
AcroTEX.Net

AcroFLeX

The AcroTEX and FLEX/Flash Connection

Applications to Graphing

D. P. Story

Copyright © 2009 dpstory@acrotex.net www.acrotex.net
Prepared: October 14, 2009 Version 0.5

mailto:dpstory@acrotex.net
www.acrotex.net

Table of Contents

1 Introduction 3

1.1 Background . 3

1.2 What is AcroFLeX? . 3

2 Requirements 4

2.1 LATEX Package Requirements . 4

2.2 PDF Creator Requirements . 5

2.3 Installation . 5

3 The AcroFLeXGraphing System 6

3.1 Setting up the Graphing Screen . 7

3.2 Graphing Screen Controls . 9

• Required Controls . 9

• Optional Controls . 10

3.3 Populate and Silent Linking . 12

3.4 Graphing with \sgraphLink . 12

3.5 Graphing with \defineGraphJS . 15

4 Customizations 16

3

1. Introduction

The AcroFLeX Graphing Bundle is used to create a graphing screen that can be incorporated into
a PDF document and viewed within Adobe Reader, version 9.0 or later. The graphing screen can
be interactive or non-interactive.

For the interactive graphing screen, the user can enter an expression representing a function
of a single variable x, a polar function of t, or a set of parametric equations that are functions
of t. Various controls are provided to change the viewing window, for shifting horizontally and
vertically, and for zooming in or out.

For the non-interactive graphing screen, the screen is populated when the user clicks a link
created by \sgraphLink. \sgraphLink passes such information as the function, domain,
and range to the graphing routines of AcroFLeX.

In this version of AcroFLeX, up to four functions can be graphed and four sets of plotted points
can be displayed, on one graphing screen.

The graph screen itself is actually a SWF file, named acroflex.swf. This SWF file is part of the
AcroFLeX distribution. This package uses the rmannot package, also written by this author, to
create rich media annotations, to embed acroflex.swf in the PDF document, and to display
the SWF through the rich media annotation.

1.1. Background

Version 9 of Acrobat/Adobe Reader introduces the rich media annotation which plays FLV movies,
and SWF animations, and MP3 files.1 Acrobat/Adobe Reader also provides a scripting bridge
between JavaScript for Acrobat, and ActionScript, the scripting language of Flash player. This
bridge enables the PDF and the Flash widget, embedded in the rich media annotation, to
communicate. The scripting bridge opens up wonderful opportunities for applications to the
education sector. The AcroFLeX Graphing Bundle is one such application of the new PDF-Flash
connection to education.

AcroFLeX uses the commercial product Adobe FLEX Builder 3 and FLEX 3 SDK to produce Flash
widgets, and the AeB to create PDF documents with appropriate JavaScript to communicate with
the Flash widget. FLEX Builder 3 is currently free for students and educators, the FLEX 3 SDK is
free to all.

1.2. What is AcroFLeX?

The word AcroFLeX is meant to convey a merging of two computer technologies:

• Acro: connotes both Adobe Acrobat (Adobe Reader) and AcroTEX (as in the AcroTEX
eDucation Bundle or, just AeB).

1The rich media annotation is introduced in Adobe Supplement to the ISO 32000, which documents BaseLevel 1.7,
ExtensionLevel 3, the Adobe’s extensions to PDF 1.7.

4

• FLeX: connotes Adobe FLEX 3. FLEX 3 is used to create SWF files to interact with the user.
In the case of graphing, plotting information is passed from Acrobat, via JavaScript, to the
Flash widget. ActionScript takes the data, and plots the points provided, and connects
them with a smooth curve.

2. Requirements

In this section we list the requirements for this package.

2.1. LATEX Package Requirements

The preamble of the demo file afgraph.tex lists:

\usepackage[%
driver=dvipsone,
web={nodirectory,pro,tight,usesf},
eforms,exerquiz,dljslib={ImplMulti},
graphicxsp={showembeds}

]{aeb_pro}
\usepackage{acroflex}

Let me comment on each of these lines.

