic.stringToProxy("SinplePrinter:default -p 10000")
Dimprinter As PrinterPrx = PrinterPrxHel per.checkedCast (obj)

Note that the overall code layout is the same as for the server: we use the same Try and Cat ch blocks to deal with errors. The code in the

Try block does the following:

Copyright © 2011, ZeroC, Inc.

55

Compil

Ice 3.4.2 Documentation

. As for the server, we initialize the Ice run time by calling I ce. Wil .initialize.
. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with

the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce. Cbj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we need to
do a down-cast by calling Pri nt er Pr xHel per. checkedCast . A checked cast sends a message to the server, effectively asking
"is this a proxy for a Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er ; otherwise, if the proxy denotes an
interface of some other type, the call returns null.

. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

ing the client looks much the same as for the server:

> vbc /reference:lce.dll /libpath: % CE_ HOVE% bin /reference: Printer.dll /out:client.exe Cient.vb

Run

To run

ning Client and Server in Visual Basic

client and server, we first start the server in a separate window:

> server. exe

At this

point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

> client.exe
>

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor| d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our
discussion of | ce. Appl i cati on.)

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

I ce. Connect i onRef usedExcepti on
error =0
at lcelnternal.ProxyFactory.checkRetryAfterException(Local Exception ex, Reference ref, Int32 cnt)

Note that, to successfully run client and server, the VB run time must be able to locate the | ce. dl | library. (Under Windows, one way to

ensure this is to copy the library into the current directory. Please consult the documentation for your VB run time to see how it locates
libraries.)
See Also

® Client-Side Slice-to-C-Sharp Mapping

® Server-Side Slice-to-C-Sharp Mapping

® Thelce. Application Class

® The Current Object

® |ceGrid

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Writing an Ice Application with Objective-C

This page shows how to create an Ice application with Objective-C.
On this page:

Compiling a Slice Definition for Objective-C

Writing and Compiling a Server in Objective-C

°
L]
® Writing and Compiling a Client in Objective-C
® Running Client and Server in Objective-C

Compiling a Slice Definition for Objective-C

The first step in creating our Objective-C application is to compile our Slice definition to generate Objective-C proxies and skeletons. Under
Unix, you can compile the definition as follows:

$ slice2objc Printer.ice

The sl i ce2obj ¢ compiler produces two Objective-C source files from this definition, Pri nter. hand Pri nter. m

® Printer.h
The Pri nt er. h header file contains Objective-C type definitions that correspond to the Slice definitions for our Pri nt er interface.

This header file must be included in both the client and the server source code.
® Printer.m
The Pri nt er . mfile contains the source code for our Pri nt er interface. The generated source contains type-specific run-time
support for both clients and servers. For example, it contains code that marshals parameter data (the string passed to the
print St ri ng operation) on the client side and unmarshals that data on the server side.
The Pri nt er . mfile must be compiled and linked into both client and server.
Writing and Compiling a Server in Objective-C

The source code for the server takes only a few lines and is shown in full here:

56 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Objective-C
#i mport <lce/lce. h>
#i nmport <Printer.h>
#i nport <Foundati on/ NSAut or el easePool . h>
#i nport <stdio. h>
@nterface Printerl : DenoPrinter <DenoPrinter>
@nd
@npl enentation Printerl
-(void) printString: (NSMutabl eString *)s
current: (1 CECurrent *)current
{
printf("%\n", [s UTF8String]);
}
@nd
int
main(int argc, char* argv[])
{
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];
int status = 1;
i d<I CECommuni cat or > comuni cator = nil;
@ry {
communi cator = [ICEUti| createComunicator: &rgc argv: argv];
i d<| CEQbj ect Adapt er > adapter =
[communi cat or creat eCbj ect Adapt er Wt hEndpoi nt's:
@ Si npl ePri nt er Adapter"
endpoi nts: @default -p 10000"];
| CEQbj ect *object = [[[Printerl alloc] init] autorel ease];
[adapt er add: obj ect identity:[comunicator stringToldentity: @SinmplePrinter"]];
[adapter activate];
[communi cat or wai t For Shut down] ;
status = 0;
} @atch (NSException* ex) {
NSLog(@ %@, ex);
}
@ry {
[communi cat or destroy];
} @atch (NSException* ex) {
NSLog(@ %@, ex);
}
[pool rel ease];
return status;
}

There appears to be a lot of code here for something as simple as a server that just prints a string. Do not be concerned by this: most of the
preceding code is boiler plate that never changes. For this very simple server, the code is dominated by this boiler plate.

Every Ice source file starts with an include directive for | ce. h, which contains the definitions for the Ice run time. We also include

Pri nt er. h, which was generated by the Slice compiler and contains the Objective-C definitions for our printer interface. In addition, we
import headers to allow us to use an autorelease pool and to produce output:

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Objective-C

#i mport <lce/lce. h>
#i nmport <Printer.h>

#i nport <Foundati on/ NSAut or el easePool . h>
#i nport <stdio. h>

Our server implements a single printer servant, of type Pri nt er | . Looking at the generated code in Pri nt er . h, we find the following
(tidied up a little to get rid of irrelevant detail):

Objective-C

@r ot ocol DenoPrinter <ICEOhject>

-(void) printString: (NSMutabl eString *)s
current: (1 CECurrent *)current;

@nd

@nterface DenmoPrinter : | CEject
/1

@nd

The DenoPr i nt er protocol and class definitions are generated by the Slice compiler. The protocol defines the pri nt St ri ng method,
which we must implement in our servant. The DenoPr i nt er class contains methods that are internal to the mapping, so we are not
concerned with these. However, our servant must derive from this skeleton class:

Objective-C

@nterface Printerl : DenpPrinter <DenoPrinter>

@nd

@npl enentation Printerl
-(void) printString: (NSMutabl eString *)s
current: (1 CECurrent *)current
{
printf("%\n", [s UTF8String]);
}
@nd

As you can see, the implementation of the pri nt St ri ng method is trivial: it simply writes its string argument to st dout .

Note that pri nt St ri ng has a second parameter of type | CECur r ent . The Ice run time passes additional information about an incoming
request to the servant in this parameter. For now, we will ignore it.

What follows is the server main program. Note the general structure of the code:

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Objective-C
int
mai n(int argc, char* argv[])
{
NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];
int status = 1;
i d<I CECommuni cat or > conmmuni cator = nil;
@ry {
communi cator = [ICEUti| createComunicator: &rgc argv:argv];
/1 Server inplenentation here...
status = 0;
} @atch (NSException* ex) {
NSLog(@ %@, ex);
}
@ry {
[comuni cat or destroy];
} @atch (NSException* ex) {
NSLog(@ %@, ex);
}
[pool rel ease];
return status;
}

The body of mai n instantiates an autorelease pool, which it releases before returning to ensure that the program does not leak memory.
mai n contains the declaration of two variables, st at us and comruni cat or . The st at us variable contains the exit status of the program
and the conmuni cat or variable, of type i d<I CECommuni cat or >, contains the main handle to the Ice run time.

Following these declarations is a t r y block in which we place all the server code, followed by a cat ch handler that logs any unhandled
exceptions.

Before returning, mai n executes a bit of cleanup code that calls the dest r oy method on the communicator. The cleanup call is outside the
first t ry block for a reason: we must ensure that the Ice run time is finalized whether the code terminates normally or terminates due to an
exception.

@ Failure to call dest r oy on the communicator before the program exits results in undefined behavior.

The body of the first t ry block contains the actual server code:

Objective-C

communi cator = [ICEUti| createComunicator: &rgc argv:argv];

i d<I CECbj ect Adapt er > adapter =
[communi cat or creat eCbj ect Adapt er Wt hEndpoi nt's:
@ Si npl ePri nt er Adapter"
endpoi nts: @default -p 10000"];

| CEQbj ect *object = [[[Printerl alloc] init] autorel ease];
[adapt er add: obj ect identity:[comunicator stringToldentity: @Si nplePrinter"]];

[adapter activate];

[comuni cat or wai t For Shut down] ;

The code goes through the following steps:

1. We initialize the Ice run time by calling cr eat eConmruni cat or . (We pass ar gc and ar gv to this call because the server may have

Copyright © 2011, ZeroC, Inc.

60

Ice 3.4.2 Documentation

command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The call to cr eat eConmruni cat or returns a value of type i d<I CEConmuni cat or >, which is the main object in the
Ice run time.

2. We create an object adapter by calling cr eat eCbj ect Adapt er Wt hEndpoi nt s on the Conmruni cat or instance. The arguments
we pass are " Si npl ePri nt er Adapt er " (which is the name of the adapter) and "def ault -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nt er |
object.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er " is the name of the servant. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.) The server starts to process incoming requests from clients as soon as the adapter is activated.

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. As far as actual application code is concerned, the server contains only a few lines:
nine lines for the definition of the Pri nt er | class, plus three lines to instantiate a Pri nt er | object and register it with the object adapter.

Assuming that we have the server code in a file called Ser ver . m we can compile it as follows:

$cc-c-l. -1$ICE_HOW include Printer.m Server. m

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the | CE_HOME environment
variable is set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in / opt / | ce, set | CE_HOVE to
that path.) Depending on your platform, you may have to add additional include directives or other options to the compiler; please see the
demo programs that ship with Ice for the details.

Finally, we need to link the server into an executable:

$ c++ Printer.o Server.o -0 server -L$ICE_HOWE/ lib -11ceQbj C -framework Foundation

Again, depending on the platform, the actual list of libraries you need to link against may be longer. The demo programs that ship with Ice
contain all the detail.

Writing and Compiling a Client in Objective-C

The client code looks very similar to the server. Here it is in full:

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Objective-C

#i mport <lce/lce. h>
#i nmport <Printer.h>

#i nport <Foundati on/ NSAut or el easePool . h>
#i nport <stdio. h>

int
mai n(int argc, char* argv[])
{

NSAut or el easePool * pool = [[NSAutorel easePool alloc] init];

int status = 1;
i d<I CECommuni cat or > comuni cator = nil;
@ry {
communi cator = [ICEUti| createComunicator: &rgc argv:argv];
i d<| CEObj ect Prx> base = [comuni cator stringToProxy: @Si npl ePrinter:default -p 10000"];
i d<DenoPrinterPrx> printer = [DenoPrinterPrx checkedCast: base];
if(!printer)
[NSException raise: @l nvalid proxy" format:nil];

[printer printString: @Hello Wrld!'"];

status = 0;

} @atch (NSException* ex) {
NSLog(@ %@, ex);

}

@ry {
[communi cat or destroy];
} @atch (NSException* ex) {
NSLog(@ Y@, ex);
}

[pool rel ease];
return status;

Note that the overall code layout is the same as for the server: we include the headers for the Ice run time and the header generated by the
Slice compiler, and we use the same t ry block and cat ch handlers to deal with errors.

The code in the t r y block does the following:

1.
2.

As for the server, we initialize the Ice run time by calling cr eat eConmuni cat or.

The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type i d<| CEObj ect Pr x>, which is at the root of the inheritance tree for interfaces

and classes. But to actually talk to our printer, we need a proxy for a Pri nt er interface, not an Obj ect interface. To do this, we
need to do a down-cast by calling the checkedCast class method on the DenpPr i nt er Pr x class. A checked cast sends a
message to the server, effectively asking "is this a proxy for a Pri nt er interface?" If so, the call returns a proxy toa Pri nter;
otherwise, if the proxy denotes an interface of some other type, the call returns a null proxy.

. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:

$cc-c-1. -1$ICE_HOW/ include Printer.mClient. m
$ c++ Printer.o Cient.o -o client -L$ICE_HOME/lib -11ceCbj C -framework Foundation

Copyright © 2011, ZeroC, Inc.

62

Ice 3.4.2 Documentation

Running Client and Server in Objective-C

To run client and server, we first start the server in a separate window:

$./server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$./client
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line for now.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get:

Net wor k. cpp: 1218: | ce:: Connecti onRef usedExcepti on:
connection refused: Connection refused

Note that, to successfully run client and server, you may have to set DYLD_LI BRARY_PATH to include the Ice library directory. Please see
the installation instructions and the demo applications that ship with Ice Touch for details.

See Also
Client-Side Slice-to-Objective-C Mapping
Server-Side Slice-to-Objective-C Mapping

°
L]
® The Current Object
® |ceGrid

Copyright © 2011, ZeroC, Inc.

63

Ice 3.4.2 Documentation

Writing an Ice Application with Python

This page shows how to create an Ice application with Python.
On this page:

Compiling a Slice Definition for Python

Writing a Server in Python

°

L]

® Writing a Client in Python

® Running Client and Server in Python

Compiling a Slice Definition for Python

The first step in creating our Python application is to compile our Slice definition to generate Python proxies and skeletons. You can compile
the definition as follows:

$ slice2py Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially
identical and therefore not shown.

The sl i ce2py compiler produces a single source file, Pri nt er _i ce. py, from this definition. The compiler also creates a Python package
for the Denb module, resulting in a subdirectory named Denp. The exact contents of the source file do not concern us for now — it contains
the generated code that corresponds to the Pri nt er interface we defined in Pri nter.i ce.

Writing a Server in Python

To implement our Pri nt er interface, we must create a servant class. By convention, a servant class uses the name of its interface with an
| -suffix, so our servant class is called Printerl:

Python

class Printerl(Deno.Printer):
def printString(self, s, current=None):
print s

The Printerl class inherits from a base class called Deno. Pri nt er, which is generated by the sl i ce2py compiler. The base class is
abstract and contains a pri nt St ri ng method that accepts a string for the printer to print and a parameter of type | ce. Cur r ent . (For now
we will ignore the | ce. Cur r ent parameter.) Our implementation of the pri nt St ri ng method simply writes its argument to the terminal.

The remainder of the server code, in Ser ver . py, follows our servant class and is shown in full here:

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Python

inmport sys, traceback, Ice
inmport Deno

class Printerl (Denmo.Printer):
def printString(self, s, current=None):

print s
status = 0
ic = None
try:
ic = lce.initialize(sys.argv)
adapter = ic.createOject Adapt er Wt hEndpoi nts("Si npl ePrinterAdapter”, "default -p 10000")
object = Printerl ()
adapt er. add(obj ect, ic.stringToldentity("SinplePrinter"))
adapter. activate()
i c. wai t For Shut down()
except :
traceback. print_exc()
status = 1
if ic:
Clean up
try:

ic.destroy()

except :
traceback. print_exc()
status = 1

sys. exit(status)

Note the general structure of the code:

Python
status = 0
ic = None
try:

Server inplenentation here...

except :
traceback. print _exc()
status = 1

if ic:
Cean up
try:
ic.destroy()
except :
traceback. print_exc()
status = 1

sys. exit(status)

The body of the main program contains a t r y block in which we place all the server code, followed by an except block. The except block
catches all exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere,
the stack is unwound all the way back to the main program, which prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time: the program must call dest r oy on any communicator it has created; otherwise, undefined behavior results.

The body of our t ry block contains the actual server code:

Copyright © 2011, ZeroC, Inc.

65

Ice 3.4.2 Documentation

Python

ic = lce.initialize(sys.argv)

adapter = ic.createject Adapter Wt hEndpoi nts("Si npl ePrinterAdapter”, "default -p 10000")
object = Printerl ()

adapt er. add(obj ect, ic.stringToldentity("SinplePrinter"))

adapter. activate()

i c. wai t For Shut down()

The code goes through the following steps:

1. We initialize the Ice run time by calling I ce. i niti al i ze. (We pass sys. ar gv to this call because the server may have
command-line arguments that are of interest to the run time; for this example, the server does not require any command-line
arguments.) The calltoi ni ti al i ze returns an | ce. Conmuni cat or reference, which is the main object in the Ice run time.

2. We create an object adapter by calling cr eat eCbj ect Adapt er Wt hEndpoi nt s on the Conmruni cat or instance. The arguments
we pass are " Si npl ePri nt er Adapt er " (which is the name of the adapter) and "default -p 10000", which instructs the
adapter to listen for incoming requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for our Pri nt er interface by instantiating a Pri nt er |
object.

4. We inform the object adapter of the presence of a new servant by calling add on the adapter; the arguments to add are the servant
we have just instantiated, plus an identifier. In this case, the string " Si npl ePri nt er " is the name of the servant. (If we had
multiple printers, each would have a different name or, more correctly, a different object identity.)

5. Next, we activate the adapter by calling its act i vat e method. (The adapter is initially created in a holding state; this is useful if we
have many servants that share the same adapter and do not want requests to be processed until after all the servants have been
instantiated.)

6. Finally, we call wai t For Shut down. This call suspends the calling thread until the server implementation terminates, either by
making a call to shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line
when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper
class and, thereafter, will not have to bother with it again. (Ice provides such a helper class, called | ce. Appl i cati on.) As far as actual

application code is concerned, the server contains only a few lines: three lines for the definition of the Pri nt er | class, plus two lines to
instantiate a Pri nt er | object and register it with the object adapter.

Writing a Client in Python

The client code, in O i ent . py, looks very similar to the server. Here it is in full:

Copyright © 2011, ZeroC, Inc.

66

Ice 3.4.2 Documentation

Python

inmport sys, traceback, Ice
inmport Deno

status = 0
ic = None
try:
ic = lce.initialize(sys.argv)
base = ic.stringToProxy("SinplePrinter:default -p 10000")
printer = Deno. PrinterPrx.checkedCast (base)
if not printer:
raise RuntineError("lnvalid proxy")

printer.printString("Hello Wrld!'")
except :

traceback. print_exc()

status = 1

if ic:
Cean up
try:
ic.destroy()
except :
traceback. print _exc()
status =1

sys. exit(status)

Note that the overall code layout is the same as for the server: we use the same t ry and except blocks to deal with errors. The code in the
t ry block does the following:

1.
2.

As for the server, we initialize the Ice run time by calling | ce.initiali ze.

The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce. Obj ect Pr x, which is at the root of the inheritance tree for interfaces and
classes. But to actually talk to our printer, we need a proxy for a Deno: : Pri nt er interface, not an Obj ect interface. To do this, we
need to do a down-cast by calling Deno. Pri nt er Pr x. checkedCast . A checked cast sends a message to the server, effectively
asking "is this a proxy for a Deno: : Pri nt er interface?" If so, the call returns a proxy of type Deno. Pri nt er Pr x; otherwise, if the
proxy denotes an interface of some other type, the call returns None.

4. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
5. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

Running Client and Server in Python

To run

client and server, we first start the server in a separate window:

$ python Server. py

At this

point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ python dient.py
$

The cl
the pri

ient runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
nter. To get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our

discussion of | ce. Appl i cation.)

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

Traceback (nost recent call last):
File "Client.py", line 10, in ?
printer = Denp. PrinterPrx.checkedCast (base)
File "Printer_ice.py", line 43, in checkedCast
return Deno. PrinterPrx.ice_checkedCast(proxy, '::Demp::Printer', facet)
Connecti onRef usedExcepti on: | ce. Connecti onRef usedExcepti on:
Connection refused

Note that, to successfully run the client and server, the Python interpreter must be able to locate the Ice extension for Python. See the Ice for
Python installation instructions for more information.

See Also

Client-Side Slice-to-Python Mapping
Server-Side Slice-to-Python Mapping
The | ce. Appl i cati on Class

The Current Object

IceGrid

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Writing an Ice Application with Ruby

This page shows how to create an Ice client application with Ruby.
On this page:
® Compiling a Slice Definition for Ruby

® Writing a Client in Ruby
® Running the Client in Ruby

Compiling a Slice Definition for Ruby

The first step in creating our Ruby application is to compile our Slice definition to generate Ruby proxies. You can compile the definition as

follows:

$ slice2rb Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially

identical and therefore not shown.

The sl i ce2r b compiler produces a single source file, Pri nt er. r b, from this definition. The exact contents of the source file do not
concern us for now — it contains the generated code that corresponds to the Pri nt er interface we defined in Pri nter.i ce.

Writing a Client in Ruby

The client code, in d i ent . r b, is shown below in full:

68

Copyright © 2011, ZeroC, Inc.

69

Ice 3.4.2 Documentation

Ruby

require 'Printer.rb’

status = 0
ic =nil
begin
ic =lce::initialize(ARGY)
base = ic.stringToProxy("SinmplePrinter:default -p 10000")
printer = Denp::PrinterPrx::checkedCast (base)
if not printer
raise "lnvalid proxy"
end

printer.printString("Hello Wrld!'")

rescue
puts $!
puts $!.backtrace.join("\n")
status = 1
end
ific
Clean up
begi n
ic.destroy()
rescue
puts $!
puts $!.backtrace.join("\n")
status = 1
end
end

exit(status)

The program begins with a r equi r e statement, which loads the Ruby code we generated from our Slice definition in the previous section. It
is not necessary for the client to explicitly load the | ce module because Pri nt er . r b does that for you.

The body of the main program contains a begi n block in which we place all the client code, followed by a r escue block. The r escue block
catches all exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere,
the stack is unwound all the way back to the main program, which prints the exception and then returns failure to the operating system.

The body of our begi n block goes through the following steps:

1.

Before

We initialize the Ice run time by calling | ce: : i ni ti al i ze. (We pass ARGV to this call because the client may have command-line
arguments that are of interest to the run time; for this example, the client does not require any command-line arguments.) The call to
initializereturnsanlce:: Comuni cat or reference, which is the main object in the Ice run time.

. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with

the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

. The proxy returned by st ri ngToPr oxy is of type | ce: : Obj ect Pr x, which is at the root of the inheritance tree for interfaces and

classes. But to actually talk to our printer, we need a proxy for a Deno: : Pri nt er interface, not an Obj ect interface. To do this, we
need to do a down-cast by calling Deno: : Pri nt er Pr x: : checkedCast . A checked cast sends a message to the server,
effectively asking "is this a proxy for a Deno: : Pri nt er interface?" If so, the call returns a proxy of type Deno: : Pri nt er Pr x;
otherwise, if the proxy denotes an interface of some other type, the call returns ni | .

. We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o

Wor | d!'" string. The server prints that string on its terminal.

the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the

Ice run time: the program must call dest r oy on any communicator it has created; otherwise, undefined behavior results.

Running the Client in Ruby

The server must be started before the client. Since Ice for Ruby does not support server-side behavior, we need to use a server from

Copyright © 2011, ZeroC, Inc.

70

Ice 3.4.2 Documentation

another language mapping. In this case, we will use the C++ server:

$ server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ ruby dient.rb
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

exception ::lce:: ConnectionRefusedException
{

error = 111
}

Note that, to successfully run the client, the Ruby interpreter must be able to locate the Ice extension for Ruby. See the Ice for Ruby
installation instructions for more information.

See Also

® Client-Side Slice-to-Ruby Mapping
® |ceGrid

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Writing an Ice Application with PHP

This page shows how to create an Ice client application with PHP.
On this page:
® Compiling a Slice Definition for PHP

® Writing a Client in PHP
® Running the Client in PHP

Compiling a Slice Definition for PHP

The first step in creating our PHP application is to compile our Slice definition to generate PHP code. You can compile the definition as

follows:

$ slice2php Printer.ice

Whenever we show Unix commands, we assume a Bourne or Bash shell. The commands for Windows are essentially

identical and therefore not shown.

The sl i ce2php compiler produces a single source file, Pri nt er . php, from this definition. The exact contents of the source file do not
concern us for now — it contains the generated code that corresponds to the Pri nt er interface we defined in Pri nter.i ce.

Writing a Client in PHP

The client code, in C i ent . php, is shown below in full:

71

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

PHP

<?php
require 'lce.php';
require 'Printer.php';

$ic = null;
try
{
$ic = lce_initialize();

$base = $ic->stringToProxy("SinmplePrinter:default -p 10000");
$printer = Deno_PrinterPrxHel per::checkedCast ($base);
if(!$printer)

t hrow new Runti neException("Invalid proxy");

$printer->printString("Hello World!");

}
cat ch(Exception $ex)
{
echo $ex;
}
if($ic)
{
/1 Cean up
try
{
$i c->destroy();
}
cat ch(Exception $ex)
{
echo $ex;
}
}
?>

The program begins with r equi r e statements to load the Ice run-time definitions (I ce. php) and the code we generated from our Slice
definition in the previous section (Pri nt er . php).

The body of the main program contains a t r y block in which we place all the client code, followed by a cat ch block. The cat ch block
catches all exceptions that may be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere,
the stack is unwound all the way back to the main program, which prints the exception and then returns failure to the operating system.

The body of our t ry block goes through the following steps:

1. We initialize the Ice run time by calling I ce_initi alize. Thecalltoinitialize returnsan | ce_Conmuni cat or reference,
which is the main object in the Ice run time.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by calling st ri ngToPr oxy on the communicator, with
the string " Si npl ePrinter:default -p 10000". Note that the string contains the object identity and the port number that were
used by the server. (Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for
now; we will see more architecturally sound ways of doing this when we discuss IceGrid.)

3. The proxy returned by st ri ngToPr oxy is of type | ce_Obj ect Pr x, which is at the root of the inheritance tree for interfaces and
classes. But to actually talk to our printer, we need a proxy for a Deno: : Pri nt er interface, not an Obj ect interface. To do this, we
need to do a down-cast by calling Demo_Pr i nt er Pr xHel per: : checkedCast . A checked cast sends a message to the server,
effectively asking "is this a proxy for a Deno: : Pri nt er interface?" If so, the call returns a proxy narrowed to the Pri nt er
interface; otherwise, if the proxy denotes an interface of some other type, the call returns nul | .

4. We test that the down-cast succeeded and, if not, throw an exception that terminates the client.

5. We now have a live proxy in our address space and can call the pri nt St ri ng method, passing it the time-honored " Hel | o
Wor | d!'" string. The server prints that string on its terminal.

Before the code exits, it destroys the communicator (if one was created successfully). Doing this is essential in order to correctly finalize the
Ice run time. If a script neglects to destroy the communicator, Ice destroys it automatically.

Running the Client in PHP

72 Copyright © 2011, ZeroC, Inc.

73

Ice 3.4.2 Documentation

The server must be started before the client. Since Ice for PHP does not support server-side behavior, we need to use a server from another
language mapping. In this case, we will use the C++ server:

$ server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window using
PHP's command-line interpreter:

$ php -f dient.php
$

The client runs and exits without producing any output; however, in the server window, we see the "Hel | o Wor | d! " that is produced by
the printer. To get rid of the server, we interrupt it on the command line.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get
something like the following:

exception ::lce:: ConnectionRefusedException
{

error = 111
}

Note that, to successfully run the client, the PHP interpreter must be able to locate the Ice extension for PHP. See the Ice for PHP
installation instructions for more information.

See Also

® Client-Side Slice-to-PHP Mapping
® |ceGrid

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The Slice Language

Here, we present the Slice language. Slice (Specification Language for Ice) is the fundamental abstraction mechanism for separating object
interfaces from their implementations. Slice establishes a contract between client and server that describes the types and object interfaces
used by an application. This description is independent of the implementation language, so it does not matter whether the client is written in
the same language as the server.

ﬂ Even though Slice is an acronym, it is pronounced as a single syllable, like a slice of bread.

Slice definitions are compiled for a particular implementation language by a compiler. The compiler translates the language-independent
definitions into language-specific type definitions and APIs. These types and APIs are used by the developer to provide application
functionality and to interact with Ice. The translation algorithms for various implementation languages are known as language mappings.
Currently, Ice defines language mappings for C++, Java, C#, Python, Objective-C, Ruby, and PHP.

Because Slice describes interfaces and types (but not implementations), it is a purely declarative language; there is no way to write
executable statements in Slice.

Slice definitions focus on object interfaces, the operations supported by those interfaces, and exceptions that may be raised by operations.
In addition, Slice offers features for object persistence. This requires quite a bit of supporting machinery; in particular, much of Slice is
concerned with the definition of data types. This is because data can be exchanged between client and server only if their types are defined
in Slice. You cannot exchange arbitrary C++ data between client and server because it would destroy the language independence of Ice.
However, you can always create a Slice type definition that corresponds to the C++ data you want to send, and then you can transmit the
Slice type.

We present the full syntax and semantics of Slice here. Because much of Slice is based on C++ and Java, we focus on those areas where
Slice differs from C++ or Java or constrains the equivalent C++ or Java feature in some way. Slice features that are identical to C++ and
Java are mentioned mostly by example.

Topics

Slice Compilation

Slice Source Files

Lexical Rules

Modules

Basic Types

User-Defined Types
Interfaces, Operations, and Exceptions
Classes

Forward Declarations

Type IDs

Operations on Object

Local Types

Names and Scoping
Metadata

Serializable Objects
Deprecating Slice Definitions
Using the Slice Compilers
Slice Checksums

Generating Slice Documentation
Slice Keywords

Slice Metadata Directives
Slice for a Simple File System

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice Compilation

On this page:
® Compilation

® Single Development Environment for Client and Server
® Different Development Environments for Client and Server

Compilation

A Slice compiler produces source files that must be combined with application code to produce client and server executables.

The outcome of the development process is a client executable and a server executable. These executables can be deployed anywhere,
whether the target environments use the same or different operating systems and whether the executables are implemented using the same

or different languages. The only constraint is that the host machines must provide the necessary run-time environment, such as any required
dynamic libraries, and that connectivity can be established between them.

Single Development Environment for Client and Server

The figure below shows the situation when both client and server are developed in C++. The Slice compiler generates two files from a Slice
definition in a source file Pri nt er . i ce: a header file (Pri nt er . h) and a source file (Pri nt er. cpp)

Slice Printer.ice N Slice-to-C++ Server
Developer - Compiler Developer

MH_’J;""“%

'

Printer.cpp

Server.cpp

8

Client Client.cpp C**!CE
Developer Ru_n-llma
Library

RPC

Client Executable V Server Executable

Development process if client and server share the same development environment.

®* The Pri nt er. h header file contains definitions that correspond to the types used in the Slice definition. It is included in the source
code of both client and server to ensure that client and server agree about the types and interfaces used by the application.

® The Pri nt er. cpp source file provides an API to the client for sending messages to remote objects. The client source code (
C i ent. cpp, written by the client developer) contains the client-side application logic. The generated source code and the client
code are compiled and linked into the client executable.

The Pri nt er . cpp source file also contains source code that provides an up-call interface from the Ice run time into the server code written

75 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

by the developer and provides the connection between the networking layer of Ice and the application code. The server implementation file (
Ser ver . cpp, written by the server developer) contains the server-side application logic (the object implementations, properly termed
servants). The generated source code and the implementation source code are compiled and linked into the server executable.

Both client and server also link with an Ice library that provides the necessary run-time support.

You are not limited to a single implementation of a client or server. For example, you can build multiple servers, each of which implements
the same interfaces but uses different implementations (for example, with different performance characteristics). Multiple such server
implementations can coexist in the same system. This arrangement provides one fundamental scalability mechanism in Ice: if you find that a
server process starts to bog down as the number of objects increases, you can run an additional server for the same interfaces on a different
machine. Such federated servers provide a single logical service that is distributed over a number of processes on different machines. Each
server in the federation implements the same interfaces but hosts different object instances. (Of course, federated servers must somehow
ensure consistency of any databases they share across the federation.)

Ice also provides support for replicated servers. Replication permits multiple servers to each implement the same set of object instances.
This improves performance and scalability (because client load can be shared over a number of servers) as well as redundancy (because
each object is implemented in more than one server).

Different Development Environments for Client and Server

Client and server cannot share any source or binary components if they are developed in different languages. For example, a client written in
Java cannot include a C++ header file.

This figure shows the situation when a client written in Java and the corresponding server is written in C++. In this case, the client and server
developers are completely independent, and each uses his or her own development environment and language mapping. The only link
between client and server developers is the Slice definition each one uses.

Slice
Developer

C++

Java
h 4

Client.java

Client Slice-ta-Java
Developer Compiler

Slice-to-C++ Server
Compiler Developer

|
|
|
|
|
|
i
|
: J \\u ¥
|
|
|
|
|
|
|
|
|
|
|

Frinter.h

Frinter.cpp Server.cpp

_J

Java lce Run-time C++ Ice Run-time

Library —» Client Executable \Th Server Executable [Library
|

Development process for different development environments.

For Java, the slice compiler creates a number of files whose names depend on the names of various Slice constructs. (These files are
collectively referred to as *. j ava in the above figure.)

See Also

® Using the Slice Compilers

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice Source Files

Slice defines a number of rules for the naming and contents of Slice source files.
On this page:

File Naming
File Format
Preprocessing
Definition Order

File Naming

Files containing Slice definitions must end in a . i ce file extension, for example, G ock. i ce is a valid file name. Other file extensions are
rejected by the compilers.

For case-insensitive file systems (such as DOS), the file extension may be written as uppercase or lowercase, so C ock. | CEis legal. For
case-sensitive file systems (such as Unix), Cl ock. | CE is illegal. (The extension must be in lowercase.)

File Format

Slice is a free-form language so you can use spaces, horizontal and vertical tab stops, form feeds, and newline characters to lay out your
code in any way you wish. (White space characters are token separators). Slice does not attach semantics to the layout of a definition. You
may wish to follow the style we have used for the Slice examples throughout this book.

Slice files can be ASCII text files or use the UTF-8 character encoding with a byte order marker (BOM) at the beginning of each file.
However, Slice identifiers are limited to ASCII letters and digits; non-ASCI!I letters can appear only in comments.

Preprocessing

Slice is preprocessed by the C++ preprocessor, so you can use the usual preprocessor directives, such as #i ncl ude and macro definitions.
However, Slice permits #i ncl ude directives only at the beginning of a file, before any Slice definitions.

If you use #i ncl ude directives, it is a good idea to protect them with guards to prevent double inclusion of a file:

Slice

/1l File Cock.ice
#i f ndef _CLOCK_I CE
#define _CLOCK_I CE

/'l #include directives here...
/1 Definitions here...

#endif _CLOCK | CE

#i ncl ude directives permit a Slice definition to use types defined in a different source file. The Slice compilers parse all of the code in a
source file, including the code in subordinate #i ncl ude files. However, the compilers generate code only for the top-level file(s) nominated
on the command line. You must separately compile subordinate #i ncl ude files to obtain generated code for all the files that make up your
Slice definition.

Note that you should avoid #i ncl ude with double quotes:

Slice

#i nclude "C ock.ice" // Not recomended!

While double quotes will work, the directory in which the preprocessor tries to locate the file can vary depending on the operating system, so
the included file may not always be found where you expect it. Instead, use angle brackets (<>); you can control which directories are
searched for the file with the - | option of the Slice compiler.

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Also note that, if you include a path separator in a #i ncl ude directive, you must use a forward slash:

Slice
#i nclude <SliceDefs/dock.ice> // K
You cannot use a backslash in #i ncl ude directives:
Slice
#include <SliceDefs\Cock.ice> // 11]egal

Definition Order

Slice constructs, such as modules, interfaces, or type definitions, can appear in any order you prefer. However, identifiers must be declared
before they can be used.

See Also

® Using the Slice Compilers

Copyright © 2011, ZeroC, Inc.

79

Ice 3.4.2 Documentation

Lexical Rules

Slice's lexical rules are very similar to those of C++ and Java, except for some differences for identifiers.
On this page:

® Comments
® Keywords
® |dentifiers
® Case Sensitivity
® |dentifiers That Are Keywords
® Escaped ldentifiers
® Reserved ldentifiers

Comments

Slice definitions permit both the C and the C++ style of writing comments:

Slice

/*
* C-style coment.
*/

/'l C++-style comrent extending to the end of this line.

Keywords

Slice uses a number of keywords, which must be spelled in lowercase. For example, cl ass and di cti onary are keywords and must be
spelled as shown. There are two exceptions to this lowercase rule: Cbj ect and Local Obj ect are keywords and must be capitalized as
shown.

Identifiers

Identifiers begin with an alphabetic character followed by any number of alphabetic characters or digits. Underscores are also permitted in
identifiers with the following limitations:

® an identifier cannot begin or end with an underscore
® an identifier cannot contain multiple consecutive underscores

Given these rules, the identifier get _account _nane is legal but not _account, account _, orget __account.

Slice identifiers are restricted to the ASCII range of alphabetic characters and cannot contain non-English letters, such as A. (Supporting
non-ASCII identifiers would make it very difficult to map Slice to target languages that lack support for this feature.)

Case Sensitivity

Identifiers are case-insensitive but must be capitalized consistently. For example, Ti mreCf Day and TI MEOFDAY are considered the same
identifier within a naming scope. However, Slice enforces consistent capitalization. After you have introduced an identifier, you must
capitalize it consistently throughout; otherwise, the compiler will reject it as illegal. This rule exists to permit mappings of Slice to languages
that ignore case in identifiers as well as to languages that treat differently capitalized identifiers as distinct.

Identifiers That Are Keywords

You can define Slice identifiers that are keywords in one or more implementation languages. For example, swi t ch is a perfectly good Slice
identifier but is a C++ and Java keyword. Each language mapping defines rules for dealing with such identifiers. The solution typically
involves using a prefix to map away from the keyword. For example, the Slice identifier swi t ch is mapped to _cpp_swi t ch in C++ and
_swi tchinJava.

The rules for dealing with keywords can result in hard-to-read source code. Identifiers such as nati ve, t hr ow, or export will clash with

Copyright © 2011, ZeroC, Inc.

80

Ice 3.4.2 Documentation

C++ or Java keywords (or both). To make life easier for yourself and others, try to avoid Slice identifiers that are implementation language
keywords. Keep in mind that mappings for new languages may be added to Ice in the future. While it is not reasonable to expect you to
compile a list of all keywords in all popular programming languages, you should make an attempt to avoid at least common keywords. Slice
identifiers such as sel f, i nport, and whi | e are definitely not a good idea.

Escaped Identifiers

It is possible to use a Slice keyword as an identifier by prefixing the keyword with a backslash, for example:

Slice
struct dictionary { /1l Error!
/1
b
struct \dictionary { Il K
/1
b
struct \foo { /1 Legal, same as "struct foo"
/1
H

he backslash escapes the usual meaning of a keyword; in the preceding example, \ di cti onary is treated as the identifier di cti onary.
The escape mechanism exists to permit keywords to be added to the Slice language over time with minimal disruption to existing
specifications: if a pre-existing specification happens to use a newly-introduced keyword, that specification can be fixed by simply
prepending a backslash to the new keyword. Note that, as a matter of style, you should avoid using Slice keywords as identifiers (even
though the backslash escapes allow you to do this).

It is legal (though redundant) to precede an identifier that is not a keyword with a backslash — the backslash is ignored in that case.

Reserved Identifiers

Slice reserves the identifier | ce and all identifiers beginning with | ce (in any capitalization) for the Ice implementation. For example, if you
try to define a type named | cecr eam the Slice compiler will issue an error message.

You can suppress this behavior by using the - - i ce compiler option, which enables definition of identifiers beginning with
| ce. However, do not use this option unless you are compiling the Slice definitions for the Ice run time itself.

Slice identifiers ending in any of the suffixes Hel per, Hol der, Pr x, and Pt r are also reserved. These endings are used by the various
language mappings and are reserved to prevent name clashes in the generated code.

See Also

® Slice Keywords

Copyright © 2011, ZeroC, Inc.

81

Ice 3.4.2 Documentation

Modules

On this page:

Modules Reduce Clutter
Modules are Mandatory
Reopening Modules
Module Mapping

The Ice Module

Modules Reduce Clutter

A common problem in large systems is pollution of the global namespace: over time, as isolated systems are integrated, name clashes

become quite likely. Slice provides the nodul e construct to alleviate this problem:

Slice

nmodul e ZeroC {
nodul e dient {
/1 Definitions here...
I
nodul e Server {
/1 Definitions here...
}
b

A module can contain any legal Slice construct, including other module definitions. Using modules to group related definitions together
avoids polluting the global namespace and makes accidental name clashes quite unlikely. (You can use a well-known name, such as a

company or product name, as the name of the outermost module.)

Modules are Mandatory

Slice requires all definitions to be nested inside a module, that is, you cannot define anything other than a module at global scope. For

example, the following is illegal:

Slice

interface | { Il Error:

/1
}

only nodul es can appear at gl obal

scope

Definitions at global scope are prohibited because they cause problems with some implementation languages (such as Python, which does

not have a true global scope).

.ﬂ Throughout the Ice manual, you will occasionally see Slice definitions that are not nested inside a module. This is to keep
the examples short and free of clutter. Whenever you see such a definition, assume that it is nested in a module.

Reopening Modules

Modules can be reopened:

Copyright © 2011, ZeroC, Inc.

82

Ice 3.4.2 Documentation

Slice

nmodul e ZeroC {
/1 Definitions here...

H
/] Possibly in a different source file:

nmodul e ZeroC { // OK, reopened nodul e
/'l More definitions here...

}s

Reopened modules are useful for larger projects: they allow you to split the contents of a module over several different source files. The
advantage of doing this is that, when a developer makes a change to one part of the module, only files dependent on the changed part need
be recompiled (instead of having to recompile all files that use the module).

Module Mapping

Modules map to a corresponding scoping construct in each programming language. (For example, for C++ and C#, Slice modules map to

namespaces whereas, for Java, they map to packages.) This allows you to use an appropriate C++ usi ng or Java i nport declaration to
avoid excessively long identifiers in your source code.

The Ice Module
APIs for the Ice run time, apart from a small number of language-specific calls that cannot be expressed in Ice, are defined in the | ce
module. In other words, most of the Ice API is actually expressed as Slice definitions. The advantage of doing this is that a single Slice

definition is sufficient to define the API for the Ice run time for all supported languages. The respective language mapping rules then
determine the exact shape of each Ice API for each implementation language.

We will incrementally explore the contents of the | ce module throughout this manual.

See Also

® Slice Source Files

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Basic Types

On this page:

Built-In Basic Types
Integer Types
Floating-Point Types
Strings

Booleans

Bytes

Built-In Basic Types

Slice provides a number of built-in basic types, as shown in this table:

Type Range of Mapped Type Size of Mapped Type
bool falseortrue ? 1bit

byte .128-127 or 0-255 2 ? 8 bits

short 21540215 9 ? 16 bits

i nt 231492319 ? 32 bits

| ong 26315263 1 ? 64 bits

fl oat IEEE single-precision ? 32 bits

doubl e ' IEEE double-precision ? 64 bits

string All Unicode characters, excluding = Variable-length

the character with all bits zero.

@ The range depends on whether byt e maps to a signed or an unsigned type.
All the basic types (except byt e) are subject to changes in representation as they are transmitted between clients and servers. For example,
a | ong value is byte-swapped when sent from a little-endian to a big-endian machine. Similarly, strings undergo translation in representation

if they are sent, for example, from an EBCDIC to an ASCII implementation, and the characters of a string may also change in size. (Not all
architectures use 8-bit characters). However, these changes are transparent to the programmer and do exactly what is required.

Integer Types

Slice provides integer types short , i nt, and | ong, with 16-bit, 32-bit, and 64-bit ranges, respectively. Note that, on some architectures,
any of these types may be mapped to a native type that is wider. Also note that no unsigned types are provided. (This choice was made
because unsigned types are difficult to map into languages without native unsigned types, such as Java. In addition, the unsigned integers
add little value to a language. (See [1] for a good treatment of the topic.)

Floating-Point Types

These types follow the IEEE specification for single- and double-precision floating-point representation [2]. If an implementation cannot
support IEEE format floating-point values, the Ice run time converts values into the native floating-point representation (possibly at a loss of
precision or even magnitude, depending on the capabilities of the native floating-point format).

Strings

Slice strings use the Unicode character set. The only character that cannot appear inside a string is the zero character.

Copyright © 2011, ZeroC, Inc.

84

Ice 3.4.2 Documentation

This decision was made as a concession to C++, with which it becomes impossibly difficult to manipulate strings with
embedded zero characters using standard library routines, such as strl en or strcat .

The Slice data model does not have the concept of a null string (in the sense of a C++ null pointer). This decision was made because null
strings are difficult to map to languages without direct support for this concept (such as Python). Do not design interfaces that depend on a
null string to indicate "not there" semantics. If you need the notion of an optional string, use a class, a sequence of strings, or use an empty
string to represent the idea of a null string. (Of course, the latter assumes that the empty string is not otherwise used as a legitimate string
value by your application.)

Booleans

Boolean values can have only the values f al se and t r ue. Language mappings use the corresponding native boolean type if one is
available.

Bytes
The Slice type byt e is an (at least) 8-bit type that is guaranteed not to undergo any changes in representation as it is transmitted between

address spaces. This guarantee permits exchange of binary data such that it is not tampered with in transit. All other Slice types are subject
to changes in representation during transmission.

See Also

® Sequences
® Classes

References

1. Lakos, J. 1996. Large-Scale C++ Software Design. Reading, MA: Addison-Wesley.
2. Institute of Electrical and Electronics Engineers. 1985. IEEE 754-1985 Standard for Binary Floating-Point Arithmetic. Piscataway,
NJ: Institute of Electrical and Electronic Engineers.

Copyright © 2011, ZeroC, Inc.

http://amzn.com/0201633620

85

Ice 3.4.2 Documentation

User-Defined Types

In addition to providing the built-in basic types, Slice allows you to define complex types: enumerations, structures, sequences, and
dictionaries.

Topics

Enumerations
Structures

Sequences
Dictionaries
Constants and Literals

Copyright © 2011, ZeroC, Inc.

86

Ice 3.4.2 Documentation

Enumerations

A Slice enumerated type definition looks like the C++ version:

Slice

enum Fruit { Apple, Pear, Oange };

This definition introduces a type named Fr ui t that becomes a new type in its own right. Slice does not define how ordinal values are
assigned to enumerators. For example, you cannot assume that the enumerator Or ange will have the value 2 in different implementation
languages. Slice guarantees only that the ordinal values of enumerators increase from left to right, so Appl e compares less than Pear in all
implementation languages.

Unlike C++, Slice does not permit you to control the ordinal values of enumerators (because many implementation languages do not support
such a feature):

Slice

enum Fruit { Apple = 0, Pear = 7, Orange = 2 }; // Syntax error

In practice, you do not care about the values used for enumerators as long as you do not transmit the ordinal value of an enumerator
between address spaces. For example, sending the value 0 to a server to mean Appl e can cause problems because the server may not
use 0 to represent Appl e. Instead, simply send the value Appl e itself. If Appl e is represented by a different ordinal value in the receiving
address space, that value will be appropriately translated by the Ice run time.

As with C++, Slice enumerators enter the enclosing namespace, so the following is illegal:

Slice

enum Fruit { Apple, Pear, Oange };
enum Conput erBrands { Apple, I1BM Sun, HP }; /1 Apple redefined

Slice does not permit empty enumerations.
See Also

Structures

Sequences
Dictionaries
Constants and Literals

Copyright © 2011, ZeroC, Inc.

87

Ice 3.4.2 Documentation

Structures

Slice supports structures containing one or more named members of arbitrary type, including user-defined complex types. For example:

Slice

struct TineOf Day {

short hour; // 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59

}

As in C++, this definition introduces a new type called Ti meCf Day. Structure definitions form a namespace, so the names of the structure

members need to be unique only within their enclosing structure.

Data member definitions using a named type are the only construct that can appear inside a structure. It is impossible to, for example, define

a structure inside a structure:

Slice

struct TwoPoints {

struct Point { /1 1llegal!
short x;
short vy;

I

Poi nt coordl;

Poi nt coord2;

}s

This rule applies to Slice in general: type definitions cannot be nested (except for modules, which do support nesting). The reason for this

rule is that nested type definitions can be difficult to implement for some target languages and, even if implementable, greatly complicate the

scope resolution rules. For a specification language, such as Slice, nested type definitions are unnecessary — you can always write the

above definitions as follows (which is stylistically cleaner as well):

Slice

struct Point {

short x;

short vy;
b
struct TwoPoints { /'l Legal (and cleaner!)

Poi nt coordi;

Poi nt coor d2;
I

You can specify a default value for a data member that has one of the following types:

An integral type (byt e, short,int, | ong)
A floating point type (f | oat or doubl e)
string

bool

enum

For example:

Copyright © 2011, ZeroC, Inc.

88

Ice 3.4.2 Documentation

Slice

struct Location {
string nane;
Poi nt pt;

bool display = true;

string source =

}

"GPS",

The legal syntax for literal values is the same as for Slice constants, and you may also use a constant as a default value. The language
mapping guarantees that data members are initialized to their declared default values using a language-specific mechanism.

See Al

SO

Modules

Basic Types
Enumerations
Sequences
Dictionaries
Constants and Literals

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Sequences
On this page:

® Sequence Syntax and Semantics
® Using Sequences for Optional Values

Sequence Syntax and Semantics

Sequences are variable-length collections of elements:

Slice

sequence<Fruit> FruitPlatter;

A sequence can be empty?—?that is, it can contain no elements, or it can hold any number of elements up to the memory limits of your
platform.

Sequences can contain elements that are themselves sequences. This arrangement allows you to create lists of lists:

Slice

sequence<Frui t Pl atter> FruitBanquet;

Sequences are used to model a variety of collections, such as vectors, lists, queues, sets, bags, or trees. (It is up to the application to decide
whether or not order is important; by discarding order, a sequence serves as a set or bag.)

Using Sequences for Optional Values

One particular use of sequences has become idiomatic, namely, the use of a sequence to indicate an optional value. For example, we might
have a Part structure that records the details of the parts that go into a car. The structure could record things such as the name of the part,
a description, weight, price, and other details. Spare parts commonly have a serial number, which we can model as a | ong value. However,
some parts, such as simple screws, often do not have a serial number, so what are we supposed to put into the serial number field of a
screw? There are a number of options for dealing with this situation:

® Use a sentinel value, such as zero, to indicate the "no serial number" condition.
This approach is workable, provided that a sentinel value is actually available. While it may seem unlikely that anyone would use a
serial number of zero for a part, it is not impossible. And, for other values, such as a temperature value, all values in the range of
their type can be legal, so no sentinel value is available.

® Change the type of the serial number from | ong to stri ng.
Strings come with their own built-in sentinel value, namely the empty string, so we can use an empty string to indicate the "no serial
number" case. This is workable but not ideal: we should not have to change the natural data type of something to st ri ng just so we
get a sentinel value.

® Add an indicator as to whether the contents of the serial number are valid:

Slice
struct Part {
string nane;
string description;
/1
bool seriallsValid; // true if part has serial nunber
| ong seri al Nunber;
b

This is guaranteed to get you into trouble eventually: sooner or later, some programmer will forget to check whether the serial
number is valid before using it and create havoc.

® Use asequence to model the optional field.

Copyright © 2011, ZeroC, Inc.

90

Ice 3.4.2 Documentation

This technique uses the following convention:

Slice

sequence<l ong> Seri al Opt;

struct Part {
string nane;
string descri ption;
11
Seri al Opt serial Nunber; // optional: zero or one el enent

b

By convention, the Opt suffix is used to indicate that the sequence is used to model an optional value. If the sequence is empty, the
value is obviously not there; if it contains a single element, that element is the value. The obvious drawback of this scheme is that
someone could put more than one element into the sequence. This could be rectified by adding a special-purpose Slice construct for
optional values. However, optional values are not used frequently enough to justify the complexity of adding a dedicated language
feature. (As we will see in Classes, you can also use class hierarchies to model optional fields.)

See Also

Enumerations
Structures
Dictionaries
Constants and Literals
Classes

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Dictionaries

On this page:

¢ Dictionary Syntax and Semantics
® Allowable Types for Dictionary Keys and Values

Dictionary Syntax and Semantics

A dictionary is a mapping from a key type to a value type.

For example:

Slice

struct Enpl oyee {
I ong nunber ;
string firstNane;
string | astNane;

}

di ctionary<l ong, Enpl oyee> Enpl oyeeMap;

This definition creates a dictionary named Enpl oyeeMap that maps from an employee number to a structure containing the details for an
employee. Whether or not the key type (the employee number, of type | ong in this example) is also part of the value type (the Enpl oyee
structure in this example) is up to you — as far as Slice is concerned, there is no need to include the key as part of the value.

Dictionaries can be used to implement sparse arrays, or any lookup data structure with non-integral key type. Even though a sequence of
structures containing key-value pairs could be used to model the same thing, a dictionary is more appropriate:

® A dictionary clearly signals the intent of the designer, namely, to provide a mapping from a domain of values to a range of values. (A
sequence of structures of key-value pairs does not signal that same intent as clearly.)

® At the programming language level, sequences are implemented as vectors (or possibly lists), that is, they are not well suited to
model sparsely populated domains and require a linear search to locate an element with a particular value. On the other hand,
dictionaries are implemented as a data structure (typically a hash table or red-black tree) that supports efficient searching in O(log n)
average time or better.

Allowable Types for Dictionary Keys and Values

The key type of a dictionary need not be an integral type. For example, we could use the following definition to translate the names of the
days of the week:

Slice

dictionary<string, string> WekdaysEnglishToGer man;

The server implementation would take care of initializing this map with the key-value pairs Monday- Mont ag, Tuesday- Di enst ag, and so
on.

The value type of a dictionary can be any Slice type. However, the key type of a dictionary is limited to one of the following types:

Integral types (byt e, short, i nt, | ong, bool)

string

enum

Structures containing only data members of integral type or stri ng

Complex nested types, such as nested structures, sequences, or dictionaries, and floating-point types (f | oat and doubl e) cannot be used
as the key type. Complex nested types are disallowed because they complicate the language mappings for dictionaries, and floating-point
types are disallowed because representational changes of values as they cross machine boundaries can lead to ill-defined semantics for

equality.

Copyright © 2011, ZeroC, Inc.

92

See Also

Basic Types
Enumerations
Structures

Sequences

Constants and Literals

Ice 3.4.2 Documentation

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Constants and Literals
On this page:

Allowable Types for Constants
Boolean constants

Integer literals

Floating-point literals

String literals

Allowable Types for Constants

Slice allows you to define constants for the following types:

® Anintegral type (bool , byt e, short,int, | ong)
® A floating point type (f | oat or doubl e)

® string

® enum

Here are a few examples:

Slice
const bool AppendByDef ault = true;
const bhyte Lower Ni bbl e = 0xOf ;
const string Advice = "Don't Panic!";
const short TheAnswer = 42;

const doubl e Pl = 3. 1416;

enum Fruit { Apple, Pear, Oange };
const Fruit FavoriteFruit = Pear;

The syntax for literals is the same as for C++ and Java (with a few minor exceptions).
Boolean constants

Boolean constants can only be initialized with the keywords f al se and t r ue. (You cannot use 0 and 1 to represent f al se and t r ue.)

Integer literals

Integer literals can be specified in decimal, octal, or hexadecimal notation.

For example:
Slice
const byte TheAnswer = 42;
const byte TheAnswer|InCctal = 052;
const byte TheAnswer | nHex = Ox2A; /] or 0x2a

Be aware that, if you interpret byt e as a number instead of a bit pattern, you may get different results in different languages. For example,
for C++, byt e maps to unsi gned char whereas, for Java, byt e maps to byt e, which is a signed type.

Note that suffixes to indicate long and unsigned constants (I , L, u, U, used by C++) are illegal:

Slice

const |ong Wong = Ou; /1 Syntax error
const | ong WongToo = 1000000L; // Syntax error

93 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The value of an integer literal must be within the range of its constant type, as shown in the Built-In Basic Types table; otherwise the
compiler will issue a diagnostic.

Floating-point literals

Floating-point literals use C++ syntax, except that you cannot use an | or L suffix to indicate an extended floating-point constant; however, f
and F are legal (but are ignored).

Here are a few examples:

Slice
const float P1 = -3.14f; /1 Integer & fraction, with suffix
const float P2 = +3. le-3; /1 Integer, fraction, and exponent
const float P3 = .1; /1 Fraction part only
const float P4 = 1.; /'l Integer part only
const float P5 = .9ES5; // Fraction part and exponent
const float P6 = 5e2; /1 Integer part and exponent

Floating-point literals must be within the range of the constant type (f | oat or doubl e); otherwise, the compiler will issue a diagnostic.

String literals

String literals support the same escape sequences as C++.

Here are some examples:

Slice
const string AnOrdinaryString = "Hello World!";
const string Doubl eQuote = B T
const string TwoSi ngl eQuotes = "'\'"; /1" and \' are OK
const string Newine = "\ n";
const string CarriageReturn = "\r";
const string Horizontal Tab = "\t
const string Vertical Tab = "\v";
const string FornfFeed = "\ f
const string Alert = "\a";
const string Backspace = "\ b";
const string QuestionMark = "\
const string Backslash = "W\
const string Octal Escape = "\ 007"; /] Sanme as \a
const string HexEscape = "\ x07"; /1 Ditto
Note that Slice has no concept of a null string:
Slice

const string nullString = 0; /1 111egal!

Null strings simply do not exist in Slice and, therefore, do not exist as a legal value for a string anywhere in the Ice platform. The reason for
this decision is that null strings do not exist in many programming languages.

Many languages other than C and C++ use a byte array as the internal string representation. Null strings do not exist (and
would be very difficult to map) in such languages.

A constant definition may also refer to another constant. It is not necessary for both constants to have the same Slice type, but the value of
the existing constant must be compatible with the type of the constant being defined.

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Consider the examples below:

Slice

const int SIZE = 500;

const int DEFAULT_SIZE = SIZE;, // K
const short SHORT_SIZE = SIZE;, // K
const byte BYTE_SI ZE = S| ZE; /1 ERROR

The DEFAULT_SI ZE constant is legal because it has the same type as Sl ZE, and SHORT_SI ZE is legal because the value of SI ZE (500) is
within the range of the Slice short type. However, BYTE_SI ZE is illegal because the value of S| ZE is outside the range of the byt e type.

See Also

Enumerations
Structures
Sequences
Dictionaries

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Interfaces, Operations, and Exceptions

The central focus of Slice is on defining interfaces, for example:

Slice

struct TimeOf Day {

short hour; // 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59

}

interface O ock {

Ti meOf Day get Ti me();

void setTime(TimreOfDay tine);
b

This definition defines an interface type called G ock. The interface supports two operations: get Ti me and set Ti ne. Clients access an
object supporting the G ock interface by invoking an operation on the proxy for the object: to read the current time, the client invokes the
get Ti me operation; to set the current time, the client invokes the set Ti nme operation, passing an argument of type Ti meCf Day.

Invoking an operation on a proxy instructs the Ice run time to send a message to the target object. The target object can be in another
address space or can be collocated (in the same process) as the caller — the location of the target object is transparent to the client. If the
target object is in another (possibly remote) address space, the Ice run time invokes the operation via a remote procedure call; if the target is
collocated with the client, the Ice run time uses an ordinary function call instead, to avoid the overhead of marshaling.

You can think of an interface definition as the equivalent of the public part of a C++ class definition or as the equivalent of a Java interface,
and of operation definitions as (virtual) member functions. Note that nothing but operation definitions are allowed to appear inside an
interface definition. In particular, you cannot define a type, an exception, or a data member inside an interface. This does not mean that your
object implementation cannot contain state — it can, but how that state is implemented (in the form of data members or otherwise) is hidden
from the client and, therefore, need not appear in the object's interface definition.

An Ice object has exactly one (most derived) Slice interface type (or class type). Of course, you can create multiple Ice objects that have the
same type; to draw the analogy with C++, a Slice interface corresponds to a C++ class definition, whereas an Ice object corresponds to a
C++ class instance (but Ice objects can be implemented in multiple different address spaces).

Ice also provides multiple interfaces via a feature called facets.

A Slice interface defines the smallest grain of distribution in Ice: each Ice object has a unique identity (encapsulated in its proxy) that
distinguishes it from all other Ice objects; for communication to take place, you must invoke operations on an object's proxy. There is no
other notion of an addressable entity in Ice. You cannot, for example, instantiate a Slice structure and have clients manipulate that structure
remotely. To make the structure accessible, you must create an interface that allows clients to access the structure.

The partition of an application into interfaces therefore has profound influence on the overall architecture. Distribution boundaries must follow
interface (or class) boundaries; you can spread the implementation of interfaces over multiple address spaces (and you can implement
multiple interfaces in the same address space), but you cannot implement parts of interfaces in different address spaces.

Topics

Operations

User Exceptions
Run-Time Exceptions
Proxies

Interface Inheritance

See Also

® Classes
® Facets and Versioning

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Operations
On this page:

Parameters and Return Values
Style of Operation Definition
Overloading Operations
Idempotent Operations

Parameters and Return Values

An operation definition must contain a return type and zero or more parameter definitions. For example, in the Cl ock interface, the get Ti e
operation has a return type of Ti meCf Day and the set Ti e operation has a return type of voi d. You must use voi d to indicate that an

operation returns no value — there is no default return type for Slice operations.

An operation can have one or more input parameters. For example, set Ti ne accepts a single input parameter of type Ti neCf Day called

t i me. Of course, you can use multiple input parameters:

Slice

interface G rcadi anRhyt hm {
voi d set Sl eepPeri od(Ti meOf Day startTime, TimeO Day stopTine);
I

b

Note that the parameter name (as for Java) is mandatory. You cannot omit the parameter name, so the following is in error:

Slice

interface G rcadi anRhyt hm {
voi d set Sl eepPeriod(Ti meOf Day, TimeOfDay); // Error!
/1

b

By default, parameters are sent from the client to the server, that is, they are input parameters. To pass a value from the server to the client,
you can use an output parameter, indicated by the out keyword. For example, an alternative way to define the get Ti nme operation in the

Cl ock interface would be:

Slice

void getTime(out TimeOfDay tine);

This achieves the same thing but uses an output parameter instead of the return value. As with input parameters, you can use multiple
output parameters:

Slice

interface G rcadi anRhyt hm {
voi d set Sl eepPeriod(Ti meOf Day startTine, TineOf Day stopTine);
voi d get Sl eepPeri od(out TineOfDay startTine, out TinmeCOf Day stopTine);
11

}s

If you have both input and output parameters for an operation, the output parameters must follow the input parameters:

Copyright © 2011, ZeroC, Inc.

98

Ice 3.4.2 Documentation

Slice

voi d changeS| eepPeri od(Ti meOf Day startTine, Ti meOf Day stopTi ne, Il K
out TimeCOf Day prevStartTi me, out TineOf Day prevStopTine);

voi d changeSl| eepPeri od(out TimeOfDay prevStartTine, out TineOf Day prevStopTinme, // Error
Ti meCf Day startTine, Ti meOf Day stopTi ne);

Slice does not support parameters that are both input and output parameters (call by reference). The reason is that, for remote calls,
reference parameters do not result in the same savings that one can obtain for call by reference in programming languages. (Data still needs
to be copied in both directions and any gains in marshaling efficiency are negligible.) Also, reference (or input-output) parameters result in
more complex language mappings, with concomitant increases in code size.

Style of Operation Definition

As you would expect, language mappings follow the style of operation definition you use in Slice: Slice return types map to programming
language return types, and Slice parameters map to programming language parameters.

For operations that return only a single value, it is common to return the value from the operation instead of using an out-parameter. This
style maps naturally into all programming languages. Note that, if you use an out-parameter instead, you impose a different API style on the
client: most programming languages permit the return value of a function to be ignored whereas it is typically not possible to ignore an output
parameter.

For operations that return multiple values, it is common to return all values as out-parameters and to use a return type of voi d. However, the
rule is not all that clear-cut because operations with multiple output values can have one particular value that is considered more "important"
than the remainder. A common example of this is an iterator operation that returns items from a collection one-by-one:

Slice

bool next(out RecordType r);

The next operation returns two values: the record that was retrieved and a Boolean to indicate the end-of-collection condition. (If the return
value is f al se, the end of the collection has been reached and the parameter r has an undefined value.) This style of definition can be
useful because it naturally fits into the way programmers write control structures. For example:

whil e (next(record))
Il Process record...

if (next(record))
// Got a valid record...

Overloading Operations

Slice does not support any form of overloading of operations. For example:

Slice

interface G rcadi anRhyt hm {
void nodi fy(TimeOf Day startTime, TinmeOf Day endTine);
voi d nodi fy(Ti meOf Day startTi ne, /'l Error
Ti meOf Day endTi ne,
out timeCfDay prevStartTine,
out Ti meCf Day prevEndTi ne);
b

Operations in the same interface must have different names, regardless of what type and number of parameters they have. This restriction
exists because overloaded functions cannot sensibly be mapped to languages without built-in support for overloading.

Copyright © 2011, ZeroC, Inc.

99

Ice 3.4.2 Documentation

lﬂl Name mangling is not an option in this case: while it works fine for compilers, it is unacceptable to humans.

ldem

potent Operations

Some operations, such as get Ti ne in the Cl ock interface, do not modify the state of the object they operate on. They are the conceptual

equival

ent of C++ const member functions. Similary, set Ti ne does modify the state of the object, but is idempotent. You can indicate this

in Slice as follows:

Slice

interface dock {

i denpotent Ti meOf Day get Tine();

i denpotent void setTinme(Ti reOfDay tine);
b

This marks the get Ti me and set Ti e operations as idempotent. An operation is idempotent if two successive invocations of the operation
have the same effect as a single invocation. For example, x = 1; is an idempotent operation because it does not matter whether it is
executed once or twice — either way, x ends up with the value 1. On the other hand, x += 1; is not an idempotent operation because

executi

Theid

ng it twice results in a different value for x than executing it once. Obviously, any read-only operation is idempotent.

enpot ent keyword is useful because it allows the Ice run time to be more aggressive when performing automatic retries to recover

from errors. Specifically, Ice guarantees at-most-once semantics for operation invocations:

See Al

For normal (not idempotent) operations, the Ice run time has to be conservative about how it deals with errors. For example, if a
client sends an operation invocation to a server and then loses connectivity, there is no way for the client-side run time to find out
whether the request it sent actually made it to the server. This means that the run time cannot attempt to recover from the error by
re-establishing a connection and sending the request a second time because that could cause the operation to be invoked a second
time and violate at-most-once semantics; the run time has no option but to report the error to the application.

For i denpot ent operations, on the other hand, the client-side run time can attempt to re-establish a connection to the server and
safely send the failed request a second time. If the server can be reached on the second attempt, everything is fine and the
application never notices the (temporary) failure. Only if the second attempt fails need the run time report the error back to the
application. (The number of retries can be increased with an Ice configuration parameter.)

SO

Interfaces, Operations, and Exceptions
User Exceptions

Run-Time Exceptions

Proxies

Interface Inheritance

Automatic Retries

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

User Exceptions

On this page:

® User Exception Syntax and Semantics
® Default Values for User Exception Members
® Declaring User Exceptions in Operations
® Restrictions for User Exceptions

® User Exception Inheritance

User Exception Syntax and Semantics

Looking at the set Ti me operation in the Cl ock interface, we find a potential problem: given that the Ti meOf Day structure uses short as
the type of each field, what will happen if a client invokes the set Ti ne operation and passes a Ti meOf Day value with meaningless field
values, such as - 199 for the minute field, or 42 for the hour? Obviously, it would be nice to provide some indication to the caller that this is
meaningless. Slice allows you to define user exceptions to indicate error conditions to the client. For example:

Slice

exception Error {}; // Enpty exceptions are |egal

excepti on RangeError {
Ti reOr Day errorTine;
Ti reOf Day m nTi ne;
Ti meOf Day maxTi ne;
b

A user exception is much like a structure in that it contains a number of data members. However, unlike structures, exceptions can have zero
data members, that is, be empty.

Default Values for User Exception Members
You can specify a default value for an exception data member that has one of the following types:

An integral type (byt e, short,int, | ong)
A floating point type (f | oat or doubl e)
string

bool

enum

For example:

Slice

exception RangeError {
Ti meOf Day errorTine;
Ti meOf Day m nTi ne;
Ti meOf Day maxTi ne;
string reason = "out of range";

}s

The legal syntax for literal values is the same as for Slice constants, and you may also use a constant as a default value. The language
mapping guarantees that data members are initialized to their declared default values using a language-specific mechanism.

Declaring User Exceptions in Operations

Exceptions allow you to return an arbitrary amount of error information to the client if an error condition arises in the implementation of an
operation. Operations use an exception specification to indicate the exceptions that may be returned to the client:

100 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

interface dock {
i denpotent Ti meOf Day get Ti ne();
i denpotent void setTi me(Ti neOfDay tine)
throws RangeError, Error;

}

This definition indicates that the set Ti me operation may throw either a RangeEr r or or an Er r or user exception (and no other type of
exception). If the client receives a RangeEr r or exception, the exception contains the Ti meCf Day value that was passed to set Ti ne and
caused the error (in the er r or Ti me member), as well as the minimum and maximum time values that can be used (in the m nTi me and
maxTi me members). If set Ti me failed because of an error not caused by an illegal parameter value, it throws Er r or . Obviously, because
Er r or does not have data members, the client will have no idea what exactly it was that went wrong — it simply knows that the operation
did not work.

An operation can throw only those user exceptions that are listed in its exception specification. If, at run time, the implementation of an
operation throws an exception that is not listed in its exception specification, the client receives a run-time exception) to indicate that the
operation did something illegal. To indicate that an operation does not throw any user exception, simply omit the exception specification.
(There is no empty exception specification in Slice.)

Restrictions for User Exceptions

Exceptions are not first-class data types and first-class data types are not exceptions:

You cannot pass an exception as a parameter value.

You cannot use an exception as the type of a data member.

You cannot use an exception as the element type of a sequence.

You cannot use an exception as the key or value type of a dictionary.

You cannot throw a value of non-exception type (such as a value of type i nt or stri ng).

The reason for these restrictions is that some implementation languages use a specific and separate type for exceptions (in the same way as
Slice does). For such languages, it would be difficult to map exceptions if they could be used as an ordinary data type. (C++ is somewhat
unusual among programming languages by allowing arbitrary types to be used as exceptions.)

User Exception Inheritance

Exceptions support inheritance. For example:

Slice

exception ErrorBase {

string reason;
b
enum RTError {

Di vi deByZero, NegativeRoot, Illegal Null /* ... */
H
exception RuntinmeError extends ErrorBase {

RTError err;
b
enum LError { Val ueQut Of Range, Val ueslnconsistent, /* ... */ };

exception Logi cError extends ErrorBase {
LError err;

s

exception RangeError extends LogicError {
Ti meOf Day errorTine;
Ti meOf Day m nTi ne;
Ti meOf Day maxTi ne;

H

101 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

These definitions set up a simple exception hierarchy:

® ErrorBase is at the root of the tree and contains a string explaining the cause of the error.

® Derived from Er r or Base are Runt i neEr r or and Logi cErr or . Each of these exceptions contains an enumerated value that
further categorizes the error.

® Finally, RangeErr or is derived from Logi cError and reports the details of the specific error.

Setting up exception hierarchies such as this not only helps to create a more readable specification because errors are categorized, but also
can be used at the language level to good advantage. For example, the Slice C++ mapping preserves the exception hierarchy so you can
catch exceptions generically as a base exception, or set up exception handlers to deal with specific exceptions.

Looking at the exception hierarchy, it is not clear whether, at run time, the application will only throw most derived exceptions, such as
RangeEr r or, or if it will also throw base exceptions, such as Logi cError, Runti neError, and Er r or Base. If you want to indicate that a
base exception, interface, or class is abstract (will not be instantiated), you can add a comment to that effect.

Note that, if the exception specification of an operation indicates a specific exception type, at run time, the implementation of the operation
may also throw more derived exceptions. For example:

Slice

exception Base {
/1

}

exception Derived extends Base {
11

}s

interface Exanple {
void op() throws Base; /1 May throw Base or Derived

}

In this example, op may throw a Base or a Der i ved exception, that is, any exception that is compatible with the exception types listed in the
exception specification can be thrown at run time.

As a system evolves, it is quite common for new, derived exceptions to be added to an existing hierarchy. Assume that we initially construct
clients and server with the following definitions:

Slice

exception Error {
/1

}

interface Application {
voi d doSoret hing() throws Error;

b

Also assume that a large number of clients are deployed in field, that is, when you upgrade the system, you cannot easily upgrade all the
clients. As the application evolves, a new exception is added to the system and the server is redeployed with the new definition:

Slice

exception Error {
11

}s

exception Fatal ApplicationError extends Error {
/1

}

interface Application {
voi d doSomret hing() throws Error;

b

102 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

This raises the question of what should happen if the server throws a Fat al Appl i cati onError from doSornet hi ng. The answer
depends whether the client was built using the old or the updated definition:

® |f the client was built using the same definition as the server, it simply receives a Fat al Appl i cati onError.

® |f the client was built with the original definition, that client has no knowledge that Fat al Appl i cati onError even exists. In this
case, the Ice run time automatically slices the exception to the most-derived type that is understood by the receiver (Er r or, in this
case) and discards the information that is specific to the derived part of the exception. (This is exactly analogous to catching C++
exceptions by value — the exception is sliced to the type used in the cat ch-clause.)

Exceptions support single inheritance only. (Multiple inheritance would be difficult to map into many programming languages.)
See Also

Constants and Literals
Operations

Run-Time Exceptions
Proxies

Interface Inheritance

103 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Run-Time Exceptions

In addition to any user exceptions that are listed in an operation's exception specification, an operation can also throw Ice run-time
exceptions. Run-time exceptions are predefined exceptions that indicate platform-related run-time errors. For example, if a networking error
interrupts communication between client and server, the client is informed of this by a run-time exception, such as

Connect Ti meout Except i on or Socket Excepti on.

The exception specification of an operation must not list any run-time exceptions. (It is understood that all operations can raise run-time
exceptions and you are not allowed to restate that.)

On this page:

® Inheritance Hierarchy for Exceptions
® Local Versus Remote Exceptions
® Common Exceptions
® (bj ect Not Exi st Excepti on
® Facet Not Exi st Excepti on
® QOperati onNot Exi st Excepti on
® Unknown Exceptions
® UnknownUser Excepti on
® UnknownLocal Excepti on
® UnknownExcepti on

Inheritance Hierarchy for Exceptions

All the Ice run-time and user exceptions are arranged in an inheritance hierarchy, as shown below:

Exception

LocalException UserException

~ AN

Specific Run-Time
Exceplions...

Inheritance structure for exceptions.

Specific User Exceplions...

| ce: : Excepti on is at the root of the inheritance hierarchy. Derived from that are the (abstract) types | ce: : Local Excepti on and
I ce: : User Except i on. In turn, all run-time exceptions are derived from | ce: : Local Except i on, and all user exceptions are derived
from | ce: : User Excepti on.

This figures shows the complete hierarchy of the Ice run-time exceptions:

104 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Exception

LocalException UserException

I .

RequestFailedExceplion
.

SyscallException

F

ObjectNolExistException
OperationNolExistException
SocketExceplion FileException FaceNotExistException
UnknownException \ *

ConnectionFailedException
ConnectionLostException

UnknownLocalException
UnknownUserException

TimeoutException

ConnectionRefusedExcaption

ProtocolException ConnectTimeoulException
ConnectionTimeoulException
CloseTimaoulE xcaption

[

InitializationException

IlegalldentityE xception BadMagicException

IdentityParseException UnsupportedProtocolExceplion

PlugininitializationException UnsupportedEncodingException

DNSException UnknownMessageException -
ProxyParseException ConnactionMolValidatedException MarshalException
MoEndpointException UnknownRequestidException

ObjectadapterDeactivatedException UnknownReplyStatusException

ObjectAdapterNamelnUseException CloseConnectionException

ObjectAdapterldinUseException ForcedCloseConnectionExceplion

VersionMismatchException AbortBatchRequestException

CommunicatorDestroyedException llegalMessageSizeException

EndpointParseException CompressionNotSupportedExceplion
EndpaointSelectionTypeParseException CompressionExceplion .
LocationForwardidentityException DatagramLimitException Egﬁ::::%ﬁggmlﬁ;?xcemm

PlugininitializationException
CollocationOptimizationException
AlreadyRegisteredException
NotRegisteradException
TwowayOnlyException
CloneNotimplementedE xception
SecurityException
FixedProxyExceplion
FeatureMotSupportedException

lilegalIndirectionException
MemoryLimitException
EncapsulationException
NoObjectFactoryExceplion
EncapsulationException
NegativeSizeException
StringConversionExceplion

Ice run-time exception hierarchy. (Shaded exceptions can be sent by the server.)
o We use the Unified Modeling Language (UML) for the object model diagrams (see [1] and [2] for details).

Note that Ice run-time exception hierarchy groups several exceptions into a single box to save space (which, strictly, is incorrect UML
syntax). Also note that some run-time exceptions have data members, which, for brevity, we have omitted in the Ice run-time exception
hierarchy. These data members provide additional information about the precise cause of an error.

Many of the run-time exceptions have self-explanatory names, such as Menor yLi mi t Except i on. Others indicate problems in the Ice run

105 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

time, such as Encapsul ati onExcept i on. Still others can arise only through application programming errors, such as
Twoway Onl yExcept i on. In practice, you will likely never see most of these exceptions. However, there are a few run-time exceptions you
will encounter and whose meaning you should know.

Local Versus Remote Exceptions

Common Exceptions

Most error conditions are detected on the client side. For example, if an attempt to contact a server fails, the client-side run time raises a
Connect Ti meout Except i on. However, there are three specific error conditions (shown as shaded in the Ice run-time exception hierarchy
diagram) that are detected by the server and made known explicitly to the client-side run time via the Ice protocol:

Obj ect Not Exi st Except i on, Facet Not Exi st Except i on, and Oper at i onNot Exi st Excepti on.

Ohj ect Not Exi st Excepti on

This exception indicates that a request was delivered to the server but the server could not locate a servant with the identity that is
embedded in the proxy. In other words, the server could not find an object to dispatch the request to.

An Obj ect Not Exi st Except i on is a death certificate: it indicates that the target object in the server does not exist.

The Ice run time raises Obj ect Not Exi st Except i on only if there are no facets in existence with a matching identity;
otherwise, it raises Facet Not Exi st Except i on.

Most likely, this is the case because the object existed some time in the past and has since been destroyed, but the same exception is also
raised if a client uses a proxy with the identity of an object that has never been created. If you receive this exception, you are expected to
clean up whatever resources you might have allocated that relate to the specific object for which you receive this exception.

Facet Not Exi st Excepti on

The client attempted to contact a non-existent facets of an object, that is, the server has at least one servant with the given identity, but no
servant with a matching facet name.

Oper at i onNot Exi st Excepti on

This exception is raised if the server could locate an object with the correct identity but, on attempting to dispatch the client's operation
invocation, the server found that the target object does not have such an operation. You will see this exception in only two cases:

® You have used an unchecked down-cast on a proxy of the incorrect type.

® Client and server have been built with Slice definitions for an interface that disagree with each other, that is, the client was built with
an interface definition for the object that indicates that an operation exists, but the server was built with a different version of the
interface definition in which the operation is absent.

Unknown Exceptions

Any error condition on the server side that is not described by one of the three preceding exceptions is made known to the client as one of
three generic exceptions (shown as shaded in the Ice run-time exception hierarchy figure diagram): UnknownUser Except i on,
UnknownLocal Excepti on, or UnknownExcept i on.

UnknownUser Except i on

This exception indicates that an operation implementation has thrown a Slice exception that is not declared in the operation's exception
specification (and is not derived from one of the exceptions in the operation's exception specification).

UnknownLocal Excepti on

If an operation implementation raises a run-time exception other than Cbj ect Not Exi st Except i on, Facet Not Exi st Excepti on, or
Oper at i onNot Exi st Except i on (such as a Not Regi st er edExcept i on), the client receives an UnknownLocal Except i on. In other
words, the Ice protocol does not transmit the exact exception that was encountered in the server, but simply returns a bit to the client in the
reply to indicate that the server encountered a run-time exception.

A common cause for a client receiving an UnknownLocal Except i on is failure to catch and handle all exceptions in the server. For

example, if the implementation of an operation encounters an exception it does not handle, the exception propagates all the way up the call
stack until the stack is unwound to the point where the Ice run time invoked the operation. The Ice run time catches all Ice exceptions that

106 Copyright © 2011, ZeroC, Inc.

107

Ice 3.4.2 Documentation

"escape" from an operation invocation and returns them to the client as an UnknownLocal Excepti on.

UnknownExcepti on

An operation has thrown a non-Ice exception. For example, if the operation in the server throws a C++ exception, such as a char *, or a
Java exception, such as a Cl assCast Except i on, the client receives an UnknownExcept i on.

All other run-time exceptions (not shaded in the Ice run-time exception hierarchy) are detected by the client-side run time and are raised
locally.

It is possible for the implementation of an operation to throw Ice run-time exceptions (as well as user exceptions). For example, if a client
holds a proxy to an object that no longer exists in the server, your server application code is required to throw an

Obj ect Not Exi st Except i on. If you do throw run-time exceptions from your application code, you should take care to throw a run-time
exception only if appropriate, that is, do not use run-time exceptions to indicate something that really should be a user exception. Doing so
can be very confusing to the client: if the application "hijacks" some run-time exceptions for its own purposes, the client can no longer decide
whether the exception was thrown by the Ice run time or by the server application code. This can make debugging very difficult.

See Also

User Exceptions

Interfaces, Operations, and Exceptions
Operations

Proxies

Interface Inheritance

Facets and Versioning

References

1. Booch, G., et al. 1998. Unified Modeling Language User Guide. Reading, MA: Addison-Wesley.
2. Object Management Group. 2001. Unified Modeling Language Specification. Framingham, MA: Object Management Group.

Copyright © 2011, ZeroC, Inc.

http://amzn.com/0321267974
http://www.omg.org/spec/UML/

Ice 3.4.2 Documentation

Proxies

Building on the Cl ock example, we can create definitions for a world-time server:

Slice

exception CenericError {
string reason;

I

struct TimeOf Day {
short hour; /Il 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59

H
exception BadTi neVal extends GenericError {};

interface Cock {

i denpotent Ti meOf Day get Tine();

i denpotent void setTime(TineOfDay tine) throws BadTi neVal ;
b

di ctionary<string, C ock*> TineMap; // Tine zone nane to cl ock map
exception BadZoneNane extends GenericError {};

interface Worl dTine {
i denpot ent voi d addZone(string zoneNane, C ock* zoned ock);
voi d renpveZone(string zoneNanme) throws BadZoneNane;
i denpot ent O ock* findZone(string zoneNane) throws BadZoneNane;
i denpotent Ti meMap |i st Zones();
i denpot ent voi d set Zones(Ti mreMap zones);

}

The Wor | dTi me interface acts as a collection manager for clocks, one for each time zone. In other words, the Wor | dTi ne interface
manages a collection of pairs. The first member of each pair is a time zone name; the second member of the pair is the clock that provides
the time for that zone. The interface contains operations that permit you to add or remove a clock from the map (addZone and r enoveZone
), to search for a particular time zone by name (f i ndZone), and to read or write the entire map (I i st Zones and set Zones).

The Wor | dTi me example illustrates an important Slice concept: note that addZone accepts a parameter of type C ock* and f i ndZone
returns a parameter of type C ock*. In other words, interfaces are types in their own right and can be passed as parameters. The * operator
is known as the proxy operator. Its left-hand argument must be an interface (or class) and its return type is a proxy. A proxy is like a pointer
that can denote an object. The semantics of proxies are very much like those of C++ class instance pointers:

® A proxy can be null.

® A proxy can dangle (point at an object that is no longer there).

® QOperations dispatched via a proxy use late binding: if the actual run-time type of the object denoted by the proxy is more derived
than the proxy's type, the implementation of the most-derived interface will be invoked.

When a client passes a Cl ock proxy to the addZone operation, the proxy denotes an actual O ock object in a server. The Cl ock Ice object
denoted by that proxy may be implemented in the same server process as the Wor | dTi e interface, or in a different server process. Where
the O ock object is physically implemented matters neither to the client nor to the server implementing the Wor | dTi e interface; if either
invokes an operation on a particular clock, such as get Ti e, an RPC call is sent to whatever server implements that particular clock. In
other words, a proxy acts as a local "ambassador" for the remote object; invoking an operation on the proxy forwards the invocation to the
actual object implementation. If the object implementation is in a different address space, this results in a remote procedure call; if the object
implementation is collocated in the same address space, the Ice run time uses an ordinary local function call from the proxy to the object
implementation.

Note that proxies also act very much like pointers in their sharing semantics: if two clients have a proxy to the same object, a state change
made by one client (such as setting the time) will be visible to the other client.

Proxies are strongly typed (at least for statically typed languages, such as C++ and Java). This means that you cannot pass something other
than a Cl ock proxy to the addZone operation; attempts to do so are rejected at compile time.

108 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

See Also

Classes

Interfaces, Operations, and Exceptions
User Exceptions

Run-Time Exceptions

Interface Inheritance

109 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Interface Inheritance

On this page:

® |nterface Inheritance

® |Interface Inheritance Limitations

¢ Implicit Inheritance from Object

® Null Proxies

® Self-Referential Interfaces

® Empty Interfaces

® Interface Versus Implementation Inheritance

Interface Inheritance

Interfaces support inheritance. For example, we could extend our world-time server to support the concept of an alarm clock:

Slice

interface Al arnC ock extends d ock {
i denpotent Ti meCf Day get Al ar mirli me() ;
i denpotent voi d set Al arnli me(Ti neOf Day al ar nili ne)
t hrows BadTi neVal ;

b

The semantics of this are the same as for C++ or Java: Al ar nCl ock is a subtype of C ock and an Al ar nCl ock proxy can be substituted
wherever a C ock proxy is expected. Obviously, an Al ar nTCl ock supports the same get Ti me and set Ti e operations as a G ock but
also supports the get Al ar nli ne and set Al ar ni me operations.

Multiple interface inheritance is also possible. For example, we can construct a radio alarm clock as follows:

Slice

interface Radio {
voi d set Frequency(long hertz) throws GenericError;
voi d set Vol une(l ong dB) throws GenericError;

s
enum Al ar mvbde { Radi oAl arm BeepAl arm};

interface Radi o0 ock extends Radio, Al arnC ock {
voi d set Mbde(Al ar mvbde node);
Al ar mvbde get Mbde() ;

b

Radi od ock extends both Radi o and Al ar nCl ock and can therefore be passed where a Radi o, an Al ar nCl ock, or a d ock is
expected. The inheritance diagram for this definition looks as follows:

110 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Clock
<<interface>>

F]

Radio AlarmClock
=<interface== =<interface==

RadioClock
<<jnterface>>

Inheritance diagram for Radi oCl ock.

