% -*- coding: iso-latin-1; time-stamp-format: "%02d-%02m-%:y at %02H:%02M:%02S %Z" -*- %<*dtx> \def\xintdtxtimestamp {Time-stamp: <07-03-2015 at 20:06:50 CET>} % %<*drv> %% --------------------------------------------------------------- \def\xintdocdate {2015/03/07} \def\xintbndldate{2014/11/07} \def\xintbndlversion {1.1a} % %<*dtx> \iffalse % %% README %% CHANGE LOG %% xint v1.1a %% 2014/11/07 (doc 2015/03/07) %<*readme|changes> Source: xint.dtx (v1.1a 2014/11/07, doc of 2015/03/07) Author: Jean-Francois Burnol Info: Expandable operations on big integers, decimals, fractions License: LPPL 1.3c or later % %<*!readme&!changes&!dohtmlsh&!dopdfsh&!makefile> %% --------------------------------------------------------------- %% The xint bundle v1.1a (2014/11/07; doc: 2015/03/07) %% Copyright (C) 2013-2015 by Jean-Francois Burnol %%% xintkernel: Paraphernalia for the xint packages %%% xinttools: Expandable and non-expandable utilities %%% xintcore: Expandable arithmetic on big integers %%% xint: Expandable operations on big integers %%% xintfrac: Expandable operations on fractions %%% xintexpr: Expandable expression parser %%% xintbinhex: Expandable binary and hexadecimal conversions %%% xintgcd: Euclidean algorithm with xint package %%% xintseries: Expandable partial sums with xint package %%% xintcfrac: Expandable continued fractions with xint package %% --------------------------------------------------------------- % %<*readme> This README is also available as README.pdf and README.html. Change log is in CHANGES.pdf and CHANGES.html. Usage ===== ## With LaTeX \usepackage{xint} % expandable arithmetic with big integers \usepackage{xintfrac} % decimal numbers, fractions, floats \usepackage{xintexpr} % expressions with infix operators Further packages: `xintbinhex`, `xintgcd`, `xintseries` and `xintcfrac`. All dependencies are handled automatically. For example `xintexpr` automatically loads `xintfrac` which itself loads `xint`. Package `xintcore` is the subset of `xint` providing only the five operations on big integers: `\xintiiAdd`, `\xintiiMul`,\ ... There is also `xinttools` which is a separate package providing, among others, expandable and non-expandable loops such as `\xintFor`. ## With TeX One does for example: \input xintexpr.sty\relax Again, all dependencies are handled automatically. The packages may be loaded in any catcode context such that letters, digits, `\` and `%` have their standard catcodes. `xintcore.sty` and `xinttools.sty` both import `xintkernel.sty` which has the catcode handler and package identifier and defines a few utilities such as `\oodef` or `\xint_dothis/\xint_orthat`. Installation ============ ## Method A: using the package manager of your TeX distribution `xint` is included in [TeXLive](http://tug.org/texlive/) (hence also [MacTeX](http://tug.org/mactex/)) and [MikTeX](http://www.miktex.org/). There can be a few days of delay between apparition of a new version on [CTAN](http://www.ctan.org/pkg/xint) and availability via the distribution package manager. ## Method B: manual installation using `xint.tds.zip` and `unzip` Assumes a GNU/Linux-like system (or Mac OS X). 1. obtain `xint.tds.zip` from CTAN: 2. cd to the download repertory and issue: unzip xint.tds.zip -d where `` is a suitable TDS-compliant destination repertory. For example, with TeXLive: - Linux, standard access rights, hence sudo is needed, installation into the "local" tree: sudo unzip xint.tds.zip -d /usr/local/texlive/texmf-local sudo texhash /usr/local/texlive/texmf-local - Mac OS X, installation into user home folder (no sudo needed, and it is recommended to not have a ls-R file there, hence no texhash): unzip xint.tds.zip -d ~/Library/texmf ## Method C: manual installation using `Makefile` and `xint.dtx` The Makefile automatizes rebuilding from `xint.dtx` all documentation files as well as `xint.tds.zip`. It is for GNU/Linux-like (inc. Mac OS X) systems, with a teTeX like installation such as TeXLive. Furthermore the [Pandoc](http://johnmacfarlane.net/pandoc/) software is required. 1. obtain `xint.dtx` and `Makefile` from . 2. put them in an otherwise empty working repertory, run `make` or equivalently `make help` for further instructions. ## Method D: installation starting with only `xint.dtx` Run `"tex xint.dtx"` or `"etex xint.dtx"` to extract from `xint.dtx` all packages as well as these files: `README.md` : the current README with Markdown formatting. `CHANGES.md` : the changes across successive releases. `xint.tex` : used to generate `xint.pdf` via `"latex xint.tex"` (thrice) then `"dvipdfmx xint.dvi"`. For successful compilation, packages `newtxtt`, `newtxmath`, `etoc`, `mathastext` are needed. Inclusion of the source code is off by default, but the toggle can be set in `xint.tex`. It is also possible to compile `xint.tex` with `pdflatex`. A third option is to generate `xint.pdf` via `pdflatex xint.dtx`. Source code is then included by default. `Makefile.mk` : this is for UNIX-like systems. Note: this file is only produced with `"etex xint.dtx"`, not with `"tex xint.dtx"`. Rename it to `Makefile` and run `make` on the command line for further help. `doHTMLs.sh` and `doPDFs.sh` : these are scripts (for UNIX-like systems) which can be used to convert the `README.md` and `CHANGES.md` to HTML and PDF formats. They require [Pandoc](http://johnmacfarlane.net/pandoc/). `pandoctpl.latex` : a Pandoc template used by `doPDFs.sh`. Finishing the installation in a TDS hierarchy: - move the style files to `TDS:tex/generic/xint/` - `xint.dtx` goes to `TDS:source/generic/xint/` - the documentation (xint.pdf, README.md,...) goes to `TDS:doc/generic/xint/` Depending on the destination, it may then be necessary to refresh a filename database. License =======
Copyright (C) 2013-2015 by Jean-Francois Burnol This Work may be distributed and/or modified under the conditions of the LaTeX Project Public License, either version 1.3c of this license or (at your option) any later version. This version of this license is in > and the latest version of this license is in > and version 1.3 or later is part of all distributions of LaTeX version 2005/12/01 or later. This Work has the LPPL maintenance status `author-maintained`. The Author of this Work is Jean-Francois Burnol. This Work consists of the source file xint.dtx and of its derived files: xintkernel.sty, xintcore.sty, xint.sty, xintfrac.sty, xintexpr.sty, xintbinhex.sty, xintgcd.sty, xintseries.sty, xintcfrac.sty, xinttools.sty, xint.ins, xint.tex, README, README.md, README.html, README.pdf, CHANGES.md, CHANGES.html, CHANGES.pdf, pandoctpl.latex, doHTMLs.sh, doPDFs.sh, xint.dvi, xint.pdf, Makefile.mk.
%
-------------------------------------------------------- %<*changes>------------------------------------------------------- `1.1a (2014/11/07)` ---- - fixed a bug which prevented `\xintNewExpr` from producing correctly working macros from a comma separated replacement text. - new `\xintiiSqrtR` for rounded integer square root; former `\xintiiSqrt` already produced truncated integer square root; corresponding function `sqrtr` added to `\xintiiexpr..\relax` syntax. - use of straight quotes in the documentation for better legibility. - added `\xintiiIsOne`, `\xintiiifOne`, `\xintiiifCmp`, `\xintiiifEq`, `\xintiiifGt`, `\xintiiifLt`, `\xintiiifOdd`, `\xintiiCmp`, `\xintiiEq`, `\xintiiGt`, `\xintiiLt`, `\xintiiLtorEq`, `\xintiiGtorEq`, `\xintiiNeq`, mainly for efficiency of `\xintiiexpr`. - for the same reason, added `\xintiiGCD` and `\xintiiLCM`. - added the previously mentioned `ii` macros, and some others from `v1.1`, to the user manual. But their main usage is internal to `\xintiiexpr`, to skip unnecessary overheads. - various typographical fixes throughout the documentation, and a bit of clean up of the code comments. Improved `\Factors` example of nested `subs`, `rseq`, `iter` in `\xintiiexpr`. `1.1 (2014/10/28)` ---- bug fixes : - `\xintZapFirstSpaces` hence also `\xintZapSpaces` from package **xinttools** were buggy when used with an argument either empty or containing only space tokens. - `\xintiiexpr` did not strip leading zeroes, hence `\xinttheiiexpr 001+1\relax` did not obtain the expected result ... - `\xinttheexpr \xintiexpr 1.23\relax\relax` should have produced `1`, but it produced `1.23` - the catcode of `;` was not set at package launching time. - the `\XINTinFloatPrd:csv` macro name had a typo, hence `prd` was non-functional in `\xintfloatexpr`. breaking changes : - in `\xintiiexpr`, `/` does _rounded_ division, rather than the Euclidean division (for positive arguments, this is truncated division). The new `//` operator does truncated division, - the `:` operator for three-way branching is gone, replaced with `??`, - `1e(3+5)` is now illegal. The number parser identifies `e` and `E` in the same way it does for the decimal mark, earlier versions treated `e` as `E` rather as infix operators of highest precedence, - the `add` and `mul` have a new syntax, old syntax is with `` `+` `` and `` `*` `` (left quotes mandatory), `sum` and `prd` are gone, - no more special treatment for encountered brace pairs `{..