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Abstract

A LaTeX package for creating portable, JavaScript driven PDF
animations from sets of vector graphics or raster image files or from
inline graphics.
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1 Introduction

This package provides an interface to create PDFs with animated content from
sets of graphics or image files, from inline graphics, such as LATEX-picture,
PSTricks or pgf/TikZ generated pictures, or just from typeset text. Unlike stand-
ard movie/video formats, package ‘animate’ allows for animating vector graph-
ics. The result is roughly similar to the SWF (Flash) format, although not as
space-efficient.

Package ‘animate’ supports the usual PDF making workflows, i. e. pdfLATEX,
LuaLATEX, LATEX → dvips → ps2pdf/Distiller and (X E)LATEX → (x)dvipdfmx.

The final PDF can be viewed in current Adobe Readers on all supported plat-
forms (except mobile devices) or in PDF-XChange Viewer.

2 Requirements

ε-TEX

pdfTEX, version ≥ 1.20 or LuaTEX for direct PDF output

Ghostscript, version ≥ 9.15 or Adobe Distiller for PS to PDF conversion

dvipdfmx, version ≥ 20080607 for DVI to PDF conversion

Adobe Reader, version ≥ 7 or PDF-XChange Viewer (with option ‘method=widget’
or ‘method=ocg’)

3 Installation

Unzip the file ‘animate.tds.zip’ into the local TDS root directory which can be
found by running ‘kpsewhich -var-value TEXMFLOCAL’ on the command line.

After installation, update the filename database by running ‘texhash’ on the
command line.

TEX-Live and MiKTEX users should run the package manager of their system
for installation.

4 Using the package

First of all, read Section 9 on problems related to this package. Then, invoke
the package by putting the line

\usepackage[<package options>]{animate}
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to the preamble of your document, i. e. somewhere between \documentclass

and \begin{document}.

‘animate’ honours the package options:

dvipdfmx

xetex

autoplay

autopause

autoresume

loop

palindrome

draft

final

controls

width=<h-size>

height=<v-size> | totalheight=<v-size>

keepaspectratio

scale=<factor>

buttonsize=<size>

buttonbg=<colour>

buttonfg=<colour>

step

nomouse

type=<file ext>

method=icon | widget | ocg

poster[=first | <num> | last | none]

Except for ‘dvipdfmx’ and ‘xetex’, the options above are also available (among
others) as command options and will be explained shortly. However, if used as
package options they have global scope, taking effect on all animations in the
document. In turn, command options locally override global settings. Options
without an argument are boolean options and can be negated, with the exception
of package-only options ‘dvipdfmx’ and ‘xetex’, by appending ‘=false’.

If PDF is generated via DVI and Postscript by the command sequence latex →

dvips → ps2pdf, the ‘graphicx’ package is required. The dvips op-
tion ‘-Ppdf’ should not be set when converting the intermediate DVI into Post-
script. If you cannot do without, put ‘-D 1200’ after ‘-Ppdf’ on the command
line. Users of LATEX-aware text editors with menu-driven toolchain invocation,
such as TEXnicCenter, should check the configuration of the dvips call.

X ELATEX and dvipdfmx require the ‘graphicx’ package to be loaded. While
X ELATEX will be auto-detected (package option ‘xetex’ is optional), ‘animate’
and ‘graphicx’ need the package option ‘dvipdfmx’ in the case of dvipdfmx.

Usually, a second LATEX run is necessary to resolve internally created object
references. A warning message will be issued if appropriate.
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5 The user interface

Package ‘animate’ provides the command

\animategraphics[<options>]{<frame rate>}{<file basename>}{<first>}{<last>}

and the environment

\begin{animateinline}[<options>]{<frame rate>}

... typeset material ...

\newframe[<frame rate>]

... typeset material ...

\newframe*[<frame rate>]

... typeset material ...

\newframe

\multiframe{<number of frames>}{[<variables>]}{

... repeated (parameterized) material ...

}

\end{animateinline}

While \animategraphics can be used to assemble animations from sets of ex-
isting graphics files or from multipage PDF, the environment ‘animateinline’
is meant to create the animation from the typeset material it encloses. This
material can be pictures drawn within the LATEX ‘picture’ environment or us-
ing the advanced capabilities of PSTricks or pgf/TikZ. Even ordinary textual
material may be animated in this way. The parameter <frame rate> specifies
the number of frames per second of the animation.

The \newframe command terminates a frame and starts the next one. It can be
used only inside the ‘animateinline’ environment. There is a starred variant,
\newframe*. If placed after a particular frame, it causes the animation to pause
at that frame. The animation continues as normal after clicking it again. Both
\newframe variants take an optional argument that allows the frame rate to be
changed in the middle of an animation.