• \usepackage{acroflex}: Of course, we use theacroflexpackage. Theacroflex
package requires the rmannot package. The latter package is the one that creates the
rich media annotation, embeds the graphing Flash widget, acroflex.swf, and displays it.
The rmannot package is the only one listed in acroflex.dtx as required, however,
more packages are really required, as discussed in the next items.

graphicxsp: A required package. The rmannot package requires graphicxsp.
The graphicxsp package, part of the AeB Pro Bundle, provides embedding of poster
graphics for a rich media annotation. A poster graphic is the appearance you see when the
annotation is not activated.

• \usepackage{aeb_pro}: A required package. The AcroFLeX Graphing Bundle uses the
willClose environment to assure the document will behave properly when the user
closes the document.

Its options, the so-called AeB Control Central, represent a convenient way to input the
other required packages (in optimal order) needed by the acroflex package.

If aeb_pro is not used, then the individual required packages must be input using the
\usepackage mechanism.

We input the aeb_pro package before the acroflex package.

We now comment on each of the options used in the aeb_pro package:

Requirements 5

– driver: This system uses Acrobat Distiller, which distills a PostScript file. The driver
values this package uses are dvips and dvipsone. Setting the driver is impor-
tant because the dvi-to-ps application (dvips and dvipsone) consumes the dvi
file produced by the TEX compiler and writes a PostScript file that Acrobat Distiller
consumes.

– web: The web package is not really required. It is used to create a PDF page size
convenient to view on a computer monitor. This package has many options and
features for the document author to design a document for screen—or for paper—
viewing.

The web package brings in the hyperref package, which is a required package. If
web is not used, hyperref needs to be input.

– eforms: A required package. This package provides form field and link support
for the AcroFLeX Graphing Bundle. The eforms, in turn, inputs the insdljs pack-
age, which provides support for document-level JavaScript. It is the document-level
JavaScript where much of the work is done: parsing input, calculating graphing data,
and sending this data off to the acroflex.swf widget for display.

– exerquiz: A required package. The exerquiz package has several function
parsing methods defined in its document-level JavaScript. AcroFLeX uses these parsing
routines. One of these days, I’ll separate out the parsing routines from exerquiz,
but not now.

– dljslib: An optional, but recommended package. We use this package for its
ImplMulti option. This option simplifies the problem of entering functional ex-
pressions. Without the ImplMulti, to enter 2x sin2(2x), the user would have to
type explicit multiplications, 2*x*(sin(2*x))ˆ2, with the ImplMulti option,
the user needs only enter 2xsinˆ2(2x).

– graphicxsp: The graphicxsp is a required package of rmannot, but we input
it earlier so we can set its options through the AeB Control Central (part of AeB Pro).

2.2. PDF Creator Requirements

This package requires Acrobat Distiller 9.0 (or later) to convert PostScript files to PDF. Because
this package uses rmannot to create rich media annotations, there is also a requirement that
the Distiller must be opened using the -F command line flag. See the documentation of the
rmannot package for more details.

2.3. Installation

The installation of the acroflex package is straightforward. Place acroflex.zip in the
search path of your TEX system and unzip. Unzipping creates a folder named acroflex. Refresh
your filename database, if your system requires it.

Accompanying the distribution is a file named acroflex.cfg. Open this file in your favorite
text editor and you see the following lines.

6

%
% AcroFleX Graphing Bundle Configuration File
% D. P. Story, dpstory@acrotex.net
%
\pathToAcroFlex{C:/acrotex/aebpro/acroflex/swf}

Edit the argument of \pathToAcroFlex (defined in the acroflex package) to the path of
the folder that contains the acroflex.swf Flash file. Save and close acroflex.cfg.

Of course, you need to install the latest versions of AeB (the AcroTEX eDucation Bundle), AeB Pro,
graphicxsp, and rmannot. Follow the package documentation closely for installation, some
of the packages require that certain JavaScript file be installed.