}` by the number scanner, `a/b[N]` notation can be used without use of braces (the `N` will end up as is in a `\numexpr`, it is not parsed by the `\xintexpr`-ession scanner), - although `&` and `|` are still available as Boolean operators the use of `&&` and `||` is strongly recommended. The single letter operators might be assigned some other meaning in later releases (bitwise operations, perhaps). Do not use them. - [this missing item added 2015/03/07] place holders for `\xintNewExpr` could be denoted `#1`, `#2`, ... or also, for special purposes `$1`, `$2`, ... Only the first form is now accepted and the special cases previously treated via the second form are now managed via a `protect(...)` function. There are many novelties, most to be found in package **xintexpr**. But first the other changes. * new package **xintcore** has been split off **xint**. It contains the core arithmetic macros. It is loaded by package **bnumexpr**, * neither **xint** nor **xintfrac** load **xinttools**. Only **xintexpr** does, * whenever some portion of code has been revised, often use has been made of the `\xint_dothis` and `\xint_orthat` pair of macros for expandably branching, * these tiny helpful macros, and a few others are in package **xintkernel** which contains also the catcode and loading order management code, initially inspired by code found in Heiko Oberdiek's packages, * the source code, which was suppressed from `xint.pdf` in release `1.09n`, is now compiled into a separate file `sourcexint.pdf`, * faster handling by `\xintAdd`, `\xintSub`, `\xintMul`, ... of the case where one of the arguments is zero, * the `\xintAdd` and `\xintSub` macros from package **xintfrac** check if one of the denominators is a multiple of the other, and only if this is not the case do they multiply the denominators. But systematic reduction would be too costly, * this naturally will be also the case for the `+` and `-` operations in `\xintexpr`, * new macros `\xintiiDivRound`, `\xintiiDivTrunc` and `\xintiiMod` for rounded and truncated division of big integers (now in **xintcore**), alongside the earlier `\xintiiQuo` and `\xintiiRem`, * with **xintfrac** loaded, the `\xintNum` macro does `\xintTTrunc` (which is truncation to an integer, same as `\xintiTrunc {0}`), * new macro `\xintMod` in **xintfrac** for modulo operation with fractional numbers, * `\xintiexpr`, `\xinttheiexpr` admit an optional argument within brackets `[d]`, they round the computation result (or results, if comma separated) to `d` digits after decimal mark, (the whole computation is done exactly, as in `xintexpr`), * `\xintfloatexpr`, `\xintthefloatexpr` similarly admit an optional argument which serves to keep only `d` digits of precision, getting rid of cumulated uncertainties in the last digits (the whole computation is done according to the precision set via `\xintDigits`), * `\xinttheexpr` and `\xintthefloatexpr` _pretty-print_ if possible, the former removing unit denominator or `[0]` brackets, the latter avoiding scientific notation if decimal notation is practical, * the `//` does truncated division and `/:` is the associated modulo, * multi-character operators `&&`, `||`, `==`, `<=`, `>=`, `!=`, `**`, * multi-letter infix binary words `'and'`, `'or'`, `'xor'`, `'mod'` (straight quotes mandatory), * functions `even`, `odd`, * `\xintdefvar A3:=3.1415;` for variable definitions (non expandable, naturally), usable in subsequent expressions; variable names may contain letters, digits, underscores. They should not start with a digit, the `@` is reserved, and single lowercase and uppercase Latin letters are predefined to work as dummy variables (see next), * generation of comma separated lists `a..b`, `a..[d]..b`, * Python syntax-like list extractors `[list][n:]`, `[list][:n]`, `[list][a:b]` allowing negative indices, but no optional step argument, and `[list][n]` (`n=0` for the number of items in the list), * functions `first`, `last`, `reversed`, * itemwise operations on comma separated lists `a*[list]`, etc.., possible on both sides `a*[list]^b`, and obeying the same precedence rules as with numbers, * `add` and `mul` must use a dummy variable: `add(x(x+1)(x-1), x=-10..10)`, * variable substitutions with `subs`: `subs(subs(add(x^2+y^2,x=1..y),y=t),t=20)`, * sequence generation using `seq` with a dummy variable: `seq(x^3, x=-10..10)`, * simple recursive lists with `rseq`, with `@` given the last value, `rseq(1;2@+1,i=1..10)`, * higher recursion with `rrseq`, `@1`, `@2`, `@3`, `@4`, and `@@(n)` for earlier values, up to `n=K` where `K` is the number of terms of the initial stretch `rrseq(0,1;@1+@2,i=2..100)`, * iteration with `iter` which is like `rrseq` but outputs only the last `K` terms, where `K` was the number of initial terms, * inside `seq`, `rseq`, `rrseq`, `iter`, possibility to use `omit`, `abort` and `break` to control termination, * `n++` potentially infinite index generation for `seq`, `rseq`, `rrseq`, and `iter`, it is advised to use `abort` or `break(..)` at some point, * the `add`, `mul`, `seq`, ... are nestable, * `\xintthecoords` converts a comma separated list of an even number of items to the format expected by the `TikZ` `coordinates` syntax, * completely new version `\xintNewExpr`, `protect` function to handle external macros. The dollar sign `$` for place holders is not accepted anymore, only the standard macro parameter `#`. Not all constructs are compatible with `\xintNewExpr`. `1.09n (2014/04/01)` ---- * the user manual does not include by default the source code anymore: the `\NoSourceCode` toggle in file `xint.tex` has to be set to 0 before compilation to get source code inclusion. * bug fix (**xinttools**) in `\XINT_nthelt_finish` (this bug was introduced in `1.09i` of `2013/12/18` and showed up when the index `N` was larger than the number of elements of the list). `1.09m (2014/02/26)` ---- * new in **xinttools**: `\xintKeep` keeps the first `N` or last `N` elements of a list (sequence of braced items); `\xintTrim` cuts out either the first `N` or the last `N` elements from a list. * new in **xintcfrac**: `\xintFGtoC` finds the initial partial quotients common to two numbers or fractions `f` and `g`; `\xintGGCFrac` is a clone of `\xintGCFrac` which however does not assume that the coefficients of the generalized continued fraction are numeric quantities. Some other minor changes. `1.09kb (2014/02/13)` ---- * bug fix (**xintexpr**): an aloof modification done by `1.09i` to `\xintNewExpr` had resulted in a spurious trailing space present in the outputs of all macros created by `\xintNewExpr`, making nesting of such macros impossible. * bug fix (**xinttools**): `\xintBreakFor` and `\xintBreakForAndDo` were buggy when used in the last iteration of an `\xintFor` loop. * bug fix (**xinttools**): `\xintSeq` from `1.09k` needed a `\chardef` which was missing from `xinttools.sty`, it was in `xint.sty`. `1.09k (2014/01/21)` ---- * inside `\xintexpr..\relax` (and its variants) tacit multiplication is implied when a number or operand is followed directly with an opening parenthesis, * the `"` for denoting (arbitrarily big) hexadecimal numbers is recognized by `\xintexpr` and its variants (package **xintbinhex** is required); a fractional hexadecimal part introduced by a dot `.` is allowed. * re-organization of the first sections of the user manual. * bug fix (**xinttools**, **xint**, ...): forgotten catcode check of `"` at loading time has been added. `1.09j (2014/01/09)` ---- * (**xint**) the core division routines have been re-written for some (limited) efficiency gain, more pronounced for small divisors. As a result the *computation of one thousand digits of $\pi$* is close to three times faster than with earlier releases. * some various other small improvements, particularly in the power routines. * (**xintfrac**) a new macro `\xintXTrunc` is designed to produce thousands or even tens of thousands of digits of the decimal expansion of a fraction. Although completely expandable it has its use limited to inside an `\edef`, `\write`, `\message`, \dots. It can thus not be nested as argument to another package macro. * (**xintexpr**) the tacit multiplication done in `\xintexpr..\relax` on encountering a count register or variable, or a `\numexpr`, while scanning a (decimal) number, is extended to the case of a sub `\xintexpr`-ession. * `\xintexpr` can now be used in an `\edef` with no `\xintthe` prefix; it will execute completely the computation, and the error message about a missing `\xintthe` will be inhibited. Previously, in the absence of `\xintthe`, expansion could only be a full one (with ``\romannumeral-`0``), not a complete one (with `\edef`). Note that this differs from the behavior of the non-expandable `\numexpr`: `\the` or `\number` are needed not only to print but also to trigger the computation, whereas `\xintthe` is mandatory only for the printing step. * the default behavior of `\xintAssign` is changed, it now does not do any further expansion beyond the initial full-expansion which provided the list of items to be assigned to macros. * bug fix (**xintfrac**): `1.09i` did an unexplainable change to `\XINT_infloat_zero` which broke the floating point routines for vanishing operands =:((( * bug fix: the `1.09i` `xint.ins` file produced a buggy `xint.tex` file. `1.09i (2013/12/18)` ---- * (**xintexpr**) `\xintiiexpr` is a variant of `\xintexpr` which is optimized to deal only with (long) integers, `/` does a euclidean quotient. * `\xintnumexpr`, `\xintthenumexpr`, `\xintNewNumExpr` are renamed, respectively, `\xintiexpr`, `\xinttheiexpr`, `\xintNewIExpr`. The earlier denominations are kept but to be removed at some point. * it is now possible within `\xintexpr...