The \multiframe command allows the construction of loops around pictures.
The first argument <number of frames> does what one would expect it to
do, the second argument <variables> is a comma-separated list of variable
declarations. The list may be of arbitrary, even zero, length. Variables may
be used to parameterize pictures which are defined in the loop body (third
argument of \multiframe). A single variable declaration has the form

<variable name>=<initial value>+<increment>

<variable name> is a sequence of one or more letters without a leading back-
slash1. The first (and possibly only) letter of the variable name determines the
type of the variable. There are three different types: integers (‘i’, ‘I’), reals
(‘n’, ‘N’, ‘r’, ‘R’) and dimensions or LATEX lengths (‘d’, ‘D’). Upon first execu-
tion of the loop body, the variable takes the value <initial value>. Each
further iteration increments the variable by <increment>. Negative increments
must be preceded by ‘-’. Here are some examples: ‘i=1+2’, ‘Rx=10.0+-2.25’,

1This is different from \multido (package ‘multido’) where variable names have a leading
‘\’ in the declaration.
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‘dim=20pt+1ex’. Within the loop body, variables are expanded to their cur-
rent value by prepending a backslash to the variable name, that is \i, \Rx

and \dim according to the previous examples. \multiframe must be surroun-
ded by \begin{animateinline} and \end{animateinline} or by any of the
\newframe variants. Two consecutive \multiframe commands must be separ-
ated by one of the \newframe variants.

By default, the animation is built frame by frame in the order of inclusion of
the embedded material. However, extended control of the order of appearance,
superposition and repetition of the material is available through the ‘timeline’
option (see Section 6.2).

Sets of graphics files

All files of the sequence should exist and be consecutively numbered. (Exception
to this rule is allowed in connection with the ‘every’ option, see below.) <file

basename> is the leftmost part of the file name that is common to all members
of the sequence. <first> is the number of the first and <last> the number of
the last file in the set. If <first> is greater than <last>, files are embedded in
reverse order. File names may be simply numbered, such as 0 . . . 99. If there are
leading zeros, make sure that all file numbers have the same number of digits,
such as 0000 . . .0099, and that the <first> and <last> arguments are filled in
accordingly.

For example, given the sequence ‘frame_5.png’ through ‘frame_50.png’ from a
possibly larger set that shall be used to build an animation running at 12 frames
per second, the correct inclusion command would read

\animategraphics{12}{frame_}{5}{50}

The possible file formats depend on the output driver being used. In the case
of LATEX+dvips, files with the ‘eps’ extension are at first searched for, fol-
lowed by ‘mps’ (METAPOST-generated Postscript) and ‘ps’. With pdfLATEX
and LuaLATEX the searching order is: (1) ‘pdf’, (2) ‘mps’, (3) ‘png’, (4) ‘jpg’,
(5) ‘jpeg’, (6) ‘jbig2’, (7) ‘jb2’, (8) ‘jp2’1, (9) ‘j2k’1, (10) ‘jpx’1 and with X ELATEX
or LATEX+dvipdfmx: (1) ‘pdf’, (2) ‘mps’, (3) ‘eps’, (4) ‘ps’, (5) ‘png’, (6) ‘jpg’,
(7) ‘jpeg’, (8) ‘bmp’. That is, files capable of storing vector graphics are found
first. Make sure that all file names have lower case extensions.

This searching procedure can be skipped thanks to the package and command
option ‘type=<file ext>’. It enforces the embedding of files with the given file
name extension <file ext>.

Command \graphicspath{} from the ‘graphicx’ package can be used to specify
directories to be browsed for graphics files.

Multipage PDF (pdfLATEX, X ELATEX) and JBIG2 (pdfLATEX) inclusion

If the file ‘<file basename>.(pdf|jbig2|jb2)’ exists, it is taken as a multipage
document where each page represents one frame of the animation. In this case,
the last two arguments, <first> & <last>, are interpreted differently from
above; they specify a zero-based range of pages to be included in the animation.

1Only LuaLATEX currently supports JPEG2000.
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Either or both of them may be omitted, ‘{}’, in which case they default to 0
and n − 1, where n is the total number of available pages. Arguments that fall
outside this range are automatically corrected to the actual limits. If <first>

is greater than <last>, pages are embedded in reverse order. Again, option
‘type=<file ext>’ can be used to enforce a particular file type.

For example, the line

\animategraphics{12}{frames}{}{}

would create an animation from all pages of the file ‘frames.pdf’, running at 12
fps.

6 Command options

The following options to \animategraphics and ‘animateinline’ have been
provided:

6.1 Basic options

label=<label text>

The animation is given a label, <label text>, which should be unique. La-
belling an animation enables its JavaScript programming interface by defining
anim[’<label text>’], which is a JavaScript reference to the animation ob-
ject. The animation object provides a number of properties and methods that
can be used for controlling the animation playback from within user defined
JavaScript. For details, see Sect. 7.

type=[<file ext>]

Overrides the searching procedure for graphics files explained in the previous
section and forces files with extension <file ext> to be used. Given with an
empty argument as in ‘type=’, this option locally reinstates the default searching
procedure if it was globally disabled through the package option.

poster[=first | <num> | last | none]

Specifies which frame to display and print if the animation is not activated. The
first frame is shown by default. Thus ‘poster’ or ‘poster=first’ need not be
explicitly set. A frame number <num> may as well be given; <num> is zero-based,
that is, the first frame has number ‘0’.

every=<num>

Build animation from every <num>th frame only. Skipped frames are discarded
and not embedded into the document. In the case of \animategraphics, skipped
input files may be missing.

autopause

Pause animation when the page is closed, instead of stopping and rewinding it
to the default frame.
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autoplay

Start animation after the page has opened. Also resumes playback of a previously
paused animation.

autoresume

Resume previously paused animation when the page is opened again.

loop

The animation restarts immediately after reaching the end.

palindrome

The animation continuously plays forwards and backwards.

step

Step through the animation one frame at a time per mouse-click. The <frame rate>

argument will be ignored.