3. The AcroFLeX Graphing System

This package defines several document-level scripts, the two primary ones are Graph_xy()
and Graph_xyt(), the others support these two. Graph_xy() and Graph_xyt() take the
data passed to it, parse it, create plot data, and send it off to the AcroFLeX graphing widget to
graph the data by way of the infamous scripting bridge. Details of these functions can be found
in the documentation in the acroflex.dtx file.

In the AcroFLeX graphing system there are three modes of operation: interactive, populate, and
silent.

• Interactive: This occurs when the user enters a function through the UI.

The following controls are required:

\funcInputField, \graphBtn, \numPoints
\domMin, \domMax, \rngMin, \rngMax,

If parametric or polar graphs are to be used, then \domMinP and \domMaxP are also
required. The other controls are optional:

\graphClrBtn
\amtShift (\hShiftL, \hShiftR, \vShiftD, \vShiftU)
\zoomInOut, \savedelSelBtn, \functionSelect

The \graphClrBtn button is recommended, though not required. All these commands
will be discussed in detail in the pages that follow.

• Populate: This mode occurs when the graphing parameters are passed to Graph_xy (or
Graph_xyt) by \sgraphLink (or some other command). All the essential information
is passed as arguments. The target graphing screen has all the required controls, as listed
above. The command initiating the graphing must set the graph_props.populate
property to true. In this case the graphing data populate the required fields and the
graph will be drawn. It is the document author’s responsibility to only use populate on
graphing screens that have all the required control fields.

The AcroFLeX Graphing System 7

Populate behaves exactly like interactive, but the graphing data is passed to the graphing
routines in pre-packaged form, prepared by the document author; the user, however, can
manipulate the curve once it appears.

The required controls are the same as the interactive mode.

• Silent: In the non-interactive mode, there must be no controls other than\graphClrBtn.
Basically, the document author prepares some pre-packaged graphs to be displayed to the
user, without interaction. These may go along with a tutorial discussion symmetry, period-
icity, tangent lines, etc.

If the document author wants the user to interact with the graph, the required controls
need to be supplied and the graph_props.populate property needs to be set to
true. That is, use the populate mode.

3.1. Setting up the Graphing Screen

It should be a hard and fast rule that all content concerning a graphing screen should occur on
the same page as the rich media annotation that displays the graphing screen. Should discussion
cross page boundaries, create another graphing screen for that page. Never fear, the AcroFLeX
graphing widget is only embedded once, so adding more graphing screens does not bloat the
size of the file.

There are three commands to set up an AcroFLeX graph screen, these are \dimScreenGraph,
\graphName and \graphScreen. The use of the command \dimScreenGraph is not
required, but recommended.

\dimScreenGraph{<width>}{<height>}
\graphName{<unique_name>}
\graphScreen[<rmannot_options>]{<width>}{<height>}

Command Description: We describe each of these three, and their parameters.

• \dimScreenGraph: This command is a convenient way of setting the dimensions of
the graphing screen. You specify the width of the screen using the <width> parameter
and the height of the screen using the <height> parameter. These values are passed
through a \setlength, so simple calculations on the dimension can be performed on
the parameters. (The calc package is used by the web package.) This command then
defines macros \hScreenGraph and \vScreenGraph to hold these two dimensions,
respectively. \hScreenGraph and \vScreenGraph can be used in \graphScreen,
or in setting up minipages based on these lengths, for example.

If the aspect ratio of all your graphing screens is going to be the same, then it suffices to
use \dimScreenGraph only once in the document.

• \graphName: Use this command to define a unique name for this graphing screen. Each
screen must have a different name. This command defines the text macro\afgraphName,
which expands to the given name.

The AcroFLeX Graphing System 8

• \graphScreen: This is the main command of this package, it’s the one that creates a
rich media annotation and associates it with the AcroFLeX Graphing widget. It has three
parameters:

1. [<rmannot_options>] is optional and just passes to the underlying command
\rmAnnot (defined in the rmannot package) that actually creates the rich media
annotation. The most “important” key-value pair, for this package, is the poster key,
through this key, a poster can be associated with the annotation.

