StandardScalerModel#
- class pyspark.mllib.feature.StandardScalerModel(java_model)[source]#
Represents a StandardScaler model that can transform vectors.
New in version 1.2.0.
Methods
call
(name, *a)Call method of java_model
setWithMean
(withMean)Setter of the boolean which decides whether it uses mean or not
setWithStd
(withStd)Setter of the boolean which decides whether it uses std or not
transform
(vector)Applies standardization transformation on a vector.
Attributes
Return the column mean values.
Return the column standard deviation values.
Returns if the model centers the data before scaling.
Returns if the model scales the data to unit standard deviation.
Methods Documentation
- call(name, *a)#
Call method of java_model
- setWithMean(withMean)[source]#
Setter of the boolean which decides whether it uses mean or not
New in version 1.4.0.
- setWithStd(withStd)[source]#
Setter of the boolean which decides whether it uses std or not
New in version 1.4.0.
- transform(vector)[source]#
Applies standardization transformation on a vector.
New in version 1.2.0.
- Parameters
- vector
pyspark.mllib.linalg.Vector
orpyspark.RDD
Input vector(s) to be standardized.
- vector
- Returns
pyspark.mllib.linalg.Vector
orpyspark.RDD
Standardized vector(s). If the variance of a column is zero, it will return default 0.0 for the column with zero variance.
Notes
In Python, transform cannot currently be used within an RDD transformation or action. Call transform directly on the RDD instead.
Attributes Documentation
- mean#
Return the column mean values.
New in version 2.0.0.
- std#
Return the column standard deviation values.
New in version 2.0.0.
- withMean#
Returns if the model centers the data before scaling.
New in version 2.0.0.
- withStd#
Returns if the model scales the data to unit standard deviation.
New in version 2.0.0.