\relax` and its variants to use count, dimen, and skip registers or variables without explicit `\the/\number`: the parser inserts automatically `\number` and a tacit multiplication is implied when a register or variable immediately follows a number or fraction. Regarding dimensions and `\number`, see the further discussion in *Dimensions*. * (**xintfrac**) new conditional `\xintifOne`; `\xintifTrueFalse` renamed to `\xintifTrueAelseB`; new macros `\xintTFrac` (`fractional part`, mapped to function `frac` in `\xintexpr`-essions), `\xintFloatE`. * (**xinttools**) `\xintAssign` admits an optional argument to specify the expansion type to be used: `[]` (none, default), `[o]` (once), `[oo]` (twice), `[f]` (full), `[e]` (`\edef`),... to define the macros * **xinttools** defines `\odef`, `\oodef`, `\fdef` (if the names have already been assigned, it uses `\xintoodef` etc...). These tools are provided for the case one uses the package macros in a non-expandable context, particularly `\oodef` which expands twice the macro replacement text and is thus a faster alternative to `\edef` taking into account that the **xint** bundle macros expand already completely in only two steps. This can be significant when repeatedly making `\def`-initions expanding to hundreds of digits. * some across the board slight efficiency improvement as a result of modifications of various types to *fork macros* and *branching conditionals* which are used internally. * bug fix (**xint**): `\xintAND` and `\xintOR` inserted a space token in some cases and did not expand as promised in two steps `:-((` (bug dating back to `1.09a` I think; this bug was without consequences when using `&` and `|` in `\xintexpr-essions`, it affected only the macro form). * bug fix (**xintcfrac**): `\xintFtoCCv` still ended fractions with the `[0]`'s which were supposed to have been removed since release `1.09b`. `1.09h (2013/11/28)` ---- * parts of the documentation have been re-written or re-organized, particularly the discussion of expansion issues and of input and output formats. * the expansion types of macro arguments are documented in the margin of the macro descriptions, with conventions mainly taken over from those in the `LaTeX3` documentation. * a dependency of **xinttools** on **xint** (inside `\xintSeq`) has been removed. * (**xintgcd**) `\xintTypesetEuclideAlgorithm` and `\xintTypesetBezoutAlgorithm` have been slightly modified (regarding indentation). * (**xint**) macros `xintiSum` and `xintiPrd` are renamed to `\xintiiSum` and `\xintiiPrd`. * (**xinttools**) a count register used in `1.09g` in the `\xintFor` loops for parsing purposes has been removed and replaced by use of a `\numexpr`. * the few uses of `\loop` have been replaced by `\xintloop/\xintiloop`. * all macros of **xinttools** for which it makes sense are now declared `\long`. `1.09g (2013/11/22)` ---- * a package **xinttools** is detached from **xint**, to make tools such as `\xintFor`, `\xintApplyUnbraced`, and `\xintiloop` available without the **xint** overhead. * new expandable nestable loops `\xintloop` and `\xintiloop`. * bugfix: `\xintFor` and `\xintFor*` do not modify anymore the value of `\count 255`. `1.09f (2013/11/04)` ---- * (**xint**) new `\xintZapFirstSpaces`, `\xintZapLastSpaces`, `\xintZapSpaces`, `\xintZapSpacesB`, for expandably stripping away leading and/or ending spaces. * `\xintCSVtoList` by default uses `\xintZapSpacesB` to strip away spaces around commas (or at the start and end of the comma separated list). * also the `\xintFor` loop will strip out all spaces around commas and at the start and the end of its list argument; and similarly for `\xintForpair`, `\xintForthree`, `\xintForfour`. * `\xintFor` *et al.* accept all macro parameters from `#1` to `#9`. * for reasons of inner coherence some macros previously with one extra `i` in their names (e.g. `\xintiMON`) now have a doubled `ii` (`\xintiiMON`) to indicate that they skip the overhead of parsing their inputs via `\xintNum`. Macros with a *single* `i` such as `\xintiAdd` are those which maintain the non-**xintfrac** output format for big integers, but do parse their inputs via `\xintNum` (since release `1.09a`). They too may have doubled-`i` variants for matters of programming optimization when working only with (big) integers and not fractions or decimal numbers. `1.09e (2013/10/29)` ---- * (**xint**) new `\xintintegers`, `\xintdimensions`, `\xintrationals` for infinite `\xintFor` loops, interrupted with `\xintBreakFor` and `\xintBreakForAndDo`. * new `\xintifForFirst`, `\xintifForLast` for the `\xintFor` and `\xintFor*` loops, * the `\xintFor` and `xintFor*` loops are now `\long`, the replacement text and the items may contain explicit `\par`'s. * new conditionals `\xintifCmp`, `\xintifInt`, `\xintifOdd`. * bug fix (**xint**): the `\xintFor` loop (not `\xintFor*`) did not correctly detect an empty list. * bug fix (**xint**): `\xintiSqrt {0}` crashed. `:-((` * the documentation has been enriched with various additional examples, such as the *the quick sort algorithm illustrated* or the various ways of *computing prime numbers*. * the documentation explains with more details various expansion related issues, particularly in relation to conditionals. `1.09d (2013/10/22)` ---- * bug fix (**xint**): `\xintFor*` is modified to gracefully handle a space token (or more than one) located at the very end of its list argument (as the space before `\do` in `\xintFor* #1 in {{a}{b}{c}} \do {stuff}`; spaces at other locations were already harmless). Furthermore this new version _f-expands_ the un-braced list items. After `\def\x{{1}{2}}` and `\def\y{{a}\x {b}{c}\x }`, `\y` will appear to `\xintFor*` exactly as if it had been defined as `\def\y{{a}{1}{2}{b}{c}{1}{2}}`. * same bug fix for `\xintApplyInline`. `1.09c (2013/10/09)` ---- * (**xintexpr**) added `bool` and `togl` to the `\xintexpr` syntax; also added `\xintboolexpr` and `\xintifboolexpr`. * added `\xintNewNumExpr` (now `\xintNewIExpr` and `\xintNewBoolExpr`), * the factorial `!` and branching `?`, `:`, operators (in `\xintexpr...\relax`) have now less precedence than a function name located just before, * (**xint**) `\xintFor` is a new type of loop, whose replacement text inserts the comma separated values or list items via macro parameters, rather than encapsulated in macros; the loops are nestable up to four levels (nine levels since `1.09f`) and their replacement texts are allowed to close groups as happens with the tabulation in alignments, * `\xintForpair`, `\xintForthree`, `\xintForfour` are experimental variants of `\xintFor`, * `\xintApplyInline` has been enhanced in order to be usable for generating rows (partially or completely) in an alignment, * new command `\xintSeq` to generate (expandably) arithmetic sequences of (short) integers, * again various improvements and changes in the documentation. `1.09b (2013/10/03)` ---- * various improvements in the documentation, * more economical catcode management and re-loading handling, * removal of all those `[0]`'s previously forcefully added at the end of fractions by various macros of **xintcfrac**, * `\xintNthElt` with a negative index returns from the tail of the list, * new macro `\xintPRaw` to have something like what `\xintFrac` does in math mode; i.e. a `\xintRaw` which does not print the denominator if it is one. `1.09a (2013/09/24)` ---- * (**xintexpr**) `\xintexpr..\relax` and `\xintfloatexpr..\relax` admit functions in their syntax, with comma separated values as arguments, among them `reduce, sqr, sqrt, abs, sgn, floor, ceil, quo, rem, round, trunc, float, gcd, lcm, max, min, sum, prd, add, mul, not, all, any, xor`. * comparison (`<`, `>`, `=`) and logical (`|`, `&`) operators. * the command `\xintthe` which converts `\xintexpr`essions into printable format (like `\the` with `\numexpr`) is more efficient, for example one can do `\xintthe\x` if `\x` was defined to be an `\xintexpr..