2. <width> is the width of the graph screen, if \dimScreenGraphwas used, just use
\hScreenGraph as this value.

3. <height> is height the screen of the graph screen, if \dimScreenGraph was
used, just use \vScreenGraph as this value.

The \graphScreen can be resized using \resizebox or \scalebox (from the graphicx
package) to obtain a larger or smaller graph screen with the same aspect ratio.

The following is an example of the usage of each of these three commands. Note that the height
is three-fourths that of the width.

\dimScreenGraph{186bp}{186bp*3/4}
\graphName{graph1}
\graphScreen[poster=aflogo]{\hScreenGraph}{\vScreenGraph}

Graphing Screen in a Floating Window. The graphing window can appear in a floating win-
dow as well. The \iconFloatGraphScreen command is used to create such a screen.

\iconFloatGraphScreen[<key_values>]{<width>}{<height>}

Parameter Description: The command has three parameters. The first optional one is passed as
the first optional parameter of the underlying\graphScreen command. The\graphScreen
command uses the two parameters \hScreenGraph and \vScreenGraph, defined through
the\dimScreenGraph command, to set the dimensions of the graph screen. The graph screen
is then resized using \resizebox from the graphicx package. The other two parameters,
<width> and <height>, are simply passed to \resizebox. See the documentation on
\resizebox for details on these parameters.

For example,

\iconFloatGraphScreen[poster=aflogo]{40bp}{!}

The first parameter is used to define a poster of the icon, the second parameter is 40bp which
means to resize the graphic to a width of 40bp, the third parameter of exclamation point (!)
signals \resizebox to maintain the aspect ratio of the graphic.

The \iconFloatGraphScreen command is implemented by creating a rich media annota-
tion for the AcroFLeX Graphing widget, with a form field button on top of it that is transparent.
Pressing on the icon is actually pressing on the button. The button action activates the graphing

The AcroFLeX Graphing System 9

screen if it is not activated, and deactivates it if it is activated. The graphing screen might be the
target of graphing data sent to it by the \sgraphLink command, see Section 3.4, page 12, or
through the graphing screen controls, these are explained next.

3.2. Graphing Screen Controls

The controls described in this section are used for interactive and populate modes.

• Required Controls

For interactive or populate mode, in addition to \graphScreen, several controls are required
so the user can manipulate the graph.

\funcInputField[<key_values>]{<width>}{<height>}

Command Description: The field created by \funcInputField2 is used to enter a function
or a set of points to be graphed. The function is parsed by the exerquiz routines, so the same
syntax that is used for exerquiz quizzes and short quizzes is used. The <key_values> are
passed to the underlining text field and can be used to change the appearance of the field, see
the eformman.pdf for more information. The <width> and <height> are the width and
height, respectively, of the text field.

\graphBtn[<key_values>]{<width>}{<height>}

Command Description: The graph button. Once the user has entered a required data into
the required fields, the user press this button and the graph appears in the graph screen. The
parameters are the same as for \funcInputField, the descriptions are the same.

\numPoints[<key_values>]{<width>}{<height>}

Command Description: This text field displays the number of points to be plotted. It is editable,
the user can change this value. The parameters are the same as for \funcInputField, the
descriptions are the same.

\domMin[<key_values>]{<width>}{<height>}
\domMax[<key_values>]{<width>}{<height>}
\rngMin[<key_values>]{<width>}{<height>}
\rngMax[<key_values>]{<width>}{<height>}

Command Description: The graphing window is set by these four text fields. When the curve
is graphed, only the rectangular window [\domMin,\domMax] × [\rngMin,\rngMax] is
displayed.3 The parameters are the same as for \funcInputField, the descriptions are the
same.

2The command was originally misnamed \fileInputField and is still recognized by the AcroFLeX package; how-
ever, document authors should use the command \funcInputField.

3By this notation, I mean the intervals determined by the values of these intervals.

The AcroFLeX Graphing System 10

If parametric and polar graphing is required of the user, then \domMinP and \domMaxP are
required as well.