Interfaces that inherit from more than one base interface may share a common base interface. For example, the following definition is legal:

Slice
interface B{ /* ... */ };
interface 11 extends B { /* ... */ };
interface 12 extends B { /* ... */ };
interface Dextends 11, 12 { /* ... */ };
This definition results in the familiar diamond shape:
B
Zeinterfacaes>
Il Iz
ccinterface»x <ccinterface>>

wointerfacas>

Diamond-shaped inheritance.

Interface Inheritance Limitations

If an interface uses multiple inheritance, it must not inherit the same operation name from more than one base interface. For example, the
following definition is illegal:

111 Copyright © 2011, ZeroC, Inc.

112

Ice 3.4.2 Documentation

Slice

interface dock {

voi d set (TimeCf Day tine); Il set tinme
b
interface Radio {

void set(long hertz); /1 set frequency
|
interface Radi o0 ock extends Radio, O ock { /1 1llegal!

11
b

This definition is illegal because Radi oCl ock inherits two set operations, Radi o: : set and O ock: : set . The Slice compiler makes this
illegal because (unlike C++) many programming languages do not have a built-in facility for disambiguating the different operations. In Slice,
the simple rule is that all inherited operations must have unique names. (In practice, this is rarely a problem because inheritance is rarely
added to an interface hierarchy "after the fact". To avoid accidental clashes, we suggest that you use descriptive operation names, such as

set Ti me and set Fr equency. This makes accidental name clashes less likely.)

Implicit Inheritance from Object

All Slice interfaces are ultimately derived from Obj ect . For example, the inheritance hierarchy would be shown more correctly as:

Object
=<<interface>=

—

Implicit inheritance

—

Implicit inheritance Clock
=<<interface==
&
Radio AlarmClock
=<interface==> =<interface==>
RadioClock

<<jnterface>=

Implicit inheritance from Cbj ect .

Because all interfaces have a common base interface, we can pass any type of interface as that type. For example:

Slice

interface ProxyStore {
i denpotent voi d put Proxy(string name, Cbject* 0);
i denpot ent Obj ect* getProxy(string nane);

b

oj ect is a Slice keyword (note the capitalization) that denotes the root type of the inheritance hierarchy. The Pr oxy St or e interface is a

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

generic proxy storage facility: the client can call put Pr oxy to add a proxy of any type under a given name and later retrieve that proxy again
by calling get Pr oxy and supplying that name. The ability to generically store proxies in this fashion allows us to build general-purpose
facilities, such as a naming service that can store proxies and deliver them to clients. Such a service, in turn, allows us to avoid hard-coding
proxy details into clients and servers.

Inheritance from type Qbj ect is always implicit. For example, the following Slice definition is illegal:

Slice

interface MyInterface extends Cbject { /* ... */ }; // Error!

It is understood that all interfaces inherit from type Cbj ect ; you are not allowed to restate that.

Type Obj ect is mapped to an abstract type by the various language mappings, so you cannot instantiate an Ice object of that type.

Null Proxies

Looking at the Pr oxy St or e interface once more, we notice that get Pr oxy does not have an exception specification. The question then is
what should happen if a client calls get Pr oxy with a name under which no proxy is stored? Obviously, we could add an exception to
indicate this condition to get Pr oxy. However, another option is to return a null proxy. Ice has the built-in notion of a null proxy, which is a
proxy that "points nowhere". When such a proxy is returned to the client, the client can test the value of the returned proxy to check whether
it is null or denotes a valid object.

A more interesting question is: "which approach is more appropriate, throwing an exception or returning a null proxy?" The answer depends
on the expected usage pattern of an interface. For example, if, in normal operation, you do not expect clients to call get Pr oxy with a
non-existent name, it is better to throw an exception. (This is probably the case for our Pr oxy St or e interface: the fact that thereisno | i st
operation makes it clear that clients are expected to know which names are in use.)

On the other hand, if you expect that clients will occasionally try to look up something that is not there, it is better to return a null proxy. The
reason is that throwing an exception breaks the normal flow of control in the client and requires special handling code. This means that you
should throw exceptions only in exceptional circumstances. For example, throwing an exception if a database lookup returns an empty result
set is wrong; it is expected and normal that a result set is occasionally empty.

It is worth paying attention to such design issues: well-designed interfaces that get these details right are easier to use and easier to

understand. Not only do such interfaces make life easier for client developers, they also make it less likely that latent bugs cause problems
later.

Self-Referential Interfaces

Proxies have pointer semantics, so we can define self-referential interfaces. For example:

Slice

interface Link {
i denpot ent SoneType get Val ue();
i denpot ent Li nk* next();

b

The Li nk interface contains a next operation that returns a proxy to a Li nk interface. Obviously, this can be used to create a chain of
interfaces; the final link in the chain returns a null proxy from its next operation.

Empty Interfaces

The following Slice definition is legal:

Slice

interface Enpty {};

The Slice compiler will compile this definition without complaint. An interesting question is: "why would | need an empty interface?" In most
cases, empty interfaces are an indication of design errors. Here is one example:

113 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

interface ThingBase {};

interface Thingl extends Thi ngBase {
/| Operations here...

}

interface Thing2 extends ThingBase {
/| Operations here...

}s

Looking at this definition, we can make two observations:

® Thi ngl and Thi ng2 have a common base and are therefore related.
® Whatever is common to Thi ngl and Thi ng2 can be found in interface Thi ngBase.

Of course, looking at Thi ngBase, we find that Thi ngl and Thi ng2 do not share any operations at all because Thi ngBase is empty. Given
that we are using an object-oriented paradigm, this is definitely strange: in the object-oriented model, the only way to communicate with an
object is to send a message to the object. But, to send a message, we need an operation. Given that Thi ngBase has no operations, we
cannot send a message to it, and it follows that Thi ngl and Thi ng2 are not related because they have no common operations. But of
course, seeing that Thi ngl and Thi ng2 have a common base, we conclude that they are related, otherwise the common base would not
exist. At this point, most programmers begin to scratch their head and wonder what is going on here.

One common use of the above design is a desire to treat Thi ngl and Thi ng2 polymorphically. For example, we might continue the
previous definition as follows:

Slice

interface ThingUser {
voi d put Thi ng(Thi ngBase* t hing);
b

Now the purpose of having the common base becomes clear: we want to be able to pass both Thi ngl and Thi ng2 proxies to put Thi ng.
Does this justify the empty base interface? To answer this question, we need to think about what happens in the implementation of

put Thi ng. Obviously, put Thi ng cannot possibly invoke an operation on a Thi ngBase because there are no operations. This means that
put Thi ng can do one of two things:

1. putThing can simply remember the value of t hi ng.

2. putThing can try to down-cast to either Thi ngl or Thi ng2 and then invoke an operation. The pseudo-code for the implementation
of put Thi ng would look something like this:

voi d put Thi ng(Thi ngBase t hi ng)
{
if (is_a(Thingl, thing)) {
/1 Do something with Thingl...
} else if (is_a(Thing2, thing)) {
// Do sonething with Thing2...
} else {
/1 M ght be a ThingBase?
/1

The implementation tries to down-cast its argument to each possible type in turn until it has found the actual run-time type of the

argument. Of course, any object-oriented text book worth its price will tell you that this is an abuse of inheritance and leads to
maintenance problems.

If you find yourself writing operations such as put Thi ng that rely on artificial base interfaces, ask yourself whether you really need to do
things this way. For example, a more appropriate design might be:

114 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

interface Thingl {
/1 Operations here...

s

interface Thing2 {
/| Operations here...

}

interface ThingUser {
voi d put Thi ngl(Thi ngl* thing);
voi d put Thi ng2(Thi ng2* thing);
b

With this design, Thi ngl and Thi ng2 are not related, and Thi ngUser offers a separate operation for each type of proxy. The
implementation of these operations does not need to use any down-casts, and all is well in our object-oriented world.

Another common use of empty base interfaces is the following:

Slice

interface Persistentbject {};

interface Thingl extends Persistentject {
/| Operations here...

b

interface Thing2 extends Persistent Ooject {
/1 Operations here...

}

Clearly, the intent of this design is to place persistence functionality into the Per si st ent Obj ect base implementation and require objects
that want to have persistent state to inherit from Per si st ent Obj ect . On the face of things, this is reasonable: after all, using inheritance in
this way is a well-established design pattern, so what can possibly be wrong with it? As it turns out, there are a number of things that are
wrong with this design:

115

® The above inheritance hierarchy is used to add behavior to Thi ngl and Thi ng2. However, in a strict OO model, behavior can be

invoked only by sending messages. But, because Per si st ent Obj ect has no operations, no messages can be sent.

This raises the question of how the implementation of Per si st ent Obj ect actually goes about doing its job; presumably, it knows
something about the implementation (that is, the internal state) of Thi ngl and Thi ng2, so it can write that state into a database.
But, if so, Per si st ent Obj ect, Thi ngl1, and Thi ng2 can no longer be implemented in different address spaces because, in that
case, Per si st ent Gbj ect can no longer get at the state of Thi ngl and Thi ng2.

Alternatively, Thi ngl and Thi ng2 use some functionality provided by Per si st ent Obj ect in order to make their internal state
persistent. But Per si st ent Obj ect does not have any operations, so how would Thi ngl and Thi ng2 actually go about achieving
this? Again, the only way that can work is if Per si st ent Cbj ect, Thi ngl, and Thi ng2 are implemented in a single address space
and share implementation state behind the scenes, meaning that they cannot be implemented in different address spaces.

® The above inheritance hierarchy splits the world into two halves, one containing persistent objects and one containing non-persistent

ones. This has far-reaching ramifications:

® Suppose you have an existing application with already implemented, non-persistent objects. Requirements change over
time and you find that you now would like to make some of your objects persistent. With the above design, you cannot do
this unless you change the type of your objects because they now must inherit from Per si st ent Cbj ect . Of course, this is
extremely bad news: not only do you have to change the implementation of your objects in the server, you also need to
locate and update all the clients that are currently using your objects because they suddenly have a completely new type.
What is worse, there is no way to keep things backward compatible: either all clients change with the server, or none of
them do. It is impossible for some clients to remain "unupgraded".

® The design does not scale to multiple features. Imagine that we have a number of additional behaviors that objects can
inherit, such as serialization, fault-tolerance, persistence, and the ability to be searched by a search engine. We quickly end
up in a mess of multiple inheritance. What is worse, each possible combination of features creates a completely separate
type hierarchy. This means that you can no longer write operations that generically operate on a number of object types.
For example, you cannot pass a persistent object to something that expects a non-persistent object, even if the receiver of
the object does not care about the persistence aspects of the object. This quickly leads to fragmented and hard-to-maintain
type systems. Before long, you will either find yourself rewriting your application or end up with something that is both
difficult to use and difficult to maintain.

Copyright © 2011, ZeroC, Inc.

116

Ice 3.4.2 Documentation

The foregoing discussion will hopefully serve as a warning: Slice is an interface definition language that has nothing to do with
implementation (but empty interfaces almost always indicate that implementation state is shared via mechanisms other than defined
interfaces). If you find yourself writing an empty interface definition, at least step back and think about the problem at hand; there may be a
more appropriate design that expresses your intent more cleanly. If you do decide to go ahead with an empty interface regardless, be aware
that, almost certainly, you will lose the ability to later change the distribution of the object model over physical server processes because you
cannot place an address space boundary between interfaces that share hidden state.

Interface Versus Implementation Inheritance

Keep in mind that Slice interface inheritance applies only to interfaces. In particular, if two interfaces are in an inheritance relationship, this in
no way implies that the implementations of those interfaces must also inherit from each other. You can choose to use implementation
inheritance when you implement your interfaces, but you can also make the implementations independent of each other. (To C++
programmers, this often comes as a surprise because C++ uses implementation inheritance by default, and interface inheritance requires
extra effort to implement.)

In summary, Slice inheritance simply establishes type compatibility. It says nothing about how interfaces are implemented and, therefore,
keeps implementation choices open to whatever is most appropriate for your application.

See Also

Interfaces, Operations, and Exceptions
Operations

User Exceptions

Run-Time Exceptions

Proxies

IceGrid

Copyright © 2011, ZeroC, Inc.

Classes

Ice 3.4.2 Documentation

In addition to interfaces, Slice permits the definition of classes. Classes are like interfaces in that they can have operations and are like
structures in that they can have data members. This leads to hybrid objects that can be treated as interfaces and passed by reference, or
can be treated as values and passed by value. Classes provide much architectural flexibility. For example, classes allow behavior to be
implemented on the client side, whereas interfaces allow behavior to be implemented only on the server side.

Classes support inheritance and are therefore polymorphic: at run time, you can pass a class instance to an operation as long as the actual
class type is derived from the formal parameter type in the operation's signature. This also permits classes to be used as type-safe unions,
similarly to Pascal's discriminated variant records.

Topics

117

Simple Classes

Class Inheritance

Class Inheritance Semantics
Classes as Unions

Self-Referential Classes

Classes Versus Structures

Classes with Operations
Architectural Implications of Classes
Classes Implementing Interfaces
Class Inheritance Limitations
Pass-by-Value Versus Pass-by-Reference
Passing Interfaces by Value

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Simple Classes

A Slice class definition is similar to a structure definition, but uses the cl ass keyword. For example:

Slice

class TimeO Day {

short hour; /1 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59

b

Apart from the keyword cl ass, this definition is identical to the structure example. You can use a Slice class wherever you can use a Slice
structure (but, as we will see shortly, for performance reasons, you should not use a class where a structure is sufficient). Unlike structures,
classes can be empty:

Slice

class EnptyC ass {}; /Il K
struct EmptyStruct {}; // Error

Much the same design considerations as for empty interfaces apply to empty classes: you should at least stop and rethink your approach
before committing yourself to an empty class.

You can specify a default value for a class data member that has one of the following types:

An integral type (byt e, short,int, | ong)
A floating point type (f | oat or doubl e)
string

bool

enum

For example:

Slice

class Location {
string nane;

Poi nt pt;
bool display = true;
string source = "GPS";

b

The legal syntax for literal values is the same as for Slice constants, and you may also use a constant as a default value. The language
mapping guarantees that data members are initialized to their declared default values using a language-specific mechanism.

See Also

® Structures
® Constants and Literals

118 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Class Inheritance

Unlike structures, classes support inheritance. For example:

Slice

class Ti neCf Day {

short hour; // 0 - 23
short m nute; // 0 - 59
short second; /1 0 - 59
}
class DateTinme extends Ti neCf Day {
short day; /11 - 31
short nont h; /1 - 12
short vyear; /1 1753 onwar ds

b

This example illustrates one major reason for using a class: a class can be extended by inheritance, whereas a structure is not extensible.

The previous example defines Dat eTi e to extend the Ti neCf Day class with a date.

If you are puzzled by the comment about the year 1753, search the Web for "1752 date change". The intricacies of

calendars for various countries prior to that year can keep you occupied for months...

Classes only support single inheritance. The following is illegal:

Slice

class TimeO Day {

short hour; // 0 - 23
short m nute; // 0 - 59
short second; /1 0 - 59

}

class Date {
short day;
short nont h;
short vyear;

}s

11
}

class DateTinme extends Ti neCf Day, Date { Il Error!

A derived class also cannot redefine a data member of its base class:

Slice

cl ass Base {

int integer;
H
class Derived extends Base {

int integer; /1 Error, integer redefined
b

See Also

® Structures

119

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

120 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Class Inheritance Semantics

Classes use the same pass-by-value semantics as structures. If you pass a class instance to an operation, the class and all its members are
passed. The usual type compatibility rules apply: you can pass a derived instance where a base instance is expected. If the receiver has
static type knowledge of the actual derived run-time type, it receives the derived instance; otherwise, if the receiver does not have static type
knowledge of the derived type, the instance is sliced to the base type. For an example, suppose we have the following definitions:

Slice

/1 In file dock.ice:

class TimeO Day {

short hour; /1 0 - 23
short mnute; /1 0 - 59
short second; // 0 - 59

b
interface O ock {
Ti meOf Day get Ti me();
void setTime(TimeOfDay tine);
H
/1 In file DateTine.ice:

#i ncl ude <d ock.ice>

class DateTime extends Ti meCf Day {

short day; /1 - 31
short nonth; /11 - 12
short year; /1 1753 onwar ds

}

Because Dat eTi e is a sub-class of Ti meCf Day, the server can return a Dat eTi ne instance from get Ti me, and the client can pass a
Dat eTi ne instance to set Ti me. In this case, if both client and server are linked to include the code generated for both Cl ock. i ce and
Dat eTi ne. i ce, they each receive the actual derived Dat eTi ne instance, that is, the actual run-time type of the instance is preserved.

Contrast this with the case where the server is linked to include the code generated for both Cl ock. i ce and Dat eTi ne. i ce, but the client
is linked only with the code generated for Cl ock. i ce. In other words, the server understands the type Dat eTi e and can return a

Dat eTi ne instance from get Ti e, but the client only understands Ti meCf Day. In this case, the derived Dat eTi e instance returned by
the server is sliced to its Ti meCf Day base type in the client. (The information in the derived part of the instance is simply lost to the client.)

Class hierarchies are useful if you need polymorphic values (instead of polymorphic interfaces). For example:

Slice

cl ass Shape {
/1 Definitions for shapes, such as size, center, etc.

}s

class Crcle extends Shape {
// Definitions for circles, such as radius...

}

cl ass Rectangl e extends Shape {
/1 Definitions for rectangles, such as width and | ength...

b
sequence<Shape> ShapeSeq;

interface ShapeProcessor {
voi d processShapes(ShapeSeq ss);

}

121 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Note the definition of ShapeSeq and its use as a parameter to the pr ocessShapes operation: the class hierarchy allows us to pass a
polymorphic sequence of shapes (instead of having to define a separate operation for each type of shape).

The receiver of a ShapeSeq can iterate over the elements of the sequence and down-cast each element to its actual run-time type. (The
receiver can also ask each element for its type ID to determine its type.)

See Also

® Structures
® Type IDs

122 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Classes as Unions

Slice does not offer a dedicated union construct because it is redundant. By deriving classes from a common base class, you can create the
same effect as with a union:

Slice

interface ShapeShifter {
Shape transl ate(Shape s, |ong xDi stance, |ong yD stance);

b

The parameter s of the t r ansl at e operation can be viewed as a union of two members: a Ci r cl e and a Rect angl e. The receiver of a
Shape instance can use the type ID of the instance to decide whether it received a Ci r cl e or a Rect angl e. Alternatively, if you want
something more along the lines of a conventional discriminated union, you can use the following approach:

Slice

class UnionDiscrimnator {

int d;
b
class Menber1 extends UnionDi scrimnator {
I/l d ==
string s;
float f;
b
cl ass Menber2 extends UnionDiscrimnator {
/1 d ==
byte b;
int i;

b

With this approach, the Uni onDi scri ni nat or class provides a discriminator value. The "members" of the union are the classes that are
derived from Uni onDi scri m nat or . For each derived class, the discriminator takes on a distinct value. The receiver of such a union uses
the discriminator value in a swi t ch statement to select the active union member.

See Also

®* Type IDs

123 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Self-Referential Classes

Classes can be self-referential.

For example:

Slice

class Link {
SonmeType val ue;
Li nk next;

}

This looks very similar to the self-referential interface example, but the semantics are very different. Note that val ue and next are data
members, not operations, and that the type of next is Li nk (not Li nk*). As you would expect, this forms the same linked list arrangement
as the Li nk interface in Self-Referential Interfaces: each instance of a Li nk class contains a next member that points at the next link in the
chain; the final link's next member contains a null value. So, what looks like a class including itself really expresses pointer semantics: the
next data member contains a pointer to the next link in the chain.

You may be wondering at this point what the difference is then between the Li nk interface in Self-Referential Interfaces and the Li nk class
shown above. The difference is that classes have value semantics, whereas proxies have reference semantics. To illustrate this, consider
the Li nk interface from Self-Referential Interfaces once more:

Slice

interface Link {
i denpot ent SoneType get Val ue();
i denpot ent Li nk* next () ;

}

Here, get Val ue and next are both operations and the return value of next is Li nk*, that is, next returns a proxy. A proxy has reference
semantics, that is, it denotes an object somewhere. If you invoke the get Val ue operation on a Li nk proxy, a message is sent to the
(possibly remote) servant for that proxy. In other words, for proxies, the object stays put in its server process and we access the state of the
object via remote procedure calls. Compare this with the definition of our Li nk class:

Slice

class Link {
SoneType val ue;
Li nk next;

}

Here, val ue and next are data members and the type of next is Li nk, which has value semantics. In particular, while next looks and feels
like a pointer, it cannot denote an instance in a different address space. This means that if we have a chain of Li nk instances, all of the
instances are in our local address space and, when we read or write a value data member, we are performing local address space
operations. This means that an operation that returns a Li nk instance, such as get Head, does not just return the head of the chain, but the
entire chain, as shown:

124 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Client Server Client Server

getlead

H{—_‘

O

Class version of Li nk before and after calling get Head.

On the other hand, for the interface version of Li nk, we do not know where all the links are physically implemented. For example, a chain of
four links could have each object instance in its own physical server process; those server processes could be each in a different continent. If
you have a proxy to the head of this four-link chain and traverse the chain by invoking the next operation on each link, you will be sending
four remote procedure calls, one to each object.

Self-referential classes are particularly useful to model graphs. For example, we can create a simple expression tree along the following
lines:

Slice

enum UnaryQp { UnaryPlus, UnaryM nus, Not };
enum BinaryQp { Plus, Mnus, Miltiply, Divide, And, O };

cl ass Node {};

class UnaryQperator extends Node {
UnaryQOp operator;
Node oper and;

b

cl ass BinaryQOperator extends Node {
Bi naryOp op;
Node oper andl;
Node oper and2;

b

class Operand extends Node {
I ong val;

}s

The expression tree consists of leaf nodes of type Oper and, and interior nodes of type Unar yOper at or and Bi nar yOper at or , with one
or two descendants, respectively. All three of these classes are derived from a common base class Node. Note that Node is an empty class.
This is one of the few cases where an empty base class is justified. (See the discussion on empty interfaces; once we add operations to this
class hierarchy, the base class is no longer empty.)

If we write an operation that, for example, accepts a Node parameter, passing that parameter results in transmission of the entire tree to the
server:

Slice

interface Eval uator {
I ong eval (Node expression); // Send entire tree for eval uation

s

125 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Self-referential classes are not limited to acyclic graphs; the Ice run time permits loops: it ensures that no resources are leaked and that
infinite loops are avoided during marshaling.

See Also

® Classes with Operations
® Self-Referential Interfaces

126 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Classes Versus Structures

One obvious question to ask is: why does Ice provide structures as well as classes, when classes obviously can be used to model
structures? The answer has to do with the cost of implementation: classes provide a number of features that are absent for structures:

® Classes support inheritance.

® Classes can be self-referential.

® Classes can have operations.

® Classes can implement interfaces.

Obviously, an implementation cost is associated with the additional features of classes, both in terms of the size of the generated code and
the amount of memory and CPU cycles consumed at run time. On the other hand, structures are simple collections of values ("plain old
structs") and are implemented using very efficient mechanisms. This means that, if you use structures, you can expect better performance
and smaller memory footprint than if you would use classes (especially for languages with direct support for “plain old structures”, such as
C++ and C#). Use a class only if you need at least one of its more powerful features.

See Also
® Structures

® Classes with Operations
® Classes Implementing Interfaces

127 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Classes with Operations

Classes, in addition to data members, can have operations. The syntax for operation definitions in classes is identical to the syntax for
operations in interfaces. For example, we can modify the expression tree from Self-Referential Classes as follows:

Slice

enum UnaryQp { UnaryPlus, UnaryM nus, Not };
enum BinaryQp { Plus, Mnus, Miltiply, Divide, And, O };

class Node {
i dempotent |ong eval ();

}s

cl ass UnaryOperator extends Node {
UnaryOp operator;
Node oper and;

}

cl ass BinaryQperator extends Node {
Bi naryOp op;
Node operandl;
Node oper and2;

b

class Operand {
long val;

}

The only change compared to the version in Self-Referential Classes is that the Node class now has an eval operation. The semantics of
this are as for a virtual member function in C++: each derived class inherits the operation from its base class and can choose to override the
operation's definition. For our expression tree, the Oper and class provides an implementation that simply returns the value of its val
member, and the Unar yQper at or and Bi nar yOper at or classes provide implementations that compute the value of their respective
subtrees. If we call eval on the root node of an expression tree, it returns the value of that tree, regardless of whether we have a complex
expression or a tree that consists of only a single Oper and node.

Operations on classes are normally executed in the caller's address space, that is, operations on classes are local operations that do not
result in a remote procedure call.

ﬂ It is also possible to invoke an operation on a remote class instance.

Of course, this immediately raises an interesting question: what happens if a client receives a class instance with operations from a server,
but client and server are implemented in different languages? Classes with operations require the receiver to supply a factory for instances of
the class. The Ice run time only marshals the data members of the class. If a class has operations, the receiver of the class must provide a
class factory that can instantiate the class in the receiver's address space, and the receiver is responsible for providing an implementation of
the class's operations.

Therefore, if you use classes with operations, it is understood that client and server each have access to an implementation of the class's

operations. No code is shipped over the wire (which, in an environment of heterogeneous nodes using different operating systems and
languages is infeasible).

See Also

® Self-Referential Classes
® Pass-by-Value Versus Pass-by-Reference

128 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Architectural Implications of Classes

Classes have a number of architectural implications that are worth exploring in some detail.
On this page:

® Classes without Operations
® Classes with Operations
® Classes for Persistence

Classes without Operations

Classes that do not use inheritance and only have data members (whether self-referential or not) pose no architectural problems: they simply
are values that are marshaled like any other value, such as a sequence, structure, or dictionary. Classes using derivation also pose no
problems: if the receiver of a derived instance has knowledge of the derived type, it simply receives the derived type; otherwise, the instance
is sliced to the most-derived type that is understood by the receiver. This makes class inheritance useful as a system is extended over time:
you can create derived class without having to upgrade all parts of the system at once.

Classes with Operations

Classes with operations require additional thought. Here is an example: suppose that you are creating an Ice application. Also assume that
the Slice definitions use quite a few classes with operations. You sell your clients and servers (both written in Java) and end up with
thousands of deployed systems.

As time passes and requirements change, you notice a demand for clients written in C++.

For commercial reasons, you would like to leave the development of C++ clients to customers or a third party but, at this point, you discover
a glitch: your application has lots of classes with operations along the following lines:

Slice

cl ass Conpl exThi ngFor ExpertsOnly {
/'l Lots of arcane data nenbers here...
Myst eri ousThi ng nysteriousQOperation(/* paranmeters */);
ArcaneThi ng arcaneQperation(/* paraneters */);
Conpl exThi ng conpl exOperation(/* paraneters */);
Il etc...
b

It does not matter what exactly these operations do. (Presumably, you decided to off-load some of the processing for your application onto
the client side for performance reasons.) Now that you would like other developers to write C++ clients, it turns out that your application will
work only if these developers provide implementations of all the client-side operations and, moreover, if the semantics of these operations
exactly match the semantics of your Java implementations. Depending on what these operations do, providing exact semantic equivalents in
a different language may not be trivial, so you decide to supply the C++ implementations yourself.

But now, you discover another problem: the C++ clients need to be supported for a variety of operating systems that use a variety of different
C++ compilers. Suddenly, your task has become quite daunting: you really need to supply implementations for all the combinations of
operating systems and compiler versions that are used by clients. Given the different state of compliance with the ISO C++ standard of the
various compilers, and the idiosyncrasies of different operating systems, you may find yourself facing a development task that is much larger
than anticipated. And, of course, the same scenario will arise again should you need client implementations in yet another language.

The moral of this story is not that classes with operations should be avoided; they can provide significant performance gains and are not
necessarily bad. But, keep in mind that, once you use classes with operations, you are, in effect, using client-side native code and, therefore,
you can no longer enjoy the implementation transparencies that are provided by interfaces. This means that classes with operations should
be used only if you can tightly control the deployment environment of clients. If not, you are better off using interfaces and classes without
operations. That way, all the processing stays on the server and the contract between client and server is provided solely by the Slice
definitions, not by the semantics of the additional client-side code that is required for classes with operations.

Classes for Persistence

Ice also provides a built-in persistence mechanism that allows you to store the state of a class in a database with very little implementation
effort. To get access to these persistence features, you must define a Slice class whose members store the state of the class.

See Also

129 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

® Freeze

130 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Classes Implementing Interfaces

A Slice class can also be used as a servant in a server, that is, an instance of a class can be used to provide the behavior for an interface,
for example:

Slice

interface Tine {

i denpotent Ti meCf Day get Ti me();

i denpotent void setTinme(Ti meOf Day tine);
b

class Cock inplenents Tinme {
Ti neCf Day time;
H

The i mpl enent s keyword indicates that the class C ock provides an implementation of the Ti e interface. The class can provide data
members and operations of its own; in the preceding example, the T ock class stores the current time that is accessed via the Ti ne
interface. A class can implement several interfaces, for example:

Slice

interface Tinme {

i denpotent Ti meOf Day get Tine();

i denpotent void setTime(Ti reOfDay tine);
b

interface Radio {
i dempot ent voi d set Frequency(long hertz);
i dempot ent voi d set Vol ume(l ong dB);

b

class Radi oCl ock inplenents Tine, Radio {
Ti neCf Day tinme;
I ong hertz;

b

The class Radi od ock implements both Ti ne and Radi o interfaces.

A class, in addition to implementing an interface, can also extend another class:

131 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

interface Tine {

i denpotent Ti meOf Day get Ti ne();

i denpotent void setTime(Ti reOf Day tine);
H

class Cock inplements Tine {
TimeO Day tine;
b

interface Al arnC ock extends Tine {
i denpotent Ti meCf Day get Al ar nili ne() ;
i denpotent voi d set Al arnili me(Ti meOf Day al ar nli ne) ;

b

interface Radio {
i denpotent void setFrequency(long hertz);
i dempot ent voi d set Vol unme(l ong dB);

H

cl ass Radi oAl arnC ock extends C ock
impl enents Al arnC ock, Radio {
Ti meOf Day al ar nili ne;
I ong hertz;

}s

These definitions result in the following inheritance graph:

Time
zzinterfaces>

F

Radio AlarmClock Clock
<<interface>= <<interface=>
Y
RadioClock

=<interface==

A Class using implementation and interface inheritance.

For this definition, Radi o and Al ar nCl ock are abstract interfaces, and C ock and Radi oAl ar nCl ock are concrete classes. As for Java,
a class can implement multiple interfaces, but can extend at most one class.

See Also

® Architectural Implications of Classes
® Class Inheritance Limitations

132 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Class Inheritance Limitations

As for interface inheritance, a class cannot redefine an operation or data member that it inherits from a base interface or class. For example:

Slice

interface Baselnterface {

void op();

H

cl ass Based ass {
int menber;

b

class Derivedd ass extends BaseC ass inpl enents Basel nterface {
voi d soneQOperation(); /Il K
int op(); /1 Error!
int sonmeMenber; Il K
I ong nenber; /1l Error!

H

See Also

® |Interface Inheritance

133 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Pass-by-Value Versus Pass-by-Reference

As we saw in Self-Referential Classes, classes naturally support pass-by-value semantics: passing a class transmits the data members of
the class to the receiver. Any changes made to these data members by the receiver affect only the receiver's copy of the class; the data
members of the sender's class are not affected by the changes made by the receiver.

In addition to passing a class by value, you can pass a class by reference. For example:

Slice

class Ti neCf Day {
short hour;
short m nute;
short second;
string format();

}

interface Exanple {
Ti meOf Day* get(); // Note: returns a proxy!
b

Note that the get operation returns a proxy to a Ti neOf Day class and not a Ti neOf Day instance itself. The semantics of this are as
follows:

® When the client receives a Ti nef Day proxy from the get call, it holds a proxy that differs in no way from an ordinary proxy for an
interface.

® The client can invoke operations via the proxy, but cannot access the data members. This is because proxies do not have the
concept of data members, but represent interfaces: even though the Ti meOf Day class has data members, only its operations can
be accessed via a the proxy.

The net effect is that, in the preceding example, the server holds an instance of the Ti meCOf Day class. A proxy for that instance was passed
to the client. The only thing the client can do with this proxy is to invoke the f or mat operation. The implementation of that operation is
provided by the server and, when the client invokes f or mat , it sends an RPC message to the server just as it does when it invokes an
operation on an interface. The implementation of the f or mat operation is entirely up to the server. (Presumably, the server will use the data
members of the Ti meOf Day instance it holds to return a string containing the time to the client.)

The preceding example looks somewhat contrived for classes only. However, it makes perfect sense if classes implement interfaces: parts of
your application can exchange class instances (and, therefore, state) by value, whereas other parts of the system can treat these instances
as remote interfaces.

For example:

Slice

interface Tinme {
string format();
11

}s

class TimeOfDay inplenents Tine {
short hour;
short m nute;
short second;

}

interface 11 {
Ti neOf Day get(); /1 Pass by val ue
void put(TimeOfDay tine); // Pass by val ue
b

interface 12 {
Ti me* get(); /| Pass by reference

}

134 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

In this example, clients dealing with interface | 1 are aware of the Ti neOf Day class and pass it by value whereas clients dealing with
interface | 2 deal only with the Ti ne interface. However, the actual implementation of the Ti e interface in the server uses Ti neCf Day
instances.

Be careful when designing systems that use such mixed pass-by-value and pass-by-reference semantics. Unless you are clear about what
parts of the system deal with the interface (pass by reference) aspects and the class (pass by value) aspects, you can end up with
something that is more confusing than helpful.

A good example of putting this feature to use can be found in Freeze, which allows you to add classes to an existing interface to implement
persistence.

See Also

® Self-Referential Classes
® Freeze

135 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Passing Interfaces by Value

Consider the following definitions:

Slice

interface Tine {
i denpotent Ti neCf Day get Time();
/1

}

interface Record {
void addTimeStanp(Tinme t); // Note: Tinme t, not Tinme* t
/1

b

Note that addTi meSt anp accepts a parameter of type Ti e, not of type Ti me*. The question is, what does it mean to pass an interface by
value? Obviously, at run time, we cannot pass an an actual interface to this operation because interfaces are abstract and cannot be
instantiated. Neither can we pass a proxy to a Ti me object to addTi neSt anp because a proxy cannot be passed where an interface is
expected.

However, what we can pass to addTi meSt anp is something that is not abstract and derives from the Ti ne interface. For example, at run
time, we could pass an instance of the Ti neOr Day class we saw earlier. Because the Ti meCf Day class derives from the Ti ne interface,

the class type is compatible with the formal parameter type Ti e and, at run time, what is sent over the wire to the server is the Ti meCf Day
class instance.

See Also

® Pass-by-Value Versus Pass-by-Reference

136 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Forward Declarations

Both interfaces and classes can be forward declared. Forward declarations permit the creation of mutually dependent objects, for example:

Slice

nmodule Famly {
interface Child; /1 Forward decl aration

sequence<Chil d*> Children; // K

interface Parent {
Children getChildren(); // OK

}s

interface Child { /1 Definition
Parent * get Mot her () ;
Par ent * get Fat her();

b

}

Without the forward declaration of Chi | d, the definition obviously could not compile because Chi | d and Par ent are mutually dependent
interfaces. You can use forward-declared interfaces and classes to define types (such as the Chi | dr en sequence in the previous example).
Forward-declared interfaces and classes are also legal as the type of a structure, exception, or class member, as the value type of a
dictionary, and as the parameter and return type of an operation. However, you cannot inherit from a forward-declared interface or class until
after its definition has been seen by the compiler:

Slice
interface Base; /1 Forward decl aration
interface Derivedl extends Base {}; Il Error!
interface Base {}; /1 Definition
interface Derived2 extends Base {}; /] OK, definition was seen

Not inheriting from a forward-declared base interface or class until its definition is seen is necessary because, otherwise, the compiler could
not enforce that derived interfaces must not redefine operations that appear in base interfaces.

Q A multi-pass compiler could be used, but the added complexity is not worth it.

See Also

® Interfaces, Operations, and Exceptions
® Classes

137 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Type IDs

Each user-defined Slice type has an internal type identifier, known as its type ID. The type ID is simply the fully-qualified name of each type.
For example, the type ID of the Chi | d interface in the preceding example is : : Fami | y: : Chi | dren: : Chi | d. All type IDs for user-defined
types start with a leading : : , so the type ID of the Fami | y module is : : Fami | y (not Fami | y). In general, a type ID is formed by starting
with the global scope (: :) and forming the fully-qualified name of a type by appending each module name in which the type is nested, and
ending with the name of the type itself; the components of the type ID are separated by : : .

The type ID of a proxy is formed by appending a * to the type ID of an interface or class. For example, the type ID of a Chi | d proxy is
c:Family:: Children:: Child*.

The type ID of the Slice Obj ect typeis:: | ce:: Obj ect and the type ID of an Obj ect proxyis::|ce:: Object*.

The type IDs for the remaining built-in types, such as i nt , bool , and so on, are the same as the corresponding keyword. For example, the
type ID of i nt isi nt, and the type ID of stringisstring.

Type IDs are used internally by the Ice run time as a unique identifier for each type. For example, when an exception is raised, the
marshaled form of the exception that is returned to the client is preceded by its type ID on the wire. The client-side run time first reads the
type ID and, based on that, unmarshals the remainder of the data as appropriate for the type of the exception.

Type IDs are also used by the i ce_i sA operation.

See Also

® jce_isA

138 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Operations on Object

The Obj ect interface has a number of operations. We cannot define type Obj ect in Slice because Obj ect is a keyword; regardless, here
is what (part of) the definition of Obj ect would look like if it were legal:

Slice
sequence<string> StrSeq;
interface Object { /1 "Pseudo" Slice!
i denmpot ent voi d ice_ping();
i denpot ent bool ice_isA(string typelD);

i denpotent string ice_id();
i denpotent StrSeq ice_ids();
11

H

Note that, apart from the illegal use of the keyword Obj ect as the interface name, the operation names all contain the i ce_ prefix. This
prefix is reserved for use by Ice and cannot clash with a user-defined operation. This means that all Slice interfaces can inherit from Obj ect
without name clashes. We discuss these built-in operations below.

On this page:
® ice_ping
® jce_isA
® jce_id
® jce_ids
I ce_ping

All interfaces support the i ce_pi ng operation. That operation is useful for debugging because it provides a basic reachability test for an
object: if the object exists and a message can successfully be dispatched to the object, i ce_pi ng simply returns without error. If the object
cannot be reached or does not exist, i ce_pi ng throws a run-time exception that provides the reason for the failure.

i ce_isSA

The i ce_i sA operation accepts a type identifier (such as the identifier returned by i ce_i d) and tests whether the target object supports the
specified type, returning t r ue if it does. You can use this operation to check whether a target object supports a particular type. For example,
referring to the diagram Implicit Inheritance from Object once more, assume that you are holding a proxy to a target object of type

Al ar mrCl ock. The table below illustrates the result of calling i ce_i sA on that proxy with various arguments. (We assume that all types in
the Implicit inheritance from Object diagram are defined in a module Ti nes):

Argument Result
::lce:: Object true
;i Tines:: dock true

c:Times:: AlarnC ock true
»:Tines:: Radio fal se
;. Tines:: Radi oC ock false
Calling i ce_i sAon a proxy denoting an object of type AlarmClock.
As expected, i ce_i sAreturns true for : : Ti mes: : Cl ock and : : Ti mes: : Al ar nCl ock and also returns true for : : | ce: : Obj ect

(because all interfaces support that type). Obviously, an Al ar mCl ock supports neither the Radi o nor the Radi oCl ock interfaces, so
i ce_i sAreturns false for these types.

139 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

ice id

The i ce_i d operation returns the type ID of the most-derived type of an interface.

ice_ids

The i ce_i ds operation returns a sequence of type IDs that contains all of the type IDs supported by an interface. For example, for the
RadioClock interface in Implicit inheritance from Object, i ce_i ds returns a sequence containing the type IDs : : | ce: : Obj ect,
c:Times::Clock,::Times:: A arnC ock, :: Ti nes: : Radi o, and : : Ti mes: : Radi oCl ock.

See Also
® Type IDs

® |nterface Inheritance
® |mplicit inheritance from Object

140 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Local Types

In order to access certain features of the Ice run time, you must use APIs that are provided by libraries. However, instead of defining an API
that is specific to each implementation language, Ice defines its APIs in Slice using the | ocal keyword. The advantage of defining APIs in
Slice is that a single definition suffices to define the API for all possible implementation languages. The actual language-specific APl is then
generated by the Slice compiler for each implementation language. Types that are provided by Ice libraries are defined using the Slice

| ocal keyword.

For example:

Slice

nmodul e Ice {
local interface CbjectAdapter {
/1
b
b

Any Slice definition (not just interfaces) can have a | ocal modifier. If the | ocal modifier is present, the Slice compiler does not generate
marshaling code for the corresponding type. This means that a local type can never be accessed remotely because it cannot be transmitted
between client and server. (The Slice compiler prevents use of | ocal types in non-l ocal contexts.)

In addition, local interfaces and local classes do not inherit from | ce: : Qbj ect . Instead, local interfaces and classes have their own,
completely separate inheritance hierarchy. At the root of this hierarchy is the type | ce: : Local Obj ect, as shown:

LocalObject
winterfaces

ObjectAdapter Other local
winterfaces interfaces...

Inheritance from Local Qbj ect .

Because local interfaces form a completely separate inheritance hierarchy, you cannot pass a local interface where a non-local interface is
expected, and vice-versa.

You rarely need to define local types for your own applications — the | ocal keyword exists mainly to allow definition of APIs for the Ice run
time. (Because local objects cannot be invoked remotely, there is little point for an application to define local objects; it might as well define

ordinary programming-language objects instead.) However, there is one exception to this rule: servant locators must be implemented as
local objects.

See Also

® Servant Locators

141 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Names and Scoping

Slice has a number of rules regarding identifiers. You will typically not have to concern yourself with these. However, occasionally, it is good
to know how Slice uses naming scopes and resolves identifiers.

On this page:

Naming Scope

Case Sensitivity
Qualified Names

Names in Nested Scopes
Introduced Identifiers
Name Lookup Rules

Naming Scope
The following Slice constructs establish a naming scope:

the global (file) scope
modules

interfaces

classes

structures

exceptions
parameter lists

Within a naming scope, identifiers must be unique, that is, you cannot use the same identifier for different purposes. For example:

Slice

interface Bad {
void op(int p, string p); /'l Error!
b

Because a parameter list forms a naming scope, it is illegal to use the same identifier p for different parameters. Similarly, data members,
operation names, interface and class hames, etc. must be unique within their enclosing scope.

Case Sensitivity

Identifiers that differ only in case are considered identical, so you must use identifiers that differ not only in capitalization within a naming
scope. For example:

Slice

struct Bad {

int m

string M /1 Error!
I

The Slice compiler also enforces consistent capitalization for identifiers. Once you have defined an identifier, you must use the same
capitalization for that identifier thereafter. For example, the following is in error:

Slice

sequence<string> StringSeq;

interface Bad {
stringSeq op(); Il Error!
h

142 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Note that identifiers must not differ from a Slice keyword in case only. For example, the following is in error:

Slice

interface Mdule { /l Error, "nodule" is a keyword
/1
b

Qualified Names

The scope-qualification operator : : allows you to refer to a type in a non-local scope. For example:

Slice

nmodul e Types {
sequence<| ong> LongSeq;

}

modul e MyApp {
sequence<Types: : LongSeq> Nunber Tr ee;

b

Here, the qualified name Types: : LongSeq refers to LongSeq defined in module Types. The global scope is denoted by a leading : : , so
we could also refer to LongSeq as : : Types: : LongSeq.

The scope-qualification operator also allows you to create mutually dependent interfaces that are defined in different modules. The obvious
attempt to do this fails:

Slice

nmodul e Parents {
interface Children::Child; // Syntax error!
interface Mther {
Children:: Child* getChild();
}s
interface Father {
Children:: Child* getChild();
I
b

nmodul e Children {
interface Child {
Parents:: Mot her* get Mother();
Parents: : Fat her* getFather();
H
h

This fails because it is syntactically illegal to forward-declare an interface in a different module. To make it work, we must use a reopened
module:

143 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice
nmodul e Children {
interface Child; /] Forward decl aration
b
nmodul e Parents {
interface Mther {
Children:: Child* getChild(); Il K
}s
interface Father {
Children:: Child* getChild(); /Il K
I
b
nmodul e Children { /] Reopen nodul e
interface Child { /1 Define Child
Parents:: Mot her* get Mother();
Parents: : Father* getFather();
}s
b

While this technique works, it is probably of dubious value: mutually dependent interfaces are, by definition, tightly coupled. On the other
hand, modules are meant to be used to place related definitions into the same module, and unrelated definitions into different modules. Of
course, this begs the guestion: if the interfaces are so closely related that they depend on each other, why are they defined in different
modules? In the interest of clarity, you probably should avoid this construct, even though it is legal.

Names in Nested Scopes

Names defined in an enclosing scope can be redefined in an inner scope. For example, the following is legal:

Slice

nmodul e Quter {
sequence<string> Seq;

nmodul e I nner {
sequence<short> Segq;
s
H

Within module | nner , the name Seq refers to a sequence of shor t values and hides the definition of Cut er : : Seq. You can still refer to
the other definition by using explicit scope qualification, for example:

Slice
nmodul e Quter {
sequence<string> Seq;
nodul e I nner {
sequence<short> Seq;
struct Confusing {
Seq a; /1 Sequence of short
::CQuter::Seq b; /1 Sequence of string
I
I
b

Needless to say, you should try to avoid such redefinitions — they make it harder for the reader to follow the meaning of a specification.

Same-named constructs cannot be nested inside each other. For example, a module named Mcannot (recursively) contain any construct

144 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

also named M The same is true for interfaces, classes, structures, exceptions, and operations. For example, the following examples are all in
error:

Slice
nmodul e M {

interface M{ /* ... */ }; /| Error!
interface | {

void I(); /1 Error!

void op(string op); /1 Error!
b
struct S {

long s; /!l Error, even if case differs!
}

}

nmodul e Quter {
nmodul e I nner {
interface Quter { /1 Error!
/1

The reason for this restriction is that nested types that have the same name are difficult to map into some languages. For example, C++ and
Java reserve the name of a class as the name of the constructor, so an interface | could not contain an operation named | without artificial
rules to avoid the name clash.

Similarly, some languages (such as C# prior to version 2.0) do not permit a qualified name to be anchored at the global scope. If a nested
module or type is permitted to have the same name as the name of an enclosing module, it can become impossible to generate legal code in
some cases.

In the interest of simplicity, Slice prohibits the name of a nested module or type to be the same as the name of one of its enclosing modules.

Introduced Identifiers

Within a naming scope, an identifier is introduced at the point of first use; thereafter, within that naming scope, the identifier cannot change
meaning.

For example:
Slice
modul e M {
sequence<string> Seq;
interface Bad {
Seq opl(); /1 Seq and opl introduced here
int Seq(); /'l Error, Seq has changed neaning
I
b

The declaration of op1 uses Seq as its return type, thereby introducing Seq into the scope of interface Bad. Thereafter, Seq can only be
used as a type name that denotes a sequence of strings, so the compiler flags the declaration of the second operation as an error.

Note that fully-qualified identifiers are not introduced into the current scope:

145 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

nmodul e M {
sequence<string> Seq;

interface Bad {
::M:Seq opl(); // Only opl introduced here
int Seq(); Il K
h
H

In general, a fully-qualified name (one that is anchored at the global scope and, therefore, begins with a : : scope resolution operator) does
not introduce any name into the current scope. On the other hand, a qualified name that is not anchored at the global scope introduces only
the first component of the name:

Slice

nodul e M {
sequence<string> Seq;

interface Bad {
M : Seq opl(); /1 Mand opl introduced here, but not Seq
int Seq(); Il K
i
H

Name Lookup Rules

When searching for the definition of a name that is not anchored at the global scope, the compiler first searches backward in the current
scope of a definition of the name. If it can find the name in the current scope, it uses that definition. Otherwise, the compiler successively
searches enclosing scopes for the name until it reaches the global scope. Here is an example to illustrate this:

Slice

modul e ML {
sequence<doubl e> Seq;

nodul e M2 {
sequence<string> Seq; /1 OK, hides ::M.:: Seq

interface Base {

Seq opl(); /1 Returns sequence of string
b
}
nmodul e MB {
interface Derived extends M::Base {
Seq op2(); /1 Returns sequence of double
}
sequence<bool > Seq; /1 OK, hides ::M.:: Seq
interface | {
Seq op(); /1 Returns sequence of bool
b
}

interface | {
Seq op(); /1 Returns sequence of double

146 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Note that M2: : Deri ved: : op2 returns a sequence of doubl e, even though ML: : Base: : opl returns a sequence of stri ng. That is, the
meaning of a type in a base interface is irrelevant to determining its meaning in a derived interface — the compiler always searches for a
definition only in the current scope and enclosing scopes, and never takes the meaning of a name from a base interface or class.

See Also

® |exical Rules

147 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Metadata

Slice has the concept of a metadata directive. For example:

Slice

["java:type:java. util.LinkedList"] sequence<int> I|ntSeq;

A metadata directive can appear as a prefix to any Slice definition. Metadata directives appear in a pair of square brackets and contain one
or more string literals separated by commas. For example, the following is a syntactically valid metadata directive containing two strings:

Slice

["a", "b"] interface Exanple {};

Metadata directives are not part of the Slice language per se: the presence of a metadata directive has no effect on the client-server
contract, that is, metadata directives do not change the Slice type system in any way. Instead, metadata directives are targeted at specific
back-ends, such as the code generator for a particular language mapping. In the preceding example, the j ava: prefix indicates that the
directive is targeted at the Java code generator.

Metadata directives permit you to provide supplementary information that does not change the Slice types being defined, but somehow
influences how the compiler will generate code for these definitions. For example, a metadata directive
java:type:java.util.LinkedLi st instructs the Java code generator to map a sequence to a linked list instead of an array (which is
the default).

Metadata directives are also used to create skeletons that support Asynchronous Method Dispatch (AMD).

Apart from metadata directives that are attached to a specific definition, there are also global metadata directives. For example:

Slice

[["]java: package: com acne"]]

Note that a global metadata directive is enclosed by double square brackets, whereas a local metadata directive (one that is attached to a
specific definition) is enclosed by single square brackets. Global metadata directives are used to pass instructions that affect the entire
compilation unit. For example, the preceding metadata directive instructs the Java code generator to generate the contents of the source file
into the Java package com acne. Global metadata directives must precede any definitions in a file (but can appear following any #i ncl ude
directives).

We discuss specific metadata directives in the relevant chapters to which they apply.

You can find a summary of all metadata directives in Slice Metadata Directives.

See Also

® Slice Metadata Directives

148 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Serializable Objects

Ice for Java and Ice for .NET allow you to send native Java and CLR objects as operation parameters. The Ice run time automatically
serializes and deserializes the objects as part of an invocation. This mechanism allows you to transmit Java and CLR objects that do not
have a corresponding Slice definition.

On this page:

® Theseri al i zabl e Metadata Directive
® Architectural Implications

The seri al i zabl e Metadata Directive

To enable serialization, the parameter type must be a byte sequence with appropriate metadata. For example:

Slice

["java: serializabl e: SomePackage. JavaCd ass"]
sequence<byt e> JavaOvj ;

interface JavaExanple {
voi d sendJava(hj (Javalhj 0);

}

["clr:serializabl e: SoneNanespace. CLRC ass"]
sequence<byt e> CLRObj ;

interface CLRExanple {
voi d sendCLRObj (CLRObj 0);
b

The j ava: seri al i zabl e metadata indicates that the corresponding byte sequence holds a Java serializable type named
SomePackage. Javad ass. Your program must provide an implementation of this class; the class must be derived from
java.io. Serializable.

Similarly, the cl r: seri al i zabl e metadata indicates that the corresponding byte sequences holds a CLR serializable type named
SormeNanespace. CLRO ass. Your program must provide an implementation of this class; the class must be marked with the
Seri al i zabl e attribute.

Architectural Implications

The seri al i zabl e metadata directive permits you to transmit arbitrary Java and CLR objects across the network without the need to
define corresponding Slice classes or structures. This is mainly a convenience feature: you could achieve the same thing by using ordinary
Slice byte sequences and explicitly serializing your Java or CLR objects into byte sequences at the sending end, and deserializing them at
the receiving end. The seri al i zabl e metadata conveniently takes care of these chores for you and so is simpler to use.

Despite its convenience, you should use this feature with caution because it destroys language transparency. For example, a serialized Java
object is useless to a C++ server. All the C++ server can do with such an object is to pass it on to some other process as a byte sequence.
(Of course, if that receiving process is a Java process, it can deserialize the byte sequence.)

Further, similar to Slice classes with methods, a serialized object can be deserialized only if client and server agree on the definition of the
serialized class. In Java, this is enforced by the seri al Ver si onUl Dfield of each instance; in the CLR, client and server must reference
identical assembly versions. This creates much tighter coupling of client and server than exchanging Slice-defined types.

And, of course, if you build a system that relies on, for example, the exchange of serialized Java objects and you later find that you need to
add C++ or C# components to the system, these components cannot do anything with the serialized Java objects other than pass them
around as a blob of bytes.

So, if you do use these features, be clear that this implies tighter coupling between client and server, and that it creates additional library
versioning and distribution issues because all parts of the system must agree on the implementation of the serialized objects.

See Also

149 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

® Serializable Objects in Java
® Serializable Objects in C#
® Architectural Implications of Classes

150 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Deprecating Slice Definitions

All Slice compilers support a metadata directive that allows you to deprecate a Slice definition. For example:

Slice

interface Exanple {
["deprecat ed: someQOperati on() has been deprecated, use alternativeOperation() instead."]
voi d someQperation();

void alternativeQperation();

}

The [" depr ecat ed"] metadata directive causes the compiler to emit code that generates a warning if you compile application code that
uses a deprecated feature. This is useful if you want to remove a feature from a Slice definition but do not want to cause a hard error.

The message that follows the colon is optional; if you omit the message and use [" depr ecat ed"], the Slice compilers insert a default
message into the generated code.

You can apply the [" depr ecat ed"] metadata directive to Slice constructs other than operations (for example, a structure or sequence
definition).

See Also

® Generating Slice Documentation

151 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Using the Slice Compilers

Ice provides a separate Slice compiler for each language mapping, as shown below:

Language Compiler

C++ sl ice2cpp
Java slice2java
C# slice2cs

Objective-C ' sl i ce2obj c

Python slice2py
Ruby slice2rb
PHP sl i ce2php

The Slice compilers.

The compilers share a similar command-line syntax:

<conpi l er-nane> [options] file...

Regardless of which compiler you use, a number of command-line options are common to the compilers for any language mapping. (See the
appropriate language mapping chapter for options that are specific to a particular language mapping.) The common command-line options
are:

® -h, --help
Displays a help message.

® -v, --version
Displays the compiler version.

* - DNAME
Defines the preprocessor symbol NAVE.

* - DNAME=DEF
Defines the preprocessor symbol NAME with the value DEF.

* - UNAMVE
Undefines the preprocessor symbol {NAME.

®* -IDR
Add the directory DI Rto the search path for #i ncl ude directives.

* -E
Print the preprocessor output on st dout .

® --output-dir DIR
Place the generated files into directory DI R.

® -d, --debug
Print debug information showing the operation of the Slice parser.

® --ice
Permit use of the normally reserved prefix | ce for identifiers. Use this option only when compiling the source code for the Ice run
time.

® --underscore
Permit use of underscores in Slice identifiers.

The Slice compilers permit you to compile more than a single source file, so you can compile several Slice definitions at once, for example:

152 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

slice2cpp -1. filel.ice file2.ice file3.ice

See Also

® Slice Compilation

153 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice Checksums

As distributed applications evolve, developers and system administrators must be careful to ensure that deployed components are using the
same client-server contract. Unfortunately, mistakes do happen, and it is not always readily apparent when they do.

To minimize the chances of this situation, the Slice compilers support an option that generates checksums for Slice definitions, thereby
enabling two peers to verify that they share an identical client-server contract. The checksum for a Slice definition includes details such as
parameter and member names and the order in which operations are defined, but ignores information that is not relevant to the client-server
contract, such as metadata, comments, and formatting.

This option causes the Slice compiler to construct a dictionary that maps Slice type identifiers to checksums. A server typically supplies an
operation that returns its checksum dictionary for the client to compare with its local version, at which point the client can take action if it
discovers a mismatch.

The dictionary type is defined in the file | ce/ Sl i ceChecksunDi ct . i ce as follows:

Slice

nmodul e lce {
dictionary<string, string> SliceChecksunDi ct;

}s

This type can be incorporated into an application's Slice definitions like this:

Slice

#i ncl ude <l ce/ Sli ceChecksunDict.ice>

interface MyServer {
i denpotent Ice:: SliceChecksunDi ct getSliceChecksuns();
/1

b

The key of each element in the dictionary is a Slice type ID, and the value is the checksum of that type.
lﬂ For more information on generating and using Slice checksums, see the appropriate language mapping chapter.

See Also

® Type IDs

154 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Generating Slice Documentation

On this page:

® Generating Slice Documentation
® Documentation Comments
® Hyperlinks
® Explicit Cross-References
® Markup for Operations
® General HTML Markup
® Usingslice2htm

Generating Slice Documentation

If you look at the online Slice API reference, you will find reference documentation for all the Slice definitions used by Ice and its services. In
the binary distributions of Ice, you will also find HTML documentation that contains the same information. The HTML documentation is
generated from special comments in the Slice definitions using sl i ce2ht mi , a tool that scans Slice definitions for special comments and

generates HTML pages for those comments.

As an example of documentation comments, here is the definition of | ce: : Current:

155 Copyright © 2011, ZeroC, Inc.

http://www.zeroc.com/doc/Ice-3.4.1/reference

Ice 3.4.2 Documentation

Slice

/**

*

* Information about the current nethod invocation for servers.
* Each operation on the server has a [Current] as its inplicit
* final parameter. [Current] is nostly used for Ice services.
* Mbst applications ignore this paraneter.

*

*% [

ocal struct Current {

| *x*

* The object adapter.

*%

bj ect Adapt er adapter;

/**
* Information about the connection over which the current

* method invocation was received. If the invocation is direct
* due to collocation optimzation, this value is set to null.

* % [

Connection con;

| *x*

* The Ice object identity.

**/
Identity id;
/**

* The facet.

***/

string facet;

| *x*

* The operation nane.
**/

string operation;

| *x*

* The node of the operation.

* % [

Qper ati onMode node;

| *x*

* The request context, as received fromthe client.
**/

Cont ext ctx;

| *x*

* The request id unless oneway (0) or collocated (-1).
*-k/

int requestld;

¥

If you look at the comments, you will see these reflected in the documentation for | ce: : Curr ent in the online Slice API Reference.

Documentation Comments

A documentation comment:

® starts with / **
® ends with **/

Such a comment can precede any Slice construct, such as a module, interface, structure, operation, and so on. Within a documentation

156 Copyright © 2011, ZeroC, Inc.

http://www.zeroc.com/doc/Ice-3.4.2/reference

Ice 3.4.2 Documentation

comment, you can either start each line with a *, or you can leave the beginning of the line blank — sl i ce2ht m can handle either
convention:

Slice

| **

*

* This is a docunmentati on conment for which every line
* starts with a '*' character.

*% [

[*x*

This is a docunentation conment without a |eading '*'
for each line. Either style of coment is fine.

* % [

The first sentence of the documentation comment for a Slice construct should be a summary sentence. sl i ce2ht ml generates an index of
all Slice constructs; the first sentence of the comments for each Slice construct is ued as a summary in that index.

Hyperlinks

Any Slice identifier enclosed in square brackets is presented as a hyperlink in code font. For example:

Slice

[**

* An enpty [nanme] denotes a null object.
**/

This generates a hyperlink for the name markup that points at the definition of the corresponding Slice symbol. (The symbol can denote any
Slice construct, such as a type, interface, parameter, or structure member.)

Explicit Cross-References

The directive @ee is recognized by sl i ce2ht ml . Where it appears, the generated HTML contains a separate section titled "See Also",
followed by a list of Slice identifiers. For example:

Slice

* The obj ect adapter, which is responsible for receiving requests
* from endpoints, and for napping between servants, identities,
* and proxies.

* @ee Communi cat or
* @ee ServantLocat or

*% [

The Slice identifiers are listed in the corresponding "See Also" section as hyperlinks in code font.

Markup for Operations

There are three directives specifically to document Slice operations: @ar am @ et ur n, and @ hr ows. For example:

157 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

[**

* Look for an itemw th the specified
* primary and secondary key.

*
* @aramp The primary search key.
* @arams The secondary search key.

* @eturn The itemthat matches the specified keys.

* @hrows NotFound Raised if no item matches the specified keys.
**/

Item findltem(Key p, Key s) throws NotFound;

sl i ce2ht m generates separate "Parameters", "Return Value", and "Exceptions" sections for these directives. Parameters are listed in the
same order as they appear in the comments. (For clarity, that order should match the order of declaration of parameters for the
corresponding operation.)

General HTML Markup

A documentation comment can contain any markup that is permitted by HTML in that place. For example, you can create separate
paragraphs with <P> and </ P> elements:

Slice

| **

* This is a comment for sone Slice construct.</p>
*

* <p>This comment appears in a separate paragraph.

*% [

Note that you must neither begin a documentation comment with a <p> element nor end it with a </ p> element because, in the generated
HTML, documentation comments are already surrounded by <p> and </ p> elements.

There are various other ways to create markup — for example, you can use <t abl e> or elements. Please see the HTML specification
for details.

Using sl i ce2ht m

sl i ce2ht m uses the following syntax:

slice2htm [options] slice_file...

If you have cross-references that span Slice files, you must compile all of the Slice files with a single invocation of sl i ce2ht i .
The command supports the following options:

® -h, --help
Displays a help message.

® -v, --version
Displays the compiler version.

* - DNAMVE
Defines the preprocessor symbol NAME.

* - DNAVE=DEF
Defines the preprocessor symbol NAME with the value DEF.

158 Copyright © 2011, ZeroC, Inc.

http://www.w3.org/TR/html401

Ice 3.4.2 Documentation

* - UNAMVE
Undefines the preprocessor symbol {NAME.

®* -IDR
Add the directory DI R to the search path for #i ncl ude directives.

* -E
Print the preprocessor output on st dout .

® --output-dir DIR
Place the generated files into directory DI R.

® -d, --debug
Print debug information showing the operation of the Slice parser.

® --ice
Permit use of the normally reserved prefix | ce for identifiers. Use this option only when compiling the source code for the Ice run
time.

® --underscore
Permit use of underscores in Slice identifiers.

® --hdr FILE
Prepend FI LE to each generated HTML file (except for _si ndex. ht nl). This allows you to replace the HTML header and other
preamble information with a custom version, so you can connect style sheets to the generated pages. The specified file must include
the <body> tag (but need not end with a <body> tag). FI LE is expected to contain the string Tl TLE on a line by itself, starting in
column one. slice2html replaces the Tl TLE string with the fully-scoped name of the Slice symbol that is documented on the
corresponding page.

e --ftr FILE
Append FI LE to each generated HTML file (except for _si ndex. ht m). This allows you to add, for example, a custom footer to
each generated page. FI LE must end with a </ body> tag.

® --indexhdr FILE
slice2ht m generates a file _si ndex. ht m that contains a table of contents of all Slice symbols that hyperlink to the
corresponding page. This option allows you to replace the standard header with a custom header, for example, to attach a
JavaScript. The specified file must include the <body> tag (but need not end with a <body> tag). The default value is the setting of
- - hdr (if any).

® --indexftr FILE
Append FI LE to the generated si ndex. ht ml page. This allows you to add, for example, a custom footer to the table of contents,
or to invoke a JavaScript. _FI LE is must end with a </ body> tag. The default value is the setting of - - f t r (if any).

® --image-dir DR
With this option, sl i ce2ht ml looks in the specified directory for images to use for the generated navigation hyperlinks. (Without
this option, text links are used instead.) Please see the generated HTML for the names of the various image files. (They can easily
be found by looking for i ng elements.)

® --logo-url URL
Use the specified URL as a hyperlink for the company logo that is added to each page (if - - i mage- di r is specified). The company
logo is expected to be in <i mage_di r>/1 ogo. gi f.

® --search ACTI ON
If this option is specified, the generated pages contain a search box that allows you to connect the generated pages to a search
engine. On pressing the "Search" button, the specified ACTI ONis carried out.

® --index NUM
sl i ce2ht ml generates sub-indexes for various Slice symbols. This option controls how many entries must be present before a
sub-index is generated. For example, if NUMis set to 3, a sub-index will be generated only if there are three or more symbols that
appear in that index. The default settings is 1, meaning that a sub-index is always generated. To disable sub-indexes entirely, set
NUMto 0.

® --summary NUM
If this option is set, summary sentences that exceed NUMcharacters generate a warning.

See Also

® Slice API reference
® HTML specification

159 Copyright © 2011, ZeroC, Inc.

http://www.zeroc.com/doc/Ice-3.4.2/reference
http://www.w3.org/TR/html401

Ice 3.4.2 Documentation

160 Copyright © 2011, ZeroC, Inc.

Slice Keywords

The following identifiers are Slice keywords:

bool exception interface
byte ext ends | ocal

cl ass fal se Local Obj ect
const fl oat | ong

dictionary idenpotent nodule
doubl e impl enents bj ect

enum int out
Keywords must be capitalized as shown.

See Also

® |exical Rules

161

Ice 3.4.2 Documentation

sequence
short
string
struct

t hr ons
true

voi d

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice Metadata Directives

On this page:

General Metadata Directives

Metadata Directives for C++

Metadata Directives for Java

Metadata Directives for C#

Metadata Directives for .NET and Mono
Metadata Directives for Objective-C
Metadata Directives for Python
Metadata Directives for Freeze

General Metadata Directives

am

This directive applies to interfaces, classes, and individual operations. It enable code generation for asynchronous method invocation.

ﬂ This directive applies to the deprecated AMI mapping. For the new AMI mapping there is no need for this directive.

anmd

This directive applies to interfaces, classes, and individual operations. It enables code generation for asynchronous method dispatch. (See
the relevant language mapping chapter for details.)

depr ecat ed
This directive allows you to emit a deprecation warning for Slice constructs .

pr ot ect ed

This directive applies to data members of classes and changes code generation to make these members protected. See class mapping of
the relevant language mapping chapter for more information.

User Excepti on

This directive applies only to operations on local interfaces. The metadata directive indicates that the operation can throw any user
exception, regardless of its specific definition. (This directive is used for the | ocat e and f i ni shed operations on servant locators, which
can throw any user exception.)

Metadata Directives for C++
cpp: array and cpp: range: array
These directives apply to sequences. They direct the code generator to create zerocopy APIs for passing sequences as parameters.

cpp: cl ass

This directive applies to structures. It directs the code generator to create a C++ class (instead of a C++ structure) to represent a Slice
structure.

cpp: const

This directive applies to operations. It directs the code generator to create a const pure virtual member function for the skeleton class.

cpp:type:wstring

162 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

This directive applies to data members of type string as well as to containers, such as structures, classes, and exceptions. It changes the
default mapping for strings from st d: : stringtostd::wstring.

cpp: header - ext

This global directive allows you to use a file extension for C++ header files other than the default . h extension.

cpp: i ncl ude

This global directive allows you inject additional #include directives into the generated code. This is useful for custom types.

cpp: virtual

This directive applies to classes. If the directive is present and a class has base classes, the generated C++ class derives virtually from its
bases; without this directive, slice2cpp generates the class so it derives non-virtually from its bases.

This directive is useful if you use Slice classes as servants and want to inherit the implementation of operations in the base class in the
derived class. For example:

Slice

cl ass Base {
int baseOp();
H

["cpp:virtual "]

class Derived extends Base {
string derivedOp();

b

The metadata directive causes slice2cpp to generate the class definition for Der i ved using virtual inheritance:

C++

class Base : virtual public Ice:: ject {
11
b

class Derived : virtual public Base {
/1

}

This allows you to reuse the implementation of baseQp in the servant for Der i ved using ladder inheritance:

C++
class Basel : public virtual Base {
Ice::Int baseOp(const lce::Current&);
11
b
class Derivedl : public virtual Derived, public virtual Basel {
/'l Re-use inherited baseOp()
H

Note that, if you have data member in classes and use virtual inheritance, you need to take care to correctly call base class constructors if
you implement your own one-shot constructor. For example:

163 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

cl ass Base {
int baselnt;

}

class Derived extends Base {
int derivedlnt;

}

The generated one-shot constructor for Der i ved initializes both basel nt and deri vedl nt :

C++

Derived::Derived(lce::Int __ice_baselnt, lce::Int __ice_derivedint)
M : Base(__ice_baselnt),
derivedlnt(__ice_derivedlnt)

If you derive your own class from Der i ved and add a one-shot constructor to your class, you must explicitly call the constructor of all the
base classes, including Base. Failure to call the Base constructor will result in Base being default-constructed instead of getting a defined
value. For example:

C++

class Derivedl : public virtual Derived {
public:
Derivedl (i nt baselnt, int derivedint, const string& s)
Base(baselnt), Derived(baselnt, derivedint), _s(s)
{
}

private:
string _s;

}

This code correctly initializes the basel nt member of the Base part of the class. Note that the following does not work as intended and
leaves the Base part default-constructed (meaning that basel nt is not initialized):

C++

class Derivedl : public virtual Derived {
public:
Derivedl (int baselnt, int derivedlnt, const string& s)
Derived(basel nt, derivedint), _s(s)

{
/1 WRONG Base::baselnt is not initialized.
}
private:
string _s;

}

Metadata Directives for Java

j ava: package

164 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

This global directive instructs the code generator to place the generated classes into a specific package.

j ava: get set

This directive applies to data members and structures, classes, and exceptions. It adds accessor and modifier methods (JavaBean methods)
for data members.

java: serializable

This directive allows you to use Ice to transmit serializable Java classes as native objects, without having to define corresponding Slice
definitions for these classes.

java: type

This directive allows to use custom types for sequences and dictionaries.

Metadata Directives for C#

Note that C# (and other Common Language Runtime languages) are also affected by metadata with a cl r : prefix. (See Metadata Directives
for .NET and Mono.)

cs:attribute

This directive can be used both as a global directive and as directive for specific Slice constructs. It injects C# attribute definitions into the
generated code. (See C-Sharp Specific Metadata Directives.)

Metadata Directives for .NET and Mono

clr:class
This directive applies to Slice structures. It directs the code generator to emit a C# class instead of a structure.
clr:collection

This directive applies to sequences and dictionaries and maps them to types that are derived from Col | ect i onBase and
Di cti onar yBase, respectively.

clr:generic:List,clr:generic:LinkedLi st,clr:generic: Queue and cl r: generi c: Stack

These directives apply to sequences and map them to the specified sequence type.

clr:generic: SortedDi ctionary

This directive applies to dictionaries and maps them to Sor t edDi cti onary.

clr:generic

This directive applies to sequences and allows you map them to custom types.

clr:property

This directive applies to Slice structures and classes. It directs the code generator to create C# property definitions for data members.

clr:serializable

This directive allows you to use Ice to transmit serializable CLR classes as native objects, without having to define corresponding Slice
definitions for these classes.

Metadata Directives for Objective-C

165 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

obj c: prefix
This directive applies to modules and changes the default mapping for modules to use a specified prefix.

Metadata Directives for Python

pyt hon: package

This global directive instructs the code generator to place the generated code into a specified Python package
pyt hon: seq: def aul t, pyt hon: seq: | i st and pyt hon: seq: tupl e

These directives allow you to change the mapping for Slice sequences.

Metadata Directives for Freeze

freeze:readand freeze:wite

These directives inform a Freeze evictor whether an operation updates the state of an object, so the evictor knows whether it must save an

object before evicting it.

See Also

®* Metadata

166

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice for a Simple File System

For this manual, we use a file system application to illustrate various aspects of Ice. Throughout, we progressively improve and modify the
application such that it evolves into an application that is realistic and illustrates the architectural and coding aspects of Ice. This allows us to
explore the capabilities of the platform to a realistic degree of complexity without overwhelming you with an inordinate amount of detail early
on.

In this section:

® File System Application outlines the file system functionality
® Slice Definitions for the File System develops the data types and interfaces that are required for the file system
® Complete Definition presents the complete Slice definition for the application.

File System Application

Our file system application implements a simple hierarchical file system, similar to the file systems we find in Windows or Unix. To keep code
examples to manageable size, we ignore many aspects of a real file system, such as ownership, permissions, symbolic links, and a number
of other features. However, we build enough functionality to illustrate how you could implement a fully-featured file system, and we pay
attention to things such as performance and scalability. In this way, we can create an application that presents us with real-world complexity
without getting buried in large amounts of code.

Our file system consists of directories and files. Directories are containers that can contain either directories or files, meaning that the file
system is hierarchical. A dedicated directory is at the root of the file system. Each directory and file has a name. Files and directories with a
common parent directory must have different names (but files and directories with different parent directories can have the same name). In
other words, directories form a haming scope, and entries with a single directory must have unique hames. Directories allow you to list their
contents.

For now, we do not have a concept of pathnames, or the creation and destruction of files and directories. Instead, the server provides a fixed
number of directories and files. (We will address the creation and destruction of files and directories in Object Life Cycle.)

Files can be read and written but, for now, reading and writing always replace the entire contents of a file; it is impossible to read or write

only parts of a file.

Slice Definitions for the File System

Given the very simple requirements we just outlined, we can start designing interfaces for the system. Files and directories have something
in common: they have a name and both files and directories can be contained in directories. This suggests a design that uses a base type
that provides the common functionality, and derived types that provide the functionality specific to directories and files, as shown:

Node
<<interface>>

£

File Dicticnary
ointerfaces=> <Cinterface>>

Inheritance Diagram of the File System.

The Slice definitions for this look as follows:

167 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

interface Node {
11

s

interface File extends Node {
/1
h

interface Directory extends Node {
/1

b

Next, we need to think about what operations should be provided by each interface. Seeing that directories and files have names, we can
add an operation to obtain the name of a directory or file to the Node base interface:

Slice

interface Node {
i denpotent string nanme();

b

The Fi | e interface provides operations to read and write a file. For simplicity, we limit ourselves to text files and we assume that r ead
operations never fail and that only wr i t e operations can encounter error conditions. This leads to the following definitions:

Slice

exception GenericError {
string reason;

H
sequence<string> Lines;

interface File extends Node {
i denpotent Lines read();
i denmpotent void wite (Lines text) throws GenericError;

b

Note that r ead and wr i t e are marked idempotent because either operation can safely be invoked with the same parameter value twice in a
row: the net result of doing so is the same has having (successfully) called the operation only once.

The wr i t e operation can raise an exception of type Gener i cEr r or . The exception contains a single r eason data member, of type
string. Ifawite operation fails for some reason (such as running out of file system space), the operation throws a Generi cError
exception, with an explanation of the cause of the failure provided in the r eason data member.

Directories provide an operation to list their contents. Because directories can contain both directories and files, we take advantage of the
polymorphism provided by the Node base interface:

Slice

sequence<Node* > NodeSeq;

interface Directory extends Node {
i denpot ent NodeSeq list();

}s

The NodeSeq sequence contains elements of type Node* . Because Node is a base interface of both Di rect ory and Fi | e, the NodeSeq
sequence can contain proxies of either type. (Obviously, the receiver of a NodeSeq must down-cast each element to either Fi | e or
Di rect ory in order to get at the operations provided by the derived interfaces; only the nane operation in the Node base interface can be
invoked directly, without doing a down-cast first. Note that, because the elements of NodeSeq are of type Node* (not Node), we are using
pass-by-reference semantics: the values returned by the | i st operation are proxies that each point to a remote node on the server.

168 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

These definitions are sufficient to build a simple (but functional) file system. Obviously, there are still some unanswered questions, such as
how a client obtains the proxy for the root directory. We will address these questions in the relevant implementation chapter.

Complete Definition

We wrap our definitions in a module, resulting in the final definition as follows:

Slice

nodul e Fil esystem {
interface Node {
i denpotent string name();

b

exception GenericError {
string reason;

}
sequence<string> Lines;

interface File extends Node {
i denpot ent Lines read();
i denpotent void wite(Lines text) throws GenericError;

I
sequence<Node*> NodeSeq;

interface Directory extends Node {
i denpot ent NodeSeq list();
b

See Also

® Object Life Cycle

169 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping

Topics
® Client-Side Slice-to-C++ Mapping

® Server-Side Slice-to-C++ Mapping
® The C++ Utility Library

170 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Client-Side Slice-to-C++ Mapping

The client-side Slice-to-C++ mapping defines how Slice data types are translated to C++ types, and how clients invoke operations, pass
parameters, and handle errors. Much of the C++ mapping is intuitive. For example, Slice sequences map to STL vectors, so there is
essentially nothing new you have to learn in order to use Slice sequences in C++.

The rules that make up the C++ mapping are simple and regular. In particular, the mapping is free from the potential pitfalls of memory
management: all types are self-managed and automatically clean up when instances go out of scope. This means that you cannot
accidentally introduce a memory leak by, for example, ignoring the return value of an operation invocation or forgetting to deallocate memory
that was allocated by a called operation.

The C++ mapping is fully thread-safe. For example, the reference counting mechanism for classes is interlocked against parallel access, so
reference counts cannot be corrupted if a class instance is shared among a number of threads. Obviously, you must still synchronize access
to data from different threads. For example, if you have two threads sharing a sequence, you cannot safely have one thread insert into the
sequence while another thread is iterating over the sequence. However, you only need to concern yourself with concurrent access to your
own data — the Ice run time itself is fully thread safe, and none of the Ice API calls require you to acquire or release a lock before you safely
can make the call.

Much of what appears in this chapter is reference material. We suggest that you skim the material on the initial reading and refer back to
specific sections as needed. However, we recommend that you read at least the mappings for exceptions, interfaces, and operations in
detail because these sections cover how to call operations from a client, pass parameters, and handle exceptions.

1 In order to use the C++ mapping, you should need no more than the Slice definition of your application and knowledge of
the C++ mapping rules. In particular, looking through the generated header files in order to discern how to use the C++
mapping is likely to be confusing because the header files are not necessarily meant for human consumption and,
occasionally, contain various cryptic constructs to deal with operating system and compiler idiosyncrasies. Of course,
occasionally, you may want to refer to a header file to confirm a detail of the mapping, but we recommend that you
otherwise use the material presented here to see how to write your client-side code.

-ﬂ The | ce Namespace
All of the APIs for the Ice run time are nested in the | ce namespace, to avoid clashes with definitions for other libraries or
applications. Some of the contents of the | ce namespace are generated from Slice definitions; other parts of the | ce
namespace provide special-purpose definitions that do not have a corresponding Slice definition. We will incrementally
cover the contents of the | ce namespace throughout the remainder of the manual.

Topics

C++ Mapping for Identifiers

C++ Mapping for Modules

C++ Mapping for Built-In Types

C++ Mapping for Enumerations

C++ Mapping for Structures

C++ Mapping for Sequences

C++ Mapping for Dictionaries

C++ Mapping for Constants

C++ Mapping for Exceptions

C++ Mapping for Interfaces

C++ Mapping for Operations

C++ Mapping for Classes

Smart Pointers for Classes
Asynchronous Method Invocation (AMI) in C++
slice2cpp Command-Line Options
Using Slice Checksums in C++
Example of a File System Client in C++

171 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Identifiers

A Slice identifier maps to an identical C++ identifier. For example, the Slice identifier O ock becomes the C++ identifier O ock. There is one
exception to this rule: if a Slice identifier is the same as a C++ keyword, the corresponding C++ identifier is prefixed with _cpp_. For
example, the Slice identifier whi | e is mapped as _cpp_whi | e.

A single Slice identifier often results in several C++ identifiers. For example, for a Slice interface named Foo, the generated C++ code uses
the identifiers Foo and FooPr x (among others). If the interface has the name whi | e, the generated identifiers are _cpp_whi | e and
whi | ePr x (not _cpp_whi | ePrx), that is, the prefix is applied only to those generated identifiers that actually require it.

lﬂl You should try to avoid such identifiers as much as possible.

See Also

Lexical Rules

C++ Mapping for Modules

C++ Mapping for Built-In Types
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Constants
C++ Mapping for Exceptions

172 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Modules

A Slice module maps to a C++ namespace. The mapping preserves the nesting of the Slice definitions. For example:

Slice

modul e ML {
nmodul e M2 {
/1

/1
b
/1

modul e ML { /'l Reopen ML
11

}

This definition maps to the corresponding C++ definition:

C++

namespace ML {
namespace M2 {
/1

}
11

}

/1

nanespace ML { // Reopen ML
/1

}

If a Slice module is reopened, the corresponding C++ namespace is reopened as well.

See Also

Modules

C++ Mapping for Identifiers
C++ Mapping for Built-In Types
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Constants
C++ Mapping for Exceptions

173 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Built-In Types

On this page:

® Mapping of Slice Built-In Types to C++ Types
® Alternative String Mapping for C++

Mapping of Slice Built-In Types to C++ Types
The Slice built-in types are mapped to C++ types as shown in this table:

Slice C++

bool bool

byte I ce::Byte
short Ice:: Short
int lce::lnt
long I ce::Long
float I ce:: Fl oat

double | ce: : Double

string std::string

Slice bool and stri ng map to C++ bool and st d: : st ri ng. The remaining built-in Slice types map to C++ type definitions instead of C++
native types. This allows the Ice run time to provide a definition as appropriate for each target architecture. (For example, | ce: : | nt might
be defined as | ong on one architecture and as i nt on another.)

-ﬂl Note that | ce: : Byt e is a typedef for unsi gned char . This guarantees that byte values are always in the range 0..255.

All the basic types are guaranteed to be distinct C++ types, that is, you can safely overload functions that differ in only the types listed in the
table above.

Alternative String Mapping for C++

You can use a metadata directive, [" cpp: t ype: wstri ng"], to map strings to C++ st d: : wst ri ng. This is useful for applications that use
languages with alphabets that cannot be represented in 8?bit characters. The metadata directive can be applied to any Slice construct. For
containers (such as modules, interfaces, or structures), the metadata directive applies to all strings within the container. A corresponding
metadata directive, [" cpp: t ype: string"], can be used to selectively override the mapping defined by the enclosing container. For
example:

174 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice
["cpp:type:wstring"]
struct S1 {
string x; /1 Maps to std::wstring
["cpp:type:wstring"]
string vy; /1 Maps to std::wstring
["cpp:type:string"]
string z; /1 Maps to std::string
b
struct S2 {
string x; /1 Maps to std::string
["cpp:type:string"]
string vy; /1 Maps to std::string
["cpp:type:wstring"]
string z; /1 Maps to std::wstring
H

With these metadata directives, the strings are mapped as indicated by the comments. By default, narrow strings are encoded as UTF?8,
and wide strings use Unicode in an encoding that is appropriate for the platform on which the application executes. You can override the

encoding for narrow and wide strings by registering a string converter with the Ice run time.

See Also

Basic Types

C++ Mapping for Identifiers

C++ Mapping for Modules

C++ Mapping for Enumerations

C++ Mapping for Structures

C++ Mapping for Sequences

C++ Mapping for Dictionaries

C++ Mapping for Constants

C++ Mapping for Exceptions

C++ Strings and Character Encoding

175

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Enumerations

A Slice enumeration maps to the corresponding enumeration in C++. For example:

Slice

enum Fruit { Apple, Pear, O ange };

Not surprisingly, the generated C++ definition is identical:

C++

enum Fruit { Apple, Pear, O ange };

See Also

Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences

]
L]
L]
® C++ Mapping for Dictionaries

176 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Structures

A Slice structure maps to a C++ structure by default. In addition, you can use a metadata directive to map structures to C++ classes.
On this page:
® Default Mapping for Structures in C++

® Class Mapping for Structures in C++
® Default Constructors for Structures in C++

Default Mapping for Structures in C++

Slice structures map to C++ structures with the same name. For each Slice data member, the C++ structure contains a public data member.
For example, here is our Employee structure once more:

Slice

struct Enpl oyee {
I ong nunber;
string firstNane;
string | astNane;

b

The Slice-to-C++ compiler generates the following definition for this structure:

C++

struct Enpl oyee {

Ice::Long nunber;

std::string firstNane;

std::string | astNane;

bool operator==(const Enpl oyee&) const;
bool operator!=(const Enployee&) const;
bool operator<(const Enployee&) const;
bool operator<=(const Enpl oyee&) const;
bool operator>(const Enpl oyee&) const;
bool operator>=(const Enpl oyee&) const;

}

For each data member in the Slice definition, the C++ structure contains a corresponding public data member of the same name.
Constructors are intentionally omitted so that the C++ structure qualifies as a plain old datatype (POD).

Note that the structure also contains comparison operators. These operators have the following behavior:

* operator==
Two structures are equal if (recursively), all its members are equal.

® operator!=
Two structures are not equal if (recursively), one or more of its members are not equal.

® operator<
oper at or <=
oper at or >
oper at or >=
The comparison operators treat the members of a structure as sort order criteria: the first member is considered the first criterion,
the second member the second criterion, and so on. Assuming that we have two Enpl oyee structures, s1 and s2, this means that
the generated code uses the following algorithm to compare s1 and s2:

177 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

bool Enpl oyee: : operat or<(const Enpl oyee& rhs) const
{
if (this == &rhs) /1 Short?cut self?conparison
return fal se;

/1 Conpare first menbers

/1

if (nunber < rhs. nunber)
return true;

el se if (rhs.nunber < nunber)
return fal se;

/1 First menbers are equal, conpare second nenbers
11
if (firstNane < rhs.firstName)
return true;
else if (rhs.firstNane < firstNane)
return fal se;

/1 Second nmenbers are equal, conpare third nenbers
11
if (lastNane < rhs.| ast Nane)
return true;
else if (rhs.lastNanme < | ast Nane)
return fal se;

/1 Al menbers are equal, so return false
return fal se;

The comparison operators are provided to allow the use of structures as the key type of Slice dictionaries, which are mapped to

std:: map in C++.