\relax`: \def\x{\xintexpr 3^57\relax} \def\y{\xintexpr \x^(-2)\relax} \def\z{\xintexpr \y-3^-114\relax} \xintthe\z * `\xintnumexpr .. \relax` (now renamed `\xintiexpr`) is `\xintexpr round( .. ) \relax`. * `\xintNewExpr` now works with the standard macro parameter character `#`. * both regular `\xintexpr`-essions and commands defined by `\xintNewExpr` will work with comma separated lists of expressions, * new commands `\xintFloor`, `\xintCeil`, `\xintMaxof`, `\xintMinof` (package **xintfrac**), `\xintGCDof`, `\xintLCM`, `\xintLCMof` (package **xintgcd**), `\xintifLt`, `\xintifGt`, `\xintifSgn`, `\xintANDof`, ... * The arithmetic macros from package **xint** now filter their operands via `\xintNum` which means that they may use directly count registers and `\numexpr`-essions without having to prefix them by `\the`. This is thus similar to the situation holding previously already when **xintfrac** was loaded. * a bug (**xintfrac**) introduced in `1.08b` made `\xintCmp` crash when one of its arguments was zero. `:-((` `1.08b (2013/06/14)` ---- * (**xintexpr**) Correction of a problem with spaces inside `\xintexpr`-essions. * (**xintfrac**) Additional improvements to the handling of floating point numbers. * new section *Use of count registers* documenting how count registers may be directly used in arguments to the macros of **xintfrac**. `1.08a (2013/06/11)` ---- * (**xintfrac**) Improved efficiency of the basic conversion from exact fractions to floating point numbers, with ensuing speed gains especially for the power function macros `\xintFloatPow` and `\xintFloatPower`, * Better management by `\xintCmp`, `\xintMax`, `\xintMin` and `\xintGeq` of inputs having big powers of ten in them. * Macros for floating point numbers added to the **xintseries** package. `1.08 (2013/06/07)` ---- * (**xint** and **xintfrac**) Macros for extraction of square roots, for floating point numbers (`\xintFloatSqrt`), and integers (`\xintiSqrt`). * New package **xintbinhex** providing *conversion routines* to and from binary and hexadecimal bases. `1.07 (2013/05/25)` ---- * The **xintexpr** package is a new core constituent (which loads automatically **xintfrac** and **xint**) and implements the expandable expanding parser \xintexpr . . . \relax, and its variant \xintfloatexpr . . . \relax allowing on input formulas using the infix operators `+`, `-`, `*`, `/`, and `^`, and arbitrary levels of parenthesizing. Within a float expression the operations are executed according to the current value of `\xintDigits`. Within an `\xintexpr`-ession the binary operators are computed exactly. To write the `\xintexpr` parser I benefited from the commented source of the `l3fp` parser; the `\xintexpr` parser has its own features and peculiarities. *See its documentation*. * The floating point precision `D` is set (this is a local assignment to a `\mathchar` variable) with `\xintDigits := D;` and queried with `\xinttheDigits`. It may be set to anything up to `32767`.[^1] The macro incarnations of the binary operations admit an optional argument which will replace pointwise `D`; this argument may exceed the `32767` bound. * The **xintfrac** macros now accept numbers written in scientific notation, the `\xintFloat` command serves to output its argument with a given number `D` of significant figures. The value of `D` is either given as optional argument to `\xintFloat` or set with `\xintDigits := D;`. The default value is `16`. [^1]: but values higher than 100 or 200 will presumably give too slow evaluations. `1.06b (2013/05/14)` ---- * Minor code and documentation improvements. Everywhere in the source code, a more modern underscore has replaced the @ sign. `1.06 (2013/05/07)` ---- * Some code improvements, particularly for macros of **xint** doing loops. * New utilities in **xint** for expandable manipulations of lists: \xintNthElt, \xintCSVtoList, \xintRevWithBraces * The macros did only a double expansion of their arguments. They now fully expand them (using ``\romannumeral-`0``). Furthermore, in the case of arguments constrained to obey the TeX bounds they will be inserted inside a `\numexpr..\relax`, hence completely expanded, one may use count registers, even infix arithmetic operations, etc... `1.05 (2013/05/01)` ---- Minor changes and additions to **xintfrac** and **xintcfrac**. `1.04 (2013/04/25)` ---- * New component **xintcfrac** devoted to continued fractions. * bug fix (**xintfrac**): `\xintIrr {0}` crashed. * faster division routine in **xint**, new macros to deal expandably with token lists. * `\xintRound` added. * **xintseries** has a new implementation of `\xintPowerSeries` based on a Horner scheme, and new macro `\xintRationalSeries`. Both to help deal with the *denominator buildup* plague. * `tex xint.dtx` extracts style files (no need for a `xint.ins`). `1.03 (2013/04/14)` ---- * new modules **xintfrac** (expandable operations on fractions) and **xintseries** (expandable partial sums with xint package). * slightly improved division and faster multiplication (the best ordering of the arguments is chosen automatically). * added illustration of Machin algorithm to the documentation. `1.0 (2013/03/28)` ---- Initial announcement: > The **xint** package implements with expandable TeX macros the basic arithmetic operations of addition, subtraction, multiplication and division, as applied to arbitrarily long numbers represented as chains of digits with an optional minus sign. > The **xintgcd** package provides implementations of the Euclidean algorithm and of its typesetting. > The packages may be used with Plain and with LaTeX. %------------------------------------------------------- %<*dtx> \fi \catcode`+ 0 \catcode`\\ 12 +iffalse % %<*makefile>------------------------------------------------------ # This file: Makefile.mk (generated from xint.dtx) # Tested on Mac OS X Mavericks with GNU Make 3.81, # TeXLive 2014 and Pandoc 1.13.1. # Either download the master Makefile from # http://www.ctan.org/pkg/xint # or rename the present one as "Makefile". # Then run "make" or equivalently "make help" to # get instructions. Compilation of the complete # documentation requires Pandoc. # Note to myself: I wanted to use .RECIPEPREFIX = > but it is supported # only with GNU Make 3.82 and later. # this crazyness is to circumvent a problem with docstrip generation # of the Makefile; we do not want two empty lines becoming only one nullstring := define newline $(nullstring) endef # will speed-up a little, I think. newline := $(newline) define helptext ==== INSTRUCTIONS The Makefile is to automatize the extraction and compilation from xint.dtx of package files and documentation files, and for producing xint.tds.zip. It is for GNU/Linux like systems, with a teTeX like installation such as TeXLive. Tested on Mac OS X Mavericks with TL2014. For compiling the PDF files, packages newtx, newtxtt, etoc,... are used and should be up-to-date (as of 2014/10). Conversion to plain, html and pdf format of README.md and CHANGES.md (make PanPDF, make PanHTML) require Pandoc software. (tested with Pandoc 1.13.1). It is recommended to work with xint.dtx and Makefile in an otherwise initially empty temporary repertory. make help prints this help (using more). It will also have already extracted all files from xint.dtx. make helpless prints this help (using less). make xint.pdf extracts files and produces only xint.pdf, via latex+dvipdfmx. No Pandoc needed. make sourcexint.pdf extracts files and produces only sourcexint.pdf, via latex+dvipdfmx. No Pandoc needed. make PanPDF produces README.pdf and CHANGES.pdf, requires Pandoc. make PanHTML produces README.html and CHANGES.html, requires Pandoc. make doc produces all documentation. make all produces all documentation, and creates xint.tds.zip. make xint.tds.zip same as "make all" make cleanall removes all generated files ==== INSTALLING The following has been tested on a TeXLive installation: make installhome creates xint.tds.zip, and unzips it in (it assumes there is no ls-R file there) make installlocal creates xint.tds.zip, and unzips it in (and then does texhash ) IT MIGHT BE NEEDED TO RUN IT AS "sudo make installlocal" This depends on how the access rights are configured. In case of doubt run first "make doc" and then "make installlocal". If the latter fails, "sudo make installlocal". make uninstallhome removes all xint files and repertories from make uninstalllocal removes all xint files and repertories from (and then does texhash ) IT MIGHT BE NEEDED TO RUN IT AS "sudo make uninstalllocal" endef .PHONY: help helpless all extract doc PDF HTML clean cleanall\ installhome uninstallhome installlocal uninstalllocal # for printf with subst and \n, got it from # http://stackoverflow.com/a/5887751 # I could do the trick with := here, for \n substitution, but this would add # tiny overhead to all other operations of make help: @printf '$(subst $(newline),\n,$(helptext))' | more helpless: @printf '$(subst $(newline),\n,$(helptext))' | less # RM = rm -f JF_tmpdir = jfbu_tmp TEXMF_local = $(shell kpsewhich -var-value TEXMFLOCAL) TEXMF_home = $(shell kpsewhich -var-value TEXMFHOME) packages = xintkernel.sty xintcore.sty xint.sty xintfrac.sty xintexpr.sty\ xintgcd.sty xintbinhex.sty xintseries.sty xintcfrac.sty\ xinttools.sty # Makefile.mk is not included in $(extracted). Its extraction rule is in # master Makefile file. We can not extract Makefile from xint.dtx via # docstrip, as .tex is always