\domMinP[<key_values>]{<width>}{<height>}
\domMaxP[<key_values>]{<width>}{<height>}

Command Description: The interval [\domMinP,\domMaxP] is the interval over which a set of
parametric equations is traced; in the case of polar functions, this interval is used for the domain
of the polar function. The parameters are the same as for \funcInputField, the descriptions
are the same.

Setting the default values. Whereas it is possible to set the default values of the fields just
described, a more convenient method is used.

\defaultFunction{<function|points>}
\defaultNumPoints{<postive_integer>}
\defaultDomRng{<x_min>}{<x_max>}{<y_min>}{<y_max>}
\defaultDomP{<t_min>}{<t_max>}

These can be executed, along with \graphName, just before the \graphScreen command.
The values of their parameters will then populate the corresponding fields as default values.

The following are the default values of all the required fields, as defined by the acroflex
package. Note that all of these are parsed (with the exception of the number of points) using
exerquiz’s parsing routines; consequently, a value such as 2*PI is perfectly legal.

\defaultFunction{xˆ2}
\defaultNumPoints{40}
\defaultDomRng{-2}{2}{0}{4}
\defaultDomP{0}{2*PI}

• Optional Controls

There are several other optional controls that may be useful in manipulating a graph.

\graphClrBtn[<key_values>]{<width>}{<height>}

On clicking this button, the current graphing screen is cleared of all graphs and plotted points.
Shift-clicking this button deactivates the graphing screen, and the annotation’s poster appears.

Multiple Plots. By using the \functionSelect combo box, the user can graph multiple
curves.

\savedelSelBtn[<key_values>]{<width>}{<height>}
\functionSelect[<key_values>]{<width>}{<height>}

The AcroFLeX Graphing System 11

The \functionSelect combo box serves several purposes. It consists of eight items that
appear as Curve 1, Curve 2, Curve 3, Curve 4, Plot 1, Plot 2, Plot 3, Plot 4.
When this combo box is present, the user is able to graph multiple curves and plots. Changing
the combo box to Curve 2, for example, and pressing the \graphBtn button, the function
will be graphed on Curve 2. There are four curves possible, and four sets of plotted points. The
different curves and plots are color coded.

When the \savedelSelBtn is also present, the user can click on it and save the function
definion under that curve or plot. These expressions will only be saved during the current
viewing session in Adobe Reader, but if the user is on Acrobat, the PDF can be saved and the
values added to the combo list will be saved as well.

The parameters are the same as for \funcInputField, the descriptions are the same.

Horizontal and Vertical Shifting. There are several controls that shift the graphing window
vertically or horizontally.

\amtShift[<key_values>]{<width>}{<height>}
\hShiftL{<text>}
\hShiftR{<text>}
\vShiftU{<text>}
\vShiftD{<text>}

The\amtShift is a text field, its value is a positive number that will be used to shift the graphing
window horizontally or vertically. The user can change this value. The parameters are the same
as for \funcInputField, the descriptions are the same.

The other four commands are implemented as links, then clicked, the graphing window moves
the amount specified in \amtShift field left (\hShiftL), right (\hShiftR), up (\vShiftU)
or down (\vShiftD). The argument <text> is the text to be used to identify the link.

Zoom, zoom, zoom. The user can be allowed to optionally zoom the graph out or in by
providing the control \zoomInOut.

\zoomInOut[<key_values>]{<width>}{<height>}

Click the \zoomInOut button zooms out by an amount shown in the \amtShift field; shift-
clicking will zoom in by the amount shown in the \amtShift field. The parameters are the
same as for \funcInputField, the descriptions are the same.

Setting the default values. As with the required controls, the optional ones can be given
default values through convenience macros.

\defaultShiftAmt{<positive_number>}
\defaultShiftAmt{1}

The AcroFLeX Graphing System 12

The \defaultShiftAmt is used to set the default value of the \amtShift field; the default
value is \defaultShiftAmt{1}.

The \functionSelect lists four curves and four plots. The text can be changed by through
the following text macros. Each command is followed by its default definition.