Note that copy construction and assignment always have deep-copy semantics. You can freely assign structures or structure members to
each other without having to worry about memory management. The following code fragment illustrates both comparison and deep-copy

semantics:

C++

Enpl oyee el, e2;

el.firstNane = "Bjarne";

el.lastNane = "Stroustrup”;

e2 = el; /| Deep copy
assert(el == e2);

e2.firstName = "Andrew'; /| Deep copy
e2. | ast Nanme = "Koeni g"; /| Deep copy

assert(e2 < el);

Because strings are mapped to st d: : st ri ng, there are no memory management issues in this code and structure assignment and copying
work as expected. (The default member-wise copy constructor and assignment operator generated by the C++ compiler do the right thing.)

Class Mapping for Structures in C++

Occasionally, the mapping of Slice structures to C++ structures can be inefficient. For example, you may need to pass structures around in
your application, but want to avoid having to make expensive copies of the structures. (This overhead becomes noticeable for structures with
many complex data members, such as sequences or strings.) Of course, you could pass the structures by const reference, but that can
create its own share of problems, such as tracking the life time of the structures to avoid ending up with dangling references.

For this reason, you can enable an alternate mapping that maps Slice structures to C++ classes. Classes (as opposed to structures) are
reference-counted. Because the Ice C++ mapping provides smart pointers for classes, you can keep references to a class instance in many

places in the code without having to worry about either expensive copying or life time issues.

178

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The alternate mapping is enabled by a metadata directive, [" cpp: cl ass"] . Here is our Employee structure once again, but this time with
the additional metadata directive:

Slice
["cpp: class"] struct Enployee {
I ong nunber;
string firstNane;
string | astNane;
b
Here is the generated class:
C++

class Enployee : public lceUtil::Shared {
public:
Enpl oyee() {}
Enpl oyee(::lce::Long,
const ::std::string&,
const ::std::string&):;
::lce::Long nunber;
cistd::string firstNane;
;:std::string | ast Nang;

bool operator==(const Enpl oyee&) const;
bool operator!=(const Enployee&) const;
bool operator<(const Enpl oyee&) const;
bool operator<=(const Enpl oyee&) const;
bool operator>(const Enpl oyee&) const;
bool operator>=(const Enpl oyee&) const;

b

Note that the generated class, apart from a default constructor, has a constructor that accepts one argument for each member of the
structure. This allows you to instantiate and initialize the class in a single statement (instead of having to first instantiate the class and then
assign to its members).

As for the default structure mapping, the class contains one public data member for each data member of the corresponding Slice structure.
The comparison operators behave as for the default structure mapping.

You can learn how to instantiate classes, and how to access them via smart pointers, in the sections describing the mapping for Slice
classes — the API described there applies equally to Slice structures that are mapped to classes.

Default Constructors for Structures in C++

Structures have an implicit default constructor that default-constructs each data member. Members having a complex type, such as strings,
sequences, and dictionaries, are initialized by their own default constructor. However, the default constructor performs no initialization for
members having one of the simple built?in types boolean, integer, floating point, or enumeration. For such a member, it is not safe to
assume that the member has a reasonable default value. This is especially true for enumerated types as the member's default value may be
outside the legal range for the enumeration, in which case an exception will occur during marshaling unless the member is explicitly set to a
legal value.

To ensure that data members of primitive types are initialized to reasonable values, you can declare default values in your Slice definition.
The default constructor initializes each of these data members to its declared value.

If you declare a default value for at least one member of a structure, or use the class mapping for the structure, the Slice compiler also

generates a second constructor. This one-shot constructor has one parameter for each data member, allowing you to construct and initialize
an instance in a single statement (instead of first having to construct the instance and then assign to its members).

See Also
® Structures

® C++ Mapping for Enumerations
® C++ Mapping for Sequences

179 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

® C++ Mapping for Dictionaries

180 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Sequences

On this page:

® Default Sequence Mapping in C++

® Custom Sequence Mapping in C++
® STL Container Mapping for Sequences
® Array Mapping for Sequences in C++
® Range Mapping for Sequences in C++

Default Sequence Mapping in C++

Here is the definition of our Frui t Pl at t er sequence once more:

Slice

sequence<Fruit> FruitPlatter;

The Slice compiler generates the following definition for the Frui t Pl at t er sequence:

C++

typedef std::vector<Fruit> FruitPlatter;

As you can see, the sequence simply maps to an STL vector, so you can use the sequence like any other STL vector. For example:

C++

/1 Make a small platter with one Apple and one O ange
11

FruitPlatter p;

p. push_back(Appl e) ;

p. push_back(Orange) ;

As you would expect, you can use all the usual STL iterators and algorithms with this vector.
Custom Sequence Mapping in C++
In addition to the default mapping of sequences to vectors, Ice supports three additional custom mappings for sequences.

STL Container Mapping for Sequences

You can override the default mapping of Slice sequences to C++ vectors with a metadata directive, for example:

Slice

[["cpp:include:list"]]

nmodul e Food {
enum Fruit { Apple, Pear, Oange };
["cpp:type:std::list< ::Food::Fruit>"]
sequence<Fruit> FruitPlatter;

H

With this metadata directive, the sequence now mapsto a C++std: : list:

181 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

#i nclude <list>
nanespace Food {
typedef std::list< Food::Fruit> FruitPlatter;

Il

The cpp: t ype metadata directive must be applied to a sequence definition; anything following the cpp: t ype: prefix is taken to be the
name of the type. For example, we could use ["cpp: type:::std::list< ::Food:: Fruit>"].Inthat case, the compiler would use a
fully-qualified name to define the type:

C++

typedef ::std::list< ::Food::Fruit> FruitPlatter;

Note that the code generator inserts whatever string you specify following the cpp: t ype: prefix literally into the generated code. This
means that, to avoid C++ compilation failures due to unknown symbols, you should use a qualified name for the type.

Also note that, to avoid compilation errors in the generated code, you must instruct the compiler to generate an appropriate include directive
with the cpp: i ncl ude global metadata directive. This causes the compiler to add the line

C++
#include <list>
to the generated header file.
Instead of st d: : | i st, you can specify a type of your own as the sequence type, for example:
Slice

[["cpp:include: FruitBow . h"]]
nodul e Food {
enum Fruit { Apple, Pear, Orange };

["cpp:type: FruitBow "]
sequence<Fruit> FruitPlatter;

}

With these metadata directives, the compiler will use a C++ type Fr ui t Bowl as the sequence type, and add an include directive for the
header file Fr ui t Bow . h to the generated code.

You can use any class of your choice as a sequence type, but the class must meet certain requirements. (vect or, | i st , and deque
happen to meet these requirements.)

® The class must have a default constructor and a single-argument constructor that takes the size of the sequence as an argument of
unsigned integral type.

The class must have a copy constructor.

The class must provide a member function si ze that returns the number elements in the sequence as an unsigned integral type.
The class must provide a member function swap that swaps the contents of the sequence with another sequence of the same type.
The class must define i t er at or and const _i t er at or types and must provide begi n and end member functions with the usual
semantics; the iterators must be comparable for equality and inequality.

Less formally, this means that if the class looks like a vect or, | i st, or deque with respect to these points, you can use it as a custom
sequence implementation.

182 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

In addition to modifying the type of a sequence itself, you can also modify the mapping for particular return values or parameters. For
example:

Slice

[["cpp:include:list"]]
[["cpp:include: deque"]]

nmodul e Food {
enum Fruit { Apple, Pear, Oange };
sequence<Fruit> FruitPlatter;
interface Market {
["cpp:type:list< ::Food::Fruit>"]
FruitPlatter barter(["cpp:type:deque< ::Food::Fruit>"] FruitPlatter offer);

b
b

With this definition, the default mapping of Frui t Pl att er to a C++ vect or still applies but the return value of bart er is mapped as a
| i st, and the of f er parameter is mapped as a deque.

Array Mapping for Sequences in C++

The array mapping for sequences applies to input parameters and to out parameters of AMI and AMD operations. For example:

Slice

interface File {
void wite(["cpp:array"] lce::ByteSeq contents);

}

The cpp: ar r ay metadata directive instructs the compiler to map the cont ent s parameter to a pair of pointers. With this directive, the
wr i t e method on the proxy has the following signature:

C++

void wite(const std::pair<const |ce::Byte*, const |ce::Byte*>& contents);

To pass a byte sequence to the server, you pass a pair of pointers; the first pointer points at the beginning of the sequence, and the second
pointer points one element past the end of the sequence.

Similarly, for the server side, the wr i t e method on the skeleton has the following signature:

C++
virtual void wite(const ::std::pair<const ::lce::Byte*, const ::lce::Byte*>&,
const ::lce::Current& = ::lce::Current()) = O;

The passed pointers denote the beginning and end of the sequence as arange [first, | ast) (thatis, they use the usual STL semantics
for iterators).

The array mapping is useful to achieve zero-copy passing of sequences. The pointers point directly into the server-side transport buffer; this

allows the server-side run time to avoid creating a vect or to pass to the operation implementation, thereby avoiding both allocating memory
for the sequence and copying its contents into that memory.

183 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

ﬁ You can use the array mapping for any sequence type. However, it provides a performance advantage only for byte
sequences (on all platforms) and for sequences of integral or floating point types (x86 platforms only).

The called operation in the server must not store a pointer into the passed sequence because the transport buffer into
which the pointer points is deallocated as soon as the operation completes.

Range Mapping for Sequences in C++

The range mapping for sequences is similar to the array mapping and exists for the same purpose, namely, to enable zero-copy of sequence
parameters:

Slice

interface File {
void wite(["cpp:range"] Ice::ByteSeq contents);

b

The cpp: r ange metadata directive instructs the compiler to map the cont ent s parameter to a pair of const _i t er at or . With this
directive, the wr i t e method on the proxy has the following signature:

C++

void wite(const std::pair<lice::ByteSeq::const_iterator, |ce::ByteSeq::const_iterator>& contents);

Similarly, for the server side, the wr i t e method on the skeleton has the following signature:

C++
virtual void wite(
const ::std::pair<::lce::ByteSeq::const_iterator, ::lce::ByteSeq::const_iterator>&,
const ::lce::Current& = ::lce::Current()) = O;

The passed iterators denote the beginning and end of the sequence as arange [fi rst, | ast) (thatis, they use the usual STL semantics
for iterators).

The motivation for the range mapping is the same as for the array mapping: the passed iterators point directly into the server-side transport
buffer and so avoid the need to create a temporary vect or to pass to the operation.
ﬁ As for the array mapping, the range mapping can be used with any sequence type, but offers a performance advantage

only for byte sequences (on all platforms) and for sequences of integral type (x86 platforms only).

The operation must not store an iterator into the passed sequence because the transport buffer into which the iterator
points is deallocated as soon as the operation completes.

You can optionally add a type name to the cpp: r ange metadata directive, for example:

Slice

interface File {
void wite(["cpp:range:std::deque<lce::Byte>"] Ice::ByteSeq contents);

b

This instructs the compiler to generate a pair of const _i t er at or for the specified type:

184 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

virtual void wite(
const ::std::pair<std::deque<lce::Byte> :const_iterator,
std:: deque<l ce:: Byte>::const_iterator>&,
const ::lce::Current& = ::lce::Current()) = O;

This is useful if you want to combine the range mapping with a custom sequence type that behaves like an STL container.
See Also

Sequences

Asynchronous Method Dispatch (AMD) in C++
C++ Mapping for Enumerations

C++ Mapping for Structures

C++ Mapping for Dictionaries

C++ Mapping for Operations

185 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Dictionaries

Here is the definition of our Enpl oyeeMap once more:

Slice

di ctionary<l ong, Enpl oyee> Enpl oyeeMap;

The following code is generated for this definition:

C++

typedef std::map<I|ce::Long, Enployee> Enpl oyeeMap;

Again, there are no surprises here: a Slice dictionary simply maps to an STL nap. As a result, you can use the dictionary like any other STL
map, for example:

C++

Enpl oyeeMap em
Enpl oyee e;

e. nunber = 42;
e.firstNane = "Stan";
e.last Nane = "Li ppman”;
enf e. nunber] = e;

e. nunber = 77;
e.firstName = "Herb";
e.lastName = "Sutter";
enf e. nunber] = e;

All the usual STL iterators and algorithms work with this map just as well as with any other STL container.

See Also

Dictionaries

C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences

186 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Constants

Slice constant definitions map to corresponding C++ constant definitions. For example:

Slice
const bool AppendByDef ault = true;
const byte Lower Ni bbl e = 0xOf ;
const string Advice = "Don't Panic!";
const short TheAnswer = 42;
const doubl e Pl = 3.1416;
enum Fruit { Apple, Pear, Oange };
const Fruit FavoriteFruit = Pear;
Here are the generated definitions for these constants:
C++
const bool AppendByDef ault = true;
const lce::Byte Lower Ni bbl e = 15;
const std::string Advice = "Don't Panic!";
const |ce:: Short TheAnswer = 42;
const |ce::Double Pl = 3. 1416;
enum Fruit { Apple, Pear, Oange };
const Fruit FavoriteFruit = Pear ;

All constants are initialized directly in the header file, so they are compile-time constants and can be used in contexts where a compile-time
constant expression is required, such as to dimension an array or as the case label of a swi t ch statement.

See Also

Constants and Literals

C++ Mapping for Identifiers
C++ Mapping for Modules

C++ Mapping for Built-In Types
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Exceptions

187 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Exceptions

On this page:
® C++ Mapping for User Exceptions

® C++ Default Constructors for Exceptions
® C++ Mapping for Run-Time Exceptions

C++ Mapping for User Exceptions

Here is a fragment of the Slice definition for our world time server once more:

Slice
exception GenericError {
string reason;
H
exception BadTi neVal extends GenericError {};
exception BadZoneNane extends GenericError {};
These exception definitions map as follows:
C++

class GenericError: public lce::UserException {
public:
std::string reason;

GenericError() {}
explicit GenericError(const string&);

virtual const std::string& ice_nane() const;
virtual Ice::Exception* ice_clone() const;
virtual void ice_throwm) const;
/1 Other menber functions here...

}

class BadTimeVal: public GenericError {
public:

BadTi neval () {}

explicit BadTi meVal (const string&);

virtual const std::string& ice_nane() const;
virtual Ice::Exception* ice_clone() const;
virtual void ice_throwm) const;
/1 Other menber functions here...

}

cl ass BadZoneNane: public GenericError {
public:

BadZoneNane() {}

explicit BadZoneNane(const string&);

virtual const std::string& ice_nane() const;
virtual Ice::Exception* ice_clone() const;
virtual void ice_throwm) const;

}

Each Slice exception is mapped to a C++ class with the same name. For each exception member, the corresponding class contains a public
data member. (Since BadTi meVal and BadZoneNane do not have members, the generated classes for these exceptions also do not have
members.)

188 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The inheritance structure of the Slice exceptions is preserved for the generated classes, so BadTi neVal and BadZoneNane inherit from
CenericError.

Each exception has three additional member functions:

® ice_nane
As the name suggests, this member function returns the name of the exception. For example, if you call the i ce_name member
function of a BadZoneNane exception, it (not surprisingly) returns the string " BadZoneNane" . The i ce_nanme member function is
useful if you catch exceptions generically and want to produce a more meaningful diagnostic, for example:

C++
try {
/1
} catch (const GenericError& e) {
cerr << "Caught an exception: " << e.ice_nanme() << endl;
}

If an exception is raised, this code prints the name of the actual exception (BadTi neVal or BadZoneNane) because the exception
is being caught by reference (to avoid slicing).

® ice_clone
This member function allows you to polymorphically clone an exception. For example:

C++

try {
11

} catch (const Ice::UserException& e) {
I ce:: User Exception* copy = e.clone();

}

i ce_cl one is useful if you need to make a copy of an exception without knowing its precise run-time type. This allows you to
remember the exception and throw it later by calling i ce_t hr ow.

® ice_throw
i ce_t hr owallows you to throw an exception without knowing its precise run-time type. It is implemented as:

C++

voi d
GenericError::ice_throw) const
{

throw *this;

}

You can call i ce_t hr owto throw an exception that you previously cloned with i ce_cl one.

Each exception has a default constructor. This constructor performs memberwise initialization; for simple built?in types, such as integers, the
constructor performs no initialization, whereas complex types such as strings, sequences, and dictionaries are initialized by their respective
default constructors.

An exception also has a second constructor that accepts one argument for each exception member. This constructor allows you to
instantiate and initialize an exception in a single statement, instead of having to first instantiate the exception and then assign to its
members. For derived exceptions, the constructor accepts one argument for each base exception member, plus one argument for each
derived exception member, in base-to-derived order.

Note that the generated exception classes contain other member functions that are not shown here. However, those member functions are
internal to the C++ mapping and are not meant to be called by application code.

All user exceptions ultimately inherit from | ce: : User Excepti on. Inturn, | ce: : User Except i on inherits from | ce: : Excepti on (which
isan alias for I ceUti | : : Excepti on):

189 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

nanmespace lceUtil {
cl ass Exception {
virtual const std::string& ice_nane() const;

Excepti on* ice_clone() const;
voi d ice_throw() const;
virtual void ice_print(std::ostream&) const;
/1
}
std:: ostream& operator<<(std::ostream® const Exception&);
/1

}

nanmespace |ce {
typedef Iceltil::Exception Exception;

cl ass User Exception: public Exception {

public:
virtual const std::string& ice_nane() const = O;
11

b

| ce: : Excepti on forms the root of the exception inheritance tree. Apart from the usual i ce_nane, i ce_cl one, and i ce_t hr owmember
functions, it contains the i ce_pri nt member functions. i ce_pri nt prints the name of the exception. For example, calling i ce_pri nt on
a BadTi neVal exception prints:

BadTi nmeVal

To make printing more convenient, oper at or << is overloaded for | ce: : Excepti on, so you can also write:

C++

try {
11

} catch (const |ce::Exception& e) {
cerr << e << endl;

}

This produces the same output because oper at or << callsi ce_pri nt internally.

For Ice run time exceptions, i ce_pri nt also shows the file name and line number at which the exception was thrown.

C++ Default Constructors for Exceptions

Exceptions have a default constructor that default-constructs each data member. Members having a complex type, such as strings,
sequences, and dictionaries, are initialized by their own default constructor. However, the default constructor performs no initialization for
members having one of the simple built-in types boolean, integer, floating point, or enumeration. For such a member, it is not safe to assume
that the member has a reasonable default value. This is especially true for enumerated types as the member's default value may be outside
the legal range for the enumeration, in which case an exception will occur during marshaling unless the member is explicitly set to a legal
value.

To ensure that data members of primitive types are initialized to reasonable values, you can declare default values in your Slice definition.
The default constructor initializes each of these data members to its declared value.

Exceptions also have a second constructor that has one parameter for each data member. This allows you to construct and initialize a class
instance in a single statement (instead of first having to construct the instance and then assign to its members). For derived exceptions, this

constructor has one parameter for each of the base class's data members, plus one parameter for each of the derived class's data members,
in base-to-derived order.

C++ Mapping for Run-Time Exceptions

190 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The Ice run time throws run-time exceptions for a number of pre-defined error conditions. All run-time exceptions directly or indirectly derive
from | ce: : Local Excepti on (which, in turn, derives from | ce: : Excepti on). | ce: : Local Excepti on has the usual member functions:
i ce_nane,ice_cl one,ice_throw, and (inherited from | ce: : Exception),ice_print,ice_file,andice_line.

Recall the inheritance diagram for user and run-time exceptions. By catching exceptions at the appropriate point in the hierarchy, you can
handle exceptions according to the category of error they indicate:

® |ce:: Exception
This is the root of the complete inheritance tree. Catching | ce: : Except i on catches both user and run-time exceptions.

® |ce:: UserException
This is the root exception for all user exceptions. Catching | ce: : User Except i on catches all user exceptions (but not run-time
exceptions).

® |ce::Local Exception
This is the root exception for all run-time exceptions. Catching | ce: : Local Except i on catches all run-time exceptions (but not
user exceptions).

® |ce:: Ti meout Exception
This is the base exception for both operation-invocation and connection-establishment timeouts.

® | ce:: Connect Ti neout Excepti on
This exception is raised when the initial attempt to establish a connection to a server times out.

For example, a Connect Ti meout Except i on can be handled as Connect Ti neout Excepti on, Ti meout Excepti on,
Local Excepti on, or Excepti on.

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as Local Except i on; the
fine-grained error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time.
Exceptions to this rule are the exceptions related to facet and object life cycles, which you may want to catch explicitly. These exceptions are
Facet Not Exi st Excepti on and Obj ect Not Exi st Except i on, respectively.

See Also

User Exceptions

Run-Time Exceptions

C++ Mapping for Identifiers
C++ Mapping for Modules

C++ Mapping for Built-In Types
C++ Mapping for Enumerations
C++ Mapping for Structures
C++ Mapping for Sequences
C++ Mapping for Dictionaries
C++ Mapping for Constants
Facets and Versioning

Object Life Cycle

191 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Interfaces

The mapping of Slice interfaces revolves around the idea that, to invoke a remote operation, you call a member function on a local class
instance that is a proxy for the remote object. This makes the mapping easy and intuitive to use because making a remote procedure call is
no different from making a local procedure call (apart from error semantics).

On this page:

® Proxy Classes and Proxy Handles
® |nheritance from | ce: : Obj ect
® Proxy Handles
® ProxyType and Poi nt er Type
® Methods on Proxy Handles
Default constructor
Copy constructor
Assignment operator
Checked cast
Unchecked cast
Stream insertion and stringification
® Using Proxy Methods in C++
® Object Identity and Proxy Comparison in C++

Proxy Classes and Proxy Handles

On the client side, a Slice interface maps to a class with member functions that correspond to the operations on that interface. Consider the
following simple interface:

Slice
nmodul e M {
interface Sinple {
void op();
I
b

The Slice compiler generates the following definitions for use by the client:

192 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

nanespace | ceProxy {
nanmespace M {
class Sinple;
}
}

nanespace M {
class Sinple;
typedef |celnternal::ProxyHandl e< ::lceProxy::M:Sinple> SinplePrx;
typedef lcelnternal::Handle< ::M:Sinple> SinplePtr;

}

nanespace | ceProxy {
nanespace M {
class Sinple : public virtual IceProxy::lce::bject {
public:
typedef ::M:SinplePrx ProxyType;
typedef ::M:SinplePtr PointerType;

void op();
voi d op(const Ice:: Context&);
/1

As you can see, the compiler generates a proxy class Si npl e in the | cePr oxy: : Mnamespace, as well as a proxy handle M : Si npl ePr x.
In general, for a module M the generated names are : : | ceProxy: : M : <i nterface?nane>and:: M: <i nterface?nanme>Pr x.

In the client's address space, an instance of | cePr oxy: : M : Si npl e is the local ambassador for a remote instance of the Si npl e interface
in a server and is known as a proxy class instance. All the details about the server-side object, such as its address, what protocol to use, and
its object identity are encapsulated in that instance.

Inheritance from | ce: : Obj ect

Si mpl e inherits from | cePr oxy: : | ce: : Obj ect, reflecting the fact that all Ice interfaces implicitly inherit from | ce: : Obj ect . For each
operation in the interface, the proxy class has two overloaded member functions of the same name. For the preceding example, we find that
the operation op has been mapped to two member functions op.

One of the overloaded member functions has a trailing parameter of type | ce: : Cont ext . This parameter is for use by the Ice run time to

store information about how to deliver a request; normally, you do not need to supply a value here and can pretend that the trailing
parameter does not exist. (The parameter is also used by IceStorm.)

Proxy Handles

Client-side application code never manipulates proxy class instances directly. In fact, you are not allowed to instantiate a proxy class directly.
The following code will not compile because | ce: : Cbj ect is an abstract base class with a protected constructor and destructor:

C++

lceProxy::M:Sinple s; [/ Conpile?time error!

Proxy instances are always instantiated on behalf of the client by the Ice run time, so client code never has any need to instantiate a proxy
directly. When the client receives a proxy from the run time, it is given a proxy handle to the proxy, of type <i nt er f ace- name>Pr x (

Si mpl ePr x for the preceding example). The client accesses the proxy via its proxy handle; the handle takes care of forwarding operation
invocations to its underlying proxy, as well as reference-counting the proxy. This means that no memory-management issues can arise:
deallocation of a proxy is automatic and happens once the last handle to the proxy disappears (goes out of scope).

Because the application code always uses proxy handles and never touches the proxy class directly, we usually use the term proxy to

denote both proxy handle and proxy class. This reflects the fact that, in actual use, the proxy handle looks and feels like the underlying proxy
class instance. If the distinction is important, we use the terms proxy class, proxy class instance, and proxy handle.

193 Copyright © 2011, ZeroC, Inc.

Pr oxyType and Poi nt er Type

Ice 3.4.2 Documentation

The generated proxy class contains type definitions for Pr oxy Type and Poi nt er Type. These are provided so you can refer to the proxy
type and smart pointer type in template definitions without having to resort to preprocessor trickery, for example:

C++

t enpl at e<t ypenanme T>

cl ass ProxyW apper {

public:
T:: ProxyType proxy() const;
/1

b

Methods on Proxy Handles

As we saw for the preceding example, the handle is actually a template of type | cel nt er nal : : Pr oxyHandl e that takes the proxy class
as the template parameter. This template has the usual default constructor, copy constructor, and assignment operator.

Default constructor

You can default-construct a proxy handle. The default constructor creates a proxy that points nowhere (that is, points at no object at all). If

you invoke an operation on such a null proxy, you getan | ceUti | :: Nul | Handl eExcepti on:
C++

try {
Sinpl ePrx s; /| Defaul t?constructed proxy
s?>op(); // Call via nil proxy
assert (0); /] Can't get here

} catch (const IceUtil::NullHandl eExcepti on&) {
cout << "As expected, got a Null Handl eException" << endl;

}

Copy constructor

The copy constructor ensures that you can construct a proxy handle from another proxy handle. Internally, this increments a reference count
on the proxy; the destructor decrements the reference count again and, once the count drops to zero, deallocates the underlying proxy class

instance. That way, memory leaks are avoided:

C++

{ 11

SinplePrx s1 = ...; /1
Si npl ePrx s2(sl); I
assert (sl == s2); /1

} Il
11
11

Enter new scope

Get a proxy from sonewhere
Copy?construct s2

Assertion passes

Leave scope; sl1, s2, and the
under|yi ng proxy instance
are deal | ocat ed

Note the assertion in this example: proxy handles support comparison.

Assignment operator

You can freely assign proxy handles to each other. The handle implementation ensures that the appropriate memory-management activities
take place. Self-assignment is safe and you do not have to guard against it:

194

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++
SinplePrx sl = ...; /Il Get a proxy from sonewhere
Si npl ePrx s2; /1 s2 is nil
s2 = sl; /1 both point at the same object
sl = 0; /Il sl is nil
s2 = 0; /1l s2 is nil

Widening assignments work implicitly. For example, if we have two interfaces, Base and Der i ved, we can widen a Deri vedPr x to a
BasePr x implicitly:

C++

BasePrx base;

DerivedPrx derived;

base = derived; /'l Fine, no problem
derived = base; /1 Conpile?tine error

Implicit narrowing conversions result in a compile error, so the usual C++ semantics are preserved: you can always assign a derived type to
a base type, but not vice versa.

Checked cast

Proxy handles provide a checkedCast method:

C++
nanespace |celnternal {
t enpl at e<t ypenane T>
class ProxyHandl e : public lceUtil::Handl eBase<T> {

public:
tenpl at e<cl ass Y>
static ProxyHandl e checkedCast (const ProxyHandl e<Y>& r);

tenpl at e<cl ass Y>
static ProxyHandl e checkedCast (const ProxyHandl e<Y>& r, const ::lce::Context& c);

/1

A checked cast has the same function for proxies as a C++ dynani ¢_cast has for pointers: it allows you to assign a base proxy to a
derived proxy. If the base proxy's actual run-time type is compatible with the derived proxy's static type, the assignment succeeds and, after
the assignment, the derived proxy denotes the same object as the base proxy. Otherwise, if the base proxy's run-time type is incompatible
with the derived proxy's static type, the derived proxy is set to null. Here is an example to illustrate this:

C++

BasePrx base = ...; /1 Initialize base proxy
Deri vedPr x derived,;
derived = DerivedPrx::checkedCast (base);
if (derived) {
/1 Base has run?tinme type Derived,
/] use derived...
} else {
/| Base has some other, unrelated type

}

The expression Der i vedPr x: : checkedCast (base) tests whether base points at an object of type Der i ved (or an object with a type
that is derived from Der i ved). If so, the cast succeeds and der i ved is set to point at the same object as base. Otherwise, the cast fails
and der i ved is set to the null proxy.

195 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Note that checkedCast is a static member function so, to do a down-cast, you always use the syntax <i nt er f ace- nane>
Prx:: checkedCast .

Also note that you can use proxies in boolean contexts. For example, i f (proxy) returns true if the proxy is not null.

A checkedCast typically results in a remote message to the server.The message effectively asks the server "is the object denoted by this
reference of typeDerived?"

In some cases, the Ice run time can optimize the cast and avoid sending a message. However, the optimization applies
only in narrowly-defined circumstances, so you cannot rely on a checkedCast not sending a message.

The reply from the server is communicated to the application code in form of a successful (non-null) or unsuccessful (null) result. Sending a
remote message is necessary because, as a rule, there is no way for the client to find out what the actual run-time type of a proxy is without
confirmation from the server. (For example, the server may replace the implementation of the object for an existing proxy with a more
derived one.) This means that you have to be prepared for a checkedCast to fail. For example, if the server is not running, you will receive
a Connect Fai | edExcepti on; if the server is running, but the object denoted by the proxy no longer exists, you will receive an

Obj ect Not Exi st Excepti on.

Unchecked cast

In some cases, it is known that an object supports a more derived interface than the static type of its proxy. For such cases, you can use an
unchecked down-cast:

C++
nanespace |celnternal {
t enpl at e<t ypenane T>
class ProxyHandl e : public lceUtil::Handl eBase<T> {

public:
tenpl at e<cl ass Y>
static ProxyHandl e uncheckedCast (const ProxyHandl e<Y>& r);
/1

An uncheckedCast provides a down-cast without consulting the server as to the actual run-time type of the object, for example:

C++

BasePrx base = ...; // Initialize to point at a Derived
DerivedPrx derived;

derived = DerivedPrx: :uncheckedCast (base);

/'l Use derived...

You should use an uncheckedCast only if you are certain that the proxy indeed supports the more derived type: an uncheckedCast , as
the name implies, is not checked in any way; it does not contact the object in the server and, if it fails, it does not return null. (An unchecked
cast is implemented internally like a C++ st ati ¢c_cast, no checks of any kind are made). If you use the proxy resulting from an incorrect
uncheckedCast to invoke an operation, the behavior is undefined. Most likely, you will receive an Oper at i onNot Exi st Excepti on, but,
depending on the circumstances, the Ice run time may also report an exception indicating that unmarshaling has failed, or even silently
return garbage results.

Despite its dangers, uncheckedCast is still useful because it avoids the cost of sending a message to the server. And, particularly during
initialization, it is common to receive a proxy of static type | ce: : Obj ect, but with a known run-time type. In such cases, an
uncheckedCast saves the overhead of sending a remote message.

Stream insertion and stringification

For convenience, proxy handles also support insertion of a proxy into a stream, for example:

196 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++
lce::CbjectPrx p = ...;
cout << p << endl;
This code is equivalent to writing:
C++

lce::ChjectPrx p = ...;
cout << p?>ice_toString() << endl;

Either code prints the stringified proxy. You could also achieve the same thing by writing:

C++

lce::CbjectPrx p = ...;
cout << communi cat or ?>proxyToString(p) << endl;

The advantage of using the i ce_t oSt ri ng member function instead of pr oxyToSt ri ng is that you do not need to have the communicator
available at the point of call.

Using Proxy Methods in C++

The base proxy class Obj ect Pr x supports a variety of methods for customizing a proxy. Since proxies are immutable, each of these
"factory methods" returns a copy of the original proxy that contains the desired modification. For example, you can obtain a proxy configured
with a ten second timeout as shown below:

C++

Ice:: CbjectPrx proxy = comuni cator->stringToProxy(...);
proxy = proxy->i ce_tinmeout (10000);

A factory method returns a new proxy object if the requested modification differs from the current proxy, otherwise it returns the current
proxy. With few exceptions, factory methods return a proxy of the same type as the current proxy, therefore it is generally not necessary to
repeat a down-cast after using a factory method. The example below demonstrates these semantics:

C++

I ce:: Cbj ect Prx base = communi cat or->stringToProxy(...);
Hel I oPrx hello = Hell oPrx::checkedCast (base);

hello = hello->ice_tineout(10000); // Type is preserved
hel | o- >sayHel | o();

The only exceptions are the factory methods i ce_f acet andi ce_i denti ty. Calls to either of these methods may produce a proxy for an
object of an unrelated type, therefore they return a base proxy that you must subsequently down-cast to an appropriate type.

Object Identity and Proxy Comparison in C++

Proxy handles support comparison using the following operators:

® operator==
operator! =
These operators permit you to compare proxies for equality and inequality. To test whether a proxy is null, use a comparison with
the literal 0, for example:

197 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

if (proxy == 0)
/1 1t's a nil proxy
el se
/1 1t's a non?nil proxy

® operator<
oper at or <=
oper at or >
oper at or >=

Proxies support comparison. This allows you to place proxies into STL containers such as maps or sorted lists.

® Boolean comparison

Proxies have a conversion operator to bool . The operator returns true if a proxy is not null, and false otherwise. This allows you to

write:

C++

BasePrx base = ...;
if (base)

/1 1t's a non?nil proxy
el se

/1 1t's a nil proxy

Note that proxy comparison uses all of the information in a proxy for the comparison. This means that not only the object identity must match
for a comparison to succeed, but other details inside the proxy, such as the protocol and endpoint information, must be the same. In other
words, comparison with == and ! = tests for proxy identity, not object identity. A common mistake is to write code along the following lines:

C++
lce::CbjectPrx pl = ...; /1 Get a proxy...
lce::CbjectPrx p2 = ...; /1 Get another proxy...
if (pl!=p2) {

/1 pl and p2 denote different objects /1 WWRONG
} else {

/1 pl and p2 denote the sane object /'l Correct
}

Even though p1 and p2 differ, they may denote the same Ice object. This can happen because, for example, both p1 and p2 embed the
same object identity, but each use a different protocol to contact the target object. Similarly, the protocols may be the same, but denote
different endpoints (because a single Ice object can be contacted via several different transport endpoints). In other words, if two proxies
compare equal with ==, we know that the two proxies denote the same object (because they are identical in all respects); however, if two
proxies compare unequal with ==, we know absolutely nothing: the proxies may or may not denote the same object.

To compare the object identities of two proxies, you can use helper functions in the | ce namespace:

C++

nanmespace |ce {

bool proxyldentitylLess(const bjectPrx& const ObjectPrx&);

bool proxyldentityEqual (const ObjectPrx& const ObjectPrx&);

bool proxyldentityAndFacet Less(const CbjectPrx& const ObjectPrx&);
bool proxyldentityAndFacet Equal (const Qbj ectPrx& const ObjectPrx&);

The proxyl denti t yEqual function returns true if the object identities embedded in two proxies are the same and ignores other
information in the proxies, such as facet and transport information. To include the facet name in the comparison, use

198 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

proxyl dentityAndFacet Equal instead.

The proxyl denti t yLess function establishes a total ordering on proxies. It is provided mainly so you can use object identity comparison
with STL sorted containers. (The function uses nane as the major ordering criterion, and cat egor y as the minor ordering criterion.) The
proxyl dentityAndFacet Less function behaves similarly to pr oxyl denti t yLess, except that it also compares the facet names of the
proxies when their identities are equal.

proxyl dentityEqual and proxyl dentityAndFacet Less allow you to correctly compare proxies for object identity. The example
below demonstrates how to use pr oxyl denti t yEqual :

C++
lce::CbjectPrx pl = ...; /] Get a proxy...
lce::CbjectPrx p2 = ...; /1 Get another proxy...
if (!lce::proxyldentityEqual (pl, p2) {

/1 pl and p2 denote different objects /'l Correct
} else {
/1 pl and p2 denote the sanme object /1 Correct
}
See Also

Interfaces, Operations, and Exceptions
Proxies

C++ Mapping for Operations

Example of a File System Client in C++
Using Proxies

Facets and Versioning

IceStorm

199 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Operations
On this page:

® Basic C++ Mapping for Operations
® Normal and i denpot ent Operations in C++
® Passing Parameters in C++
® In-Parameters in C++
® Qut-Parameters in C++
® Chained Invocations in C++
® Exception Handling in C++
® Exceptions and Out-Parameters in C++
® Exceptions and Return Values in C++

Basic C++ Mapping for Operations

As we saw in the C++ mapping for interfaces, for each operation on an interface, the proxy class contains a corresponding member function
with the same name. To invoke an operation, you call it via the proxy handle. For example, here is part of the definitions for our file system:

Slice

nodul e Fil esystem {
interface Node {
i denpotent string name();

The proxy class for the Node interface, tidied up to remove irrelevant detail, is as follows:

C++

nanespace | ceProxy {
nanespace Fil esystem {
class Node : virtual public IceProxy::lce::Qbject {
public:
std::string nane();
11
b
typedef Icelnternal:: ProxyHandl e<Node> NodePr x;
11

The nane operation returns a value of type st ri ng. Given a proxy to an object of type Node, the client can invoke the operation as follows:

C++
NodePrx node = ...; /1 Initialize proxy
string name = node?>nane(); /1 Get name via RPC

The proxy handle overloads oper at or ?> to forward method calls to the underlying proxy class instance which, in turn, sends the operation
invocation to the server, waits until the operation is complete, and then unmarshals the return value and returns it to the caller.

Because the return value is of type st ri ng, it is safe to ignore the return value. For example, the following code contains no memory leak:

200 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++
NodePrx node = ...; /1 Initialize proxy
node?>nane() ; /1 Usel ess, but no | eak

This is true for all mapped Slice types: you can safely ignore the return value of an operation, no matter what its type — return values are
always returned by value. If you ignore the return value, no memory leak occurs because the destructor of the returned value takes care of

deallocating memory as needed.

Normal and i denpot ent Operations in C++

You can add an i denpot ent qualifier to a Slice operation. As far as the signature for the corresponding proxy methods is concerned,

i denpot ent has no effect. For example, consider the following interface:

Slice
interface Exanple {
string opl();
i dempotent string op2();
i denpotent void op3(string s);
b
The proxy class for this interface looks like this:
C++

nanespace | ceProxy {
class Exanple : virtual public IceProxy::lce::bject {

public:
std::string opl();
std::string op2(); /'l i denpotent
voi d op3(const std::string&); /1 idenpotent
/1

b

Because i denpot ent affects an aspect of call dispatch, not interface, it makes sense for the mapping to be unaffected by the i denpot ent

keyword.

Passing Parameters in C++

In-Parameters in C++

The parameter passing rules for the C++ mapping are very simple: parameters are passed either by value (for small values) or by const
reference (for values that are larger than a machine word). Semantically, the two ways of passing parameters are identical: it is guaranteed
that the value of a parameter will not be changed by the invocation (with some caveats — see Out-Parameters below and Location

Transparency).

Here is an interface with operations that pass parameters of various types from client to server:

201

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

struct Nunber AndString {
int x;
string str;

H
sequence<string> StringSeq;
di ctionary<long, StringSeq> StringTabl e;

interface CientToServer {
void opl(int i, float f, bool b, string s);
voi d op2(Nunber AndString ns, StringSeq ss, StringTable st);
voi d op3(dientToServer* proxy);

H

The Slice compiler generates the following code for this definition:

C++

struct Nunber AndString {

lce::Int x;
std::string str;
11

H
typedef std::vector<std::string> StringSeq;
typedef std::map<lce::Long, StringSeq> StringTabl e;

nanespace | ceProxy {
class CientToServer : virtual public lIceProxy::lce:: Object {
public:
void opl(lce::Int, lce::Float, bool, const std::string&);
voi d op2(const Number AndString& const StringSeq& const StringTable&);
voi d op3(const CientToServerPrx&);
/1

Given a proxy to a G i ent ToSer ver interface, the client code can pass parameters as in the following example:

202 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

ClientToServerPrx p = ...; Il Get proxy...

p?>opl(42, 3.14, true, "Hello world!"); // Pass sinple literals

int i = 42;

float f = 3.14;

bool b = true;

string s = "Hello world!";

p?>opl(i, f, b, s); /1 Pass sinple variables

Nunber AndString ns = { 42, "The Answer" };
StringSeq ss;

ss. push_back("Hello world!");

StringTabl e st;

st[0] = ss;
p?>op2(ns, ss, st); /| Pass conpl ex vari abl es
p?>0p3(p); /| Pass proxy

You can pass either literals or variables to the various operations. Because everything is passed by value or const reference, there are no
memory-management issues to consider.
Out-Parameters in C++

The C++ mapping passes out-parameters by reference. Here is the Slice definition once more, modified to pass all parameters in the out
direction:

Slice

struct Nunmber AndString {
int x;
string str;

b
sequence<string> StringSeq;
dictionary<long, StringSeg> StringTabl e;

interface ServerTod ient {
void opl(out int i, out float f, out bool b, out string s);
voi d op2(out Number AndString ns, out StringSeq ss, out StringTable st);
voi d op3(out ServerToC ient* proxy);

}

The Slice compiler generates the following code for this definition:

C++

nanespace | ceProxy {
class ServerToClient : virtual public IceProxy::lce::oject {
public:
void opl(lce::Int& Ilce::Float& bool& std::string&);
voi d op2(Nunmber AndString& StringSeq& StringTableg&);
voi d op3(ServerToCd ientPrx&);
/1
b

Given a proxy to a Ser ver Tod i ent interface, the client code can pass parameters as in the following example:

203 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

ServerToCientPrx p = ...; /1 Get proxy...

int i;
float f;
bool b;
string s;

p?>opl(i, f, b, s);
/Il i, f, b, and s contain updated val ues now

Nunber AndStri ng ns;
StringSeq ss;
StringTable st;

p?>op2(ns, ss, st);
/'l ns, ss, and st contain updated val ues now

p?>0p3(p);
/'l p has changed now

Again, there are no surprises in this code: the caller simply passes variables to an operation; once the operation completes, the values of

those variables will be set by the server.

It is worth having another look at the final call:

C++

p?>0p3(p); /1 Weird, but well ?defined

Here, p is the proxy that is used to dispatch the call. That same variable p is also passed as an out-parameter to the call, meaning that the
server will set its value. In general, passing the same parameter as both an input and output parameter is safe: the Ice run time will correctly

handle all locking and memory-management activities.

Another, somewhat pathological example is the following:

Slice

sequence<i nt > Row;
sequence<Row> Matri x;

interface MatrixArithnetic {

}

void multiply(Matrix ml, Matrix n2, out Matrix result);

Given a proxy to a Matri xAri t hneti ¢ interface, the client code could do the following:

ma?>squar eAndCubeRoot (mL, n2, mi); // 1!

C++
MatrixArithneticPrx ma = ...; /1 Get proxy...
Matrix nl = ...; /1 Initialize one matrix
Matrix n2 = ...; /1 Initialize second matrix

This code is technically legal, in the sense that no memory corruption or locking issues will arise, but it has surprising behavior: because the
same variable il is passed as an input parameter as well as an output parameter, the final value of ml is indeterminate — in particular, if
client and server are collocated in the same address space, the implementation of the operation will overwrite parts of the input matrix m in
the process of computing the result because the result is written to the same physical memory location as one of the inputs. In general, you
should take care when passing the same variable as both an input and output parameter and only do so if the called operation guarantees to

be well-behaved in this case.

204

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Chained Invocations in C++

Consider the following simple interface containing two operations, one to set a value and one to get it:

Slice

interface Nane {
string get Name();
voi d set Name(string nane);

}s

Suppose we have two proxies to interfaces of type Nane, pl and p2, and chain invocations as follows:

C++

p2?>set Name(pl?>get Nane());

This works exactly as intended: the value returned by p1 is transferred to p2. There are no memory-management or exception safety issues
with this code.

Exception Handling in C++

Any operation invocation may throw a run-time exception and, if the operation has an exception specification, may also throw user
exceptions. Suppose we have the following simple interface:

Slice

exception Tantrum {
string reason;

}

interface Child {
voi d askTod eanUp() throws Tantrum
b

Slice exceptions are thrown as C++ exceptions, so you can simply enclose one or more operation invocations in a t r y- cat ch block:

C++
ChildPrx child = ...; /1 Get proxy...
try {
chi | d?>askToC eanUp(); /Il Gve it atry...
} catch (const Tantrum& t) {
cout << "The child says: " << t.reason << endl;

}

Typically, you will catch only a few exceptions of specific interest around an operation invocation; other exceptions, such as unexpected
run-time errors, will typically be dealt with by exception handlers higher in the hierarchy. For example:

205 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++
voi d run()
{
ChildPrx child = ...; /1 Get proxy...
try {
chil d?>askToC eanUp(); // Gve it a try...
} catch (const Tantrum& t) {
cout << "The child says: " << t.reason << endl;
chil d?>scol d(); /1 Recover fromerror...
}
chil d?>praise(); /1 Gve positive feedback...
}
int
mai n(int argc, char* argv[])
{
int status = 1;
try {
11
run();
/1
status = 0;
} catch (const Ice::Exception& e) {
cerr << "Unexpected run?time error: " << e << endl;
}
I
return status;
}

This code handles a specific exception of local interest at the point of call and deals with other exceptions generically. (This is also the
strategy we used for our first simple application.)

For efficiency reasons, you should always catch exceptions by const reference. This permits the compiler to avoid calling the exception's
copy constructor (and, of course, prevents the exception from being sliced to a base type).

Exceptions and Out-Parameters in C++

The Ice run time makes no guarantees about the state of out-parameters when an operation throws an exception: the parameter may have
still have its original value or may have been changed by the operation's implementation in the target object. In other words, for
out-parameters, Ice provides the weak exception guarantee [1] but does not provide the strong exception guarantee.

This is done for reasons of efficiency: providing the strong exception guarantee would require more overhead than can be
justified.
Exceptions and Return Values in C++

For return values, C++ provides the guarantee that a variable receiving the return value of an operation will not be overwritten if an exception
is thrown. (Of course, this guarantee holds only if you do not use the same variable as both an out-parameter and to receive the return value
of an invocation).
See Also

® Operations

® Slice for a Simple File System

® C++ Mapping for Interfaces

References

1. Sutter, H. 1999. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions. Reading, MA: Addison-Wesley.

206 Copyright © 2011, ZeroC, Inc.

http://amzn.com/0201615622

Ice 3.4.2 Documentation

207 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++ Mapping for Classes
On this page:

Basic C++ Mapping for Classes
Inheritance from | ce: : Cbj ect in C++
Class Data Members in C++

Class Constructors in C++

Class Operations in C++

Class Factories in C++

Basic C++ Mapping for Classes

A Slice class is mapped to a C++ class with the same name. The generated class contains a public data member for each Slice data
member (just as for structures and exceptions), and a virtual member function for each operation. Consider the following class definition:

Slice
class Ti neOf Day {
short hour; /Il 0 ? 23
short m nute; // 0 ? 59
short second; /1 0 ? 59
string format(); /1 Return time as hh:mmss
b
The Slice compiler generates the following code for this definition:
C++

class Ti meOf Day;

typedef |celnternal::ProxyHandl e<l ceProxy:: Ti neXf Day> Ti neCf DayPr x;
typedef |celnternal:: Handl e<Ti meCf Day> Ti meCf DayPtr;

class TineOfDay : virtual public Ice::Object {
public:

| ce:: Short hour;

I ce::Short m nute;

| ce:: Short second;

virtual std::string format() = O;

Ti meCf Day() {};
Ti meOf Day(|l ce:: Short, lce::Short, Ice::Short);

virtual bool ice_isA(const std::string&);
virtual const std::string& ice_id();

static const std::string& ice_staticld();

typedef Ti meOf DayPrx ProxyType;
typedef TimeCf DayPtr PointerType;

11

ﬂ The ProxyType and PointerType definitions are for template programming.

There are a number of things to note about the generated code:

1. The generated class Ti meCOf Day inherits from | ce: : Cbj ect . This means that all classes implicitly inherit from | ce: : Obj ect,

208

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

which is the ultimate ancestor of all classes. Note that | ce: : Cbj ect is not the same as | ceProxy: : | ce: : Obj ect . In other
words, you cannot pass a class where a proxy is expected and vice versa.

. The generated class contains a public member for each Slice data member.

The generated class has a constructor that takes one argument for each data member, as well as a default constructor.

The generated class contains a pure virtual member function for each Slice operation.

The generated class contains additional member functions: i ce_i sA,ice_id,ice_staticld,andice_factory.

. The compiler generates a type definition Ti neOf Day Pt r . This type implements a smart pointer that wraps dynamically-allocated
instances of the class. In general, the name of this type is <cl ass- name>Pt r . Do not confuse this with <cl ass- nane>Pr x — that
type exists as well, but is the proxy handle for the class, not a smart pointer.

EECENEN

There is quite a bit to discuss here, so we will look at each item in turn.

Inheritance from | ce: : Cbj ect in C++

Like interfaces, classes implicitly inherit from a common base class, | ce: : Obj ect . However, as shown in the figure below, classes
inherited from | ce: : Obj ect instead of | ce: : Obj ect Pr x (which is at the base of the inheritance hierarchy for proxies). As a result, you
cannot pass a class where a proxy is expected (and vice versa) because the base types for classes and proxies are not compatible.

loe:ihjectPrx loe:rObjec

Proxies... Classes...

Inheritance from | ce: : Cbj ect Prx and | ce: : Obj ect .

| ce: : Obj ect contains a number of member functions:
C++

nanespace |ce {

class oject : public virtual Icelnternal::GCShared {

public:
virtual bool ice_isA(const std::string& const Current& = Current()) const;
virtual void ice_ping(const Current& = Current()) const;
virtual std::vector<std::string> ice_ids(const Current& = Current()) const;
virtual const std::string& ice_id(const Current& = Current()) const;
static const std::string& ice_staticld();
virtual lce::Int ice_getHash() const;
virtual QojectPtr ice_clone() const;

virtual void ice_preMarshal ();
virtual void ice_postUnmarshal ();

virtual DispatchStatus ice_dispatch(
| ce: : Request &,
const DispatchlnterceptorAsyncCal |l backPtr& = 0);

virtual bool operator==(const Object& const;
virtual bool operator!=(const Object& const;
virtual bool operator<(const Object& const;
virtual bool operator<=(const Object& const;
virtual bool operator>(const Object& const;
virtual bool operator>=(const Object&) const;

209 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The member functions of | ce: : Obj ect behave as follows:

® jce_isA

This function returns t r ue if the object supports the given type ID, and f al se otherwise.

i ce_ping
As for interfaces, i ce_pi ng provides a basic reachability test for the class. Note that i ce_pi ng is normally only invoked on the
proxy for a class that might be remote because a class instance that is local (in the caller's address space) can always be reached.

ice_ids
This function returns a string sequence representing all of the type IDs supported by this object, including : : | ce: : Obj ect .

ice_id
This function returns the actual run-time type ID for a class. If you call i ce_i d through a smart pointer to a base instance, the
returned type id is the actual (possibly more derived) type ID of the instance.

ice_staticld
This function returns the static type ID of a class.

i ce_get Hash
This method returns a hash value for the class, allowing you to easily place classes into hash tables.

ice_clone
This function makes a polymorphic shallow copy of a class.

i ce_preMar shal
The Ice run time invokes this function prior to marshaling the object's state, providing the opportunity for a subclass to validate its
declared data members.

i ce_post Unnar shal
The Ice run time invokes this function after unmarshaling an object's state. A subclass typically overrides this function when it needs
to perform additional initialization using the values of its declared data members.

i ce_dispatch
This function dispatches an incoming request to a servant. It is used in the implementation of dispatch interceptors.

oper at or ==

operator! =

oper at or <

oper at or <=

oper at or >

oper at or >=

The comparison operators permit you to use classes as elements of STL sorted containers. Note that sort order, unlike for structures
, is based on the memory address of the class, not on the contents of its data members of the class.

Class Data Members in C++

By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the
generated class contains a corresponding public data member.

If you wish to restrict access to a data member, you can modify its visibility using the pr ot ect ed metadata directive. The presence of this
directive causes the Slice compiler to generate the data member with protected visibility. As a result, the member can be accessed only by
the class itself or by one of its subclasses. For example, the Ti meOf Day class shown below has the pr ot ect ed metadata directive applied
to each of its data members:

Slice
class TineCf Day {
["protected"] short hour; /1 0 ? 23
["protected"] short minute; // O ? 59
["protected"] short second; // 0 ? 59
string format(); /1 Return time as hh:mmss
H

The Slice compiler produces the following generated code for this definition:

210

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

class TineOfDay : virtual public Ice:: Object {
public:

virtual std::string format() = O;
/1

protected:
I ce:: Short hour;

I ce::Short m nute;
| ce:: Short second;

b

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each
member individually. For example, we can rewrite the Ti neCf Day class as follows:

Slice
["protected"] class TinmeO Day {
short hour; // 0 ? 23
short m nute; // 0 ? 59
short second; // 0 ? 59
string format(); /1 Return time as hh:mmss
s

Class Constructors in C++

Classes have a default constructor that default-constructs each data member. Members having a complex type, such as strings, sequences,
and dictionaries, are initialized by their own default constructor. However, the default constructor performs no initialization for members
having one of the simple built-in types boolean, integer, floating point, or enumeration. For such a member, it is not safe to assume that the
member has a reasonable default value. This is especially true for enumerated types as the member's default value may be outside the legal
range for the enumeration, in which case an exception will occur during marshaling unless the member is explicitly set to a legal value.

To ensure that data members of primitive types are initialized to reasonable values, you can declare default values in your Slice definition.
The default constructor initializes each of these data members to its declared value.

Classes also have a second constructor that has one parameter for each data member. This allows you to construct and initialize a class
instance in a single statement (instead of first having to construct the instance and then assign to its members).

For derived classes, the constructor has one parameter for each of the base class's data members, plus one parameter for each of the
derived class's data members, in base-to-derived order. For example:

Slice

cl ass Base {
int i;
b
class Derived extends Base {

string s;

s

This generates:

211 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++
class Base : virtual public ::lce:: bject
{
public:
lce::Int i;
Base() {};

explicit Base(::lce::lnt);

/1
b
class Derived : public Base
{
public:
cistdiistring s;
Derived() {};
Derived(::lce::Int, const ::std::string&);
/1
b

Note that single-parameter constructors are defined as expl i ci t, to prevent implicit argument conversions.

By default, derived classes derive non-virtually from their base class. If you need virtual inheritance, you can enable it using the
["cpp:virtual "] metadata directive.

Class Operations in C++

Operations of classes are mapped to pure virtual member functions in the generated class. This means that, if a class contains operations

(such as the f or mat operation of our Ti meCF Day class), you must provide an implementation of the operation in a class that is derived from
the generated class. For example:

C++

class TineOfDayl : virtual public TinmeODay {
public:
virtual std::string format() {

std::ostringstreams;
s << setw(2) << setfill('0") << hour << ":";
s << setw(2) << setfill('0") << minute << ":";
s << setw(2) << setfill('0") << second,
return s.c_str();

}

protected:
virtual ~TimeOfDayl () {} // Optional
b

ﬂ We discuss the motivation for the protected destructor in Preventing Stack-Allocation of Class Instances.

Class Factories in C++

Having created a class such as Ti neOf Day| , we have an implementation and we can instantiate the Ti mneOf Day| class, but we cannot
receive it as the return value or as an out-parameter from an operation invocation. To see why, consider the following simple interface:

212 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

interface Tine {
Ti neOr Day get();
b

When a client invokes the get operation, the Ice run time must instantiate and return an instance of the Ti neCf Day class. However,

Ti mer Day is an abstract class that cannot be instantiated. Unless we tell it, the Ice run time cannot magically know that we have created a
Ti meOf Day| class that implements the abstract f or nat operation of the Ti meOf Day abstract class. In other words, we must provide the
Ice run time with a factory that knows that the Ti neOf Day abstract class has a Ti meCf Dayl concrete implementation. The

I ce: : Communi cat or interface provides us with the necessary operations:

Slice

nmodul e lce {
local interface ObjectFactory {
bj ect create(string type);
void destroy();
I

local interface Conmunicator {
voi d addObj ect Fact ory(Obj ect Factory factory, string id);
oj ect Factory findObjectFactory(string id);
/1
i
H

To supply the Ice run time with a factory for our Ti mreCf Day| class, we must implement the Cbj ect Fact or y interface:

Slice

nmodul e Ice {
local interface ObjectFactory {
bj ect create(string type);
voi d destroy();
I
b

The object factory's cr eat e operation is called by the Ice run time when it needs to instantiate a Ti meCf Day class. The factory's dest r oy
operation is called by the Ice run time when its communicator is destroyed. A possible implementation of our object factory is:

C++

class objectFactory : public Ice::CbjectFactory {
public:
virtual lce::ObjectPtr create(const std::string& type) {
assert(type == M:TimeCOfDay: :ice_staticld());
return new Ti meCf Dayl ;
}
virtual void destroy() {}
H

The cr eat e method is passed the type ID of the class to instantiate. For our Ti meCf Day class, the type ID is " : : M : Ti meOf Day" . Our
implementation of cr eat e checks the type ID: if it matches, the method instantiates and returns a Ti meCOf Day| object. For other type IDs,
the method asserts because it does not know how to instantiate other types of objects.

Note that we used the i ce_st at i cl d method to obtain the type ID rather than embedding a literal string. Using a literal type ID string in
your code is discouraged because it can lead to errors that are only detected at run time. For example, if a Slice class or one of its enclosing
modules is renamed and the literal string is not changed accordingly, a receiver will fail to unmarshal the object and the Ice run time will raise
NoObj ect Fact or yExcepti on. By using i ce_st ati cl d instead, we avoid any risk of a misspelled or obsolete type ID, and we can
discover at compile time if a Slice class or module has been renamed.

213 Copyright © 2011, ZeroC, Inc.

214

Ice 3.4.2 Documentation

Given a factory implementation, such as our Obj ect Fact or y, we must inform the Ice run time of the existence of the factory:

C++

| ce:: CommunicatorPtr ic = ...;
i c?>addoj ect Fact ory(new Obj ect Factory, M:TineODay::ice_staticld());

Now, whenever the Ice run time needs to instantiate a class with the type ID ": : M : Ti meOf Day", it calls the cr eat e method of the
registered Cbj ect Fact ory instance.

The dest r oy operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance to
clean up any resources that may be used by your factory. Do not call dest r oy on the factory while it is registered with the communicator —
if you do, the Ice run time has no idea that this has happened and, depending on what your dest r oy implementation is doing, may cause
undefined behavior when the Ice run time tries to next use the factory.

The run time guarantees that dest r oy will be the last call made on the factory, that is, cr eat e will not be called concurrently with dest r oy
, and cr eat e will not be called once dest r oy has been called. However, calls to cr eat e can be made concurrently.

Note that you cannot register a factory for the same type ID twice: if you call addCbj ect Fact or y with a type ID for which a factory is
registered, the Ice run time throws an Al r eadyRegi st er edExcepti on.

Finally, keep in mind that if a class has only data members, but no operations, you need not create and register an object factory to transmit
instances of such a class. Only if a class has operations do you have to define and register an object factory.

See Also

Classes

Smart Pointers for Classes

C++ Mapping for Operations

Asynchronous Method Invocation (AMI) in C++
Dispatch Interceptors

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Smart Pointers for Classes

On this page:

Automatic Memory Management with Smart Pointers
Copying and Assignment of Classes

Polymorphic Copying of Classes

Null Smart Pointers

Preventing Stack-Allocation of Class Instances
Smart Pointers and Constructors

Smart Pointers and Exception Safety

Smart Pointers and Cycles

Garbage Collection of Class Instances

Smart Pointer Comparison

Automatic Memory Management with Smart Pointers

A recurring theme for C++ programmers is the need to deal with memory allocations and deallocations in their programs. The difficulty of
doing so is well known: in the face of exceptions, multiple return paths from functions, and callee-allocated memory that must be deallocated
by the caller, it can be extremely difficult to ensure that a program does not leak resources. This is particularly important in multi-threaded
programs: if you do not rigorously track ownership of dynamic memory, a thread may delete memory that is still used by another thread,
usually with disastrous consequences.

To alleviate this problem, Ice provides smart pointers for classes. These smart pointers use reference counting to keep track of each class
instance and, when the last reference to a class instance disappears, automatically delete the instance.

lﬂl Smart pointer classes are an example of the RAIl (Resource Acquisition Is Initialization) idiom [1].

Smart pointers are generated by the Slice compiler for each class type. For a Slice class <cl ass- nanme>, the compiler generates a C++
smart pointer called <cl ass- name>Pt r . Rather than showing all the details of the generated class, here is the basic usage pattern:
whenever you allocate a class instance on the heap, you simply assign the pointer returned from newto a smart pointer for the class.
Thereafter, memory management is automatic and the class instance is deleted once the last smart pointer for it goes out of scope:

C++

{ /'l Open scope
Timef DayPtr tod = new TineOfDayl; // Alocate instance
/1 Initialize...
tod->hour = 18;
tod->m nute = 11;
t od- >second = 15;
11
} /1 No nenory |eak here!

As you can see, you use oper at or - > to access the members of the class via its smart pointer. When the t od smart pointer goes out of
scope, its destructor runs and, in turn, the destructor takes care of calling del et e on the underlying class instance, so no memory is leaked.

A smart pointer performs reference counting of its underlying class instance:

® The constructor of a class sets its reference count to zero.

® |nitializing a smart pointer with a dynamically-allocated class instance causes the smart pointer to increment the reference count of
the instance by one.

® Copy-constructing a smart pointer increments the reference count of the instance by one.

® Assigning one smart pointer to another increments the target's reference count and decrements the source's reference count.
(Self-assignment is safe.)

® The destructor of a smart pointer decrements the reference count by one and calls del et e on its class instance if the reference
count drops to zero.

Suppose that we default-construct a smart pointer as follows:

215 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

Ti meOf DayPtr tod;

This creates a smart pointer with an internal null pointer.

Newly initialized smart pointer.

Constructing a class instance creates that instance with a reference count of zero; the assignment to the smart pointer causes the smart
pointer to increment the instance's reference count:

C++

tod = new Ti meCf Dayl ; /1 Refcount ==

The resulting situation is shown below:

tod =

Initialized smart pointer.

Assigning or copy-constructing a smart pointer assigns and copy-constructs the smart pointer (not the underlying instance) and increments
the reference count of the instance:

C++

Ti meOf DayPtr tod2(tod); // Copy-construct tod2
Ti meOf DayPtr tod3;
tod3 = tod; /1 Assign to tod3

Here is the situation after executing these statements:

tod

tod?

tod3

Three smart pointers pointing at the same class instance.

Continuing the example, we can construct a second class instance and assign it to one of the original smart pointers, t od2:

C++

tod2 = new Ti neOf Dayl ;

This decrements the reference count of the instance originally denoted by t 0od2 and increments the reference count of the instance that is
assigned to t 0od2. The resulting situation becomes the following:

216 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

2
tod
___.-'_
1
tod2
tod3
Three smart pointers and two instances.
You can clear a smart pointer by assigning zero to it:
C++
tod = 0; /] dear handle
As you would expect, this decrements the reference count of the instance, as shown here:
1
tod
___.l-'_
1
todZ2
tod3

Decremented reference count after clearing a smart pointer.

If a smart pointer goes out of scope, is cleared, or has a new instance assigned to it, the smart pointer decrements the reference count of its
instance; if the reference count drops to zero, the smart pointer calls del et e to deallocate the instance. The following code snippet
deallocates the instance on the right by assigning t od2 to t od3:

tod3 = tod2;

This results in the following situation:

tod

tod2

tod3

Deallocation of an instance with a reference count of zero.

Copying and Assignment of Classes

Classes have a default memberwise copy constructor and assignment operator, so you can copy and assign class instances:

217 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

Ti meOf DayPtr tod3 = new Ti neCf Dayl ;

Ti meOf DayPtr tod = new Ti meOfDayl (2, 3, 4); // Create instance
Ti meOf DayPtr tod2 = new Ti neCf Dayl (*t od); /1 Copy instance

*tod3 = *tod; /1 Assign instance

Copying and assignment in this manner performs a memberwise shallow copy or assignment, that is, the source members are copied into
the target members; if a class contains class members (which are mapped as smart pointers), what is copied or assigned is the smart

pointer, not the target of the smart pointer.

To illustrate this, consider the following Slice definitions:

Slice
cl ass Node {
int i;
Node next;
b
Assume that we initialize two instances of type Node as follows:
C++

NodePtr pl new Node(99, new Node(48, 0));
NodePtr p2 = new Node(23, 0);

/1

*p2 = *pl; // Assignnent

After executing the first two statements, we have the situation shown below:

pl

Pz

Class instances prior to assignment.

After executing the assignment statement, we end up with this result:

218

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

pl

p2

..-‘_P_\\II/
o)

Class instances after assignment.

Note that copying and assignment also works for the implementation of abstract classes, such as our Ti meOf Day| class, for example:

C++

class Ti meOf Dayl ;
typedef Iceltil:: Handl e<Ti neOf Dayl > Ti meCf Dayl Ptr;
class TineOfDayl : virtual public TinmeODay {

Il As before...
I

The default copy constructor and assignment operator will perform a memberwise copy or assignment of your implementation class:

C++

Ti mreOf Dayl Ptr todl = new Ti meCf Dayl ;
Ti meOf Dayl Ptr tod2 = new Ti meCf Dayl (*t odl); /1 Make copy

Of course, if your implementation class contains raw pointers (for which a memberwise copy would almost certainly be inappropriate), you
must implement your own copy constructor and assignment operator that take the appropriate action (and probably call the base copy
constructor or assignment operator to take care of the base part).

Note that the preceding code uses Ti meCf Day| Ptr as a typedef for | ceUti | : : Handl e<Ti meCf Dayl >. This class is a template that
contains the smart pointer implementation. If you want smart pointers for the implementation of an abstract class, you must define a smart
pointer type as illustrated by this type definition.

Copying and assignment of classes also works correctly for derived classes: you can assign a derived class to a base class, but not
vice-versa; during such an assignment, the derived part of the source class is sliced, as per the usual C++ assignment semantics.

Polymorphic Copying of Classes

As shown in Inheritance from | ce: : Cbj ect, the C++ mapping generates an i ce_cl one member function for every class:

C++

class TineOfDay : virtual public Ice::Object {
public:
11

virtual lce::QojectPtr ice_clone() const;

}

219 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

This member function makes a polymorphic shallow copy of a class: members that are not class members are deep copied; all members that
are class members are shallow copied. To illustrate, consider the following class definition:

Slice
cl ass Node {
Node ni;
Node n2;
s

Assume that we have an instance of this class, with the n1 and n2 members initialized to point at separate instances, as shown below:

f -

pl }ll. 5 i T

™,
e \\

(%

A class instance pointing at two other instances.

If we call i ce_cl one on the instance on the left, we end up with this situation:

nl — »
pl n2) (
A A
<
=N fff'f \ —
Aoy 5 A
pl *'1\ nz ..l'L
N A e g

Resulting graph after calling i ce_cl one on the left-most instance.

As you can see, class members are shallow copied, that is, i ce_cl one makes a copy of the class instance on which it is invoked, but does
not copy any class instances that are pointed at by the copied instance.

Note that i ce_cl one returns a value of type | ce: : Cbj ect Pt r, to avoid problems with compilers that do not support covariant return
types. The generated Pt r classes contain a dynam cCast member that allows you to safely down-cast the return value of i ce_cl one. For
example, the code to achieve the situation shown in the illustration above, looks as follows:

C++

NodePtr pl new Node(new Node, new Node);
NodePtr p2 = NodePtr::dynani cCast(pl->ice_clone());

i ce_cl one is generated by the Slice compiler for concrete classes (that is, classes that do not have operations). However, because classes
with operations are abstract, the generated i ce_cl one for abstract classes cannot know how to instantiate an instance of the derived
concrete class (because the name of the derived class is not known). This means that, for abstract classes, the generated i ce_cl one

220 Copyright © 2011, ZeroC, Inc.

throws a Cl oneNot | npl ement edExcepti on.

Ice 3.4.2 Documentation

If you want to clone the implementation of an abstract class, you must override the virtual i ce_cl one member in your concrete

implementation class. For example:

C++

class Ti neCf Dayl

}

public Timed Day {

public:
virtual lce::ObjectPtr ice_clone() const
{
return new Ti neCf Dayl (*this);
}

Null Smart Pointers

A null smart pointer contains a null C++ pointer to its underlying instance. This means that if you attempt to dereference a null smart pointer,

yougetanlceUtil:: Null Handl eExcepti on:
C++
Ti meOf DayPtr tod; /1 Construct null handle
try {
tod->mnute = 0; /| Dereference null handle
assert(fal se); /| Cannot get here

;11 OK, expected
} catch (...) {
assert(fal se); /1

}

} catch (const IceUtil::NullHandl eException&) {

Miust get Nul | Handl eExcepti on

Preventing Stack-Allocation of Class Instances

The Ice C++ mapping expects class instances to be allocated on the heap. Allocating class instances on the stack or in static variables is
pragmatically useless because all the Ice APIs expect parameters that are smart pointers, not class instances. This means that, to do
anything with a stack-allocated class instance, you must initialize a smart pointer for the instance. However, doing so does not work because

it inevitably leads to a crash:

C++

{ Il

Ti reOX Dayl t; /1
Ti meOf DayPtr t odp; /1
todp = &t; /1l
11

} /1

Ent er scope
St ack-al | ocated cl ass instance
Handl e for a Ti meOf Day instance

Legal , but dangerous

Leave scope, |oom ng crash!

This goes badly wrong because, when t odp goes out of scope, it decrements the reference count of the class to zero, which then calls
del et e on itself. However, the instance is stack-allocated and cannot be deleted, and we end up with undefined behavior (typically, a core

dump).

The following attempt to fix this is also doomed to failure:

221

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++
{ /1 Enter scope
Ti reOf Dayl t; /1 Stack-allocated class instance
Ti neOf DayPtr t odp; /1 Handle for a Ti meCf Day instance
todp = &t; /'l Legal, but dangerous
/.
todp = 0; /1 Crash inmnent!
}

This code attempts to circumvent the problem by clearing the smart pointer explicitly. However, doing so also causes the smart pointer to
drop the reference count on the class to zero, so this code ends up with the same call to del et e on the stack-allocated instance as the
previous example.

The upshot of all this is: never allocate a class instance on the stack or in a static variable. The C++ mapping assumes that all class
instances are allocated on the heap and no amount of coding trickery will change this.

ﬂl You could abuse the __set NoDel et e member to disable deallocation, but we strongly discourage you from doing this.

You can prevent allocation of class instances on the stack or in static variables by adding a protected destructor to your implementation of
the class: if a class has a protected destructor, allocation must be made with new, and static or stack allocation causes a compile-time error.
In addition, explicit calls to del et e on a heap-allocated instance also are flagged at compile time.

@ T
You may want to habitually add a protected destructor to your implementation of abstract Slice classes to protect yourself
from accidental heap allocation, as shown in Class Operations. (For Slice classes that do not have operations, the Slice

compiler automatically adds a protected destructor.)

Smart Pointers and Constructors

Slice classes inherit their reference-counting behavior from the | ceUt i | : : Shar ed class, which ensures that reference counts are managed
in a thread-safe manner. When a stack-allocated smart pointer goes out of scope, the smart pointer invokes the __decRef function on the
reference-counted object. Ignoring thread-safety issues, __decRef is implemented like this:

C++

voi d
lceUtil::Shared::__decRef ()
{
if (--_ref == 0 && ! _noDel ete)
delete this;

In other words, when the smart pointer calls __decRef on the pointed-at instance and the reference count reaches zero (which happens
when the last smart pointer for a class instance goes out of scope), the instance self-destructs by calling del ete thi s.

However, as you can see, the instance self-destructs only if _noDel et e is false (which it is by default, because the constructor initializes it

to false). You can call __set NoDel et e(t rue) to prevent this self-destruction and, later, call __set NoDel et e(f al se) to enable it again.
This is necessary if, for example, a class in its constructor needs to pass t hi s to another function:

222 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

voi d soneFunction(const TineODayPtr& t)

{
11
}
Ti medf Dayl : : Ti meCf Dayl ()
{
sonmeFunction(this); // Trouble |oom ng here!
}

At first glance, this code looks innocuous enough. While Ti meCf Day| is being constructed, it passes t hi s to soneFunct i on, which
expects a smart pointer. The compiler constructs a temporary smart pointer at the point of call (because the smart pointer template has a
single-argument constructor that accepts a pointer to a heap-allocated instance, so the constructor acts as a conversion function). However,
this code fails badly. The Ti meCf Dayl instance is constructed with a statement such as:

C++

Ti mreOf DayPtr tod = new Ti meCf Dayl ;

The constructor of Ti meCf Day| is called by oper at or newand, when the constructor starts executing, the reference count of the instance
is zero (because that is what the reference count is initialized to by the Shar ed base class of Ti meCf Dayl). When the constructor calls
soneFunct i on, the compiler creates a temporary smart pointer, which increments the reference count of the instance and, once
soneFunct i on completes, the compiler dutifully destroys that temporary smart pointer again. But, of course, that drops the reference count
back to zero and causes the Ti meCf Day| instance to self-destruct by calling del et e t hi s. The net effect is that the call to new

Ti meOf Day| returns a pointer to an already deleted object, which is likely to cause the program to crash.

To get around the problem, you can call __set NoDel et e:

C++

Ti meOf Dayl : : Ti meOf Dayl ()

{
__set NoDel ete(true);
soneFunction(this);
__set NoDel ete(fal se);
}

The code disables self-destruction while someFunct i on uses its temporary smart pointer by calling __set NoDel et e(t rue) . By doing
this, the reference count of the instance is incremented before someFunct i on is called and decremented back to zero when
soneFunct i on completes without causing the object to self-destruct. The constructor then re-enables self-destruction by calling

__set NoDel et e(fal se) before returning, so the statement

C++

Ti mreOf DayPtr tod = new Ti meCf Dayl ;

does the usual thing, namely to increment the reference count of the object to 1, despite the fact that a temporary smart pointer existed while
the constructor ran.

F:

In general, whenever a class constructor passes t hi s to a function or another class that accepts a smart pointer, you
must temporarily disable self-destruction.

Smart Pointers and Exception Safety

Smart pointers are exception safe: if an exception causes the thread of execution to leave a scope containing a stack-allocated smart
pointer, the C++ run time ensures that the smart pointer's destructor is called, so no resource leaks can occur:

223 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

{ Il Enter scope...
Ti neOf DayPtr tod = new TimeOfDayl; // Allocate instance
sonmeFuncThat M ght Throw() ; /1 Mght throw...
11

} /1 No leak here, even if an exception is thrown

If an exception is thrown, the destructor of t od runs and ensures that it deallocates the underlying class instance.
There is one potential pitfall you must be aware of though: if a constructor of a base class throws an exception, and another class instance

holds a smart pointer to the instance being constructed, you can end up with a double deallocation. You can use the __set NoDel et e
mechanism to temporarily disable self-destruction in this case, as described above.

Smart Pointers and Cycles

One thing you need to be aware of is the inability of reference counting to deal with cyclic dependencies. For example, consider the following
simple self-referential class:

Slice
cl ass Node {
int val;
Node next;
I

Intuitively, this class implements a linked list of nodes. As long as there are no cycles in the list of nodes, everything is fine, and our smart
pointers will correctly deallocate the class instances. However, if we introduce a cycle, we have a problem:

C++

{ /'l Open scope. ..

NodePtr nl = new Node; // Nl refcount == 1

NodePtr n2 = new Node; // N2 refcount == 1

nl->next = n2; /1 N2 refcount == 2

n2->next = nl; /1 Nl refcount == 2
} /1 Destructors run: /1 N2 refcount == 1,

/1 N1 refcount == 1, nenory | eak!

The nodes pointed to by n1 and n2 do not have names but, for the sake of illustration, let us assume that n1's node is called N1, and n2's
node is called N2. When we allocate the N1 instance and assign it to n1, the smart pointer n1 increments N1's reference count to 1.
Similarly, N2's reference count is 1 after allocating the node and assigning it to n2. The next two statements set up a cyclic dependency
between nl and n2 by making their next pointers point at each other. This sets the reference count of both N1 and N2 to 2. When the
enclosing scope closes, the destructor of n2 is called first and decrements N2's reference count to 1, followed by the destructor of n1, which
decrements N1's reference count to 1. The net effect is that neither reference count ever drops to zero, so both N1 and N2 are leaked.

Garbage Collection of Class Instances

The previous example illustrates a problem that is generic to using reference counts for deallocation: if a cyclic dependency exists anywhere
in a graph (possibly via many intermediate nodes), all nodes in the cycle are leaked.

To avoid memory leaks due to such cycles, Ice for C++ contains a garbage collector. The collector identifies class instances that are part of
one or more cycles but are no longer reachable from the program and deletes such instances:

® By default, garbage is collected whenever you destroy a communicator. This means that no memory is leaked when your program

224 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

exits. (Of course, this assumes that you correctly destroy your communicators.)
® You can also explicitly run the garbage collector by calling | ce: : col | ect Gar bage. For example, the leak caused by the
preceding example can be avoided as follows:

C++
{ /1 Open scope. ..

NodePtr nl = new Node; // Nl refcount ==
NodePtr n2 = new Node; // N2 refcount ==
nl->next = n2; /1 N1 refcount ==
n2->next = ni; /1 N2 refcount ==

} /1 Destructors run: /1 N2 refcount == 1,
/1 Nl refcount ==

I ce::col | ect Gar bage(); /] Deletes NI and N2

The callto | ce: : col | ect Gar bage deletes the no longer reachable instances N1 and N2 (as well as any other non-reachable
instances that may have accumulated earlier).

® Deleting leaked memory with explicit calls to the garbage collector can be inconvenient because it requires polluting the code with
calls to the collector. You can ask the Ice run time to run a garbage collection thread that periodically cleans up leaked memory by
setting the property | ce. GC. | nt er val to a non-zero value. For example, setting | ce. GC. | nt er val to 5 causes the collector
thread to run the garbage collector once every five seconds. You can trace the execution of the collector by setting | ce. Tr ace. GC
to a non-zero value.

Note that the garbage collector is useful only if your program actually creates cyclic class graphs. There is no point in running the garbage
collector in programs that do not create such cycles. (For this reason, the collector thread is disabled by default and runs only if you explicitly
setl ce. CC. I nt erval toanon-zero value.)

Smart Pointer Comparison

As for proxy handles, class handles support the comparison operators ==, ! =, and <. This allows you to use class handles in STL sorted
containers. Be aware that, for smart pointers, object identity is not used for the comparison, because class instances do not have identity.
Instead, these operators simply compare the memory address of the classes they point to. This means that oper at or == returns true only if
two smart pointers point at the same physical class instance:

C++
/Il Create a class instance and initialize
11
Ti meOf Dayl Ptr pl = new Ti meCf Dayl ;
pl- >hour = 23;
pl->mnute = 10;
pl->second = 18;
/1 Create another class instance with
/'l the same nmenber val ues
11
Ti mreOf Dayl Ptr p2 = new Ti meCf Dayl ;
p2- >hour = 23;
p2->m nute = 10;
p2->second = 18;
assert(pl != p2); /1 The two do not conpare equal
TimeOf Dayl Ptr p3 = pl; // Point at first class again
assert(pl == p3); /'l Now they conpare equal
See Also
® Classes

® C++ Mapping for Classes

225 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Asynchronous Method Invocation (AMI) in C++
The Server-Side main Function in C++
Properties and Configuration

The C++ Shared and SimpleShared Classes
References

1. Stroustrup, B. 1997. The C++ Programming Language. Reading, MA: Addison-Wesley.

226 Copyright © 2011, ZeroC, Inc.

http://amzn.com/0201700735

Ice 3.4.2 Documentation

Asynchronous Method Invocation (AMI) in C++

Asynchronous Method Invocation (AMI) is the term used to describe the client-side support for the asynchronous programming model. AMI
supports both oneway and twoway requests, but unlike their synchronous counterparts, AMI requests never block the calling thread. When a
client issues an AMI request, the Ice run time hands the message off to the local transport buffer or, if the buffer is currently full, queues the
request for later delivery. The application can then continue its activities and poll or wait for completion of the invocation, or receive a
callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether a client sent a request synchronously or asynchronously.

As of version 3.4, Ice provides a new API for asynchronous method invocation. This page describes the new API. Note that
the old APl is deprecated and will be removed in a future release.

On this page:

® Basic Asynchronous APl in C++

® Asynchronous Proxy Methods in C++

® Asynchronous Exception Semantics in C++
® AsyncResult Classin C++
® Polling for Completion in C++
® Generic Completion Callbacks in C++

® Using Cookies for Generic Completion Callbacks in C++
® Type-Safe Completion Callbacks in C++

® Using Cookies for Type-Safe Completion Callbacks in C++

Asynchronous Oneway Invocations in C++
Flow Control in C++
Asynchronous Batch Requests in C++
Concurrency Semantics for AMI in C++
AMI Limitations in C++

Basic Asynchronous APl in C++

Consider the following simple Slice definition:

Slice

nmodul e Denp {
interface Enpl oyees {
string get Name(int nunber);
h
h

Asynchronous Proxy Methods in C++

Besides the synchronous proxy methods, sl i ce2cpp generates the following asynchronous proxy methods:

C++

I ce:: AsyncResul t Ptr begi n_get Name(l ce:: I nt nunber);
I ce:: AsyncResul t Ptr begi n_get Name(lce::Int nunber, const lce::Context& _ ctx)

std::string end_get Nane(const Ice::AsyncResultPtr&);

lﬂ Four additional overloads of begi n_get Nane are generated for use with generic callbacks and type-safe callbacks.

As you can see, the single get Nane operation results in begi n_get Nanme and end_get Nane methods. (The begi n_ method is overloaded
SO you can pass a per-invocation context.)

®* The begi n_get Name method sends (or queues) an invocation of get Nane. This method does not block the calling thread.

227 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

®* The end_get Nanme method collects the result of the asynchronous invocation. If, at the time the calling thread calls end_get Namne,
the result is not yet available, the calling thread blocks until the invocation completes. Otherwise, if the invocation completed some
time before the call to end_get Nane, the method returns immediately with the result.

A client could call these methods as follows:

C++

Enpl oyeesPrx e = ... ;
Ice::AsyncResul tPtr r = e->begi n_get Nane(99);

// Continue to do other things here...

string nane = e->end_get Name(r);

Because begi n_get Nane does not block, the calling thread can do other things while the operation is in progress.

Note that begi n_get Nane returns a value of type AsyncResul t Pt r. The AsyncResul t associated with this smart pointer contains the
state that the Ice run time requires to keep track of the asynchronous invocation. You must pass the AsyncResul t Pt r that is returned by
the begi n_ method to the corresponding end_ method.

The begi n_ method has one parameter for each in-parameter of the corresponding Slice operation. Similarly, the end_ method has one
out-parameter for each out-parameter of the corresponding Slice operation (plus the AsyncResul t Pt r parameter). For example, consider
the following operation:

Slice

doubl e op(int inpl, string inp2, out bool outpl, out |Iong outp2);

The begi n_op and end_op methods have the following signature:

C++

Ice::AsyncResul t Ptr begin_op(lce::Int inpl, const ::std::string& inp2)

I ce:: Doubl e end_op(bool & outpl, |ce::Long& outp2, const |ce::AsyncResultPtr&);

Asynchronous Exception Semantics in C++

If an invocation raises an exception, the exception is thrown by the end_ method, even if the actual error condition for the exception was
encountered during the begi n_ method ("on the way out"). The advantage of this behavior is that all exception handling is located with the
code that calls the end_ method (instead of being present twice, once where the begi n_ method is called, and again where the end_
method is called).

There is one exception to the above rule: if you destroy the communicator and then make an asynchronous invocation, the begi n_ method
throws Communi cat or Dest r oyedExcept i on. This is necessary because, once the run time is finalized, it can no longer throw an
exception from the end_ method.

The only other exception that is thrown by the begi n_ and end_ methodsis | ceUti | :: 111 egal Argunent Except i on. This exception
indicates that you have used the API incorrectly. For example, the begi n_ method throws this exception if you call an operation that has a
return value or out-parameters on a oneway proxy. Similarly, the end_ method throws this exception if you use a different proxy to call the

end_ method than the proxy you used to call the begi n_ method, or if the AsyncResul t you pass to the end_ method was obtained by
calling the begi n_ method for a different operation.

AsyncResul t Class in C++

The AsyncResul t that is returned by the begi n_ method encapsulates the state of the asynchronous invocation:

228 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

class AsyncResult : virtual public IceUil::Shared, private lIceUtil::noncopyable {
public:

s

virtual bool operator==(const AsyncResult&) const;
virtual bool operator<(const AsyncResult&) const;

virtual Int getHash() const;

virtual Commruni catorPtr get Communi cator() const;
virtual ConnectionPtr getConnection() const;
virtual ObjectPrx getProxy() const;

const string& getOperation() const;

Local Obj ect Ptr get Cooki e() const;

bool isConpleted() const;
voi d wai t For Conpl et ed();

bool isSent() const;
voi d waitForSent();

voi d throwLocal Exception() const;

bool sent Synchronously() const;

The methods have the following semantics:

229

bool operator==(const AsyncResult&) const

bool operator<(const AsyncResult&) const

Int getHash() const

These methods allow you to create ordered or hashed collections of pending asynchronous invocations. This is useful, for example,
if you can have a number of outstanding requests, and need to pass state between the begi n_ and the end_ methods. In this case,
you can use the returned {{AsyncResult}}s as keys into a map that stores the state for each call.