width=<h-size>

height=<v-size> | totalheight=<v-size>,

keepaspectratio

Resize the animation widget. If only one of ‘width’ or ‘[total]height’ is given,
the other dimension of the animation widget is scaled to maintain the aspect
ratio of the first frame’s content. If both ‘width’ and ‘[total]height’ are given
together with ‘keepaspectratio’, the first frame’s content is resized to fit within
<h-size> and <v-size> while maintaining its original aspect ratio. Any valid
TEX dimension is accepted as a parameter. In addition, the length commands
\width, \height, \depth and \totalheight can be used to refer to the original
dimensions of the first frame of the animated sequence.

scale=<factor>

Scales the animation widget by <factor>.

bb=<llx> <lly> <urx> <ury>

(\animategraphics only, requires package ‘graphicx’.) The four, space separated
arguments set the bounding box of the graphics files. Units can be omitted, in
which case ‘bp’ (Postscript points) is assumed.

viewport=<llx> <lly> <urx> <ury>

(\animategraphics only, requires package ‘graphicx’.) This option takes four
arguments, just like ‘bb’. However, in this case the values are taken relative to
the origin specified by the bounding box in the graphics files.

trim=<left> <bottom> <right> <top>

(\animategraphics only, requires package ‘graphicx’.) Crops graphics at the
edges. The four lengths specify the amount to be removed from or, if negative
values have been provided, to be added to each side of the graphics.

controls
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Inserts control buttons below the animation widget. The meaning of the buttons
is as follows, from left to right: stop & first frame, step backward, play backward,
play forward, step forward, stop & last frame, decrease speed, default speed,
increase speed. Both ‘play’ buttons are replaced by a large ‘pause’ button while
the animation is playing.

buttonsize=<size>

Changes the control button height to <size>, which must be a valid TEX di-
mension. The default button height is 1.44em and thus scales with the current
font size.

buttonbg=<colour>

buttonfg=<colour>

By default, control button widgets are drawn with black strokes on transparent
background. The background can be turned into a solid colour by the first option,
while the second option specifies the stroke colour. The parameter <colour>

is an array of colon-(:)-separated numbers in the range from 0.0 to 1.0. The
number of array elements determines the colour model in which the colour is
defined: (1) gray value, (3) RGB, (4) CMYK. For example, ‘1’, ‘1:0.5:0.2’ and
‘0.5:0.3:0.7:0.1’ are valid colour specifications.

draft

final

With ‘draft’ the animation is not embedded. Instead, a box with the exact
dimensions of the animation is inserted. Option ‘final’ does the opposite as
it forces the animation to be built and embedded. Both options can be used
to reduce compilation time during authoring of a document. To get the most
out of them it is recommended to set ‘draft’ globally as a package or class
option and to set ‘final’ locally as a command option of the animation that
is currently being worked on. After the document has been finished, the global
‘draft’ option can be removed to embed all animations.

nomouse

Animation widget will not respond to mouse clicks. Unless the JavaScript inter-
face, Sect. 7, p. 14, is used to control the animation, it is recommended to also
set at least one of the ‘autoplay’ or ‘controls’ options.

method=icon | widget | ocg

The package implements three different animation methods. The ‘icon’ method
is the default one for the pdfLATEX, X ELATEX and dvipdfmx workflows, and
‘widget‘ for the dvips route. The ‘icon’ method usually gives the best anima-
tion performance (achievable frame rate). Forcing ‘icon’ in the case of dvips

unfortunately leads to dead ‘hyperref’-inserted links in the final PDF; it should
be enabled only if the ‘hyperref’ package is not used. This is for technical reasons,
more specifically, due to a limitation of the ‘pdfmark’ Postscript operator. The
‘ocg’ method is an alternative animation method based on Optional Content
Groups (OCGs, also known as PDF Layers). In rare cases (standalone anima-
tions without animation controls) it may lead to better animation performance
than the other two methods. Moreover, it allows overlaying animations with
other typeset material, that is, playing animations in the page background.
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measure

Measures the frame rate during one cycle of the animation and prints the value
to the JavaScript console of the Reader. (For testing purposes.)

begin={<begin text>}

end={<end text>}

(‘animateinline’ only.) <begin text> and <end text> are inserted into the
code at start and end of each frame. Mainly used for setting up some drawing
environment, such as

begin={\begin{pspicture}(... , ...)(... , ...)},

end={\end{pspicture}}

A short note on the ‘tikzpicture’ environment: Unlike ‘pspicture’, the ‘tikz-

picture’ environment is able to determine its size from the graphical objects
it encloses. However, this may result in differently sized frames of a sequence,
depending on the size and position of the graphical objects. Thus, in order to
ensure that all frames of the sequence be displayed at the same scale in the
animation widget, a common bounding box should be shared by the frames. A
bounding box can be provided by means of an invisible ‘rectangle’ object:

begin={

\begin{tikzpicture}

\useasboundingbox (... , ...) rectangle (... , ...);

},

end={\end{tikzpicture}}

6.2 The ‘timeline’ option

timeline=<timeline file>

<timeline file> is a plain text file whose contents determines the order of
appearance of the embedded material during the animation. It allows the user
to freely rearrange, repeat and overlay the material at any point of the animation.
This may greatly reduce the file size of the resulting PDF, as objects that do
not change between several or all frames, such as coordinate axes or labels, can
be embedded once and re-used in other frames of the animation. (Technically,
this is done by the XObject referencing mechanism of PDF.)