\afCurve{<name_for_curve>}
\afCurve{Curve}
\afPoint{<name_for_point>}
\afPoint{Point}
\afUnused{<unused>}
\afUnused{--unused}

The definitions values of \afCurve and\afPoint are the target of several search using regular
expressions. If the values of \afCurve and \afPoint are too complex, the regular expression
search may fail. Try to keep these definitions to ASCII characters.

3.3. Populate and Silent Linking

The previous section details the interactive mode, where the \graphScreen is present with all
its required controls, and possibly some optional controls. Curves are generated purely through
the user interface, that is, the user enters data into the various form fields, clicks the\graphBtn,
and voilà, the graph is drawn!

In this section, the populate mode is discussed as well as silent mode.

3.4. Graphing with \sgraphLink

The document author can prepare function/points to be graphed, along with all the essential
data needed to view the graph. For populate, the graphing data populate the required text field,
and is available for the user then to manipulate. The population of an interactive graphing screen
is done though a special link, the \sgraphLink. (The “s” in \sgraphLink stands for “silent,”
but that was before I made the design decision to have a populate mode.)

The syntax for \sgraphLink is

\sgraphLink[<appr>]{<graph_key_vals>}{<func|points>}{<text>}

Parameter Description: The command takes four parameters, the first is the usual optional
parameter that can be used to change the appearance of the link. The others we present in
detail.

1. [<appr>]: Key-value pairs that are used to change the appearance of the link.

2. <graph_key_vals>: Key-value pairs, some of which are used on the LATEX side, some on
the PDF side, while others on SWF side.

• graph: The value of this key determines which chart series (FLEX terminology) the
data will appear on. The values of this key are

The AcroFLeX Graphing System 13

– c1, c2, c3, and c4: Use one of these values to graph a function, a polar function,
or a set of parametric functions. Up to four curves can be displayed on the
graphing screen at once. These values are displayed using the LinearSeries
(FLEX terminology).

– a1, a2, a3, and a4: Same as above, but the region between the horizontal axis,
and the graph is shaded in. These values are displayed using the AreaSeries
(FLEX terminology).

– p1, p2, p3, and p4: Use one of these values to plot points. These values are
displayed using the PlotSeries (FLEX terminology).

Thus, graph=c2 tells the graphing routines of AcroFLeX and the AcroFLeX Graphing
widget to display this data on series c2.

If two curves or plots have the same value for graph, then the the one graphed last
will overwrite the earlier one. If you want both curves or plots to appear on the graph
together, give them different graph values.

When this key is not given a value, the default is c1.

• type: This key declares the type of curve, possible values are cart, para, and
polar. This key is used mostly internally, and is normally not used. There is one
situation that it is used. When defining a polar function, use type=polar. Thus, to
define a polar function, type something like this:

\sgraphLink{type=polar,xInterval={[-1.5,1.5]},yInterval={[-1,2]},
tInterval={[0,2*PI]},points=40,populate}
{1+sin(t)}{$r = 1 + \sin(\theta)$ }

Note the explicit use of type=polar; the parsing can identify a function of x and a
set of parametric equations that are function of t, but help is needed for polar.

• populate: Possible values are true or false, typing populate is the same as
populate=true. This switch signals the graphing routines on the PDF side to pop-
ulate the required fields with the graphing data. The default is populate=false,
do not populate, use silent mode.

Populate versus Silent Modes: The populate key is how populate mode is distin-
guished from silent mode: populate=true is populate mode, populate=false
(or the populate parameter not listed) is silent mode. In populate mode, the target
graphing screen must have all required control fields; in silent mode, the only control
should be the \graphClrBtn button.

• connectwith: The method used to connect consecutive points on the graph, pos-
sible values are curve and segment. This value is passed to the AcroFLeX graphing
widget. For function of x, the default is curve; otherwise, the default is segment.
This value is ignored when the graph property signals plotting (p1–p4).

• points: The number of points to generate for plotting the current function. When
the graph property signals plotting (p1–p4), the points property is ignored. If
the graph property signals graphing (c1–c4; a1–a4), and argument #3 is a set of
rectangular points, the points property must either not be present, or set to zero
(points=0).