Conmuni cat or Pt r get Conmuni cator () const
This method returns the communicator that sent the invocation.

virtual ConnectionPtr getConnection() const
This method returns the connection that was used for the invocation.

virtual ObjectPrx getProxy() const
This method returns the proxy that was used to call the begi n_ method.

const string& getOperation() const
This method returns the name of the operation.

Local Qbj ect Ptr get Cooki e() const
This method returns the cookie that was passed to the begi n_ method. If you did not pass a cookie to the begi n_ method, the
return value is null.

bool isConpleted() const
This method returns true if, at the time it is called, the result of an invocation is available, indicating that a call to the end_ method
will not block the caller. Otherwise, if the result is not yet available, the method returns false.

voi d wai t For Conpl et ed()
This method blocks the caller until the result of an invocation becomes available.

bool isSent() const

When you call the begi n_ method, the Ice run time attempts to write the corresponding request to the client-side transport. If the
transport cannot accept the request, the Ice run time queues the request for later transmission. i sSent returns true if, at the time it
is called, the request has been written to the local transport (whether it was initially queued or not). Otherwise, if the request is still
queued or an exception occurred before the request could be sent, i sSent returns false.

voi d wait For Sent ()

This method blocks the calling thread until a request has been written to the client-side transport, or an exception occurs. After
wai t For Sent returns, i sSent returns true if the request was successfully written to the client-side transport, or false if an

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

exception occurred. In the case of a failure, you can call the corresponding end_ method or t hr owLocal Except i on to obtain the
exception.

® void throwLocal Exception() const
This method throws the local exception that caused the invocation to fail. If no exception has occurred yet, t hr omLocal Excepti on
does nothing.

® bool sentSynchronously() const
This method returns true if a request was written to the client-side transport without first being queued. If the request was initially
queued, sent Synchr onousl y returns false (independent of whether the request is still in the queue or has since been written to
the client-side transport).

Polling for Completion in C++

The AsyncResul t methods allow you to poll for call completion. Polling is useful in a variety of cases. As an example, consider the
following simple interface to transfer files from client to server:

Slice

interface FileTransfer

{
voi d send(int offset, ByteSeq bytes);

}

The client repeatedly calls send to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naive way to transmit a
file would be along the following lines:

C++
Fil eHandl e file = open(...);
Fil eTransferPrx ft = ...;
const int chunkSize = ...;
lce::Int offset = 0;
while (!file.eof()) {
Byt eSeq bs;
bs = file.read(chunkSize); // Read a chunk
ft->send(of fset, bs); /1 Send the chunk
of fset += bs.size();
}

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to
receive the data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time
doing nothing — the client does nothing while the server processes the data, and the server does nothing while it waits for the client to send
the next chunk.

Using asynchronous calls, we can improve on this considerably:

230 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

FileHandl e file = open(...);
Fil eTransferPrx ft = ...;
const int chunkSize = ...;
lce::Int offset = 0;

list<lce::AsyncResultPtr> results;
const int nunRequests = 5;

while (!file.eof()) {
Byt eSeq bs;
bs = file.read(chunkSi ze);

/1 Send up to nunRequests + 1 chunks asynchronously.
Ice::AsyncResul tPtr r = ft->begi n_send(offset, bs);
of fset += bs.size();

r->wait For Sent () ;
resul ts. push_back(r);

/1 Once there are nore than nunmRequests, wait for the | east
/1 recent one to conplete.
while (results.size() > nunRequests) {

Ice::AsyncResultPtr r = results.front();

results. pop_front();

r->wai t For Conpl et ed() ;

}

/1 Wait for any remaining requests to conplete.
while (!results.empty()) {
Ice::AsyncResultPtr r = results.front();
results. pop_front();
r->wai t For Conpl et ed() ;

/1 Wait until this request has been passed to the transport.

With this code, the client sends up to nunRequest s + 1 chunks before it waits for the least recent one of these requests to complete. In
other words, the client sends the next request without waiting for the preceding request to complete, up to the limit set by nunRequest s. In
effect, this allows the client to "keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously

do work.

Obviously, the correct chunk size and value of nunmRequest s depend on the bandwidth of the network as well as the amount of time taken
by the server to process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger
or queuing more requests no longer improves performance. With this technique, you can realize the full bandwidth of the link to within a

percent or two of the theoretical bandwidth limit of a native socket connection.

Generic Completion Callbacks in C++

The begi n_ method is overloaded to allow you to provide completion callbacks. Here are the corresponding methods for the get Nane

operation:

231

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

I ce::AsyncResul t Ptr begi n_get Namg(
I ce:: I nt nunber,
const lce::CallbackPtr& _ del,
const lce::Local ObjectPtr& _ cookie = 0);

I ce:: AsyncResul t Ptr begi n_get Name(
I ce:: 1 nt nunber,
const lce::Context& __ctx,
const |ce:: CallbackPtré& __del,
const lce::Local ObjectPtr& __cookie

0);

The second version of begi n_get Nane lets you override the default context. (We discuss the purpose of the cooki e parameter in the next
section.) Following the in-parameters, the begi n_ method accepts a parameter of type | ce: : Cal | backPt r. This is a smart pointer to a
callback class that is provided by the Ice run time. This class stores an instance of a callback class that you implement. The Ice run time
invokes a method on your callback instance when an asynchronous operation completes. Your callback class must provide a method that
returns voi d and accepts a single parameter of type const AsyncResul t Pt r & for example:

C++

class MyCal Il back : public IceUtil:: Shared {
public:
voi d finished(const Ice::AsyncResultPtré& r) {
Enpl oyeesPrx e = Enpl oyeesPrx: : uncheckedCast (r->get Proxy());
try {
string name = e->end_get Nanme(r);
cout << "Name is: " << nanme << endl;
} catch (const |ce::Exception& ex) {
cerr << "Exception is: " << ex << endl;
}
}
b
typedef Iceltil::Handl e<MyCal | back> MyCal | backPtr;

Note that your callback class must derive from | ceUt i | : : Shar ed. The callback method can have any name you prefer but its signature
must match the preceding example.

The implementation of your callback method must call the end_ method. The proxy for the call is available via the get Pr oxy method on the
AsyncResul t that is passed by the Ice run time. The return type of get Proxy is | ce: : Obj ect Pr x, so you must down-cast the proxy to
its correct type. (You should always use an uncheckedCast to do this, otherwise you will send an additional message to the server to verify
the proxy type.)

Your callback method should catch and handle any exceptions that may be thrown by the end_ method. If you allow an exception to escape
from the callback method, the Ice run time produces a log entry by default and ignores the exception. (You can disable the log message by
setting the property | ce. War n. AM Cal | back to zero.)

To inform the Ice run time that you want to receive a callback for the completion of the asynchronous call, you pass the callback instance to
the begi n_ method:

C++

Enpl oyeesPrx e = ...

MyCal | backPtr cb = new MyCal | back;
Ice::Call backPtr d = Ice::newCall back(ch, &WcCallback::finished);

e- >begi n_get Name(99, d);

Note the call to | ce: : newCal | back in this example. This helper function expects a smart pointer to your callback instance and a member
function pointer that specifies your callback method.

232 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Using Cookies for Generic Completion Callbacks in C++

It is common for the end_ method to require access to some state that is established by the code that calls the begi n_ method. As an
example, consider an application that asynchronously starts a number of operations and, as each operation completes, needs to update
different user interface elements with the results. In this case, the begi n_ method knows which user interface element should receive the
update, and the end_ method needs access to that element.

The API allows you to pass such state by providing a cookie. A cookie is an instance of a class that you write; the class can contain
whatever data you want to pass, as well as any methods you may want to add to manipulate that data.

The only requirement on the cookie class is that it must derive from | ce: : Local Obj ect . Here is an example implementation that stores a
W dget Handl e. (We assume that this class provides whatever methods are needed by the end_ method to update the display.)

C++

class Cookie : public Ice::Local Object

{
public:
Cooki e(Wdget Handl e h) : _h(h) {}
W dget Handl e getWdget () { return _h; }
private:
W dget Handl e _h;
b
typedef IceUtil:: Handl e<Cooki e> CookiePtr;

When you call the begi n_ method, you pass the appropriate cookie instance to inform the end_ method how to update the display:

C++

/'l Make cookie for call to getName(99).
Cooki ePtr cooki el = new Cooki e(w dget Handl el) ;

/1 Make cookie for call to getName(42);
Cooki ePtr cooki e2 = new Cooki e(w dget Handl e2) ;

/1 I nvoke the getNane operation with different cookies.
e->begi n_get Nane(99, get NaneCB, cookiel);
e->begi n_get Nane(24, get NaneCB, cookie2);

The end_ method can retrieve the cookie from the AsyncResul t by calling get Cooki e. For this example, we assume that widgets have a
wr i t eStri ng method that updates the relevant Ul element:

C++
voi d
MyCal | back: : get Name(const |ce:: AsyncResul tPtré& r)
{

Enpl oyeesPrx e = Enpl oyeesPrx: : uncheckedCast (r->get Proxy());
Cooki ePtr cooki e = Cooki ePtr::dynam cCast (r->get Cookie());
try {

string nane = e->end_get Nanme(r);

cooki e- >get Wdget ()->witeString(nane);
} catch (const Ice::Exception& ex) {

handl eExcepti on(ex);

}

The cookie provides a simple and effective way for you to pass state between the point where an operation is invoked and the point where
its results are processed. Moreover, if you have a number of operations that share common state, you can pass the same cookie instance to
multiple invocations.

233 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Type-Safe Completion Callbacks in C++

The generic callback API is not entirely type-safe:

You must down-cast the return value of get Pr oxy to the correct proxy type before you can call the end_ method.

You must call the correct end_ method to match the operation called by the begi n_ method.

If you use a cookie, you must down-cast the cookie to the correct type before you can access the data inside the cookie.

You must remember to catch exceptions when you call the end_ method; if you forget to do this, you will not know that the operation

failed.

sl i ce2cpp generates an additional type-safe API that takes care of these chores for you. The type-safe API is provided as a template that
works much like the | ce: : Cal | back class of the generic API, but requires strongly-typed method signatures.

To use type-safe callbacks, you must implement a callback class that provides two callback methods:

® A success callback that is called if the operation succeeds
® A failure callback that is called if the operation raises an exception

As for the generic API, your callback class must derive from | ceUt i | : : Shar ed. Here is a callback class for an invocation of the get Nare
operation:

C++

class MWyCallback : public lceUtil:: Shared
{
public:
voi d get NameCB(const string& name) {
cout << "Name is: " << name << endl|;

}

voi d failureCB(const Ice::Exception& ex) {
cerr << "Exception is: << ex << endl;

}

}

The callback methods can have any name you prefer and must have voi d return type. The failure callback always has a single parameter of
type const | ce:: Excepti on& The success callback parameters depend on the operation signature. If the operation has non-voi d
return type, the first parameter of the success callback is the return value. The return value (if any) is followed by a parameter for each
out-parameter of the corresponding Slice operation, in the order of declaration.

To receive these callbacks, you instantiate your callback instance and specify the methods you have defined before passing a smart pointer
to a callback wrapper instance to the begi n_ method:

C++

MyCal | backPtr cb = new MyCal | back;

Cal | back_Enpl oyees_get NanePtr get NaneCB =
newCal | back_Enpl oyees_get Nane(cb, &WCal | back: : get NaneCB, &W¢Cal | back: : fail ureCB);

Cal | back_Enpl oyees_get Nunber Pt r get Nunber CB =
newCal | back_Enpl oyees_get Nunber (cb, &WCal | back: : get Nunber CB, &WCal | back: : fail ureCB);

e->begi n_get Nane(99, get NaneCB);
e->begi n_get Nunber (" Fred", get Nunber CB);

Note how this code creates instances of two smart pointer types generated by sl i ce2cpp named Cal | back_Enpl oyees_get NanePt r
and Cal | back_Enpl oyees_get Nunber Pt r . Each smart pointer points to a template instance that encapsulates your callback instance
and two member function pointers for the callback methods. The name of this smart pointer type is formed as follows:

<nmodul e>: : Cal | back_<i nt erface>_<operati on>Ptr
Also note that the code uses helper functions to initialize the smart pointers. The first argument to the helper function is your callback

instance, and the two following arguments are the success and failure member function pointers, respectively. The name of this helper
function is formed as follows:

234 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

<nmodul e>: : newCal | back_<i nt er f ace>_<operati on>

Itis legal to pass a null pointer as the success or failure callback. For the success callback, this is legal only for operations that have voi d
return type and no out-parameters. This is useful if you do not care when the operation completes but want to know if the call failed. If you
pass a null exception callback, the Ice run time will ignore any exception that is raised by the invocation.

The type of the success and exception member function pointers is provided as Response and Except i on typedefs by the callback
template. For example, you can ignore exceptions for an invocation of get Narre as follows:

C++

Cal | back_Enpl oyees_op: : Excepti on nul | Exception = 0;
MyCal | backPtr cb = new MyCal | back;

Cal | back_Enpl oyees_get NanePtr get NaneCB =
newCal | back_Enpl oyees_get Nane(cb, &WCal | back: : get NaneCB, nul | Exception);

e->begi n_get Name(99, getNaneCB); // Ignores exceptions

Using Cookies for Type-Safe Completion Callbacks in C++

The begi n_ method optionally accepts a cookie as a trailing parameter. As for the generic API, you can use the cookie to share state
between the begi n_ and end_ methods. However, with the type-safe API, there is no need to down-cast the cookie. Instead, the cookie
parameter that is passed to the end_ method is strongly typed. Assuming that you have defined a Cooki e class and Cooki ePt r smart
pointer, you can pass a cookie to the begi n_ method as follows:

C++

MyCal | backPtr cb = new MyCal | back;

Cal | back_Enpl oyees_get NanePtr get NaneCB =
newCal | back_Enpl oyees_get Nane(cb, &WCal | back: : get NaneCB, &WCal | back: :fail ureCB);

Cooki ePtr cooki e = new Cooki e(w dget Handl e) ;
e->begi n_get Nane(99, get NameCB, cookie);

The callback methods of your callback class simply add the cookie parameter:

C++

class MWCallback : public lceUtil:: Shared
{
public:
voi d get NameCB(const string& name, const Cooki ePtr& cookie) {
cooki e- >get Wdget ()->witeString(nane);
}

voi d failureCB(const Ice::Exception& ex, const CookiePtr& cookie) {
cooki e- >get Wdget ()->writeError(ex.what());
}
}

Asynchronous Oneway Invocations in C++

You can invoke operations via oneway proxies asynchronously, provided the operation has voi d return type, does not have any
out-parameters, and does not raise user exceptions. If you call the begi n_ method on a oneway proxy for an operation that returns values
or raises a user exception, the begi n_ method throws an | celUti |l :: 111 egal Argunent Excepti on.

For the generic API, the callback method looks exactly as for a twoway invocation. However, for oneway invocations, the Ice run time does
not call the callback method unless the invocation raised an exception during the begi n_ method ("on the way out").

235 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

For the type-safe API, the newCal | back helper for voi d operations is overloaded so you can omit the success callback. For example, here
is how you could call i ce_pi ng asynchronously:

C++

MyCal | backPtr cb = new MyCal | back;

I ce:: Cal | back_Qbj ect_ice_pingPtr callback =
I ce:: newCal | back_Qbj ect _i ce_pi ng(ch, &WCall back::failureCB);

p- >begi n_opVoi d(cal | back) ;

Flow Control in C++

Asynchronous method invocations never block the thread that calls the begi n_ method: the Ice run time checks to see whether it can write
the request to the local transport. If it can, it does so immediately in the caller's thread. (In that case,

AsyncResul t: : sent Synchr onousl y returns true.) Alternatively, if the local transport does not have sufficient buffer space to accept the
request, the Ice run time queues the request internally for later transmission in the background. (In that case,

AsyncResul t: : sent Synchr onousl y returns false.)

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the
requests pile up in the client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the number of requests that are queued so, if that number exceeds
some threshold, the client stops invoking more operations until some of the queued operations have drained out of the local transport.

For the generic API, you can create an additional callback method:

C++

class MyCal Il back : public lIceUtil::Shared {
public:
voi d finished(const Ice::AsyncResultPtr&);
voi d sent(const |ce::AsyncResultPtr&);
b
typedef Iceltil::Handl e<MyCal | back> MyCal | backPtr;

As with any other callback method, you are free to choose any name you like. For this example, the name of the callback method is sent .
You inform the Ice run time that you want to be informed when a call has been passed to the local transport by specifying the sent method
as an additional parameter when you create the | ce: : Cal | back:

C++

Enpl oyeesPrx e = ... ;

MyCal | backPtr cb = new MyCal | back;
Ice::CallbackPtr d = Ice::newCal | back(cb, &WCall back::finished, &WcCall back::sent);

e->begi n_get Nane(99, d);

If the Ice run time can immediately pass the request to the local transport, it does so and invokes the sent method from the thread that calls
the begi n_ method. On the other hand, if the run time has to queue the request, it calls the sent method from a different thread once it has
written the request to the local transport. In addition, you can find out from the AsyncResul t that is returned by the begi n_ method
whether the request was sent synchronously or was queued, by calling sent Synchr onousl y.

For the generic API, the sent method has the following signature:

C++

voi d sent(const |ce::AsyncResult&);

236 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

For the type-safe API, there are two versions, one without and one with a cookie:

C++

voi d sent (bool sent Synchronously);
voi d sent(bool sentSynchronously, const <CookiePtr>& cookie);

For the version with a cookie, <Cooki ePt r > is replaced with the actual type of the cookie smart pointer you passed to the begi n_ method.

The sent methods allow you to limit the number of queued requests by counting the number of requests that are queued and decrementing
the count when the Ice run time passes a request to the local transport.

Asynchronous Batch Requests in C++

Applications that send batched requests can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method
i ce_fl ushBat chRequest s performs an immediate flush using the synchronous invocation model and may block the calling thread until
the entire message can be sent. Ice also provides asynchronous versions of this method so you can flush batch requests asynchronously.

begi n_i ce_f | ushBat chRequest s and end_i ce_f | ushBat chRequest s are proxy methods that flush any batch requests queued by
that proxy.

In addition, similar methods are available on the communicator and the Connect i on object that is returned by
AsyncResul t: : get Connecti on. These methods flush batch requests sent via the same communicator and via the same connection,
respectively.

Concurrency Semantics for AMI in C++

The Ice run time always invokes your callback methods from a separate thread. This means that you can safely use a non-recursive mutex
without risking deadlock. There is one exception to this rule: the run time calls the sent callback from the thread calling the begi n_ method
if the request could be sent synchronously. In the sent callback, you know which thread is calling the callback by looking at the

sent Synchr onousl| y member or parameter, so you can take appropriate action to avoid a self-deadlock.

AMI Limitations in C++

AMI invocations cannot be sent using collocated optimization. If you attempt to invoke an AMI operation using a proxy that is configured to
use collocation optimization, the Ice run time raises Col | ocat i onOpti mi zat i onExcept i on if the servant happens to be collocated; the
request is sent normally if the servant is not collocated. You can disable this optimization if necessary.

See Also

C++ Mapping for Classes
Smart Pointers for Classes
Request Contexts

Batched Invocations
Location Transparency

237 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

slice2cpp Command-Line Options

On this page:

® slice2cpp Command-Line Options
® --header-ext EXT
® --source-ext EXT
® --add-header HDR[, GUARD|
® --include-dir DR
* - -inpl
® --depend
® --dll-export SYMBOL
® --checksum
® --stream
® Include Directives
® Header Files
® Source Files

sl i ce2cpp Command-Line Options
The Slice-to-C++ compiler, sl i ce2cpp, offers the following command-line options in addition to the standard options.

- - header - ext EXT

Changes the file extension for the generated header files from the default h to the extension specified by EXT.

You can also change the header file extension with a global metadata directive:

Slice

[["cpp: header - ext: hpp"]]

I

Only one such directive can appear in each source file. If you specify a header extension on both the command line and with a metadata
directive, the metadata directive takes precedence. This ensures that included Slice files that were compiled separately get the correct
header extension (provided that the included Slice files contain a corresponding metadata directive). For example:

Slice

Il File exanple.ice
#i ncl ude <l ce/BuiltinSequences.ice>

/1

Compiling this file with

$ slice2cpp --header-ext=hpp -1/opt/Icel/include exanple.ice

generates exanpl e. hpp, but the #i ncl ude directive in that file is for | ce/ Bui | ti nSequences. h (not | ce/ Bui | ti nSequences. hpp)
because Bui | ti nSequences. i ce contains the metadata directive [[" cpp: header-ext: h"]].

You normally will not need to use this metadata directive. The directive is necessary only if:
You #i ncl ude a Slice file in one of your own Slice files.
The included Slice file is part of a library you link against.

The library ships with the included Slice file's header.

L]
L]
°
® The library header uses a different header extension than your own code.

For example, if the library uses . hpp as the header extension, but your own code uses . h, the library's Slice file should contain a

238 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

[["cpp: header ?ext: hpp"]] directive. (If the directive is missing, you can add it to the library's Slice file.)
--source-ext EXT

Changes the file extension for the generated source files from the default cpp to the extension specified by EXT.
- - add- header HDR[, GUARD]

This option adds an include directive for the specified header at the beginning of the generated source file (preceding any other include
directives). If GUARD is specified, the include directive is protected by the specified guard. For example, - - add?header
preconpi |l ed. h, _ PRECOWPI LED_H__ results in the following directives at the beginning of the generated source file:

C++

#i fndef _ PRECOWPI LED H
#define _ PRECOWPILED H _
#i ncl ude <preconpil ed. h>
#endi f

The option can be repeated to create include directives for several files.

As suggested by the preceding example, this option is useful mainly to integrate the generated code with a compiler's precompiled header
mechanism.

--include-dir DR

Modifies #i ncl ude directives in source files to prepend the path name of each header file with the directory DI R.
--impl

Generate sample implementation files. This option will not overwrite an existing file.

- -depend

Prints makefile dependency information to standard output. No code is generated when this option is specified. The output generally needs
to be filtered before it can be included in a makefile; the Ice build system uses the script conf i g/ makedepend. py for this purpose.

--dl | -export SYMBOL

Use SYMBOL to control DLL exports or imports. This option allows you to selectively export or import global symbols in the generated code.
As an example, compiling a Slice definition with:

$ slice2cpp --dll-export ENABLE DLL x.ice

results in the following additional code being generated into x. h:

C++

#i f ndef ENABLE_DLL

ifdef ENABLE DLL_EXPORTS

define ENABLE DLL | CE_DECLSPEC EXPORT
el se

define ENABLE DLL | CE_DECLSPEC | MPORT
endi f

#endi f

| CE_DECLSPEC _EXPORT and | CE_DECLSPEC | MPORT are platform-specific macros. For example, for Windows, they are defined as
decl spec(dl | export) and decl spec(dl |i nport), respectively; for Solaris using CC version 5.5 or later, | CE_DECLSPEC_EXPORT is
defined as gl obal , and | CE_DECLSPEC_| MPORT is empty.

239 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Similar definitions exist for other platforms. For platforms that do not have any concept of explicit export or import of shared
library symbols, both macros are empty.

The symbol name you specify on the command line (ENABLE_DLL in this example) is used by the generated code to export or import any
symbols that must be visible to code outside the generated compilation unit. The net effect is that, if you want to create a DLL that includes
X. cpp, but also want to use the generated types in compilation units outside the DLL, you can arrange for the relevant symbols to be
exported by compiling x. cpp with - DENABLE_DLL_EXPORTS.

--checksum

Generate checksums for Slice definitions.

--Stream

Generate streaming helper functions for Slice types.

Include Directives

he #i ncl ude directives generated by the Slice-to-C++ compiler can be a source of confusion if the semantics governing their generation are
not well-understood. The generation of #i ncl ude directives is influenced by the command-line options - | and - - i ncl ude- di r ; these
options are discussed in more detail below. The - - out put - di r option directs the translator to place all generated files in a particular
directory, but has no impact on the contents of the generated code.

Given that the #i ncl ude directives in header files and source files are generated using different semantics, we describe them in separate
sections.

Header Files

In most cases, the compiler generates the appropriate #i ncl ude directives by default. As an example, suppose file A. i ce includes B. i ce
using the following statement:

Slice

/Il Aice
#i ncl ude <B.ice>

Assuming both files are in the current working directory, we run the compiler as shown below:

$ slice2cpp -1. Alice

The generated file A. h contains this #i ncl ude directive:

C++

/1 Ah
#i ncl ude <B. h>

If the proper include paths are specified to the C++ compiler, everything should compile correctly.

Similarly, consider the common case where A. i ce includes B. i ce from a subdirectory:

Slice

/Il Aice
#i ncl ude <inc/B.ice>

Assuming both files are in the i nc subdirectory, we run the compiler as shown below:

240 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

$ slice2cpp -1. inc/Aice

The default output of the compiler produces this #i ncl ude directive in A. h:

C++

/1 A h
#i ncl ude <inc/B. h>

Again, it is the user's responsibility to ensure that the C++ compiler is configured to find i nc/ B. h during compilation.

Now let us consider a more complex example, in which we do not want the #i ncl ude directive in the header file to match that of the Slice
file. This can be necessary when the organizational structure of the Slice files does not match the application's C++ code. In such a case, the
user may need to relocate the generated files from the directory in which they were created, and the #i ncl ude directives must be aligned
with the new structure.

For example, let us assume that B. i ce is located in the subdirectory sl i ce/ i nc:

Slice

/Il Aice
#i nclude <slice/inc/B.ice>

However, we do not want the sl i ce subdirectory to appear in the #i ncl ude directive generated in the header file, therefore we specify the
additional compiler option - | sl i ce:

$ slice2cpp -1. -Islice slicel/linc/Aice

The generated code demonstrates the impact of this extra option:

C++

/1 A h
#i ncl ude <inc/B. h>

As you can see, the #i ncl ude directives generated in header files are affected by the include paths that you specify when running the
compiler. Specifically, the include paths are used to abbreviate the path name in generated #i ncl ude directives.

When translating an #i ncl ude directive from a Slice file to a header file, the compiler compares each of the include paths against the path
of the included file. If an include path matches the leading portion of the included file, the compiler removes that leading portion when
generating the #i ncl ude directive in the header file. If more than one include path matches, the compiler selects the one that results in the
shortest path for the included file.

For example, suppose we had used the following options when compiling A. i ce:

$ slice2cpp -1. -Islice -Islicelinc slicel/linc/A ice

In this case, the compiler compares all of the include paths against the included file sl i ce/ i nc/ B. i ce and generates the following
directive:

C++

/1 A h
#i ncl ude <B. h>

The option - 1 sl i ce/ i nc produces the shortest result, therefore the default path for the included file (sl i ce/ i nc/ B. h) is replaced with
B. h.

241 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

In general, the - | option plays two roles: it enables the preprocessor to locate included Slice files, and it provides you with a certain amount
of control over the generated #i ncl ude directives. In the last example above, the preprocessor locates sl i ce/ i nc/ B. i ce using the
include path specified by the - | . option. The remaining - | options do not help the preprocessor locate included files; they are simply hints
to the compiler.

Finally, we recommend using caution when specifying include paths. If the preprocessor is able to locate an included file via multiple include
paths, it always uses the first include path that successfully locates the file. If you intend to modify the generated #i ncl ude directives by

specifying extra - | options, you must ensure that your include path hints match the include path selected by the preprocessor to locate the
included file. As a general rule, you should avoid specifying include paths that enable the preprocessor to locate a file in multiple ways.

Source Files

By default, the compiler generates #i ncl ude directives in source files using only the base name of the included file. This behavior is usually
appropriate when the source file and header file reside in the same directory.

For example, suppose A. i ce includes B. i ce from a subdirectory, as shown in the following snippet of A. i ce:

Slice

/Il Aice
#i ncl ude <inc/B.ice>

We generate the source file using this command:

$ slice2cpp -1. inc/Aice

Upon examination, we see that the source file contains the following #i ncl ude directive:

C++

/Il A cpp
#i ncl ude <B. h>

However, suppose that we wish to enforce a particular standard for generated #i ncl ude directives so that they are compatible with our C++
compiler's existing include path settings. In this case, we use the - - i ncl ude- di r option to modify the generated code. For example,
consider the compiler command shown below:

$ slice2cpp --include-dir src -1. inc/Aice

The source file now contains the following #i ncl ude directive:

C++

Il A cpp
#i ncl ude <src/B. h>

Any leading path in the included file is discarded as usual, and the value of the - - i ncl ude- di r option is prepended.

See Also
® Using the Slice Compilers

® Using Slice Checksums in C++
® Streaming Interfaces

242 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Using Slice Checksums in C++

The Slice compilers can optionally generate checksums of Slice definitions. For sl i ce2cpp, the - - checksumoption causes the compiler to
generate code in each C++ source file that accumulates checksums in a global map. A copy of this map can be obtained by calling a
function defined in the header file | ce/ Sl i ceChecksuns. h:

C++

nanmespace Ice {
I ce:: SliceChecksunDi ct sliceChecksuns();

}

In order to verify a server's checksums, a client could simply compare the dictionaries using the equality operator. However, this is not
feasible if it is possible that the server might be linked with more Slice definitions than the client. A more general solution is to iterate over the
local checksums as demonstrated below:

C++
I ce:: SliceChecksunDi ct serverChecksunms = ...
Ice:: SliceChecksunDi ct |ocal Checksuns = Ice::sliceChecksuns();
for (lce::SliceChecksunDict::const_iterator p = | ocal Checksuns. begi n();

p != local Checksuns. end(); ++p) {

Ice::SliceChecksunDict::const_iterator g = serverChecksuns. find(p->first);
if (g == serverChecksuns.end()) {

/1 No match found for type id!
} else if (p->second != g->second) {

/1 Checksum mi smat ch!

}

In this example, the client first verifies that the server's dictionary contains an entry for each Slice type ID, and then it proceeds to compare
the checksums.

See Also

® Slice Checksums
¢ slice2cpp Command-Line Options

243 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Example of a File System Client in C++

This page presents a very simple client to access a server that implements the file system we developed in Slice for a Simple File System.

The C++ code shown here hardly differs from the code you would write for an ordinary C++ program. This is one of the biggest advantages
of using Ice: accessing a remote object is as easy as accessing an ordinary, local C++ object. This allows you to put your effort where you

should, namely, into developing your application logic instead of having to struggle with arcane networking APIs. This is true for the server

side as well, meaning that you can develop distributed applications easily and efficiently.

We now have seen enough of the client-side C++ mapping to develop a complete client to access our remote file system. For reference,
here is the Slice definition once more:

Slice

nmodul e Fil esystem {
interface Node {
i denpotent string name();

}s

exception GenericError {
string reason;

I
sequence<string> Lines;

interface File extends Node {
i denpot ent Lines read();
i denpotent void wite(Lines text) throws GenericError;

s
sequence<Node* > NodeSeq;

interface Directory extends Node {
i demrpot ent NodeSeq list();
I
b

To exercise the file system, the client does a recursive listing of the file system, starting at the root directory. For each node in the file
system, the client shows the name of the node and whether that node is a file or directory. If the node is a file, the client retrieves the
contents of the file and prints them.

The body of the client code looks as follows:

244 Copyright © 2011, ZeroC, Inc.

245

Ice 3.4.2 Documentation

C++

#i nclude <lce/lce. h>

#i ncl ude <Fil esystem h>
#i ncl ude <i ostreanp

#i ncl ude <iterator>

usi ng nanespace std;
usi ng nanespace Fil esystem

static void
|i stRecursive(const DirectoryPrx& dir, int depth = 0)

{
}

int

mai n(int argc, char* argv[])

{

11

int status = O;
I ce:: Communi catorPtr ic;

try {
/'l Create a conmuni cator
/1
ic =lce::initialize(argc, argv);

/'l Create a proxy for the root directory

/1
Ice::CbjectPrx base = ic->stringToProxy("RootDir:default -p 10000");
if (!base)

throw "Coul d not create proxy";

/1 Down-cast the proxy to a Directory proxy
/1
DirectoryPrx rootDir = DirectoryPrx::checkedCast (base);
if (lrootDr)
throw "I nvalid proxy";

/1 Recursively list the contents of the root directory
/1
cout << "Contents of root directory:
|'i st Recursive(rootDir);

} catch (const Ice::Exception& ex) {
cerr << ex << endl;
status = 1;

} catch (const char* nsg) {
cerr << nsg << endl;
status = 1;

<< endl;

}

/1 dean up
/1
if (ic)
i c->destroy();

return status;

1. The code includes a few header files:

® |cellce. h:

Always included in both client and server source files, provides definitions that are necessary for accessing the Ice run time.
® Filesystem h:

The header that is generated by the Slice compiler from the Slice definitions in Fi | esystem i ce.
® jostream

The client uses the i ost r eamlibrary to produce its output.

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

® jterator:
The implementation of | i st Recur si ve uses an STL iterator.

2. The code adds usi ng declarations for the st d and Fi | esyst emnamespaces.

3. The structure of the code in mai n follows what we saw in Hello World Application. After initializing the run time, the client creates a
proxy to the root directory of the file system. For this example, we assume that the server runs on the local host and listens using the
default protocol (TCP/IP) at port 10000. The object identity of the root directory is known to be Root Di r.

4. The client down-casts the proxy to Di r ect or yPr x and passes that proxy to | i st Recur si ve, which prints the contents of the file
system.

Most of the work happensin | i st Recur si ve:

C++
/'l Recursively print the contents of directory "dir" in
/Il tree fashion. For files, show the contents of each file.
/'l The "depth" paranmeter is the current nesting |evel
/1 (for indentation).
static void
IistRecursive(const DirectoryPrx& dir, int depth = 0)
{
string indent(++depth, "\t');
NodeSeq contents = dir->list();
for (NodeSeq::const_iterator i = contents.begin(); i != contents.end(); ++i) {
DirectoryPrx dir = DirectoryPrx::checkedCast(*i);
FilePrx file = FilePrx::uncheckedCast(*i);
cout << indent << (*i)->name() << (dir ? " (directory):" : " (file):") << endl;
if (dir) {
I'i st Recursive(dir, depth);
} else {
Lines text = file->read();
for (Lines::const_iterator j = text.begin(); j !=text.end(); ++) {
cout << indent << "\t" << *j << endl;
}
}
}
}

The function is passed a proxy to a directory to list, and an indent level. (The indent level increments with each recursive call and allows the
code to print the name of each node at an indent level that corresponds to the depth of the tree at that node.) | i st Recur si ve calls the list
operation on the directory and iterates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Di r ect ory proxy, as well as an uncheckedCast to narrow the
Node proxy to a Fi | e proxy. Exactly one of those casts will succeed, so there is no need to call checkedCast twice: if the Node
is-a Di rect ory, the code uses the Di r ect or yPr x returned by the checkedCast ; if the checkedCast fails, we know that the
Node is-a Fi | e and, therefore, an uncheckedCast is sufficient to geta Fi | ePr x.

In general, if you know that a down-cast to a specific type will succeed, it is preferable to use an uncheckedCast instead of a
checkedCast because an uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which cast succeeded, prints " (di rectory) " or
"(file)" following the name.

3. The code checks the type of the node:

® Ifitis a directory, the code recurses, incrementing the indent level.
® Ifitis a file, the code calls the r ead operation on the file to retrieve the file contents and then iterates over the returned
sequence of lines, printing each line.

Assume that we have a small file system consisting of two files and a directory as follows:

246 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

— F H
O = Directory ;hi RootDir

¥ ;
. = File / \\

r.
Coleridge :/—\ . README

Kubla-Khan

A small file system.

The output produced by the client for this file system is:

Contents of root directory:
READMVE (file):
This file systemcontains a collection of poetry.
Col eridge (directory):
Kubl a_Khan (file):
I'n Xanadu di d Kubl a Khan
A stately pl easure-done decree:
Where Al ph, the sacred river, ran
Through caverns neasurel ess to man
Down to a sunl ess sea.

Note that, so far, our client (and server) are not very sophisticated:

® The protocol and address information are hard-wired into the code.
® The client makes more remote procedure calls than strictly necessary; with minor redesign of the Slice definitions, many of these
calls can be avoided.

We will see how to address these shortcomings in our discussions of IceGrid and object life cycle.

See Also

Hello World Application

Slice for a Simple File System

Example of a File System Server in C++
Object Life Cycle

IceGrid

247 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Server-Side Slice-to-C++ Mapping

The mapping for Slice data types to C++ is identical on the client side and server side. This means that everything in Client-Side
Slice-to-C++ Mapping also applies to the server side. However, for the server side, there are a few additional things you need to know —
specifically how to:

Initialize and finalize the server-side run time
Implement servants

Pass parameters and throw exceptions
Create servants and register them with the Ice

run time.

Because the mapping for Slice data types is identical for clients and servers, the server-side mapping only adds a few additional
mechanisms to the client side: a small API to initialize and finalize the run time, plus a few rules for how to derive servant classes from
skeletons and how to register servants with the server-side run time.

Although the examples we present are very simple, they accurately reflect the basics of writing an Ice server. Of course, for more
sophisticated servers, you will be using additional APIs, for example, to improve performance or scalability. However, these APIs are all
described in Slice, so, to use these APIs, you need not learn any C++ mapping rules beyond those we describe here.

Topics

248

The Server-Side main Function in C++
Server-Side C++ Mapping for Interfaces
Parameter Passing in C++

Raising Exceptions in C++

Object Incarnation in C++

Asynchronous Method Dispatch (AMD) in C++
Example of a File System Server in C++

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The Server-Side main Function in C++

On this page:

® A Basic nai n Function in C++
® Thelce:: Application Class
® Using | ce:: Appl i cati on on the Client Side
® Catching Signals in C++
| ce:: Appl i cati on and Properties
Limitations of | ce: : Appl i cati on
e:: Servi ce Class
| ce: : Servi ce Member Functions
Unix Daemons
Windows Services
| ce: : Servi ce Logging Considerations

® Thel

e e 0 060 o o

A Basic nai n Function in C++

The main entry point to the Ice run time is represented by the local Slice interface | ce: : Communi cat or . As for the client side, you must
initialize the Ice run time by calling | ce: : i ni ti al i ze before you can do anything else in your server. | ce: ;i ni ti al i ze returns a smart
pointer to an instance of an | ce: : Conmuni cat or :

C++
int
mai n(int argc, char* argv[])
{
I ce:: Communi catorPtr ic = lce::initialize(argc, argv);
/1
}

lce::initialize acceptsa C++ reference to ar gc and ar gv. The function scans the argument vector for any command-line options that
are relevant to the Ice run time; any such options are removed from the argument vector so, when | ce: : i ni ti al i ze returns, the only
options and arguments remaining are those that concern your application. If anything goes wrong during initialization, i ni ti al i ze throws
an exception.

) Ice::initialize has additional overloads to permit other information to be passed to the Ice run time.

Before leaving your mai n function, you must call Conmuni cat or : : dest r oy. The dest r oy operation is responsible for finalizing the Ice
run time. In particular, dest r oy waits for any operation implementations that are still executing in the server to complete. In addition,
dest r oy ensures that any outstanding threads are joined with and reclaims a number of operating system resources, such as file
descriptors and memory. Never allow your mai n function to terminate without calling dest r oy first; doing so has undefined behavior.

The general shape of our server-side mai n function is therefore as follows:

249 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

#i nclude <lce/lce. h>

int
mai n(int argc, char* argv[])
{

int status = O;

I ce:: Comruni catorPtr ic;

try {
ic = lce::initialize(argc, argv);

/1 Server code here...

} catch (const Ice::Exception& e) {
cerr << e << endl;
status = 1;
} catch (const std::string& msg) {
cerr << msg << endl;
status = 1;
} catch (const char* nmsg) {
cerr << nsg << endl;
status = 1;
}
if (ic) {
try {
i c->destroy();
} catch (const Ice::Exception& e) {
cerr << e << endl;
status = 1;
}
}

return status;

Note that the code placesthe calltol ce::initializeintoatry block and takes care to return the correct exit status to the operating

system. Also note that an attempt to destroy the communicator is made only if the initialization succeeded.

The cat ch handlers for const std::string &andconst char * arein place as a convenience feature: if we encounter a fatal error
condition anywhere in the server code, we can simply throw a string or a string literal containing an error message; this causes the stack to
be unwound back to mai n, at which point the error message is printed and, after destroying the communicator, mai n terminates with

non-zero exit status.

Thel ce:: Application Class

The preceding structure for the nmai n function is so common that Ice offers a class, | ce: : Appl i cat i on, that encapsulates all the correct
initialization and finalization activities. The definition of the class is as follows (with some detail omitted for now):

250

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

nanmespace Ice {
enum Si gnal Pol i cy { Handl eSi gnal s, NoSi gnal Handl ing };

class Application /* ... */ {

public:
Application(Signal Policy = Handl eSi gnal s);
virtual ~Application();

nt main(int argc, char*[] argv);

nt main(int argc, char*[] argv, const char* config);

nt main(int argc, char*[] argv, const Ice::InitializationData& id);

nt main(int argc, char* const [] argv);

nt main(int argc, char* const [] argv, const char* config);

nt main(int argc, char* const [] argv, const lce::InitializationData& id);
nt main(const lce::StringSeq&);

nt mai n(const Ice::StringSeq& const char* config);

nt mai n(const Ice::StringSeq& const Ice::InitializationData& id);

#i fdef _WN32
int nain(int argc, wchar_t*[] argv);
int nain(int argc, wchar_t*[] argv, const char* config);
int nmain(int argc, wchar_t*[] argv, const lce::InitializationData& id);

#endi f
virtual int run(int, char*[]) = 0;
static const char* appNane();
static Conmmuni catorPtr communi cator();
11
h
}

The intent of this class is that you specialize | ce: : Appl i cat i on and implement the pure virtual r un method in your derived class.
Whatever code you would normally place in mai n goes into the r un method instead. Using | ce: : Appl i cati on, our program looks as
follows:

C++

#i ncl ude <lce/lce. h>
class MyApplication : virtual public lce::Application {
public:

virtual int run(int, char*[]) {

/1 Server code here...

return O;

}
H
int
main(int argc, char* argv[])
{

M/ Appl i cation app;

return app.main(argc, argv);
}

Note that Appl i cati on: : mai n is overloaded: you can pass a string sequence instead of an ar gc/ar gv pair. This is useful if you need to
parse application-specific property settings on the command line. You also can call mai n with an optional file name or an
InitializationDat a structure.

If you pass a configuration file name to mai n, the property settings in this file are overridden by settings in a file identified by the

251 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

| CE_CONFI Genvironment variable (if defined). Property settings supplied on the command line take precedence over all other settings.
The Appl i cati on: : mai n function does the following:

1. Itinstalls an exception handler for | ce: : Excepti on. If your code fails to handle an Ice exception, Appl i cat i on: : nai n prints the
exception details on st der r before returning with a non-zero return value.

2. Itinstalls exception handlers for const std::string &andconst char*. This allows you to terminate your server in response
to a fatal error condition by throwing a st d: : st ri ng or a string literal. Appl i cati on: : mai n prints the string on st derr before
returning a non-zero return value.

3. Itinitializes (by calling | ce: : i ni ti al i ze) and finalizes (by calling Conmruni cat or : : dest r oy) a communicator. You can get
access to the communicator for your server by calling the static communi cat or () member function.

4. It scans the argument vector for options that are relevant to the Ice run time and removes any such options. The argument vector
that is passed to your r un method therefore is free of Ice-related options and only contains options and arguments that are specific
to your application.

5. It provides the name of your application via the static appNanme member function. The return value from this call is ar gv[0] , so you
can get at ar gv[0] from anywhere in your code by calling | ce: : Appl i cati on: : appNane (which is often necessary for error
messages).

6. Itinstalls a signal handler that properly destroys the communicator.

7. ltinstalls a per-process logger if the application has not already configured one. The per-process logger uses the value of the
| ce. Progr amNane property as a prefix for its messages and sends its output to the standard error channel. An application can
also specify an alternate logger.

Using | ce: : Appl i cat i on ensures that your program properly finalizes the Ice run time, whether your server terminates normally or in
response to an exception or signal. We recommend that all your programs use this class; doing so makes your life easier. In addition,

I ce: : Appl i cati on also provides features for signal handling and configuration that you do not have to implement yourself when you use
this class.

Using | ce: : Appl i cati on on the Client Side

You canuse | ce: : Appl i cati on for your clients as well: simply implement a class that derives from | ce: : Appl i cat i on and place the
client code into its r un method. The advantage of this approach is the same as for the server side: | ce: : Appl i cat i on ensures that the
communicator is destroyed correctly even in the presence of exceptions.

Catching Signals in C++

The simple server we developed in Hello World Application had no way to shut down cleanly: we simply interrupted the server from the
command line to force it to exit. Terminating a server in this fashion is unacceptable for many real-life server applications: typically, the
server has to perform some cleanup work before terminating, such as flushing database buffers or closing network connections. This is
particularly important on receipt of a signal or keyboard interrupt to prevent possible corruption of database files or other persistent data.

To make it easier to deal with signals, | ce: : Appl i cat i on encapsulates the platform-independent signal handling capabilities provided by
theclass | ceUtil:: Ctrl CHandl er. This allows you to cleanly shut down on receipt of a signal and to use the same source code
regardless of the underlying operating system and threading package:

C++

nanespace |ce {
class Application : /* ... */ {
public:
/1
static void destroyOninterrupt();
static void shutdownOnlnterrupt();
static void ignorelnterrupt();
static void call backOnlnterrupt();
static void holdinterrupt();
static void releaselnterrupt();
static bool interrupted();

virtual void interruptCallback(int);

You canuse | ce: : Appl i cat i on under both Windows and Unix: for Unix, the member functions control the behavior of your application for
SI A NT, SI GHUP, and SI GTERM for Windows, the member functions control the behavior of your application for CTRL_C_EVENT,
CTRL_BREAK_EVENT, CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, and CTRL_SHUTDOWN_EVENT.

The functions behave as follows:

252 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

dest royOnl nt er r upt
This function creates an | ceUti | : : Ctrl CHandl er that destroys the communicator when one of the monitored signals is raised.
This is the default behavior.

shut downOnl nt er r upt
This function creates an | ceUti | : : Ctr| CHandl er that shuts down the communicator when one of the monitored signals is
raised.

i gnorel nterrupt
This function causes signals to be ignored.

cal | backOnl nt er rupt

This function configures | ce: : Appl i cati on to invoke i nt er r upt Cal | back when a signal occurs, thereby giving the subclass
responsibility for handling the signal. Note that if the signal handler needs to terminate the program, you must call _exi t (instead of
exi t). This prevents global destructors from running which, depending on the activities of other threads in the program, could cause
deadlock or assertion failures.

hol dI nt errupt
This function causes signals to be held.

rel easel nterrupt
This function restores signal delivery to the previous disposition. Any signal that arrives after hol dl nt er r upt was called is
delivered when you call r el easel nt errupt.

interrupted
This function returns t r ue if a signal caused the communicator to shut down, f al se otherwise. This allows us to distinguish
intentional shutdown from a forced shutdown that was caused by a signal. This is useful, for example, for logging purposes.

i nterrupt Cal | back
A subclass overrides this function to respond to signals. The Ice run time may call this function concurrently with any other thread. If
the function raises an exception, the Ice run time prints a warning on cer r and ignores the exception.

By default, | ce: : Appl i cati on behaves as if dest r oyOnl nt er r upt was invoked, therefore our server nai n function requires no change
to ensure that the program terminates cleanly on receipt of a signal. (You can disable the signal-handling functionality of

I ce: : Appl i cati on by passing the enumerator NoSi gnal Handl i ng to the constructor. In that case, signals retain their default behavior,
that is, terminate the process.) However, we add a diagnostic to report the occurrence of a signal, so our mai n function now looks like:

C++
#i nclude <lce/lce. h>

class MyApplication : virtual public Ice::Application {
public:
virtual int run(int, char*[]) {

/1 Server code here...

if (interrupted())
cerr << appNane() <<

termnating" << endl;

return O;

}
H
int
mai n(int argc, char* argv[])
{

M/ Appl i cation app;

return app.main(argc, argv);
}

Note that, if your server is interrupted by a signal, the Ice run time waits for all currently executing operations to finish. This means that an
operation that updates persistent state cannot be interrupted in the middle of what it was doing and cause partial update problems.

Under Unix, if you handle signals with your own handler (by deriving a subclass from | ce: : Appl i cati on and calling
cal | backOnl nt er r upt), the handler is invoked synchronously from a separate thread. This means that the handler can safely call into the

253

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Ice run time or make system calls that are not async-signal-safe without fear of deadlock or data corruption. Note that | ce: : Appl i cati on
blocks delivery of SI G NT, SI GHUP, and SI GTERM |If your application calls exec, this means that the child process will also ignore these
signals; if you need the default behavior of these signals in the exec'd process, you must explicitly reset them to SI G_DFL before calling
exec.

I ce:: Applicationand Properties

Apart from the functionality shown in this section, | ce: : Appl i cat i on also takes care of initializing the Ice run time with property values.
Properties allow you to configure the run time in various ways. For example, you can use properties to control things such as the thread pool
size or port number for a server.

Limitations of | ce: : Appl i cati on

I ce:: Appl i cati on is a singleton class that creates a single communicator. If you are using multiple communicators, you cannot use
I ce:: Appl i cati on. Instead, you must structure your code as we saw in Hello World Application (taking care to always destroy the
communicators).

The |l ce: : Servi ce Class

The | ce: : Appl i cati on class is very convenient for general use by Ice client and server applications. In some cases, however, an
application may need to run at the system level as a Unix daemon or Windows service. For these situations, Ice includes | ce: : Servi ce, a
singleton class that is comparable to | ce: : Appl i cat i on but also encapsulates the low-level, platform-specific initialization and shutdown
procedures common to system services. The | ce: : Ser vi ce class is defined as follows:

254 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

nanmespace Ice {
class Service {
public:
Service();

virtual bool shutdown();
virtual void interrupt();

int main(int& argc, char* argv[],
const lce::InitializationData& = lce::InitializationData());
int nain(lce::StringSeqg& args,
const lce::InitializationData& = lce::InitializationData());
I ce:: Comuni cator Ptr communi cator () const;
static Service* instance();
bool service() const;
std::string nane() const;
bool checkSysten() const;

int run(int& argc, char* argv[], const lce::InitializationData&);

#ifdef _WN32
int main(int& argc, wchar_t* argv[], const InitializationData& = InitializationData());

voi d configureService(const std::string& nane);

#el se
voi d confi gureDaenon(bool changeDir, bool closeFiles, const std::string& pidFile);
#endi f
virtual void handlelnterrupt(int);
protected:
virtual bool start(int argc, char* argv[], int& status) = 0;
virtual void waitFor Shutdown();
virtual bool stop();
virtual Ice::ConmmunicatorPtr initializeComunicator(
int& argc, char* argv[],
const lce::InitializationDatag&);
virtual void syserror(const std::string& nsg);
virtual void error(const std::string& nsg);
virtual void warning(const std::string& nsg);
virtual void trace(const std::string& nsg);
virtual void print(const std::string& nsg);
voi d enabl el nterrupt();
voi d disablelnterrupt();
/1
i
}

At a minimum, an Ice application that uses the | ce: : Ser vi ce class must define a subclass and override the st art member function,
which is where the service must perform its startup activities, such as processing command-line arguments, creating an object adapter, and
registering servants. The application's mai n function must instantiate the subclass and typically invokes its mai n member function, passing
the program's argument vector as parameters. The example below illustrates a minimal | ce: : Ser vi ce subclass:

255 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

#i ncl ude <l ce/ Service. h>

class MyService : public lce::Service {

protect ed:
virtual bool start(int, char*[], int&;
private:
I ce:: Cbj ect AdapterPtr _adapter;
b
bool

MyService::start(int argc, char* argv[], int& status)
{
_adapt er = conmmuni cator () ->creat eObj ect Adapt er (" M/Adapter");
_adapt er - >addW t hUUI D(new MyServant|);
_adapter->activate();
status = EXI T_SUCCESS;
return true;

}
int
mai n(int argc, char* argv[])
{
M/ Servi ce svc;
return svc.main(argc, argv);
}

The Ser vi ce: : mai n member function performs the following sequence of tasks:

1. Scans the argument vector for reserved options that indicate whether the program should run as a system service and removes
these options from the argument vector (ar gc is adjusted accordingly). Additional reserved options are supported for administrative

tasks.

2. Configures the program for running as a system service (if necessary) by invoking conf i gur eSer vi ce or conf i gur eDaenon, as

3.

appropriate for the platform.
Invokes the r un member function and returns its result.

Note that, as for Appl i cati on: : mai n, Servi ce: : mai n is overloaded to accept a string sequence instead of an ar gc/ar gv pair. This is
useful if you need to parse application-specific property settings on the command line.

The Ser vi ce: : r un member function executes the service in the steps shown below:

1.
2. Invokes theini ti al i zeComuni cat or member function to obtain a communicator. The communicator instance can be accessed

w

No ok~

Installs a signal handler.

using the conmruni cat or member function.

Invokes the st art member function. If st art returns f al se to indicate failure, r un destroys the communicator and returns

immediately using the exit status provided in st at us.

Invokes the wai t For Shut down member function, which should block until shut down is invoked.

Invokes the st op member function. If st op returns t r ue, r un considers the application to have terminated successfully.

Destroys the communicator.
Gracefully terminates the system service (if necessary).

If an unhandled exception is caught by Ser vi ce: : r un, a descriptive message is logged, the communicator is destroyed and the service is
terminated.

lce::

Ser vi ce Member Functions

The virtual member functions in | ce: : Ser vi ce represent the points at which a subclass can intercept the service activities. All of the virtual
member functions (except st ar t) have default implementations.

® void handl elnterrupt(int sig)
Invoked by the Ct r | CHandl er when a signal occurs. The default implementation ignores the signal if it represents a logoff event
and the | ce. Nohup property is set to a value larger than zero, otherwise it invokes the i nt er r upt member function.

® | ce::ConmunicatorPtr initializeConmunicator(int & argc,

256

char * argv[],

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

const lce::InitializationData & data)
Initializes a communicator. The default implementation invokes | ce: : i ni ti al i ze and passes the given arguments.

voi d interrupt()
Invoked by the signal handler to indicate a signal was received. The default implementation invokes the shut down member
function.

bool shut down()
Causes the service to begin the shutdown process. The default implementation invokes shut down on the communicator. The
subclass must return t r ue if shutdown was started successfully, and f al se otherwise.

bool start(int argc, char * argv[], int & status)

Allows the subclass to perform its startup activities, such as scanning the provided argument vector for recognized command-line
options, creating an object adapter, and registering servants. The subclass must return t r ue if startup was successful, and f al se
otherwise. The subclass can set an exit status via the st at us parameter. This status is returned by mai n.

bool stop()
Allows the subclass to clean up prior to termination. The default implementation does nothing but return t r ue. The subclass must
return t r ue if the service has stopped successfully, and f al se otherwise.

voi d syserror(const std::string & nsg)

void error(const std::string & nsg)

voi d warni ng(const std::string & nmsg)

voi d trace(const std::string & nsg)

void print(const std::string & nsg)

Convenience functions for logging messages to the communicator's logger. The syser r or member function includes a description
of the system's current error code.

voi d wai t For Shut down()
Waits indefinitely for the service to shut down. The default implementation invokes wai t For Shut down on the communicator.

The non-virtual member functions shown in the class definition are described below:

257

bool checkSystem() const
Returns true if the operating system supports Windows services or Unix daemons. This function returns false on Windows
95/98/ME.

I ce: : Conmuni cat or Ptr conmmuni cator () const
Returns the communicator used by the service, as created by i ni ti al i zeConmmuni cat or.

voi d confi gureDaenon(bool chdir, bool close, const std::string & pidFile)

Configures the program to run as a Unix daemon. The chdi r parameter determines whether the daemon changes its working
directory to the root directory. The cl ose parameter determines whether the daemon closes unnecessary file descriptors (i.e., stdin,
stdout, etc.). If a non-empty string is provided in the pi dFi | e parameter, the daemon writes its process ID to the given file.

voi d configureService(const std::string & nane)
Configures the program to run as a Windows service with the given name.

voi d di sabl el nterrupt()
Disables the signal handling behavior in | ce: : Ser vi ce. When disabled, signals are ignored.

voi d enabl el nterrupt()
Enables the signal handling behavior in | ce: : Ser vi ce. When enabled, the occurrence of a signal causes the handl el nt er r upt
member function to be invoked.

static Service * instance()
Returns the singleton | ce: : Ser vi ce instance.

int main(int & argc, char * argv[],

const lce::InitializationData & data = lce::InitializationData())
int main(lce::StringSeq& args,

const lce::InitializationData& = lce::InitializationData());
int main(int & argc, wchar_t * argv[],

const lce::lInitializationData & data = lce::InitializationData())

The primary entry point of the | ce: : Ser vi ce class. The tasks performed by this function are described earlier in this section. The
function returns EXI T_SUCCESS for success, EXI T_FAI LURE for failure. For Windows, this function is overloaded to allow you to
pass awchar _t argument vector.

std::string name() const
Returns the name of the service. If the program is running as a Windows service, the return value is the Windows service name,

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

otherwise it returns the value of ar gv[0] .

® int run(int & argc, char * argv[], const Ice::InitializationData & data)
Alternative entry point for applications that prefer a different style of service configuration. The program must invoke
confi gureServi ce (Windows) or conf i gur eDaenon (Unix) in order to run as a service. The tasks performed by this function
were described earlier. The function normally returns EXI T_SUCCESS or EXI T_FAI LURE, but the st art method can also supply a
different value via its st at us argument.

® bool service() const
Returns true if the program is running as a Windows service or Unix daemon, or false otherwise.

Unix Daemons

On Unix platforms, | ce: : Ser vi ce recognizes the following command-line options:

® --daenon
Indicates that the program should run as a daemon. This involves the creation of a background child process in which
Ser vi ce: : mai n performs its tasks. The parent process does not terminate until the child process has successfully invoked the
st art member function.

This behavior avoids the uncertainty often associated with starting a daemon from a shell script, because it
ensures that the command invocation does not complete until the daemon is ready to receive requests.

Unless instructed otherwise, | ce: : Ser vi ce changes the current working directory of the child process to the root directory, and
closes all unnecessary file descriptors. Note that the file descriptors are not closed until after the communicator is initialized,
meaning standard input, standard output, and standard error are available for use during this time. For example, the IceSSL plug-in
may need to prompt for a passphrase on standard input, or Ice may print the child's process id on standard output if the property

I ce. PrintProcessldis set.

® --pidfile FILE
This option writes the process ID of the service into the specified FI LE. (This option requires - - daenon.)

® --nocl ose
Prevents | ce: : Ser vi ce from closing unnecessary file descriptors. This can be useful during debugging and diagnosis because it
provides access to the output from the daemon's standard output and standard error.

® --nochdir
Prevents | ce: : Ser vi ce from changing the current working directory.

The - - nocl ose and - - nochdi r options can only be specified in conjunction with - - daenon. These options are removed from the
argument vector that is passed to the st art member function.

Windows Services

On Windows, | ce: : Ser vi ce recognizes the following command-line options:
® --service NAME
Run as a Windows service named NAME, which must already be installed. This option is removed from the argument vector that is
passed to the st art member function.

Installing and configuring a Windows service is outside the scope of the | ce: : Ser vi ce class. Ice includes a utility for installing its services
which you can use as a model for your own applications.

The | ce: : Servi ce class supports the Windows service control codes SERVI CE_CONTROL_| NTERROGATE and SERVI CE_CONTROL_STOP
. Upon receipt of SERVI CE_CONTROL_STOP, | ce: : Ser vi ce invokes the shut down member function.

| ce:: Servi ce Logging Considerations

A service that uses a custom logger has several ways of configuring it:
® as a process-wide logger,
® inthelnitializationDataargument thatis passed to nai n,
® by overriding the i ni ti al i zeCommuni cat or member function.

On Windows, | ce: : Ser vi ce installs its own logger that uses the Windows Appl i cat i on event log if no custom logger is defined. The

258 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

source name for the event log is the service's name unless a different value is specified using the property | ce. Event Log. Sour ce.

On Unix, the default Ice logger (which logs to the standard error output) is used when no other logger is configured. For daemons, this is not
appropriate because the output will be lost. To change this, you can either implement a custom logger or set the | ce. UseSysl| og property,
which selects a logger implementation that logs to the sysl og facility. Alternatively, you can set the | ce. LogFi | e property to write log
messages to a file.

Note that | ce: : Ser vi ce may encounter errors before the communicator is initialized. In this situation, | ce: : Ser vi ce uses its default
logger unless a process-wide logger is configured. Therefore, even if a failing service is configured to use a different logger implementation,
you may find useful diagnostic information in the Appl i cat i on event log (on Windows) or sent to standard error (on Unix).

See Also

Hello World Application
Properties and Configuration
Communicator Initialization
Logger Facility

Portable Signal Handling in C++
Windows Services

259 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Server-Side C++ Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run time: by implementing virtual functions in a servant class, you
provide the hook that gets the thread of control from the Ice server-side run time into your application code.

On this page:
® Skeleton Classes in C++

® Servant Classes in C++
® Normal and i denpot ent Operations in C++

Skeleton Classes in C++

On the client side, interfaces map to proxy classes. On the server side, interfaces map to skeleton classes. A skeleton is a class that has a
pure virtual member function for each operation on the corresponding interface. For example, consider our Slice definition for the Node
interface:

Slice

nmodul e Fil esystem {
interface Node {
i denpotent string name();

The Slice compiler generates the following definition for this interface:

C++
nanespace Fil esystem {
class Node : virtual public Ice:: Object {
public:
virtual std::string nane(const lce::Current& = Ice::Current()) = 0;
/1
b
11

For the moment, we will ignore a number of other member functions of this class. The important points to note are:

® As for the client side, Slice modules are mapped to C++ namespaces with the same name, so the skeleton class definition is nested
in the namespace Fi | esyst em

The name of the skeleton class is the same as the name of the Slice interface (Node).

The skeleton class contains a pure virtual member function for each operation in the Slice interface.

The skeleton class is an abstract base class because its member functions are pure virtual.

The skeleton class inherits from | ce: : Obj ect (which forms the root of the Ice object hierarchy).

Servant Classes in C++

In order to provide an implementation for an Ice object, you must create a servant class that inherits from the corresponding skeleton class.
For example, to create a servant for the Node interface, you could write:

260 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

#i nclude <Filesystemh> // Slice-generated header

class Nodel : public virtual Filesystem:Node {
public:

Nodel (const std::string&);

virtual std::string name(const lce::Currentg&);
private:

std::string _nane;

}s

By convention, servant classes have the name of their interface with an | -suffix, so the servant class for the Node interface is called Nodel .
(This is a convention only: as far as the Ice run time is concerned, you can choose any name you prefer for your servant classes.)

Note that Nodel inherits from Fi | esyst em : Node, that is, it derives from its skeleton class. It is a good idea to always use virtual
inheritance when defining servant classes. Strictly speaking, virtual inheritance is necessary only for servants that implement interfaces that
use multiple inheritance; however, the vi rt ual keyword does no harm and, if you add multiple inheritance to an interface hierarchy
half-way through development, you do not have to go back and add a vi rt ual keyword to all your servant classes.

As far as Ice is concerned, the Nodel class must implement only a single member function: the pure virtual nane function that it inherits
from its skeleton. This makes the servant class a concrete class that can be instantiated. You can add other member functions and data
members as you see fit to support your implementation. For example, in the preceding definition, we added a _nane member and a
constructor. Obviously, the constructor initializes the _nanme member and the nane function returns its value:

C++
Nodel : : Nodel (const std::string& nane) : _nane(nane)
{
}

std::string
Nodel : : nanme(const Ice::Current&) const

{
}

return _name;

Normal and i denpot ent Operations in C++

The nanme member function of the Nodel skeleton is not a const member function. However, given that the operation does not modify the
state of its object, it really should be a const member function. We can achieve this by adding the [" cpp: const "] metadata directive. For
example:

Slice

interface Exanple {
voi d normal Op();

i denpotent void idenpotentQp();
["cpp: const™]

i dempotent voi d readonl yOp();
b

The skeleton class for this interface looks like this:

261 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++
class Exanple : virtual public Ice:: Object {
public:
virtual void normal Op(const lce::Current& = lce::Current()) = O;
virtual void idenpotentQp(const lce::Current& = Ice::Current()) = O;
virtual void readonlyOp(const lce::Current& = Ice::Current()) const = O;
/1
|

Note that r eadonl yOp is mapped as a const member function due to the [" cpp: const "] metadata directive; normal and i denpot ent
operations (without the metadata directive) are mapped as ordinary, non-const member functions.

See Also

® Slice for a Simple File System
® C++ Mapping for Interfaces
® Parameter Passing in C++
® Raising Exceptions in C++

262 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Parameter Passing in C++

For each parameter of a Slice operation, the C++ mapping generates a corresponding parameter for the virtual member function in the
skeleton. In addition, every operation has an additional, trailing parameter of type | ce: : Cur r ent . For example, the nane operation of the
Node interface has no parameters, but the name member function of the Node skeleton class has a single parameter of type

I ce: : Current.We will ignore this parameter for now.

Parameter passing on the server side follows the rules for the client side:
® in-parameters are passed by value or const reference.
® out-parameters are passed by reference.

® return values are passed by value

To illustrate the rules, consider the following interface that passes string parameters in all possible directions:

Slice
nmodul e M {
interface Exanple {
string op(string sin, out string sout);
b
H
The generated skeleton class for this interface looks as follows:
C++
namespace M {
class Exanple : virtual public ::lce::Object {

public:
virtual std::string op(const std::string& std::string&,
const lce::Current& = Ice::Current()) = O;
/1

}s

As you can see, there are no surprises here. For example, we could implement op as follows:

C++

std::string
Exanpl el : : op(const std::string& sin, std::string& sout, const Ice::Current&)
{

cout << sin << endl; /1 In paranmeters are initialized

sout = "Hello World!'"; /] Assign out paraneter

return "Done"; // Return a string
}

This code is in no way different from what you would normally write if you were to pass strings to and from a function; the fact that remote
procedure calls are involved does not impact on your code in any way. The same is true for parameters of other types, such as proxies,
classes, or dictionaries: the parameter passing conventions follow normal C++ rules and do not require special-purpose API calls or memory
management.

See Also
® Server-Side C++ Mapping for Interfaces

® Raising Exceptions in C++
® The Current Object

263 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Raising Exceptions in C++

To throw an exception from an operation implementation, you simply instantiate the exception, initialize it, and throw it. For example:

C++
voi d
Filesystem:Filel::wite(const Filesystem:Lines& text, const Ice::Currentg&)
{

/1l Try to wite the file contents here. ..
I/ Assume we are out of space...

if (error) {
Fi |l esystem : GenericError e;
e.reason = "file too |arge";
throw e;

b

No memory management issues arise in the presence of exceptions.

Note that the Slice compiler never generates exception specifications for operations, regardless of whether the corresponding Slice operation
definition has an exception specification or not. This is deliberate: C++ exception specifications do not add any value and are therefore not
used by the Ice C++ mapping [1].

If you throw an arbitrary C++ exception (such as an i nt or other unexpected type), the Ice run time catches the exception and then returns
an UnknownExcept i on to the client. Similarly, if you throw an "impossible" user exception (a user exception that is not listed in the
exception specification of the operation), the client receives an UnknownUser Except i on.

If you throw a run-time exception, such as Menor yLi mi t Except i on, the client receives an UnknownLocal Except i on. For that reason,
you should never throw system exceptions from operation implementations. If you do, all the client will see is an UnknownLocal Excepti on
, which does not tell the client anything useful.

Three run-time exceptions are treated specially and not changed to UnknownLocal Except i on when returned to the
client: Obj ect Not Exi st Except i on, Oper at i onNot Exi st Excepti on, and Facet Not Exi st Excepti on.

See Also

Run-Time Exceptions

C++ Mapping for Exceptions
Server-Side C++ Mapping for Interfaces
Parameter Passing in C++

References

1. Sutter, H. 2002. A Pragmatic Look at Exception Specifications. C/C++ Users Journal 20 (7): 59-64.

264 Copyright © 2011, ZeroC, Inc.

http://www.gotw.ca/publications/mill22.htm

Ice 3.4.2 Documentation

Object Incarnation in C++

Having created a servant class such as the rudimentary Nodel class, you can instantiate the class to create a concrete servant that can
receive invocations from a client. However, merely instantiating a servant class is insufficient to incarnate an object. Specifically, to provide
an implementation of an Ice object, you must follow the following steps:

1. Instantiate a servant class.

2. Create an identity for the Ice object incarnated by the servant.
3. Inform the Ice run time of the existence of the servant.

4. Pass a proxy for the object to a client so the client can reach it.

On this page:

® |nstantiating a C++ Servant
® Creating an Identity in C++
® Activating a C++ Servant
® Servant Life Time and Reference Counts
® UUIDs as Identities in C++
® Creating Proxies in C++
® Proxies and Servant Activation in C++
® Direct Proxy Creation in C++

Instantiating a C++ Servant

Instantiating a servant means to allocate an instance on the heap:

C++

NodePtr servant = new Nodel ("Fred");

This code creates a new Nodel instance on the heap and assigns its address to a smart pointer of type NodePt r . This works because
Nodel is derived from Node, so a smart pointer of type NodePt r can also look after an instance of type Nodel . However, if we want to
invoke a member function of the derived Nodel class at this point, we have a problem: we cannot access member functions of the derived
Nodel class through a NodePt r smart pointer, only member functions of Node base class. (The C++ type rules prevent us from accessing a
member of a derived class through a pointer to a base class.) To get around this, we can modify the code as follows:

C++

typedef IceUtil:: Handl e<Nodel > Nodel Ptr;
Nodel Ptr servant = new Nodel ("Fred");

This code makes use of the smart pointer template by defining Nodel Pt r as a smart pointer to Nodel instances. Whether you use a smart
pointer of type NodePt r or Nodel Pt r depends solely on whether you want to invoke a member function of the Nodel derived class; if you
only want to invoke member functions that are defined in the Node skeleton base class, it is sufficient to use a NodePt r and you need not
define the Nodel Pt r type.

Whether you use NodePt r or Nodel Pt r, the advantages of using a smart pointer class should be obvious from the smart pointer
discussion: they make it impossible to accidentally leak memory.

Creating an Identity in C++

Each Ice object requires an identity. That identity must be unique for all servants using the same object adapter.
lﬂl The Ice object model assumes that all objects (regardless of their adapter) have a globally unique identity.

An Ice object identity is a structure with the following Slice definition:

265 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

nmodul e Ice {
struct ldentity {
string nane;
string category;

The full identity of an object is the combination of both the nane and cat egor y fields of the | dent i t y structure. For now, we will leave the
cat egory field as the empty string and simply use the nane field. (The cat egor y field is most often used in conjunction with servant
locators.)

To create an identity, we simply assign a key that identifies the servant to the nane field of the | dent i t y structure:

C++

lce::ldentity id;
id.nanme = "Fred"; // Not unique, but good enough for now

Activating a C++ Servant

Merely creating a servant instance does nothing: the Ice run time becomes aware of the existence of a servant only once you explicitly tell
the object adapter about the servant. To activate a servant, you invoke the add operation on the object adapter. Assuming that we have
access to the object adapter in the _adapt er variable, we can write:

C++

_adapt er->add(servant, id);

Note the two arguments to add: the smart pointer to the servant and the object identity. Calling add on the object adapter adds the servant
pointer and the servant's identity to the adapter's servant map and links the proxy for an Ice object to the correct servant instance in the
server's memory as follows:

1. The proxy for an Ice object, apart from addressing information, contains the identity of the Ice object. When a client invokes an
operation, the object identity is sent with the request to the server.

2. The object adapter receives the request, retrieves the identity, and uses the identity as an index into the servant map.

3. If a servant with that identity is active, the object adapter retrieves the servant pointer from the servant map and dispatches the
incoming request into the correct member function on the servant.

Assuming that the object adapter is in the active state, client requests are dispatched to the servant as soon as you call add.

Servant Life Time and Reference Counts

Putting the preceding points together, we can write a simple function that instantiates and activates one of our Nodel servants. For this
example, we use a simple helper function called act i vat eSer vant that creates and activates a servant with a given identity:

C++
voi d
activat eServant (const string& nane)
{
NodePtr servant = new Nodel (nane); /1 Refcount == 1
lce::ldentity id;
i d.nane = nane;
_adapt er - >add(servant, id); /1 Refcount ==
} /1 Refcount ==

266 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Note that we create the servant on the heap and that, once act i vat eSer vant returns, we lose the last remaining handle to the servant
(because the ser vant variable goes out of scope). The question is, what happens to the heap-allocated servant instance? The answer lies
in the smart pointer semantics:

®* When the new servant is instantiated, its reference count is initialized to 0.

® Assigning the servant's address to the ser vant smart pointer increments the servant's reference count to 1.

® Calling add passes the ser vant smart pointer to the object adapter which keeps a copy of the handle internally. This increments
the reference count of the servant to 2.

® When acti vat eSer vant returns, the destructor of the ser vant variable decrements the reference count of the servant to 1.

The net effect is that the servant is retained on the heap with a reference count of 1 for as long as the servant is in the servant map of its

object adapter. (If we deactivate the servant, that is, remove it from the servant map, the reference count drops to zero and the memory
occupied by the servant is reclaimed; we discuss these life cycle issues in Object Life Cycle.)

UUIDs as ldentities in C++

The Ice object model assumes that object identities are globally unique. One way of ensuring that uniqueness is to use UUIDs (Universally
Unique Identifiers) as identities. The | ceUt i | namespace contains a helper function to create such identities:

C++

#i nclude <lceUtil/UU D. h>
#i ncl ude <i ostreanp

usi ng nanmespace std;

int
mai n()
{
cout << lceltil::generateUUl D() << endl;
}

When executed, this program prints a unique string such as 5029a22c- e333- 4f 87- 86b1- cd5e0f cce509. Each call to gener at eUUl D
creates a string that differs from all previous ones.

You can use a UUID such as this to create object identities. For convenience, the object adapter has an operation addW t hUUI D that
generates a UUID and adds a servant to the servant map in a single step. Using this operation, we can rewrite the code shown earlier like
this:

C++

voi d

activat eServant (const string& nane)

{
NodePtr servant = new Nodel (nane);
_adapt er - >addW t hUUI D(servant) ;

Creating Proxies in C++

Once we have activated a servant for an Ice object, the server can process incoming client requests for that object. However, clients can
only access the object once they hold a proxy for the object. If a client knows the server's address details and the object identity, it can
create a proxy from a string, as we saw in our first example in Hello World Application. However, creation of proxies by the client in this
manner is usually only done to allow the client access to initial objects for bootstrapping. Once the client has an initial proxy, it typically
obtains further proxies by invoking operations.

The object adapter contains all the details that make up the information in a proxy: the addressing and protocol information, and the object
identity. The Ice run time offers a number of ways to create proxies. Once created, you can pass a proxy to the client as the return value or
as an out-parameter of an operation invocation.

Proxies and Servant Activation in C++

267 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The add and addW t hUUI D servant activation operations on the object adapter return a proxy for the corresponding Ice object. This means
we can write:

C++

typedef Iceltil:: Handl e<Nodel > Nodel Ptr;
Nodel Ptr servant = new Nodel (namne);
NodePr x proxy = NodePrx::uncheckedCast (_adapt er - >addW t hUUI D(servant)) ;

/1 Pass proxy to client...

Here, addW t hUUI D both activates the servant and returns a proxy for the Ice object incarnated by that servant in a single step.

Note that we need to use an uncheckedCast here because addW t hUUI D returns a proxy of type | ce: : Obj ect Pr x.

Direct Proxy Creation in C++

The object adapter offers an operation to create a proxy for a given identity:

Slice

nmodul e Ice {
local interface ObjectAdapter {
bj ect* createProxy(ldentity id);
/1
I
b

Note that cr eat ePr oxy creates a proxy for a given identity whether a servant is activated with that identity or not. In other words, proxies
have a life cycle that is quite independent from the life cycle of servants:

C++

lce::ldentity id;
id.name = Iceltil::generateUUl D();
Obj ect Prx o = _adapter->createProxy(id);

This creates a proxy for an Ice object with the identity returned by gener at eUUl D. Obviously, no servant yet exists for that object so, if we
return the proxy to a client and the client invokes an operation on the proxy, the client will receive an Obj ect Not Exi st Except i on. (We
examine these life cycle issues in more detail in Object Life Cycle.)

See Also

Hello World Application

Object Adapter States

Servant Locators

Object Life Cycle

The C++ generateUUID Function

268 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Asynchronous Method Dispatch (AMD) in C++

The number of simultaneous synchronous requests a server is capable of supporting is determined by the number of threads in the server's
thread pool. If all of the threads are busy dispatching long-running operations, then no threads are available to process new requests and
therefore clients may experience an unacceptable lack of responsiveness.

Asynchronous Method Dispatch (AMD), the server-side equivalent of AMI, addresses this scalability issue. Using AMD, a server can receive
a request but then suspend its processing in order to release the dispatch thread as soon as possible. When processing resumes and the
results are available, the server sends a response explicitly using a callback object provided by the Ice run time.

AMD is transparent to the client, that is, there is no way for a client to distinguish a request that, in the server, is processed synchronously
from a request that is processed asynchronously.

In practical terms, an AMD operation typically queues the request data (i.e., the callback object and operation arguments) for later
processing by an application thread (or thread pool). In this way, the server minimizes the use of dispatch threads and becomes capable of
efficiently supporting thousands of simultaneous clients.

An alternate use case for AMD is an operation that requires further processing after completing the client's request. In order to minimize the
client's delay, the operation returns the results while still in the dispatch thread, and then continues using the dispatch thread for additional
work.

On this page:

® Enabling AMD with Metadata in C++
® AMD Mapping in C++

® AMD Exceptions in C++

® AMD Example in C++

Enabling AMD with Metadata in C++

To enable asynchronous dispatch, you must add an [" and"] metadata directive to your Slice definitions. The directive applies at the
interface and the operation level. If you specify ["and"] at the interface level, all operations in that interface use asynchronous dispatch; if
you specify ["anmd"] for an individual operation, only that operation uses asynchronous dispatch. In either case, the metadata directive
replaces synchronous dispatch, that is, a particular operation implementation must use synchronous or asynchronous dispatch and cannot
use both.

Consider the following Slice definitions:
Slice

["amd"] interface | {
bool isValid();
float conputeRate();

}s

interface J {
["amd"] void startProcess();
int endProcess();
b
In this example, both operations of interface | use asynchronous dispatch, whereas, for interface J, st art Pr ocess uses asynchronous
dispatch and endPr ocess uses synchronous dispatch.
Specifying metadata at the operation level (rather than at the interface or class level) minimizes the amount of generated code and, more
importantly, minimizes complexity: although the asynchronous model is more flexible, it is also more complicated to use. It is therefore in

your best interest to limit the use of the asynchronous model to those operations that need it, while using the simpler synchronous model for
the rest.

AMD Mapping in C++
The C++ mapping emits the following code for each AMD operation:
1. A callback class used by the implementation to notify the Ice run time about the completion of an operation. The name of this class

is formed using the pattern AVMD_cl ass_op. For example, an operation named f oo defined in interface | results in a class hamed
AMD_| _f oo. The class is generated in the same scope as the interface or class containing the operation. Several methods are

269 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

provided:

® void i ce_response(<parans>);
The i ce_r esponse method allows the server to report the successful completion of the operation. If the operation has a
non-voi d return type, the first parameter to i ce_r esponse is the return value. Parameters corresponding to the
operation's out parameters follow the return value, in the order of declaration.

® void ice_exception(const std::exception &);
This version of i ce_except i on allows the server to raise any standard exception, Ice run-time exception, or Ice user
exception.

® void ice_exception();
This version of i ce_except i on allows the server to report an UnknownExcept i on.

Neither i ce_r esponse nor i ce_except i on throw any exceptions to the caller.
2. The dispatch method, whose name has the suffix _async. This method has a voi d return type. The first parameter is a smart
pointer to an instance of the callback class described above. The remaining parameters comprise the in-parameters of the

operation, in the order of declaration.

For example, suppose we have defined the following operation:

Slice
interface | {
["amd"] int foo(short s, out long I);
H
The callback class generated for operation f oo is shown below:
C++
class AMD | _foo : public ... {
public:

voi d ice_response(lce::Int, Ice::Long);
voi d i ce_exception(const std::exception&);
voi d ice_exception();

s

The dispatch method for asynchronous invocation of operation f 00 is generated as follows:

C++

voi d foo_async(const AMD | _fooPtré& Ice:: Short);

AMD Exceptions in C++

There are two processing contexts in which the logical implementation of an AMD operation may need to report an exception: the dispatch
thread (the thread that receives the invocation), and the response thread (the thread that sends the response).

ﬁ These are not necessarily two different threads: it is legal to send the response from the dispatch thread.

Although we recommend that the callback object be used to report all exceptions to the client, it is legal for the implementation to raise an
exception instead, but only from the dispatch thread.

As you would expect, an exception raised from a response thread cannot be caught by the Ice run time; the application's run-time
environment determines how such an exception is handled. Therefore, a response thread must ensure that it traps all exceptions and sends
the appropriate response using the callback object. Otherwise, if a response thread is terminated by an uncaught exception, the request may
never be completed and the client might wait indefinitely for a response.

Whether raised in a dispatch thread or reported via the callback object, user exceptions are validated and local exceptions may undergo
translation.

AMD Example in C++

270 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

To demonstrate the use of AMD in Ice, let us define the Slice interface for a simple computational engine:

Slice

nmodul e Denp {
sequence<f| oat > Row;
sequence<Row> Gi d;

exception RangeError {};

interface Mdel {
["amd"] Gid interpolate(Gid data, float factor)
t hrows RangeError;
b
b

Given a two-dimensional grid of floating point values and a factor, the i nt er pol at e operation returns a new grid of the same size with the
values interpolated in some interesting (but unspecified) way.

Our servant class derives from Deno: : Model and supplies a definition for the i nt er pol at e_async method:

C++

class Modell : virtual public Denp::Mdel, virtual public lceltil::Mitex {
public:
virtual void interpolate_async(
const Deno:: AVD_Mddel _i nterpol atePtr &,
const Deno:: Gid&,
I ce:: Fl oat,
const lce::Currentg&);

private:
std::list<JobPtr> _jobs;
b

The implementation of i nt er pol at e_async uses synchronization to safely record the callback object and arguments in a Job that is
added to a queue:

C++

voi d Model | ::interpol ate_async(
const Denp:: AMD_Mddel _interpol atePtré& ch,
const Deno:: Gid& data,
lce::Float factor,
const lce::Current& current)

{
lceUtil::Mitex::Lock sync(*this);
JobPtr job = new Job(ch, data, factor);
_j obs. push_back(j ob);

}

After queuing the information, the operation returns control to the Ice run time, making the dispatch thread available to process another
request. An application thread removes the next Job from the queue and invokes execut e to perform the interpolation. Job is defined as

follows:

271 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

class Job : public IceUtil::Shared {

public:
Job(const Deno:: AMD Model _interpol atePtr&, const Deno::Gid& Ice::Float);
voi d execute();

private:
bool interpolateGid();

Deno: : AMD_Model _i nterpol atePtr _cb;
Denmo: :Grid _grid;
Ice::Float _factor;

b

typedef Iceltil:: Handl e<Job> JobPtr;

The implementation of execut e uses i nt er pol at eGri d (not shown) to perform the computational work:

C++

Job: : Job(const Deno:: AVD _Mdel _interpol atePtr& cb, const Deno::Gid& grid, lce::Float factor)
_cb(cb), _grid(grid), _factor(factor)

{
}
voi d Job: : execute()
{
if (linterpolateGid()) {
_ch?>i ce_exception(Deno: : RangeError());
return;
}
_cb?>i ce_response(_grid);
}

Ifi nter pol ateGri dreturns f al se, theni ce_excepti on is invoked to indicate that a range error has occurred. The r et ur n statement
following the call to i ce_except i on is necessary because i ce_except i on does not throw an exception; it only marshals the exception
argument and sends it to the client.

If interpolation was successful, i ce_r esponse is called to send the modified grid back to the client.

See Also

Asynchronous Method Invocation (AMI) in C++
The Ice Threading Model

User Exceptions

Run-Time Exceptions

272 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Example of a File System Server in C++

This page presents the source code for a C++ server that implements our file system and communicates with the client we wrote earlier. The
code is fully functional, apart from the required interlocking for threads.

The server is remarkably free of code that relates to distribution: most of the server code is simply application logic that would be present just
the same for a non-distributed version. Again, this is one of the major advantages of Ice: distribution concerns are kept away from application
code so that you can concentrate on developing application logic instead of networking infrastructure.

ﬂ The server code shown here is not quite correct as it stands: if two clients access the same file in parallel, each via a
different thread, one thread may read the _| i nes data member while another thread updates it. Obviously, if that
happens, we may write or return garbage or, worse, crash the server. However, it is trivial to make the read andwri t e
operations thread-safe: a single data member and two lines of source code are sufficient to achieve this. We discuss how
to write thread-safe servant implementations in Threads and Concurrency with C++.

On this page:

Implementing a File System Server in C++
Server mai n Program in C++
Servant Class Definitions in C++
The Servant Implementation in C++
® Implementing Fi | el
® Implementing Di r ect oryl
® Implementing Nodel

Implementing a File System Server in C++

We have now seen enough of the server-side C++ mapping to implement a server for our file system. (You may find it useful to review these
Slice definitions before studying the source code.)

Our server is composed of two source files:

® Server.cpp
This file contains the server main program.