If a timeline is associated with the animation, the graphics files or inline graphics
embedded by \animategraphics and ‘animateinline’ no longer represent the
actual frames of the animation. Rather, they are a collection of transparencies
that can be played with at will. However, it is now up to the author’s responsib-
ility to construct a timeline that makes use of each of those transparencies and
to put them into a sensible order. In order to identify the transparencies within
the timeline file, they are numbered in the order of their inclusion, starting at
zero.

A timeline-based animation can be thought of as a living stack of translucent
transparencies. Each animation frame is a snapshot of the stack viewed from
above. Transparencies are usually put on top of that stack and stay there for
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a given number of frames before expiring (becoming invisible). The lifetime of
each transparency within the stack can be set individually. Once expired, a
transparency can be put on the stack again, if desired. The stack may also be
divided into an arbitrary number of sub-stacks to facilitate the creation of layers,
such as background, foreground and intermediate layers. Sub-stacks allow the
insertion of transparencies at depth positions of the global stack other than just
the top. It is important to keep the stack-like nature of animations in mind
because graphical objects on transparencies at higher stack positions overlay
the content of transparencies at lower stack positions.

General structure of the timeline file

Each line of the timeline file that is not blank and which does not begin with
a comment (‘%’) corresponds to one frame of the animation. There may be
more transparencies than animation frames and vice-versa. A frame specification
consists of three or four colon-(:)-separated fields:

[*]:[<frame rate>]:[<transparencies>][:<JavaScript>]

While any field may be left blank, the first two colons are mandatory. The
<JavaScript> field is explained on p. 13.

An asterisk (‘*’) in the leftmost field causes the animation to pause at that
frame, very much as a \newframe* would do; a number in the second field
changes the frame rate of the animation section that follows. In connection with
the ‘timeline’ option, the asterisk extension and the optional <frame rate>

argument of \newframe cease to make sense and will be tacitly ignored if present.

The third field <transparencies> is a comma-separated list of transparency
specifications that determines the transparencies to be put on the stack. Semi-
colons (;) are used to separate sub-stacks (= layers) from each other. A single
transparency specification obeys the syntax

<transparency ID>[x<number of frames>]

where <transparency ID> is an integer number that identifies the transparency
to be drawn into the current animation frame. As pointed out above, the trans-
parencies are consecutively numbered in the order of their inclusion, starting
at zero. The optional postfix ‘x<number of frames>’ specifies the number of
consecutive frames within which the transparency is to appear. If omitted, a
postfix of ‘x1’ is assumed, which causes the transparency to be shown in the
current frame only. Obviously, <number of frames> must be a non-negative
integer number. The meaning of postfix ‘x0’ is special; it causes the transpar-
ency to be shown in all frames, starting with the current one, until the end of
the animation or until the animation sub-stack to which it belongs is explicitly
cleared.

The letter ‘c’, if put into <transparencies>, clears an animation sub-stack, that
is, it causes all transparencies added so far to be removed from the sub-stack,
overriding any <number of frames> value. The effect of ‘c’ is restricted to the
sub-stack in which it appears. Thus, a ‘c’ must be applied to every sub-stack if
the complete animation stack is to be cleared. Moreover, if applied, ‘c’ should go
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into the first position of the transparency list of a sub-stack because everything
in the sub-stack up to ‘c’ will be cleared.

Timeline example with a single animation stack

Table 1 is an example of a single-stack animation. It lists the contents of a
timeline file together with the resulting stack of transparencies. Note how the
stack is strictly built from the bottom up as transparency specifications are read
from left to right and line by line from the timeline file. In frame No. 4, the stack
is first cleared before new transparencies are deposited on it. Also note that the
stack is viewed from above and transparencies in higher stack position overprint
the lower ones.

Table 1: Timeline example of a single-stack animation

frame No. timeline file transparency stack

0 ::0x0,1x2
———1———
———0———

1 ::2

———2———
———1———
———0———

2 ::3
———3———
———0———

3 ::4
———4———
———0———

4 ::c,5x0,6
———6———
———5———

5 ::7
———7———
———5———

6 ::8
———8———
———5———

7 ::9
———9———
———5———

Figures 1 and 4 in Section 8.1 are animation examples with a single transparency
stack.

Grouping objects into layers (= sub-stacks) using ‘;’

Due to the stack-like nature of the animation, the position of a transparency
specification in the timeline file determines its depth level in relation to other
transparencies. The timeline file is processed line by line and from left to right.
In a single-stack animation, the stack is strictly built from the bottom up, such
that earlier transparencies are overprinted by more recent ones. This may turn
out to be inconvenient in certain situations. For example, it might be desirable
to change the background image in the middle of an animation without affect-
ing objects that are located in the foreground. For this purpose, transparency
specifications can be grouped into layers (sub-stacks) using the semicolon (;)
as a separator. New transparencies can now be put on top of the individual
sub-stacks. After a line of the timeline file has been processed, the global stack

11



Table 2: Timeline example with two sub-stacks

frame No. timeline file transparency stack

0 :: 0x0 ; 2x0

———2———
. . . . . . . . . . . . . . . . . . . . . . . . . . .

———0———

1 ::7,8x2 ; 3x0

———3———
———2———

. . . . . . . . . . . . . . . . . . . . . . . . . . .