appended if a filename with no extension is # specified. If "make -f Makefile.mk" is run, Makefile.mk will not be # overwritten because tex xint.dtx does not extract it (etex xint.dtx does). extracted = $(packages) xint.tex xint.ins README.md CHANGES.md\ doHTMLs.sh doPDFs.sh pandoctpl.latex doc_pdf = README.pdf CHANGES.pdf doc_html = README.html CHANGES.html filesfortex = $(packages) filesforsource = xint.dtx xint.ins Makefile filesfordoc = xint.pdf sourcexint.pdf README $(doc_pdf) $(doc_html) auxiliaryfiles = xint.tex xint.dvi xint.aux xint.toc xint.log\ sourcexint.dvi sourcexint.aux sourcexint.toc sourcexint.log\ README.tex README.dvi README.aux README.toc README.out README.log\ CHANGES.tex CHANGES.dvi CHANGES.aux CHANGES.toc CHANGES.out CHANGES.log xint_cmd = latex -interaction=nonstopmode xint sourcexint_cmd = latex -interaction=nonstopmode -jobname=sourcexint\ "\chardef\dosourcexint=1 \input{xint}" all: $(extracted) doc xint.tds.zip @echo 'make all done.' extract: $(extracted) $(extracted): xint.dtx tex xint.dtx doc: xint.pdf sourcexint.pdf README PanPDF PanHTML @echo 'make doc done.' xint.pdf: xint.dtx xint.tex rm -f xint.aux xint.toc $(xint_cmd) $(xint_cmd) $(xint_cmd) dvipdfmx xint.dvi @echo 'Warnings of dvipdfmx may presumably be safely ignored,' @echo 'but if the pdf has (font) problems do "pdflatex xint.dtx"' sourcexint.pdf: xint.dtx xint.tex rm -f sourcexint.aux sourcexint.toc $(sourcexint_cmd) $(sourcexint_cmd) $(sourcexint_cmd) dvipdfmx sourcexint.dvi @echo 'Warnings of dvipdfmx may presumably be safely ignored,' @echo 'but if the pdf has (font) problems do "pdflatex xint.dtx"' README: README.md pandoc -t plain -o README README.md PanPDF: $(doc_pdf) $(doc_pdf): doPDFs.sh chmod u+x doPDFs.sh && ./doPDFs.sh PanHTML: $(doc_html) $(doc_html): doHTMLs.sh chmod u+x doHTMLs.sh && ./doHTMLs.sh xint.tds.zip: $(filesfordoc) $(filesforsource) $(filesfortex) rm -fr $(JF_tmpdir) mkdir -p $(JF_tmpdir)/doc/generic/xint mkdir -p $(JF_tmpdir)/source/generic/xint mkdir -p $(JF_tmpdir)/tex/generic/xint chmod -R ugo+rwx $(JF_tmpdir) cp -a $(filesfordoc) $(JF_tmpdir)/doc/generic/xint cp -a $(filesforsource) $(JF_tmpdir)/source/generic/xint cp -a $(filesfortex) $(JF_tmpdir)/tex/generic/xint cd $(JF_tmpdir); chmod -R ugo+r doc source tex umask 0022 && cd $(JF_tmpdir) &&\ zip -r xint.tds.zip doc source tex &&\ mv -f xint.tds.zip ../ rm -fr $(JF_tmpdir) @echo 'make xint.tds.zip done.' xint.zip: $(filesfordoc) $(filesforsource) $(filesfortex) xint.tds.zip mkdir -p $(JF_tmpdir)/xint chmod ugo+rwx $(JF_tmpdir)/xint cp -a $(filesfordoc) $(JF_tmpdir)/xint cp -a $(filesforsource) $(JF_tmpdir)/xint chmod -R ugo+r $(JF_tmpdir)/xint mv xint.tds.zip $(JF_tmpdir)/ umask 0022 && cd $(JF_tmpdir) && zip -r xint.zip xint.tds.zip xint mv $(JF_tmpdir)/xint.tds.zip ./ mv -f $(JF_tmpdir)/xint.zip ./ rm -fr $(JF_tmpdir) @echo 'make xint.zip done.' installhome: xint.tds.zip unzip xint.tds.zip -d $(TEXMF_home) uninstallhome: cd $(TEXMF_home) && rm -fr doc/generic/xint \ source/generic/xint \ tex/generic/xint # cf http://stackoverflow.com/a/1909390 # as kpsewhich is very slow (.5s) I want to evaluate once only. installlocal: xint.tds.zip $(eval $@_tmp := $(TEXMF_local)) unzip xint.tds.zip -d $($@_tmp) && texhash $($@_tmp) uninstalllocal: cd $(TEXMF_local) && rm -fr doc/generic/xint \ source/generic/xint \ tex/generic/xint && texhash . clean: rm -f $(auxiliaryfiles) cleanall: clean rm -f $(extracted) $(doc_pdf) $(doc_html)\ README xint.pdf sourcexint.pdf xint.tds.zip %$------------------------------------------------------ %<*pandoctpl>----------------------------------------------------- $if(dvipdfmx)$ {\csname @for\endcsname\x:=hyperref,graphicx,color,xcolor\do {\PassOptionsToPackage{dvipdfmx}\x}} \PassOptionsToPackage{dvipdfmx-outline-open}{hyperref} \PassOptionsToPackage{dvipdfm}{geometry} $endif$ \documentclass[$papersize$,fontsize=$fontsize$]{scrartcl} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage[english]{babel} \usepackage{newtxtext} \usepackage{newtxtt} \usepackage{newtxmath} \usepackage{upquote} % pour les \texttt venant de la conversion par pandoc des `...`: \begingroup\makeatletter \catcode`\'\active \catcode`\*\active \catcode`\`\active \@firstofone {\endgroup \def\dostraightquotesandstar{% textcomp package is loaded by newtxtext \let`\textasciigrave \let'\textquotesingle \edef*{\noexpand\raisebox{-.25\noexpand\height}{\string*}}% \catcode39\active % ' \catcode96\active % ` \catcode42\active }% * }% for \texttt, let's just forget about math and italic correction things \DeclareRobustCommand\texttt {\bgroup \dostraightquotesandstar\afterassignment\ttfamily\let\next=} $if(geometry)$ \usepackage[$for(geometry)$$geometry$$sep$,$endfor$]{geometry} $endif$ $if(tables)$ \usepackage{longtable,booktabs} $endif$ \usepackage[unicode=true,bookmarks]{hyperref} \hypersetup{breaklinks=true,% pdfauthor={Jean-Fran\c cois Burnol},% pdftitle={$title$ $author$ $date$},% colorlinks=true,% citecolor=$if(citecolor)$$citecolor$$else$blue$endif$,% urlcolor=$if(urlcolor)$$urlcolor$$else$blue$endif$,% linkcolor=$if(linkcolor)$$linkcolor$$else$magenta$endif$,% pdfborder={0 0 0},% pdfstartview=FitH,% pdfpagemode=UseOutlines} %%\urlstyle{same} % don't use monospace font for urls \setlength{\parindent}{0pt} \setlength{\emergencystretch}{3em} % prevent overfull lines \usepackage{enumitem} %% reduce LaTeX's insane vertical spacing around verbatim blocks \setlength{\parskip}{\medskipamount} \setlist[trivlist]{topsep=0pt,partopsep=0pt,itemsep=0pt,parsep=0pt} $if(numbersections)$ \setcounter{secnumdepth}{5} $else$ \setcounter{secnumdepth}{0} $endif$ $if(etoc)$\usepackage{etoc}$endif$ \title{$title$} \author{$author$} \date{$date$} $for(header-includes)$ $header-includes$ $endfor$ \begin{document} $if(title)$ \maketitle $endif$ $for(include-before)$ $include-before$ $endfor$ $if(toc)$ \setcounter{tocdepth}{$toc-depth$} $if(etoc)$ \etocdefaultlines \etocmulticolstyle[$etoc$]{} $endif$ \tableofcontents $endif$ $body$ $for(include-after)$ $include-after$ $endfor$ \end{document} %----------------------------------------------------- %<*dohtmlsh>------------------------------------------------------ #! /bin/sh # produces README.html and CHANGES.html from README.md and CHANGES.md # tested with pandoc 1.13.1 pandoc -o README.html -s --toc -V highlighting-css=' body{margin-left : 10%; margin-right : 15%; margin-top: 4ex; font-size: 14pt;} pre {white-space: pre-wrap; } code {white-space: pre-wrap; } .mono {font-family: monospace;}' README.md pandoc -o CHANGES.html -s --toc -V highlighting-css=' body{margin-left : 10%; margin-right : 15%; margin-top: 4ex; font-size: 14pt;} pre {white-space: pre-wrap;} code {white-space: pre-wrap;} #TOC {float: right; position: relative; top: 100px; margin-bottom: 100px;}' CHANGES.md %------------------------------------------------------ %<*dopdfsh>------------------------------------------------------- #! /bin/sh # produces README.pdf and CHANGES.pdf from README.md and CHANGES.md # via latex+dvipdfmx and custom pandoc latex template pandoc -o README.tex --template=pandoctpl --toc -V papersize=a4paper -V fontsize=11pt -V dvipdfmx --variable=geometry:footskip=1cm,left=2.5cm,right=2.5cm,top=2cm,bottom=3cm -V etoc=1 README.md rm -f README.aux README.toc README.out latex -interaction=nonstopmode README latex -interaction=nonstopmode README latex -interaction=nonstopmode README dvipdfmx README.dvi pandoc -o CHANGES.tex --template=pandoctpl --toc -V papersize=a4paper -V fontsize=11pt -V dvipdfmx --variable=geometry:footskip=1cm,left=2.5cm,right=2.5cm,top=2cm,bottom=3cm -V etoc=2 CHANGES.md rm -f CHANGES.aux CHANGES.toc CHANGES.out latex -interaction=nonstopmode CHANGES latex -interaction=nonstopmode CHANGES latex -interaction=nonstopmode CHANGES dvipdfmx CHANGES.dvi %------------------------------------------------------- %<*drv>----------------------------------------------------------- %% %% Run latex thrice on this file xint.tex then run dvipdfmx on %% xint.dvi to produce the documentation xint.pdf. %% %% Or if preferred, run pdflatex (setting of \Withdvipdfmx will be %% automatically corrected). %% It does not extract Makefile.mk. For this, run rather etex xint.dtx. %% \NeedsTeXFormat{LaTeX2e} \ProvidesFile{xint.tex}% [\xintbndldate\space v\xintbndlversion\space driver file for xint documentation (jfB)]% \PassOptionsToClass{a4paper,fontsize=10pt}{scrdoc} \chardef\Withdvipdfmx 1 % 0 for pdflatex or latex+dvips \chardef\NoSourceCode 1 % 0 for source code inclusion \input xint.dtx %%% Local Variables: %%% mode: latex %%% End: %---------------------------------------------------------------------- %<*ins>------------------------------------------------------------------------- %% %% tex xint.ins extracts all package files from xint.dtx, as well as %% xint.tex, README.md, CHANGES.md, doPDFs.sh, doHTMLs.sh. %% %% tex xint.ins does not extract Makefile.mk, but etex xint.ins does %% \input docstrip.tex \askforoverwritefalse \generate{\nopreamble\nopostamble \file{README.md}{\from{xint.dtx}{readme}} \file{CHANGES.md}{\from{xint.dtx}{changes}} \file{doHTMLs.sh}{\from{xint.dtx}{dohtmlsh}} \file{doPDFs.sh}{\from{xint.dtx}{dopdfsh}} \ifx\numexpr\undefined\else\catcode9 11 \file{Makefile.mk}{\from{xint.dtx}{makefile}}\fi \usepreamble\defaultpreamble \usepostamble\defaultpostamble \file{pandoctpl.latex}{\from{xint.dtx}{pandoctpl}} \file{xint.tex}{\from{xint.dtx}{drv}} \file{xintkernel.sty}{\from{xint.dtx}{xintkernel}} \file{xinttools.sty}{\from{xint.dtx}{xinttools}} \file{xintcore.sty}{\from{xint.dtx}{xintcore}} \file{xint.sty}{\from{xint.dtx}{xint}} \file{xintbinhex.sty}{\from{xint.dtx}{xintbinhex}} \file{xintgcd.sty}{\from{xint.dtx}{xintgcd}} \file{xintfrac.sty}{\from{xint.dtx}{xintfrac}} \file{xintseries.sty}{\from{xint.dtx}{xintseries}} \file{xintcfrac.sty}{\from{xint.dtx}{xintcfrac}} \file{xintexpr.sty}{\from{xint.dtx}{xintexpr}}} \catcode32=13\relax% active space \let =\space% \Msg{************************************************************************} \Msg{*} \Msg{* To finish the installation you have to move the following} \Msg{* files into a directory searched by TeX:} \Msg{*} \Msg{* xintkernel.sty} \Msg{* xintcore.sty} \Msg{* xint.sty} \Msg{* xintbinhex.sty} \Msg{* xintgcd.sty} \Msg{* xintfrac.sty} \Msg{* xintseries.sty} \Msg{* xintcfrac.sty} \Msg{* xintexpr.sty} \Msg{* xinttools.sty} \Msg{*} \Msg{* To produce the documentation run latex thrice on xint.tex} \Msg{* then dvipdfmx on xint.dvi. Edit xint.tex to get the code} \Msg{* source included.} \Msg{* dvipdfmx warnings may be ignored, but if the produced pdf} \Msg{* has font problems, run rather pdflatex on xint.tex} \Msg{*} \Msg{* Happy TeXing!} \Msg{*} \Msg{************************************************************************} \endbatchfile %------------------------------------------------------------------------- %<*dtx> +fi % end of \iffalse block +catcode`\ 0 \catcode`\+ 12 \chardef\noetex 0 \ifx\numexpr\undefined\chardef\noetex 1 \fi \ifnum\noetex=1 \chardef\extractfiles 0 % extract files, then stop \else \ifx\ProvidesFile\undefined \chardef\extractfiles 0 % no LaTeX2e. etex, xetex, ... on xint.dtx \else % latex/pdflatex on xint.tex or on xint.dtx \ifx\Withdvipdfmx\undefined % latex run is on xint.dtx, we will extract all files \chardef\extractfiles 1 % 1 = extract and typeset, 2 = only typeset \chardef\Withdvipdfmx 0 % 0 = pdflatex or latex+dvips, 1 = dvipdfmx \chardef\NoSourceCode 0 % 0 = include source code, 1 = do not \NeedsTeXFormat{LaTeX2e}% \PassOptionsToClass{a4paper,fontsize=10pt}{scrdoc}% \else % latex run is on xint.tex, \chardef\extractfiles 2 % no extractions, but typeset % \Withdvipdfmx and \NoSourceCode are set-up there \fi \ProvidesFile{xint.dtx}[bundle source (\xintbndlversion, \xintbndldate) % and documentation (\xintdocdate)]% \fi \fi \ifnum\extractfiles<2 % extract files \def\MessageDeFin{\newlinechar10 \let\Msg\message \Msg{^^J}% \Msg{********************************************************************^^J}% \Msg{*^^J}% \Msg{* To finish the installation you have to move the following^^J}% \Msg{* files into a directory searched by TeX:^^J}% \Msg{*^^J}% \Msg{*\space\space\space\space xintkernel.sty^^J}% \Msg{*\space\space\space\space xintcore.sty^^J}% \Msg{*\space\space\space\space xint.sty^^J}% \Msg{*\space\space\space\space xintbinhex.sty^^J}% \Msg{*\space\space\space\space xintgcd.sty^^J}% \Msg{*\space\space\space\space xintfrac.sty^^J}% \Msg{*\space\space\space\space xintseries.sty^^J}% \Msg{*\space\space\space\space xintcfrac.sty^^J}% \Msg{*\space\space\space\space xintexpr.sty^^J}% \Msg{*\space\space\space\space xinttools.sty^^J}% \Msg{*^^J}% \Msg{* To produce the documentation run latex thrice on xint.tex^^J}% \Msg{* then dvipdfmx on xint.dvi. Edit xint.tex to get the code^^J}% \Msg{* source included.^^J}% \Msg{* dvipdfmx warnings may be ignored, but if the produced pdf^^J}% \Msg{* has font problems, run rather pdflatex on xint.tex^^J}% \Msg{*^^J}% \Msg{* Happy TeXing!^^J}% \Msg{*^^J}% \Msg{********************************************************************^^J}% }% \begingroup \input docstrip.tex \askforoverwritefalse \catcode9 11 % do not kill TAB in producing Makefile.mk \generate{\nopreamble\nopostamble \file{README.md}{\from{xint.dtx}{readme}} \file{CHANGES.md}{\from{xint.dtx}{changes}} % pure tex will use ^^I notation for TAB character, don't want that. \ifnum\noetex=0 \file{Makefile.mk}{\from{xint.dtx}{makefile}}\fi \file{doHTMLs.sh}{\from{xint.dtx}{dohtmlsh}} \file{doPDFs.sh}{\from{xint.dtx}{dopdfsh}} \usepreamble\defaultpreamble \usepostamble\defaultpostamble \file{pandoctpl.latex}{\from{xint.dtx}{pandoctpl}} \file{xint.ins}{\from{xint.dtx}{ins}} \file{xint.tex}{\from{xint.dtx}{drv}} \file{xintkernel.sty}{\from{xint.dtx}{xintkernel}} \file{xinttools.sty}{\from{xint.dtx}{xinttools}} \file{xintcore.sty}{\from{xint.dtx}{xintcore}} \file{xint.sty}{\from{xint.dtx}{xint}} \file{xintbinhex.sty}{\from{xint.dtx}{xintbinhex}} \file{xintgcd.sty}{\from{xint.dtx}{xintgcd}} \file{xintfrac.sty}{\from{xint.dtx}{xintfrac}} \file{xintseries.sty}{\from{xint.dtx}{xintseries}} \file{xintcfrac.sty}{\from{xint.dtx}{xintcfrac}} \file{xintexpr.sty}{\from{xint.dtx}{xintexpr}}} \endgroup \fi % end of file extraction (from etex/latex/pdflatex run on xint.dtx) \ifnum\extractfiles=0 % no LaTeX, files now extracted. Stop. \MessageDeFin\expandafter\end \fi % From this point on, run is necessarily with e-TeX. % Check if \MessageDeFin got defined, if yes put it at end of run. \ifdefined\MessageDeFin\AtEndDocument{\MessageDeFin}\fi %------------------------------------------------------------------------------- \documentclass {scrdoc} \ifdefined\dosourcexint % this toggle is set by corresponding make rule \chardef\NoSourceCode 0 \else \chardef\dosourcexint 0 \fi \ifnum\NoSourceCode=1 \OnlyDescription\fi \usepackage{ifpdf}% also loaded later by other packages (such as xcolor) \ifpdf\chardef\Withdvipdfmx 0 \fi \makeatletter \ifnum\Withdvipdfmx=1 \@for\@tempa:=hyperref,bookmark,graphicx,xcolor,pict2e\do {\PassOptionsToPackage{dvipdfmx}\@tempa} % \PassOptionsToPackage{dvipdfm}{geometry} \PassOptionsToPackage{bookmarks=true}{hyperref} \PassOptionsToPackage{dvipdfmx-outline-open}{hyperref} \PassOptionsToPackage{dvipdfmx-outline-open}{bookmark} % \def\pgfsysdriver{pgfsys-dvipdfm.def} \else \PassOptionsToPackage{bookmarks=true}{hyperref} \fi \makeatother \pagestyle{headings} \makeatletter \def\buggysectionmark #1{% KOMA 3.12 as released to CTAN December 2013 \if@twoside\expandafter\markboth\else\expandafter\markright\fi {\MakeMarkcase{\ifnumbered{section}{\sectionmarkformat\fi}{}#1}}{}} \ifx\buggysectionmark\sectionmark \def\sectionmark #1{% \if@twoside\expandafter\markboth\else\expandafter\markright\fi {\MakeMarkcase{\ifnumbered{section}{\sectionmarkformat}{}#1}}{}} \fi \makeatother \usepackage[T1]{fontenc} \usepackage[latin1]{inputenc} %\usepackage{array} \usepackage{multicol} \usepackage{geometry} % 11 octobre 2014 \AtBeginDocument {\ttzfamily \newgeometry{textwidth=\dimexpr92\fontcharwd\font`X\relax, vscale=0.75}} \unless\ifnum\dosourcexint=1 \usepackage{xintexpr} \usepackage{xintbinhex} \usepackage{xintgcd} \usepackage{xintseries} \usepackage{xintcfrac} \usepackage{amsmath} % for use of \cfrac in the documentation \usepackage{pifont} % pour la hollow star \ding{73} \fi \usepackage{xinttools} \usepackage{enumitem}% à partir d'octobre 2014 \usepackage{varioref} %\vrefwarning \usepackage{etoolbox} % Est-ce que je l'utilise vraiment? oui, \ifnumequal dans un \IsPrime \usepackage{tocloft}% pour la TOC de la section locale du code pour % xintexpr, il vaut mieux un look standard, mais je dois customiser la % "numwidth", trop petite. \catcode`| \active \usepackage{etoc}[2013/10/16] % I need \etocdepthtag.toc \catcode`| 12 %---- USE OF ETOC FOR THE TABLES OF CONTENTS \def\gobbletodot #1.{} \newif\ifindescription % 1 avril 2014 \ifnum\dosourcexint=0 \indescriptiontrue \fi \def\sectioncouleur{{cyan}} \def\MARGEPAGENO {1.5em}% changera pour la partie implémentation % 1er avril 2014, je fais un vrai style, un peu grossier cependant, % alors qu'avant j'utilisais savedsectionline, par paresse. % 12 octobre 2014, emploi \llap, \leftmargini et aussi de \MARGEPAGENO ici aussi \etocsetstyle{section}{} {\normalfont} {\kern\bigskipamount \rightskip \MARGEPAGENO\relax \parfillskip -\MARGEPAGENO\relax \bfseries \leftskip \leftmargini \noindent\llap % \llap {\makebox[\leftmargini][l]% et \leftmargini le 12/10/2014 {\expandafter\textcolor\sectioncouleur {\etocnumber}}}% \strut\etocname \mdseries\nobreak\leaders\etoctoclineleaders\hfill\nobreak\strut \makebox[\MARGEPAGENO][r]{\etocpage}\par % pour les sous-sections (1 avril 2014) \let\ETOCsectionnumber\etocthenumber }% {}% % Octobre 2014: emploi de \leftmargini et ajout de \parskip\z@skip. \makeatletter \etocsetstyle{subsection} {\begingroup\normalfont \setlength{\premulticols}{0pt}% \setlength{\multicolsep}{0pt}% \setlength{\columnsep}{1em}% \setlength{\columnseprule}{.4pt}% % Octobre 2014 mes problèmes d'alors étaient liés à la glue dans \parskip \parskip\z@skip % j'avais seulement ceci avant, je laisse les deux \raggedcolumns \addvspace{\smallskipamount}% \begin{multicols}{2} \leftskip \leftmargini % 12 octobre 2014 \rightskip \MARGEPAGENO plus 2em minus 1em % 18 octobre 2013 \parfillskip -\MARGEPAGENO\relax } {} {\noindent \llap{\makebox[\leftmargini][l]{\ttzfamily\bfseries\etoclink {\ifindescription\expandafter\textcolor\sectioncouleur {\normalfont\bfseries\ETOCsectionnumber}\fi .