® Filesystem .cpp
This file contains the implementation for the file system servants.

Server mai n Program in C++

Our server main program, in the file Ser ver. cpp, uses the | ce: : Appl i cati on class. The r un method installs a signal handler, creates
an object adapter, instantiates a few servants for the directories and files in the file system, and then activates the adapter. This leads to a
mai n program as follows:

C++

#i nclude <lce/lce. h>
#i nclude <Filesystem . h>

usi ng nanespace std;
usi ng nanespace Fil esystem

class FilesystemApp : virtual public lce::Application {
public:
virtual int run(int, char*[]) {
/1 Terminate cleanly on receipt of a signal
/1
shut downOnl nterrupt ();

/1 Create an object adapter.
/1
I ce:: Cbj ect AddapterPtr adapter = conmuni cator ()->creat eCbj ect Adapt er Wt hEndpoi nt s(

273 Copyright © 2011, ZeroC, Inc.

274

b

int

I

Ice 3.4.2 Documentation

"Si mpl eFi | esystent, "default -p 10000");

/] Create the root directory (with nanme "/" and no parent)
/1

Directoryl Ptr root = new Directoryl (conmunicator(), "/", 0);
root - >acti vat e(adapter);

/| Create a file called "READVE" in the root directory

/1

FilelPtr file = new Filel (comunicator(), "READVE', root);

Li nes text;

text. push_back("This file systemcontains a collection of poetry.");
file->wite(text);

file->activate(adapter);

/] Create a directory called "Col eridge”

/1 in the root directory

/1

Directoryl Ptr col eridge = new Directoryl (comruni cator(), "Coleridge",
col eri dge- >acti vat e(adapter);

// Create a file called "Kubla_Khan"

/1 in the Coleridge directory

/1

file = new Fil el (communi cator(), "Kubla_Khan", coleridge);
text.erase(text.begin(), text.end());

text. push_back("ln Xanadu did Kubla Khan");

text. push_back("A stately pleasure-done decree:");
text. push_back("Where Al ph, the sacred river, ran");
text. push_back(" Through caverns neasurel ess to nan");
text. push_back("Down to a sunless sea.");
file->wite(text);

file->activate(adapter);

/1 Al objects are created, allow client requests now
/1
adapter->activate();

/1 Wait until we are done
/1
conmmuni cat or () - >wai t For Shut down() ;
if (interrupted()) {
cerr << appNane() << ": received signal, shutting down" << endl;

}

return O;

mai n(int argc, char* argv[])

{

Fi | esyst emApp app;

root);

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

return app. main(argc, argv);

There is quite a bit of code here, so let us examine each section in detail:

C++

#i ncl ude <Filesysten . h>
#i ncl ude <l ce/ Application. h>

usi ng namespace std;
usi ng nanmespace Fil esystem

The code includes the header file Fi | esyst em . h. That file includes | ce/ | ce. h as well as the header file that is generated by the Slice
compiler, Fi | esyst em h. Because we are using | ce: : Appl i cati on, we need to include | ce/ Appl i cati on. h as well.

Two usi ng declarations, for the namespaces st d and Fi | esyst em permit us to be a little less verbose in the source code.

The next part of the source code is the definition of Fi | esyst emApp, which derives from | ce: : Appl i cati on and contains the main
application logic in its r un method:

275 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

class FilesystemApp : virtual public lce::Application {
public:
virtual int run(int, char*[]) {
/1 Term nate cleanly on receipt of a signal
/1
shut downOnl nterrupt ();

/| Create an object adapter.

/1

I ce:: Cbj ect Adapter Ptr adapter = conmuni cator () ->creat eCbj ect Adapt er Wt hEndpoi nt s(
"Si npl eFi | esystent, "default -p 10000");

/] Create the root directory (with nanme "/" and no parent)
/1

Directoryl Ptr root = new Directoryl (conmmunicator(), "/", 0);
root - >acti vat e(adapter);

I/l Create a file called "README' in the root directory

11
FilelPtr file = new Filel (conmunicator(), "READVE', root);
Li nes text;

text. push_back("This file systemcontains a collection of poetry.");
file->wite(text);
file->activate(adapter);

// Create a directory called "Col eridge"

/1 in the root directory

11

Directoryl Ptr coleridge = new Directoryl (conmmuni cator(), "Coleridge", root);
col eri dge->acti vat e(adapter);

/1l Create a file called "Kubla_Khan"

/1 in the Coleridge directory

/1

file = new Fil el (communicator(), "Kubla_Khan", coleridge);
text.erase(text.begin(), text.end());

text. push_back("In Xanadu did Kubla Khan");

text. push_back("A stately pleasure-done decree:");

t ext. push_back("Where Al ph, the sacred river, ran");
t ext. push_back(" Through caverns neasurel ess to man");
text. push_back("Down to a sunless sea.");
file->wite(text);

file->activate(adapter);

/1 Al objects are created, allow client requests now
/1
adapt er - >acti vate();

// Wit until we are done
/1
conmmuni cat or () - >wai t For Shut down() ;
if (interrupted()) {
cerr << appNane() << ": received signal, shutting down" << endl;

}

return O;
}
b

Much of this code is boiler plate that we saw previously: we create an object adapter, and, towards the end, activate the object adapter and
call wai t For Shut down.

The interesting part of the code follows the adapter creation: here, the server instantiates a few nodes for our file system to create the

276 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

structure shown below:

= Directory RootDir

O
. = File /f/ \

. README

Coleridge

Kubla-Khan

A small file system.

As we will see shortly, the servants for our directories and files are of type Di r ect oryl and Fi | el , respectively. The constructor for either
type of servant accepts three parameters: the communicator, the name of the directory or file to be created, and a handle to the servant for
the parent directory. (For the root directory, which has no parent, we pass a null parent handle.) Thus, the statement

C++

DirectorylPtr root = new Directoryl (comunicator(), "/", 0);

creates the root directory, with the name "/ " and no parent directory. Note that we use the smart pointer class to hold the return value from
new, that way, we avoid any memory management issues. The types Di rect oryl Pt r and Fi | el Pt r are defined as follows in a header
file Fi | esystemnl . h:

C++

typedef lceUtil::Handl e<Directoryl> DirectorylPtr;
typedef lceUtil::Handle<Filel> FilelPtr;

Here is the code that establishes the structure in the illustration above.

277 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

/] Create the root directory (with nanme "/" and no parent)
/1

Directoryl Ptr root = new Directoryl (conmunicator(), "/", 0);
root - >acti vat e(adapter);

I/l Create a file called "README' in the root directory

/1
FilelPtr file = new Filel (comunicator(), "READVE', root);
Li nes text;

text.push_back("This file systemcontains a collection of poetry.");
file->wite(text);
file->activate(adapter);

// Create a directory called "Col eridge"

/1 in the root directory

/1

Directoryl Ptr coleridge = new Directoryl (conmruni cator(), "Coleridge", root);
col eri dge- >acti vat e(adapter);

/]l Create a file called "Kubla_Khan"

/1 in the Coleridge directory

/1

file = new Fil el (communicator(), "Kubla_Khan", coleridge);
text.erase(text.begin(), text.end());

text. push_back("In Xanadu did Kubla Khan");

text. push_back("A stately pleasure-done decree:");
text. push_back("Where Al ph, the sacred river, ran");
text. push_back(" Through caverns neasurel ess to nman");
text. push_back("Down to a sunless sea.");
file->wite(text);

file->activate(adapter);

We first create the root directory and a file README within the root directory. (Note that we pass the handle to the root directory as the parent
pointer when we create the new node of type Fi | el .)

After creating each servant, the code calls act i vat e on the servant. (We will see the definition of this member function shortly.) The
act i vat e member function adds the servant to the ASM.

The next step is to fill the file with text:

C++

FilelPtr file = new Filel (comunicator(), "READVE', root);

Li nes text;

text. push_back("This file systemcontains a collection of poetry.");
file->wite(text);

file->activate(adapter);

Recall that Slice sequences map to STL vectors. The Slice type Li nes is a sequence of strings, so the C++ type Li nes is a vector of
strings; we add a line of text to our READVE file by calling push_back on that vector.

Finally, we call the Slice wr i t e operation on our Fi | el servant by simply writing:

C++

file->wite(text);

This statement is interesting: the server code invokes an operation on one of its own servants. Because the call happens via a smart class
pointer (of type Fi | ePt r) and not via a proxy (of type Fi | ePr x), the Ice run time does not know that this call is even taking place — such a
direct call into a servant is not mediated by the Ice run time in any way and is dispatched as an ordinary C++ function call.

278 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

In similar fashion, the remainder of the code creates a subdirectory called Col er i dge and, within that directory, a file called Kubl a_Khan to
complete the structure in the above illustration.

Servant Class Definitions in C++

We must provide servants for the concrete interfaces in our Slice specification, that is, we must provide servants for the Fi | e and
Di r ect ory interfaces in the C++ classes Fi | el and Di r ect or yl . This means that our servant classes might look as follows:

C++
nanespace Fil esystem {
class Filel : virtual public File {
/1
b
class Directoryl : virtual public Directory {
11
}
}
This leads to the C++ class structure as shown:
| Object |
| Node |
=
.:-"'-FFFFF-
.:-"'-'-FFF
g R
| File | | Directory |
A F
| Filel | [Directory |

File system servants using interface inheritance.

The shaded classes in the illustration above are skeleton classes and the unshaded classes are our servant implementations. If we
implement our servants like this, Fi | el must implement the pure virtual operations it inherits from the Fi | e skeleton (r ead and wri t), as
well as the operation it inherits from the Node skeleton (nane). Similarly, Di r ect or yl must implement the pure virtual function it inherits
from the Di r ect ory skeleton (I i st), as well as the operation it inherits from the Node skeleton (nane). Implementing the servants in this
way uses interface inheritance from Node because no implementation code is inherited from that class.

Alternatively, we can implement our servants using the following definitions:

C++
nanmespace Fil esystem {
class Nodel : virtual public Node {
11
}
class Filel : virtual public File, virtual public Nodel {
/1
H
class Directoryl : virtual public Directory, virtual public Nodel {
/1
}
}

This leads to the C++ class structure shown:

279 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

| Object |
'y
| Node |
g R
._--""-..-'f \\\\"‘\
..-"'-'P-'#f \\\\.
- [NodeT | g
4 % N
P i S \\ .,
File 2 | » 2 %, [Directory
/ L F 3
i ™,
/// \“‘\
File | | DirectoryIl |

File system servants using implementation inheritance.

In this implementation, Nodel is a concrete base class that implements the nane operation it inherits from the Node skeleton. Fi | el and
Di rect oryl use multiple inheritance from Nodel and their respective skeletons, that s, Fi | el and Di r ect oryl use implementation
inheritance from their Nodel base class.

Either implementation approach is equally valid. Which one to choose simply depends on whether we want to re-use common code provided
by Nodel . For the implementation that follows, we have chosen the second approach, using implementation inheritance.

Given the structure in the above illustration and the operations we have defined in the Slice definition for our file system, we can add these
operations to the class definition for our servants:

C++

nanespace Fil esystem {
class Nodel : virtual public Node {
public:
virtual std::string nanme(const lce::Currentg&);

}
class Filel : virtual public File, virtual public Nodel {
public:
virtual Lines read(const lce::Currentg&);
virtual void wite(const Lines& const lce::Current&);
b
class Directoryl : virtual public Directory, virtual public Nodel {
public:
virtual NodeSeq list(const Ice::Currenté&);
}

This simply adds signatures for the operation implementations to each class. Note that the signatures must exactly match the operation
signatures in the generated skeleton classes — if they do not match exactly, you end up overloading the pure virtual function in the base
class instead of overriding it, meaning that the servant class cannot be instantiated because it will still be abstract. To avoid signature
mismatches, you can copy the signatures from the generated header file (Fi | esyst em h), or you can use the - - i npl option with

sl i ce2cpp to generate header and implementation files that you can add your application code to.

Now that we have the basic structure in place, we need to think about other methods and data members we need to support our servant
implementation. Typically, each servant class hides the copy constructor and assignment operator, and has a constructor to provide initial
state for its data members. Given that all nodes in our file system have both a name and a parent directory, this suggests that the Nodel
class should implement the functionality relating to tracking the name of each node, as well as the parent-child relationships:

280 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++
nanmespace Fil esystem {
class Directoryl;
typedef lceUtil::Handl e<Directoryl> DirectorylPtr;

class Nodel : virtual public Node {
public:
virtual std::string nanme(const lce::Currentg&);
Nodel (const |ce:: Conmmuni catorPtr&, const std::string& const DirectorylPtr&);
void activate(const |ce::ObjectAdapterPtr&);
private:
std::string _naneg;
lce::ldentity _id;
Directoryl Ptr _parent;
Nodel (const Nodel &) ; /1 Copy forbidden
voi d operator=(const Nodel &) ; /'l Assignnment forbidden

The Nodel class has a private data member to store its name (of type st d: : st ri ng) and its parent directory (of type Di rect oryl Ptr).
The constructor accepts parameters that set the value of these data members. For the root directory, by convention, we pass a null handle to
the constructor to indicate that the root directory has no parent. The constructor also requires the communicator to be passed to it. This is
necessary because the constructor creates the identity for the servant, which requires access to the communicator. The act i vat e member
function adds the servant to the ASM (which requires access to the object adapter) and connects the child to its parent.

The Fi | el servant class must store the contents of its file, so it requires a data member for this. We can conveniently use the generated
Li nes type (which is a st d: : vect or <st d: : st ri ng>) to hold the file contents, one string for each line. Because Fi | el inherits from
Nodel , it also requires a constructor that accepts the communicator, file name, and parent directory, leading to the following class definition:

C++

nanespace Fil esystem {
class Filel : virtual public File, virtual public Nodel {
public:
virtual Lines read(const lce::Currentg&);
virtual void wite(const Lines& const lce::Current&);
Filel (const Ice::ConmunicatorPtr& const std::string& const DirectorylPtré&);
private:
Lines _lines;
s
}

For directories, each directory must store its list of child notes. We can conveniently use the generated NodeSeq type (which is a

vect or <NodePr x>) to do this. Because Di r ect or yl inherits from Nodel , we need to add a constructor to initialize the directory name
and its parent directory. As we will see shortly, we also need a private helper function, addChi | d, to make it easier to connect a newly
created directory to its parent. This leads to the following class definition:

C++

nanmespace Fil esystem {
class Directoryl : virtual public Directory, virtual public Nodel {
public:
virtual NodeSeq list(const Ice::Current& const;
Directoryl (const |ce::ComunicatorPtr& const std::string& const DirectorylPtré&);
voi d addChi | d(NodePrx child);
private:
NodeSeq _contents;
}
}

Servant Header File Example

281 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Putting all this together, we end up with a servant header file, Fi | esyst enl . h, as follows:

C++
#i nclude <lce/lce. h>
#i ncl ude <Fil esystem h>
nanespace Fil esystem {
class Directoryl;
typedef Iceltil::Handl e<Directoryl> DirectorylPtr;

class Nodel : virtual public Node {
public:
virtual std::string name(const lce::Currentg&);
Nodel (const |ce:: Conmuni catorPtr& const std::string& const DirectorylPtré&);
voi d activate(const Ice:: CbjectAdapterPtré&);
private:
std::string _naneg;
lce::ldentity _id;
Directoryl Ptr _parent;

Nodel (const Nodel &) ; /1 Copy forbidden
voi d operator=(const Nodel &) ; /'l Assignnent forbidden
3
typedef Iceltil:: Handl e<Nodel > Nodel Ptr;
class Filel : virtual public File, virtual public Nodel {
public:
virtual Lines read(const Ice::Current@&);
virtual void wite(const Lines& const lce::Current& = Ice::Current());
Fil el (const Ice::ComunicatorPtr& const std::string& const DirectorylPtré&);
private:
Li nes _lines;
3
typedef lceUtil::Handle<Filel> FilelPtr;
class Directoryl : virtual public Directory, virtual public Nodel {
public:

virtual NodeSeq list(const Ice::Currenté&);
Directoryl (const |ce::ComunicatorPtr& const std::string& const DirectorylPtré&);
voi d addChil d(const Fil esystem : NodePrx&) ;
private:
Fi | esystem : NodeSeq _contents;

h

The Servant Implementation in C++

The implementation of our servants is mostly trivial, following from the class definitions in our Fi | esyst em . h header file.

Implementing Fi | el

The implementation of the r ead and wr i t e operations for files is trivial: we simply store the passed file contents in the _| i nes data
member. The constructor is equally trivial, simply passing its arguments through to the Nodel base class constructor:

282 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++
Fi | esystem : Li nes
Filesystem:Filel::read(const lce::Current&)
{
return _lines;
}
voi d
Filesystem:Filel::wite(const Filesystem:Lines& text, const lce::Current&)
{
_lines = text;
}
Filesystem:Filel::Filel(const I|ce::ConmrunicatorPtr& comunicator,
const string& nane,
const Directoryl Ptr& parent)
Nodel (comuni cat or, nane, parent)
{
}

Implementing Di r ect oryl

The implementation of Di r ect oryl is equally trivial: the | i st operation simply returns the _cont ent s data member and the constructor
passes its arguments through to the Nodel base class constructor:

C++
Fil esyst em : NodeSeq
Filesystem:Directoryl::list(const Ice::Current&)
{
return _contents;
}

Filesystem:Directoryl::Directoryl(const Ice::Communi catorPtr& conmuni cator,
const string& nane,
const Directoryl Ptr& parent)
Nodel (nane, parent)

{
}

voi d
Fil esystem : Directoryl::addChil d(const NodePrx child)
{

_contents. push_back(child);

}

The only noteworthy thing is the implementation of addChi | d: when a new directory or file is created, the constructor of the Nodel base
class calls addChi | d on its own parent, passing it the proxy to the newly-created child. The implementation of addChi | d appends the
passed reference to the contents list of the directory it is invoked on (which is the parent directory).

Implementing Nodel

The name operation of our Nodel class is again trivial: it simply returns the _nane data member:

283 Copyright © 2011, ZeroC, Inc.

284

The

Ice 3.4.2 Documentation

C++
std::string
Fi | esystem : Nodel : : name(const lce::Current&)
{

return _nane;
}
Nodel constructor creates an identity for the servant:
C++

Fil esystem : Nodel : : Nodel (const | ce:: Communi cat or Pt r & conmmuni cat or,
const string& nane,
const Directoryl Ptré& parent)
_nane(nane), _parent(parent)

_id.nane = parent ? lceltil::generateUUID() : "RootDir";

For the root directory, we use the fixed identity " Root Di r " . This allows the client to create a proxy for the root directory. For directories
other than the root directory, we use a UUID as the identity.

Finally, Nodel provides the act i vat e member function that adds the servant to the ASM and connects the child node to its parent
directory:

C++

voi d
Fi l esystem : Nodel : : activate(const |ce:: ObjectAdapterPtré& a)
{
NodePr x thi sNode = NodePrx: : uncheckedCast (a?>add(this, _id));
if(_parent)
{
_par ent ?>addChi | d(t hi sNode) ;
}

This

completes our servant implementation. The complete source code is shown here once more:

C++

#include <lcelUtil/lceltil.h>
#i ncl ude <Filesystemn . h>

usi ng nanespace std;

/1 Slice Node::name() operation

std::string
Fi | esyst em : Nodel : : name(const |ce:: Current &)
{

return _name;

}

/1 Nodel constructor

Fi | esystem : Nodel : : Nodel (const | ce:: Comruni cat or Pt r & comuni cat or,
const string& nane,
const Directoryl Ptré& parent)
_nane(nane), _parent(parent)

Copyright © 2011, ZeroC, Inc.

285

Ice 3.4.2 Documentation

/]l Create an identity. The root directory has the fixed identity "RootDir"

11
_id.nane = parent ? lceltil::generateUUID() : "RootDir";
}

/1 Nodel activate() mermber function

voi d
Fi l esystem : Nodel : : activate(const |ce:: ObjectAdapterPtr& a)

{
NodePr x thi sNode = NodePrx: : uncheckedCast (a->add(this, _id));
if(_parent)

{
_parent ->addChi | d(t hi sNode) ;

}
}

/1 Slice File::read() operation

Fil esystem : Li nes
Filesystem:Filel::read(const lce::Currentg&)

{

return _lines;
}
/Il Slice File::wite() operation
voi d
Filesystem:Filel::wite(const Filesystem:Lines& text, const |ce:

{
}

_lines = text;

/'l Filel constructor

Filesystem:Filel::Filel(const I|ce:: ConmmunicatorPtr& comuni cator,
const string& nane,
const Directoryl Ptr& parent)
Nodel (comuni cat or, nane, parent)
{
}

// Slice Directory::list() operation

Fi | esyst em : NodeSeq
Filesystem:Directoryl::list(const lce::Currenté& c)

{

return _contents;

}

/1 Directoryl constructor

:Current &

Filesystem:Directoryl::Directoryl (const Ice:: Comruni catorPtr& communi cator,

const string& nane,
const Directoryl Ptr& parent)
Nodel (conmuni cat or, nane, parent)
{
}

/1 addChild is called by the child in order to add
Il itself to the _contents nmenber of the parent

voi d
Fil esystem:Directoryl::addChild(const NodePrx& child)
{

Copyright © 2011, ZeroC, Inc.

_contents. push_back(child);

Ice 3.4.2 Documentation

See Also

286

Slice for a Simple File System
Example of a File System Client in C++
The | ce: : Appl i cati on Class

C++ Mapping for Sequences

slice2cpp Command-Line Options
UUIDs as ldentities in C++

Threads and Concurrency with C++

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The C++ Utility Library

Ice for C++ includes a number of utility classes and functions in the | ceUt i | namespace, which we summarize here for your reference.
Many of the classes and functions in | celt i | are documented elsewhere in this manual so, where appropriate, the sections here simply
reference the relevant pages.

287

Topics

The C++ AbstractMutex Class

The C++ Cache Template

The C++ Exception Class

The C++ generateUUID Function

The C++ Handle Template

The C++ Handle Template Adaptors

The C++ ScopedArray Template

The C++ Shared and SimpleShared Classes
The C++ Time Class

The C++ Timer and TimerTask Classes
Unicode and UTF-8 Conversion Functions in C++
Version Information in C++

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The C++ AbstractMutex Class

Abst ract Mut ex defines a mutex base interface used by the Freeze background save evictor. The interface allows the evictor to
synchronize with servants that are stored in a Freeze database. The class has the following definition:

C++

class Abstract Mutex {

public:
typedef LockT<Abstract Mutex> Lock;
typedef TryLockT<AbstractMitex> TrylLock;

virtual ~AbstractMitex();

virtual void |ock() const = 0;
virtual void unlock() const = 0;
virtual bool tryLock() const = 0;

b

This class definition is provided in | ceUt i | / Abst r act Mut ex. h. The same header file also defines a few template implementation classes
that specialize Abst r act Mut ex, as described below.

Abst ract Mut ex|

This template class implements Abst r act Mut ex by forwarding all member functions to its template argument:

C++

tenpl ate <typenane T>
class AbstractMutexl : public AbstractMiutex, public T {
public:

typedef LockT<AbstractMutexl > Lock;

typedef TryLockT<AbstractMitexl> TrylLock;

virtual void lock() const {
T::1ock();
}

virtual void unlock() const {
T::unl ock();
}

virtual bool tryLock() const {
return T::tryLock();

}

virtual ~AbstractMitex! () {}
b

Abst ract Mut exReadl

This template class implements a read lock by forwarding the | ock and t r yLock functions to the r eadLock and t r yReadLock functions
of its template argument:

288 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

tenpl ate <typename T>
cl ass Abstract Mut exReadl : public AbstractMitex, public T {
public:

typedef LockT<Abstract Mt exReadl > Lock;

typedef TryLockT<Abstract Mit exReadl > TrylLock;

virtual void lock() const {
T::readLock();
}

virtual void unlock() const {
T::unl ock();
}

virtual bool tryLock() const {
return T::tryReadLock();

}

virtual ~Abstract MutexReadl () {}
b

Abstract Mut exWi tel

This template class implements a write lock by forwarding the | ock and t r yLock functions to the wi t eLock andt ryWi t eLock
functions of its template argument:

C++

tenpl ate <typenane T>
class Abstract MutexWitel : public AbstractMitex, public T {
public:

typedef LockT<Abstract MutexWitel> Lock;

typedef TryLockT<AbstractMutexWitel> TryLock;

virtual void lock() const {
T::witeLock();
}

virtual void unlock() const {
T: :unl ock();
}

virtual bool tryLock() const {
return T::tryWiteLock();
}

virtual ~AbstractMutexWitel () {}
H

Apart from use with Freeze servants, these templates are also useful if, for example, you want to implement your own evictor.
See Also

® Background Save Evictor

289 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The C++ Cache Template

This class allows you to efficiently maintain a cache that is backed by secondary storage, such as a Berkeley DB database, without holding a
lock on the entire cache while values are being loaded from the database. If you want to create evictors for servants that store their state in a
database, the Cache class can simplify your evictor implementation considerably.

You may also want to examine the implementation of the Freeze background save evictor in the source distribution; it uses
I celtil :: Cache for its implementation.

The Cache class has the following interface:

C++
t enpl at e<t ypenane Key, typenane Val ue>
cl ass Cache {
public:
typedef typename std::map</* ... */, [* ... */> :iterator Position;

bool pin(const Key& k, const Handl e<Val ue>& v);
Handl e<Val ue> pi n(const Key& Kk);
voi d unpin(Position p);

Handl e<Val ue> put | f Absent (const Key& k, const Handl e<Val ue>& v);
Handl e<Val ue> get | f Pi nned(const Key&, bool = false) const;

void clear();
size_t size() const;

protected:
virtual Handl e<Val ue> | oad(const Key& k) = 0;
virtual void pinned(const Handl e<Val ue>& v, Position p);

virtual ~Cache();
H

Note that Cache is an abstract base class — you must derive a concrete implementation from Cache and provide an implementation of the
| oad and, optionally, of the pi nned member function.

Internally, a Cache maintains a map of name-value pairs. The key and value type of the map are supplied by the Key and Val ue template
arguments, respectively. The implementation of Cache takes care of maintaining the map; in particular, it ensures that concurrent lookups by
callers are possible without blocking even if some of the callers are currently loading values from the backing store. In turn, this is useful for
evictor implementations, such as the Freeze background save evictor. The Cache class does not limit the number of entries in the cache —
it is the job of the evictor implementation to limit the map size by calling unpi n on elements of the map that it wants to evict.

Your concrete implementation class must implement the | oad function, whose job it is to load the value for the key k from the backing store
and to return a handle to that value. Note that | oad returns a value of type | ceUt i | : : Handl e, that is, the value must be heap-allocated
and support the usual reference-counting functions for smart pointers. (The easiest way to achieve this is to derive the value from
IcelUtil:: Shared.)

If | oad cannot locate a record for the given key because no such record exists, it must return a null handle. If | oad fails for some other
reason, it can throw an exception, which is propagated back to the application code.

Your concrete implementation class typically will also override the pi nned function (unless you want to have a cache that does not limit the
number of entries; the provided default implementation of pi nned is a no-op). The Cache implementation calls pi nned whenever it has
added a value to the map as a result of a call to pi n; the pi nned function is therefore a callback that allows the derived class to find out
when a value has been added to the cache and informs the derived class of the value and its position in the cache.

The Posi ti on parameterisastd: :iterator into the cache's internal map that records the position of the corresponding map entry.
(Note that the element type of map is opaque, so you should not rely on knowledge of the cache's internal key and value types.) Your
implementation of pi nned must remember the position of the entry because that position is necessary to remove the corresponding entry
from the cache again.

290 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The public member functions of Cache behave as follows:
bool pin(const Key& k, const Handl e<Val ue>& v);

To add a key-value pair to the cache, your evictor can call pi n. The return value is true if the key and value were added; a false return value
indicates that the map already contained an entry with the given key and the original value for that key is unchanged.

pi n calls pi nned if it adds an entry.

This version of pi n does not call | oad to retrieve the entry from backing store if it is not yet in the cache. This is useful when you add a
newly-created object to the cache.

Once an entry is in the cache, it is guaranteed to remain in the cache at the same position in memory, and without its value being overwritten
by another thread, until that entry is unpinned by a call to unpi n.

Handl e<Val ue> pi n(const Key& k);

A second version of pi n looks for the entry with the given key in the cache. If the entry is already in the cache, pi n returns the entry's value.
If no entry with the given key is in the cache, pi n calls | oad to retrieve the corresponding entry. If | oad returns an entry, pi n adds it to the
cache and returns the entry's value. If the entry cannot be retrieved from the backing store, pi n returns null.

pi n calls pi nned if it adds an entry.

The function is thread-safe, that is, it calls | oad only once all other threads have unpinned the entry.

Once an entry is in the cache, it is guaranteed to remain in the cache at the same position in memory, and without its value being overwritten
by another thread, until that entry is unpinned by a call to unpi n.

Handl e<Val ue> put | f Absent (const Key& k, const Handl e<Val ue>& v);

This function adds a key-value pair to the cache and returns a smart pointer to the value. If the map already contains an entry with the given
key, that entry's value remains unchanged and put | f Absent returns its value. If no entry with the given key is in the cache, put | f Absent
calls | oad to retrieve the corresponding entry. If | oad returns an entry, put | f Absent adds it to the cache and returns the entry's value. If
the entry cannot be retrieved from the backing store, put | f Absent returns null.

put | f Absent calls pi nned if it adds an entry.

The function is thread-safe, that is, it calls | oad only once all other threads have unpinned the entry.

Once an entry is in the cache, it is guaranteed to remain in the cache at the same position in memory, and without its value being overwritten
by another thread, until that entry is unpinned by a call to unpi n.

Handl e<Val ue> get | f Pi nned(const Key& k, bool wait = false) const;
This function returns the value stored for the key k.
® If an entry for the given key is in the map, the function returns the value immediately, regardless of the value of wai t .
® If no entry for the given key is in the map and the wai t parameter is false, the function returns a null handle.
® If no entry for the given key is in the map and the wai t parameter is true, the function blocks the calling thread if another thread is
currently attempting to load the same entry; once the other thread completes, get | f Pi nned completes and returns the value
added by the other thread.
voi d unpin(Position p);
This function removes an entry from the map. The iterator p determines which entry to remove. (It must be an iterator that previously was
passed to pi nned.) The iterator p is invalidated by this operation, so you must not use it again once unpi n returns. (Note that the Cache
implementation ensures that updates to the map never invalidate iterators to existing entries in the map; unpi n invalidates only the iterator
for the removed entry.)
void clear();
This function removes all entries in the map.

size_t size() const;

This function returns the number of entries in the map.

See Also

291 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Servant Evictors

The C++ Handle Template

The C++ Shared and SimpleShared Classes
Background Save Evictor

292 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The C++ Exception Class

This class is at the root of the derivation tree for Ice exceptions and encapsulates functionality that is common to all | ce and | celti |
exceptions:

C++

class Exception : public std::exception {
public:
Exception();
Exception(const char* file, int line);
virtual ~Exception() throw();

virtual std::string ice_name() const;
virtual void ice_print(std::ostrean& const;
virtual const char* what() const throw);
virtual Exception* ice_clone() const;
virtual void ice_throw() const;

const char* ice_file() const;

int ice_line() const;

}

The second constructor stores a file name and line number in the exception that are returned by the i ce_fil e andi ce_l i ne member
functions, respectively. This allows you to identify the source of an exception by passingthe __ FILE__and __ LI NE__ preprocessor macros
to the constructor.

The what member function is a synonym for i ce_pr i nt . The default implementation of i ce_pri nt prints the file name, line number, and
the name of the exception.

The remaining member functions are described in the C++ Mapping for Exceptions.

See Also

® C++ Mapping for Exceptions

293 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The C++ generateUUID Function

Universally-unique identifiers (UUIDs) are often used in the identities of Ice objects. The C++ standard does not include a function for
generating UUIDs, therefore Ice provides the | celUti | : : gener at eUUl D function for use in portable applications. The signature of

gener at eUUl Dis:

C++

std::string generateUU I();

The function returns a string like the following:

02b066f 5- c762- 431c- 8dd3- 9b1941355e41

Each invocation returns a new identifier that differs from all previous ones.

See Also

® Object Identity

294 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The C++ Handle Template

I celtil:: Handl e implements a smart reference-counted pointer type. Smart pointers are used to guarantee automatic deletion of
heap-allocated class instances.

Handl e is a template class with the following interface:

295 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

t enpl at e<t ypenane T>

class Handle : /* ... */ {

public:
typedef T el ement_type;
T™ _ptr;
T* operator->() const;
T& operator*() const;
T* get() const;
operator bool () const;
voi d swap(Handl eBase& ot her);
Handl e(T* p = 0);

t enpl at e<t ypenane Y>
Handl e(const Handl e<Y>& r);

Handl e(const Handl e& r);
~Handl e() ;
Handl e& operator=(T* p);

t enpl at e<t ypenane Y>
Handl e& oper at or =(const Handl e<Y>& r);

Handl e& oper at or=(const Handl e& r);

tenpl at e<cl ass Y>
static Handl e dynam cCast (const Handl eBase<Y>& r);

tenpl at e<cl ass Y>
static Handl e dynam cCast (Y* p);
H

tenpl ate<typenane T, typenane U>
bool operator==(const Handl e<T>& | hs, const Handl e<U>& rhs);

tenpl at e<typenane T, typenanme U>
bool operator!=(const Handl e<T>& | hs, const Handl e<U>& rhs);

tenpl at e<typenane T, typenane U>
bool operator<(const Handl e<T>& | hs, const Handl e<U>& rhs);

tenpl at e<typenane T, typenane U>
bool operator<=(const Handl e<T>& | hs, const Handl e<U>& rhs);

tenpl ate<typenane T, typenane U>
bool operator>(const Handl e<T>& | hs, const Handl e<U>& rhs);

tenpl at e<typenane T, typenanme U>
bool operator>=(const Handl e<T>& | hs, const Handl e<U>& rhs);

Note that the actual implementation is split into a base and a derived class. For simplicity, we show the combined interface
here. If you want to see the full implementation detail, it can be found in | ceUt i | / Handl e. h.

The template argument must be a class that derives from Shar ed or Si npl eShar ed (or that implements reference counting with the same

296 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

interface as these classes).

This is quite a large interface, but all it really does is to faithfully mimic the behavior of ordinary C++ class instance pointers. Rather than
discussing each member function in detail, we provide a simple overview here that outlines the most important points. Please see the
discussion of Ice objects for more examples of using smart pointers.

el enent _type

This type definition follows the STL convention of defining the element type with the fixed name el ement _t ype so you can use it for
template programming or the definition of generic containers.

_ptr

This data member stores the pointer to the underlying heap-allocated class instance.

Constructors, copy constructor, and assignment operators

These member functions allow you to construct, copy, and assign smart pointers as if they were ordinary pointers. In particular, the

constructor and assignment operator are overloaded to work with raw C++ class instance pointers, which results in the "adoption" of the raw
pointer by the smart pointer. For example, the following code works correctly and does not cause a memory leak:

C++

typedef Handl e<MyC ass> MyCl assPtr;
voi d foo(const MyC assPtré&);
11

foo(new WO ass); // OK no |leak here.

oper at or - >, oper at or *, and get

The arrow and indirection operators allow you to apply the usual pointer syntax to smart pointers to use the target of a smart pointer. The
get member function returns the class instance pointer to the underlying reference-counted class instance; the return value is the value of

_ptr.
dynani cCast

This member function works exactly like a C++ dynami c_cast : it tests whether the argument supports the specified type and, if so, returns
a non-null pointer; if the target does not support the specified type, it returns null.

The reason for not using an actual dynam c_cast and using a dynani cCast function instead is that dynam c_cast

only operates on pointer types, but | celti | : : Handl e is a class.
For example:
C++
MW assPtr p = ...;

MO herd assPtr o = ...;

0 = MOt herC assPtr::dynani cCast (p);
if (o)

{
/1 o points at an instance of type MyQtherd ass.
}
el se
{
/Il p points at sonmething that is
/1 not conpatible with MyO her d ass.
}

Note that this example also illustrates the use of oper at or bool : when used in a boolean context, a smart pointer returns true if it is

297 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

non-null and false otherwise.
Comparison operators: ==, =, <, <=, >, >=
The comparison operators compare the value of the underlying class instance pointer, that is, they compare the value returned by get . In

other words, == returns true if two smart pointers point at the same underlying class instance, and the ordering operators compare the
memory addresses of the underlying class instances.

See Also

® Smart Pointers for Classes
® The C++ Shared and SimpleShared Classes

298 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The C++ Handle Template Adaptors

I celtil| provides adaptors that support use of smart pointers with STL algorithms. Each template function returns a corresponding function
object that is for use by an STL algorithm. The adaptors are defined in the header | ceUti | / Functi onal . h.

Here is a list of the adaptors:

menfun
menfFunl

voi dMenfun
voi dMenfFunl

secondMenfun
secondMenfunl
secondVoi dMenfun
secondVoi dMenfunl

const Menfun
const MenfFunl
const Voi dMvenfun
const Voi dvenfunl

secondConst Menfun
secondConst MenFunl
secondConst Voi dMenfun
secondConst Voi dMenfunl

As you can see, the adaptors are in two groups. The first group operates on non-const smart pointers, whereas the second group operates
on const smart pointers (for example, on smart pointers declared as const MyCl assPtr).

Each group is further divided into two sub-groups. The adaptors in the first group operate on the target of a smart pointer, whereas the
second<nane> adapters operate on the second element of a pair, where that element is a smart pointer.

Each of the four sub-groups contains four adaptors:
menfun

This adaptor is used for member functions that return a value and do not accept an argument. For example:

C++

class My ass : public lcelWtil::Shared {

public:
MWd ass(int i) : _i(i) {}
int getval() { return _i; }
private:
int _i;
H

typedef lceltil::Handl e<Myd ass> MyCl assPtr;
/1

vect or <MyC assPtr> ntp;
ncp. push_back(new MyCl ass(42));
ncp. push_back(new MyCl ass(99));

transforn(ncp. begi n(), ncp.end(),
ostream.iterator<int>(cout, " "),
lceUtil::menFun(&WJd ass::getVal));
cout << endl;

This code invokes the member function get Val on each instance that is pointed at by smart pointers in the vector ncp and prints the return

299 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

value of get Val on cout , separated by spaces. The output from this code is:

42 99

menfunl

This adaptor is used for member functions that return a value and accept a single argument. For example:

C++

class M/Class : public lceUtil::Shared {

public:

Mydass(int i) : _i(i) {}

int plus(int v) { return _i +v; }
private:

int _i;
b

typedef lceltil::Handl e<Myd ass> MyCl assPtr;
11

vect or <MyCl assPtr> ntp;

ncp. push_back(new Myd ass(2));
ncp. push_back(new Myd ass(4));
ncp. push_back(new Myd ass(6));

int AI3] ={ 5 7, 91};

transforn(ncp. begin(), ncp.end(), A
ostream.iterator<int>(cout, " "),
lceUtil::menFunl(&Wd ass: :plus));

cout << endl;

This code invokes the member function pl us on each instance that is pointed at by smart pointers in the vector ntp and prints the return
value of a call to pl us on cout , separated by spaces. The calls to pl us are successively passed the values stored in the array A. The
output from this code is:

7 11 15

voi dMenfun

This adaptor is used for member functions that do not return a value and do not accept an argument. For example:

300 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

class My ass : public lcelWtil:: Shared {

public:

MWdC ass(int i) @ _i(i) {}

void print() { cout << _i << endl; }
private:

int _i;
h

typedef Iceltil::Handl e<MyC ass> MyC assPtr;
11

vect or<Myd assPtr> ncp;

nmcp. push_back(new Myd ass(2));

nmcp. push_back(new Myd ass(4));

ncp. push_back(new Myd ass(6));

for_each(nctp. begin(), ncp.end(), lceUtil::voidMvenFun(&Wd ass::print));

This code invokes the member function pri nt on each instance that is pointed at by smart pointers in the vector ntp. The output from this
code is:

IS

voi dMenfFunl

This adaptor is used for member functions that do not return a value and accept a single argument. For example:

C++

class MClass : public lceUtil::Shared {
public:

M ass(int i) : _i(i) {}

void printPlus(int v) { cout << _i + v << endl; }
private:

int _i;
H

typedef |ceUtil::Handl e<MyC ass> Myd assPtr;

vect or<Myd assPtr> ntp;

ncp. push_back(new Myd ass(2));
ncp. push_back(new Myd ass(4));
ncp. push_back(new MyCl ass(6));

for_each(
ncp. begin(), ntp.end(),
bi nd2nd(1 ceUtil: :voi dMenFunl(&Wd ass::printPlus), 3));

This code invokes the member function pri nt Pl us on each instance that is pointed at by smart pointers in the vector ncp. The output from
this code is:

~

As mentioned earlier, the second<nane> versions of the adaptors operate on the second element of a st d: : pai r<T1, T2>, where T2

301 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

must be a smart pointer. Most commonly, these adaptors are used to apply an algorithm to each lookup value of a map or multi-map. Here is
an example:

C++

class My ass : public lceltil:: Shared {

public:

M dass(int i) : _i(i) {}

int plus(int v) { return _i + v; }
private:

int _i;
H

typedef IcelUtil::Handl e<MyCl ass> Myd assPtr;
/1

map<string, MyClassPtr> m

n"two"] = new Myd ass(2);
n"four"] = new Myd ass(4);
"six"] = new MyC ass(6);

int A3 ={5 7 9}

transforn(
m begin(), mend(), A
ostream.iterator<int>(cout, " "),

lceltil::secondMenfunl<int, string, MO ass>(&Wd ass::plus));

This code invokes the pl us member function on the class instance denoted by the second smart pointer member of each pair in the
dictionary m The output from this code is:

9 13 11

Note that secondMentunl is a template that requires three arguments: the return type of the member function to be invoked, the key type of
the dictionary, and the type of the class that is pointed at by the smart pointer.

In general, the second<nane> adaptors require the following template arguments:

C++

secondMenfFun<R, K, T>
secondMenfFunil<R, K, T>
secondVoi dMenfun<K, T>
secondVoi dMenfFun<K, T>

where Ris the return type of the member function, K is the type of the first member of the pair, and T is the class that contains the member
function.

See Also

® The C++ Handle Template

302 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The C++ ScopedArray Template

I celtil:: ScopedArray is a smart pointer class similar to Handl e. However, instead of managing the memory for class instances,
ScopedAr r ay manages memory for an array. This class is provided mainly for use with the stream API. However, you can use it with arrays
for other purposes.

Here is the definition of the template in full:

C++
t enpl at e<t ypenane T>
class ScopedArray : private IceUtil::noncopyable
{
public:
explicit ScopedArray(T* ptr = 0)
_ptr(ptr) { }
ScopedArray(const ScopedArray& other) {
_ptr = other. _ptr;
const _cast <ScopedArray&>(other)._ptr = 0;
}
~ScopedArray() {
if (_ptr '=0)
delete[] _ptr;
}
void reset(T* ptr = 0) {
assert(ptr == 0 || ptr !'= _ptr);
if (_ptr '=0)
delete[] _ptr;
_ptr = ptr;
}
T& operator[](size_t i) const {
assert(_ptr !'= 0);
assert (i >= 0);
return _ptr[i];
}
T* get() const {
return _ptr;
}
voi d swap(ScopedArray& a) {
T tnmp = a._ptr;
a._ptr = _ptr;
_ptr = tnp;
}
private:
T _ptr;
I

The class allows you to allocate an array on the heap and assign its pointer to a ScopedAr r ay instance. When the instance goes out of
scope, it calls del et e[] on the array, so you do not need to deallocate the array explicitly yourself. This greatly reduces the risk of a
memory leak due to an early return or uncaught exception.

See Also

® C++ Streaming Interfaces

303 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The C++ Shared and SimpleShared Classes

IceUtil::SharedandlcelUtil:: SinpleShared are base classes that implement the reference-counting mechanism for smart pointers
. The two classes provide identical interfaces; the difference between Shar ed and Si npl eShar ed is that Si npl eShar ed is not thread-safe
and, therefore, can only be used if the corresponding class instances are accessed only by a single thread. (Si npl eShar ed is marginally
faster than Shar ed because it avoids the locking overhead that is incurred by Shar ed.)

The interface of Shar ed looks as follows. (Because Si npl eShar ed has the same interface, we do not show it separately here.)

C++
class Shared {
public:
Shared() ;
Shar ed(const Shared&);
virtual ~Shared();
Shar ed& oper at or =(const Shared&);
virtual void __incRef();
virtual void __decRef();
virtual int __getRef() const;
virtual void __setNoDel et e(bool);
b
The class maintains a reference that is initialized to zero by the constructor. __i ncRef increments the reference count and __decRef

decrements it. If, during a call to __decRef , after decrementing the reference count, the reference count drops to zero, __decRef calls
del et e t hi s, which causes the corresponding class instance to delete itself. The copy constructor increments the reference count of the
copied instance, and the assignment operator increments the reference count of the source and decrements the reference count of the
target.

The __get Ref member function returns the value of the reference count and is useful mainly for debugging.

The __set NoDel et e member function can be used to temporarily disable self-deletion and re-enable it again. This provides exception
safety when you initialize a smart pointer with the t hi s pointer of a class instance during construction.

To create a class that is reference-counted, you simply derive the class from Shar ed and define a smart pointer type for the class, for
example:

C++

class My ass : public lcelWil::Shared {
11

b

typedef lcelUil::Handl e<sMd ass> Myd assPtr;

See Also

® The C++ Handle Template
® Smart Pointers for Classes

304 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The C++ Time Class

The Ti e class provides basic facilities for getting the current time, constructing time intervals, adding and subtracting times, and comparing
times:

C++

305 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

nanmespace lceUtil {
typedef ... Int64;

class Time {

public:
enum Cl ock { Realtine, Mnotonic };
Time(d ock = Realtine);
static Time now();
static Tine seconds(lnt64);
static Tine m|liSeconds(Int64);
static Tinme mcroSeconds(|nt64);

Int64 toSeconds() const;
Int64 toMI1i Seconds() const;
I nt64 toM croSeconds() const;

doubl e toSecondsDoubl e() const;
doubl e toM I 1i SecondsDoubl e() const;
doubl e t oM croSecondsDoubl e() const;

std::string toDateTi me() const;
std::string toDuration() const;

Ti me operator-() const;

Time operator-(const Tinme& const;
Ti me operator+(const Tinme& const;

Time operator*(int) const;
Ti me operator*(lnt64) const;
Ti me operator*(doubl e) const;

doubl e operator/(const Time&) const;
Ti me operator/(int) const;

Time operator/(Int64) const;

Ti me operator/(double) const;

Ti me& operator-=(const Tinme&);
Ti me& oper at or +=(const Ti me&);

Ti me& operator*=(int);
Ti me& operator*=(1nt64);
Ti me& oper at or *=(doubl e) ;

Ti me& operator/=(int);
Ti me& operator/=(1nt64);
Ti me& operat or/ =(doubl e);

bool operator<(const Tinme& const;
bool operator<=(const Tinme& const;
bool operator>(const Tinme& const;
bool operator>=(const Tinme& const;
bool operator==(const Tinme& const;
bool operator!=(const Tinme& const;

#i fndef _W N32
operator tinmeval () const;
#endi f

}s

std::ostream& operator<<(std::ostream® const Tinme&);

The member functions behave as follows:

306

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Ti me

Internally, the Ti me class stores ticks in microsecond units. For absolute time, this is the number of microseconds since the Unix epoch
(00:00:00 UTC on 1 Jan. 1970). For durations, this is the number of microseconds in the duration. The default constructor initializes the tick
count to zero and selects the real-time clock. Constructing Ti me with an argument of Monot oni ¢ selects the monotonic clock on platforms
that support it; the real-time clock is used on other platforms.

now

This function constructs a Ti ne object that is initialized to the current time of day.

seconds, mlli Seconds, m croSeconds

These functions construct Ti me objects from the argument in the specified units. For example, the following statement creates a time
duration of one minute:

C++

lceltil::Time t = lceUtil::Time::seconds(60);

toSeconds, toM I Ili Seconds, toM croSeconds

The member functions provide explicit conversion of a duration to seconds, milliseconds, and microseconds, respectively. The return value is
a 64-bit signed integer (I ceUti | : : | nt 64). For example:

C++

lceUtil::Time t = Ilceltil::Time::mlliSeconds(2000);
lceUtil::Int64 secs = t.toSeconds(); // Returns 2

t oSecondsDoubl e, toM I |i SecondsDoubl e, toM croSecondsDoubl e

The member functions provide explicit conversion of a duration to seconds, milliseconds, and microseconds, respectively. The return value is
of type doubl e.

t oDat eTi ne

This function returns a human-readable representation of a Ti ne value as a date and time.
toDuration

This function returns a human-readable representation of a Ti ne value as a duration.
Qperators

Ti me provides operators that allow you to add, subtract, multiply, and divide times. For example:

C++
lceltil:: Time oneMnute = Iceltil::Tinme::seconds(60);
lceltil:: Time oneM nuteAgo = lcelUtil::Tine::now() - oneMnute;

The multiplication and division operators permit you to multiply and divide a duration. Note that these operators provide overloads for i nt ,
| ong | ong, and doubl e.

The comparison operators allow you to compare times and time intervals with each other, for example:

lceltil:: Time oneMnute = lceltil::Tine::seconds(60);
lceUtil::Time twoM nutes = Iceltil:: Tine::seconds(120);
assert(oneM nute < twoM nutes);

The ti meval operator converts a Ti me objectto a st ruct ti neval , defined as follows:

307 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C++

struct tineval {
long tv_sec;
long tv_usec;

}

The conversion is useful for API calls that require a st ruct ti neval argument, such as sel ect . To convert a duration intoati meval
structure, simply assign a Ti me objectto astruct tineval:

C++
lceUtil::Time oneMnute = Iceltil::Tinme::seconds(60);
struct tinmeval tv;
tv = t;

Note that this member function is not available under Windows.
std::ostream& operator<<(std::ostream& Tinme&);

This operator prints the number of whole seconds since the epoch.

See Also

® The C++ Timer and TimerTask Classes

308 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The C++ Timer and TimerTask Classes

The Ti mer class allows you to schedule some code for once-only or repeated execution after some time interval elapses. The code to be
executed resides in a class you derive from Ti ner Task:

C++

class Tiner;
typedef IceUtil::Handl e<Timer> TimerPtr;
class TinerTask : virtual public lIceUtil::Shared {
public:

virtual ~TinmerTask() { }

virtual void runTinmerTask() = 0;
H
typedef lceltil::Handl e<Ti mer Task> Ti ner TaskPtr;

Your derived class must override the r unTi mer Task member function; the code in this method is executed by the timer. If the code you
want to run requires access to some program state, you can pass that state into the constructor of your class or, alternatively, set that state
via member functions of your class before scheduling it with a timer.

The Ti mer class invokes the r unTi mer Task member function to run your code. The class has the following definition:

C++
class Tinmer : /[* ... *| {
public:
Tiner();
Timer(int priority);
voi d schedul e(const TinerTaskPtr& task, const lceltil::Tine& interval);
voi d schedul eRepeat ed(const Ti mer TaskPtr& task, const IceUtil::Tinme& interval);

bool cancel (const Ti mer TaskPtr& task);

voi d destroy();
b

typedef lceUtil::Handl e<Tiner> TinerPtr;

Intervals are specified using Ti e objects.
The constructor is overloaded to allow you specify a thread priority. The priority controls the priority of the thread that executes your task.

The schedul e member function schedules an instance of your timer task for once-only execution after the specified time interval has
elapsed. Your code is executed by a separate thread that is created by the Ti mer class. The function throws an
I'1'l egal Argurmrent Except i on if you invoke it on a destroyed timer.

The schedul eRepeat ed member function runs your task repeatedly, at the specified time interval. Your code is executed by a separate
thread that is created by the Ti mer class; the same thread is used every time your code runs. The function throws an
I'1'l egal Argument Except i on if you invoke it on a destroyed timer.

If your code throws an exception, the Ti mer class ignores the exception, that is, for a task that is scheduled to run repeatedly, an exception
in the current execution does not cancel the next execution.

If your code takes longer to execute than the time interval you have specified for repeated execution, the second execution is delayed
accordingly. For example, if you ask for repeated execution once every five seconds, and your code takes ten seconds to complete, then the
second execution of your task starts five seconds after the previous execution finishes, that is, the interval specifies the wait time between
successive executions.

A Ti mer Task instance that has already been scheduled with a Ti ner instance cannot be scheduled again with the same Ti ner instance
until the task has completed or been canceled.

309 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

For a single Ti mer instance, the execution of all registered tasks is serialized. The wait interval applies on a per-task basis so, if you
schedule task A at an interval of five seconds, and task B at an interval of ten seconds, successive runs of task A start no sooner than five
seconds after the previous task A has finished, and successive runs of task B start no sooner than ten seconds after the previous task B has
finished. If, at the time a task is scheduled to run, another task is still running, the new task's execution is delayed until the previous task has
finished.

If you want scheduled tasks to run concurrently, you can create several Ti mer instances; tasks then execute in as many threads
concurrently as there are Ti mer instances.

The cancel member function removes a task from a timer's schedule. In other words, it stops a task that is scheduled for repeated
execution from being executed again. (For once-only tasks, cancel does nothing.) If you cancel a task while it is executing, cancel returns
immediately and the currently running task is allowed to complete normally; that is, cancel does not wait for any currently running task to
complete.

The return value is true if cancel removed the task from the schedule. This is the case if you invoke cancel on a task that is scheduled for
repeated execution and this was the first time you cancelled that task; subsequent calls to cancel return false. Calling cancel on a task
scheduled for once-only execution always returns false, as does calling cancel on a destroyed timer.

The dest r oy member function removes all tasks from the timer's schedule. If you call dest r oy from any thread other than the timer's own
execution thread, it joins with the currently executing task (if any), so the function does not return until the current task has completed. If you
call dest r oy from the timer's own execution thread, it instead detaches the timer's execution thread. Calling dest r oy a second time on the
same Ti ner instance has no effect. Similarly, calling cancel on a destroyed timer has no effect.

Note that you must call dest r oy on a Ti mer instance before allowing it to go out of scope; failing to do so causes undefined behavior.

Calls to schedul e or schedul eRepeat ed on a destroyed timer do nothing.

See Also

® The C++ Time Class
® The C++ Thread Classes

310 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Unicode and UTF-8 Conversion Functions in C++

The | celUti | namespace contains two helper functions that allow you to convert between wide strings containing Unicode characters
(either 16- or 32-bit, depending on your native wchar _t size) and narrow strings in UTF-8 encoding:

C++

enum Conver si onFl ags { strictConversion, |enientConversion };

std::string wstringToString(const std::wstring& ConversionFlags = |enientConversion);
std::wstring stringToWtring(const std::string& ConversionFlags = |enientConversion);

These functions always convert to and from UTF-8 encoding, that is, they ignore any locale setting that might specify a different encoding.

Byte sequences that are illegal, such as 0xF4908080, result in a UTFConver si onExcept i on. For other errors, the Conver si onFl ags
parameter determines how rigorously the functions check for errors. When set to | eni ent Conver si on (the default), the functions tolerate
isolated surrogates and irregular sequences, and substitute the UTF-32 replacement character 0x0O000FFFD for character values above
Ox10FFFF. When set to st ri ct Conver si on, the functions do not tolerate such errors and throw a UTFConver si onExcept i on instead:

C++

enum Conversi onError { partial Character, badEncoding };

cl ass UTFConversi onException : public Exception {
public:
UTFConver si onExcepti on(const char* file, int line, ConversionError r);

Conver si onError conversionError() const;
/1
b

The conver si onEr r or member function returns the reason for the failure:

® partial Character
The UTF-8 source string contains a trailing incomplete UTF-8 byte sequence.

® badEncodi ng

The UTF-8 source string contains a byte sequence that is not a valid UTF-8 encoded character, or the Unicode source string
contains a bit pattern that does not represent a valid Unicode character.

311 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Version Information in C++

The header file | ceUti | / Confi g. h defines two macros that expand to the version of the Ice run time:

C++

#define | CE_STRING VERSION "3.4.2" // "<naj or>. <m nor >. <pat ch>"
#define | CE_| NT_VERSI ON 30402 /1 AABBCC, with AA=mj or,
/1 BB=m nor, CC=patch

| CE_STRI NG_VERSI ONis a string literal in the form <maj or >. <mi nor >. <pat ch>, for example, 3. 4. 2. For beta releases, the version is
<maj or >. <m nor >h, for example, 3. 4b.

I NT_VERSI ONis an integer literal in the form AABBCC, where AA is the major version number, BB is the minor version number, and CCis the
patch level, for example, 30402 for version 3.4.2. For beta releases, the patch level is set to 51 so, for example, for version 3.4b, the value is

30451.

312 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java Mapping

Topics
® Client-Side Slice-to-Java Mapping

® Server-Side Slice-to-Java Mapping
® The Java Utility Library

313 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Client-Side Slice-to-Java Mapping

In this section, we present the client-side Slice-to-Java mapping. The client-side Slice-to-Java mapping defines how Slice data types are
translated to Java types, and how clients invoke operations, pass parameters, and handle errors. Much of the Java mapping is intuitive. For
example, Slice sequences map to Java arrays, so there is essentially nothing new you have to learn in order to use Slice sequences in Java.

The Java API to the Ice run time is fully thread-safe. Obviously, you must still synchronize access to data from different threads. For
example, if you have two threads sharing a sequence, you cannot safely have one thread insert into the sequence while another thread is
iterating over the sequence. However, you only need to concern yourself with concurrent access to your own data — the Ice run time itself is
fully thread safe, and none of the Ice API calls require you to acquire or release a lock before you safely can make the call.

Much of what appears in this chapter is reference material. We suggest that you skim the material on the initial reading and refer back to
specific sections as needed. However, we recommend that you read at least the mappings for exceptions, interfaces, and operations in
detail because these sections cover how to call operations from a client, pass parameters, and handle exceptions.

1, Inorder to use the Java mapping, you should need no more than the Slice definition of your application and knowledge of
the Java mapping rules. In particular, looking through the generated code in order to discern how to use the Java mapping
is likely to be inefficient, due to the amount of detail. Of course, occasionally, you may want to refer to the generated code
to confirm a detail of the mapping, but we recommend that you otherwise use the material presented here to see how to
write your client-side code.

) Thelce Package
All of the APIs for the Ice run time are nested in the | ce package, to avoid clashes with definitions for other libraries or
applications. Some of the contents of the | ce package are generated from Slice definitions; other parts of the | ce
package provide special-purpose definitions that do not have a corresponding Slice definition. We will incrementally cover
the contents of the | ce package throughout the remainder of the book.

Topics

Java Mapping for Identifiers

Java Mapping for Modules

Java Mapping for Built-In Types

Java Mapping for Enumerations

Java Mapping for Structures

Java Mapping for Sequences

Java Mapping for Dictionaries

Java Mapping for Constants

Java Mapping for Exceptions

Java Mapping for Interfaces

Java Mapping for Operations

Java Mapping for Classes

Serializable Objects in Java
Customizing the Java Mapping
Asynchronous Method Invocation (AMI) in Java
Using the Slice Compiler for Java

Using Slice Checksums in Java
Example of a File System Client in Java

314 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java Mapping for Identifiers

A Slice identifier maps to an identical Java identifier. For example, the Slice identifier O ock becomes the Java identifier Cl ock. There is
one exception to this rule: if a Slice identifier is the same as a Java keyword or is an identifier reserved by the Ice run time (such as
checkedCast), the corresponding Java identifier is prefixed with an underscore. For example, the Slice identifier whi | e is mapped as
_Wwhile.

ﬂl You should try to avoid such identifiers as much as possible.

A single Slice identifier often results in several Java identifiers. For example, for a Slice interface named Foo, the generated Java code uses
the identifiers Foo and FooPr x (among others). If the interface has the name whi | e, the generated identifiers are _whi | e and whi | ePr x (
not _whi | ePr x), that is, the underscore prefix is applied only to those generated identifiers that actually require it.

See Also

Lexical Rules

Java Mapping for Modules
Java Mapping for Built-In Types
Java Mapping for Enumerations
Java Mapping for Structures
Java Mapping for Sequences
Java Mapping for Dictionaries
Java Mapping for Constants
Java Mapping for Exceptions

315 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java Mapping for Modules

A Slice module maps to a Java package with the same name as the Slice module. The mapping preserves the nesting of the Slice
definitions. For example:

Slice

// Definitions at gl obal scope here...

modul e ML {
/1 Definitions for ML here...
nmodule M2 {
/1 Definitions for M2 here...
}
s

11

modul e ML { /] Reopen ML
/'l More definitions for ML here...

b

This definition maps to the corresponding Java definitions:

Java

package ML;
/1 Definitions for ML here...

package ML. Me;
/1 Definitions for M2 here...

package M;
/1 Definitions for ML here...

Note that these definitions appear in the appropriate source files; source files for definitions in module ML are generated in directory ML
underneath the top-level directory, and source files for definitions for module M2 are generated in directory ML/ M2 underneath the top-level
directory. You can set the top-level output directory using the - - out put - di r option with sl i ce2j ava.

See Also

Modules

Using the Slice Compilers

Java Mapping for Identifiers
Java Mapping for Built-In Types
Java Mapping for Enumerations
Java Mapping for Structures
Java Mapping for Sequences
Java Mapping for Dictionaries
Java Mapping for Constants
Java Mapping for Exceptions

316 Copyright © 2011, ZeroC, Inc.

Java Mapping for Built-In Types

Ice 3.4.2 Documentation

The Slice built-in types are mapped to Java types as follows:

Slice
bool
byte
short
int
long

float

Java
bool ean
byt e
short

i nt

| ong

fl oat

double doubl e

string

String

Mapping of Slice built-in types to Java.

317

See Also

Basic Types

Java Mapping for Identifiers
Java Mapping for Modules
Java Mapping for Enumerations
Java Mapping for Structures
Java Mapping for Sequences
Java Mapping for Dictionaries
Java Mapping for Constants
Java Mapping for Exceptions

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java Mapping for Enumerations

A Slice enumeration maps to the corresponding enumeration in Java. For example:

Slice

enum Fruit { Apple, Pear, O ange };

The Java mapping for Fr ui t is shown below:

Java

public enum Fruit inplenments java.io.Serializable {

Appl e,

Pear ,
Or ange;

/1

Given the above definitions, we can use enumerated values as follows:

Java
Fruit f1 = Fruit. Apple;
Fruit f2 = Fruit. O ange;
if (f1 == Fruit.Apple) // Conpare with constant
11
if (fl ==12) /] Conpare two enuns
11
switch (f2) { /1 Switch on enum
case Fruit. Apple:
I
br eak;
case Fruit. Pear
11
br eak;
case Fruit. O ange
11
br eak;

Note that the generated class contains a number of other members, which we have not shown. These members are internal to the Ice run
time and you must not use them in your application code (because they may change from release to release).

See Also

Enumerations

Java Mapping for Structures
Java Mapping for Sequences
Java Mapping for Dictionaries

318

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java Mapping for Structures
On this page:

® Basic Java Mapping for Structures
® Java Default Constructors for Structures

Basic Java Mapping for Structures

A Slice structure maps to a Java class with the same name. For each Slice data member, the Java class contains a corresponding public
data member. For example, here is our Employee structure once more:

Slice

struct Enpl oyee {
| ong nunber;
string firstNaneg;
string | ast Naneg;

}

The Slice-to-Java compiler generates the following definition for this structure:

Java

public final class Enployee inplenents java.lang.C oneable, java.io.Serializable {
public | ong nunber;
public String firstNane;
public String |astNane;

public Enpl oyee {}

public Enpl oyee(long nunber, String firstName, String |astNane) {
t hi s. nunber = nunber;
this.firstName = firstNane;
this.lastName = | ast Nan®;

}

publ i c bool ean equal s(j ava.l ang. Obj ect rhs) {
/1

}

public int hashCode() {
/1

}

public java.lang. Cbject clone()
java. |l ang. Obj ect o;

try
{
0 = super.clone();
}
cat ch(j ava. | ang. C oneNot Suppor t edExcepti on ex)
{
assert false; // inpossible
}
return o;

For each data member in the Slice definition, the Java class contains a corresponding public data member of the same name. Note that you
can optionally customize the mapping for data members to use getters and setters instead.

The equal s member function compares two structures for equality. Note that the generated class also provides the usual hashCode and

319 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

cl one methods. (cl one has the default behavior of making a shallow copy.)

Java Default Constructors for Structures

Structures have a default constructor that default-constructs each data member. This means members of primitive type are initialized to the
equivalent of zero, and members of reference type are initialized to null. Note that applications must always explicitly initialize members of
structure and enumerated types because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in
your Slice definition. The default constructor initializes each of these data members to its declared value.

Structures also have a second constructor that has one parameter for each data member. This allows you to construct and initialize a class
instance in a single statement (instead of first having to construct the instance and then assign to its members).

See Also

Structures

Java Mapping for Enumerations
Java Mapping for Sequences
Java Mapping for Dictionaries
Customizing the Java Mapping

320 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java Mapping for Sequences

A Slice sequence maps to a Java array. This means that the Slice-to-Java compiler does not generate a separate named type for a Slice
sequence.

For example:

Slice

sequence<Fruit> FruitPlatter;

This definition simply corresponds to the Java type Fr ui t [] . Naturally, because Slice sequences are mapped to Java arrays, you can take
advantage of all the array functionality provided by Java, such as initialization, assignment, cloning, and the | engt h member. For example:

Java

Fruit[] platter = { Fruit.Apple, Fruit.Pear };
assert(platter.length == 2);

Alternate mappings for sequence types are also possible.

See Also

Sequences

Java Mapping for Enumerations
Java Mapping for Structures
Java Mapping for Dictionaries
Customizing the Java Mapping

321 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java Mapping for Dictionaries

Here is the definition of our EmployeeMap once more:

Slice

di ctionary<l ong, Enpl oyee> Enpl oyeeMap;

As for sequences, the Java mapping does not create a separate named type for this definition. Instead, the dictionary is simply an instance
of the generic type j ava. uti | . Map<K, V>, where Kis the mapping of the key type and V is the mapping of the value type. In the example
above, Enpl oyeeMap is mapped to the Java type j ava. uti | . Map<Long, Enpl oyee>. The following code demonstrates how to allocate
and use an instance of Enpl oyeeMap:

Java

java.util.Mip<Long, Enployee> em = new java.util.HashMap<Long, Enpl oyee>();

Enpl oyee e = new Enpl oyee();
e. nunber = 31;

e.firstName = "Janes";
e.last Name = "Gosling";

em put (e. nunber, e);

The type-safe nature of the mapping makes iterating over the dictionary quite convenient:

Java
for (java.util.Mp. Entry<Long, Enployee> i : ementrySet()) {
long num = i.getKey();
Enpl oyee enp = i.getVal ue();

Systemout.println(enp.firstNane + " was enpl oyee #" + nunm);

Alternate mappings for dictionary types are also possible.

See Also

Dictionaries

Java Mapping for Enumerations
Java Mapping for Structures
Java Mapping for Sequences
Customizing the Java Mapping

322 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java Mapping for Constants

Here are the sample constant definitions once more:

Slice
const bool AppendByDef ault = true;
const byte Lower Ni bbl e = 0xOf ;
const string Advice = "Don't Panic!";
const short TheAnswer = 42;
const doubl e Pl = 3.1416;
enum Fruit { Apple, Pear, Oange };
const Fruit FavoriteFruit = Pear;
Here are the generated definitions for these constants:
Java

public interface AppendByDefault {
bool ean val ue = true;

}

public interface LowerN bble {
byte val ue = 15;
}

public interface Advice {
String value = "Don't Panic!";

}

public interface TheAnswer {
short value = 42;

}

public interface Pl {
doubl e val ue = 3. 1416;

}

public interface FavoriteFruit {
Fruit value = Fruit. Pear;

}

As you can see, each Slice constant is mapped to a Java interface with the same name as the constant. The interface contains a member
named val ue that holds the value of the constant.

See Also

Constants and Literals

Java Mapping for Identifiers
Java Mapping for Modules
Java Mapping for Built-In Types
Java Mapping for Enumerations
Java Mapping for Structures
Java Mapping for Sequences
Java Mapping for Dictionaries
Java Mapping for Exceptions

323 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java Mapping for Exceptions

On this page:
® Java Mapping for User Exceptions

® Java Default Constructors for User Exceptions
® Java Mapping for Run-Time Exceptions

Java Mapping for User Exceptions

Here is a fragment of the Slice definition for our world time server once more:

Slice
exception GenericError {
string reason;
H
exception BadTi neVal extends GenericError {};
exception BadZoneNane extends GenericError {};
These exception definitions map as follows:
Java

public class CenericError extends |ce.UserException {
public String reason;

public GenericError() {}

public GenericError(Throwabl e cause)

{
super (cause) ;
}
public GenericError(String reason)
{
this.reason = reason;
}
public GenericError(String reason, Throwabl e cause)
{
super (cause) ;
this.reason = reason;
}
public String ice_nane()
{
return "CenericError";
}

}

public class BadTi neVal extends GenericError {
public BadTineVal () {}

publ i ¢ BadTi neVal (Throwabl e cause)

{
}

super (cause) ;

publ i c BadTi neVal (String reason)
{

324

Copyright © 2011, ZeroC, Inc.

325

Ice 3.4.2 Documentation

super (reason);

}

public BadTi neVal (String reason, Throwabl e cause)

{

super (reason, cause);

}
public String ice_nane()
{

return "BadTi neval ";
}

}

public class BadZoneNarme extends GenericError {
publ i c BadZoneNare() {}

publ i ¢ BadZoneNane(Thr owabl e cause)

{
super (cause) ;
}
publ i ¢ BadZoneNanme(String reason)
{
super (reason);
}

publ i c BadZoneNane(String reason, Throwabl e cause)

{
}

super (reason, cause);

public String ice_nane()

{

return "BadZoneNane";

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Each Slice exception is mapped to a Java class with the same name. For each data member, the corresponding class contains a public data
member. (Obviously, because BadTi meVal and BadZoneNane do not have members, the generated classes for these exceptions also do
not have members.) Note that you can optionally customize the mapping for data members to use getters and setters instead.

The inheritance structure of the Slice exceptions is preserved for the generated classes, so BadTi neVal and BadZoneNane inherit from
Generi cError.

Each exception also defines the i ce_nanme member function, which returns the name of the exception.

All user exceptions are derived from the base class | ce. User Except i on. This allows you to catch all user exceptions generically by
installing a handler for | ce. User Excepti on. | ce. User Except i on, in turn, derives from j ava. | ang. Excepti on.

| ce. User Except i on implements a cl one method that is inherited by its derived exceptions, so you can make memberwise shallow
copies of exceptions.

Note that the generated exception classes contain other member functions that are not shown. However, those member functions are
internal to the Java mapping and are not meant to be called by application code.

Java Default Constructors for User Exceptions

Exceptions have a default constructor that default-constructs each data member. This means members of primitive type are initialized to the
equivalent of zero, and members of reference type are initialized to null. Note that applications must always explicitly initialize members of
structure and enumerated types because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in
your Slice definition. The default constructor initializes each of these data members to its declared value.

Exceptions also have a second constructor that has one parameter for each data member. This allows you to construct and initialize a class
instance in a single statement (instead of first having to construct the instance and then assign to its members). For derived exceptions, this
constructor accepts one argument for each base exception member, plus one argument for each derived exception member, in
base-to-derived order.

Java Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error conditions. All run-time exceptions directly or indirectly derive
from | ce. Local Excepti on (which, in turn, derives from j ava. | ang. Runt i mneExcepti on).

| ce. Local Except i on implements a cl one method that is inherited by its derived exceptions, so you can make memberwise shallow
copies of exceptions.

Recall the inheritance diagram for user and run-time exceptions. By catching exceptions at the appropriate point in the hierarchy, you can
handle exceptions according to the category of error they indicate:

® | ce. Local Exception
This is the root of the inheritance tree for run-time exceptions.

® | ce. User Exception
This is the root of the inheritance tree for user exceptions.

® | ce. Ti meout Exception
This is the base exception for both operation-invocation and connection-establishment timeouts.

® | ce. Connect Ti meout Excepti on
This exception is raised when the initial attempt to establish a connection to a server times out.

For example, a Connect Ti meout Except i on can be handled as Connect Ti neout Excepti on, Ti meout Excepti on,
Local Excepti on, orj ava. | ang. Excepti on.

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as Local Except i on; the
fine-grained error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time.
Exceptions to this rule are the exceptions related to facet and object life cycles, which you may want to catch explicitly. These exceptions are
Facet Not Exi st Except i on and Obj ect Not Exi st Except i on, respectively.

326 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

See Also

327

User Exceptions

Run-Time Exceptions

Java Mapping for Modules
Java Mapping for Built-In Types
Java Mapping for Enumerations
Java Mapping for Structures
Java Mapping for Sequences
Java Mapping for Dictionaries
Java Mapping for Constants
JavaBean Mapping

Facets and Versioning

Object Life Cycle

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java Mapping for Interfaces

The mapping of Slice interfaces revolves around the idea that, to invoke a remote operation, you call a member function on a local class
instance that is a proxy for the remote object. This makes the mapping easy and intuitive to use because making a remote procedure call is
no different from making a local procedure call (apart from error semantics).

On this page:

¢ Java Classes Generated for an Interface

® Proxy Interfaces in Java

® Thel ce. Obj ect Prx Interface in Java

® Proxy Helpers in Java

® Using Proxy Methods in Java

® Object Identity and Proxy Comparison in Java
® Deserializing Proxies in Java

Java Classes Generated for an Interface

The compiler generates quite a few source files for each Slice interface. In general, for an interface <i nt er f ace- nanme>, the following
source files are created by the compiler:

® <interface-nanme>.java
This source file declares the <i nt er f ace- nane> Java interface.

® <jnterface-nanme>Hol der.java
This source file defines a holder type for the interface.

®* <interface-name>Prx.java
This source file defines the proxy interface <i nt er f ace- name>Pr x.

® <jnterface-nanme>PrxHel per.java
This source file defines the helper type for the interface's proxy.

® <jnterface-nanme>PrxHol der.java
This source file defines the holder type for the interface's proxy.

® <interface-name>Cperations.java
_<interface-name>QCperati onsNC. j ava
These source files each define an interface that contains the operations corresponding to the Slice interface.

These are the files that contain code that is relevant to the client side. The compiler also generates a file that is specific to the server side,
plus three additional files:

® <interface-nane>Di sp.java
This file contains the definition of the server-side skeleton class.

® <interface-nanme>Del.java

® <interface-nane>Del D.java

® <interface-nane>Del M java
These files contain code that is internal to the Java mapping; they do not contain any functions of relevance to application
programmers.

Proxy Interfaces in Java

On the client side, a Slice interface maps to a Java interface with methods that correspond to the operations on that interface. Consider the
following simple interface:

Slice

interface Sinple {
void op();
H

The Slice compiler generates the following definition for use by the client:

328 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java

public interface SinplePrx extends |ce.ObjectPrx {
public void op();
public void op(java.util.Map<String, String> _ context);

As you can see, the compiler generates a proxy interface Si npl ePr x. In general, the generated name is <i nt er f ace- nanme>Pr x. If an
interface is nested in a module M the generated class is part of package M so the fully-qualified name is M <i nt er f ace- name>Pr x.

In the client's address space, an instance of Si npl ePr x is the local ambassador for a remote instance of the Si npl e interface in a server
and is known as a proxy instance. All the details about the server-side object, such as its address, what protocol to use, and its object
identity are encapsulated in that instance.

Note that Si npl ePr x inherits from | ce. Qbj ect Pr x. This reflects the fact that all Ice interfaces implicitly inherit from | ce: : Cbj ect .

For each operation in the interface, the proxy class has a method of the same name. For the preceding example, we find that the operation
op has been mapped to the method op. Also note that op is overloaded: the second version of op has a parameter __cont ext of type
java.util.Mp<String, String>. This parameter is for use by the Ice run time to store information about how to deliver a request.
You normally do not need to use it. (We examine the __cont ext parameter in detail in Request Contexts. The parameter is also used by
IceStorm.)

Because all the <i nt er f ace- nane>Pr x types are interfaces, you cannot instantiate an object of such a type. Instead, proxy instances are
always instantiated on behalf of the client by the Ice run time, so client code never has any need to instantiate a proxy directly.The proxy
references handed out by the Ice run time are always of type <i nt er f ace- name>Pr x; the concrete implementation of the interface is part
of the Ice run time and does not concern application code.

A value of nul | denotes the null proxy. The null proxy is a dedicated value that indicates that a proxy points "nowhere" (denotes no object).

The | ce. hj ect Pr x Interface in Java

All Ice objects have Obj ect as the ultimate ancestor type, so all proxies inherit from | ce. Obj ect Pr x. Obj ect Pr x provides a number of
methods:

Java

package |ce;

public interface ObjectPrx {
bool ean equal s(j ava.lang. Ooject r);
Identity ice_getldentity();
bool ean ice_isA(String __id);
bool ean ice_isA(String __id, java.util.Mp<String, String> ctx);
String[] ice_ids();
String[] ice_ids(java.util.Map<String, String> ctx);
String ice_id();
String ice_id(java.util.Mp<String, String> ctx);
void ice_ping();
void ice_ping(java.util.Mp<String, String> ctx);
/1

The methods behave as follows:

® equal s
This operation compares two proxies for equality. Note that all aspects of proxies are compared by this operation, such as the
communication endpoints for the proxy. This means that, in general, if two proxies compare unequal, that does not imply that they
denote different objects. For example, if two proxies denote the same Ice object via different transport endpoints, equal s returns
f al se even though the proxies denote the same object.

® ice_getldentity
This method returns the identity of the object denoted by the proxy. The identity of an Ice object has the following Slice type:

329 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

nmodul e Ice {
struct ldentity {
string nane;
string category;
i
|

To see whether two proxies denote the same object, first obtain the identity for each object and then compare the identities:

Java

Ice. bjectPrx ol
I ce. Cbj ectPrx o2
lce.ldentity il = ol.ice_getldentity();
lce.ldentity i2 = 02.ice_getldentity();

if (il.equals(i?2))

/1 ol and 02 denote the sane object
el se

/1 0l and 02 denote different objects

® jce_isA
The i ce_i sA method determines whether the object denoted by the proxy supports a specific interface. The argumenttoi ce_i sA
is a type ID. For example, to see whether a proxy of type Obj ect Pr x denotes a Pri nt er object, we can write:

Java

lce.pjectPrx o = ...;

if (o!=null & o.ice_isA("::Printer"))
/1 o denotes a Printer object

el se
/1 o denotes sonme other type of object

Note that we are testing whether the proxy is null before attempting to invoke the i ce_i sA method. This avoids getting a
Nul | Poi nt er Except i on if the proxy is null.

® jce_ids
The i ce_i ds method returns an array of strings representing all of the type IDs that the object denoted by the proxy supports.

® jce_id
The i ce_i d method returns the type ID of the object denoted by the proxy. Note that the type returned is the type of the actual
object, which may be more derived than the static type of the proxy. For example, if we have a proxy of type BasePr x, with a static
type ID of : : Base, the return value of i ce_i d might be : : Base, or it might something more derived, such as : : Deri ved.

® ice_ping
The i ce_pi ng method provides a basic reachability test for the object. If the object can physically be contacted (that is, the object
exists and its server is running and reachable), the call completes normally; otherwise, it throws an exception that indicates why the
object could not be reached, such as (bj ect Not Exi st Excepti on or Connect Ti neout Excepti on.

Theice_isAice_ids,ice_id, andice_pi ng methods are remote operations and therefore support an additional overloading that

accepts a request context. Also note that there are other methods in Obj ect Pr x, not shown here. These methods provide different ways to
dispatch a call and also provide access to an object's facets.

Proxy Helpers in Java

For each Slice interface, apart from the proxy interface, the Slice-to-Java compiler creates a helper class: for an interface Si npl e, the name
of the generated helper class is Si npl ePr xHel per . The helper classes contains two methods that support down-casting:

330 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java

public final class SinplePrxHel per extends Ice. ObjectPrxHel per inplenments SinplePrx {
public static SinplePrx checkedCast(lce.ObjectPrx b) {
/1

}

public static SinplePrx checkedCast(lce.ObjectPrx b, Ice.Context ctx) {
11
}

public static SinplePrx uncheckedCast (Ice.ObjectPrx b) {
/1
}

I

Both the checkedCast and uncheckedCast methods implement a down-cast: if the passed proxy is a proxy for an object of type Si npl e,
or a proxy for an object with a type derived from Si npl e, the cast returns a non-null reference to a proxy of type Si npl ePr x; otherwise, if
the passed proxy denotes an object of a different type (or if the passed proxy is null), the cast returns a null reference.

Given a proxy of any type, you can use a checkedCast to determine whether the corresponding object supports a given type, for example:

Java

lce.CbjectPrx obj = ...; /] Get a proxy from somewhere. ..

Si npl ePrx sinple = Sinpl ePrxHel per. checkedCast (obj);
if (sinple !'= null)

/1 Object supports the Sinple interface...
el se

/1l Onject is not of type Sinple...

Note that a checkedCast contacts the server. This is necessary because only the implementation of an object in the server has definite
knowledge of the type of an object. As a result, a checkedCast may throw a Connect Ti neout Excepti on or an

Obj ect Not Exi st Except i on. (This also explains the need for the helper class: the Ice run time must contact the server, so we cannot use
a Java down-cast.)

In contrast, an uncheckedCast does not contact the server and unconditionally returns a proxy of the requested type. However, if you do
use an uncheckedCast , you must be certain that the proxy really does support the type you are casting to; otherwise, if you get it wrong,
you will most likely get a run-time exception when you invoke an operation on the proxy. The most likely error for such a type mismatch is
Oper at i onNot Exi st Except i on. However, other exceptions, such as a marshaling exception are possible as well. And, if the object
happens to have an operation with the correct name, but different parameter types, no exception may be reported at all and you simply end
up sending the invocation to an object of the wrong type; that object may do rather nonsensical things. To illustrate this, consider the
following two interfaces:

Slice

interface Process {
void launch(int stackSize, int dataSize);

b
/1

interface Rocket {
void launch(fl oat xCoord, float yCoord);

}

Suppose you expect to receive a proxy for a Pr ocess object and use an uncheckedCast to down-cast the proxy:

331 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java
lce.jectPrx obj = ...; Il Get proxy...
ProcessPrx process = ProcessPrxHel per.uncheckedCast (obj); // No worries...
process. | aunch(40, 60); /1 Qops. ..

If the proxy you received actually denotes a Rocket object, the error will go undetected by the Ice run time: because i nt and f | oat have
the same size and because the Ice protocol does not tag data with its type on the wire, the implementation of Rocket : : | aunch will simply
misinterpret the passed integers as floating-point numbers.

In fairness, this example is somewhat contrived. For such a mistake to go unnoticed at run time, both objects must have an operation with
the same name and, in addition, the run-time arguments passed to the operation must have a total marshaled size that matches the number
of bytes that are expected by the unmarshaling code on the server side. In practice, this is extremely rare and an incorrect uncheckedCast
typically results in a run-time exception.

A final warning about down-casts: you must use either a checkedCast or an uncheckedCast to down-cast a proxy. If you use a Java
cast, the behavior is undefined.

Using Proxy Methods in Java

The base proxy class Obj ect Pr x supports a variety of methods for customizing a proxy. Since proxies are immutable, each of these
"factory methods" returns a copy of the original proxy that contains the desired modification. For example, you can obtain a proxy configured
with a ten second timeout as shown below:

Java

I ce. Gbj ect Prx proxy = communi cator.stringToProxy(...);
proxy = proxy.ice_timeout(10000);

A factory method returns a new proxy object if the requested modification differs from the current proxy, otherwise it returns the current
proxy. With few exceptions, factory methods return a proxy of the same type as the current proxy, therefore it is generally not necessary to
repeat a checkedCast or uncheckedCast after using a factory method. However, a regular cast is still required, as shown in the example
below:

Java

| ce. Cbj ect Prx base = conmmuni cator.stringToProxy(...);

Hel I oPrx hell o = Hel | oPrxHel per. checkedCast (base);

hello = (HelloPrx)hello.ice_tinmeout(10000); # Type is preserved
hel | 0. sayHel | o();

The only exceptions are the factory methods i ce_f acet andi ce_i denti ty. Calls to either of these methods may produce a proxy for an
object of an unrelated type, therefore they return a base proxy that you must subsequently down-cast to an appropriate type.

Object Identity and Proxy Comparison in Java

Proxies provide an equal s method that compares proxies:

Java

interface ObjectPrx {
bool ean equal s(j ava.lang. Ooject r);

}

Note that proxy comparison with equal s uses all of the information in a proxy for the comparison. This means that not only the object
identity must match for a comparison to succeed, but other details inside the proxy, such as the protocol and endpoint information, must be
the same. In other words, comparison with equal s tests for proxy identity, not object identity. A common mistake is to write code along the
following lines:

332 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java
lce.jectPrx pl = ...; /1 Get a proxy...
lce.jectPrx p2 = ...; /1 Get another proxy...
if (pl.equals(p2)) {

/1 pl and p2 denote different objects /1 \WWRONG
} else {

/1 pl and p2 denote the sanme object /'l Correct
}

Even though p1 and p2 differ, they may denote the same Ice object. This can happen because, for example, both p1 and p2 embed the
same object identity, but each use a different protocol to contact the target object. Similarly, the protocols may be the same, but denote
different endpoints (because a single Ice object can be contacted via several different transport endpoints). In other words, if two proxies
compare equal with equal s, we know that the two proxies denote the same object (because they are identical in all respects); however, if
two proxies compare unequal with equal s, we know absolutely nothing: the proxies may or may not denote the same object.