———8———
———7———
———0———

2 :: ; 4x0

———4———
———3———
———2———

. . . . . . . . . . . . . . . . . . . . . . . . . . .

———8———
———0———

3 ::c,1x0 ; 5x0

———5———
———4———
———3———
———2———

. . . . . . . . . . . . . . . . . . . . . . . . . . .

———1———

4 :: ; 6x0

———6———
———5———
———4———
———3———
———2———

. . . . . . . . . . . . . . . . . . . . . . . . . . .

———1———

is built by placing the sub-stacks on top of the other. Again, the left-to-right
rule applies when determining the height of the sub-stacks in relation to each
other within the global stack.

The layer concept is best illustrated by an example. In the timeline of Table 2,
transparencies are grouped into two sub-stacks only. One is reserved for the
background images, transparencies No. 0 & 1, to be exchanged in frame No. 3,
as well as for two other transparencies, No. 7 & 8, to be interspersed in frame No.
1. A second sub-stack takes the foreground objects that are successively added
to the scene. The dotted lines in the third column of the table just mark the
border between the two sub-stacks. In frame No. 3, ‘c’ first clears the bottom
sub-stack before the new background image is inserted. (Instead, ‘x3’ could
have been used with transparency No. 0 in frame No. 0.) As can be seen in the
specifications of frames No. 2 & 4, sub-stacks need not be explicitly populated;
the leading semicolons just ensure the proper assignment of transparencies to
animation sub-stacks.
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See the second animation, Fig. 2, in Section 8.1 for a working example that
makes use of the timeline and the layer concept.

Associate JavaScript actions with animation frames

The optional fourth field <JavaScript> in a frame specification takes JavaScript
code to be executed upon display of that frame. This could be used, for instance,
to play a sound that was embedded using the ‘media9’ LATEX package [5] or
to execute JavaScript methods of the animation object. A non-trivial example
is looping over a sub-range of frames which can be programmed by setting
the ‘pageNum’ property of the animation object. See Sect. 7 for details of the
animation programming interface.

The backslash ‘\’ and percent ‘%’ characters retain their special meaning from
LATEX and must be escaped by a backslash ‘\’ in the JavaScript code. The same
applies to unbalanced braces ‘{’ and ‘}’. Thus, a code line such as

console.println(’{}%}{\n’);

would have to look like

console.println(’{}\%\}\{\\n’);

in the timeline file. The first pair of braces are balancing themselves and do not
need to be escaped.

Note that JavaScript is executed at the start of displaying the frame. If some-
thing is to be executed at the end of a particular frame, the <JavaScript> field
should be added to the next frame in the timeline file. However, this is not
possible for the last frame in a timeline file. Here, the ‘setTimeOut’ method can
be used to delay the execution of commands:

app.setTimeOut(’anim.myanim.frameNum=5;’, 0.5*anim.myanim.dt)

In this example, the 6th frame will be displayed after half of the current frame’s
lifetime has elapsed.

Other things to note

When designing the timeline, care should be taken not to include a transparency
more than once into the same animation frame. Besides the useless redundancy,
this may slow down the animation speed in the Reader because the graphical
objects of a multiply included transparency have to be rendered unnecessarily
often at the same time. ‘animate’ is smart enough to detect multiple inclusion
and issues a warning message along with the transparency ID and the frame
number if it occurs. Here is an example of a poorly designed timeline:

::0

::1x0

::2

::3

::4,2

::5,1 % bad: transparency ‘1’ included twice

::6

Also, ‘animate’ finds and warns about transparencies that have never been used
in an animation timeline. This may help to avoid dead code in the final PDF.
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7 Programming interface

The package provides a simple JavaScript programming interface which gives
access to the animation objects in a PDF file. A particular animation property
or method can be accessed by

anim[’<anim label>’].<property or method>

or

anim.<anim label>.<property or method>

‘anim’ is an array of animation object references. Animations must be labelled
using the ‘label=...’ command option in order to be present in the ‘anim’ array.
As usual, properties and methods are accessed via the dot notation. Properties
and methods of the animation object are summarized in Tables 3 and 4.

One potential use of the JavaScript interface could be within a timeline file
associated with an animation. For example, loops over a sub-range of frames
can be programmed by setting the ‘frameNum’ property. See Section 6.2, p. 13
for details.

Also, the programming interface can be used to create custom buttons for play-
back control. The command \mediabutton from the ‘media9’ package provides
a convenient way for achieving this:

\usepackage{media9}

\usepackage{animate}

...

\animategraphics[label=my_anim]{12}{...}{...}{...}

\mediabutton[

jsaction={anim[’my_anim’].playFwd();}

]{\fbox{Play}}

\mediabutton[

jsaction={anim[’my_anim’].frameNum=5;}

]{\fbox{Goto 6th frame}}
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Table 3: Animation object properties

name type access description
numFrames Integer read-only Holds the total number of animation

frames.
frameNum Integer read+write Gets or sets the current frame be-

ing/to be displayed. Note that frame
numbers are zero-based. Assigning val-
ues less than zero or greater than
numFrames-1 results in an error.

fps Number read+write Gets or sets the animation frame rate
(frames per second). Assigning values
less than zero results in an error.

dt Number read-only Holds the time span (milliseconds) for
display of the current frame.

isPlaying Boolean read-only Holds the value true if the animation
is currently playing, false otherwise.

playsFwd Boolean read-only Holds the value true if the anima-
tion is played forward, independently
of whether the animation is currently
paused or not.