\expandafter\gobbletodot\etocthenumber}}}% \strut\etocname\nobreak \unless\ifindescription\leaders\etoctoclineleaders\fi \hfill\nobreak \strut\makebox[\MARGEPAGENO][r]{\small\etocpage}\endgraf } {\end{multicols}\endgroup\addvspace{\smallskipamount}}% \makeatother \addtocontents{toc}{\protect\hypersetup{hidelinks}} \usepackage[zerostyle=a,straightquotes,scaled=0.95]{newtxtt} % j'ai essayé zerostyle=e, finalement je reviens à =a \usepackage{newtxmath} \makeatletter % I need also the font with a slashed zero, for verbatim code. % Mardi 18 novembre 2014 à 09:06:44 % Test de newtxtt 1.05, 'q' pour uprightquotes % (maintenant: straightquotes) \DeclareFontFamily{T1}{newtxttb}{\hyphenchar\font\m@ne} \DeclareFontShape{T1}{newtxttb}{m}{n}{ <-> s*[\newtxtt@scale]newtxttbq }{} \DeclareFontShape{T1}{newtxttb}{b}{n}{ <-> s*[\newtxtt@scale]newtxbttbq }{} \DeclareFontShape{T1}{newtxttb}{bx}{n}{ <-> ssub * newtxttb/b/n }{} \DeclareFontShape{T1}{newtxttb}{m}{sl}{ <-> s*[\newtxtt@scale]newtxttslbq }{} \DeclareFontShape{T1}{newtxttb}{m}{it}{ <-> ssub * newtxttb/m/sl }{} \makeatother % this is with a slashed 0 like the original txtt. \newcommand\ttbfamily {\fontfamily{newtxttb}\selectfont } % I will leave this old markup here for the time being, in case there % is later some use to it. % 11 octobre, j'essaie couleur, YellowOrange, CadetBlue % \def\digitstt {\bgroup \color[named]{OrangeRed}\let\next=} % Mardi 18 novembre 2014 à 09:07:30 % test des old style figures par \textsc % ATTENTION à cause emploi d'argument pouvant contenir des tokens comme \if % (cf lignes environ 5319) % Finalement pour release doc du 7 mars 2015, je n'utilise pas old style %\def\digitstt #1{\begingroup\color[named]{OrangeRed}% % \unless\ifmmode\scshape\fi #1\endgroup} \def\digitstt #1{\begingroup\color[named]{OrangeRed}#1\endgroup} \let\dtt\digitstt \ifnum\dosourcexint=1 \else % Septembre 2014 emploi de mathastext \renewcommand\familydefault\ttdefault \usepackage[noendash]{mathastext}% pas de endahs dans newtxtt \fi \renewcommand\familydefault\sfdefault % <-- sans-serif in footnotes, TOC, % headers etc... \usepackage{xspace} \usepackage[dvipsnames]{xcolor} \usepackage{framed} % 14 octobre 2014 % copié de snugshade de framed.sty \makeatletter \newenvironment{snugframed}{% % transféré ici 17 octobre \fboxsep \dimexpr2\fontcharwd\font`X\relax \advance\linewidth-2\fboxsep \advance\csname @totalleftmargin\endcsname \fboxsep \def\FrameCommand##1{\hskip\@totalleftmargin \hskip-\fboxsep \fbox{##1}\hskip-\fboxsep % There is no \@totalrightmargin, so: \hskip-\linewidth \hskip-\@totalleftmargin \hskip\columnwidth}% \MakeFramed {\advance\hsize-\width \@totalleftmargin\z@ \linewidth\hsize \@setminipage}% }{\par\unskip\@minipagefalse\endMakeFramed} \makeatother \definecolor{joli}{RGB}{225,95,0} \definecolor{JOLI}{RGB}{225,95,0} \definecolor{BLUE}{RGB}{0,0,255} \definecolor{niceone}{RGB}{38,128,192} \usepackage[para]{footmisc} \usepackage[english]{babel} \usepackage[autolanguage,np]{numprint} \AtBeginDocument{\npthousandsep{,\hskip .5pt plus .1pt minus .1pt}} \usepackage[pdfencoding=pdfdoc]{hyperref} \hypersetup{% linktoc=all,% breaklinks=true,% colorlinks=true,% urlcolor=niceone,% linkcolor=blue,% pdfauthor={Jean-Fran\c cois Burnol},% pdftitle={The xint bundle},% pdfsubject={Arithmetic with TeX},% pdfkeywords={Expansion, arithmetic, TeX},% pdfstartview=FitH,% pdfpagemode=UseOutlines} \ifnum\dosourcexint=1 \hypersetup{pdftitle={The xint bundle source code}} \fi \usepackage{bookmark} \usepackage{picture} % permet d'utiliser des unités dans les dimensions de la % picture et dans \put \usepackage{graphicx} \usepackage{eso-pic} %---- \MyMarginNote: a simple macro for some margin notes with no fuss % je m'aperçois que je peux l'utiliser dans les footnotes... \makeatletter \def\MyMarginNote {\@ifnextchar[\@MyMarginNote{\@MyMarginNote[]}}% % 18 janvier 2014, j'ai besoin d'un raccourci. \let\inmarg\MyMarginNote \def\@MyMarginNote [#1]#2{% \vadjust{\vskip-\dp\strutbox \smash{\hbox to 0pt {\color[named]{PineGreen}\normalfont\small \hsize 1.6cm\rightskip.5cm minus.5cm \hss\vtop{\offinterlineskip #2}\ $\to$#1\ }}% \vskip\dp\strutbox }\strut{}} \def\MyMarginNoteWithBrace #1{% \vadjust{\vskip-\dp\strutbox \smash{\hbox to 0pt {\color[named]{PineGreen}%\normalfont\small \hss #1\ $\bigg\{$\ }}% \vskip\dp\strutbox }\strut{}} \def\IMPORTANT {\MyMarginNoteWithBrace {\raisebox{-.5\height}{\resizebox{2\width}{!}{\ding{43}}}}} % 26 novembre 2013: \def\etype #1{% \vadjust{\vskip-\dp\strutbox \smash{\hbox to 0pt {\hss\color[named]{PineGreen}% \itshape \xintListWithSep{\,}{#1}\ $\star$\quad }}% \vskip\dp\strutbox }\strut{}} \def\retype #1{% \vadjust{\vskip-\dp\strutbox \smash{\hbox to 0pt {\hss\color[named]{PineGreen}% \itshape \xintListWithSep{\,}{#1}\ \ding{73}\quad }}% \vskip\dp\strutbox }\strut{}} \def\ntype #1{% \vadjust{\vskip-\dp\strutbox \smash{\hbox to 0pt {\hss\color[named]{PineGreen}% \itshape \xintListWithSep{\,}{#1}\quad }}% \vskip\dp\strutbox }\strut{}} %------------------------------------------------------------------------------- \def\Numf {{\vbox{\halign{\hfil##\hfil\cr \footnotesize \upshape Num\cr \noalign{\hrule height 0pt \vskip1pt\relax} \itshape f\cr}}}} \def\Ff {{\vbox{\halign{\hfil##\hfil\cr \footnotesize \upshape Frac\cr \noalign{\hrule height 0pt \vskip1pt\relax} \itshape f\cr}}}} \def\numx {{\vbox{\halign{\hfil##\hfil\cr \footnotesize \upshape num\cr \noalign{\hrule height 0pt \vskip1pt\relax} \itshape x\cr}}}} %------------------------------------------------------------------------------- % 24 février 2014. J'ai besoin de me débarasser du \to \def\NewWith #1{% \vadjust{\vskip-\dp\strutbox \smash{\hbox to 0pt {\hss\color[named]{PineGreen}% \normalfont\small \hsize 1.5cm\rightskip.5cm minus.5cm \vtop{\noindent New with #1}\ }}% \vskip\dp\strutbox }\strut{}} \makeatother % \centeredline: OUR OWN LITTLE MACRO FOR CENTERING LINES % ======================================================= % 7 mars 2013 % ----------- % % This macro allows to conveniently center a line inside a paragraph and still % allow use therein of \verb or other commands changing catcodes. % A proposito, the \LaTeX \centerline uses \hsize and not \linewidth ! % (which in my humble opinion is bad) % Actually my \centeredline works nicely in list environments. % \ignorespaces ajouté le 9 juin 2013. % Note: \centeredline creates a group \makeatletter \newcommand*\centeredline {% \ifhmode \\\relax \def\centeredline@{\hss\egroup\hskip\z@skip\ignorespaces }% \else \def\centeredline@{\hss\egroup }% \fi \afterassignment\@centeredline \let\next=} \def\@centeredline {\hbox to \linewidth \bgroup \hss \bgroup \aftergroup\centeredline@ } % 12 octobre 2014 % --------------- % % \centeredline-->\leftedline. % And I add colored background. I have more sophisticated approaches, but the % mark-up was essentially already there, thus I just wanted to exploit the % manual from 1.09n for the transition to 1.1. % \newif\ifinlefted \newcommand*\leftedline {% \ifhmode \\\relax \def\leftedline@{\hss\egroup\hskip\z@skip\ignorespaces }% \else \def\leftedline@{\hss\egroup }% \fi \afterassignment\@leftedline \let\next=} \def\@leftedline {\hbox to \linewidth \bgroup \inleftedtrue \everbatimeverypar \bgroup \aftergroup\leftedline@ } \makeatother % verbatim environments % ===================== % % June 2013, then October 2014. % ----------------------------- % \makeatletter \catcode`_ 11 % some of my verbatim environments do not make the space active (\lverb e.g.). Then % \do@noligs must be modified, \char`#1 must be followed by a space token, else, % the `#1 expansion will swallow one space. \def\do@noligs #1{% \catcode`#1\active \begingroup \lccode`~`#1\relax \lowercase{% \endgroup\def~{\leavevmode\kern\z@\char`#1 }}% } %--- \lowast \def\lowast{\raisebox{-.25\height}{*}} \catcode`* 13 \def\makestarlowast {\let*\lowast\catcode`\*\active}% \catcode`* 12 %--- straight quotes, added (finally...) Nov 2, 2014 % \begingroup\makeatletter % \catcode`\'\active % \catcode`\`\active % \@firstofone {\endgroup % \def\makequotesstraight{% assumes textcomp package % \let`\textasciigrave % \let'\textquotesingle % \catcode39\active % \catcode96\active }% % } %--- for soft-wrapping. I will use discretionaries. \DeclareFontFamily{U}{MdSymbolC}{} \DeclareFontShape {U}{MdSymbolC}{m}{n}{<-> MdSymbolC-Regular}{} \newbox\SoftWrapIcon \colorlet {softwrapicon}{blue} \def\SetSoftWrapIcon{% \setbox\SoftWrapIcon\hb@xt@\z@ {\hb@xt@\fontdimen2\font {\hss{\color{softwrapicon}\usefont{U}{MdSymbolC}{m}{n}\char"97}\hss}% \hss}% } \AtBeginDocument {\SetSoftWrapIcon }% ttzfamily déjà fait %--- \MacroFont, and a \MicroFont % % Ne PAS mettre de changement de taille de police dans \MacroFont. % 