To compare the object identities of two proxies, you can use a helper function in the | ce. Uti | class:

Java

package | ce;

public final class Uil {
public static int proxyldentityConpare(QbjectPrx |hs, ObjectPrx rhs);
public static int proxyldentityAndFacet Conpare(QbjectPrx |hs, ObjectPrx rhs);
/1

proxyl denti t yConpar e allows you to correctly compare proxies for identity:

Java

Ice. bjectPrx pl /1 Get a proxy...
lce.jectPrx p2 = ...; /1 Get another proxy...

if (lce.Wil.proxyldentityConpare(pl, p2) !'=0) {

/1 pl and p2 denote different objects /'l Correct
} else {
/1 pl and p2 denote the sanme object /1 Correct

}

The function returns 0 if the identities are equal, - 1 if p1 is less than p2, and 1 if p1 is greater than p2. (The comparison uses nane as the
major and cat egor y as the minor sort key.)

The proxyl denti t yAndFacet Conpar e function behaves similarly, but compares both the identity and the facet name.

In addition, the Java mapping provides two wrapper classes that allow you to wrap a proxy for use as the key of a hashed collection:

333 Copyright © 2011, ZeroC, Inc.

The constructor caches the identity and the hash code of the passed proxy, so calls to hashCode and equal s can be evaluated efficiently.

Ice 3.4.2 Documentation

Java

package |ce;

public class ProxyldentityKey {
public ProxyldentityKey(lce.QbjectPrx proxy);
public int hashCode();
publ i ¢ bool ean equal s(j ava. |l ang. Obj ect obj);
public Ice. ObjectPrx getProxy();

}

public class ProxyldentityFacetKey {
public ProxyldentityFacetKey(lce.ObjectPrx proxy);
public int hashCode();
publ i c bool ean equal s(j ava.l ang. Obj ect obj);
public Ice. ObjectPrx getProxy();

The get Pr oxy method returns the proxy that was passed to the constructor.

As for the comparison functions, Pr oxyl dent i t yKey only uses the proxy's identity, whereas Pr oxyl dent i t yFacet Key also includes the

facet name.

Proxy objects implement the j ava. i 0. Seri al i zabl e interface that enables serialization of proxies to and from a byte stream. You can
use the standard class j ava. i 0. Obj ect | nput St r eamto deserialize all Slice types except proxies; proxies are a special case because

Deserializing Proxies in Java

they must be created by a communicator.

To supply a communicator for use in deserializing proxies, an application must use the class | ce. Obj ect | nput St r eam

Java

package |ce;

public class ObjectlnputStream extends java.io.ObjectlnputStream

{
public Object!| nput St reanm(Comuni cat or conmuni cator, java.io.lnputStream stream
throws java.io. | OException;
publ i ¢ Communi cat or get Communi cator();
}
The code shown below demonstrates how to use this class:

Java

I ce. Conmuni cat or communi cator = ...

byte[] bytes = ... // data to be deserialized

java.io.ByteArrayl nput Stream byt eStream = new j ava. i 0. Byt eArrayl nput St rean{ byt es);
Ice. CbjectlnputStreamin = new | ce. Obj ect | nput St rean(comuni cator, byteStrean);

I ce. CbjectPrx proxy = (lce.jectPrx)in.readObject();

Ice raises j ava. i 0. | OExcept i on if an application attempts to deserialize a proxy without supplying a communicator.

334

See Al

SO

Interfaces, Operations, and Exceptions
Proxies

Type IDs

Java Mapping for Operations

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Request Contexts
Operations on Object
Proxy Methods
Facets and Versioning
IceStorm

335 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java Mapping for Operations
On this page:

® Basic Java Mapping for Operations
® Normal and i denpot ent Operations in Java
® Passing Parameters in Java
® In-Parameters in Java
® OQOut-Parameters in Java
® Null Parameters in Java
® Exception Handling in Java
® Exceptions and Out-Parameters

Basic Java Mapping for Operations

As we saw in the mapping for interfaces, for each operation on an interface, the proxy class contains a corresponding member function with
the same name. To invoke an operation, you call it via the proxy. For example, here is part of the definitions for our file system:

Slice

nmodul e Fil esystem {
interface Node {
i denpotent string name();

The nane operation returns a value of type st ri ng. Given a proxy to an object of type Node, the client can invoke the operation as follows:

Java
NodePrx node = ...; /1 Initialize proxy
String name = node. nane(); /1 Get name via RPC

This illustrates the typical pattern for receiving return values: return values are returned by reference for complex types, and by value for
simple types (such as i nt or doubl e).

Normal and i denpot ent Operations in Java

You can add an i denpot ent qualifier to a Slice operation. As far as the signature for the corresponding proxy method is concerned,
i denpot ent has no effect. For example, consider the following interface:

Slice
interface Exanple {
string opl();
i denpotent string op2();
H
The proxy interface for this is:
Java

public interface Exanpl ePrx extends Ice.ObjectPrx {
public String opl();
public String op2();

Because i denpot ent affects an aspect of call dispatch, not interface, it makes sense for the two methods to be mapped the same.

336 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Passing Parameters in Java

In-Parameters in Java

The parameter passing rules for the Java mapping are very simple: parameters are passed either by value (for simple types) or by reference
(for complex types and type st ri ng). Semantically, the two ways of passing parameters are identical: it is guaranteed that the value of a
parameter will not be changed by the invocation (with some caveats — see Location Transparency).

Here is an interface with operations that pass parameters of various types from client to server:

Slice

struct Nunber AndString {
int x;
string str;

H
sequence<string> StringSeq;
dictionary<long, StringSeg> StringTabl e;

interface dientToServer {
void opl(int i, float f, bool b, string s);
voi d op2(Nunber AndString ns, StringSeq ss, StringTable st);
voi d op3(dientToServer* proxy);

H

The Slice compiler generates the following proxy for these definitions:

Java

public interface dientToServerPrx extends |ce.ObjectPrx {
public void opl(int i, float f, boolean b, String s);
public void op2(Nunber AndString ns, String[] ss, java.util.Mp st);
public void op3(dientToServerPrx proxy);

Given a proxy to a C i ent ToSer ver interface, the client code can pass parameters as in the following example:

Java

CientToServerPrx p = ...; I/ Get proxy...
p.opl(42, 3.14f, true, "Hello world!"); // Pass sinple literals

int i = 42;

float f = 3.14f;

bool ean b = true;

String s = "Hello world!'";

p.opl(i, f, b, s); /1 Pass sinple variables

Nunber AndStri ng ns = new Nunmber AndString();

ns.x = 42;

ns.str = "The Answer";

String[] ss = { "Hello world!" };

java.util.HashMap st = new java.util.HashMap();

st. put (new Long(0), ns);

p.op2(ns, ss, st); /1 Pass conpl ex vari abl es

p. op3(p); /] Pass proxy

337 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Out-Parameters in Java

Java does not have pass-by-reference: parameters are always passed by value. For a function to modify one of its arguments, we must pass
a reference (by value) to an object; the called function can then modify the object's contents via the passed reference.

To permit the called function to modify a parameter, the Java mapping uses so-called holder classes. For example, for each of the built-in
Slice types, such as i nt and st ri ng, the | ce package contains a corresponding holder class. Here are the definitions for the holder
classes | ce. I nt Hol der and | ce. Stri ngHol der:

Java

package |ce;

public final class IntHolder {
public IntHolder() {}
public | ntHol der(int val ue)
t hi s.val ue = val ue;
}

public int value;

}

public final class StringHol der {
public StringHol der() {}
public StringHol der(String value) {
this.value = val ue;

}

public String val ue;

A holder class has a public val ue member that stores the value of the parameter; the called function can modify the value by assigning to
that member. The class also has a default constructor and a constructor that accepts an initial value.

For user-defined types, such as structures, the Slice-to-Java compiler generates a corresponding holder type. For example, here is the
generated holder type for the Nunber AndSt r i ng structure we defined earlier:

Java

public final class NunberAndStringHol der {
publ i c Nunber AndStringHol der () {}

publ i c Nunber AndStri ngHol der (Nunber AndStri ng val ue) {
this.value = val ue;

}

publ i c Nurmber AndString val ue;

This looks exactly like the holder classes for the built-in types: we get a default constructor, a constructor that accepts an initial value, and
the public val ue member.

Note that holder classes are generated for every Slice type you define. For example, for sequences, such as the Frui t Pl att er sequence,
the compiler does not generate a special Java Frui t Pl at t er type because sequences map to Java arrays. However, the compiler does
generate a Frui t Pl at t er Hol der class, so we can pass a Frui t Pl att er array as an out-parameter.

To pass an out-parameter to an operation, we simply pass an instance of a holder class and examine the val ue member of each

out-parameter when the call completes. Here are the same Slice definitions we saw earlier, but this time with all parameters being passed in
the out direction:

338 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

struct Nunber AndString {
int x;
string str;

H
sequence<string> StringSeq;
di ctionary<long, StringSeq> StringTabl e;

interface ServerTod ient {
void opl(out int i, out float f, out bool b, out string s);
voi d op2(out Number AndString ns,
out StringSeq ss,
out StringTable st);
voi d op3(out ServerToCdient* proxy);

}

The Slice compiler generates the following code for these definitions:

Java

public interface dientToServerPrx extends |ce.ObjectPrx {
public void opl(lce.lntHolder i, Ice.FloatHolder f,
| ce. Bool eanHol der b, Ice.StringHol der s);
public void op2(Nunber AndStri ngHol der ns,
StringSeqHol der ss, StringTabl eHol der st);
public void op3(dientToServerPrxHol der proxy);

Given a proxy to a Ser ver Tod i ent interface, the client code can pass parameters as in the following example:

Java

ClientToServerPrx p = ...; Il Get proxy...

Ice.IntHolder ih = new Ice.IntHol der();

I ce. Fl oat Hol der fh = new I ce. Fl oat Hol der () ;

| ce. Bool eanHol der bh = new | ce. Bool eanHol der () ;
I ce.StringHol der sh = new Ice. StringHol der();
p.opl(ih, fh, bh, sh);

Number AndSt ri ngHol der nsh = new Nunber AndString();
StringSeqHol der ssh = new StringSeqHol der ();
StringTabl eHol der sth = new StringTabl eHol der();
p. op2(nsh, ssh, sth);

Server Tod i ent PrxHol der stcph = new Server Tod i ent PrxHol der () ;
p. op3(stch);

Systemout.witeln(ih.value); /1 Show one of the val ues

Again, there are no surprises in this code: the various holder instances contain values once the operation invocation completes and the
val ue member of each instance provides access to those values.

Null Parameters in Java
Some Slice types naturally have "empty" or "not there" semantics. Specifically, sequences, dictionaries, and strings all can be nul | , but the

corresponding Slice types do not have the concept of a null value. To make life with these types easier, whenever you pass nul | as a
parameter or return value of type sequence, dictionary, or string, the Ice run time automatically sends an empty sequence, dictionary, or

339 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

string to the receiver.

This behavior is useful as a convenience feature: especially for deeply-nested data types, members that are sequences, dictionaries, or
strings automatically arrive as an empty value at the receiving end. This saves you having to explicitly initialize, for example, every string
element in a large sequence before sending the sequence in order to avoid Nul | Poi nt er Except i on. Note that using null parameters in
this way does not create null semantics for Slice sequences, dictionaries, or strings. As far as the object model is concerned, these do not
exist (only empty sequences, dictionaries, and strings do). For example, whether you send a string as nul | or as an empty string makes no
difference to the receiver: either way, the receiver sees an empty string.

Exception Handling in Java

Any operation invocation may throw a run-time exception and, if the operation has an exception specification, may also throw user
exceptions. Suppose we have the following simple interface:

Slice

exception Tantrum {
string reason;

¥

interface Child {
voi d askToCl eanUp() throws Tantrum
b

Slice exceptions are thrown as Java exceptions, so you can simply enclose one or more operation invocations in a t r y-cat ch block:

Java

ChildPrx child = ...; /1 Get child proxy...

try {
chil d. askToC eanUp();

} catch (Tantrumt) {
Systemout.wite("The child says: ");
Systemout.witeln(t.reason);

Typically, you will catch only a few exceptions of specific interest around an operation invocation; other exceptions, such as unexpected
run-time errors, will typically be handled by exception handlers higher in the hierarchy. For example:

340 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java

public class dient {
static void run() {
ChildPrx child = ..
try {
chil d. askTod eanUp() ;
} catch (Tantrumt) {
Systemout.print("The child says: ");
Systemout. println(t.reason);
child.scold(); /1 Recover fromerror...

. /1 Get child proxy...

}
child. praise(); /1l Gve positive feedback. ..
}

public static void
mai n(String[] args)

{
try {
11
run();
/1
} catch (Ilce.Local Exception e) {
e.printStackTrace();
} catch (lce.UserException e) {
Systemerr.println(e. get Message());
}
}

This code handles a specific exception of local interest at the point of call and deals with other exceptions generically. (This is also the
strategy we used for our first simple application.)

Exceptions and Out-Parameters

The Ice run time makes no guarantees about the state of out-parameters when an operation throws an exception: the parameter may still
have its original value or may have been changed by the operation's implementation in the target object. In other words, for out-parameters,
Ice provides the weak exception guarantee [1] but does not provide the strong exception guarantee.

This is done for reasons of efficiency: providing the strong exception guarantee would require more overhead than can be
justified.

See Also

Operations

Java Mapping for Exceptions
Java Mapping for Sequences
Java Mapping for Interfaces
Location Transparency

References

1. Sutter, H. 1999. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions. Reading, MA: Addison-Wesley.

341 Copyright © 2011, ZeroC, Inc.

http://amzn.com/0201615622

Ice 3.4.2 Documentation

Java Mapping for Classes

On this page:

® Basic Java Mapping for Classes

® Operations Interfaces in Java

® Inheritance from | ce. Obj ect in Java
® Class Data Members in Java

® Class Operations in Java

® Class Factories in Java

® Class Constructors in Java

Basic Java Mapping for Classes

A Slice class is mapped to a Java class with the same name. The generated class contains a public data member for each Slice data
member (just as for structures and exceptions), and a member function for each operation. Consider the following class definition:

Slice
class TimeO Day {
short hour; /1 0 - 23
short m nute; /Il 0 - 59
short second; // 0 - 59
string format(); /1 Return time as hh:mmss
b
The Slice compiler generates the following code for this definition:
Java

public interface _Ti meOf DayOperations {
String format (lce.Current current);

}

public interface _Ti meCf DayOperati onsNC {
String format();

}

public abstract class TineOfDay extends |ce.Qbjectlnpl
i npl enents _Ti neCf DayQper ati ons, _Ti meOf DayOper ati onsNC {
public short hour;
public short mnute;
public short second;

public TimeO Day();
public Ti meOf Day(short hour, short mnute, short second);
11

There are a number of things to note about the generated code:

1. The compiler generates "operations interfaces" called _Ti meCf DayOper at i ons and _Ti neOf DayOper at i onsNC. These
interfaces contain a method for each Slice operation of the class.

2. The generated class Ti meCf Day inherits (indirectly) from | ce. Obj ect . This means that all classes implicitly inherit from
| ce. Obj ect, which is the ultimate ancestor of all classes. Note that | ce. Obj ect is not the same as | ce. Obj ect Pr x. In other
words, you cannot pass a class where a proxy is expected and vice versa.
If a class has only data members, but no operations, the compiler generates a non-abstract class.

3. The generated class contains a public member for each Slice data member.

4. The generated class inherits member functions for each Slice operation from the operations interfaces.

5. The generated class contains two constructors.

There is quite a bit to discuss here, so we will look at each item in turn.

342 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Operations Interfaces in Java

The methods in the _<i nt er f ace- nane>QCper at i ons interface have an additional trailing parameter of type | ce. Cur r ent , whereas the
methods in the _<i nt er f ace- nanme>Qper at i onsNC interface lack this additional trailing parameter. The methods without the Cur r ent
parameter simply forward to the methods with a Cur r ent parameter, supplying a default Cur r ent . For now, you can ignore this parameter
and pretend it does not exist.

If a class has only data members, but no operations, the compiler omits generating the <_i nt er f ace- nane>Qper ati ons and _<
i nt erface- nane>Qper at i onsNCinterfaces.

Inheritance from | ce. Obj ect in Java

Like interfaces, classes implicitly inherit from a common base class, | ce. Obj ect . However, as shown in the illustration below, classes
inherit from | ce. Obj ect instead of | ce. Cbj ect Pr x (which is at the base of the inheritance hierarchy for proxies). As a result, you cannot
pass a class where a proxy is expected (and vice versa) because the base types for classes and proxies are not compatible.

loe. Db jectPrx loe, Dbhjact

Proxies... Classes...

Inheritance from | ce. Cbj ect Prx and | ce. Obj ect .

| ce. bj ect contains a number of member functions:

Java
package |ce;

public interface Object

{

bool ean ice_i sA(String s);

bool ean ice_isA(String s, Current current);

voi d ice_ping();

void ice_ping(Current current);

String[] ice_ids();

String[] ice_ids(Current current);

String ice_id();

String ice_id(Current current);

voi d ice_preMarshal ();

voi d i ce_post Unmarshal ();

Di spat chSt atus i ce_di spat ch(Request request, DispatchlnterceptorAsyncCall back cb);
}

The member functions of | ce. Obj ect behave as follows:

® jce_isA
This function returns t r ue if the object supports the given type ID, and f al se otherwise.

® ice_ping
As for interfaces, i ce_pi ng provides a basic reachability test for the class.

® ice_ids

343 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

This function returns a string sequence representing all of the type IDs supported by this object, including : : | ce: : Obj ect .

® jce_id
This function returns the actual run-time type ID for a class. If you call i ce_i d through a reference to a base instance, the returned
type id is the actual (possibly more derived) type ID of the instance.

® ice_preMarshal
The Ice run time invokes this function prior to marshaling the object's state, providing the opportunity for a subclass to validate its
declared data members.

® i ce_post Unnar shal
The Ice run time invokes this function after unmarshaling an object's state. A subclass typically overrides this function when it needs
to perform additional initialization using the values of its declared data members.

® ice_dispatch
This function dispatches an incoming request to a servant. It is used in the implementation of dispatch interceptors.

Note that the generated class does not override hashCode and equal s. This means that classes are compared using shallow reference
equality, not value equality (as is used for structures).

All Slice classes derive from | ce. Obj ect viathe | ce. Obj ect | npl abstract base class. Obj ect | npl implements the
java.io. Serial i zabl e interface to support Java's serialization facility. Obj ect | npl also supplies an implementation of cl one that
returns a shallow memberwise copy.

Class Data Members in Java

By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the
generated class contains a corresponding public data member.

If you wish to restrict access to a data member, you can modify its visibility using the pr ot ect ed metadata directive. The presence of this
directive causes the Slice compiler to generate the data member with protected visibility. As a result, the member can be accessed only by
the class itself or by one of its subclasses. For example, the Ti meCf Day class shown below has the pr ot ect ed metadata directive applied
to each of its data members:

Slice
class TimeO Day {
["protected"] short hour; /1 0 - 23
["protected"] short minute; // O - 59
["protected"] short second; // O - 59
string format(); /1 Return time as hh:nmmss
b

The Slice compiler produces the following generated code for this definition:

Java

public abstract class TineOfDay extends |ce.Qbjectlnpl
i npl enents _Ti meCf DayQper ati ons,
_Ti neCf DayOper at i onsNC {
protected short hour;
protected short mnute;
protected short second;

public TimeO Day();
public TimeCf Day(short hour, short minute, short second);
/1

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each
member individually. For example, we can rewrite the Ti meCf Day class as follows:

344 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice
["protected"] class TinmeCOf Day {
short hour; // 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59
string format(); /1 Return time as hh:mm ss
|

Note that you can optionally customize the mapping for data members to use getters and setters instead.

Class Operations in Java

Operations of classes are mapped to abstract member functions in the generated class. This means that, if a class contains operations (such
as the f or mat operation of our Ti meOf Day class), you must provide an implementation of the operation in a class that is derived from the
generated class. For example:

Java

public class TinmeO Dayl extends TimeOf Day {
public String format(lce.Current current) {
Deci nal Format df = (Deci mal Format) Deci mal For mat . get | nst ance() ;
df . set M ni nunm ntegerDi gits(2);
return new String(df.fornmat(hour) +
df . format (second));

+ df . format (mnute) + ":" +

Class Factories in Java

Having created a class such as Ti neCf Day| , we have an implementation and we can instantiate the Ti neCf Day| class, but we cannot
receive it as the return value or as an out-parameter from an operation invocation. To see why, consider the following simple interface:

Slice

interface Tine {
Ti meOf Day get ();
H

When a client invokes the get operation, the Ice run time must instantiate and return an instance of the Ti neOf Day class. However,

Ti mer Day is an abstract class that cannot be instantiated. Unless we tell it, the Ice run time cannot magically know that we have created a
Ti meOf Dayl class that implements the abstract f or nat operation of the Ti meOf Day abstract class. In other words, we must provide the
Ice run time with a factory that knows that the Ti meOf Day abstract class has a Ti mneCf Day| concrete implementation. The

| ce: : Comuni cat or interface provides us with the necessary operations:

Slice

nmodul e Ice {
local interface ObjectFactory {
bj ect create(string type);
voi d destroy();
I

local interface Conmunicator {
voi d addoj ect Fact ory(Obj ect Factory factory, string id);
bj ect Factory findObject Factory(string id);
/1
h
h

345 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

To supply the Ice run time with a factory for our Ti meCf Day| class, we must implement the Cbj ect Fact ory interface:

Java

class ojectFactory inplenments |ce. ObjectFactory {
public lce.Object create(String type) {
if (type.equal s(MTinmeODay.ice_staticld())) {
return new Ti meCf Dayl () ;

assert (fal se);
return null;

}

public void destroy() {
/1 Nothing to do
}

The object factory's cr eat e method is called by the Ice run time when it needs to instantiate a Ti meOf Day class. The factory's dest r oy
method is called by the Ice run time when its communicator is destroyed.

The cr eat e method is passed the type ID of the class to instantiate. For our Ti meCOf Day class, the type IDis": : M : Ti neOf Day" . Our
implementation of cr eat e checks the type ID: if it matches, the method instantiates and returns a Ti meCf Day| object. For other type IDs,
the method asserts because it does not know how to instantiate other types of objects.

Note that we used the i ce_st at i cl d method to obtain the type ID rather than embedding a literal string. Using a literal type ID string in
your code is discouraged because it can lead to errors that are only detected at run time. For example, if a Slice class or one of its enclosing
modules is renamed and the literal string is not changed accordingly, a receiver will fail to unmarshal the object and the Ice run time will raise
NoObj ect Fact or yExcepti on. By using i ce_st ati cl d instead, we avoid any risk of a misspelled or obsolete type ID, and we can
discover at compile time if a Slice class or module has been renamed.

Given a factory implementation, such as our Obj ect Fact or y, we must inform the Ice run time of the existence of the factory:

Java

| ce. Comunicator ic = ...;
i c. addObj ect Fact ory(new Obj ect Factory(), M TineODay.ice_staticld());

Now, whenever the Ice run time needs to instantiate a class with the type ID ": : M : Ti meOf Day", it calls the cr eat e method of the
registered Cbj ect Fact ory instance.

The dest r oy operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance to
clean up any resources that may be used by your factory. Do not call dest r oy on the factory while it is registered with the communicator —
if you do, the Ice run time has no idea that this has happened and, depending on what your dest r oy implementation is doing, may cause
undefined behavior when the Ice run time tries to next use the factory.

The run time guarantees that dest r oy will be the last call made on the factory, that is, cr eat e will not be called concurrently with dest r oy
, and cr eat e will not be called once dest r oy has been called. However, calls to cr eat e can be made concurrently.

Note that you cannot register a factory for the same type ID twice: if you call addCbj ect Fact or y with a type ID for which a factory is
registered, the Ice run time throws an Al r eadyRegi st er edExcept i on.

Finally, keep in mind that if a class has only data members, but no operations, you need not create and register an object factory to transmit
instances of such a class. Only if a class has operations do you have to define and register an object factory.

Class Constructors in Java

Classes have a default constructor that default-constructs each data member. This means members of primitive type are initialized to the
equivalent of zero, and members of reference type are initialized to null. Note that applications must always explicitly initialize members of
structure and enumerated types because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in
your Slice definition. The default constructor initializes each of these data members to its declared value.

The generated class also contains a second constructor that accepts one argument for each member of the class. This allows you to create
and initialize a class in a single statement, for example:

346 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java

Ti meOf Dayl tod = new Ti neOf Dayl (14, 45, 00); // 14:45pm

For derived classes, the constructor requires an argument for every member of the class, including inherited members. For example,
consider the the definition from Class Inheritance once more:

Slice
class TimeO Day {
short hour; /Il 0 - 23
short m nute; // 0 - 59
short second; /1 0 - 59
}
class DateTime extends Ti neCf Day {
short day; /1 1- 31
short nonth; /1 - 12
short vyear; /1 1753 onwards
b
The constructors for the generated classes are as follows:
Java

public class TinmeOfDay extends |ce.ojectlnpl {
public TimeODay() {}

public TimeOf Day(short hour, short mnute, short second)

{
t hi s. hour = hour;
this.mnute = ninute;
this.second = second;
}
I
}
public class DateTinme extends Ti neOf Day
{
public DateTine()
{
super ();
}
public DateTi ne(short hour, short minute, short second,
short day, short nonth, short year)
{
super (hour, mnute, second);
this.day = day;
this.month = nonth;
this.year = year;
}
I
}

If you want to instantiate and initialize a Dat eTi e instance, you must either use the default constructor or provide values for all of the data
members of the instance, including data members of any base classes.

See Also

347 Copyright © 2011, ZeroC, Inc.

348

Classes

Class Inheritance

Type IDs

Serializable Objects in Java
JavaBean Mapping

The Current Object
Dispatch Interceptors

Ice 3.4.2 Documentation

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Serializable Objects in Java

In Java terminology, a serializable object typically refers to an object that implements the j ava. i 0. Seri al i zabl e interface and therefore
supports serialization to and from a byte stream. All Java classes generated from Slice definitions implement the j ava. i 0. Seri al i zabl e

interface.

In addition to serializing Slice types, applications may also need to incorporate foreign types into their Slice definitions. Ice allows you to pass
Java serializable objects directly as operation parameters or as fields of another data type. For example:

Slice

["java: serializabl e: SonePackage. JavaC ass"]
sequence<byt e> JavaQbj ;
struct MyStruct {
int i;
Javaoj o;
b

interface Exanple {
void op(JavaChj inhj, MyStruct s, out JavaObj outQbj);

}

The generated code for MySt r uct contains a member i of type i nt and a member o of type SonePackage. Javad ass:

Java

public final class MyStruct inplenments java.lang.C oneable {
public int i;
publi c SonePackage. Javad ass o;

Il

Similarly, the signature for op has parameters of type JavaCl ass and MySt r uct for the in-parameters, and
| ce. Hol der <SonePackage. Javad ass> for the out-parameter. (Out-parameters are always passed as | ce. Hol der <cl ass>.)

Java

voi d op(SonePackage. Javad ass i nQbj,
MyStruct s,
I ce. Hol der <SonePackage. JavaCl ass> out Obj) ;

Of course, your client and server code must have an implementation of JavaCl ass that derives from j ava. i 0. Seri al i zabl e:

Java

package SonePackage;

public class Javad ass inplenents java.io.Serializable {
/1
}

You can implement this class in any way you see fit — the Ice run time does not place any other requirements on the implementation.

See Also

® Serializable Objects

349 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Customizing the Java Mapping

You can customize the code that the Slice-to-Java compiler produces by annotating your Slice definitions with metadata. This section
describes how metadata influences several aspects of the generated Java code.

On this page:

® Java Packages

® Java Package Configuration Properties
® Custom Types in Java
Metadata in Java
Defining a Custom Sequence Type in Java
Defining a Custom Dictionary Type in Java
Using Custom Type Metadata in Java
Mapping for Modified Out Parameters in Java
® JavaBean Mapping

® JavaBean Generated Methods

® JavaBean Metadata

Java Packages

By default, the scope of a Slice definition determines the package of its mapped Java construct. A Slice type defined in a module hierarchy is
mapped to a type residing in the equivalent Java package.

There are times when applications require greater control over the packaging of generated Java classes. For instance, a company may have
software development guidelines that require all Java classes to reside in a designated package. One way to satisfy this requirement is to
modify the Slice module hierarchy so that the generated code uses the required package by default. In the example below, we have
enclosed the original definition of Wor kf | ow: : Docunent in the modules com : acne so that the compiler will create the class in the

com acme package:

Slice

nmodul e com {
nodul e acne {
nodul e Wor kf I ow {
cl ass Docunent {
/1

There are two problems with this workaround:

1. Itincorporates the requirements of an implementation language into the application's interface specification.
2. Developers using other languages, such as C++, are also affected.

The Slice-to-Java compiler provides a better way to control the packages of generated code through the use of global metadata. The
example above can be converted as follows:

Slice

[["]ava: package: com acne"]]
nmodul e Wor kf |l ow {
cl ass Docunent {
/1
b
H

The global metadata directive j ava: package: com acne instructs the compiler to generate all of the classes resulting from definitions in
this Slice file into the Java package com acne. The net effect is the same: the class for Docunent is generated in the package

350 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

com acre. Wr kf | ow. However, we have addressed the two shortcomings of the first solution by reducing our impact on the interface
specification: the Slice-to-Java compiler recognizes the package metadata directive and modifies its actions accordingly, whereas the
compilers for other language mappings simply ignore it.

Java Package Configuration Properties

Using global metadata to alter the default package of generated classes has ramifications for the Ice run time when unmarshaling exceptions
and concrete class types. The Ice run time dynamically loads generated classes by translating their Slice type ids into Java class names. For
example, the Ice run time translates the Slice type id : : Wor kf | ow. : Docunent into the class name Wor kf | ow. Docunent .

However, when the generated classes are placed in a user-specified package, the Ice run time can no longer rely on the direct translation of
a Slice type id into a Java class hame, and therefore requires additional configuration so that it can successfully locate the generated
classes. Two configuration properties are supported:

® | ce. Package. Modul e=package
Associates a top-level Slice module with the package in which it was generated.

Only top-level module names are allowed; the semantics of global metadata prevent a nested module from being
generated into a different package than its enclosing module.

® | ce. Defaul t. Package=package
Specifies a default package to use if other attempts to load a class have failed.

The behavior of the Ice run time when unmarshaling an exception or concrete class is described below:

1. Translate the Slice type id into a Java class name and attempt to load the class.

2. If that fails, extract the top-level module from the type id and check for an | ce. Package property with a matching module name. If
found, prepend the specified package to the class name and try to load the class again.

3. If that fails, check for the presence of | ce. Def aul t . Package. If found, prepend the specified package to the class name and try
to load the class again.

4. If the class still cannot be loaded, the instance may be sliced.

Continuing our example from the previous section, we can define the following property:

| ce. Package. Wor kf | ow=com acne

Alternatively, we could achieve the same result with this property:

| ce. Def aul t. Package=com acne

Custom Types in Java

One of the more powerful applications of metadata is the ability to tailor the Java mapping for sequence and dictionary types to match the
needs of your application.

Metadata in Java

The metadata for specifying a custom type has the following format:

java:type:instance-type[: formal -type]

The formal type is optional; the compiler uses a default value if one is not defined. The instance type must satisfy an is-A relationship with
the formal type: either the same class is specified for both types, or the instance type must be derived from the formal type.

The Slice-to-Java compiler generates code that uses the formal type for all occurrences of the modified Slice definition except when the
generated code must instantiate the type, in which case the compiler uses the instance type instead.

The compiler performs no validation on your custom types. Misspellings and other errors will not be apparent until you compile the generated
code.

351 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Defining a Custom Sequence Type in Java

Although the default mapping of a sequence type to a native Java array is efficient and typesafe, it is not always the most convenient
representation of your data. To use a different representation, specify the type information in a metadata directive, as shown in the following
example:

Slice

["java:type:java.util.LinkedList<String>"]
sequence<string> StringlList;

It is your responsibility to use a type parameter for the Java class (St r i ng in the example above) that is the correct mapping for the
sequence's element type.

The compiler requires the formal type to implement j ava. uti | . Li st <E>, where E is the Java mapping of the element type. If you do not
specify a formal type, the compiler uses j ava. uti |l . Li st <E> by default.

Note that extra care must be taken when defining custom types that contain nested generic types, such as a custom sequence whose
element type is also a custom sequence. The Java compiler strictly enforces type safety, therefore any compatibility issues in the custom
type metadata will be apparent when the generated code is compiled.

Defining a Custom Dictionary Type in Java
The default instance type for a dictionary is j ava. uti | . HashMap<K, V>, where Kis the Java mapping of the key type and V is the Java

mapping of the value type. If the semantics of a HashMap are not suitable for your application, you can specify an alternate type using
metadata as shown in the example below:

Slice

["java:type:java.util.TreeMap<String, String>"]
di ctionary<string, string> Stringhap;

It is your responsibility to use type parameters for the Java class (St ri ng in the example above) that are the correct mappings for the
dictionary's key and value types.

The compiler requires the formal type to implement j ava. uti | . Map<K, V>.If you do not specify a formal type, the compiler uses this type
by default.

Note that extra care must be taken when defining dictionary types that contain nested generic types, such as a dictionary whose element

type is a custom sequence. The Java compiler strictly enforces type safety, therefore any compatibility issues in the custom type metadata
will be apparent when the generated code is compiled.

Using Custom Type Metadata in Java

You can define custom type metadata in a variety of situations. The simplest scenario is specifying the metadata at the point of definition:

Slice

["java: type:java. util.LinkedLi st<String>"]
sequence<string> StringlList;

Defined in this manner, the Slice-to-Java compiler uses j ava. uti |l . Li st <Stri ng> (the default formal type) for all occurrences of
Stringlist,andjava.util.LinkedList<String>when it needs to instantiate St ri ngLi st .

You may also specify a custom type more selectively by defining metadata for a data member, parameter or return value. For instance, the
mapping for the original Slice definition might be sufficient in most situations, but a different mapping is more convenient in particular cases.
The example below demonstrates how to override the sequence mapping for the data member of a structure as well as for several
operations:

352 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

sequence<string> StringSeq;

struct S {

["java:type:java.util.LinkedList<String>"] StringSeq seq;
H
interface | {

["java:type:java.util.ArrayList<String>"] StringSeq

nodi fi edRet urnVval ue();

voi d nodi fiedl nParan(["java:type:java.util.ArrayList<String>"] StringSeq seq);

voi d nodi fi edQut Paran{out ["java:type:java.util.ArrayList<String>"] StringSeq seq);
H

As you might expect, modifying the mapping for an operation's parameters or return value may require the application to manually convert
values from the original mapping to the modified mapping. For example, suppose we want to invoke the nodi f i edl nPar amoperation. The
signature of its proxy operation is shown below:

Java

voi d nodi fiedl nParan(java. util.List<String> seq, Ice.Current curr)

The metadata changes the mapping of the seq parameter to j ava. uti | . Li st, which is the default formal type. If a caller has a
St ri ngSeq value in the original mapping, it must convert the array as shown in the following example:

Java

String[] seq = new String[2];

seq[0] = "hi";
seq[1] = "there";
IPrx proxy = ...;

proxy. nodi fi edl nParan(j ava. util.Arrays. asLi st(seq));

Although we specified the instance type j ava. uti |l . ArrayLi st <Stri ng> for the parameter, we are still able to pass the result of
asLi st because its return type (j ava. uti | . Li st <Stri ng>) is compatible with the parameter's formal type declared by the proxy
method. In the case of an operation parameter, the instance type is only relevant to a servant implementation, which may need to make
assumptions about the actual type of the parameter.

Mapping for Modified Out Parameters in Java

The mapping for an out parameter uses a generated "holder" class to convey the parameter value. If you modify the mapping of an out
parameter, as discussed in the previous section, it is possible that the holder class for the parameter's unmodified type is no longer
compatible with the custom type you have specified. The holder class generated for St ri ngSeq is shown below:

353 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java
public final class StringSeqHol der
{

public

StringSeqHol der ()

{

}

public

StringSeqHol der (String[] val ue)

{

t hi s. val ue = val ue;

}

public String[] val ue;
}

An out parameter of type St ri ngSeq would normally map to a proxy method that used St ri ngSeqHol der to hold the parameter value.
When the parameter is modified, as is the case with the nmodi f i edQut Par amoperation, the Slice-to-Java compiler cannot use

St ri ngSeqHol der to hold an instance of j ava. uti | . Li st <Stri ng>, because St ri ngSeqHol der is only appropriate for the default
mapping to a native array.

As a result, the compiler handles these situations using instances of the generic class | ce. Hol der <T>, where T is the parameter's formal
type. Consider the following example:

Slice

sequence<string> StringSeq;

interface I {
voi d nodi fiedQut Paran{out ["java:type:java.util.ArrayList<String>"] StringSeq seq);

b

The compiler generates the following mapping for the nodi f i edQut Par amproxy method:

Java

voi d nodi fiedQut Paran(| ce. Hol der<j ava. util.List<java.lang.String> > seq, Ice.Current curr)

The formal type of the parameter is j ava. uti | . Li st <Stri ng>, therefore the holder class becomes
I ce. Hol der<j ava. util.List<String>>.

JavaBean Mapping

The Java mapping optionally generates JavaBean-style methods for the data members of class, structure, and exception types.

JavaBean Generated Methods

For each data member val of type T, the mapping generates the following methods:

Java

public T getVal();
public void setVal (T v);

The mapping generates an additional method if T is the bool type:

354 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java

public boolean isVal ();

Finally, if T is a sequence type with an element type E, two methods are generated to provide direct access to elements:

Java

public E getVal (int index);
public void setVal (int index, E v);

Note that these element methods are only generated for sequence types that use the default mapping.
The Slice-to-Java compiler considers it a fatal error for a JavaBean method of a class data member to conflict with a declared operation of

the class. In this situation, you must rename the operation or the data member, or disable the generation of JavaBean methods for the data
member in question.

JavaBean Metadata

The JavaBean methods are generated for a data member when the member or its enclosing type is annotated with the j ava: get set
metadata. The following example demonstrates both styles of usage:

Slice

sequence<i nt> | nt Seq;

class C{
["java:getset"] int i;
doubl e d;

b

["]java: getset"]
struct S {
bool b;
string str;

}

["java: getset"]
exception E {

I nt Seq seq;
b

JavaBean methods are generated for all members of struct S and exception E, but for only one member of class C. Relevant portions of the
generated code are shown below:

Java

public class C extends Ice.Objectlnpl

{
public int i;
public int
getl ()
{
return i;
}

public void
setl(int _i)

355 Copyright © 2011, ZeroC, Inc.

356

publ

publ

Ice 3.4.2 Documentation

public double d

ic final class S inplenents java.lang.d oneabl e
public bool ean b

public bool ean

get B()
{

return b

}

public void
set B(bool ean _b)

{
}

b = _b;

publ i c bool ean
i sB()
{

return b

}
public String str

public String

getStr()
{

return str;
}

public void
setStr(String _str)

{
}

str = _str;

ic class E extends Ice. User Exception

public int[] seq

public int[]
get Seq()
{

return seq;

}

public void
setSeq(int[] _seq)

seq = _seq

}

public int
get Seq(i nt _index)

Copyright © 2011, ZeroC, Inc.

357

{

return seq[_i ndex];

}

public void

setSeq(int _index, int _val)
{

}

seq[_index] = _val;

Ice 3.4.2 Documentation

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

See Also

Metadata

Java Mapping for Modules
Java Mapping for Operations
Class Inheritance Semantics

358 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Asynchronous Method Invocation (AMI) in Java

Asynchronous Method Invocation (AMI) is the term used to describe the client-side support for the asynchronous programming model. AMI
supports both oneway and twoway requests, but unlike their synchronous counterparts, AMI requests never block the calling thread. When a
client issues an AMI request, the Ice run time hands the message off to the local transport buffer or, if the buffer is currently full, queues the
request for later delivery. The application can then continue its activities and poll or wait for completion of the invocation, or receive a
callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether a client sent a request synchronously or asynchronously.

As of version 3.4, Ice provides a new API for asynchronous method invocation. This page describes the new API. Note that
the old APl is deprecated and will be removed in a future release.

On this page:

® Basic Asynchronous API in Java
® Asynchronous Proxy Methods in Java
® Asynchronous Exception Semantics in Java
AsyncResul t Class in Java
Polling for Completion in Java
Generic Completion Callbacks in Java
Sharing State Between begi n_ and end_ Methods in Java
Type-Safe Completion Callbacks in Java
Asynchronous Oneway Invocations in Java
Flow Control in Java
Asynchronous Batch Requests in Java
Concurrency Semantics for AMI in Java
AMI Limitations in Java

Basic Asynchronous APl in Java

Consider the following simple Slice definition:

Slice

nmodul e Denp {
interface Enpl oyees {
string get Nane(int nunber);
}s
b

Asynchronous Proxy Methods in Java

Besides the synchronous proxy methods, sl i ce2j ava generates the following asynchronous proxy methods:

Java
public interface Enpl oyeesPrx extends |ce. QbjectPrx
{
/1
public Ice. AsyncResult begin_get Name(int nunber);
public Ice. AsyncResult begin_get Name(int nunber, java.util.Mp<String, String> _ ctx);
public String end_get Nane(lce. AsyncResult _ result);
}

ﬁ Four additional overloads of begi n_get Nane are generated for use with generic completion callbacks and type-safe
completion callbacks.

359 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

As you can see, the single get Nane operation results in begi n_get Nanme and end_get Nane methods. (The begi n_ method is overloaded
SO you can pass a per-invocation context.)

®* The begi n_get Name method sends (or queues) an invocation of get Nane. This method does not block the calling thread.

®* The end_get Nanme method collects the result of the asynchronous invocation. If, at the time the calling thread calls end_get Namne,
the result is not yet available, the calling thread blocks until the invocation completes. Otherwise, if the invocation completed some
time before the call to end_get Nane, the method returns immediately with the result.

A client could call these methods as follows:

Java

Enpl oyeesPrx e
Ice. AsyncResult r

e. begi n_get Nane(99) ;

/1 Continue to do other things here...

e. end_get Nane(r);

String name

Because begi n_get Nanme does not block, the calling thread can do other things while the operation is in progress.

Note that begi n_get Nane returns a value of type AsyncResul t . This value contains the state that the Ice run time requires to keep track
of the asynchronous invocation. You must pass the AsyncResul t that is returned by the begi n_ method to the corresponding end_
method.

The begi n_ method has one parameter for each in-parameter of the corresponding Slice operation. Similarly, the end_ method has one
out-parameter for each out-parameter of the corresponding Slice operation (plus the AsyncResul t parameter). For example, consider the
following operation:

Slice
doubl e op(int inpl, string inp2, out bool outpl, out |ong outp2);
The begi n_op and end_op methods have the following signature:
Java

I ce. AsyncResul t begi n_op(int
I ce. AsyncResul t begi n_op(int

inpl, String inp2);
inpl, String inp2,

java.util.Mp<String, String>
| ce. AsyncResul t

__ctx);

r);

360

doubl e end_op(| ce. Bool eanHol der out pl, |ce.LongHol der outp2,

Asynchronous Exception Semantics in Java

If an invocation raises an exception, the exception is thrown by the end_ method, even if the actual error condition for the exception was
encountered during the begi n_ method ("on the way out"). The advantage of this behavior is that all exception handling is located with the
code that calls the end_ method (instead of being present twice, once where the begi n_ method is called, and again where the end_
method is called).

There is one exception to the above rule: if you destroy the communicator and then make an asynchronous invocation, the begi n_ method
throws Conmuni cat or Dest r oyedExcept i on. This is necessary because, once the run time is finalized, it can no longer throw an
exception from the end_ method.

The only other exception that is thrown by the begi n_ and end_ methods is j ava. | ang. | | | egal Ar gunent Except i on. This exception
indicates that you have used the API incorrectly. For example, the begi n_ method throws this exception if you call an operation that has a
return value or out-parameters on a oneway proxy. Similarly, the end_ method throws this exception if you use a different proxy to call the

end_ method than the proxy you used to call the begi n_ method, or if the AsyncResul t you pass to the end_ method was obtained by
calling the begi n_ method for a different operation.

AsyncResul t Class in Java

The AsyncResul t that is returned by the begi n_ method encapsulates the state of the asynchronous invocation:

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java

public class AsyncResult {

publ i ¢ Communi cat or get Conmuni cator () ;
publ i c Connection get Connection();
public ObjectPrx getProxy();

public String getQOperation();

publ i c bool ean i sConpl eted();
public void waitFor Conpl eted();

public bool ean isSent();
public void waitForSent();

public void throwLocal Exception();

publi c bool ean sent Synchronousl y();

The methods have the following semantics:

Conmuni cat or get Conmuni cat or ()
This method returns the communicator that sent the invocation.

Connecti on get Connection()
This method returns the connection that was used for the invocation.

Obj ect Prx get Proxy()
This method returns the proxy that was used to call the begi n_ method.

String getOperation()
This method returns the name of the operation.

bool ean i sConpl et ed()
This method returns true if, at the time it is called, the result of an invocation is available, indicating that a call to the end_ method
will not block the caller. Otherwise, if the result is not yet available, the method returns false.

voi d wai t For Conpl et ed()
This method blocks the caller until the result of an invocation becomes available.

bool ean isSent ()

When you call the begi n_ method, the Ice run time attempts to write the corresponding request to the client-side transport. If the
transport cannot accept the request, the Ice run time queues the request for later transmission. i sSent returns true if, at the time it
is called, the request has been written to the local transport (whether it was initially queued or not). Otherwise, if the request is still
queued or an exception occurred before the request could be sent, i sSent returns false.

voi d wai t For Sent ()

This method blocks the calling thread until a request has been written to the client-side transport, or an exception occurs. After

wai t For Sent returns, i sSent returns true if the request was successfully written to the client-side transport, or false if an
exception occurred. In the case of a failure, you can call the corresponding end_ method or t hr owLocal Except i on to obtain the
exception.

voi d throwLocal Exception()
This method throws the local exception that caused the invocation to fail. If no exception has occurred yet, t hr owLocal Excepti on
does nothing.

bool ean sent Synchronousl y()

This method returns true if a request was written to the client-side transport without first being queued. If the request was initially
queued, sent Synchr onousl y returns false (independent of whether the request is still in the queue or has since been written to
the client-side transport).

Polling for Completion in Java

The AsyncResul t methods allow you to poll for call completion. Polling is useful in a variety of cases. As an example, consider the
following simple interface to transfer files from client to server:

361

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

interface FileTransfer

{
void send(int offset, ByteSeq bytes);

}

The client repeatedly calls send to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naive way to transmit a
file would be along the following lines:

Java
Fil eHandl e file = open(...);
Fil eTransferPrx ft = ...;
int chunkSize = ...;
int offset = 0;
while (!file.eof()) {
byte[] bs;
bs = file.read(chunkSize); // Read a chunk
ft.send(of fset, bs); /1 Send the chunk
of fset += bs.|ength;
}

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to
receive the data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time
doing nothing — the client does nothing while the server processes the data, and the server does nothing while it waits for the client to send
the next chunk.

Using asynchronous calls, we can improve on this considerably:

362 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java

FileHandl e file = open(...);
Fil eTransferPrx ft = ...;
int chunkSize = ...;

int offset = 0;

Li nkedLi st <l ce. AsyncResul t > resul ts = new Li nkedLi st <l ce. AsyncResul t >();
int nunRequests = 5;

while (!file.eof()) {
byte[] bs;
bs = file.read(chunkSi ze);

/1 Send up to nunRequests + 1 chunks asynchronously.
Ice. AsyncResult r = ft.begin_send(offset, bs);
of fset += bs.|ength;

/1 Wait until this request has been passed to the transport.
r.waitForSent();
results.add(r);

/1 Once there are nore than nunmRequests, wait for the | east
/1 recent one to conplete.
while (results.size() > nunRequests) {
Ice. AsyncResult r = results.getFirst();
results.renoveFirst();
r.wait For Conpl et ed() ;

}

/1 Wait for any remaining requests to conplete.
while (results.size() > 0) {
Ice. AsyncResult r = results.getFirst();
results.renoveFirst();
r.wai t For Conpl et ed() ;

With this code, the client sends up to nunRequest s + 1 chunks before it waits for the least recent one of these requests to complete. In
other words, the client sends the next request without waiting for the preceding request to complete, up to the limit set by nunRequest s. In
effect, this allows the client to "keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously
do work.

Obviously, the correct chunk size and value of nunmRequest s depend on the bandwidth of the network as well as the amount of time taken
by the server to process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger
or queuing more requests no longer improves performance. With this technique, you can realize the full bandwidth of the link to within a
percent or two of the theoretical bandwidth limit of a native socket connection.

Generic Completion Callbacks in Java

The begi n_ method is overloaded to allow you to provide completion callbacks. Here are the corresponding methods for the get Nane
operation:

Java

I ce. AsyncResul t begi n_get Name(i nt nunber, |ce. Callback __cb);

| ce. AsyncResul t begi n_get Narme(i nt nunber,
java.util.Map<String, String> __ctx,
I ce.Call back __cb);

The second version of begi n_get Nane lets you override the default context. Following the in-parameters, the begi n_ method accepts a

363 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

parameter of type | ce. Cal | back, which is a callback class with a conpl et ed method that you must provide. The Ice run time invokes the
conpl et ed method when an asynchronous operation completes. For example:

Java

public class MCall back extends Ice. Cal | back

{
public void conpleted(lce.AsyncResult r)
{
Enpl oyeesPrx e = (Enpl oyeesPrx)r. get Proxy();
try {
String nanme = e.end_get Nane(r);
Systemout.printIn("Nane is: " + nane);
} catch (Ice.Local Exception ex) {
Systemerr.println("Exception is: " + ex);
}
}

Note that your callback class must derive from | ce. Cal | back. The implementation of your callback method must call the end_ method.
The proxy for the call is available via the get Pr oxy method on the AsyncResul t that is passed by the Ice run time. The return type of
get Proxy is | ce. bj ect Pr x, so you must down-cast the proxy to its correct type.

Your callback method should catch and handle any exceptions that may be thrown by the end_ method. If an operation can throw user
exceptions, this means that you need an additional catch handler for | ce. User Except i on (or catch all possible user exceptions explicitly).
If you allow an exception to escape from the callback method, the Ice run time produces a log entry by default and ignores the exception.
(You can disable the log message by setting the property | ce. WVar n. AM Cal | back to zero.)

To inform the Ice run time that you want to receive a callback for the completion of the asynchronous call, you pass the callback instance to
the begi n_ method:

Java
Enpl oyeesPrx e = ...;
MyCal | back cb = new MyCal | back();
e. begi n_get Name(99, cb);
This is often written using an anonymous class instead:
Java

Enpl oyeesPrx e = .. .;

e. begi n_get Narg(

99,
new | ce. AsyncCal | back()
{
public void conpleted(lce. AsyncResult r)
{
Enpl oyeesPrx p = (Enpl oyeesPrx)r. get Proxy();
try {
String name = p.end_get Nane(r);
Systemout.println("Name is: " + nane);
} catch (Ice.Local Exception ex) {
Systemerr.println("Exception: " + ex);
}
}
IO

An anonymous class is useful particularly for callbacks that do only a small amount of work because the code that starts the call and the
code that processes the results are physically close together.

364 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Sharing State Between begi n_ and end_ Methods in Java

It is common for the end_ method to require access to some state that is established by the code that calls the begi n_ method. As an
example, consider an application that asynchronously starts a number of operations and, as each operation completes, needs to update
different user interface elements with the results. In this case, the begi n_ method knows which user interface element should receive the
update, and the end_ method needs access to that element.

Assuming that we have a W dget class that designates a particular user interface element, you could pass different widgets by storing the
widget to be used as a member of your callback class:

Java
public class MCall back extends Ice.AsyncCal | back
{
public MyCal | back(W dget w)
{
_wW=w
}
private Wdget _w
public void conpleted(lce.AsyncResult r)
{
Enpl oyeesPrx e = (Enpl oyeesPrx)r.getProxy();
try {
String nane = e.end_get Nane(r);
_w.witeString(nane);
} catch (Ice.Local Exception ex) {
Systemerr.println("Exception is: " + ex);
}
}
}

For this example, we assume that widgets have awr i t eSt r i ng method that updates the relevant Ul element.

When you call the begi n_ method, you pass the appropriate callback instance to inform the end_ method how to update the display:

Java

Enpl oyeesPrx e s
W dget widgetl s
Wdget widget2 = ...;

I/ Invoke the getName operation with different w dget call backs.
e. begi n_get Name(99, new MyCal | back(wi dget1));
e. begi n_get Name(24, new MyCal | back(w dget 2));

The callback class provides a simple and effective way for you to pass state between the point where an operation is invoked and the point
where its results are processed. Moreover, if you have a number of operations that share common state, you can pass the same callback
instance to multiple invocations. (If you do this, your callback methods may need to use synchronization.)

Type-Safe Completion Callbacks in Java

The generic callback APl is not entirely type-safe:

® You must down-cast the return value of get Pr oxy to the correct proxy type before you can call the end_ method.
® You must call the correct end_ method to match the operation called by the begi n_ method.
® You must remember to catch exceptions when you call the end_ method; if you forget to do this, you will not know that the operation

failed.

sl i ce2j ava generates an additional type-safe API that takes care of these chores for you. To use type-safe callbacks, you must implement
a callback class that provides two callback methods:

365 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

® aresponse method that is called if the operation succeeds
® an except i on method that is called if the operation raises an exception

Your callback class must derive from the base class that is generated by sl i ce2j ava. The name of this base class is <nodul e>
. Cal | back_<i nterface>_<operati on>. Here is a callback class for an invocation of the get Nane operation:

Java

public class MyCal | back extends Denp. Cal | back_Enpl oyees_get Nanme

{ public void response(String name)
{ Systemout.printIn("Name is: " + nanme);
}
public void exception(lce.Local Exception ex)
{ Systemerr.println("Exception is: " + ex);
}

The r esponse callback parameters depend on the operation signature. If the operation has non-voi d return type, the first parameter of the
r esponse callback is the return value. The return value (if any) is followed by a parameter for each out-parameter of the corresponding
Slice operation, in the order of declaration.

The except i on callback is invoked if the invocation fails because of an Ice run time exception. If the Slice operation can also raise user
exceptions, your callback class must supply an additional overloading of except i on that accepts an argument of type
| ce. User Excepti on.

The proxy methods are overloaded to accept this callback instance:

Java

I ce. AsyncResul t begi n_get Name(i nt nunber,
Cal | back_Enpl oyees_get Nane __cb);

| ce. AsyncResul t begi n_get Name(i nt nunber,
java.util.Mp<String, String> __ctx,
Cal | back_Enpl oyees_get Nane __cb);

You pass the callback to an invocation as you would with the generic API:

Java

Enpl oyeesPrx e = ... ;

MyCal | back cb = new MyCal | back();
e. begi n_get Nane(99, cb);

Asynchronous Oneway Invocations in Java

You can invoke operations via oneway proxies asynchronously, provided the operation has voi d return type, does not have any
out-parameters, and does not raise user exceptions. If you call the begi n_ method on a oneway proxy for an operation that returns values
or raises a user exception, the begi n_ method throws an | | | egal Ar gunent Excepti on.

The callback methods looks exactly as for a twoway invocation. For the generic API, the Ice run time does not call the conpl et ed callback
method unless the invocation raised an exception during the begi n_ method ("on the way out"). For the type-safe API, the r esponse
method is never called.

Flow Control in Java

366 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Asynchronous method invocations never block the thread that calls the begi n_ method: the Ice run time checks to see whether it can write
the request to the local transport. If it can, it does so immediately in the caller's thread. (In that case, AsyncResul t. sent Synchr onousl y
returns true.) Alternatively, if the local transport does not have sufficient buffer space to accept the request, the Ice run time queues the
request internally for later transmission in the background. (In that case, AsyncResul t . sent Synchr onousl y returns false.)

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the
requests pile up in the client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the number of requests that are queued so, if that number exceeds
some threshold, the client stops invoking more operations until some of the queued operations have drained out of the local transport.

For the generic API, you can override the sent method:

Java
public class MyCall back extends Ice. AsyncCal | back
{

public void conpleted(lce.AsyncResult r)
{
11
}
public void sent(lce.AsyncResult r)
{
/1
}
}

You inform the Ice run time that you want to be informed when a call has been passed to the local transport as usual:

Java

e. begi n_get Name(99, new MyCal | back());

If the Ice run time can immediately pass the request to the local transport, it does so and invokes the sent method from the thread that calls
the begi n_ method. On the other hand, if the run time has to queue the request, it calls the sent method from a different thread once it has
written the request to the local transport. In addition, you can find out from the AsyncResul t that is returned by the begi n_ method
whether the request was sent synchronously or was queued, by calling sent Synchr onousl y.

For the generic API, the sent method has the following signature:

Java

void sent(lce.AsyncResult r);

For the type-safe API, the signature is:

Java

voi d sent (bool ean sent Synchronously);

For the generic API, you can find out whether the request was sent synchronously by calling sent Synchr onousl y on the AsyncResul t.
For the type-safe API, the boolean sent Synchr onousl y parameter provides the same information.

The sent methods allow you to limit the number of queued requests by counting the number of requests that are queued and decrementing
the count when the Ice run time passes a request to the local transport.
Asynchronous Batch Requests in Java

Applications that send batched requests can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method
i ce_fl ushBat chRequest s performs an immediate flush using the synchronous invocation model and may block the calling thread until
the entire message can be sent. Ice also provides asynchronous versions of this method so you can flush batch requests asynchronously.

367 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

begi n_i ce_fl ushBat chRequest s and end_i ce_f | ushBat chRequest s are proxy methods that flush any batch requests queued by
that proxy.

In addition, similar methods are available on the communicator and the Connect i on object that is returned by
AsyncResul t. get Connect i on. These methods flush batch requests sent via the same communicator and via the same connection,
respectively.

Concurrency Semantics for AMI in Java
The Ice run time always invokes your callback methods from a separate thread, with one exception: it calls the sent callback from the

thread calling the begi n_ method if the request could be sent synchronously. In the sent callback, you know which thread is calling the
callback by looking at the sent Synchr onousl y member or parameter.

AMI Limitations in Java
AMI invocations cannot be sent using collocated optimization. If you attempt to invoke an AMI operation using a proxy that is configured to

use collocation optimization, the Ice run time raises Col | ocati onQOpti m zat i onExcept i on if the servant happens to be collocated; the
request is sent normally if the servant is not collocated. You can disable this optimization if necessary.

See Also
®* Request Contexts

® Batched Invocations
® |ocation Transparency

368 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Using the Slice Compiler for Java
On this page:

® slice2j ava Command-Line Options
® Slice2Java Ant Task

® Execution Environment
Dependencies
Parameters
Nested Elements
Using the Task

sl i ce2j ava Command-Line Options

The Slice-to-Java compiler, sl i ce2j ava, offers the following command-line options in addition to the standard options:

* --tie
Generate tie classes.

® --inpl
Generate sample implementation files. This option will not overwrite an existing file.

® --inpl-tie
Generate sample implementation files using tie classes. This option will not overwrite an existing file.

® --checksum CLASS
Generate checksums for Slice definitions into the class CLASS. The given class name may optionally contain a package specifier.
The generated class contains checksums for all of the Slice files being translated by this invocation of the compiler. For example,
the command below causes sl i ce2j ava to generate the file Checksuns. j ava containing the checksums for the Slice definitions
inFilel.iceandFile2.ice:

slice2java --checksum Checksuns Filel.ice File2.ice

® --stream
Generate streaming helper functions for Slice types.

® --neta META
Define the global metadata directive META. Using this option is equivalent to defining the global metadata META in each named Slice
file, as well as in any file included by a named Slice file. Global metadata specified with - - net a overrides any corresponding global
metadata directive in the files being compiled.

Slice2Java Ant Task

The Ice for Java build system makes extensive use of an ant task named Sl i ce2JavaTask to automate the execution of the Slice-to-Java
compiler. This task may also be useful for Ice developers. The task and its supporting classes reside in the JAR file named ant -i ce. j ar,
which normally can be found in the | i b subdirectory of your Ice installation.

Execution Environment

The Sl i ce2JavaTask must be able to locate and spawn the sl i ce2j ava executable. You can specify the directory of your Ice installation
by defining the i ce. hone ant property or the | CE_HOVE environment variable, in which case the task assumes that the Slice compiler's
executable is located in the bi n subdirectory of the specified installation directory. For example, if | CE_HOVE is set to / opt / | ce on Linux,
the task assumes that the executable path name is / opt / | ce/ bi n/ sl i ce2j ava. Furthermore, the task also configures its shared library
search path (if necessary for your platform) to ensure the executable can resolve its library dependencies.

If both i ce. home and | CE_HOVE are defined, i ce. home takes precedence. If neither are defined, the task assumes that the executable
can already be found in your PATH and that your shared library search path is configured correctly.

Finally, you can use a task parameter to specify the full path name of the Slice compiler. Again, the task assumes that your shared library
search path is configured correctly.

Dependencies

369 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The task minimizes recompilation by maintaining dependencies between Slice files. The task stores this information in a file named . depend
in the output directory and updates these dependencies after each invocation. (You can specify a different name for this file using a task
parameter.)

Note that the task does not maintain dependencies between a Slice file and its generated Java source files. Consequently, removing the
generated Java source files does not cause the task to recompile a Slice file. In fact, the task only compiles a Slice file when any of the
following conditions are true:

no dependency file exists

no dependency information is found for the Slice file

the modification time of the Slice file is later than the modification time of the dependency file
the Slice file includes another Slice file that is eligible for compilation

The simplest way to force the task to recompile all of your Slice files is to remove the dependency file.

Parameters

The task supports the parameters listed in the following table:

Attribute Description Required
checksum Specifies the name of a class to contain the Slice checksums. No
dependencyfil e Specifies an alternate name for the dependency file. If you specify a relative filename, it is relative to No

ant's current working directory. If not specified, the task uses the name . depend by default. If you do not
define this attribute and out put di r is defined, the task creates the . depend file in the designated
output directory (see out put di r).

ice Instructs the Slice compiler to permit symbols that have the reserved prefix | ce. This parameter is used = No
in the Ice build system and is not normally required by applications.

out putdir Specifies the directory in which the Slice compiler generates Java source files. If not specified, the task No
uses ant's current working directory.

stream Indicates whether to generate streaming support. If not specified, streaming support is not generated. No
tie Indicates whether to generate tie classes. If not specified, tie classes are not generated. No
transl at or Specifies the path name of the Slice compiler. If not specified, the task locates the Slice compiler in its No

execution environment.
For the flag parameters (i ce, stream and ti e), legal positive values are on, t r ue, or yes; negative values are of f , f al se, or no.

Nested Elements

Several Slice compiler options must be defined as nested elements of the task:

® define
Defines a preprocessor macro. The element supports the attributes nanme and (optionally) val ue, as shown below:
<defi ne name="FOO'>
<defi ne name="BAR' val ue="5">
These definitions are equivalent to the command-line options - DFOOand - DBAR=5, respectively.

* fileset
Specifies the set of Slice files to be compiled. Refer to the ant documentation of its Fi | eSet type for more information.

® includepath
Specifies the include file search path for Slice files. In ant terminology, i ncl udepat h is a path-like structure. Refer to the ant
documentation of its Pat h type for more information.

* neta

Defines a global metadata directive in each Slice file as well as in each included Slice file. The element supports narme and val ue
attributes.

Using the Task

Define the following t askdef element in your project's build file to enable the task:

370 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Ant

<t askdef nane="slice2java" cl assname="Slice2JavaTask"/>

This configuration assumes that ant - i ce. j ar is already present in ant's class path. Alternatively, you can specify the JAR explicitly as
follows:

Ant

<t askdef nane="slice2java" classpath="/opt/lce/lib/ant-ice.jar"
cl assnane="Sl i ce2JavaTask"/ >

Once activated, you can invoke the task to translate your Slice files. The example shown below is a simplified version of the ant project for
the hel | o demo:

Ant

<target nane="generate" depends="init">
<nkdir dir="generated"/>
<slice2java outputdir="generated">
<fileset dir="." includes="Hello.ice"/>
</slice2java>
</target>

<target nane="conpile" depends="generate">
<nmkdir dir="classes"/>
<javac srcdir=".:generated" destdir="classes">
<excl ude nane="generated/**"/>
</javac>
</target>
<target nane="all" depends="conpile"/>

<target nane="cl ean">
<del ete dir="generated"/>
<del ete dir="cl asses"/>
</target>

This project demonstrates some practices that we encourage you to adopt in your own projects. First, it is helpful to keep the source files
generated by the Slice compiler separate from your application's source files by dedicating an output directory for the exclusive use of the
Slice compiler. Doing so helps to minimize confusion and makes it easier to configure a source-code management system to ignore
generated files.

Next, we also recommend that you include a cl ean target in your ant project that removes this output directory. Assuming that the
dependency file (. depend) is also stored in this directory, removing the output directory is an efficient way to clean up your project's source
tree and guarantees that all of your Slice files are recompiled in the next build.

Finally, after seeing the excl ude element in the invocation of j avac you might infer that the generated code was not being compiled, but
the presence of the output directory in the sr cdi r attribute ensures that the generated code is included in the build. The purpose of the
excl ude element is to prevent ant from including the generated files twice in its target list.

See Also

Using the Slice Compilers
Using Slice Checksums in Java
Tie Classes in Java

Streaming Interfaces

371 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Using Slice Checksums in Java

The Slice compilers can optionally generate checksums of Slice definitions. For sl i ce2j ava, the - - checksumoption causes the compiler
to generate a new Java class that adds checksums to a static map member. Assuming we supplied the option - - checksum Checksuns to
sl i ce2j ava, the generated class Checksuns. j ava looks like this:

Java

public class Checksuns {
public static java.util.Mp<String, String> checksuns;

}

The read-only map checksuns is initialized automatically prior to first use; no action is required by the application.

In order to verify a server's checksums, a client could simply compare the dictionaries using the equal s method. However, this is not
feasible if it is possible that the server might return a superset of the client's checksums. A more general solution is to iterate over the local
checksums as demonstrated below:

Java

java.util.Map<String, String> serverChecksunms = ...
java.util.lterator<java.util.Mp.Entry<String, String>>i =
Checksuns. checksums. entrySet ().iterator();
whil e(i.hasNext()) {
java.util.Mp. Entry<String, String> e = i.next();
String id = e.getKey();
String checksum = e. get Val ue();
String serverChecksum = server Checksuns. get (id);
if (serverChecksum == null) {
/1 No match found for type id!
} else if (!checksum equal s(serverChecksun)) {
/1 Checksum m smat ch!

}

In this example, the client first verifies that the server's dictionary contains an entry for each Slice type ID, and then it proceeds to compare
the checksums.

See Also

® Slice Checksums

372 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Example of a File System Client in Java

This page presents the source code for a very simple client to access a server that implements the file system we developed in Slice for a
Simple File System. The Java code hardly differs from the code you would write for an ordinary Java program. This is one of the biggest
advantages of using Ice: accessing a remote object is as easy as accessing an ordinary, local Java object. This allows you to put your effort
where you should, namely, into developing your application logic instead of having to struggle with arcane networking APIs. This is true for

the server side as well, meaning that you can develop distributed applications easily and efficiently.

We now have seen enough of the client-side Java mapping to develop a complete client to access our remote file system. For reference,

here is the Slice definition once more:

Slice

nmodul e Fil esystem {
interface Node {
i denpotent string name();

}s

exception GenericError {
string reason;

I
sequence<string> Lines;

interface File extends Node {
i denpot ent Lines read();
i denpotent void wite(Lines text) throws GenericError;

s
sequence<Node* > NodeSeq;

interface Directory extends Node {
i demrpot ent NodeSeq list();
I
b

To exercise the file system, the client does a recursive listing of the file system, starting at the root directory. For each node in the file
system, the client shows the name of the node and whether that node is a file or directory. If the node is a file, the client retrieves the

contents of the file and prints them.

The body of the client code looks as follows:

Java

inmport Filesystem *;
public class Cient {

/'l Recursively print the contents of directory "dir" in

I/l tree fashion. For files, show the contents of each file.
/1 The "depth" paraneter is the current nesting |evel

/1 (for indentation).

static void
listRecursive(DirectoryPrx dir, int depth)
{

char[] indentCh = new char[++depth];
java.util.Arrays.fill(indentCh, "\t');
String indent = new String(indentCh);
NodePrx[] contents = dir.list();

for (int i =0; i < contents.length; ++i) {

373

Copyright © 2011, ZeroC, Inc.

374

Ice 3.4.2 Documentation

DirectoryPrx subdir = DirectoryPrxHel per.checkedCast (contents[i]);
FilePrx file = Fil ePrxHel per.uncheckedCast (contents[i]);
System out. println(indent + contents[i].name() +
(subdir !'= null ? " (directory):" : " (file):"));
if (subdir I'=null) {
i st Recursive(subdir, depth);
} else {
String[] text = file.read();
for (int j =0; j < text.length; ++j)
Systemout.println(indent + "\t" + text[j]);

}

public static void
mai n(String[] args)
{
int status = 0;
| ce. Comruni cator ic = null;

try {
/'l Create a conmmuni cator
/1
ic = lce. Wil.initialize(args);

/] Create a proxy for the root directory

/1
Ice. ObjectPrx base = ic.stringToProxy("RootDir:default -p 10000");
if (base == null)

throw new Runti meException("Cannot create proxy");

/| Down-cast the proxy to a Directory proxy

11
DirectoryPrx rootDir = DirectoryPrxHel per.checkedCast (base);
if (rootDir == null)

throw new Runti neException("Invalid proxy");

/1 Recursively list the contents of the root directory
/1
Systemout.println("Contents of root directory:");
|'i stRecursive(rootDir, 0);
} catch (Ice.Local Exception e) {
e.printStackTrace();
status = 1;
} catch (Exception e) {
Systemerr.println(e.get Message());
status = 1;

}
if (ic!=null) {
/1 Cean up
/1
try {
ic.destroy();
} catch (Exception e) {
Systemerr.println(e.get Message());
status = 1;
}
}

System exit(status);

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

After importing the Fi | esyst empackage, the Cl i ent class defines two methods: | i st Recur si ve, which is a helper function to print the
contents of the file system, and nai n, which is the main program. Let us look at mai n first:

1. The structure of the code in mai n follows what we saw in Hello World Application. After initializing the run time, the client creates a
proxy to the root directory of the file system. For this example, we assume that the server runs on the local host and listens using the
default protocol (TCP/IP) at port 10000. The object identity of the root directory is known to be Root Di r.

2. The client down-casts the proxy to Di r ect or yPr x and passes that proxy to | i st Recur si ve, which prints the contents of the file
system.

Most of the work happens in | i st Recur si ve. The function is passed a proxy to a directory to list, and an indent level. (The indent level
increments with each recursive call and allows the code to print the name of each node at an indent level that corresponds to the depth of
the tree at that node.) | i st Recur si ve calls the | i st operation on the directory and iterates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Di r ect ory proxy, as well as an uncheckedCast to narrow the
Node proxy to a Fi | e proxy. Exactly one of those casts will succeed, so there is no need to call checkedCast twice: if the Node
is-a Di rect ory, the code uses the Di r ect or yPr x returned by the checkedCast ; if the checkedCast fails, we know that the
Node is-a File and, therefore, an uncheckedCast is sufficientto geta Fi | ePr x.

In general, if you know that a down-cast to a specific type will succeed, it is preferable to use an uncheckedCast instead of a
checkedCast because an uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which cast succeeded, prints " (di rectory)" or
"(file)" following the name.

3. The code checks the type of the node:

® Ifitis a directory, the code recurses, incrementing the indent level.
® Ifitis afile, the code calls the r ead operation on the file to retrieve the file contents and then iterates over the returned
sequence of lines, printing each line.

Assume that we have a small file system consisting of two files and a directory as follows:

’_) = Directory (ﬁ) RootDir
i

/S
. = File / \
Coleridge | . README

=,

Kubla-Khan

A small file system.

The output produced by the client for this file system is:

Contents of root directory:
READMVE (file):
This file systemcontains a collection of poetry.
Col eridge (directory):
Kubl a_Khan (file):
I'n Xanadu di d Kubl a Khan
A stately pl easure-done decree:
Wiere Al ph, the sacred river, ran
Through caverns neasurel ess to nan
Down to a sunless sea.

375 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Note that, so far, our client (and server) are not very sophisticated:

® The protocol and address information are hard-wired into the code.
® The client makes more remote procedure calls than strictly necessary; with minor redesign of the Slice definitions, many of these
calls can be avoided.

We will see how to address these shortcomings in our discussions of IceGrid and object life cycle.

See Also

Hello World Application

Slice for a Simple File System

Example of a File System Server in Java
Object Life Cycle

IceGrid

376 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Server-Side Slice-to-Java Mapping

The mapping for Slice data types to Java is identical on the client side and server side. This means that everything in Client-Side
Slice-to-Java Mapping also applies to the server side. However, for the server side, there are a few additional things you need to know —
specifically how to:

® |[nitialize and finalize the server-side run time

® Implement servants

® Pass parameters and throw exceptions

® Create servants and register them with the Ice run time

Because the mapping for Slice data types is identical for clients and servers, the server-side mapping only adds a few additional
mechanisms to the client side: a small API to initialize and finalize the run time, plus a few rules for how to derive servant classes from
skeletons and how to register servants with the server-side run time.

Although the examples we present are very simple, they accurately reflect the basics of writing an Ice server. Of course, for more
sophisticated servers, you will be using additional APIs, for example, to improve performance or scalability. However, these APIs are all
described in Slice, so, to use these APIs, you need not learn any Java mapping rules beyond those we described here.

Topics

The Server-Side main Method in Java
Server-Side Java Mapping for Interfaces
Parameter Passing in Java

Raising Exceptions in Java

Tie Classes in Java

Object Incarnation in Java

Asynchronous Method Dispatch (AMD) in Java
Example of a File System Server in Java

377 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The Server-Side main Method in Java

On this page:

® A Basic nai n Method in Java
® Thelce. Application Class in Java
® Using | ce. Appl i cati on on the Client Side in Java
® Catching Signals in Java
® | ce. Applicati on and Properties in Java
® Limitations of | ce. Appl i cati on in Java

A Basic nmai n Method in Java

The main entry point to the Ice run time is represented by the local Slice interface | ce: : Conmmruni cat or . As for the client side, you must
initialize the Ice run time by calling I ce. Uti | . i ni ti al i ze before you can do anything else in your server. | ce. Util .initialize
returns a reference to an instance of an | ce. Conmmruni cat or :

Java

public class Server {
public static void
mai n(String[] args)
{
int status = 0;
| ce. Communi cator ic = null;
try {
ic = lce. Wil.initialize(args);
I
} catch (Exception e) {
e.printStackTrace();
status = 1;

lce. UWil.initialize acceptsthe argument vector that is passed to mai n by the operating system. The function scans the argument
vector for any command-line options that are relevant to the Ice run time, but does not remove those options. If anything goes wrong during
initialization, i ni ti al i ze throws an exception.

The semantics of Java arrays prevents | ce. Uti | .initial i ze from modifying the size of the argument vector.
However, another overloading of I ce. Uti | .initialize is provided that allows the application to obtain a new
argument vector with the Ice options removed.

Before leaving your mai n function, you must call Conmuni cat or . dest r oy. The dest r oy operation is responsible for finalizing the Ice run
time. In particular, dest r oy waits for any operation implementations that are still executing in the server to complete. In addition, dest r oy
ensures that any outstanding threads are joined with and reclaims a number of operating system resources, such as file descriptors and
memory. Never allow your mai n function to terminate without calling dest r oy first; doing so has undefined behavior.

The general shape of our server-side nai n function is therefore as follows:

378 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java

public class Server {
public static void
mai n(String[] args)
{
int status = 0;
I ce. Communi cator ic = null;
try {
ic = lce. Wil.initialize(args);
/1
} catch (Exception e) {
e.printStackTrace();
status = 1;
}
if (ic!=null) {
try {
ic.destroy();
} catch (Exception e) {
e.printStackTrace();
status = 1;
}
}

System exit(status);

Note that the code placesthe calltol ce. Util.initializeintoatry block and takes care to return the correct exit status to the
operating system. Also note that an attempt to destroy the communicator is made only if the initialization succeeded.

Thel ce. Appl i cati on Class in Java

The preceding structure for the mai n function is so common that Ice offers a class, | ce. Appl i cat i on, that encapsulates all the correct
initialization and finalization activities. The synopsis of the class is as follows (with some detail omitted for now):

Java

package |ce;
public enum Signal Policy { Handl eSignals, NoSignal Handling }

public abstract class Application {
public Application()

public Application(Signal Policy signal Policy)

public final int main(String appNanme, String[] args)

public final int nain(String appName, String[] args, String configFile)

public final int main(String appName, String[] args, InitializationData initData)
public abstract int run(String[] args)

public static String appNane()

public static Communi cator conmuni cator ()

11

The intent of this class is that you specialize | ce. Appl i cat i on and implement the abstract r un method in your derived class. Whatever

379 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

code you would normally place in mai n goes into the r un method instead. Using | ce. Appl i cat i on, our program looks as follows:

Java

public class Server extends |ce.Application {

public int
run(String[] args)
{

/1 Server code here...

return O;

}

public static void
mai n(String[] args)

{
Server app = new Server();
int status = app.nmain("Server", args);
System exit (status);

}

Note that Appl i cati on. mai n is overloaded: you can pass an optional file name oran | ni ti al i zat i onDat a structure.

If you pass a configuration file name to mai n, the property settings in this file are overridden by settings in a file identified by the
| CE_CONFI Genvironment variable (if defined). Property settings supplied on the command line take precedence over all other settings.

The Appl i cati on. nai n function does the following:

1. Itinstalls an exception handler for j ava. | ang. Excepti on. If your code fails to handle an exception, Appl i cat i on. mai n prints
the name of an exception and a stack trace on Syst em er r before returning with a non-zero return value.

2. Itinitializes (by calling I ce. Uti |l .initialize)and finalizes (by calling Conmuni cat or . dest r oy) a communicator. You can get
access to the communicator for your server by calling the static communi cat or accessor.

3. It scans the argument vector for options that are relevant to the Ice run time and removes any such options. The argument vector
that is passed to your r un method therefore is free of Ice-related options and only contains options and arguments that are specific
to your application.

4. It provides the name of your application via the static appName member function. The return value from this call is the first argument
in the call to Appl i cati on. mai n, so you can get at this name from anywhere in your code by calling
I ce. Appl i cati on. appNane (which is usually required for error messages). In the example above, the return value from
appNane would be Ser ver.

5. Itinstalls a shutdown hook that properly shuts down the communicator.

6. Itinstalls a per-process logger if the application has not already configured one. The per-process logger uses the value of the
| ce. Progr anmNane property as a prefix for its messages and sends its output to the standard error channel. An application can
also specify an alternate logger.

Using | ce. Appl i cat i on ensures that your program properly finalizes the Ice run time, whether your server terminates normally or in
response to an exception. We recommend that all your programs use this class; doing so makes your life easier. In addition,

I ce. Appl i cat i on also provides features for signal handling and configuration that you do not have to implement yourself when you use
this class.

Using | ce. Appl i cati on on the Client Side in Java

You can use | ce. Appl i cat i on for your clients as well: simply implement a class that derives from | ce. Appl i cat i on and place the
client code into its r un method. The advantage of this approach is the same as for the server side: | ce. Appl i cat i on ensures that the
communicator is destroyed correctly even in the presence of exceptions.

Catching Signals in Java

The simple server we developed in Hello World Application had no way to shut down cleanly: we simply interrupted the server from the
command line to force it to exit. Terminating a server in this fashion is unacceptable for many real-life server applications: typically, the
server has to perform some cleanup work before terminating, such as flushing database buffers or closing network connections. This is
particularly important on receipt of a signal or keyboard interrupt to prevent possible corruption of database files or other persistent data.

Java does not provide direct support for signals, but it does allow an application to register a shutdown hook that is invoked when the JVM is

shutting down. There are several events that trigger JVM shutdown, such as a call to Syst em exi t or an interrupt signal from the operating
system, but the shutdown hook is not provided with the reason for the shut down.

380 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

I ce. Appl i cat i on registers a shutdown hook by default, allowing you to cleanly terminate your application prior to JVM shutdown.

Java

package |ce;

public abstract class Application {
11

synchroni zed public static void destroyOnlnterrupt()
synchroni zed public static void shutdownOnlnterrupt ()
synchroni zed public static void setlnterruptHook(Thread t)
synchroni zed public static void defaultlnterrupt()
synchroni zed public static bool ean interrupted()

The functions behave as follows:

dest royOnl nt err upt
This function installs a shutdown hook that calls dest r oy on the communicator. This is the default behavior.

shut downOnl nt er r upt
This function installs a shutdown hook that calls shut down on the communicator.

set | nt errupt Hook

This function installs a custom shutdown hook that takes responsibility for performing whatever action is necessary to terminate the
application. Refer to the Java documentation for Runt i ne. addShut downHook for more information on the semantics of shutdown
hooks.

defaul tlnterrupt
This function removes the shutdown hook.

interrupted
This function returns true if the shutdown hook caused the communicator to shut down, false otherwise. This allows us to distinguish
intentional shutdown from a forced shutdown that was caused by the JVM. This is useful, for example, for logging purposes.

By default, | ce. Appl i cat i on behaves as if dest r oyOnl nt er r upt was invoked, therefore our server mai n function requires no change
to ensure that the program terminates cleanly on JVM shutdown. (You can disable this default shutdown hook by passing the enumerator
NoSi gnal Handl i ng to the constructor. In that case, shutdown is not intercepted and terminates the VM.) However, we add a diagnostic to
report the occurrence, so our mai n function now looks like:

Java

public class Server extends |ce.Application {

public int
run(String[] args)
{

/1 Server code here...

if (interrupted())
Systemerr.println(appNane() +

term nating");

return O;

}

public static void
mai n(String[] args)

{
Server app = new Server();
int status = app.nain("Server", args);
System exit(status);

}

During the course of normal execution, the JVM does not terminate until all non-daemon threads have completed. If an interrupt occurs, the

381

Copyright © 2011, ZeroC, Inc.

382

Ice 3.4.2 Documentation

JVM ignores the status of active threads and terminates as soon as it has finished invoking all of the installed shutdown hooks.

In a subclass of | ce. Appl i cat i on, the default shutdown hook (as installed by dest r oyOnl nt er r upt) blocks until the application's main

thread

completes. As a result, an interrupted application may not terminate successfully if the main thread is blocked. For example, this can

occur in an interactive application when the main thread is waiting for console input. To remedy this situation, the application can install an
alternate shutdown hook that does not wait for the main thread to finish:

Java

public class Server extends |ce.Application {
cl ass Shut downHook extends Thread {

public void
run()
{
try
{
comuni cator (). destroy();
}
catch(l ce. Local Excepti on ex)
{
ex. print StackTrace();
}
}
}
public int
run(String[] args)
{
set | nt er r upt Hook(new Shut downHook());
/1
}

After replacing the default shutdown hook using set | nt er r upt Hook, the JVM will terminate as soon as the communicator is destroyed.

| ce. Appl i cati on and Properties in Java

Apart from the functionality shown in this section, | ce. Appl i cat i on also takes care of initializing the Ice run time with property values.
Properties allow you to configure the run time in various ways. For example, you can use properties to control things such as the thread pool

size or

port number for a server. The mai n function of | ce. Appl i cat i on is overloaded; the second version allows you to specify the name

of a configuration file that will be processed during initialization.
Limitations of | ce. Appl i cati onin Java

I ce. Appl i cati on is a singleton class that creates a single communicator. If you are using multiple communicators, you cannot use
I ce. Appl i cati on. Instead, you must structure your code as we saw in Hello World Application (taking care to always destroy the
communicator).

See Also

Hello World Application
Properties and Configuration
Communicator Initialization
Logger Facility

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Server-Side Java Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run time: by implementing member functions in a servant class,
you provide the hook that gets the thread of control from the Ice server-side run time into your application code.

On this page:
® Skeleton Classes in Java

® Servant Classes in Java
® Normal and i denpot ent Operations in Java

Skeleton Classes in Java

On the client side, interfaces map to proxy classes. On the server side, interfaces map to skeleton classes. A skeleton is a class that has a
pure virtual member function for each operation on the corresponding interface. For example, consider our Slice definition for the Node
interface:

Slice

nmodul e Fil esystem {
interface Node {
i denpotent string name();

The Slice compiler generates the following definition for this interface:

Java

package Fil esystem

public interface _NodeOperations

{
String name(lce. Current current);
}
public interface _NodeOperationsNC
{
String name();
}

public interface Node extends |ce. Ovject,
_NodeOper ati ons,
_NodeOper ati onsNC {}

public abstract class _NodeD sp extends |ce. Objectlnpl
i mpl enents Node

{
}

/1 Mappi ng-internal code here...

The important points to note here are:

® As for the client side, Slice modules are mapped to Java packages with the same name, so the skeleton class definitions are part of
the Fi | esyst empackage.

® For each Slice interface <i nt er f ace- nane>, the compiler generates Java interfaces _<i nt er f ace- nane>Qper ati ons and _
<i nterface- name>Qper ati onsNC (_NodeQper at i ons and _NodeQper at i onsNCin this example). These interfaces contain a
method for each operation in the Slice interface. (You can ignore the | ce. Cur r ent parameter for now.)

® For each Slice interface <i nt er f ace- nane>, the compiler generates a Java interface <i nt er f ace- name> (Node in this

383 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

example). That interface extends | ce. Obj ect and the two operations interfaces.

® For each Slice interface <i nt er f ace- nane>, the compiler generates an abstract class _<i nt er f ace- name>Di sp (_NodeDi sp
in this example). This abstract class is the actual skeleton class; it is the base class from which you derive your servant class.