Table 4: Animation object methods

name description
playFwd() Starts playing the animation in the forward direction, setting

the properties isPlaying and playsFwd to true.
playBwd() Starts playing the animation in the backward direction, set-

ting isPlaying to true and playsFwd to false.
pause() Pauses animation, setting isPlaying to false.
stopFirst() Stops animation and rewinds to the first frame. isPlaying

is set to false.
stopLast() Stops animation and goes to the last frame. isPlaying is set

to false.
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8 Examples

8.1 Animations from sets of files, using \animategraphics

command

Animations in this section are made from graphics files that were prepared
with METAPOST. Run ‘mpost --tex=latex’ on the files ending in ‘.mp’ in the
‘files’ directory to generate the graphics files. Both examples make use of the
‘timeline’ option to reduce the resulting PDF file size.

The first example, Fig. 1, originally written by Jan Holeček [3], shows the expo-
nential function y = ex and its approximation by Taylor polynomials of different
degree. Below the animation, a custom button was inserted using the JavaScript
programming interface and the \mediabutton command from the ‘media9’ pack-
age.

\documentclass{article}

\usepackage{animate}

\usepackage{media9}

\usepackage{graphicx}

\begin{filecontents}{timeline.txt}

::0x0 % coordinate system & y=e^x, repeated until last frame

::1 % one blue curve per frame

::2

::3

::4

::5

::6

::7

::8

\end{filecontents}

\begin{document}

\begin{center}

\animategraphics[

label=taylor,

controls, loop,

timeline=timeline.txt

]{4}{exp_}{0}{8}

\mediabutton[

jsaction={

if(anim[’taylor’].isPlaying)

anim[’taylor’].pause();

else

anim[’taylor’].playFwd();

}

]{\fbox{Play/Pause}}

\end{center}

\end{document}

16



Figure 1

The second, somewhat more complex example, Fig. 2, animates the geomet-
ric construction of a scarabaeus. In addition to the use of a timeline, it in-
troduces the layer concept. This example is adapted from Maxime Chupin’s
original METAPOST source file [1]. The present version separates stationary
from moving parts of the drawing and saves them into different files. A total
of 254 files, scarab_0.mps through scarab_253.mps, is written out by running
‘mpost --tex=latex’ on the source file ‘scarab.mp’. Files 0 through 100 contain
the red line segments that make up the growing scarabaeus. Files 101 through
201 contain the moving construction lines and files 202 through 252 contain the
gray lines which represent intermediate stages of the construction. The last file,
No. 253, contains the coordinate axes, two stationary construction lines and the
labels which do not move. A timeline file ‘scarab.tln’ is written out on-the-fly
during the LATEX run. It arranges the animation into three layers, forcing the
gray lines into the background, the coordinate axes into the intermediate layer
and the scarabaeus along with the moving construction lines into the foreground.
The final animation consists of 101 individual frames.

\documentclass{article}

\usepackage{intcalc} %defines \intcalcMod for Modulo computation

\usepackage{animate}

\usepackage{graphicx}

\newcounter{scarab}

\setcounter{scarab}{0}

\newcounter{blueline}

\setcounter{blueline}{101}

\newcounter{grayline}

\setcounter{grayline}{202}

%write timeline file

\newwrite\TimeLineFile

\immediate\openout\TimeLineFile=scarab.tln
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Figure 2

\whiledo{\thescarab<101}{

\ifthenelse{\intcalcMod{\thescarab}{2}=0}{

%a gray line is added to every 2nd frame

\immediate\write\TimeLineFile{%

::\thegrayline x0;253;\thescarab x0,\theblueline}

\stepcounter{grayline}

}{

\immediate\write\TimeLineFile{%

::;253;\thescarab x0,\theblueline}

}

\stepcounter{scarab}

\stepcounter{blueline}

}

\immediate\closeout\TimeLineFile

\begin{document}

\begin{center}

\animategraphics[

width=0.8\linewidth,

controls, loop,

timeline=scarab.tln

]{12}{scarab_}{0}{253}

\end{center}
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\end{document}

8.2 Animating PSTricks graphics, using ‘animateinline’ en-

vironment

Fig. 3 is an inline graphics example adapted from [2].