The AcroFLeX Graphing System 14

• xInterval: (Required) An interval on the x-axis, the interval must be in the form
{[a,b]}, for example, xInterval={[0,1]}. For functions of x, this interval
represents the domain over which the function is graphed. It also represents the left
and right boundaries of the graphing window.

Important: The xkeyval package parses these parameters. Because the interval
notation contains a comma (,), the whole interval must be enclosed in braces so the
parsing will be correct, as illustrated above.

• yInterval: (Required) An interval on the y-axis, the interval must be in the form
{[a,b]}, for example, yInterval={[0,1]}. It represents the upper and lower
boundaries of the graphing window.

As with xInterval, the interval needs to be enclosed in braces.

• tInterval: When plotting a set of parametric equations, or a polar function, this
interval is required as a parameter. The interval is of the form {[a,b]}, including
the braces, and represents the domain of the parameter. The tInterval must not
be included otherwise, that is, for graphing a function of x. Some early LATEX parsing
tests whether the value of tInterval is empty (the default) or not. If nonempty,
we assume the graphing is parametric or polar. For point plotting, tIntervalmust
not be included in the parameter list.

• xPlot: The parameter xInterval determines the left and right boundaries of the
graphing window; it also determines the interval over which the function is to be plot-
ted. The xPlot separates these two functionalities; the value of xPlot is an interval
[a,b], over which the function will be plotted. Thus, xInterval={[-2,2]}
specifies the scaling of the x-axis; while xPlot={[0,1]} defines the interval to plot
the given function. If xPlot is not specified, then xInterval will be used.

• noquotes: When argument #3 is parsed, it is, by default, placed in double quotes,
for example, "xˆ2"; however, there are some situations where the double quotes
should not be used. (See the afgraph.tex file for one such example.) Possible
values for noquotes are true and false. Including noquotes in the option list
is equivalent to noquotes=true. The default is noquotes=false.

• wait: Possible values for wait are true and false. Including wait in the op-
tion list is equivalent to wait=true. The default is wait=false. When using
\defineGraphJS to create a JavaScript action that will execute multiple calls to
Graph_xy or Graph_xyt, list wait in the option list. This will cause a slight delay
that allows the graphing screen to become activated, (if not already activated) be-
fore the graphing data is created and sent to the AcroFLeX graphing widget. See the
example below in Section 3.5, page 15.

3. <func|points>: This argument can be a function or a set of points.

• A function can be three types: (1) a function of x; (2) a function of t; and a pair
of function of t. If there is a single function of t, case (2), that is interpreted as a
polar function, and graphed accordingly. The pair of functions must be functions of
t and separated by a semi-colon (;); these are then interpreted as a set of parametric
equations. For example, xˆ2 would be graphed as a parabola; 1+sin(t) would be

The AcroFLeX Graphing System 15

graphed as a Cardioid in the polar coordinate system; and cos(t);sin(t) would
be graphed as a circle.

• Points can be input as a semi-colon-delimited list of rectangular coordinates. For
example, (1,2);(2,3);(5,6). Points can be plotted discretely, or plotted and
connected with either a smooth curve, or line segments.

4. <text>: The text that the link is attached to, when this text is clicked, the defined action
of populating the graph occurs.

3.5. Graphing with \defineGraphJS

The \defineGraphJS is a command that expands to either Graph_xy() or Graph_xyt(),
and is essentially the code used by \sgraphLink. Use \defineGraphJS to create a custom
link action or form field action to graph pre-packaged functions.

\defineGraphJS{<graph_key_vals>}{<func|points>}{<command>}

Command Description: \defineGraphJS defines a new command \<command> what will
expand to Graph_xy() or Graph_xyt() fully populated by its arguments. This command
can be used to create new actions that involve multiple calls to the AcroFLeX graphing routines.

Parameter Description: There are three required parameters.

1. <graph_key_vals>: The same key-value pairs as described for \sgraphLink.