Servant Classes in Java

In order to provide an implementation for an Ice object, you must create a servant class that inherits from the corresponding skeleton class.
For example, to create a servant for the Node interface, you could write:

Java

package Fil esystem
public final class Nodel extends _NodeDi sp {

public Nodel (String nane)

{
_name = nane;
}
public String name(lce.Current current)
{
return _nane;
}

private String _nang;

By convention, servant classes have the name of their interface with an | -suffix, so the servant class for the Node interface is called Nodel .
(This is a convention only: as far as the Ice run time is concerned, you can choose any name you prefer for your servant classes.) Note that
Nodel extends _NodeDi sp, that is, it derives from its skeleton class.

As far as Ice is concerned, the Nodel class must implement only a single method: the name method that it inherits from its skeleton. This
makes the servant class a concrete class that can be instantiated. You can add other member functions and data members as you see fit to
support your implementation. For example, in the preceding definition, we added a _nane member and a constructor. (Obviously, the
constructor initializes the _nanme member and the nane function returns its value.)

Normal and i denpot ent Operations in Java

Whether an operation is an ordinary operation or an i denpot ent operation has no influence on the way the operation is mapped. To
illustrate this, consider the following interface:

Slice
interface Exanple {
voi d nor mal Op();
i denpot ent voi d i denpot ent Op() ;
i denpotent string readonl yOp();
b
The operations class for this interface looks like this:
Java

public interface _Exanpl eOperations

{
voi d normal Op(lce. Current current);
voi d i denpotent Op(lce.Current current);
String readonl yOp(lce.Current current);
}

384 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Note that the signatures of the member functions are unaffected by the i denpot ent qualifier.

See Also

Slice for a Simple File System
Java Mapping for Interfaces
Parameter Passing in Java
Raising Exceptions in Java
Tie Classes in Java

The Current Object

385 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Parameter Passing in Java

For each parameter of a Slice operation, the Java mapping generates a corresponding parameter for the method in the
_<interface-nane>Qper at i ons interface. In addition, every operation has an additional, trailing parameter of type | ce. Cur r ent . For
example, the nane operation of the Node interface has no parameters, but the nane method of the _NodeQper at i ons interface has a
single parameter of type | ce. Cur r ent . We will ignore this parameter for now.

To illustrate the rules, consider the following interface that passes string parameters in all possible directions:

Slice
nmodul e M {
interface Exanple {
string op(string sin, out string sout);
b
b
The generated skeleton class for this interface looks as follows:
Java

public interface _Exanpl eOperations

{

String op(String sin, lce.StringHol der sout, Ice.Current current);

}

As you can see, there are no surprises here. For example, we could implement op as follows:

Java

public final class Exanplel extends M _ExanpleDi sp {

public String op(String sin, Ice.StringHol der sout, lce.Current current)

{
System out. println(sin); /1l In paranms are initialized
sout.value = "Hello World!"; // Assign out param
return "Done";

}

This code is in no way different from what you would normally write if you were to pass strings to and from a function; the fact that remote
procedure calls are involved does not impact on your code in any way. The same is true for parameters of other types, such as proxies,
classes, or dictionaries: the parameter passing conventions follow normal Java rules and do not require special-purpose API calls.

See Also

Server-Side Java Mapping for Interfaces
Raising Exceptions in Java

Tie Classes in Java

The Current Object

386 Copyright © 2011, ZeroC, Inc.

387

Ice 3.4.2 Documentation

Raising Exceptions in Java

To throw an exception from an operation implementation, you simply instantiate the exception, initialize it, and throw it. For example:

Java

11

public void
wite(String[] text, Ice.Current current)
throws GenericError

{
try
{
/1 Try to wite file contents here. ..
}
cat ch(Exception ex)
{
throw new Generi cError("Exception during wite operation", ex);
}
}

Note that, for this example, we have supplied the optional second parameter to the Generi cErr or constructor. This parameter sets the
inner exception and preserves the original cause of the error for later diagnosis.

If you throw an arbitrary Java run-time exception (such as a Cl assCast Except i on), the Ice run time catches the exception and then

returns an UnknownExcept i on to the client. Similarly, if you throw an "impossible" user exception (a user exception that is not listed in the

exception specification of the operation), the client receives an UnknownUser Excepti on.

If you throw an Ice run-time exception, such as Menor yLi m t Except i on, the client receives an UnknownLocal Except i on. For that
reason, you should never throw system exceptions from operation implementations. If you do, all the client will see is an
UnknownLocal Except i on, which does not tell the client anything useful.

Three run-time exceptions are treated specially and not changed to UnknownLocal Except i on when returned to the
client: Obj ect Not Exi st Excepti on, Oper at i onNot Exi st Except i on, and Facet Not Exi st Except i on.

See Also

Run-Time Exceptions

Java Mapping for Exceptions
Server-Side Java Mapping for Interfaces
Parameter Passing in Java

Tie Classes in Java

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Tie Classes in Java

The mapping to skeleton classes requires the servant class to inherit from its skeleton class. Occasionally, this creates a problem: some
class libraries require you to inherit from a base class in order to access functionality provided by the library; because Java does not support
multiple implementation inheritance, this means that you cannot use such a class library to implement your servants because your servants
cannot inherit from both the library class and the skeleton class simultaneously.

To allow you to still use such class libraries, Ice provides a way to write servants that replaces inheritance with delegation. This approach is
supported by tie classes. The idea is that, instead of inheriting from the skeleton class, you simply create a class (known as an
implementation class or delegate class) that contains methods corresponding to the operations of an interface. You use the - - t i e option
with the sl i ce2j ava compiler to create a tie class. For example, the - - t i e option causes the compiler to create exactly the same code for
the Node interface as we saw previously, but to also emit an additional tie class. For an interface <i nt er f ace- nane>, the generated tie
class has the name _<i nt er f ace- nane>Ti e:

388 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java

package Fil esystem
public class _NodeTi e extends _NodeDi sp i nplenents Ice. TieBase {
public _NodeTie() {}

public
_NodeTi e(_NodeQper ati ons del egat e)
{

_ice_del egate = del egate;

}

public java.l ang. Obj ect
i ce_del egate()

{
return _ice_del egate;
}
public void
i ce_del egate(java. |l ang. Obj ect del egate)
{
_ice_del egate = (_NodeQper ati ons) del egat e;
}

public bool ean
equal s(j ava. | ang. Obj ect rhs)

if (this == rhs)

{
return true;
}
if (!(rhs instanceof _NodeTie))
{
return fal se;
}
return _ice_del egate. equal s(((_NodeTie)rhs)._ice_del egate);
}
public int
hashCode()
{
return _ice_del egate. hashCode();
}

public String
nane(lce. Current current)

{
}

return _ice_del egate. name(current);

private _NodeOperations _ice_del egate;

This looks a lot worse than it is: in essence, the generated tie class is simply a servant class (it extends _NodeDi sp) that delegates to your
implementation class each invocation of a method corresponding to a Slice operation:

389 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Skeleton NodeDisp Nodedperations
Class «interfaces winterfacexs
F F
Tie P - Irmplementation
Class _HodeTie HodeT Clase

A skeleton class, tie class, and implementation class.

The generated tie class also implements the | ce. Ti eBase interface, which defines methods for obtaining and changing the delegate
object:

Java

package | ce;

public interface TieBase {
java.l ang. Obj ect ice_del egate();
voi d ice_del egate(java.l ang. Obj ect del egate);

The delegate has type j ava. | ang. Qbj ect in these methods in order to allow a tie object's delegate to be manipulated without knowing its
actual type. However, the i ce_del egat e modifier raises Cl assCast Except i on if the given delegate object is not of the correct type.

Given this machinery, we can create an implementation class for our Node interface as follows:

Java

package Fil esystem
public final class Nodel inplenents _NodeOperations {

public Nodel (String nane)

{
_hame = nane;
}
public String name(lce.Current current)
{
return _nane;
}

private String _nang;

Note that this class is identical to our previous implementation, except that it implements the _NodeOper at i ons interface and does not
extend _NodeDi sp (which means that you are now free to extend any other class to support your implementation).

To create a servant, you instantiate your implementation class and the tie class, passing a reference to the implementation instance to the tie
constructor:

Java

Nodel fred = new Nodel ("Fred"); /1 Create inplenmentation
_NodeTi e servant = new _NodeTie(fred); // Create tie

Alternatively, you can also default-construct the tie class and later set its delegate instance by calling i ce_del egat e:

390 Copyright © 2011, ZeroC, Inc.

391

Ice 3.4.2 Documentation

Java
_NodeTi e servant = new _NodeTi e(); /Il Create tie
1\l{)del fred = new Nodel ("Fred"); /1 Create inplementation
/siervant .ice_del egate(fred); /] Set del egate

When using tie classes, it is important to remember that the tie instance is the servant, not your delegate. Furthermore, you must not use a
tie instance to incarnate an Ice object until the tie has a delegate. Once you have set the delegate, you must not change it for the lifetime of
the tie; otherwise, undefined behavior results.

You should use the tie approach only when necessary, that is, if you need to extend some base class in order to implement your servants:
using the tie approach is more costly in terms of memory because each Ice object is incarnated by two Java objects (the tie and the
delegate) instead of just one. In addition, call dispatch for ties is marginally slower than for ordinary servants because the tie forwards each
operation to the delegate, that is, each operation invocation requires two function calls instead of one.

Also note that, unless you arrange for it, there is no way to get from the delegate back to the tie. If you need to navigate back to the tie from
the delegate, you can store a reference to the tie in a member of the delegate. (The reference can, for example, be initialized by the
constructor of the delegate.)

See Also

Server-Side Java Mapping for Interfaces
Parameter Passing in Java

Raising Exceptions in Java

Object Incarnation in Java

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Object Incarnation in Java

Having created a servant class such as the rudimentary Nodel class, you can instantiate the class to create a concrete servant that can
receive invocations from a client. However, merely instantiating a servant class is insufficient to incarnate an object. Specifically, to provide
an implementation of an Ice object, you must take the following steps:

1. Instantiate a servant class.

2. Create an identity for the Ice object incarnated by the servant.
3. Inform the Ice run time of the existence of the servant.

4. Pass a proxy for the object to a client so the client can reach it.

On this page:

Instantiating a Java Servant

Creating an Identity in Java

Activating a Java Servant

UUIDs as Identities in Java

Creating Proxies in Java
® Proxies and Servant Activation in Java
® Direct Proxy Creation in Java

Instantiating a Java Servant

Instantiating a servant means to allocate an instance:

Java

Node servant = new Nodel ("Fred");

This code creates a new Nodel instance and assigns its address to a reference of type Node. This works because Nodel is derived from
Node, so a Node reference can refer to an instance of type Nodel . However, if we want to invoke a member function of the Nodel class at
this point, we must use a Nodel reference:

Java

Nodel servant = new Nodel ("Fred");

Whether you use a Node or a Nodel reference depends purely on whether you want to invoke a member function of the Nodel class: if not,
a Node reference works just as well as a Nodel reference.

Creating an Identity in Java

Each Ice object requires an identity. That identity must be unique for all servants using the same object adapter.
ﬂ The Ice object model assumes that all objects (regardless of their adapter) have a globally unique identity.

An Ice object identity is a structure with the following Slice definition:

Slice

modul e lce {
struct ldentity {
string nane;
string category;

392 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The full identity of an object is the combination of both the name and cat egor y fields of the | dent i t y structure. For now, we will leave the
cat egory field as the empty string and simply use the nane field. (The cat egor y field is most often used in conjunction with servant
locators.)

To create an identity, we simply assign a key that identifies the servant to the name field of the | dent i t y structure:

Java

Ice.ldentity id = new Ice.ldentity();
id.nanme = "Fred"; // Not unique, but good enough for now

Activating a Java Servant

Merely creating a servant instance does nothing: the Ice run time becomes aware of the existence of a servant only once you explicitly tell
the object adapter about the servant. To activate a servant, you invoke the add operation on the object adapter. Assuming that we have
access to the object adapter in the _adapt er variable, we can write:

Java

_adapter.add(servant, id);

Note the two arguments to add: the servant and the object identity. Calling add on the object adapter adds the servant and the servant's
identity to the adapter's servant map and links the proxy for an Ice object to the correct servant instance in the server's memory as follows:

1. The proxy for an Ice object, apart from addressing information, contains the identity of the Ice object. When a client invokes an
operation, the object identity is sent with the request to the server.

2. The object adapter receives the request, retrieves the identity, and uses the identity as an index into the servant map.

3. If a servant with that identity is active, the object adapter retrieves the servant from the servant map and dispatches the incoming
request into the correct member function on the servant.

Assuming that the object adapter is in the active state, client requests are dispatched to the servant as soon as you call add.

UUIDs as ldentities in Java

The Ice object model assumes that object identities are globally unique. One way of ensuring that uniqueness is to use UUIDs (Universally
Unique Identifiers) as identities. Java provides a helper function that we can use to create such identities:

Java

public class Exanple {
public static void
mai n(String[] args)
{

}

Systemout. println(java.util.UU D.randomJUlD().toString());

When executed, this program prints a unique string such as 5029a22c- e333- 4f 87- 86b1- cd5e0f cce509. Each call to r andonul D
creates a string that differs from all previous ones.

You can use a UUID such as this to create object identities. For convenience, the object adapter has an operation addW t hUUI D that
generates a UUID and adds a servant to the servant map in a single step. Using this operation, we can create an identity and register a
servant with that identity in a single step as follows:

Java

_adapt er. addW t hUUI D(new Nodel ("Fred"));

393 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Creating Proxies in Java

Once we have activated a servant for an Ice object, the server can process incoming client requests for that object. However, clients can
only access the object once they hold a proxy for the object. If a client knows the server's address details and the object identity, it can
create a proxy from a string, as we saw in our first example in Hello World Application. However, creation of proxies by the client in this
manner is usually only done to allow the client access to initial objects for bootstrapping. Once the client has an initial proxy, it typically
obtains further proxies by invoking operations.

The object adapter contains all the details that make up the information in a proxy: the addressing and protocol information, and the object

identity. The Ice run time offers a number of ways to create proxies. Once created, you can pass a proxy to the client as the return value or
as an out-parameter of an operation invocation.

Proxies and Servant Activation in Java

The add and addW t hUUI D servant activation operations on the object adapter return a proxy for the corresponding Ice object. This means
we can write:

Java

NodePr x proxy = NodePrxHel per.uncheckedCast (_adapt er. addW t hUU D(new Nodel ("Fred")));

Here, addW t hUUI D both activates the servant and returns a proxy for the Ice object incarnated by that servant in a single step.

Note that we need to use an uncheckedCast here because addW t hUUI D returns a proxy of type | ce. Cbj ect Pr x.

Direct Proxy Creation in Java

The object adapter offers an operation to create a proxy for a given identity:

Slice

nmodul e lce {
local interface ObjectAdapter {
oj ect* createProxy(ldentity id);
/1
I
b

Note that cr eat ePr oxy creates a proxy for a given identity whether a servant is activated with that identity or not. In other words, proxies
have a life cycle that is quite independent from the life cycle of servants:

Java

lce.ldentity id = new Ice.ldentity();
id.name = java.util.UU D.randomJUl D().toString();
lce. bjectPrx o = _adapter.createProxy(id);

This creates a proxy for an Ice object with the identity returned by r andomJUl D. Obviously, no servant yet exists for that object so, if we
return the proxy to a client and the client invokes an operation on the proxy, the client will receive an Obj ect Not Exi st Except i on. (We
examine these life cycle issues in more detail in Object Life Cycle.)

See Also

Hello World Application

Server-Side Java Mapping for Interfaces
Object Adapter States

Servant Locators

Object Life Cycle

394 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Asynchronous Method Dispatch (AMD) in Java

The number of simultaneous synchronous requests a server is capable of supporting is determined by the number of threads in the server's
thread pool. If all of the threads are busy dispatching long-running operations, then no threads are available to process new requests and
therefore clients may experience an unacceptable lack of responsiveness.

Asynchronous Method Dispatch (AMD), the server-side equivalent of AMI, addresses this scalability issue. Using AMD, a server can receive
a request but then suspend its processing in order to release the dispatch thread as soon as possible. When processing resumes and the
results are available, the server sends a response explicitly using a callback object provided by the Ice run time.

AMD is transparent to the client, that is, there is no way for a client to distinguish a request that, in the server, is processed synchronously
from a request that is processed asynchronously.

In practical terms, an AMD operation typically queues the request data (i.e., the callback object and operation arguments) for later
processing by an application thread (or thread pool). In this way, the server minimizes the use of dispatch threads and becomes capable of
efficiently supporting thousands of simultaneous clients.

An alternate use case for AMD is an operation that requires further processing after completing the client's request. In order to minimize the
client's delay, the operation returns the results while still in the dispatch thread, and then continues using the dispatch thread for additional
work.

On this page:

® Enabling AMD with Metadata in Java
® AMD Mapping in Java
® Callback interface for AMD
® Dispatch method for AMD
®* AMD Exceptions in Java
®* AMD Example in Java

Enabling AMD with Metadata in Java

To enable asynchronous dispatch, you must add an [" and"] metadata directive to your Slice definitions. The directive applies at the
interface and the operation level. If you specify [" antd"] at the interface level, all operations in that interface use asynchronous dispatch; if
you specify ["and"] for an individual operation, only that operation uses asynchronous dispatch. In either case, the metadata directive
replaces synchronous dispatch, that is, a particular operation implementation must use synchronous or asynchronous dispatch and cannot
use both.

Consider the following Slice definitions:
Slice

["amd"] interface | {
bool isValid();
float computeRate();

}

interface J {
["amd"] void startProcess();
int endProcess();
b
In this example, both operations of interface | use asynchronous dispatch, whereas, for interface J, st art Pr ocess uses asynchronous
dispatch and endPr ocess uses synchronous dispatch.
Specifying metadata at the operation level (rather than at the interface or class level) minimizes the amount of generated code and, more
importantly, minimizes complexity: although the asynchronous model is more flexible, it is also more complicated to use. It is therefore in

your best interest to limit the use of the asynchronous model to those operations that need it, while using the simpler synchronous model for
the rest.

AMD Mapping in Java

The Java mapping emits the following code for each AMD operation:

1. Callback interface

395 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

2. Dispatch method

Callback interface for AMD

A callback interface is used by the implementation to notify the Ice run time about the completion of an operation. The name of this interface
is formed using the pattern AMD_cl ass_op. For example, an operation named f oo defined in interface | results in an interface named
AMD | _f 0o. The interface is generated in the same scope as the interface or class containing the operation. Two methods are provided:

Java

public void ice_response(<parans>);

The i ce_r esponse method allows the server to report the successful completion of the operation. If the operation has a non-voi d return
type, the first parameter to i ce_r esponse is the return value. Parameters corresponding to the operation's out parameters follow the return
value, in the order of declaration.

Java

public void ice_exception(java.l ang. Exception ex);

The i ce_excepti on method allows the server to raise an exception. With respect to exceptions, there is less compile-time type safety in
an AMD implementation because there is no t hr ows clause on the dispatch method and any exception type could conceivably be passed to
i ce_excepti on. However, the Ice run time validates the exception value using the same semantics as for synchronous dispatch.

Neither i ce_r esponse nori ce_excepti on throw any exceptions to the caller.

Dispatch method for AMD

The dispatch method, whose name has the suffix _async, has a voi d return type. The first parameter is a reference to an instance of the
callback interface described above. The remaining parameters comprise the i n parameters of the operation, in the order of declaration.

For example, suppose we have defined the following operation:

Slice

interface | {
["amd"] int foo(short s, out long I);

h

The callback interface generated for operation f 0o is shown below:

Java

public interface AMD | _foo {
void ice_response(int __ret, long |);
voi d i ce_exception(java.lang. Exception ex);

The dispatch method for asynchronous invocation of operation f 00 is generated as follows:

Java

voi d foo_async(AMD_| _foo __cb, short s);

AMD Exceptions in Java

There are two processing contexts in which the logical implementation of an AMD operation may need to report an exception: the dispatch
thread (the thread that receives the invocation), and the response thread (the thread that sends the response).

396 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

lﬂl These are not necessarily two different threads: it is legal to send the response from the dispatch thread.

Although we recommend that the callback object be used to report all exceptions to the client, it is legal for the implementation to raise an
exception instead, but only from the dispatch thread.

As you would expect, an exception raised from a response thread cannot be caught by the Ice run time; the application's run time
environment determines how such an exception is handled. Therefore, a response thread must ensure that it traps all exceptions and sends
the appropriate response using the callback object. Otherwise, if a response thread is terminated by an uncaught exception, the request may
never be completed and the client might wait indefinitely for a response.

Whether raised in a dispatch thread or reported via the callback object, user exceptions are validated and local exceptions may undergo
translation.

AMD Example in Java

To demonstrate the use of AMD in Ice, let us define the Slice interface for a simple computational engine:

Slice

nmodul e Denp {
sequence<f| oat > Row;
sequence<Row> Gri d;

exception RangeError {};

interface Mdel {
["amd"] Gid interpolate(Gid data, float factor)
t hrows RangeError;
b
H

Given a two-dimensional grid of floating point values and a factor, the i nt er pol at e operation returns a new grid of the same size with the
values interpolated in some interesting (but unspecified) way.

Our servant class derives from Deno. _Mdel Di sp and supplies a definition for the i nt er pol at e_async method that creates a Job to
hold the callback object and arguments, and adds the Job to a queue. The method is synchronized to guard access to the queue:

Java

public final class Mdell extends Deno._Mdel Disp {
synchroni zed public void interpol ate_async(
Denp. AVMD_Model _i nterpol ate ch,
float[][] data,
float factor,
Ice.Current current)
t hrows RangeError
{
_j obs. add(new Job(cb, data, factor));

}

java.util.LinkedLi st<Job> _jobs = new java. util.LinkedList<Job>();

After queuing the information, the operation returns control to the Ice run time, making the dispatch thread available to process another
request. An application thread removes the next Job from the queue and invokes execut e, which uses i nt er pol at eGri d (not shown) to
perform the computational work:

397 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java

class Job {
Job(Denp. AVMD_Model _i nterpol ate cb,
float[][] grid,
float factor)

{
_cb = cb;
_grid = grid;
_factor = factor;
}
voi d execute()
{
if (linterpolateGid()) {
_cb.ice_exception(new Deno. RangeError());
return;
}
_cb.ice_response(_grid);
}

private bool ean interpolateGid() {
/1

}

private Denp. AMD_Mbdel _i nterpol ate _cb;
private float[][] _grid;
private float _factor;

Ifi nterpol ateGridreturnsfal se, theni ce_excepti on is invoked to indicate that a range error has occurred. The r et ur n statement
following the call to i ce_except i on is necessary because i ce_except i on does not throw an exception; it only marshals the exception
argument and sends it to the client.

If interpolation was successful, i ce_r esponse is called to send the modified grid back to the client.

See Also

User Exceptions

Run-Time Exceptions

Asynchronous Method Invocation (AMI) in Java
The Ice Threading Model

398 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Example of a File System Server in Java

This page presents the source code for a Java server that implements our file system and communicates with the client we wrote earlier.
The code is fully functional, apart from the required interlocking for threads.

Note that the server is remarkably free of code that relates to distribution: most of the server code is simply application logic that would be
present just the same for a non-distributed version. Again, this is one of the major advantages of Ice: distribution concerns are kept away
from application code so that you can concentrate on developing application logic instead of networking infrastructure.

ﬂ The server code shown here is not quite correct as it stands: if two clients access the same file in parallel, each via a
different thread, one thread may read the _| i nes data member while another thread updates it. Obviously, if that
happens, we may write or return garbage or, worse, crash the server. However, it is trivial to make the read andwri t e
operations thread-safe. We discuss thread safety in The Ice Threading Model.

On this page:

Implementing a File System Server in Java
Server Main Program in Java
Fi I el Servant Class in Java
Di rectoryl Servant Class in Java
® Directoryl Data Members
® Directoryl Constructor
® Directoryl Methods

Implementing a File System Server in Java

We have now seen enough of the server-side Java mapping to implement a server for our file system. (You may find it useful to review these
Slice definitions before studying the source code.)

Our server is composed of three source files:

® Server.java
This file contains the server main program.

® Filesystem Directoryl.java
This file contains the implementation for the Di r ect or y servants.

® FilesystenlFilel.java
This file contains the implementation for the Fi | e servants.

Server Main Program in Java

Our server main program, in the file Ser ver . j ava, uses the | ce. Appl i cati on class. The r un method installs a shutdown hook, creates
an object adapter, instantiates a few servants for the directories and files in the file system, and then activates the adapter. This leads to a
main program as follows:

Java

inmport Filesystem*;

public class Server extends I|ce.Application {

public int
run(String[] args)
{

/1

/1 Terminate cleanly on receipt of a signal
/1

shut downOnl nterrupt () ;

/1 Create an object adapter (stored in the _adapter
/'l static nmenbers)
/1

399 Copyright © 2011, ZeroC, Inc.

400

}

Ice 3.4.2 Documentation

I ce. Obj ect Adapt er adapter = communi cator (). creat eObj ect Adapt er Wt hEndpoi nt s(

"Si npl eFi | esystent, "default -p 10000");
Directoryl._adapter = adapter;
Filel._adapter = adapter;

/] Create the root directory (with nanme "/" and no parent)
/1
Directoryl root = new Directoryl("/", null);

I/l Create a file "README" in the root directory
/1
File file = new Filel ("READVE", root);
String[] text;
text = new String[] {
"This file systemcontains a collection of poetry."
b
try {
fileewite(text, null);
} catch (GenericError e) {
Systemerr.println(e.reason);

}

/| Create a directory "Coleridge" in the root directory
/1
Directoryl coleridge = new Directoryl ("Col eridge", root);

/]l Create a file "Kubla_Khan" in the Coleridge directory

/1

file = new Fil el ("Kubl a_Khan", col eridge);

text = new String[]{ "In Xanadu di d Kubl a Khan",
"A stately pleasure-done decree:",
"Where Al ph, the sacred river, ran",
"Through caverns neasurel ess to nan",
"Down to a sunless sea." };

try {
file.wite(text, null);

} catch (GenericError e) {
Systemerr.println(e.reason);

}

/1 Al objects are created, allow client requests now
/1
adapter. activate();

/1 Wit until we are done
11

conmuni cat or () . wai t For Shut down() ;

return O;

public static void
mai n(String[] args)
{

Server app = new Server();
System exit (app. nai n("Server", args));

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The code imports the contents of the Fi | esyst empackage. This avoids having to continuously use fully-qualified identifiers with a
Fi | esystem prefix.

The next part of the source code is the definition of the Ser ver class, which derives from | ce. Appl i cati on and contains the main
application logic in its r un method. Much of this code is boiler plate that we saw previously: we create an object adapter, and, towards the
end, activate the object adapter and call wai t For Shut down.

The interesting part of the code follows the adapter creation: here, the server instantiates a few nodes for our file system to create the
structure shown below:

. i
U = Directory (RootDir

. = File /'f’ \\

Coleridge [README

Kubla-Khan

A small file system.

As we will see shortly, the servants for our directories and files are of type Di rect oryl and Fi | el , respectively. The constructor for either
type of servant accepts two parameters, the name of the directory or file to be created and a reference to the servant for the parent directory.
(For the root directory, which has no parent, we pass a null parent.) Thus, the statement

Java

Directoryl root = new Directoryl("/", null);

creates the root directory, with the name "/ " and no parent directory.

Here is the code that establishes the structure in the above illustration:

401 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java

/] Create the root directory (with nanme "/" and no parent)
/1
Directoryl root = new Directoryl ("/", null);

/l Create a file "README" in the root directory
/1
File file = new Filel ("READVE", root);
String[] text;
text = new String[] {
"This file systemcontains a collection of poetry."
b
try {
file.wite(text, null);
} catch (GenericError e) {
Systemerr.println(e.reason);

}

/| Create a directory "Coleridge" in the root directory
11
Directoryl coleridge = new Directoryl ("Col eridge", root);

/]l Create a file "Kubla_Khan" in the Coleridge directory
/11
file = new Fil el ("Kubl a_Khan", coleridge);

text = new String[]{ "In Xanadu did Kubl a Khan",
"A stately pleasure-done decree:",
"Where Al ph, the sacred river, ran",
"Through caverns neasurel ess to nan",
"Down to a sunless sea." };

try {

file.wite(text, null);
} catch (GenericError e) {
Systemerr.println(e.reason);

}

We first create the root directory and a file README within the root directory. (Note that we pass a reference to the root directory as the

parent when we create the new node of type Fi | el .)

The next step is to fill the file with text:

Java

String[] text;
text = new String[] {
"This file systemcontains a collection of poetry."
b
try {
file.wite(text, null);
} catch (GenericError e) {
Systemerr.println(e.reason);

}

Recall that Slice sequences by default map to Java arrays. The Slice type Li nes is simply an array of strings; we add a line of text to our

README file by initializing the t ext array to contain one element.

Finally, we call the Slice wr i t e operation on our Fi | el servant by writing:

Java

fileewite(text, null);

402

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

This statement is interesting: the server code invokes an operation on one of its own servants. Because the call happens via a reference to
the servant (of type Fi | el) and not via a proxy (of type Fi | ePr x), the Ice run time does not know that this call is even taking place — such
a direct call into a servant is not mediated by the Ice run time in any way and is dispatched as an ordinary Java function call.

In similar fashion, the remainder of the code creates a subdirectory called Col er i dge and, within that directory, a file called Kubl a_Khan to
complete the structure in the illustration listed above.

Fi | el Servant Class in Java

Our Fi | el servant class has the following basic structure:

Java

public class Filel extends _FileDisp
{

/1 Constructor and operations here...

public static |Ice.CbjectAdapter _adapter;

private String _naneg;

private Directoryl _parent;

private String[] _lines;
}

The class has a number of data members:

® _adapter
This static member stores a reference to the single object adapter we use in our server.

® nane
This member stores the name of the file incarnated by the servant.

°
_parent
This member stores the reference to the servant for the file's parent directory.

® lines
This member holds the contents of the file.

The _nane and _par ent data members are initialized by the constructor:

Java
public
Filel (String name, Directoryl parent)
{

_nhanme = nane;
_parent = parent;

assert(_parent !'= null);

/] Create an identity

/1

Ice.ldentity nylD = new lce.ldentity();

nmyl D. name = java. util.UUl D.randonJUl D().toString();

/1 Add the identity to the object adapter
11
_adapter.add(this, nylD);

/| Create a proxy for the new node and

// add it as a child to the parent

/1

NodePr x thi sNode = NodePr xHel per. uncheckedCast (_adapt er. creat eProxy(nyl D)) ;
_parent. addChi | d(t hi sNode) ;

403 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

After initializing the _name and _par ent members, the code verifies that the reference to the parent is not null because every file must have
a parent directory. The constructor then generates an identity for the file by calling j ava. uti | . UUl D. r andonmJUl D and adds itself to the
servant map by calling Cbj ect Adapt er. add. Finally, the constructor creates a proxy for this file and calls the addChi | d method on its
parent directory. addChi | d is a helper function that a child directory or file calls to add itself to the list of descendant nodes of its parent
directory. We will see the implementation of this function in Di r ect or yl Methods.

The remaining methods of the Fi | el class implement the Slice operations we defined in the Node and Fi | e Slice interfaces:

Java

/1 Slice Node::name() operation

public String
nanme(lce. Current current)

{

return _nanme;
}

/1 Slice File::read() operation

public String[]
read(lce.Current current)

{
}

return _lines;

/Il Slice File::wite() operation

public void
wite(String[] text, Ice.Current current)
throws CenericError

{
}

_lines = text;

The nanme method is inherited from the generated Node interface (which is a base interface of the _Fi | eDi sp class from which Fi | el is
derived). It returns the value of the _name member.

The r ead and wr i t e methods are inherited from the generated Fi | e interface (which is a base interface of the _Fi | eDi sp class from
which Fi | el is derived) and return and set the _| i nes member.

Di rect oryl Servant Class in Java

The Di rect oryl class has the following basic structure:

Java

package Fil esystem

public final class Directoryl extends _DirectoryD sp

{

/1 Constructor and operations here...

public static |Ice.CbjectAdapter _adapter;

private String _naneg;

private Directoryl _parent;

private java.util.ArrayLi st<NodePrx> _contents = new java.util.ArrayLi st<NodePrx>();
}

Di rect oryl Data Members

As for the Fi | el class, we have data members to store the object adapter, the name, and the parent directory. (For the root directory, the
_par ent member holds a null reference.) In addition, we have a _cont ent s data member that stores the list of child directories. These
data members are initialized by the constructor:

404 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java

public
Directoryl (String name, Directoryl parent)
{

_name = nane;

_parent = parent;

// Create an identity. The parent has the

// fixed identity "RootDir"

/1

Ice.ldentity nylD = new lce.ldentity();

nyl D.name = _parent != null ? java.util.UU D.randomJU D().toString() : "RootDr";

/1 Add the identity to the object adapter
11
_adapter.add(this, nylD);

/| Create a proxy for the new node and add it as a
// child to the parent

/1
NodePr x thi sNode = NodePr xHel per. uncheckedCast (_adapt er. creat eProxy(mnyl D)) ;
if (_parent != null)

_parent. addChi | d(t hi sNode) ;

Di rectoryl Constructor
The constructor creates an identity for the new directory by calling j ava. uti | . UUI D. r andonJUl D. (For the root directory, we use the

fixed identity " Root Di r " .) The servant adds itself to the servant map by calling Cbj ect Adapt er . add and then creates a reference to itself
and passes it to the addChi | d helper function.

Di rectoryl Methods

addChi | d adds the passed reference to the _cont ent s list:

Java

voi d
addChi | d(NodePrx chi | d)
{

}

_contents. add(child);

The remainder of the operations, nanme and | i st , are equally trivial:

405 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java

public String
nanme(lce. Current current)

{
return _nane;
}
// Slice Directory::list() operation

public NodePrx[]
list(lce.Current current)

{
NodePrx[] result = new NodePrx[_contents.size()];
_contents.toArray(result);
return result;

}

Note that the _cont ent s member is of type j ava. uti | . ArrayLi st <NodePr x>, which is convenient for the implementation of the
addChi | d method. However, this requires us to convert the list into a Java array in order to return it from the | i st operation.

406

See Al

SO

Slice for a Simple File System

Example of a File System Client in Java
The Server-Side main Method in Java
Java Mapping for Sequences

The Ice Threading Model

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The Java Utility Library

Ice for Java includes a number of utility APIs in the | ceUt i | package and the I ce. Uti | class. This section summarizes the contents of
these APIs for your reference.

On this page:

® Thelceltil Package in Java
® Cache and St or e Classes
® Thelce. Wil Classin Java
® Communicator Initialization Methods

Identity Conversion
Per-Process Logger Methods
Property Creation Methods
Proxy Comparison Methods
Stream Creation

Version Information

Thel ceUti| Package in Java

Cache and St or e Classes

The Cache class allows you to efficiently maintain a cache that is backed by secondary storage, such as a Berkeley DB database, without
holding a lock on the entire cache while values are being loaded from the database. If you want to create evictors for servants that store their

state in a database, the Cache class can simplify your evictor implementation considerably.

You may also want to examine the implementation of the Freeze background save evictor in the source distribution; it uses
I celtil . Cache for its implementation.

The Cache class has the following interface:

Java

public cl
publ i

publ i
publ i
publ i

publ i
publ i

publ i
publ i

package lceltil;

ass Cache {

Cc

Cc

c

Cc
C

Cache(Store store);

Obj ect pi n(Obj ect key);

bj ect pi n(Obj ect key, Object 0);

Obj ect unpi n(Obj ect key);

oj ect putl fAbsent (Obj ect key,
oj ect getlfPinned(Object key);

void clear();
int size();

bj ect newdbj) ;

Internally, a Cache maintains a map of name-value pairs. The implementation of Cache takes care of maintaining the map; in particular, it
ensures that concurrent lookups by callers are possible without blocking even if some of the callers are currently loading values from the
backing store. In turn, this is useful for evictor implementations, such as the Freeze background save evictor. The Cache class does not limit
the number of entries in the cache — it is the job of the evictor implementation to limit the map size by calling unpi n on elements of the map

that it wants to evict.

The Cache class works in conjunction with a St or e interface for which you must provide an implementation. The St or e interface is trivial:

407

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Java

package lceltil;

public interface Store {
oj ect | oad(Obj ect key);
}

You must implement the | oad method in a class that you derive from St or e. The Cache implementation calls | oad when it needs to
retrieve the value for the passed key from the backing store. If | oad cannot locate a record for the given key because no such record exists,
it must return null. If | oad fails for some other reason, it can throw an exception derived from j ava. | ang. Runt i neExcepti on, which is
propagated back to the application code.

The public member functions of Cache behave as follows:

Cache(Store s)

The constructor initializes the cache with your implementation of the St or e interface.
Obj ect pin(Obj ect key, Object val)

To add a key-value pair to the cache, your evictor can call pi n. The return value is null if the key and value were added; otherwise, if the
map already contains an entry with the given key, the entry is unchanged and pi n returns the original value for that key.

This version of pi n does not call | oad to retrieve the entry from backing store if it is not yet in the cache. This is useful when you add a
newly-created object to the cache.

Obj ect pin(Obj ect key)

This version of pi n returns the value stored in the cache for the given key if the cache already contains an entry for that key. If no entry with
the given key is in the cache, pi n calls | oad to retrieve the corresponding value (if any) from the backing store. pi n returns the value
returned by | oad, that is, the value if | oad could retrieve it, null if | oad could not retrieve it, or any exception thrown by | oad.

Obj ect unpi n(oj ect key)

unpi n removes the entry for the given key from the cache. If the cache contained an entry for the key, the return value is the value for that
key; otherwise, the return value is null.

Obj ect put | fAbsent (Obj ect key, Object val)
This function adds a key-value pair to the cache. If the cache already contains an entry for the given key, put | f Absent returns the original

value for that key. If no entry with the given key is in the cache, put | f Absent calls | oad to retrieve the corresponding entry (if any) from
the backing store and returns the value returned by | oad.

If the cache does not contain an entry for the given key and | oad does not retrieve a value for the key, the method adds the new entry and
returns null.

Obj ect get|fPinned(Object key)

This function returns the value stored for the given key. If an entry for the given key is in the map, the function returns the corresponding
value; otherwise, the function returns null. get | f Pi nned does not call | oad.

void clear()
This function removes all entries in the map.
int size()

This function returns the number of entries in the map.

Thelce. Uil Classin Java

408 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Communicator Initialization Methods

I ce. Uil provides a number of overloaded i ni ti al i ze methods that create a communicator.

Identity Conversion

Ice. Uil contains two methods for converting object identities of type | ce. | denti t y to and from strings.

Per-Process Logger Methods

I ce. Uil provides methods for getting and setting the per-process logger.

Property Creation Methods

I ce. Uil provides a number of overloaded cr eat ePr operti es methods that create property sets.

Proxy Comparison Methods

Two methods, pr oxyl denti t yConpar e and pr oxyl dent i t yAndFacet Conpar e, allow you to compare object identities that are stored
in proxies (either ignoring the facet or taking the facet into account).

Stream Creation

Two methods, cr eat el nput St r eamand cr eat eQut put St r eamcreate streams for use with dynamic invocation.

Version Information

The st ri ngVer si on and i nt Ver si on methods return the version of the Ice run time:

Java

public static String stringVersion();
public static int intVersion();

The st ri ngVer si on method returns the Ice version in the form <maj or >. <ni nor >. <pat ch>, for example, 3. 4. 2. For beta releases, the
version is <mmj or >. <mi nor >b, for example, 3. 4b.

The i nt Ver si on method returns the Ice version in the form AABBCC, where AA is the major version number, BB is the minor version
number, and CCis patch level, for example, 30402 for version 3.4.2. For beta releases, the patch level is set to 51 so, for example, for
version 3.4b, the value is 30451.

See Also

Background Save Evictor

Java Mapping for Interfaces
Command-Line Parsing and Initialization
Setting Properties

Object Identity

Java Streaming Interfaces

409 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C-Sharp Mapping

Topics

® Client-Side Slice-to-C-Sharp Mapping
® Server-Side Slice-to-C-Sharp Mapping
® NET Compact Framework Support

® The .NET Utility Library

410 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Client-Side Slice-to-C-Sharp Mapping

The client-side Slice-to-C# mapping defines how Slice data types are translated to C# types, and how clients invoke operations, pass
parameters, and handle errors. Much of the C# mapping is intuitive. For example, by default, Slice sequences map to C# arrays, so there is
little you have learn in order to use Slice sequences in C#.

The C# API to the Ice run time is fully thread-safe. Obviously, you must still synchronize access to data from different threads. For example,
if you have two threads sharing a sequence, you cannot safely have one thread insert into the sequence while another thread is iterating
over the sequence. However, you only need to concern yourself with concurrent access to your own data — the Ice run time itself is fully
thread safe, and none of the Ice API calls require you to acquire or release a lock before you safely can make the call.

Much of what appears in this chapter is reference material. We suggest that you skim the material on the initial reading and refer back to
specific sections as needed. However, we recommend that you read at least the mappings for exceptions, interfaces, and operations in
detail because these sections cover how to call operations from a client, pass parameters, and handle exceptions.

. Inorder to use the C# mapping, you should need no more than the Slice definition of your application and knowledge of
the C# mapping rules. In particular, looking through the generated code in order to discern how to use the C# mapping is
likely to be inefficient, due to the amount of detail. Of course, occasionally, you may want to refer to the generated code to
confirm a detail of the mapping, but we recommend that you otherwise use the material presented here to see how to write
your client-side code.

) Thelce Namespace

All of the APIs for the Ice run time are nested in the | ce namespace, to avoid clashes with definitions for other libraries or
applications. Some of the contents of the | ce namespace are generated from Slice definitions; other parts of the | ce
namespace provide special-purpose definitions that do not have a corresponding Slice definition. We will incrementally
cover the contents of the | ce namespace throughout the remainder of the manual.

Topics

C-Sharp Mapping for Identifiers

C-Sharp Mapping for Modules

C-Sharp Mapping for Built-In Types
C-Sharp Mapping for Enumerations
C-Sharp Mapping for Structures

C-Sharp Mapping for Sequences

C-Sharp Mapping for Dictionaries

C-Sharp Collection Comparison

C-Sharp Mapping for Constants

C-Sharp Mapping for Exceptions

C-Sharp Mapping for Interfaces

C-Sharp Mapping for Operations

C-Sharp Mapping for Classes

Serializable Objects in C-Sharp

C-Sharp Specific Metadata Directives
Asynchronous Method Invocation (AMI) in C-Sharp
slice2cs Command-Line Options

Using Slice Checksums in C-Sharp
Example of a File System Client in C-Sharp

411 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C-Sharp Mapping for Identifiers

Slice identifiers map to an identical C# identifier. For example, the Slice identifier Cl ock becomes the C# identifier Cl ock. If a Slice identifier
is the same as a C# keyword, the corresponding C# identifier is a verbatim identifier (an identifier prefixed with @). For example, the Slice
identifier whi | e is mapped as @i | e.

lﬂl You should try to avoid such identifiers as much as possible.

The Slice-to-C# compiler generates classes that inherit from interfaces or base classes in the .NET framework. These interfaces and classes
introduce a number of methods into derived classes. To avoid name clashes between Slice identifiers that happen to be the same as an
inherited method, such identifiers are prefixed with i ce_ and suffixed with _ in the generated code. For example, the Slice identifier Cl one
maps to the C# identifier i ce_Cd one_ if it would clash with an inherited Cl one. The complete list of identifiers that are so changed is:

Cl one Equal s Finalize

Get BaseExcepti on Get HashCode Get Cbj ect Dat a
Get Type Menber wi seCl one ReferenceEqual s
ToString checkedCast uncheckedCast

Note that Slice identifiers in this list are translated to the corresponding C# identifier only where necessary. For example, structures do not
derive from | Cl oneabl e, so if a Slice structure contains a member named Cl one, the corresponding C# structure's member is named

Cl one as well. On the other hand, classes do derive from | C oneabl e, so, if a Slice class contains a member named Cl one, the
corresponding C# class's member is named i ce_Cl one_.

Also note that, for the purpose of prefixing, Slice identifiers are case-insensitive, that is, both Cl one and cl one are escaped and map to
ice_Cone_andice_cl one_, respectively.

See Also

Identifiers That Are Keywords
C-Sharp Mapping for Modules
C-Sharp Mapping for Built-In Types
C-Sharp Mapping for Enumerations
C-Sharp Mapping for Structures
C-Sharp Mapping for Sequences
C-Sharp Mapping for Dictionaries
C-Sharp Collection Comparison
C-Sharp Mapping for Constants
C-Sharp Mapping for Exceptions

412 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C-Sharp Mapping for Modules

Slice modules map to C# namespaces with the same name as the Slice module. The mapping preserves the nesting of the Slice definitions.
For example:

Slice

modul e ML {
/1 Definitions for ML here...
nodul e M2 {
/1 Definitions for M2 here...
I
I

11

nmodul e ML { /1 Reopen ML
/1 More definitions for ML here...

}

This definition maps to the corresponding C# definitions:

C#

nanmespace ML

{
namespace M2
{
/1
}
11
}
11

nanespace ML /] Reopen ML
{

}

11

If a Slice module is reopened, the corresponding C# namespace is reopened as well.

See Also

C-Sharp Mapping for Identifiers
C-Sharp Mapping for Built-In Types
C-Sharp Mapping for Enumerations
C-Sharp Mapping for Structures
C-Sharp Mapping for Sequences
C-Sharp Mapping for Dictionaries
C-Sharp Collection Comparison
C-Sharp Mapping for Constants
C-Sharp Mapping for Exceptions

413 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C-Sharp Mapping for Built-In Types

The Slice built-in types are mapped to C# types as shown below:

Slice C#
bool bool
byte byt e

short short
int i nt

| ong | ong
f1 oat f1 oat
doubl e doubl e

string string
Mapping of Slice built-in types to C#.

See Also

C-Sharp Mapping for Identifiers
C-Sharp Mapping for Modules
C-Sharp Mapping for Enumerations
C-Sharp Mapping for Structures
C-Sharp Mapping for Sequences
C-Sharp Mapping for Dictionaries
C-Sharp Collection Comparison
C-Sharp Mapping for Constants
C-Sharp Mapping for Exceptions

414 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C-Sharp Mapping for Enumerations

A Slice enumeration maps to the corresponding enumeration in C#. For example:

Slice

enum Fruit { Apple, Pear, O ange };

Not surprisingly, the generated C# definition is identical:

C#

enum Fruit { Apple, Pear, O ange };

See Also

C-Sharp Mapping for Identifiers
C-Sharp Mapping for Modules
C-Sharp Mapping for Built-In Types
C-Sharp Mapping for Structures
C-Sharp Mapping for Sequences
C-Sharp Mapping for Dictionaries
C-Sharp Collection Comparison
C-Sharp Mapping for Constants
C-Sharp Mapping for Exceptions

415 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C-Sharp Mapping for Structures

Ice for .NET supports two different mappings for Slice structures. By default, Slice structures map to C# structures if they (recursively)
contain only value types. If a Slice structure (recursively) contains a string, proxy, class, sequence, or dictionary member, it maps to a C#
class. A metadata directive allows you to force the mapping to a C# class for Slice structures that contain only value types.

In addition, for either mapping, you can control whether Slice data members are mapped to fields or to properties.

On this page:
® Structure Mapping for Structures in C#

® Class Mapping for Structures in C#
® Property Mapping for Structures in C#

Structure Mapping for Structures in C#

Consider the following structure:

Slice

struct Point {
doubl e x;
doubl e vy;
b

This structure consists of only value types and so, by default, maps to a C# partial structure:

C#

public partial struct Point
{

public double x;

public double y;

publ i c Point (doubl e x, double y);

public override int GetHashCode();

public override bool Equal s(object other);

public static bool operator==(Point |hs, Point rhs);

public static bool operator!=(Point |hs, Point rhs);
}

For each data member in the Slice definition, the C# structure contains a corresponding public data member of the same name.

The generated constructor accepts one argument for each structure member, in the order in which they are defined in the Slice definition.
This allows you to construct and initialize a structure in a single statement:

C#

Point p = new Point(5.1, 7.8);

Note that C# does not allow a value type to declare a default constructor or to assign default values to data members.

The structure overrides the Get HashCode and Equal s methods to allow you to use it as the key type of a dictionary. (Note that the static
two-argument version of Equal s is inherited from Syst em Obj ect .) Two structures are equal if (recursively) all their data members are
equal. Otherwise, they are not equal. For structures that contain reference types, Equal s performs a deep comparison; that is, reference

types are compared for value equality, not reference equality.

Class Mapping for Structures in C#

416

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The mapping for Slice structures to C# structures provides value semantics. Usually, this is appropriate, but there are situations where you
may want to change this:

® If you use structures as members of a collection, each access to an element of the collection incurs the cost of boxing or unboxing.
Depending on your situation, the performance penalty may be noticeable.

® On occasion, it is useful to be able to assign null to a structure, for example, to support "not there" semantics (such as when
implementing parameters that are conceptually optional).

To allow you to choose the correct performance and functionality trade-off, the Slice-to-C# compiler provides an alternative mapping of
structures to classes, for example:

Slice

["clr:class"] struct Point {
doubl e x;
doubl e y;

I

The "cl r: cl ass" metadata directive instructs the Slice-to-C# compiler to generate a mapping to a C# partial class for this structure. The
generated code is almost identical, except that the keyword st r uct is replaced by the keyword cl ass and that the class has a default
constructor and inherits from | Cl oneabl e:

C#

public partial class Point : _System|d oneable

{

public double x;
public double y;

public Point();
publ i c Poi nt (doubl e x, double y);

(e]

public object Cone();

public override int GetHashCode();
public override bool Equal s(object other);

public static bool operator==(Point |hs, Point rhs);
public static bool operator!=(Point |hs, Point rhs);

o

lﬂ Some of the generated marshaling code differs for the class mapping of structures, but this is irrelevant to application code.

The class has a default constructor that default-constructs each data member. This means members of primitive type are initialized to the
equivalent of zero, and members of reference type are initialized to null. Note that applications must always explicitly initialize a member
whose type is a class-mapped structure because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in
your Slice definition. The default constructor initializes each of these data members to its declared value.

The class also provides a second constructor that has one parameter for each data member. This allows you to construct and initialize a
class instance in a single statement:

C#

Point p = new Point(5.1, 7.8);

The C one method performs a shallow memberwise copy, and the comparison methods have the usual semantics (they perform value
comparison).

Note that you can influence the mapping for structures only at the point of definition of a structure, that is, for a particular structure type, you
must decide whether you want to use the structure or the class mapping. (You cannot override the structure mapping elsewhere, for

417 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

example, for individual structure members or operation parameters.)

As we mentioned previously, if a Slice structure (recursively) contains a member of reference type, it is automatically mapped to a C# class.
(The compiler behaves as if you had explicitly specified the " cl r: cl ass" metadata directive for the structure.)

Here is our Employee structure once more:

Slice

struct Enpl oyee {
| ong nunber;
string firstNane;
string | astNane;

}

The structure contains two strings, which are reference types, so the Slice-to-C# compiler generates a C# class for this structure:

C#
public partial class Enployee : _System|C oneable
{
public I ong nunber;
public string firstNang;
public string |astNang;
public Enpl oyee();
publ i c Enpl oyee(l ong nunber, string firstName, string |astNane);
public object Cone();
public override int GetHashCode();
public override bool Equal s(object other);
public static bool operator==(Enpl oyee | hs, Enployee rhs);
public static bool operator!=(Enpl oyee | hs, Enployee rhs);
}

Property Mapping for Structures in C#

You can instruct the compiler to emit property definitions instead of public data members. For example:

Slice

["clr:property"] struct Point {
doubl e x;
doubl e vy;

b

The "cl r: property" metadata directive causes the compiler to generate a property for each Slice data member:

418 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#
public partial struct Point
{

private double x_prop;
public double x {
get {
return x_prop;
}
set {
Xx_prop = val ue;
}
}
private double y_prop;
public double y {
get {
return y_prop;
}
set {
y_prop = val ue;
}
}
/1 Other methods here...
}

Note that the properties are non-virtual because C# structures cannot have virtual properties. However, if you apply the "cl r: property"
directive to a structure that contains a member of reference type, or if you combine the "cl r: property" and "cl r: cl ass" directives, the
generated properties are virtual. For example:

Slice

["clr:property", "clr:class"]
struct Point {

doubl e x;

doubl e vy;

}

This generates the following code:

419 Copyright © 2011, ZeroC, Inc.

420

Ice 3.4.2 Documentation

C#

public partial class Point

{

private double x_prop;
public virtual double x {
get {
return x_prop;
}

set {
Xx_prop = val ue;
}
}

private double y_prop;
public virtual double y {
get {
return y_prop;
}

set {
y_prop = val ue;
}
}

/1 Other methods here...

System | O oneabl e

See Also

Metadata

C-Sharp Mapping for Identifiers
C-Sharp Mapping for Modules
C-Sharp Mapping for Built-In Types
C-Sharp Mapping for Enumerations
C-Sharp Mapping for Sequences
C-Sharp Mapping for Dictionaries
C-Sharp Collection Comparison
C-Sharp Mapping for Constants
C-Sharp Mapping for Exceptions

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C-Sharp Mapping for Sequences

Ice for .NET supports several different mappings for sequences. By default, sequences are mapped to arrays. You can use metadata
directives to map sequences to a number of alternative types:

System Col | ecti ons. Generi c. Li st

System Col | ecti ons. Generi c. Li nkedLi st

System Col | ecti ons. Generi c. Queue

System Col | ecti ons. Generic. St ack

Types derived from | ce. Col | ecti onBase, which is a drop-in replacement for Syst em Col | ecti ons. Col | ecti onBase (this
mapping is provided mainly for compatibility with Ice versions prior to 3.3)

® User-defined custom types that derive from Syst em Col | ecti ons. Generi c. | Enuner abl e<T>.

The different mappings allow you to map sequences to a container type that provides the correct performance trade-off for your application.
On this page:

Array Mapping for Sequences in C#

Mapping to Predefined Generic Containers for Sequences in C#
Mapping to Custom Types for Sequences in C#

Col | ect i onBase Mapping for Sequences in C#
Multi-Dimensional Sequences in C#

Array Mapping for Sequences in C#

By default, the Slice-to-C# compiler maps sequences to arrays. Interestingly, no code is generated in this case; you simply define an array of
elements to model the Slice sequence. For example:

Slice

sequence<Fruit> FruitPlatter;

Given this definition, to create a sequence containing an apple and an orange, you could write:

C#

Fruit[] fp = { Fruit.Apple, Fruit.Oange };

Or, alternatively:

C#

Fruit fp[] = new Fruit[2];
fp[0] = Fruit. Apple;
fp[1] = Fruit. O ange;

The array mapping for sequences is both simple and efficient, especially for sequences that do not need to provide insertion or deletion other
than at the end of the sequence.

Mapping to Predefined Generic Containers for Sequences in C#

With metadata directives, you can change the default mapping for sequences to use generic containers provided by .NET. For example:

421 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice

["clr:generic:List"] sequence<string> StringSeq;
["clr:generic:LinkedLi st"] sequence<Fruit> Fruit Seq;
["clr:generic: Queue"] sequence<int> |ntQueue;
["clr:generic:Stack"] sequence<doubl e> Doubl eSt ack;

The "cl r: generi c: <type>" metadata directive causes the sl i ce2cs compiler to the map the corresponding sequence to one of the
containers in the Syst em Col | ecti ons. Generi ¢c namespace. For example, the Queue sequence maps to
System Col | ecti ons. Generi c. Queue<i nt > due to its metadata directive.

The predefined containers allow you to select an appropriate space-performance trade-off, depending on how your application uses a
sequence. In addition, if a sequence contains value types, such as i nt , the generic containers do not incur the cost of boxing and unboxing
and so are quite efficient. (For example, Syst em Col | ecti ons. Generi c. Li st <i nt > performs within a few percentage points of an
integer array for insertion and deletion at the end of the sequence, but has the advantage of providing a richer set of operations.)

Generic containers can be used for sequences of any element type except objects. For sequences of objects, only Li st is supported
because it provides the functionality required for efficient unmarshaling. Metadata that specifies any other generic type is ignored with a
warning:

Slice

class WO ass {
11

b

["clr:generic:List"]
sequence<MyCl ass> MyCl assList; // K

["clr:generic:LinkedList"]
sequence<MyCl ass> MyCl assLi nkedList; // |gnored

In this example, sequence type MyCl assLi st maps to the generic container Syst em Col | ecti ons. Generi c. Li st <MyCl ass>, but
sequence type MyCl assLi nkedLi st uses the default array mapping.

Mapping to Custom Types for Sequences in C#

If the array mapping and the predefined containers are unsuitable for your application (for example, because you may need a priority queue,
which does not come with .NET), you can implement your own custom containers and direct sl i ce2cs to map sequences to these custom
containers. For example:

Slice

["clr:generic: MyTypes. PriorityQueue"] sequence<int> Queue;

This metadata directive causes the Slice Queue sequence to be mapped to the type MyTypes. Pri orit yQueue. You must specify the
fully-qualified name of your custom type following the cl r: generi c: prefix. This is because the generated code prepends a gl obal : :
qualifier to the type name you provide; for the preceding example, the generated code refers to your custom type as

gl obal : : MyTypes. Pri orityQueue<int >.

Your custom type can have whatever interface you deem appropriate, but it must meet the following requirements:

The custom type must derive from Syst em Col | ecti ons. Generi c. | Enuner abl e<T>.

The custom type must provide a readable Count property that returns the number of elements in the collection.

The custom type must provide an Add method that appends an element to the end of the collection.

If (and only if) the Slice sequence contains elements that are Slice classes, the custom type must provide an indexer that sets the
value of an element at a specific index. (Indexes, as usual, start at zero.)

As an example, here is a minimal class (omitting implementation) that meets these criteria:

422 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#

public class PriorityQueue<T> : |Enumrerabl e<T>
{

public | Enunerat or<T> Get Enunerator();

public int Count
get;

public void Add(T elnt);

public T this[int index] // Needed for class elenments only.
set;

/1 O her methods and data nmenbers here...

Col | ecti onBase Mapping for Sequences in C#

The Col | ect i onBase mapping is provided mainly for compatibility with Ice versions prior to 3.3. Internally, Col | ecti onBase is
implemented using Syst em Col | ecti ons. Generi c. Li st <T>, so it offers the same performance trade-offs as Li st <T>. (For value
types, | ce. Col | ecti onBase is considerably faster than Syst em Col | ecti ons. Col | ect i onBase, however.)

I ce. Col | ecti onBase is not as type-safe as Li st <T> because, in order to remain source-code compatible with

System Col | ecti ons. Col | ecti onBase, it provides methods that accept elements of type obj ect . This means that, if you pass an
element of the wrong type, the problem will be diagnosed only at run time, instead of at compile time. For this reason, we suggest that you
do not use the Col | ecti onBase mapping for new code.

To enable the Col | ect i onBase mapping, you must use the "cl r: col | ecti on" metadata directive:

Slice

["clr:collection"] sequence<Fruit> FruitPlatter;

With this directive, sl i ce2cs generates a type that derives from | ce. Col | ecti onBase:

C#
public class FruitPlatter : Ice.CollectionBase<M Fruit>, System | C oneable
{
public FruitPlatter();
public FruitPlatter(int capacity);
public FruitPlatter(Fruit[] a);
public FruitPlatter(System Coll ections. Generic.|Enunerabl e<Fruit>1);
public static inplicit operator _System Collections.Generic.List<Fruit>(FruitPlatter s);
public virtual FruitPlatter GetRange(int index, int count);
public static FruitPlatter Repeat(Fruit value, int count);
public object done();
}

The generated Fr ui t Pl at t er class provides the following methods:

® FruitPlatter();
FruitPlatter(int capacity);
FruitPlatter(Fruit[] a);
FruitPlatter (| Enunerabl e<Fruit> 1);
Apart from calling the default constructor, you can also specify an initial capacity for the sequence or, using the array constructor,

423 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

initialize a sequence from an array. In addition, you can initialize the class to contain the same elements as any enumerable
collection with the same element type.

FruitPlatter CGetRange(int index, int count);
This method returns a new sequence with count elements that are copied from the source sequence beginning at i ndex.

FruitPlatter Repeat(Fruit value, int count);
This method returns a sequence with count elements that are initialized to val ue.

obj ect O one()
The Cl one method returns a shallow copy of the source sequence.

static inplicit operator List<Fruit> (FruitPlatter s);
This operator performs an implicit conversion of a Frui t Pl at t er instance to a Li st <Fruit>, soyoucanpassaFruitPl atter
sequence where a Li st <Frui t >, | Enuner abl e<Fr ui t >, or Syst em Col | ecti ons. | Enuner abl e is expected.

The remaining methods are provided by the generic | ce. Col | ect i onBase base class. This class provides the following methods:

424

Col | ecti onBase();

Col | ecti onBase(int capacity);

Col | ecti onBase(T[] a);

Col | ecti onBase(| Enuner abl e<T> |);

The constructors initialize the sequence as for the concrete derived class.

int Count { get; }
This property returns the number of elements of the sequence.

int Capacity { get; set; }
This property controls the capacity of the sequence. Its semantics are as for the corresponding property of Li st <T>.

virtual void TrinfToSize();
This method sets the capacity of the sequence to the actual number of elements.

int Add(object o0);

int Add(T val ue);

These methods append val ue at the end of the sequence. They return the index at which the element is inserted (which always is
the value of Count prior the call to Add.)

void Insert(int index, object 0);
void Insert(int index, T value);
These methods insert an element at the specified index.

virtual void InsertRange(int index, CollectionBase<T> c);
virtual void InsertRange(int index, T[] c);
These methods insert a range of values into the sequence starting at the given index.

virtual void SetRange(int index, CollectionBase<T> c);

virtual void SetRange(int index, T[] c¢);

These methods copy the provided sequence over a range of elements in the target sequence, starting at the provided index, with
semantics as for Syst em Col | ecti ons. ArraylLi st.

voi d RenpveAt (int index);
This method deletes the element at the specified index.

voi d Renpve(object 0);

voi d Renove(T val ue);

These methods search for the specified element and, if present, delete that element. If the element is not in the sequence, the
methods do nothing.

virtual void RenoveRange(int index, int count);
This method removes count elements, starting at the given index.

void Cear();
This method deletes all elements of the sequence.

bool Contai ns(object 0);
bool Contains(T val ue);
These methods return true if the sequence contains val ue; otherwise, they return false.

int I ndexOf (obj ect 0);

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

int I ndexO (T val ue);
These methods return the index of the specified element. If the element is not in the sequence, the return value is - 1.

® virtual int LastlndexOF (T val ue);
virtual int LastlndexOF(T value, int startlndex);
virtual int LastlndexOF(T value, int startlndex, int count);
These methods search for the provided element and return its last occurrence in the sequence, as for
System Col | ecti ons. ArrayLi st. Last | ndexCr .

® object this[int index] { get; set; }
T this[int index] { get; set; }
The indexers allow you to read and write elements using array subscript notation.

® | Enuner at or <T> Cet Enunerator();
This method returns an enumerator that you can use to iterate over the collection.

® static inplicit operator List<T> (CollectionBase<T> s);
As for the derived class, this operator permits implicit conversion to a Li st <T>.

® void CopyTo(T[] a);
void CopyTo(T[] a, int i);
void CopyTo(int i, T[] a, int ai, int c);
voi d CopyTo(System Array a, int i);
These methods copy the contents of a sequence into an array. The semantics are the same as for the corresponding methods of
Li st <T>.

® T[] ToArray();
The ToAr r ay method returns the contents of the sequence as an array.

® void AddRange(Col | ecti onBase<T> s);
voi d AddRange(T[] a);
The AddRange methods append the contents of a sequence or an array to the current sequence, respectively.

® virtual void Sort();
virtual void Sort(System Coll ections. | Conparer conparer);
virtual void Sort(int index, int count, System Collections.|Conparer conparer);
These methods sort the sequence.

® virtual void Reverse();
virtual void Reverse(int index, int count);
These methods reverse the order of elements of the sequence.

® virtual int BinarySearch(T val ue);
virtual int BinarySearch(T value, System Collections.|Conparer conparer);
virtual int BinarySearch(int index, int count, T value, System Collections.|Conparer conparer);
The methods perform a binary search on the sequence, with semantics as for Syst em Col | ecti ons. ArraylLi st.

® static FruitPlatter Repeat(Fruit value, int count);
This method returns a sequence with count elements that are initialized to val ue.

Note that for all methods that return sequences, these methods perform a shallow copy, that is, if you have a sequence whose elements
have reference type, what is copied are the references, not the objects denoted by those references.

I ce. Col | ecti onBase also provides the usual Get HashCode and Equal s methods, as well as the comparison operators for equality and
inequality. (Two sequences are equal if they have the same number of elements and all elements in corresponding positions are equal, as
determined by the Equal s method of the elements.)

I ce. Col | ecti onBase also implements the inherited | sFi xedSi ze, | sReadOnl y, and | sSynchr oni zed properties (which return false),
and the inherited SyncRoot property (which returns t hi s).

Creating a sequence containing an apple and an orange is simply a matter of writing:
C#
FruitPlatter fp = new FruitPlatter();

fp. Add(Fruit. Apple);
fp. Add(Fruit. O ange);

425 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Multi-Dimensional Sequences in C#

Slice permits you to define sequences of sequences, for example:

Slice

enum Fruit { Apple, Oange, Pear };
["clr:generic:List"] sequence<Fruit> FruitPlatter;
["clr:generic:LinkedLi st"] sequence<FruitPlatter> Cornucopi a;

If we use these definitions as shown, the type of FruitPlatter in the generated code is:

C#

System Col | ecti ons. Generi c. Li nkedLi st <System Col | ecti ons. Generi c. Li st <Frui t>>

Here the outer sequence contains elements of type Li st <Fr ui t >, as you would expect.

Now let us modify the definition to change the mapping of Fr ui t Pl at t er to an array:

Slice

enum Fruit { Apple, Oange, Pear };
sequence<Fruit> FruitPlatter;
["clr:LinkedList"] sequence<FruitPlatter> Cornucopia;

With this definition, the type of Cor nucopi a becomes:

C#

System Col | ecti ons. Generi c. Li nkedLi st<Fruit[]>

The generated code now no longer mentions the type Fr ui t Pl att er anywhere and deals with the outer sequence elements as an array of
Frui t instead.

See Also

Metadata

C-Sharp Mapping for Identifiers
C-Sharp Mapping for Modules
C-Sharp Mapping for Built-In Types
C-Sharp Mapping for Enumerations
C-Sharp Mapping for Structures
C-Sharp Mapping for Dictionaries
C-Sharp Collection Comparison
C-Sharp Mapping for Constants
C-Sharp Mapping for Exceptions

426 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C-Sharp Mapping for Dictionaries

Ice for .NET supports three different mappings for dictionaries. By default, dictionaries are mapped to
System Col | ecti ons. Generic. Di cti onary<T>. You can use metadata directives to map dictionaries to two other types:

® System Col | ections. Generic. SortedDictionary
® Types derived from | ce. Di cti onar yBase, which is a drop-in replacement for Syst em Col | ect i ons. Di cti onar yBase (this
mapping is provided mainly for compatibility with Ice versions prior to 3.3)

On this page:

® Mapping to Predefined Containers for Dictionaries in C#
® Dicti onar yBase mapping for Dictionaries in C#

Mapping to Predefined Containers for Dictionaries in C#

Here is the definition of our EmployeeMap once more:

Slice

di cti onary<l ong, Enpl oyee> Enpl oyeeMap;

By default, the Slice-to-C# compiler maps the dictionary to the following type:

C#

System Col | ections. Generic. Di ctionary<l ong, Enployee>

You can use the "cl r: generi c: Sort edDi cti onary" metadata directive to change the mapping to a sorted dictionary:

Slice
["clr:generic: SortedDictionary"]
di ctionary<l ong, Enpl oyee> Enpl oyeeMap;
With this definition, the type of the dictionary becomes:
C#
System Col | ecti ons. Generic. SortedDi cti onary<l ong, Enpl oyee>

Di cti onar yBase mapping for Dictionaries in C#

The Di cti onar yBase mapping is provided mainly for compatibility with Ice versions prior to 3.3. Internally, Di ct i onar yBase is
implemented using Syst em Col | ecti ons. Generi c. Di cti onary<T>, so it offers the same performance trade-offs as Di cti onar y<T>
. (For value types, | ce. Di cti onar yBase is considerably faster than Syst em Col | ecti ons. Di cti onar yBase, however.)

| ce. Di cti onaryBase is not as type-safe as Di ct i onar y<T> because, in order to remain source code compatible with

System Col | ecti ons. Di cti onar yBase, it provides methods that accept elements of type obj ect . This means that, if you pass an
element of the wrong type, the problem will be diagnosed only at run time, instead of at compile time. For this reason, we suggest that you
do not use the Di ct i onar yBase mapping for new code.

To enable the Di ct i onar yBase mapping, you must use the "cl r: col | ecti on" metadata directive:

Slice

["clr:collection"] dictionary<long, Enployee> Enpl oyeeMap;

427 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

With this directive, sl i ce2cs generates a type that derives from | ce. Col | ecti onBase:

C#

public class Enpl oyeeMap : |ce.DictionaryBase<l ong, Enployee> System | oneable
{

public void AddRange(Enpl oyeeMap m);

public object done();

Note that the generated Enpl oyeeMap class derives from | ce. Di cti onar yBase, which provides a super-set of the interface of the .NET
System Col | ecti ons. Di cti onar yBase class. Apart from methods inherited from Di cti onar yBase, the class provides a Cl one
method and an AddRange method that allows you to append the contents of one dictionary to another. If the target dictionary contains a key
that is also in the source dictionary, the target dictionary's value is preserved. For example:

C#

Enpl oyee el = new Enpl oyee();
el. nunber = 42;

el.firstNane = "Herb";
el.lastName = "Sutter";

Enpl oyeeMap enml = new Enpl oyeeMap();
enf42] = e;

Enpl oyee e2 = new Enpl oyee();
e2. nunber = 42;

e2.firstNane = "Stan";

e2. |l ast Name = "Li pmann";

Enpl oyeeMap en2 = new Enpl oyeeMap();
enf42] = e2;

/1 Add contents of en2 to enml
11
enl. AddRange(en®) ;

/1 Equal keys preserve the original value
I
Debug. Assert (eml[42].first Name. Equal s("Herb"));

The Di cti onar yBase class provides the following methods:

428 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#
public abstract class DictionaryBase<KT, VT>
System Col | ections. | Dictionary
{
public DictionaryBase();
public int Count { get; }
public void Add(KT key, VT value);
public void Add(object key, object value);
public void CopyTo(System Array a, int index);
public void Remove(KT key);
public void Renove(object key);
public void dear();
public System Col | ections.|Collection Keys { get; }
public System Col | ections.|Collection Values { get; }
public VT this[KT key] { get; set; }
public object this[object key] { get; set; }
public bool Contains(KT key);
public bool Contains(object key);
public override int GetHashCode();
public override bool Equal s(object other);
public static bool operator==(DictionaryBase<KT, VT> | hs, DictionaryBase<KT, VT> rhs);
public static bool operator!=(DictionaryBase<KT, VT> | hs, DictionaryBase<KT, VT> rhs);
public System Col | ecti ons. | Enunerator GetEnunerator();
public bool IsFixedSize { get; }
public bool IsReadOnly { get; }
public bool 1sSynchronized { get; }
public object SyncRoot { get; }
}

The methods have the same semantics as the corresponding methods in the .NET Framework. The Equal s method returns true if two
dictionaries contain the same number of entries and, for each entry, the key and value are the same (as determined by their Equal s

methods).

The C one method performs a shallow copy.

The class also implements the inherited | sFi xedSi ze, | sReadOnl y, and | sSynchr oni zed properties (which return false), and the
SyncRoot property (which returns t hi s).

See Also

Metadata

C-Sharp Mapping for Identifiers
C-Sharp Mapping for Modules

429

C-Sharp Mapping for Built-In Types
C-Sharp Mapping for Enumerations
C-Sharp Mapping for Structures
C-Sharp Mapping for Sequences
C-Sharp Collection Comparison
C-Sharp Mapping for Constants
C-Sharp Mapping for Exceptions

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C-Sharp Collection Comparison

The utility class | ce. Col | ecti onConpar er allows you to compare collections for equality:

C#

public class CollectionConparer {
public static bool
Equal s(System Col | ections. | D ctionary dl, System Collections.|Dictionary d2);

public static bool
Equal s(System Col | ections. | Collection cl, System Collections.|Collection c2);

public static bool
Equal s(System Col | ecti ons. | Enunerabl e c1, System Col |l ections.|Enunerable c2);

Equality of the elements in a collection is determined by calling the elements' Equal s method.
Two dictionaries are equal if they contain the same number of entries with identical keys and values.

Two collections that derive from | Col | ecti on or | Enurrer abl e are equal if they contain the same number of entries and entries compare
equal. Note that order is significant, so corresponding entries must not only be equal but must also appear in the same position.

See Also

C-Sharp Mapping for Identifiers
C-Sharp Mapping for Modules
C-Sharp Mapping for Built-In Types
C-Sharp Mapping for Enumerations
C-Sharp Mapping for Structures
C-Sharp Mapping for Sequences
C-Sharp Mapping for Dictionaries
C-Sharp Mapping for Constants
C-Sharp Mapping for Exceptions

430 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C-Sharp Mapping for Constants

Here are the sample constant definitions once more:

Slice
const bool AppendByDef ault = true;
const byte Lower Ni bbl e = 0xOf ;
const string Advice = "Don't Panic!";
const short TheAnswer = 42;
const doubl e Pl = 3.1416;
enum Fruit { Apple, Pear, Oange };
const Fruit FavoriteFruit = Pear;
Here are the generated definitions for these constants:
C#

public abstract class AppendByDef aul t

{
public const bool value = true;
}
public abstract class LowerN bble
{
public const byte value = 15;
}
public abstract class Advice
{
public const string value = "Don't Panic!";
}
public abstract class TheAnswer
{
public const short value = 42;
}
public abstract class Pl
{
public const double value = 3.1416;
}

public enum Fruit { Apple, Pear, Orange }

public abstract class FavoriteFruit

{

public const Fruit value = Fruit. Pear;

}

As you can see, each Slice constant is mapped to a class with the same name as the constant. The class contains a member named val ue
that holds the value of the constant.

The mapping to classes instead of to plain constants is hecessary because C# does not permit constant definitions at
namespace scope.

See Also

® Constants and Literals

431 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C-Sharp Mapping for Identifiers
C-Sharp Mapping for Modules
C-Sharp Mapping for Built-In Types
C-Sharp Mapping for Enumerations
C-Sharp Mapping for Structures
C-Sharp Mapping for Sequences
C-Sharp Mapping for Dictionaries
C-Sharp Collection Comparison
C-Sharp Mapping for Exceptions

432 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C-Sharp Mapping for Exceptions

On this page:

Inheritance Hierarchy for Exceptions in C#
C# Mapping for User Exceptions

C# Default Constructors for User Exceptions
C# Mapping for Run-Time Exceptions

Inheritance Hierarchy for Exceptions in C#

The mapping for exceptions is based on the inheritance hierarchy shown below:

System.Exception

lce Exception

AN

lce.LocalException lce.UserException

Specific Run-Time Exceptions... Specific User Exceptions...

[[

[[

I [
Inheritance structure for exceptions.

The ancestor of all exceptions is Syst em Except i on. Derived from that is | ce. Except i on, which provides the definitions of a number of
constructors. | ce. Local Excepti on and | ce. User Excepti on are derived from | ce. Except i on and form the base of all run-time and
user exceptions, respectively.

The constructors defined in | ce. Except i on have the following signatures:

C#

public abstract class Exception : System Exception
{

public Exception();

publ i c Exception(System Exception ex);

Each concrete derived exception class implements these constructors. The second constructor initializes the | nner Except i on property of
Syst em Except i on. (Both constructors set the Message property to the empty string.)

C# Mapping for User Exceptions

433 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Here is a fragment of the Slice definition for our world time server once more:

Slice
exception GenericError {
string reason;
b
excepti on BadTi neVal extends GenericError {};
excepti on BadZoneNane extends GenericError {};
These exception definitions map as follows:
C#
public partial class GenericError : Ice.UserException
{
public string reason;
public GenericError();
public GenericError(System Exception ex__);
public GenericError(string reason);
public CenericError(string reason, System Exception ex__);
/| Get HashCode and conparison nethods defined here,
/1 as well as mapping-internal nethods.
}
public partial class BadTineVal : M GenericError
{
public BadTineVal ();
publ i ¢ BadTi neVal (System Exception ex__);
publ i c BadTi neVal (string reason);
public BadTi neVal (string reason, System Exception ex__);
/| Get HashCode and conparison methods defined here,
/1 as well as mapping-internal mnethods.
}

public partial class BadZoneNane : M Generi cError

publi ¢ BadZoneNane();

publ i ¢ BadZoneNane(Syst em Exception ex__);

publ i ¢ BadZoneNane(string reason);

publ i ¢ BadZoneNane(string reason, System Exception ex__);

/| Get HashCode and conparison nethods defined here,
/1 as well as mappi ng-internal nethods.

Each Slice exception is mapped to a C# partial class with the same name. For each exception member, the corresponding class contains a
public data member. (Obviously, because BadTi neVal and BadZoneName do not have members, the generated classes for these
exceptions also do not have members.)

The inheritance structure of the Slice exceptions is preserved for the generated classes, so BadTi neVal and BadZoneNane inherit from
Generi cError.

All user exceptions are derived from the base class | ce. User Except i on. This allows you to catch all user exceptions generically by
installing a handler for | ce. User Except i on. Similarly, you can catch all Ice run-time exceptions with a handler for | ce. Local Excepti on
, and you can catch all Ice exceptions with a handler for | ce. Except i on.

All exceptions provide the usual Get HashCode and Equal s methods, as well as the == and ! = comparison operators.

434 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The generated exception classes also contain other member functions that are not shown here; these member functions are internal to the
C# mapping and are not meant to be called by application code.

C# Default Constructors for User Exceptions

Exceptions have a default constructor that default-constructs each data member. This means members of primitive type are initialized to the
equivalent of zero, and members of reference type are initialized to null. Note that applications must always explicitly initialize a member
whose type is a class-mapped structure because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in
your Slice definition. The default constructor initializes each of these data members to its declared value.

Exceptions also provide constructors that accept one parameter for each data member. This allows you to construct and initialize a class
instance in a single statement (instead of first having to construct the instance and then assign to its members). For derived exceptions,
these constructors accept one argument for each base exception member, plus one argument for each derived exception member, in
base-to-derived order.

C# Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error conditions. All run-time exceptions directly or indirectly derive
from | ce. Local Excepti on (which, in turn, derives from | ce. Except i on).

| ce. Local Except i on implements a Cl one method that is inherited by its derived exceptions, so you can make memberwise shallow
copies of exceptions.

By catching exceptions at the appropriate point in the inheritance hierarchy, you can handle exceptions according to the category of error
they indicate:

® | ce. Exception
This is the root of the inheritance tree for both run-time and user exceptions.

® | ce. Local Exception
This is the root of the inheritance tree for run-time exceptions.

® | ce. User Exception
This is the root of the inheritance tree for user exceptions.

® | ce. Ti meout Exception
This is the base exception for both operation-invocation and connection-establishment timeouts.

® | ce. Connect Ti meout Excepti on
This exception is raised when the initial attempt to establish a connection to a server times out.

For example, a Connect Ti meout Except i on can be handled as Connect Ti meout Excepti on, Ti meout Excepti on,
Local Excepti on, or Excepti on.

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as Local Except i on; the
fine-grained error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time.
Exceptions to this rule are the exceptions related to facet and object life cycles, which you may want to catch explicitly. These exceptions are
Facet Not Exi st Except i on and Obj ect Not Exi st Except i on, respectively.

See Also

User Exceptions

Run-Time Exceptions

C-Sharp Mapping for Identifiers
C-Sharp Mapping for Modules
C-Sharp Mapping for Built-In Types
C-Sharp Mapping for Enumerations
C-Sharp Mapping for Structures
C-Sharp Mapping for Sequences
C-Sharp Mapping for Dictionaries
C-Sharp Collection Comparison
C-Sharp Mapping for Constants
Facets and Versioning

Object Life Cycle

435 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C-Sharp Mapping for Interfaces

The mapping of Slice interfaces revolves around the idea that, to invoke a remote operation, you call a member function on a local class
instance that is a proxy for the remote object. This makes the mapping easy and intuitive to use because making a remote procedure call is
no different from making a local procedure call (apart from error semantics).

On this page:

Proxy Interfaces in C#

The | ce. Obj ect Pr x Interface in C#
Proxy Helpers in C#

Using Proxy Methods in C#

Object Identity and Proxy Comparison in C#

Proxy Interfaces in C#

On the client side, a Slice interface maps to a C# interface with member functions that correspond to the operations on that interface.
Consider the following simple interface:

Slice

interface Sinple {
void op();
b

The Slice compiler generates the following definition for use by the client:

C#

public interface SinplePrx : Ice.CbjectPrx

{
void op();

voi d op(System Col | ections. Generic.Dictionary<string, string> __context);

As you can see, the compiler generates a proxy interface Si npl ePr x. In general, the generated name is <i nt er f ace- name>Pr x. If an
interface is nested in a module M the generated interface is part of namespace M so the fully-qualified name is M <i nt er f ace- name>Pr x.

In the client's address space, an instance of Si npl ePr x is the local ambassador for a remote instance of the Si npl e interface in a server
and is known as a proxy instance. All the details about the server-side object, such as its address, what protocol to use, and its object
identity are encapsulated in that instance.

Note that Si npl ePr x inherits from | ce. Cbj ect Pr x. This reflects the fact that all Ice interfaces implicitly inherit from | ce: : Obj ect .

For each operation in the interface, the proxy class has a member function of the same name. For the preceding example, we find that the
operation op has been mapped to the method op. Also note that op is overloaded: the second version of op has a parameter __cont ext ,
which is a dictionary of string pairs. This parameter is for use by the Ice run time to store information about how to deliver a request. You
normally do not need to use it. (We examine the __cont ext parameter in detail in Request Contexts. The parameter is also used by
IceStorm.)

Because all the <i nt er f ace- nane>Pr x types are interfaces, you cannot instantiate an object of such a type. Instead, proxy instances are
always instantiated on behalf of the client by the Ice run time, so client code never has any need to instantiate a proxy directly.The proxy
references handed out by the Ice run time are always of type <i nt er f ace- name>Pr x; the concrete implementation of the interface is part
of the Ice run time and does not concern application code.

A value of nul | denotes the null proxy. The null proxy is a dedicated value that indicates that a proxy points "nowhere" (denotes no object).

The | ce. bj ect Pr x Interface in C#

All Ice objects have Obj ect as the ultimate ancestor type, so all proxies inherit from | ce. Obj ect Pr x. Obj ect Pr x provides a number of
methods:

436 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#
nanespace |ce
{
public interface ObjectPrx
{
Identity ice_getldentity();
bool ice_isA(string id);
string ice_id();
void ice_ping();
i nt GetHashCode();
bool Equal s(object r);
/1 Defined in a hel per class:
11
public static bool Equals(lce.jectPrx |hs, OojectPrx rhs);
public static bool operator==(CbjectPrx |hs, OnjectPrx rhs);
public static bool operator!=(CbjectPrx |hs, OojectPrx rhs);
/1
}
}

Note that the static methods are not actually defined in | ce. Cbj ect Pr x, but in a helper class that becomes a base class of an instantiated
proxy. However, this is simply an internal detail of the C# mapping — conceptually, these methods belong with | ce. Obj ect Pr x, so we
discuss them here.

The methods behave as follows:

® jce_getldentity
This method returns the identity of the object denoted by the proxy. The identity of an Ice object has the following Slice type:

Slice

nmodul e Ice {
struct ldentity {
string nane;
string category;
}
b

To see whether two proxies denote the same object, first obtain the identity for each object and then compare the identities:

C#

lce.CbjectPrx o1 = ...;
lce.CbjectPrx 02 = ...;
lce.ldentity il = ol.ice_getldentity();
lce.ldentity i2 = 02.ice_getldentity();

if (il. Equals(i2))

/1 0l and 02 denote the sanme object
el se

/1 0l and 02 denote different objects

® jce_isA
The i ce_i sA method determines whether the object denoted by the proxy supports a specific interface. The argumenttoi ce_i sA
is a type ID. For example, to see whether a proxy of type Obj ect Pr x denotes a Pri nt er object, we can write:

437 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#

lce.jectPrx o = ...;

if (o!=null & o.ice_isA("::Printer"))
/1 o denotes a Printer object

el se
/1 o denotes some other type of object

Note that we are testing whether the proxy is null before attempting to invoke the i ce_i sA method. This avoids getting a
Nul | Ref er enceExcept i on if the proxy is null.

® jce_ids
The i ce_i ds method returns an array of strings representing all of the type IDs that the object denoted by the proxy supports.

® jce_id
The i ce_i d method returns the type ID of the object denoted by the proxy. Note that the type returned is the type of the actual
object, which may be more derived than the static type of the proxy. For example, if we have a proxy of type BasePr x, with a static
type ID of : : Base, the return value of i ce_i d might be : : Base, or it might something more derived, such as : : Deri ved.

® jice_ping
The i ce_pi ng method provides a basic reachability test for the object. If the object can physically be contacted (that is, the object
exists and its server is running and reachable), the call completes normally; otherwise, it throws an exception that indicates why the
object could not be reached, such as Obj ect Not Exi st Except i on or Connect Ti neout Excepti on.

® Equal s
This method compares two proxies for equality. Note that all aspects of proxies are compared by this operation, such as the
communication endpoints for the proxy. This means that, in general, if two proxies compare unequal, that does not imply that they
denote different objects. For example, if two proxies denote the same Ice object via different transport endpoints, equal s returns
f al se even though the proxies denote the same object.

Theice_isA/ice_ids,ice_id, andi ce_pi ng methods are remote operations and therefore support an additional overloading that
accepts a request context. Also note that there are other methods in Cbj ect Pr x, not shown here. These methods provide different ways to
dispatch a call and also provide access to an object's facets.