\documentclass{article}

\usepackage{pst-3dplot}

\usepackage{animate}

%draws a torus sector

\newcommand{\torus}[2]{% #1: angle of the torus sector,

% #2: linewidth of leading circle

\psset{Beta=20,Alpha=50,linewidth=0.1pt,origin={0,0,0},unit=0.35}%

\begin{pspicture}(-12.3,-6.3)(12.3,7)%

\parametricplotThreeD[xPlotpoints=100](80,#1)(0,360){%

t cos 2 mul 4 u sin 2 mul add mul

t sin 2 mul 4 u sin 2 mul add mul

u cos 4 mul

}%

\parametricplotThreeD[yPlotpoints=75](0,360)(80,#1){%

u cos 2 mul 4 t sin 2 mul add mul

u sin 2 mul 4 t sin 2 mul add mul

t cos 4 mul

}%

\parametricplotThreeD[yPlotpoints=1,linewidth=#2](0,360)(#1,#1){%

u cos 2 mul 4 t sin 2 mul add mul

u sin 2 mul 4 t sin 2 mul add mul

t cos 4 mul

}%

\end{pspicture}%

}

\begin{document}

\begin{center}

\begin{animateinline}[poster=last, controls, palindrome]{12}%

\multiframe{29}{iAngle=80+10, dLineWidth=2.9pt+-0.1pt}{%

%iAngle = 80, 90, ..., 360 degrees

%dLineWidth = 2.9pt, 2.8pt, ..., 0.1pt

\torus{\iAngle}{\dLineWidth}%

}%

\end{animateinline}%

\end{center}

\end{document}
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Figure 3

Another inline example, Fig. 4, is an animation of the Lorenz Attractor. The
Lorenz Attractor is a three-dimensional parametric curve whose coordinates are
obtained by integrating the set of three ordinary differential equations

dx

dt
= α(y − x)

dy

dt
= x(β − z) − y

dz

dt
= xy − γz

with respect to the independent parameter t. The shape of the attractor strongly
depends on the values chosen for the coefficients α, β and γ as well as on the
initial conditions, that is, the coordinates x0, y0 and z0 of the starting point of
the curve. Here we use the values α = 10, β = 28, γ = 8/3 and the starting
point x0 = (10, 10, 30).

The right hand sides of the equations above are defined in the macro \lorenz as
algebraic expressions. The initial value problem is solved by the macro \pstODEsolve

from the PSTricks package ‘pst-ode’ and plotted by the macro \parametricplotThreeD

from the PSTricks package ‘pst-3dplot’.

A timeline file, written on-the-fly, is used to assemble the curve segments frame
by frame to the growing attractor which, in turn, is put on top of the x-y-z
coordinate system. After the attractor has been completed, the transparency
stack is cleared. Then, transparencies containing the complete curve and the
coordinate system seen from different viewpoints are put in a row to produce
the animated fly-around.

\documentclass{article}

\usepackage{multido}

\usepackage{pst-3dplot}

\usepackage{pst-ode}

\usepackage{animate}

\begin{document}
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Figure 4

%Lorenz’ set of differential equations

\def\lorenz{%

10*(x[1]-x[0]) | %dx/dt

x[0]*(28-x[2]) - x[1] | %dy/dt

x[0]*x[1] - 8/3*x[2] %dz/dt

}%

%

%write timeline file

\newwrite\OutFile%

\immediate\openout\OutFile=lorenz.tln%

\multido{\iLorenz=0+1}{101}{%

\immediate\write\OutFile{::\iLorenz x0}%

}%

\immediate\write\OutFile{::c,101}%

\multido{\iLorenz=102+1}{89}{%

\immediate\write\OutFile{::\iLorenz}%

}%

\immediate\closeout\OutFile%

%

\psset{unit=0.155,linewidth=0.5pt}%
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\begin{animateinline}[

timeline=lorenz.tln,

controls,poster=last,

begin={\begin{pspicture}(-39,-13)(39,60)},

end={\end{pspicture}}

]{10}

%coordinate axes

\psset{Alpha=120,Beta=20}%

\pstThreeDCoor[xMax=33,yMax=33,zMax=55,linecolor=black]%

\newframe

\pstODEsetOrRestoreState{10 10 30} %initial condition

\multiframe{100}{i=0+1,rtZero=0+0.25,rtOne=0.25+0.25}{%

\pstODEsaveState{savedState}%

%compute attractor segments, stored in ‘lorenzXYZseg’

\pstODEsolve[algebraic]{lorenzXYZseg}{0 1 2}{\rtZero}{\rtOne}{26}{savedState}%

{\lorenz}%

%compute the whole attractor, stored in ‘lorenzXYZall’, with the same stepping

\ifnum\i=0\relax%

\pstODEsolve[algebraic]{lorenzXYZall}{0 1 2}{\rtZero}{\rtOne}{26}{savedState}%

{\lorenz}%

\else%

\pstODEsolve[algebraic,append]{lorenzXYZall}{0 1 2}{\rtZero}{\rtOne}{26}%

{savedState}{\lorenz}%

\fi%

\listplotThreeD[plotstyle=line]{lorenzXYZseg}%

}%

\newframe% required between two \multiframe

\multiframe{90}{rAlpha=116+-4}{% fly-around

\psset{Alpha=\rAlpha,Beta=20}%

\pstThreeDCoor[xMax=33,yMax=33,zMax=55,linecolor=black]%

\listplotThreeD[plotstyle=line]{lorenzXYZall}%

}%

\end{animateinline}

\end{document}

The last inline example in Fig. 5 is a ticking metronome written by Manuel
Luque [4]. The short clicking sound was embedded by means of the ‘media9’
package. Whenever the pendulum reaches one of its reversal points, playback
of the sound file is started using JavaScript. The JavaScript code was inserted
at the corresponding frame specifications in a timeline file. Since the PSTricks
macros for drawing the metronome body and the pendulum are quite long they
have been moved into an external file, files/pstmetronome.tex. Note that the
sound can be heard only on Win and Mac platforms. Even then, mileage may
vary. A dual core CPU may be necessary for fluent playback.