2. <func|points>: An expression representing a function of x, a polar function of t, a set
of parametric equations, or a set of points.

3. <command>: A command that this JavaScript code will be saved under.

An example of usage can be found in afgraph.tex, we present another example here, also
included in afgraph.tex, that might suggest the value of this command. We construct a link
that graphs a function and plots discrete points.

\def\DomX{[0,2PI]}\def\DomY{[-1,1]}
\defineGraphJS{graph=c1,wait,xInterval={\DomX},yInterval={\DomY},

points=40}{sin(x)}{\mySineCurve}
\defineGraphJS{graph=p1,wait,xInterval={\DomX},yInterval={\DomY}}

{(0,sin(0));(PI/2,sin(PI/2));(PI,sin(PI));(3PI/2,sin(3PI/2));
(2PI,sin(2PI))}{\mySinePoints}

\setLinkText[\A{\JS{%
\clearGraphJS\r
\mySineCurve\r
\mySinePoints

}}]{Consider the sine function and indicated points}%

Note the use of the wait key in both the definitions to give the graphing screen time to be
activated and ready to receive data. Observe also the list of points is given in symbolic form, we
let JavaScript calculate the values for us.

16

The command \clearGraphJS is used to clear the graphing screen before new curves are
written to the screen. \clearGraphJS expands to the document-level JavaScript function
that clears the graphing screen.

4. Customizations

There are a number of English phrases that appear as tooltips or as messages in alert dialog
boxes, as a result, the acroflex package has a language option.

\usepackage[lang=english|german]{acroflex}

Specifying english as the value of lang inputs the file afcustom_us.def, which normally
does nothing; the definitions made in this file are the hard-wired defaults of the package. As an
English speaker, you can edit this file, and improve the phrasing, if you wish. Specifying german
as the value of lang inputs the file afcustom_de.def; you can, of course, edit this file to get
a preferred phrasing. If not lang key-value pair is specified, the acroflex package inputs the file
afcustom.def (found in the examples folder). This file is intended for local use. Place it in
the folder where the source file resides, modify it as desired to get custom messages. The file
afcustom.def contains some instructions and guidelines for editing.

� If the file afcustom.def is placed on the latex search path, it will be found and input for each
source file; if afcustom.def is in the source file folder, it is this version that is found first and
input.

Should the phrases entered inafcustom.def require special accents, use theunicodeoption
of Web (which just passes the unicode option on to hyperref), and enter any special characters
using LATEX notation. For example, to address my formerly favorite friend, Jürgen, we can write,

\ttgraphBtn{J\"{u}rgen, press to graph the function}

For the alert box messages, use JavaScript unicode notation, for example

\defineJSStr{\af@badNumberMsg}{%
J\u00FCrgen, the value input does not appear to be a number,
please enter a number, or an expression that evaluates to a
number. \dps}

This latter example does not require the unicode option.

Note that \defineJSStr is a new command (defined in eforms) that enables you to enter
unicode, for example, \u00FC is the u-umlaut (\"{u} or ü). Also, within the argument string,
you can use \r (carriage return) and �(tab) to format your lines as needed. Double back slash
\\ is converted into single backslash \, so for example, \\defineJSStr appears in the dialog
box as \defineJSStr. The string argument is immediately expanded, so a command like
\dps (in the above definition) gets expanded at definition time. Use \protect to delay the

Customizations 17

expansion until the tex compiler finally expands the JS command string (useful here, if \dps
gets redefined).

That’s all for now, I simply must get back to my retirement. DPS

	Table of Contents
	1 Introduction
	1.1 Background
	1.2 What is AcroFLeX?

	2 Requirements
	2.1 LaTeX Package Requirements
	2.2 PDF Creator Requirements
	2.3 Installation

	3 The AcroFLeX Graphing System
	3.1 Setting up the Graphing Screen
	3.2 Graphing Screen Controls
	• Required Controls
	• Optional Controls

	3.3 Populate and Silent Linking
	3.4 Graphing with \sgraphLink
	3.5 Graphing with \defineGraphJS

	4 Customizations