Proxy Helpers in C#
For each Slice interface, apart from the proxy interface, the Slice-to-C# compiler creates a helper class: for an interface Si npl e, the name of
the generated helper class is Si npl ePr xHel per.

lﬁ You can ignore the Qbj ect Pr xHel per Base base class — it exists for mapping-internal purposes.

The helper class contains two methods of interest:

C#
public class SinplePrxHelper : Ice.bjectPrxHel perBase, SinplePrx
{
public static SinplePrx checkedCast(Ice.ojectPrx b);
public static SinplePrx checkedCast (
I ce. j ectPrx b,
System Col | ections. Generic.Dictionary<string, string> ctx);
public static SinplePrx uncheckedCast (Ice. CbjectPrx b)
/1
}

Both the checkedCast and uncheckedCast methods implement a down-cast: if the passed proxy is a proxy for an object of type Si npl e,
or a proxy for an object with a type derived from Si npl e, the cast returns a non-null reference to a proxy of type Si npl ePr x; otherwise, if
the passed proxy denotes an object of a different type (or if the passed proxy is null), the cast returns a null reference.

Given a proxy of any type, you can use a checkedCast to determine whether the corresponding object supports a given type, for example:

438 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#

lce.jectPrx obj = ...; /1 Get a proxy from sonewhere...

Si npl ePrx sinple = Sinpl ePrxHel per. checkedCast (obj);
if (sinple !'= null)

/] Object supports the Sinple interface...
el se

/1 bject is not of type Sinple...

Note that a checkedCast contacts the server. This is necessary because only the implementation of an object in the server has definite
knowledge of the type of an object. As a result, a checkedCast may throw a Connect Ti meout Excepti on or an

Obj ect Not Exi st Except i on. (This also explains the need for the helper class: the Ice run time must contact the server, so we cannot use
a C# down-cast.)

In contrast, an uncheckedCast does not contact the server and unconditionally returns a proxy of the requested type. However, if you do
use an uncheckedCast , you must be certain that the proxy really does support the type you are casting to; otherwise, if you get it wrong,
you will most likely get a run-time exception when you invoke an operation on the proxy. The most likely error for such a type mismatch is
Oper at i onNot Exi st Except i on. However, other exceptions, such as a marshaling exception are possible as well. And, if the object
happens to have an operation with the correct name, but different parameter types, no exception may be reported at all and you simply end
up sending the invocation to an object of the wrong type; that object may do rather nonsensical things. To illustrate this, consider the
following two interfaces:

Slice

interface Process {
void launch(int stackSize, int dataSize);

}
/1

interface Rocket {
voi d | aunch(float xCoord, float yCoord);

}s

Suppose you expect to receive a proxy for a Pr ocess object and use an uncheckedCast to down-cast the proxy:

C#
lce.CbjectPrx obj = ...; /] Cet proxy...
ProcessPrx process = ProcessPrxHel per.uncheckedCast (obj); // No worries...
process. | aunch(40, 60); /1 Qops...

If the proxy you received actually denotes a Rocket object, the error will go undetected by the Ice run time: because i nt and f | oat have
the same size and because the Ice protocol does not tag data with its type on the wire, the implementation of Rocket : : | aunch will simply
misinterpret the passed integers as floating-point numbers.

In fairness, this example is somewhat contrived. For such a mistake to go unnoticed at run time, both objects must have an operation with
the same name and, in addition, the run-time arguments passed to the operation must have a total marshaled size that matches the number
of bytes that are expected by the unmarshaling code on the server side. In practice, this is extremely rare and an incorrect uncheckedCast
typically results in a run-time exception.

A final warning about down-casts: you must use either a checkedCast or an uncheckedCast to down-cast a proxy. If you use a C# cast,
the behavior is undefined.

Using Proxy Methods in C#

The base proxy class Obj ect Pr x supports a variety of methods for customizing a proxy. Since proxies are immutable, each of these
"factory methods" returns a copy of the original proxy that contains the desired modification. For example, you can obtain a proxy configured
with a ten second timeout as shown below:

439 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#

I ce. bj ect Prx proxy = comuni cator.stringToProxy(...);
proxy = proxy.ice_timeout(10000);

A factory method returns a new proxy object if the requested modification differs from the current proxy, otherwise it returns the current
proxy. With few exceptions, factory methods return a proxy of the same type as the current proxy, therefore it is generally not necessary to
repeat a checkedCast or uncheckedCast after using a factory method. However, a regular cast is still required, as shown in the example
below:

C#

| ce. Obj ect Prx base = conmmuni cator.stringToProxy(...);

Hel I oPrx hell o = Hel | oPr xHel per. checkedCast (base);

hello = (HelloPrx)hello.ice_tineout(10000); # Type is preserved
hel | 0. sayHel | o();

The only exceptions are the factory methods i ce_f acet andi ce_i denti ty. Calls to either of these methods may produce a proxy for an
object of an unrelated type, therefore they return a base proxy that you must subsequently down-cast to an appropriate type.

Object Identity and Proxy Comparison in C#

Proxies provide an Equal s method that compares proxies:

C#

public interface ObjectPrx {
bool Equal s(object r);
}

Note that proxy comparison with Equal s uses all of the information in a proxy for the comparison. This means that not only the object
identity must match for a comparison to succeed, but other details inside the proxy, such as the protocol and endpoint information, must be
the same. In other words, comparison with Equal s (or == and ! =) tests for proxy identity, not object identity. A common mistake is to write
code along the following lines:

C#
lce.jectPrx pl = ...; /1 Get a proxy...
lce.jectPrx p2 = ...; /1 Get another proxy...
if (pl.Equal s(p2)) {

/1 pl and p2 denote different objects /1 WWRONG
} else {

/1 pl and p2 denote the sane object /'l Correct
}

Even though p1 and p2 differ, they may denote the same Ice object. This can happen because, for example, both p1 and p2 embed the
same object identity, but each use a different protocol to contact the target object. Similarly, the protocols may be the same, but denote
different endpoints (because a single Ice object can be contacted via several different transport endpoints). In other words, if two proxies
compare equal with Equal s, we know that the two proxies denote the same object (because they are identical in all respects); however, if
two proxies compare unequal with Equal s, we know absolutely nothing: the proxies may or may not denote the same object.

To compare the object identities of two proxies, you can use a helper function in the | ce. Uti | class:

440 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#

public sealed class Uil {

public static int proxyldentityConpare(ObjectPrx |Ihs, ObjectPrx rhs);

public static int proxyldentityAndFacet Conpare(ObjectPrx |hs, ObjectPrx rhs);
11

proxyl denti t yConpar e allows you to correctly compare proxies for identity:

C#

I ce. CbjectPrx pl /1 Get a proxy...
lce.bjectPrx p2 = ...; /'l Get another proxy...

if (lce.Wil.proxyldentityConpare(pl, p2) !=0) {

/1 pl and p2 denote different objects /1 Correct
} else {
/1 pl and p2 denote the sanme object /1 Correct

}

The function returns 0 if the identities are equal, - 1 if p1 is less than p2, and 1 if p1 is greater than p2. (The comparison uses nane as the
major and cat egor y as the minor sort key.)

The pr oxyl denti t yAndFacet Conpar e function behaves similarly, but compares both the identity and the facet name.

The C# mapping also provides two helper classes in the | ce namespace that allow you to insert proxies into hashtables or ordered
collections, based on the identity, or the identity plus the facet name:

C#

public class ProxyldentityKey
System Col | ecti ons. | HashCodePr ovi der,
System Col | ections. | Conparer {

public int GetHashCode(object obj);
public int Conpare(object objl, object obj2);
}

public class ProxyldentityFacetKey
System Col | ecti ons. | HashCodePr ovi der,
System Col | ections. | Conparer {

public int GetHashCode(object obj);
public int Conpare(object objl, object obj2);

Note these classes derive from | HashCodePr ovi der and | Conpar er, so they can be used for both hash tables and ordered collections.

See Also

Interfaces, Operations, and Exceptions
Proxies

C-Sharp Mapping for Operations
Operations on Object

Proxy Methods

Facets and Versioning

IceStorm

441 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C-Sharp Mapping for Operations
On this page:

® Basic C# Mapping for Operations
® Normal and i denpot ent Operations in C#
® Passing Parameters in C#
® In-Parameters in C#
® Qut-Parameters in C#
® Null Parameters in C#
® Exception Handling in C#
® Exceptions and Out-Parameters in C#

Basic C# Mapping for Operations

As we saw in the C# mapping for interfaces, for each operation on an interface, the proxy class contains a corresponding member function
with the same name. To invoke an operation, you call it via the proxy. For example, here is part of the definitions for our file system:

Slice

nmodul e Fil esystem {
interface Node {
i denpotent string name();
H
/1

The nane operation returns a value of type st ri ng. Given a proxy to an object of type Node, the client can invoke the operation as follows:

C#
NodePrx node = ...; /1 Initialize proxy
string name = node. nane(); /1 Get name via RPC

This illustrates the typical pattern for receiving return values: return values are returned by reference for complex types, and by value for
simple types (such as i nt or doubl e).

Normal and i denpot ent Operations in C#

You can add an i denpot ent qualifier to a Slice operation. As far as the signature for the corresponding proxy method is concerned,
i denpot ent has no effect. For example, consider the following interface:

Slice
interface Exanple {
string opl();
i dempotent string op2();
H
The proxy interface for this is:
Ct#

public interface ExanplePrx : Ice.QbjectPrx

{
string opl();
string op2();

Because i denpot ent affects an aspect of call dispatch, not interface, it makes sense for the two methods to be mapped the same.

442 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Passing Parameters in C#

In-Parameters in C#

The parameter passing rules for the C# mapping are very simple: parameters are passed either by value (for value types) or by reference
(for reference types). Semantically, the two ways of passing parameters are identical: it is guaranteed that the value of a parameter will not
be changed by the invocation (with some caveats — see Location Transparency).

Here is an interface with operations that pass parameters of various types from client to server:

Slice

struct Nunber AndString {
int x;
string str;

b
sequence<string> StringSeq;
di ctionary<long, StringSeq> StringTable;

interface dientToServer {
void opl(int i, float f, bool b, string s);
voi d op2(Nunmber AndString ns, StringSeq ss, StringTable st);
voi d op3(CientToServer* proxy);

b

The Slice compiler generates the following proxy for these definitions:

C#
public interface CientToServerPrx : Ice.CbjectPrx
{
void opl(int i, float f, bool b, string s);
voi d op2(Nurmber AndString ns, string[] ss, Dictionary<long, string[]> st);
voi d op3(CientToServerPrx proxy);
}

Given a proxy to a C i ent ToSer ver interface, the client code can pass parameters as in the following example:

443 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#

p. opl(42, 3.14f,

int i
fl oat
bool

string s
p.opl(i,

= 42;
f = 3.14f;
b = true;

f, b,

ns.x = 42;
ns.str
string[] ss
ss[0]
Di cti onary<I ong,
st[0] SS;

p.op2(ns, ss,

p. op3(p);

ClientToServerPrx p = ...;

true,

"Hello world!";
s);

Nunber AndString ns =
= "The Answer";
new string[1];
= "Hello world!";

string[]> st

st);

Il Get proxy...

"Hello world!"); // Pass sinple literals

/'l Pass sinple variables

new Nunber AndString();

new Di ctionary<long, string[]>();
/| Pass conpl ex vari abl es

/1 Pass proxy

Out-Parameters in C#

Slice out parameters simply map to C# out parameters.

Here again are the same Slice definitions we saw earlier, but this time with all parameters being passed in the out direction:

The

Slice
struct Nunber AndString {
int x;
string str;
b
sequence<string> StringSeq;
di ctionary<long, StringSeq> StringTable;
interface ServerTodient {
void opl(out int i, out float f, out bool b, out string s);
voi d op2(out Number AndString ns, out StringSeq ss, out StringTable st);
voi d op3(out ServerTodient* proxy);
b

Slice compiler generates the following code for these definitions:

C#

public interface ServerToClientPrx : |ce.CbjectPrx

{
void opl(out int i, out float f, out bool b, out string s);
voi d op2(out Number AndString ns,
out string[] ss,
out Dictionary<long, string[]> st);
voi d op3(out ServerTod ientPrx proxy);
}

Given a proxy to a Ser ver Tod i ent interface, the client code can pass parameters as in the following example:

444

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#

ClientToServerPrx p = ...; Il Get proxy...

int i;

float f;

bool b;

string s;

p.opl(out i, out f, out b, out s);

Nunmber AndStri ng ns;

string[] ss;

Di cti onary<long, string[]> st;
p. op2(out ns, out ss, out st);

ServerToCl i ent Prx stc;
p. op3(out stc);

System Consol e. Wi teLine(i); /1 Show one of the val ues

Null Parameters in C#

Some Slice types naturally have "empty" or "not there" semantics. Specifically, C# sequences (if mapped to Col | ect i onBase),
dictionaries, strings, and structures (if mapped to classes) all can be nul | , but the corresponding Slice types do not have the concept of a
null value.

® Slice sequences, dictionaries, and strings cannot be null, but can be empty. To make life with these types easier, whenever you
pass a C# nul | reference as a parameter or return value of type sequence, dictionary, or string, the Ice run time automatically
sends an empty sequence, dictionary, or string to the receiver.

® If you pass a C# nul | reference to a Slice structure that is mapped to a C# class as a parameter or return value, the Ice run time
automatically sends a structure whose elements are default-initialized. This means that all proxy members are initialized to nul I,
seguence and dictionary members are initialized to empty collections, strings are initialized to the empty string, and members that
have a value type are initialized to their default values.

This behavior is useful as a convenience feature: especially for deeply-nested data types, members that are structures, sequences,
dictionaries, or strings automatically arrive as an empty value at the receiving end. This saves you having to explicitly initialize, for example,
every string element in a large sequence before sending the sequence in order to avoid Nul | Ref er enceExcept i on. Note that using null
parameters in this way does not create null semantics for Slice sequences, dictionaries, or strings. As far as the object model is concerned,
these do not exist (only empty sequences, dictionaries, and strings do). For example, whether you send a string as nul | or as an empty
string makes no difference to the receiver: either way, the receiver sees an empty string.

Exception Handling in C#

Any operation invocation may throw a run-time exception and, if the operation has an exception specification, may also throw user
exceptions. Suppose we have the following simple interface:

Slice

exception Tantrum {
string reason;

¥

interface Child {
voi d askToCl eanUp() throws Tantrum
b

Slice exceptions are thrown as C# exceptions, so you can simply enclose one or more operation invocations in a t r y-cat ch block:

445 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#

ChildPrx child = ...; /1 Get child proxy...

try

chil d. askToCd eanUp();

}

catch (Tantrumt)

{
System Consol e. Wite("The child says: ");
System Consol e. Wi teLine(t.reason);

}

Typically, you will catch only a few exceptions of specific interest around an operation invocation; other exceptions, such as unexpected
run-time errors, will typically be handled by exception handlers higher in the hierarchy. For example:

C#
public class dient
{
private static void run() {
ChildPrx child = ...; /1 Get child proxy...
try
{
chil d. askTod eanUp() ;
}
catch (Tantrumt)
{
System Consol e. Wite("The child says: ");
Syst em Consol e. WiteLine(t.reason);
child.scold(); /1 Recover fromerror...
}
child. praise(); /1l Gve positive feedback...
}
static void Main(string[] args)
{
try
{
/1
run();
/1
}
catch (lce. Exception e)
{
System Consol e. Wi teLine(e);
}
}
}

This code handles a specific exception of local interest at the point of call and deals with other exceptions generically. (This is also the
strategy we used for our first simple application.)

Note that the ToSt r i ng method of exceptions prints the name of the exception, any inner exceptions, and the stack trace. Of course, you

can be more selective in the way exceptions are displayed. For example, e. Get Type() . Nare returns the (unscoped) name of an
exception.

Exceptions and Out-Parameters in C#

The Ice run time makes no guarantees about the state of out-parameters when an operation throws an exception: the parameter may still
have its original value or may have been changed by the operation's implementation in the target object. In other words, for out-parameters,
Ice provides the weak exception guarantee [1] but does not provide the strong exception guarantee.

446 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

This is done for reasons of efficiency: providing the strong exception guarantee would require more overhead than can be
justified.

See Also

Operations

C-Sharp Mapping for Exceptions
C-Sharp Mapping for Interfaces
Location Transparency

References

1. Sutter, H. 1999. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions. Reading, MA: Addison-Wesley.

447 Copyright © 2011, ZeroC, Inc.

http://amzn.com/0201615622

Ice 3.4.2 Documentation

C-Sharp Mapping for Classes

On this page:

® Basic C# Mapping for Classes

® Operations Interfaces in C#

® Inheritance from | ce. Obj ect in C#
® Class Data Members in C#

® Class Operations in C#

® Class Factories in C#

® Class Constructors in C#

Basic C# Mapping for Classes

A Slice class is mapped to a C# class with the same name. By default, the generated class contains a public data member for each Slice
data member (just as for structures and exceptions), and a member function for each operation. Alternatively, you can use the property
mapping by specifying the " cl r: property" metadata directive, which generates classes with virtual properties instead of data members.

Consider the following class definition:

Slice
class TimeO Day {
short hour; /l 0 - 23
short m nute; /1 0 - 59
short second; /Il 0 - 59
string format(); /1 Return time as hh:mmss
I

The Slice compiler generates the following code for this definition:

448 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#

public interface Ti meOf DayOperations_

{

string format(lce.Current _ _current);
}
public interface Ti neCf DayOperati onsNC_
{

string format();
}

public abstract partial class Ti neOf Day
I ce. j ect | npl,
Ti meOf DayOper ati ons_,
Ti meCf DayQOper ati onsNC_

{
public short hour;
public short mnute;
public short second;
public TimeCf Day()
{
}
public TimeCO Day(short hour, short minute, short second)
{
t his. hour = hour;
this.mnute = ninute;
this.second = second;
}
public string fornat()
{
return format (new Ice.Current());
}
public abstract string fornat(lce.Current __current);
}

There are a number of things to note about the generated code:

1. The compiler generates "operations interfaces" called Ti neOf DayOper at i ons_ and Ti meOf DayOper at i onsNC _. These
interfaces contain a method for each Slice operation of the class.

2. The generated class Ti meCf Day inherits (indirectly) from | ce. Obj ect . This means that all classes implicitly inherit from
| ce. Obj ect, which is the ultimate ancestor of all classes. Note that | ce. Obj ect is not the same as | ce. Obj ect Pr x. In other
words, you cannot pass a class where a proxy is expected and vice versa.
If a class has only data members, but no operations, the compiler generates a non-abstract class.

3. The generated class contains a public member for each Slice data member.

4. The generated class inherits member functions for each Slice operation from the operations interfaces.

5. The generated class contains two constructors.

There is quite a bit to discuss here, so we will look at each item in turn.

Operations Interfaces in C#

The methods in the <i nt er f ace- nane>Qper at i ons_ interface have an additional trailing parameter of type | ce. Cur r ent , whereas the
methods in the <i nt er f ace- name>Qper at i onsNC_ interface lack this additional trailing parameter. The methods without the Cur r ent
parameter simply forward to the methods with a Cur r ent parameter, supplying a default Cur r ent . For now, you can ignore this parameter
and pretend it does not exist.

If a class has only data members, but no operations, the compiler omits generating the <i nt er f ace- nane>QOper at i ons_ and
<i nterface- name>Qper ati onsNC_ interfaces.

449 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Inheritance from | ce. Cbj ect in C#

Like interfaces, classes implicitly inherit from a common base class, | ce. Obj ect . However, as shown in the illustration below, classes
inherit from | ce. Obj ect instead of | ce. Cbj ect Pr x (which is at the base of the inheritance hierarchy for proxies). As a result, you cannot
pass a class where a proxy is expected (and vice versa) because the base types for classes and proxies are not compatible.

loe, OhjeclPrx [oe, Ohlaot

Froxies... Classes...

Inheritance from | ce. Cbj ect Prx and | ce. Obj ect .

| ce. Obj ect contains a number of member functions:
C#

nanespace |ce

{

public interface Cbject : System|C oneable

{
bool ice_isA(string s);
bool ice_isA(string s, Current current);

void ice_ping();
void ice_ping(Current current);

string[] ice_ids();
string[] ice_ids(Current current);

string ice_id();
string ice_id(Current current);

voi d ice_preMarshal ();
voi d ice_postUnnarshal ();

Di spat chSt atus i ce_di spat ch(Request request, DispatchlnterceptorAsyncCall back cb);

The member functions of | ce. Obj ect behave as follows:

® jce_isA
This function returns t r ue if the object supports the given type ID, and f al se otherwise.

® jice_ping
As for interfaces, i ce_pi ng provides a basic reachability test for the class.

® jice_ids
This function returns a string sequence representing all of the type IDs supported by this object, including : : | ce: : Obj ect .

® jce_id
This function returns the actual run-time type ID for a class. If you call i ce_i d through a reference to a base instance, the returned
type id is the actual (possibly more derived) type ID of the instance.

® ice_preMarshal

The Ice run time invokes this function prior to marshaling the object's state, providing the opportunity for a subclass to validate its
declared data members.

450 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

® i ce_post Unnar shal
The Ice run time invokes this function after unmarshaling an object's state. A subclass typically overrides this function when it needs
to perform additional initialization using the values of its declared data members.

® jce_dispatch
This function dispatches an incoming request to a servant. It is used in the implementation of dispatch interceptors.

Note that the generated class does not override Get HashCode and Equal s. This means that classes are compared using shallow reference
equality, not value equality (as is used for structures).

The class also provides a C one method (whose implementation is inherited from | ce. Obj ect | npl); the O one method returns a shallow
memberwise copy.

Class Data Members in C#

By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the
generated class contains a corresponding public data member.

If you wish to restrict access to a data member, you can modify its visibility using the pr ot ect ed metadata directive. The presence of this
directive causes the Slice compiler to generate the data member with protected visibility. As a result, the member can be accessed only by
the class itself or by one of its subclasses. For example, the Ti meOf Day class shown below has the pr ot ect ed metadata directive applied
to each of its data members:

Slice
class TimeO Day {
["protected"] short hour; /1 0 - 23
["protected"] short minute; // O - 59
["protected"] short second; // O - 59
string format(); /1 Return time as hh:mmss

b

The Slice compiler produces the following generated code for this definition:

C#

public abstract partial class TimeCf Day
I ce. Obj ect!npl,
Ti meOf DayOper ations_,
Ti meOf DayOper ati onsNC_

protected short hour;
protected short mnute;
protected short second;

public TimeC Day()
{
}

public TimeO Day(short hour, short mnute, short second)
{

t hi s. hour = hour;

this.mnute = ninute;

this. second = second;

11

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each
member individually. For example, we can rewrite the Ti meCf Day class as follows:

451 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Slice
["protected"] class TinmeCOf Day {
short hour; // 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59
string format(); /1 Return time as hh:mm ss
|

If a protected data member also has the cl r: pr oper ty directive, the generated property has protected visibility. Consider the Ti mreOf Day
class once again:

Slice

["protected", "clr:property"] class TineODay {

short hour; /Il 0 - 23
short m nute; // 0 - 59
short second; // 0 - 59
string format(); // Return time as hh:mmss

}

The effects of combining these two metadata directives are shown in the generated code below:

C#

public abstract partial class TimeCf Day
I ce. j ect | npl,
Ti meCf DayQper ati ons_,
Ti meCf DayQOper ati onsNC_

{
private short hour_prop;
protected short hour {
get {
return hour_prop;
}
set {
hour _prop = val ue;
}
}
/1
}

Refer to the structure mapping for more information on the property mapping for data members.

Class Operations in C#

Operations of classes are mapped to abstract member functions in the generated class. This means that, if a class contains operations (such
as the f or mat operation of our Ti e Day class), you must provide an implementation of the operation in a class that is derived from the
generated class. For example:

452 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#
public class TineO Dayl : Tinmed Day
{
public string format(lce.Current current)
{
return hour. ToString("D2") + ":"
+ minute. ToString("D2") + ":"
+ second. ToString("D2");
}
}

Class Factories in C#

Having created a class such as Ti neXf Dayl , we have an implementation and we can instantiate the Ti mneOf Day| class, but we cannot
receive it as the return value or as an out-parameter from an operation invocation. To see why, consider the following simple interface:

Slice

interface Tine {
Ti meCf Day get ();
H

When a client invokes the get operation, the Ice run time must instantiate and return an instance of the Ti neCf Day class. However,

Ti mer Day is an abstract class that cannot be instantiated. Unless we tell it, the Ice run time cannot magically know that we have created a
Ti meOf Day| class that implements the abstract f or nat operation of the Ti meOf Day abstract class. In other words, we must provide the
Ice run time with a factory that knows that the Ti neOf Day abstract class has a Ti meCf Day| concrete implementation. The

| ce: : Communi cat or interface provides us with the necessary operations:

Slice

nmodul e lce {
local interface ObjectFactory {
bj ect create(string type);
void destroy();
I

local interface Conmmunicator {
voi d addObj ect Fact ory(Obj ect Factory factory, string id);
oj ect Factory findObjectFactory(string id);
/1
b
|

To supply the Ice run time with a factory for our Ti meOf Day! class, we must implement the Obj ect Fact ory interface:

453 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#
class bjectFactory : 1ce. Ovj ectFactory
{
public Ice.Object create(string type)
{
if (type.Equal s(MTinmeODay.ice_staticld()))
return new Ti neOf Dayl ();
Syst em Di agnosti cs. Debug. Assert (fal se);
return nul | ;
}
public void destroy()
{
/1 Nothing to do
}

The object factory's cr eat e method is called by the Ice run time when it needs to instantiate a Ti meOf Day class. The factory's dest r oy
method is called by the Ice run time when its communicator is destroyed.

The cr eat e method is passed the type ID of the class to instantiate. For our Ti meCf Day class, the type IDis": : M : Ti neOf Day" . Our
implementation of cr eat e checks the type ID: if it matches, the method instantiates and returns a Ti meCf Day| object. For other type IDs,
the method asserts because it does not know how to instantiate other types of objects.

Note that we used the i ce_st at i cl d method to obtain the type ID rather than embedding a literal string. Using a literal type ID string in
your code is discouraged because it can lead to errors that are only detected at run time. For example, if a Slice class or one of its enclosing
modules is renamed and the literal string is not changed accordingly, a receiver will fail to unmarshal the object and the Ice run time will raise
NoObj ect Fact or yExcepti on. By using i ce_st ati cl d instead, we avoid any risk of a misspelled or obsolete type ID, and we can
discover at compile time if a Slice class or module has been renamed.

Given a factory implementation, such as our Obj ect Fact or y, we must inform the Ice run time of the existence of the factory:

C#

I ce. Conmuni cator ic = ...;
i c. addObj ect Fact ory(new Obj ect Factory(), M TineO'Day.ice_staticld());

Now, whenever the Ice run time needs to instantiate a class with the type ID ": : M : Ti meOf Day", it calls the cr eat e method of the
registered Cbj ect Fact ory instance, which returns a Ti neOf Day| instance to the Ice run time.

The dest r oy operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance to
clean up any resources that may be used by your factory. Do not call dest r oy on the factory while it is registered with the communicator —
if you do, the Ice run time has no idea that this has happened and, depending on what your dest r oy implementation is doing, may cause
undefined behavior when the Ice run time tries to next use the factory.

The run time guarantees that dest r oy will be the last call made on the factory, that is, cr eat e will not be called concurrently with dest r oy
, and cr eat e will not be called once dest r oy has been called. However, calls to cr eat e can be made concurrently.

Note that you cannot register a factory for the same type ID twice: if you call addCbj ect Fact or y with a type ID for which a factory is
registered, the Ice run time throws an Al r eadyRegi st er edExcept i on.

Finally, keep in mind that if a class has only data members, but no operations, you need not create and register an object factory to transmit
instances of such a class. Only if a class has operations do you have to define and register an object factory.

Class Constructors in C#

Classes have a default constructor that default-constructs each data member. This means members of primitive type are initialized to the
equivalent of zero, and members of reference type are initialized to null. Note that applications must always explicitly initialize a member
whose type is a class-mapped structure because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in
your Slice definition. The default constructor initializes each of these data members to its declared value.

Classes also provide a constructor that accepts one argument for each member of the class. This allows you to create and initialize a class

454 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

in a single statement, for example:

C#

Ti meCf Dayl tod = new Ti meCf Dayl (14, 45, 00); // 2:45pm

For derived classes, the constructor requires one argument for every member of the class, including inherited members. For example,
consider the the definition from Class Inheritance once more:

Slice
class TimeO Day {
short hour; /1 0 - 23
short m nute; /1 0 - 59
short second; /1 0 - 59
b
class DateTinme extends Ti meCf Day {
short day; /Il 1- 31
short nont h; /1 1- 12
short vyear; /1 1753 onwar ds
b
The constructors for the generated classes are as follows:
C#

public partial class TineOfDay : |ce. Qbjectlnpl

{
public TimeO Day() {}
public TimeOf Day(short hour, short mnute, short second)
{
this. hour = hour;
this.mnute = mnute;
this.second = second;
}
11
}
public partial class DateTine : TinmeC Day
{
public DateTine() : base() {}
publ i c DateTi me(short hour,
short minute,
short second,
short day,
short nonth,
short year) : base(hour, nminute, second)
{
this.day = day;
this.nonth = nonth;
this.year = year;
}
11
}

If you want to instantiate and initialize a Dat eTi ne instance, you must either use the default constructor or provide values for all of the data
members of the instance, including data members of any base classes.

455 Copyright © 2011, ZeroC, Inc.

See Also

456

Classes

Class Inheritance

Type IDs

C-Sharp Mapping for Structures
The Current Object

Dispatch Interceptors

Ice 3.4.2 Documentation

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Serializable Objects in C-Sharp

In addition to serializing Slice types, applications may also need to incorporate foreign types into their Slice definitions. Ice allows you to pass
CLR serializable objects directly as operation parameters or as fields of another data type. For example:

Slice

["clr:serializabl e: SoneNanespace. CLRC ass"]
sequence<byt e> CLRObj ;
struct MyStruct {
int i;
CLRObj o;
b
interface Exanple {

voi d op(CLROj] o, MyStruct s);
}

The generated code for MySt r uct contains member i of type i nt and a member o of type SoneNanespace. CLRCl ass:

C#

public partial class MyStruct : _System|C oneable {
public int i;
SoneNanespace. CLRO ass o0;

11

Similarly, the signature for op has parameters of type CLRCl ass and MySt r uct :

C#

voi d op(SoneNanespace. CLRCl ass o, MyStruct s);

Of course, your client and server code must have an implementation of CLRCl ass that sets the Seri al i zabl e attribute:

C#

nanespace SoneNanespace {
[Serializable]
public class CLRd ass {
/1

}

You can implement this class in any way you see fit — the Ice run time does not place any other requirements on the implementation.
However, note that the CLR requires the class to reside in the same assembly for client and server.

See Also

® Serializable Objects

457 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C-Sharp Specific Metadata Directives

The sl i ce2cs compiler supports metadata directives that allow you to inject C# attribute specifications into the generated code. The
metadata directive is cs: at t ri but e: . For example:

Slice

["cs:attribute: System Serializabl e"]
struct Point {

doubl e Xx;

doubl e y;
b

This results in the following code being generated for S:
C#

[System Seri al i zabl e]
public partial struct Point

{
public double x;
public double y;
/1

}

You can apply this metadata directive to any Slice construct, such as structure, operation, or parameter definitions.

You can use this directive also at global level. For example:

Slice

[["cs:attribute: assenbly: Assenbl yDescription(\"M assenbly\")"]]

This results in the following code being inserted after any usi ng directives and before any definitions:

C#

[assenbly: Assenbl yDescription("M assenbly")]

See Also

® Metadata
® Slice Metadata Directives

458 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Asynchronous Method Invocation (AMI) in C-Sharp

Asynchronous Method Invocation (AMI) is the term used to describe the client-side support for the asynchronous programming model. AMI
supports both oneway and twoway requests, but unlike their synchronous counterparts, AMI requests never block the calling thread. When a
client issues an AMI request, the Ice run time hands the message off to the local transport buffer or, if the buffer is currently full, queues the
request for later delivery. The application can then continue its activities and poll or wait for completion of the invocation, or receive a
callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether a client sent a request synchronously or asynchronously.

As of version 3.4, Ice provides a new API for asynchronous method invocation. This page describes the new API. Note that
the old APl is deprecated and will be removed in a future release.

On this page:

® Basic Asynchronous API in C#

® Asynchronous Proxy Methods in C#

® Asynchronous Exception Semantics in C#
® AsyncResul t Classin C#
® Polling for Completion in C#
® Generic Completion Callbacks in C#

® Using Cookies for Generic Completion Callbacks in C#
® Type-Safe Completion Callbacks in C#

® Using Cookies for Type-Safe Completion Callbacks in C#

Asynchronous Oneway Invocations in C#
Flow Control in C#
Asynchronous Batch Requests in C#
Concurrency Semantics for AMI in C#
AMI Limitations in C#

Basic Asynchronous APl in C#

Consider the following simple Slice definition:

Slice

nmodul e Denp {
interface Enpl oyees {
string get Name(int nunber);
h
h

Asynchronous Proxy Methods in C#

Besides the synchronous proxy methods, sl i ce2cs generates the following asynchronous proxy methods:

C#

public interface Enpl oyeesPrx : lce.QbjectPrx {
I ce. AsyncResul t <Denp. Cal | back_Enpl oyees_get Nanme>
begi n_get Nane(i nt nunber);

I ce. AsyncResul t <Denp. Cal | back_Enpl oyees_get Name>
begi n_get Nane(i nt nunber,

_System Col | ections. Generic.Dictionary<string, string> ctx__);

string end_get Nane(lce. AsyncResult r__);

459 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

lﬂ Two additional overloads of begi n_get Nane are generated for use with generic completion callbacks.

As you can see, the single get Nane operation results in begi n_get Nanme and end_get Nane methods. (The begi n_ method is overloaded
SO you can pass a per-invocation context.)

®* The begi n_get Name method sends (or queues) an invocation of get Nane. This method does not block the calling thread.

®* The end_get Nanme method collects the result of the asynchronous invocation. If, at the time the calling thread calls end_get Nane,
the result is not yet available, the calling thread blocks until the invocation completes. Otherwise, if the invocation completed some
time before the call to end_get Nane, the method returns immediately with the result.

A client could call these methods as follows:

C#

Enpl oyeesPrx e = ...;
I ce. AsyncResult r = e.begi n_get Name(99);

// Continue to do other things here...

string name = e.end_get Nane(r);

Because begi n_get Nane does not block, the calling thread can do other things while the operation is in progress.

Note that begi n_get Nane returns a value of type | ce. AsyncResul t . (The class derives from Syst em | AsyncResul t .) This value
contains the state that the Ice run time requires to keep track of the asynchronous invocation. You must pass the AsyncResul t thatis
returned by the begi n_ method to the corresponding end_ method.

The begi n_ method has one parameter for each in-parameter of the corresponding Slice operation. Similarly, the end_ method has one
out-parameter for each out-parameter of the corresponding Slice operation (plus the AsyncResul t parameter). For example, consider the
following operation:

Slice

doubl e op(int inpl, string inp2, out bool outpl, out |Iong outp2);

The begi n_op and end_op methods have the following signature:

C#

I ce. AsyncResul t <Deno. Cal | back_Enpl oyees_op> begi n_op(int inpl, string inp2);

doubl e end_op(out bool outpl, out |ong outp2, Ice.AsyncResult r__);

Asynchronous Exception Semantics in C#

If an invocation raises an exception, the exception is thrown by the end_ method, even if the actual error condition for the exception was
encountered during the begi n_ method ("on the way out"). The advantage of this behavior is that all exception handling is located with the
code that calls the end_ method (instead of being present twice, once where the begi n_ method is called, and again where the end_
method is called).

There is one exception to the above rule: if you destroy the communicator and then make an asynchronous invocation, the begi n_ method
throws Conmruni cat or Dest r oyedExcept i on. This is necessary because, once the run time is finalized, it can no longer throw an
exception from the end_ method.

The only other exception that is thrown by the begi n_ and end_ methods is Syst em Ar gunent Except i on. This exception indicates that
you have used the APl incorrectly. For example, the begi n_ method throws this exception if you call an operation that has a return value or
out-parameters on a oneway proxy. Similarly, the end_ method throws this exception if you use a different proxy to call the end_ method
than the proxy you used to call the begi n_ method, or if the AsyncResul t you pass to the end_ method was obtained by calling the

begi n_ method for a different operation.

460 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

AsyncResul t Class in C#

The AsyncResul t that is returned by the begi n_ method encapsulates the state of the asynchronous invocation:

C#

public interface AsyncResult : System | AsyncResult
{

I ce. Conmuni cat or get Conmuni cator();
I ce. Connecti on get Connection();

bj ect Prx get Proxy();

string getOperation();

obj ect AsyncState { get; }

bool |sConpleted { get; }
voi d wai t For Conpl et ed() ;

bool isSent();
voi d wait For Sent ();

voi d throwLocal Exception();

bool sent Synchronously();

AsyncResul t whenSent (| ce. AsyncCal | back cb);

AsyncResul t whenSent (| ce. Sent Cal | back cb);

AsyncResul t whenConpl et ed(| ce. Excepti onCal | back ex);
public interface AsyncResult<T> : AsyncResult

AsyncResul t <T> whenConpl et ed(T cb, Ice.ExceptionCallback exch);

new AsyncResul t <T> whenConpl et ed(| ce. Excepti onCal | back exch);
new AsyncResul t <T> whenSent (I ce. Sent Cal | back cb);

The methods and properties have the following semantics:

461

Conmmuni cat or get Conmuni cat or ()
This method returns the communicator that sent the invocation.

Connecti on get Connection()
This method returns the connection that was used for the invocation.

Obj ect Prx get Proxy()
This method returns the proxy that was used to call the begi n_ method.

string getOperation()
This method returns the name of the operation.

obj ect AsyncState { get; }
This property stores an object that you can use to pass shared state from the begi n_ to the end_ method.

bool IsCompleted { get; }
This property is true if, at the time it is called, the result of an invocation is available, indicating that a call to the end_ method will not
block the caller. Otherwise, if the result is not yet available, the method returns false.

voi d wait For Conpl et ed()
This method blocks the caller until the result of an invocation becomes available.

bool isSent()

When you call the begi n_ method, the Ice run time attempts to write the corresponding request to the client-side transport. If the
transport cannot accept the request, the Ice run time queues the request for later transmission. i sSent returns true if, at the time it
is called, the request has been written to the local transport (whether it was initially queued or not). Otherwise, if the request is still
queued or an exception occurred before the request could be sent, i sSent returns false.

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

® void waitForSent ()
This method blocks the calling thread until a request has been written to the client-side transport, or an exception occurs. After
wai t For Sent returns, i sSent returns true if the request was successfully written to the client-side transport, or false if an
exception occurred. In the case of a failure, you can call the corresponding end_ method or t hr owLocal Except i on to obtain the
exception.

® void throwLocal Exception()
This method throws the local exception that caused the invocation to fail. If no exception has occurred yet, t hr owLocal Excepti on
does nothing.

® bool sentSynchronously()
This method returns true if a request was written to the client-side transport without first being queued. If the request was initially
queued, sent Synchr onousl y returns false (independent of whether the request is still in the queue or has since been written to
the client-side transport).

® AsyncResult whenSent (I ce. Sent Cal | back cb)
AsyncResul t <T> whenSent (| ce. Sent Cal | back cb)
AsyncResul t whenConpl et ed(| ce. Excepti onCal | back ex)
AsyncResul t <T> whenConpl et ed(T ch, | ce. Excepti onCal | back exch)
AsyncResul t <T> whenConpl et ed(| ce. Excepti onCal | back exch)
These methods allow you to specify callback methods that are called by the Ice run time. The whenSent methods set a callback
that triggers when an asynchronous invocation is written to the client-side transport. The whenConpl et ed methods set a callback
that triggers when an asynchronous invocation completes (also see Generic Completion Callbacks in C#).

Polling for Completion in C#

The AsyncResul t methods allow you to poll for call completion. Polling is useful in a variety of cases. As an example, consider the
following simple interface to transfer files from client to server:

Slice

interface FileTransfer

{
voi d send(int offset, ByteSeq bytes);

}

The client repeatedly calls send to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naive way to transmit a
file would be along the following lines:

C#
FileHandl e file = open(...);
Fil eTransferPrx ft = ...;
const int chunkSize = ...;
int offset = 0;
while (!file.eof()) {
byte[] bs;
bs = file.read(chunkSize); // Read a chunk
ft.send(offset, bs); /1 Send the chunk
of fset += bs. Length;
}

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to
receive the data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time
doing nothing — the client does nothing while the server processes the data, and the server does nothing while it waits for the client to send
the next chunk.

Using asynchronous calls, we can improve on this considerably:

462 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#

FileHandl e file = open(...);
Fil eTransferPrx ft = ...;
const int chunkSize = ...;
int offset = 0;

Li nkedLi st <l ce. AsyncResul t > resul ts = new Li nkedLi st <l ce. AsyncResul t >();
const int nunmRequests = 5;

while (!file.eof()) {
byte[] bs;
bs = file.read(chunkSi ze);

/1 Send up to nunRequests + 1 chunks asynchronously.
I ce. AsyncResult r = ft.begin_send(offset, bs);
of fset += bs. Lengt h;

/1 Wait until this request has been passed to the transport.
r.waitForSent();
results. AddLast (r);

/1l Once there are nore than nunmRequests, wait for the | east
/1 recent one to conplete.
while (results. Count > nunRequests) {

Ice. AsyncResult r = results. First;

results. RenoveFirst();

r.wait For Conpl et ed() ;

}

/1 Wait for any remaining requests to conplete.
while (results. Count > 0) {

lce. AsyncResult r = results. First;

results. RenoveFirst();

r.wai t For Conpl et ed() ;

With this code, the client sends up to nunRequest s + 1 chunks before it waits for the least recent one of these requests to complete. In
other words, the client sends the next request without waiting for the preceding request to complete, up to the limit set by nunRequest s. In
effect, this allows the client to "keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously
do work.

Obviously, the correct chunk size and value of nunmRequest s depend on the bandwidth of the network as well as the amount of time taken
by the server to process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger

or queuing more requests no longer improves performance. With this technique, you can realize the full bandwidth of the link to within a
percent or two of the theoretical bandwidth limit of a native socket connection.

Generic Completion Callbacks in C#

The begi n_ method is overloaded to allow you to provide completion callbacks. Here are the corresponding methods for the get Nane
operation:

463 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#

I ce. AsyncResul t begi n_get Nane(
i nt nunber,
I ce. AsyncCal | back cb__,
obj ect cookie_);

I ce. AsyncResul t begi n_get Nanme(
i nt nunber,
_System Col | ections. Generic.Dictionary<string, string> ctx__,
I ce. AsyncCal | back cb__,
obj ect cookie_);

The second version of begi n_get Nane lets you override the default context. (We discuss the purpose of the cooki e parameter in the next
section.) Following the in-parameters, the begi n_ method accepts a parameter of type | ce. AsyncCal | back, which is a delegate for a
callback method. The Ice run time invokes the callback method when an asynchronous operation completes. Your callback method must
have voi d return type and accept a single parameter of type AsyncResul t , for example:

C#
private class MyCall back
{
public void finished(lce.AsyncResult r)
{
Enpl oyeesPrx e = (Enpl oyeesPrx)r. getProxy();
try {
string nane = e.end_get Nane(r);
System Consol e. WiteLine("Nanme is: " + nanme);
} catch (Ice.Exception ex) {
System Consol e. Err. WiteLine("Exception is: " + ex);
}
}
}

The implementation of your callback method must call the end_ method. The proxy for the call is available via the get Pr oxy method on the
AsyncResul t that is passed by the Ice run time. The return type of get Proxy is | ce. Obj ect Pr x, so you must down-cast the proxy to its
correct type.

Your callback method should catch and handle any exceptions that may be thrown by the end_ method. If you allow an exception to escape
from the callback method, the Ice run time produces a log entry by default and ignores the exception. (You can disable the log message by
setting the property | ce. WaAr n. AM Cal | back to zero.)

To inform the Ice run time that you want to receive a callback for the completion of the asynchronous call, you pass a delegate for your
callback method to the begi n_ method:

C#

Enpl oyeesPrx e = .. .;

MyCal | back cb = new MyCal | back();
I ce. AsyncCal | back del = new Ice. AsyncCal | back(cb. fi ni shed);

e. begi n_get Name(99, del, null);

The trailing nul | argument specifies a cookie, which we will discuss shortly.

You can avoid explicit instantiation of the delegate and, more tersely, write:

464 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#

Enpl oyeesPrx e = ...;

MyCal | back cb = new MyCal | back();
e. begi n_get Name(99, cb.finished, null);

Using Cookies for Generic Completion Callbacks in C#

It is common for the end_ method to require access to some state that is established by the code that calls the begi n_ method. As an
example, consider an application that asynchronously starts a number of operations and, as each operation completes, needs to update
different user interface elements with the results. In this case, the begi n_ method knows which user interface element should receive the
update, and the end_ method needs access to that element.

The API allows you to pass such state by providing a cookie. A cookie is any class instance; the class can contain whatever data you want to
pass, as well as any methods you may want to add to manipulate that data.

Here is an example implementation that stores a W dget . (We assume that this class provides whatever methods are needed by the end_
method to update the display.) When you call the begi n_ method, you pass the appropriate cookie instance to inform the end_ method how
to update the display:

C#

/1 1nvoke the getName operation with different w dget cookies.
MyCal | back cb = ...;

e. begi n_get Nanme(99, cb.finished, widgetl);

e. begi n_get Name(24, cb.finished, widget2);

The end_ method can retrieve the cookie from the AsyncResul t by reading the AsyncSt at e property. For this example, we assume that
widgets have awri t eSt ri ng method that updates the relevant Ul element:

C#

public void finished(lce.AsyncResult r)
{
Enpl oyeesPrx e = (Enpl oyeesPrx)r. get Proxy();
W dget widget = (Wdget)r.AsyncSt at e;
try {
string nane = e.end_get Nane(r);
wi dget.witeString(nane);
} catch (Ice.Exception ex) {
handl eExcepti on(ex);

}

The cookie provides a simple and effective way for you to pass state between the point where an operation is invoked and the point where
its results are processed. Moreover, if you have a number of operations that share common state, you can pass the same cookie instance to
multiple invocations.

Type-Safe Completion Callbacks in C#

The generic callback APl is not entirely type-safe:

® You must down-cast the return value of get Pr oxy to the correct proxy type before you can call the end_ method.

® You must call the correct end_ method to match the operation called by the begi n_ method.

® You must remember to catch exceptions when you call the end_ method; if you forget to do this, you will not know that the operation
failed.

sl i ce2cs generates an additional type-safe API that takes care of these chores for you. To use type-safe callbacks, you supply delegates
for two callback methods:

465 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

® asuccess callback that is called if the operation succeeds
® afailure callback that is called if the operation raises an exception

Here is a callback class for an invocation of the get Nane operation:

C#
public class MCall back
{ public void get NaneCB(string nane)
{ System Consol e. WitelLine("Nanme is: " + nanme);
}
public void failureCB(lce.Exception ex)
{ System Consol e. Err. Wi telLi ne("Exception is: " + ex);
}

The callback methods can have any name you prefer and must have voi d return type. The failure callback always has a single parameter of
type | ce. Excepti on. The success callback parameters depend on the operation signature. If the operation has non-voi d return type, the
first parameter of the success callback is the return value. The return value (if any) is followed by a parameter for each out-parameter of the
corresponding Slice operation, in the order of declaration.

At the calling end, you call the begi n_ method as follows:

C#

MyCal | back cb = new MyCal | back();

e. begi n_get Nanme(99) . whenConpl et ed(cb. get NaneCB, cb. failureCB);

Note the whenConpl et ed method on the AsyncResul t that is returned by the begi n_ method. This method establishes the link between
the begi n_ method and the callbacks that are called by the Ice run time by setting the delegates for the success and failure methods.

It is legal to pass a null delegate for the success or failure methods. For the success callback, this is legal only for operations that have voi d

return type and no out-parameters. This is useful if you do not care when the operation completes but want to know if the call failed. If you
pass a null exception delegate, the Ice run time will ignore any exception that is raised by the invocation.

Using Cookies for Type-Safe Completion Callbacks in C#
The type-safe API does not support cookies. If you want to pass state from the begi n_ method to the end_ method, you must use the

generic API or, alternatively, place the state into the callback class containing the callback methods. Here is a simple implementation of a
callback class that stores a widget that can be retrieved by the end_ method:

466 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#

public class MCall back

{
public MyCal |l back(W dget w)
{
_wW=w
}
private Wdget _w
public void get NaneCB(string nane)
{
_wW.witeString(nane);
}
public void failureCB(Ice. Exception ex)
{
_w.writeError(ex);
}
}

When you call the begi n_ method, you pass the appropriate callback instance to inform the end_ method how to update the display:

C#

Enpl oyeesPrx e = ...;
W dget widgetl
Wdget widget2 = ...;

MyCal | back cbl = new MyCal | back(w dget1);
MyCal | back cb2 = new MyCal | back(w dget 2) ;

/'l Invoke the getName operation with different w dget call backs.

e. begi n_get Nanme(99) . whenConpl et ed(cbl. get NaneCB, cbl.fail ureCB);
e. begi n_get Narme(24) . whenConpl et ed(cb2. get NaneCB, cb2.fail ureCB);

Asynchronous Oneway Invocations in C#

You can invoke operations via oneway proxies asynchronously, provided the operation has voi d return type, does not have any
out-parameters, and does not raise user exceptions. If you call the begi n_ method on a oneway proxy for an operation that returns values
or raises a user exception, the begi n_ method throws a Syst em Ar gunent Excepti on.

For the generic API, the callback method looks exactly as for a twoway invocation. However, for oneway invocations, the Ice run time does
not call the callback method unless the invocation raised an exception during the begi n_ method ("on the way out").

For the type-safe API, you only specify a delegate for the failure method. For example, here is how you could call i ce_pi ng
asynchronously:

C#

OhjectPrx p = ...;
MyCal | back cb = new MyCal | back();
p. begi n_i ce_pi ng() . whenConpl et ed(cb. f ai | ureCB);

Flow Control in C#

Asynchronous method invocations never block the thread that calls the begi n_ method: the Ice run time checks to see whether it can write

467 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

the request to the local transport. If it can, it does so immediately in the caller's thread. (In that case, AsyncResul t. sent Synchr onousl y
returns true.) Alternatively, if the local transport does not have sufficient buffer space to accept the request, the Ice run time queues the
request internally for later transmission in the background. (In that case, AsyncResul t . sent Synchr onousl y returns false.)

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the
requests pile up in the client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the number of requests that are queued so, if that number exceeds
some threshold, the client stops invoking more operations until some of the queued operations have drained out of the local transport.

For the generic API, you can create an additional callback method:

C#
public class MCall back
{
public void finished(lce.AsyncResult r)
{
/1
}
public void sent(lce.AsyncResult r)
{
/1
}
}

As with any other callback method, you are free to choose any name you like. For this example, the name of the callback method is sent .
You inform the Ice run time that you want to be informed when a call has been passed to the local transport by calling whenSent :

C#

MyCal | back cb = new MyCal | back();

e. begi n_get Nane(99) . whenConpl et ed(cb. get NaneCB, cb. fail ureCB).whenSent (cb. sent);

If the Ice run time can immediately pass the request to the local transport, it does so and invokes the sent method from the thread that calls
the begi n_ method. On the other hand, if the run time has to queue the request, it calls the sent method from a different thread once it has
written the request to the local transport. In addition, you can find out from the AsyncResul t that is returned by the begi n_ method
whether the request was sent synchronously or was queued, by calling sent Synchr onousl y.

For the generic API, the sent method has the following signature:

C#
voi d sent (lce. AsyncResult r);
For the type-safe API, the signature is:
C#
voi d sent(bool sentSynchronously);

For the generic API, you can find out whether the request was sent synchronously by calling sent Synchr onousl y on the AsyncResul t.
For the type-safe API, the boolean sent Synchr onousl y parameter provides the same information.

The sent methods allow you to limit the number of queued requests by counting the number of requests that are queued and decrementing
the count when the Ice run time passes a request to the local transport.

Asynchronous Batch Requests in C#

Applications that send batched requests can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method

468 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

i ce_fl ushBat chRequest s performs an immediate flush using the synchronous invocation model and may block the calling thread until
the entire message can be sent. Ice also provides asynchronous versions of this method so you can flush batch requests asynchronously.

begi n_i ce_f I ushBat chRequest s and end_i ce_f | ushBat chRequest s are proxy methods that flush any batch requests queued by
that proxy.

In addition, similar methods are available on the communicator and the Connect i on object that is returned by
AsyncResul t. get Connect i on. These methods flush batch requests sent via the same communicator and via the same connection,
respectively.

Concurrency Semantics for AMI in C#
The Ice run time always invokes your callback methods from a separate thread, with one exception: it calls the sent callback from the

thread calling the begi n_ method if the request could be sent synchronously. In the sent callback, you know which thread is calling the
callback by looking at the sent Synchr onousl y member or parameter.

AMI Limitations in C#

AMI invocations cannot be sent using collocated optimization. If you attempt to invoke an AMI operation using a proxy that is configured to
use collocation optimization, the Ice run time raises Col | ocat i onOpti mi zat i onExcept i on if the servant happens to be collocated; the
request is sent normally if the servant is not collocated. You can disable this optimization if necessary.

See Also
® Request Contexts

® Batched Invocations
® Location Transparency

469 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

slice2cs Command-Line Options

The Slice-to-C# compiler, sl i ce2cs, offers the following command-line options in addition to the standard options described in Using the
Slice Compilers:

* --tie
Generate tie classes.

® --inpl
Generate sample implementation files. This option will not overwrite an existing file.

® --inpl-tie
Generate sample implementation files using tie classes. This option will not overwrite an existing file.

® --checksum
Generate checksums for Slice definitions.

® --stream
Generate streaming helper functions for Slice types.

See Also

® Using the Slice Compilers
® Tie Classes in C-Sharp
® Streaming Interfaces

470 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Using Slice Checksums in C-Sharp

The Slice compilers can optionally generate checksums of Slice definitions. For sl i ce2cs, the - - checksumoption causes the compiler to
generate checksums in each C# source file that are added to a member of the | ce. Sl i ceChecksuns class:

C#

nanespace |ce {
public seal ed class SliceChecksuns {
public readonly static SliceChecksunDi ct checksuns;

}

The checksumns map is initialized automatically prior to first use; no action is required by the application.

In order to verify a server's checksums, a client could simply compare the dictionaries using the Equal s function. However, this is not

feasible if it is possible that the server might be linked with more Slice definitions than the client. A more general solution is to iterate over the
local checksums as demonstrated below:

C#

I ce. Sli ceChecksunDi ct server Checksunms = ...
foreach(System Col | ections.DictionaryEntry e in Ice. SliceChecksuns. checksums) {
string checksum = server Checksuns[e. Key] ;
if (checksum == null) {
/1 No match found for type id!
} else if (!checksum Equal s(e.Value)) {
/1 Checksum mi snmat ch!

}

In this example, the client first verifies that the server's dictionary contains an entry for each Slice type ID, and then it proceeds to compare
the checksums.

See Also

® Slice Checksums

471 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Example of a File System Client in C-Sharp

This page presents a very simple client to access a server that implements the file system we developed in Slice for a Simple File System.
The C# code hardly differs from the code you would write for an ordinary C# program. This is one of the biggest advantages of using Ice:

accessing a remote object is as easy as accessing an ordinary, local C# object. This allows you to put your effort where you should, namely,

into developing your application logic instead of having to struggle with arcane networking APIs. This is true for the server side as well,

meaning that you can develop distributed applications easily and efficiently.

We now have seen enough of the client-side C# mapping to develop a complete client to access our remote file system. For reference, here

is the Slice definition once more:

Slice

nmodul e Fil esystem {
interface Node {
i denpotent string name();

}s

exception GenericError {
string reason;

I
sequence<string> Lines;

interface File extends Node {
i denpot ent Lines read();
i denpotent void wite(Lines text) throws GenericError;

s
sequence<Node* > NodeSeq;

interface Directory extends Node {
i demrpot ent NodeSeq list();
I
b

To exercise the file system, the client does a recursive listing of the file system, starting at the root directory. For each node in the file
system, the client shows the name of the node and whether that node is a file or directory. If the node is a file, the client retrieves the

contents of the file and prints them.

The body of the client code looks as follows:

C#

usi ng System
using Fil esystem

public class dient

{
/1 Recursively print the contents of directory "dir"
// in tree fashion. For files, show the contents of
/1 each file. The "depth" paranmeter is the current
/'l nesting level (for indentation).

static void |listRecursive(DirectoryPrx dir, int depth)

{

string indent = new string('\t', ++depth);
NodePrx[] contents = dir.list();
foreach (NodePrx node in contents)

Di rectoryPrx subdir = DirectoryPrxHel per.checkedCast (node);
FilePrx file = Fil ePrxHel per.uncheckedCast (node);

472

Copyright © 2011, ZeroC, Inc.

473

}

Ice 3.4.2 Documentation

Consol e. Wi teLi ne(

indent + node.nanme() + (subdir !=null ? " (directory):" : "
if (subdir I'=null) {

i st Recursive(subdir, depth);
} else {

string[] text = file.read();

for (int j =0; j < text.Length; ++j)

Consol e. WiteLine(indent + "\t" + text[j]);

public static void Main(string[] args)

{

int status = 0;
| ce. Commruni cator ic = null;

try {
/] Create a communi cat or
/1
ic = lce. UWil.initialize(ref args);

// Create a proxy for the root directory
11
lce. ObjectPrx obj = ic.stringToProxy("RootDir:default -p 10000");

/1 Down-cast the proxy to a Directory proxy
11
DirectoryPrx rootDir = DirectoryPrxHel per.checkedCast (obj);

/'l Recursively list the contents of the root directory
11
Consol e. WitelLine("Contents of root directory:");
|'i st Recursive(rootDir, 0);
} catch (Exception e) {
Consol e. Error. WitelLine(e);
status = 1;

}
if (ic!=null) {
/1 dean up
/1
try {
ic.destroy();
} catch (Exception e) {
Consol e. Error. WitelLine(e);
status = 1;
}
}

Envi ronment . Exi t (st at us);

(file):"));

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The Cl i ent class defines two methods: | i st Recur si ve, which is a helper function to print the contents of the file system, and Mai n,
which is the main program. Let us look at Mai n first:

1. The structure of the code in Mai n follows what we saw in Hello World Application. After initializing the run time, the client creates a
proxy to the root directory of the file system. For this example, we assume that the server runs on the local host and listens using the
default protocol (TCP/IP) at port 10000. The object identity of the root directory is known to be Root Di r.

2. The client down-casts the proxy to Di r ect or yPr x and passes that proxy to | i st Recur si ve, which prints the contents of the file
system.

Most of the work happens in | i st Recur si ve. The function is passed a proxy to a directory to list, and an indent level. (The indent level
increments with each recursive call and allows the code to print the name of each node at an indent level that corresponds to the depth of
the tree at that node.) | i st Recur si ve calls the | i st operation on the directory and iterates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Di r ect ory proxy, as well as an uncheckedCast to narrow the
Node proxy to a Fi | e proxy. Exactly one of those casts will succeed, so there is no need to call checkedCast twice: if the Node
is-a Di rect ory, the code uses the Di r ect or yPr x returned by the checkedCast ; if the checkedCast fails, we know that the
Node is-a File and, therefore, an uncheckedCast is sufficientto geta Fi | ePr x.

In general, if you know that a down-cast to a specific type will succeed, it is preferable to use an uncheckedCast instead of a
checkedCast because an uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which cast succeeded, prints " (di rectory)" or
"(file)" following the name.

3. The code checks the type of the node:

® Ifitis a directory, the code recurses, incrementing the indent level.
® Ifitis afile, the code calls the r ead operation on the file to retrieve the file contents and then iterates over the returned
sequence of lines, printing each line.

Assume that we have a small file system consisting of two files and a directory as follows:

’_) = Directory (ﬁ) RootDir
i

/S
. = File / \
Coleridge | . README

=,

Kubla-Khan

A small file system.

The output produced by the client for this file system is:

Contents of root directory:
READMVE (file):
This file systemcontains a collection of poetry.
Col eridge (directory):
Kubl a_Khan (file):
I'n Xanadu di d Kubl a Khan
A stately pl easure-done decree:
Wiere Al ph, the sacred river, ran
Through caverns neasurel ess to nan
Down to a sunless sea.

474 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Note that, so far, our client (and server) are not very sophisticated:

® The protocol and address information are hard-wired into the code.
® The client makes more remote procedure calls than strictly necessary; with minor redesign of the Slice definitions, many of these
calls can be avoided.

We will see how to address these shortcomings in our discussions of IceGrid and object life cycle.

See Also

Hello World Application

Slice for a Simple File System

Example of a File System Server in C-Sharp
Object Life Cycle

IceGrid

475 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Server-Side Slice-to-C-Sharp Mapping

The mapping for Slice data types to C# is identical on the client side and server side. This means that everything in the Client-Side
Slice-to-C-Sharp Mapping also applies to the server side. However, for the server side, there are a few additional things you need to know —
specifically, how to:

® |[nitialize and finalize the server-side run time

® Implement servants

® Pass parameters and throw exceptions

® Create servants and register them with the Ice run time.

Because the mapping for Slice data types is identical for clients and servers, the server-side mapping only adds a few additional
mechanisms to the client side: a small API to initialize and finalize the run time, plus a few rules for how to derive servant classes from
skeletons and how to register servants with the server-side run time.

Although the examples we present in this chapter are very simple, they accurately reflect the basics of writing an Ice server. Of course, for
more sophisticated servers, you will be using additional APIs, for example, to improve performance or scalability. However, these APIs are
all described in Slice, so, to use these APIs, you need not learn any C# mapping rules beyond those described here.

Topics

The Server-Side main Method in C-Sharp
Server-Side C-Sharp Mapping for Interfaces
Parameter Passing in C-Sharp

Raising Exceptions in C-Sharp

Tie Classes in C-Sharp

Object Incarnation in C-Sharp

Asynchronous Method Dispatch (AMD) in C-Sharp
Example of a File System Server in C-Sharp

476 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The Server-Side main Method in C-Sharp

On this page:

® A Basic Mai n Method in C#
® Thelce. Application Classin C#
® Using | ce. Appl i cati on on the Client Side in C#
® Catching Signals in C#
® | ce. Applicati on and Properties in C#
® Limitations of | ce. Appl i cati onin C#

A Basic Mai n Method in C#

The main entry point to the Ice run time is represented by the local interface | ce: : Comruni cat or . As for the client side, you must initialize
the Ice run time by calling I ce. Uti | . i nitial i ze before you can do anything else in your server. I ce. Util .initializereturnsa
reference to an instance of an | ce. Conmuni cat or:

C#
usi ng System
public class Server
{
public static void Main(string[] args)
{
int status = 0;
| ce. Comuni cat or comuni cator = null;
try {
communi cator = lce.Util.initialize(ref args);
/1
} catch (Exception ex) {
Consol e. Error. WiteLi ne(ex);
status = 1;
/1
}
}
lce. Wil.initialize acceptsthe argument vector that is passed to Mai n by the operating system. The method scans the argument
vector for any command-line options that are relevant to the Ice run time; any such options are removed from the argument vector so, when
lce. UWil.initialize returns, the only options and arguments remaining are those that concern your application. If anything goes wrong

during initialization, i ni ti al i ze throws an exception.

Before leaving your Mai n method, you must call Comuni cat or . dest r oy. The dest r oy operation is responsible for finalizing the Ice run
time. In particular, dest r oy waits for any operation implementations that are still executing in the server to complete. In addition, dest r oy
ensures that any outstanding threads are joined with and reclaims a number of operating system resources, such as file descriptors and
memory. Never allow your Mai n method to terminate without calling dest r oy first; doing so has undefined behavior.

The general shape of our server-side Mai n method is therefore as follows:

477 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#

using System

public class Server
{
public static void Main(string[] args)
{
int status = O;
I ce. Communi cat or communi cator = null;

try {
comuni cator = lce.Uil.initialize(ref args);

I
} catch (Exception ex) {
Consol e. Error. Wi teLine(ex);
status = 1;
}
if (comunicator !'= null) {
try {
communi cat or. destroy();
} catch (Exception ex) {
Consol e. Error. WiteLi ne(ex);
status = 1;
}
}

Envi ronnent . Exi t (status);

Note that the code placesthe calltol ce. Util.initializeintoatry block and takes care to return the correct exit status to the
operating system. Also note that an attempt to destroy the communicator is made only if the initialization succeeded.

Thel ce. Appl i cati on Class in C#

The preceding structure for the Mai n method is so common that Ice offers a class, | ce. Appl i cat i on, that encapsulates all the correct
initialization and finalization activities. The synopsis of the class is as follows (with some detail omitted for now):

C#
namespace | ce
{
public abstract class Application
{
public abstract int run(string[] args);
public Application();
public Application(Signal Policy signal Policy);
public int nain(string[] args);
public int main(string[] args, string configFile);
public int main(string[] args, InitializationData init);
public static string appNane();
public static Communi cator communi cator();
}
}

The intent of this class is that you specialize | ce. Appl i cat i on and implement the abstract r un method in your derived class. Whatever
code you would normally place in Mai n goes into the r un method instead. Using | ce. Appl i cat i on, our program looks as follows:

478 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#
using System
public class Server
{
class App : lce. Application
{
public override int run(string[] args)
{
/'l Server code here...
return O;
}
}
public static void Main(string[] args)
{
App app = new App();
Envi ronnent . Exi t (app. mai n(args));
}
}

Note that Appl i cat i on. mai n is overloaded: you can pass an optional file name oran | ni ti al i zat i onDat a structure.

If you pass a configuration file name to nai n, the property settings in this file are overridden by settings in a file identified by the
| CE_CONFI Genvironment variable (if defined). Property settings supplied on the command line take precedence over all other settings.

The Appl i cati on. mai n method does the following:

1. Itinstalls an exception handler for Syst em Except i on. If your code fails to handle an exception, Appl i cati on. mai n prints the
name of the exception and a stack trace on Consol e. Err or before returning with a non-zero return value.

2. Itinitializes (by calling I ce. Util.initialize)and finalizes (by calling Conmuni cat or . dest r oy) a communicator. You can get
access to the communicator for your server by calling the static communi cat or accessor.

3. It scans the argument vector for options that are relevant to the Ice run time and removes any such options. The argument vector
that is passed to your r un method therefore is free of Ice-related options and only contains options and arguments that are specific
to your application.

4. It provides the name of your application via the static appName method. You can get at the application name from anywhere in your
code by calling | ce. Appl i cati on. appNamne (which is usually required for error messages).

5. Itinstalls a signal handler that properly destroys the communicator.

6. Itinstalls a per-process logger if the application has not already configured one. The per-process logger uses the value of the
| ce. Progr anNane property as a prefix for its messages and sends its output to the standard error channel. An application can
also specify an alternate logger.

Using | ce. Appl i cat i on ensures that your program properly finalizes the Ice run time, whether your server terminates normally or in
response to an exception. We recommend that all your programs use this class; doing so makes your life easier. In addition,

I ce. Appl i cati on also provides features for signal handling and configuration that you do not have to implement yourself when you use
this class.

Using | ce. Appl i cati on on the Client Side in C#

You can use | ce. Appl i cat i on for your clients as well: simply implement a class that derives from | ce. Appl i cat i on and place the
client code into its r un method. The advantage of this approach is the same as for the server side: | ce. Appl i cat i on ensures that the
communicator is destroyed correctly even in the presence of exceptions.

Catching Signals in C#

The simple server we developed in Hello World Application had no way to shut down cleanly: we simply interrupted the server from the
command line to force it to exit. Terminating a server in this fashion is unacceptable for many real-life server applications: typically, the
server has to perform some cleanup work before terminating, such as flushing database buffers or closing network connections. This is
particularly important on receipt of a signal or keyboard interrupt to prevent possible corruption of database files or other persistent data.

To make it easier to deal with signals, | ce. Appl i cat i on encapsulates the low-level signal handling tasks, allowing you to cleanly shut
down on receipt of a signal.

479 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#
nanespace |ce
{
public abstract class Application
{
/1
public static void destroyOnlnterrupt();
public static void shutdownOnlnterrupt();
public static void ignorelnterrupt();
public static void callbackOnlnterrupt();
public static void holdlnterrupt();
public static void releaselnterrupt();
public static bool interrupted();
public virtual void interruptcCallback(int sig);
}
}

The methods behave as follows:

® destroyOnlnterrupt
This method installs a handler that destroys the communicator if it is interrupted. This is the default behavior.

® shut downOnl nt er r upt
This method installs a handler that shuts down the communicator if it is interrupted.

® jignorelnterrupt
This method causes signals to be ignored.

® cal |l backOnl nt errupt
This method configures | ce. Appl i cati on to invoke i nt er rupt Cal | back when a signal occurs, thereby giving the subclass
responsibility for handling the signal.

® hol dl nterrupt
This method temporarily blocks signal delivery.

® rel easelnterrupt
This method restores signal delivery to the previous disposition. Any signal that arrives after hol dl nt err upt was called is
delivered when you call r el easel nt errupt .

® interrupted
This method returns t r ue if a signal caused the communicator to shut down, f al se otherwise. This allows us to distinguish
intentional shutdown from a forced shutdown that was caused by a signal. This is useful, for example, for logging purposes.

® interruptCallback
A subclass overrides this method to respond to signals. The method may be called concurrently with any other thread and must not
raise exceptions.

By default, | ce. Appl i cati on behaves as if dest r oyOnl nt er r upt was invoked, therefore our server Mai n method requires no change
to ensure that the program terminates cleanly on receipt of a signal. (You can disable the signal-handling functionality of | ce. Appl i cati on
by passing the enumerator NoSi gnal Handl i ng to the constructor. In that case, signals retain their default behavior, that is, terminate the
process.) However, we add a diagnostic to report the occurrence, so our r un method now looks like:

480 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#

using System

public class Server

{
class App : lce. Application
{
public override int run(string[] args)
{
/'l Server code here...
if (interrupted())
Consol e. Error. WiteLi ne(appNane() + ":
return O;
}
}
public static void Main(string[] args)
{
App app = new App();
Envi ronment . Exi t (app. mai n(args));
}
}

termnating");

| ce.

Appl i cati on and Properties in C#

Apart from the functionality shown in this section, | ce. Appl i cat i on also takes care of initializing the Ice run time with property values.

Properties allow you to configure the run time in various ways. For example, you can use properties to control things such as the thread pool
size or port number for a server. The mai n method of | ce. Appl i cati on is overloaded; the second version allows you to specify the name

of a configuration file that will be processed during initialization.

Limitations of | ce. Appl i cati onin C#

I ce. Appl i cati on is a singleton class that creates a single communicator. If you are using multiple communicators, you cannot use
I ce. Appl i cati on. Instead, you must structure your code as we saw in Hello World Application (taking care to always destroy the
communicator).

See Also

481

Hello World Application
Properties and Configuration
Communicator Initialization
Logger Facility

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Server-Side C-Sharp Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run time: by implementing methods in a servant class, you provide
the hook that gets the thread of control from the Ice server-side run time into your application code.

On this page:
® Skeleton Classes in C#

® Servant Classes in C#
® Server-Side Normal and i denpot ent Operations in C#

Skeleton Classes in C#

On the client side, interfaces map to proxy classes. On the server side, interfaces map to skeleton classes. A skeleton is a class that has an
abstract method for each operation on the corresponding interface. For example, consider our Slice definition for the Node interface:

Slice

nmodul e Fil esystem {
interface Node {
i demrpot ent string nane();

The Slice compiler generates the following definition for this interface:

C#

nanmespace Fil esystem

{
public interface NodeOperations_
{
string name(lce.Current __current);
}
public interface NodeOperationsNC_
{
string nane();
}
public interface Node : Ice.Cbject, NodeOperations_, NodeOperationsNC_
{
}
public abstract class NodeDisp_ : Ice.jectlnpl, Node
{
public string name()
{
return nanme(new lce.Current());
}
public abstract string nane(lce.Current __current);
/| Mapping-internal code here...
}

The important points to note here are:

® As for the client side, Slice modules are mapped to C# namespaces with the same name, so the skeleton class definitions are part

482 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

of the Fi | esyst emnamespace.

® For each Slice interface <i nt er f ace- nane>, the compiler generates C# interfaces <i nt er f ace- name>Qper at i ons_ and
<i nterface-name>Cper ati onsNC_ (NodeQOper ati ons_ and NodeQper at i onsNC_ in this example). These interfaces contain
a method for each operation in the Slice interface. (You can ignore the | ce. Curr ent parameter for the now.)

® For each Slice interface <i nt er f ace- nane>, the compiler generates a C# interface <i nt er f ace- nane> (Node in this example).
That interface extends | ce. Qbj ect and the two operations interfaces.

® For each Slice interface <i nt er f ace- nane>, the compiler generates an abstract class <i nt er f ace- nane>Di sp_ (NodeDi sp_
in this example). This abstract class is the actual skeleton class; it is the base class from which you derive your servant class.

Servant Classes in C#

In order to provide an implementation for an Ice object, you must create a servant class that inherits from the corresponding skeleton class.
For example, to create a servant for the Node interface, you could write:

C#
public class Nodel : NodeDi sp_
{
publ i c Nodel (string nane)
{
_nanme = nane;
}
public override string name(lce.Current current)
{
return _nane;
}
private string _naneg;
}

By convention, servant classes have the name of their interface with an | -suffix, so the servant class for the Node interface is called Nodel .
(This is a convention only: as far as the Ice run time is concerned, you can choose any name you prefer for your servant classes.) Note that
Nodel extends NodeDi sp_, that is, it derives from its skeleton class.

As far as Ice is concerned, the Nodel class must implement only a single method: the abstract nane method that it inherits from its skeleton.
This makes the servant class a concrete class that can be instantiated. You can add other methods and data members as you see fit to
support your implementation. For example, in the preceding definition, we added a _nane member and a constructor. (Obviously, the
constructor initializes the _nanme member and the nane method returns its value.)

Server-Side Normal and i denpot ent Operations in C#

Whether an operation is an ordinary operation or an i denpot ent operation has no influence on the way the operation is mapped. To
illustrate this, consider the following interface:

Slice
interface Exanple {
voi d nor mal Op();
i denpotent void i denpot ent Op() ;
H
The operations class for this interface looks like this:
C#

public interface Exanpl eOperations_
{
void normal Op(lce. Current __current);
voi d idenpotent Op(lce.Current _ _current);

483 Copyright © 2011, ZeroC, Inc.

Note that the signatures of the methods are unaffected by the i denpot ent qualifier.

Ice 3.4.2 Documentation

See Also

484

Slice for a Simple File System
Parameter Passing in C-Sharp
Raising Exceptions in C-Sharp
Tie Classes in C-Sharp

The Current Object

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Parameter Passing in C-Sharp

Parameter Passing in C#

For each parameter of a Slice operation, the C# mapping generates a corresponding parameter for the corresponding method in the
<i nterf ace- name>QCper at i ons_ interface. In addition, every operation has an additional, trailing parameter of type | ce. Curr ent . For
example, the name operation of the Node interface has no parameters, but the nane method of the NodeQper at i ons_ interface has a

single parameter of type | ce. Cur r ent . We will ignore this parameter for now.

To illustrate the rules, consider the following interface that passes string parameters in all possible directions:

Slice
nmodul e M {
interface Exanple {
string op(string sin, out string sout);
I
b
The generated method for op looks as follows:
C#

public interface Exanpl eOperations_

{
}

string op(string sin, out string sout, Ice.Current __current);

As you can see, there are no surprises here. For example, we could implement op as follows:

C#

using System

public class Exanplel : ExanpleDisp_

{
public override string op(string sin, out string sout, lce.Current current)
{
Consol e. Wi teLine(sin); /Il In parans are initialized
sout = "Hello World!"; /'l Assign out param
return "Done";
}
}

This code is in no way different from what you would normally write if you were to pass strings to and from a method; the fact that remote
procedure calls are involved does not affect your code in any way. The same is true for parameters of other types, such as proxies, classes,
or dictionaries: the parameter passing conventions follow normal C# rules and do not require special-purpose API calls.

See Also

Server-Side C-Sharp Mapping for Interfaces
Raising Exceptions in C-Sharp

Tie Classes in C-Sharp

The Current Object

485 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Raising Exceptions in C-Sharp

To throw an exception from an operation implementation, you simply instantiate the exception, initialize it, and throw it. For example:

C#
11
public override void wite(string[] text, Ice.Current current)
{
try
{
/1l Try to wite file contents here...
}
cat ch(Syst em Excepti on ex)
{
CenericError e = new CGenericError("cannot wite file", ex);
e.reason = "Exception during wite operation”;
throw e;
}
}

Note that, for this example, we have supplied the optional second parameter to the Generi cErr or constructor. This parameter sets the
I nner Except i on member of Syst em Except i on and preserves the original cause of the error for later diagnosis.

If you throw an arbitrary C# run-time exception (such as an | nval i dCast Except i on), the Ice run time catches the exception and then
returns an UnknownExcept i on to the client. Similarly, if you throw an "impossible" user exception (a user exception that is not listed in the
exception specification of the operation), the client receives an UnknownUser Except i on.

If you throw an Ice run-time exception, such Menor yLi mi t Except i on, the client receives an UnknownLocal Except i on. For that reason,
you should never throw system exceptions from operation implementations. If you do, all the client will see is an UnknownLocal Except i on
, which does not tell the client anything useful.

Three run-time exceptions are treated specially and not changed to UnknownLocal Except i on when returned to the
client: Obj ect Not Exi st Except i on, Oper at i onNot Exi st Except i on, and Facet Not Exi st Excepti on.

See Also

Run-Time Exceptions

C-Sharp Mapping for Exceptions
Server-Side C-Sharp Mapping for Interfaces
Parameter Passing in C-Sharp

Tie Classes in C-Sharp

486 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Tie Classes in C-Sharp

The mapping to skeleton classes requires the servant class to inherit from its skeleton class. Occasionally, this creates a problem: some
class libraries require you to inherit from a base class in order to access functionality provided by the library; because C# does not support
multiple implementation inheritance, this means that you cannot use such a class library to implement your servants because your servants
cannot inherit from both the library class and the skeleton class simultaneously.

To allow you to still use such class libraries, Ice provides a way to write servants that replaces inheritance with delegation. This approach is
supported by tie classes. The idea is that, instead of inheriting from the skeleton class, you simply create a class (known as an
implementation class or delegate class) that contains methods corresponding to the operations of an interface. You use the - - t i e option
with the sl i ce2cs compiler to create a tie class. For example, the - - t i e option causes the compiler to create exactly the same code for
the Node interface as we saw previously, but to also emit an additional tie class. For an interface <i nt er f ace- nane>, the generated tie
class has the name <i nt er f ace- name>Ti e_:

487 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

C#
public class NodeTie_ : NodeDisp_, |ce.TieBase
{
public NodeTie_ ()
{
}
public NodeTi e_(NodeQper ati ons_ del)
{
_ice_del egate = del;
}
public object ice_delegate()
{
return _ice_del egate;
}
public void ice_del egat e(object del)
{
_ice_del egate = (NodeQperations_)del;
}
public override int GetHashCode()
{
return _ice_delegate == null ? 0 : _ice_del egate. Get HashCode();
}
public override bool Equal s(object rhs)
{
if (object.ReferenceEqual s(this, rhs))
{
return true;
}
if (!(rhs is NodeTie_))
{
return fal se;
}
if (_ice_delegate == null)
{
return ((NodeTie_)rhs)._ice_del egate == null;
}
return _ice_del egate. Equal s(((NodeTie_)rhs)._ice_del egate);
}
public override string nane(lce.Current _ current)
{
return _ice_del egate. name(__current);
}
private NodeOperations_ _ice_del egate;
}

This looks a lot worse than it is: in essence, the generated tie class is simply a servant class (it extends NodeDi sp_) that delegates each

invocation of a method that corresponds to a Slice operation to your implementation class:

488

Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Skeleton NodeDisp Nodedperations
Class «interfaces winterfacexs
F F
Tie T _ Irmplementation
Class WodeTie HodeT Clase

A skeleton class, tie class, and implementation class.
The | ce. Ti eBase interface defines the i ce_del egat e methods that allow you to get and set the delegate.

Given this machinery, we can create an implementation class for our Node interface as follows:

C#
public class Nodel NodeQper ati ons_
{
publ i c Nodel (string nane)
{
_nanme = nane;
}
public override string name(lce.Current current)
{
return _nane;
}
private string _naneg;
}

Note that this class is identical to our previous implementation, except that it implements the NodeQper at i ons_ interface and does not
extend NodeDi sp_ (which means that you are now free to extend any other class to support your implementation).

To create a servant, you instantiate your implementation class and the tie class, passing a reference to the implementation instance to the tie
constructor:

C#

/1 Create inplenentation
I/ Create tie

Nodel fred =
NodeTi e_ servant =

new Nodel ("Fred");
new NodeTi e_(fred);

Alternatively, you can also default-construct the tie class and later set its delegate instance by calling i ce_del egat e:

C#

NodeTi e_ servant = new NodeTie_(); /Il Create tie
..
Nodel
11

servant.ice_del egate(fred);

fred = new Nodel ("Fred"); /Il Create inplementation

/1 Set del egate

When using tie classes, it is important to remember that the tie instance is the servant, not your delegate. Furthermore, you must not use a
tie instance to incarnate an Ice object until the tie has a delegate. Once you have set the delegate, you must not change it for the lifetime of
the tie; otherwise, undefined behavior results.

You should use the tie approach only if you need to, that is, if you need to extend some base class in order to implement your servants:
using the tie approach is more costly in terms of memory because each Ice object is incarnated by two C# objects (the tie and the delegate)
instead of just one. In addition, call dispatch for ties is marginally slower than for ordinary servants because the tie forwards each operation
to the delegate, that is, each operation invocation requires two function calls instead of one.

Also note that, unless you arrange for it, there is no way to get from the delegate back to the tie. If you need to navigate back to the tie from
the delegate, you can store a reference to the tie in a member of the delegate. (The reference can, for example, be initialized by the

489 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

constructor of the delegate.)
See Also

® Server-Side C-Sharp Mapping for Interfaces
® Parameter Passing in C-Sharp
® Raising Exceptions in C-Sharp
® Object Incarnation in C-Sharp

490 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

Object Incarnation in C-Sharp

Having created a servant class such as the rudimentary Nodel class, you can instantiate the class to create a concrete servant that can
receive invocations from a client. However, merely instantiating a servant class is insufficient to incarnate an object. Specifically, to provide
an implementation of an Ice object, you must take the following steps:

1. Instantiate a servant class.

2. Create an identity for the Ice object incarnated by the servant.
3. Inform the Ice run time of the existence of the servant.

4. Pass a proxy for the object to a client so the client can reach it.

On this page:

Instantiating a C# Servant

Creating an Identity in C#

Activating a C# Servant

UUIDs as Identities in C#

Creating Proxies in C#
® Proxies and Servant Activation in C#
® Direct Proxy Creation in C#

Instantiating a C# Servant

Instantiating a servant means to allocate an instance:

C#

Node servant = new Nodel ("Fred");

This code creates a new Nodel instance and assigns its address to a reference of type Node. This works because Nodel is derived from
Node, so a Node reference can refer to an instance of type Nodel . However, if we want to invoke a method of the Nodel class at this point,
we must use a Nodel reference:

C#

Nodel servant = new Nodel ("Fred");

Whether you use a Node or a Nodel reference depends purely on whether you want to invoke a method of the Nodel class: if not, a Node
reference works just as well as a Nodel reference.

Creating an Identity in C#

Each Ice object requires an identity. That identity must be unique for all servants using the same object adapter.
ﬂ The Ice object model assumes that all objects (regardless of their adapter) have a globally unique identity.

An Ice object identity is a structure with the following Slice definition:

Slice

modul e lce {
struct ldentity {
string nane;
string category;

491 Copyright © 2011, ZeroC, Inc.

Ice 3.4.2 Documentation

The full identity of an object is the combination of both the name and cat egor y fields of the | dent i t y structure. For now, we will leave the
cat egory field as the empty string and simply use the nane field. (The cat egor y field is most often used in conjunction with servant
locators.)

To create an identity, we simply assign a key that identifies the servant to the name field of the | dent i t y structure:

C#

Ice.ldentity id = new Ice.ldentity();
id.nanme = "Fred"; // Not unique, but good enough for now

Activating a C# Servant

Merely creating a servant instance does nothing: the Ice run time becomes aware of the existence of a servant only once you explicitly tell
the object adapter about the servant. To activate a servant, you invoke the add operation on the object adapter. Assuming that we have
access to the object adapter in the _adapt er variable, we can write:

C#

_adapter.add(servant, id);

Note the two arguments to add: the servant and the object identity. Calling add on the object adapter adds the servant and the servant's
identity to the adapter's servant map and links the proxy for an Ice object to the correct servant instance in the server's memory as follows:

1. The proxy for an Ice object, apart from addressing information, contains the identity of the Ice object. When a client invokes an
operation, the object identity is sent with the request to the server.

2. The object adapter receives the request, retrieves the identity, and uses the identity as an index into the servant map.

3. If a servant with that identity is active, the object adapter retrieves the servant from the servant map and dispatches the incoming
request into the correct method on the servant.

Assuming that the object adapter is in the active state, client requests are dispatched to the servant as soon as you call add.

UUIDs as ldentities in C#

The Ice object model assumes that object identities are globally unique. One way of ensuring that uniqueness is to use UUIDs (Universally
Unique Identifiers) as identities. .NET provides a helper function that we can use to create such identities:

C#

public class Exanple

{
public static void Main(string[] args)
{
System Consol e. Wi teLine(Sy