\documentclass[12pt]{article}

\usepackage{pstricks,pst-node,pst-plot,pst-tools,pst-text}

\usepackage{animate}

\usepackage{media9}

%writing timeline to external file

\begin{filecontents}{metro.txt}

::0x0,1 : annotRM[’click’].callAS(’play’);

::2
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::3

::4

::5

::6

::7

::8

::9

::10

::11

::12

::13

::14

::15

::16

::17

::18

::19

::20

::21

::22

::23

::24

::25

::26 : annotRM[’click’].callAS(’play’);

\end{filecontents}

Figure 5
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\begin{document}

\begin{center}

%loading metronome macros from external file

\input{files/pstmetronome}

%

%sound inclusion: click.mp3

\makebox[0pt][r]{\includemedia[

width=1ex,height=1ex,

label=click,

addresource=click.mp3,

activate=pageopen,transparent,noplaybutton,

flashvars={source=click.mp3&hideBar=true}

]{}{APlayer.swf}}%

%

%animated metronome

\begin{animateinline}[

controls,

width=0.7\linewidth,

palindrome,

begin={\begin{pspicture}(-9.5,-5)(9.5,15)},

end={\end{pspicture}},

timeline=metro.txt

]{25}

%metronome without pendulum

\metronomebody

\newframe

%half period of pendulum swing (26 frames)

\multiframe{26}{i=0+4}{

\pendulum{\i}

}

\end{animateinline}

\end{center}

\end{document}

9 Bugs

• The maximum frame rate that can actually be achieved largely depends on the
complexity of the graphics and on the available hardware. Starting with version
8, Adobe Reader appears to be somewhat slower. However, you might want to
experiment with the graphical hardware acceleration feature that was introduced
in Reader 8. Go to menu ‘Edit’ → ‘Preferences’ → ‘Page Display’ → ‘Rendering’
to see whether hardware acceleration is available. A 2D GPU acceleration check
box will be visible if a supported video card has been detected.

• Animations may run very slowly if viewed in the Adobe Reader web-browser
plugin. Instead, open the PDF locally in the Reader application for best results.

• The Adobe Reader setting ‘Use page cache’ (menu ‘Edit’ → ‘Preferences’ →

‘Startup’) should be disabled for version 7, while remaining enabled beginning
with version 8 (menu ‘Edit’ → ‘Preferences’ → ‘Page Display’ → ‘Rendering’).

• The dvips option ‘-Ppdf’ should be avoided entirely or followed by something
like ‘-D 1200’ on the command line in order to set a sensible DVI resolution.
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This does not degrade the output quality! The configuration file ‘config.pdf’
loaded by option ‘-Ppdf’ specifies an excessively high DVI resolution that will
be passed on to the final PDF. Eventually, Adobe Reader gets confused and will
not display the frames within the animation widget.

• Animations do not work if the PDF was produced with Ghostscript versions
older than 9.15.

• The default animation method (‘icon’) is not supported in PDF-XChange Viewer.
Use one of ‘method=widget’ or ‘method=ocg’ instead.

• If the LATEX → dvips → ps2pdf/Distiller route is being taken, make sure that
the original graphics size (i. e. not scaled by any of the ‘scale’, ‘width’, ‘height’
or ‘totalheight’ options) does not exceed the page size of the final document.
During PS to PDF conversion every graphic of the animation is temporarily
moved to the upper left page corner. Those parts of the graphics that do not
fit onto the document page will be clipped in the resulting PDF. Fortunately,
graphics files for building animations may be resized easily to fit into a given
bounding box by means of the ‘epsffit’ command line tool:

epsffit -c <llx> <lly> <urx> <ury> infile.eps outfile.eps

<llx> <lly> <urx> <ury> are the bounding box coordinates of the target doc-
ument. They can be determined using Ghostscript. For a document named ‘doc-
ument.ps’ the command line is

gs -dNOPAUSE -q -dBATCH -sDEVICE=bbox document.ps

Note that the name of the Ghostscript executable may vary between operating
systems (e. g. ‘gswin32c.exe’ on Win/DOS).

• Animations with complex graphics and/or many frames may cause LATEX to fail
with a ‘TeX capacity exceeded’ error. The following steps should fix most of
the memory related problems.

MiKTEX:

1. Open a DOS command prompt window (execute ‘cmd.exe’ via ‘Start’ →

‘Run’).

2. At the DOS prompt, enter
initexmf --edit-config-file=latex

3. Type
main_memory=12000000

into the editor window that opens, save the file and quit the editor.

4. To rebuild the format, enter
initexmf --dump=latex

5. Repeat steps 2–4 with config files ‘pdflatex’ and ‘xelatex’

TEX Live:

1. Find the configuration file ‘texmf.cnf’ by means of
kpsewhich texmf.cnf

at the shell prompt in a terminal.

2. As Root, open the file in your favourite text editor, scroll to the ‘main_memory’
entry and change it to the value given above; save and quit.

3. Rebuild the formats by
fmtutil-sys --byfmt latex

fmtutil-sys --byfmt pdflatex

fmtutil-sys --byfmt xelatex

• If a PDF containing animations is postprocessed using tools like PDFtk to split
the document into separate files, then animations in the output documents may
not work.
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• PDFs with animations cannot be embedded (via \includegraphics, \includepdf)
into other documents as the animation capability gets lost.

• Animations should not be placed on multilayered slides, also known as overlays,
created with presentation making classes such as Beamer or Powerdot. Although
possible (on the last overlay of a slide, at best), the result might be disappointing.
Put animations on flat slides only. (Of course, slides without animations may
still have overlays.)
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