17/10/2014, essai avec CadetBlue après Purple. Puis Blue \def\restoreMicroFont {\def\MicroFont {\ttbfamily\makestarlowast \ifinlefted\else\ifineverb\else\color[named]{Blue}\fi\fi}} \restoreMicroFont % Notice that \macrocode uses \macro@font which freezes \MacroFont % at \begin{document}. But doc.sty verbatim uses \MacroFont which is not % frozen. Comprenne qui pourra... \def\restoreMacroFont {\def\MacroFont {\ttbfamily \ifinlefted\else\ifineverb\else\color[named]{Blue}\fi\fi}} \restoreMacroFont %--- straight quotes, also in macrocode (2014/11/04) % % There is no hook in \macrocode after \dospecials, which is done *after* % \macro@font. Thus I will need to take the risk that some future evolution of % doc.sty (or perhaps scrdoc) invalidates the following. % % Note: in contrast, \MacroFont in \verbatim is done *after* \dospecials (but % before the space becomes active), thus I could use \MacroFont there. But as % there is no verbatim environment anymore in xint.dtx, I don't need to take % care of it. % % Actually, I should not at all rely on the doc class, I should do it all by % myself. As I don't use at all \DocInput (which caused me loads of problems % back then when I was trying to get a workflow satisfying my views on how % .dtx files should be structured), there is not much rationale for using the % doc class. % \def\macrocode{\macro@code \frenchspacing \@vobeyspaces \makestarlowast %\makequotesstraight \xmacro@code } % ---- a new \verb % Initially, June 2013, then Sep 9, 2014, and Oct 9-12 2014 % % Initial motivation was simply that doc.sty and related classes \verb % command is with a hard-coded \ttfamily. There were further issues. % % 1. with |stuff with space|, paragraph reformatting in the Emacs/AUCTeX % buffer caused havoc. Thus I wanted to be able to have the input across % lines. % % 2. Hence I did not want to have spaces obeyed, as often the % reformatting added spaces at the beginning of a line. % % 3. Also I wanted to allow hyphenation on output, at least at some % locations. I did a first version which treated spaces, \, {, and } % specially. % % 4. at some point I wanted to add some colored background (I have % dropped that since due to pdf file size increase). % % 5. and also I got fed up from the non-compatibility with footnotes due % to catcode freeze. % % Because of 5. I opted for a \scantokens approach, hence for a macro % with delimited argument. Here is what I do now, this is compatible % with short verbs. \def\verb {% \relax \ifmmode\else\leavevmode\null\fi \bgroup \let\do\@makeother \dospecials %\makequotesstraight % belatedly added for 1.1a release \MicroFont % change font, color, catcode hooks, ... \catcode 32 10 \endlinechar 32 \@@jfverb }% % Note (Oct 12, 2014): in the improbable situation a newlinechar is % found in the ##1, \scantokens will convert this to an end of line in % its "write" phase, which will be then ignored in its "read" phase due % to \endlinechar-1. This also avoids possible creation of \par which % would defeat \@@jfverb@@. Thus it is good. \def\@@jfverb #1{% \ifcat\noexpand#1\noexpand~\catcode`#1\active\fi % No problem with the EOL for the line where the short verb delimiter stands. \def\next ##1#1{% \@vobeyspaces\everyeof{\relax}\endlinechar\m@ne \expandafter\@@jfverb_a\scantokens\expandafter{##1}}% % hack with \@empty to prevent brace stripping if catcodes have been % frozen earlier, like in footnotes. \next \@empty } % We don't want a \discretionary at the very start. % But then an empty argument is forbidden! \def\@@jfverb_a #1{#1\@@jfverb_b } \def\@@jfverb_b #1{\ifx\relax #1% \egroup \else % \penalty\z@, or rather (Oct 11, 2014) but I then adjust the textwidth % precisely: \discretionary{\copy\SoftWrapIcon}{}{}% #1\expandafter\@@jfverb_b\fi } \catcode`_ 8 \makeatother % --- \lverb % Définition de \lverb \makeatletter \long\def\lverb {% \relax\par\smallskip\noindent\null \begingroup \bgroup \aftergroup\@@par \aftergroup\endgroup \aftergroup\medskip \let\do\do@noligs \verbatim@nolig@list \let\do\@makeother \dospecials %\makequotesstraight % belatedly added for 1.1a release \catcode32 10 \catcode`\% 9 \catcode`\& 14 \catcode`\$ 0 \MicroFont % sera donc en couleur. \@lverb } \def\@lverb #1{\catcode`#1\active \lccode`\~`#1\lowercase{\let~\egroup}}% \makeatother %--- everbatim environment % October 13-14, 2014 % Verbatim with an \everypar hook, mainly to have background color, followed by % execution of the code \makeatletter \catcode`_ 11 \def\everbatimtop {\MacroFont\small } \let\everbatimbottom\relax \let\everbatimhook\relax \newif\ifineverb \def\everbatim {\s@everbatim\@everbatim } \@namedef{everbatim*}{\s@everbatim\expandafter\@everbatimx\expandafter {\the\newlinechar}} \def\everbatimeverypar{\strut {\color{yellow!5}\vrule\@width\linewidth }% \kern-\linewidth \kern\everbatimindent } \def\everbatimindent {\z@} % voir plus loin atbegindocument \def\endeverbatim {\if@newlist \leavevmode\fi\endtrivlist } \expandafter\let\csname endeverbatim*\endcsname \endeverbatim \def\s@everbatim {% \ineverbtrue \everbatimtop % put there size changes \topsep \z@skip \partopsep \z@skip \itemsep \z@skip \parsep \z@skip \parskip \z@skip \lineskip \z@skip \let\do\@makeother \dospecials \let\do\do@noligs \verbatim@nolig@list \makestarlowast \everbatimhook \trivlist\item\relax \leftskip \@totalleftmargin \rightskip \z@skip \parindent \z@ \parfillskip\@flushglue \parskip \z@skip \@@par \def\par{\leavevmode\null\@@par\pagebreak[1]}% \everypar\expandafter{\the\everypar \unpenalty \everbatimeverypar \everypar \expandafter{\the\everypar\everbatimeverypar}% }% \obeylines \@vobeyspaces } \begingroup \lccode`X 13 \catcode`X \active \lccode`Y `* % this is because of \makestarlowast. % I have to think whether this is useful: obviously if I were to provide % everbatim and everbatim* in a package I wouldn't do that. \catcode`Y \active \catcode`| 0 \catcode`[ 1 \catcode`] 2 \catcode`* 12 \catcode`{ 12 \catcode`} 12 |catcode`\\ 12 |lowercase[|endgroup% both freezes catcodes and converts X to active ^^M |def|@everbatim #1X#2\end{everbatim}% [#2|end[everbatim]|everbatimbottom ] |def|@everbatimx #1#2X#3\end{everbatimY}]% {#3\end{everbatim*}% \everbatimbottom % No group here: this allows executed code to make macro % definitions which may reused in later uses of everbatim. % But the problem is with colors... j'ai visiblement un problème % avec le color stack pour dvipdfmx avec les \colorlet/\color \newlinechar 13 % Indentation of next paragraph produced from execution of #3 is % suppressed, if #3 by itself or \everbatimbottom does no \par, % from \@endparenv done by \endtrivlist \everbatimxprehook \scantokens {#3}% there will typically be an EOL space after this if one % continues after \end{everbatim} on same line, which % is allowed. \newlinechar #1\relax % restores \newlinechar to previous value. \everbatimxposthook }% \def\everbatimxprehook {\colorlet{everbsavedcolor}{.}\color[named]{OrangeRed}} \def\everbatimxposthook {\color{everbsavedcolor}} % L'espace venant du endofline final mis par \scantokens sera inhibé si #3 se % termine par un % ou un \x, etc... % --- \everb % Original was called \dverb and I did it in June 2013. % Then after doing everbatim, I transformed \dverb, now called \everb % for itself being as compatible as standard verbatim with list making % surrounding environments. % Supposed to be used as % \everb|@ this will be ignored % stuff % escape character: " % | not necessarily starting a line. % I chose @ as comment character, mainly for pretty-formatting of the % source, this can be changed by \everbhook. % " comme caractère d'échappement. Par exemple pour colorier des parties. \def\restoreeverbhook{\def\everbhook{% \def\"{\begingroup\catcode123 1 \catcode 125 2 \everbescape }% \catcode`\" 0 \catcode`\@ 14 }}\restoreeverbhook \def\everbescape #1;!{#1\endgroup } \def\everb {% \bgroup \let\everbatimhook\everbhook \s@everbatim \@everb } \def\@everb #1{\catcode`#1\active \lccode`\~`#1% \lowercase{\def~{\if@newlist \leavevmode\fi \endtrivlist \egroup \@doendpe \everbatimbottom }}% }% \catcode`_8 \makeatother %--- \csa, \csbxint, \csh, \csbh % dates back to earliest versions of this manual, but I changed things a bit % (back then for example @ was active throughout the document...) % The mark-up being in place, I only have to use it here. \DeclareRobustCommand\csa [1] % attention que le \expandafter est nécessaire ici, sinon \scantokens n'agit % pas sur ce que produit \detokenize. Par ailleurs \MicroFont fait % \makestarlowast (et c'est seulement à cause de * que je fais \scantokens) % Attention cependant aux _ maintenant dans les noms de macros {{\MicroFont\char92\endlinechar-1 \catcode`_ 11 \scantokens\expandafter{\detokenize{#1}}}} \DeclareRobustCommand\csbnolk [1] {{\MicroFont\color{blue}\char92\endlinechar-1 \scantokens\expandafter{\detokenize{#1}}}} \DeclareRobustCommand\csbxint [1] {\hyperref[\detokenize{xint#1}]% {{\ttzfamily\char92\mbox{xint}\-\endlinechar-1 \makestarlowast \scantokens\expandafter{\detokenize{#1}}}}} \newcommand\csh[1] {\texorpdfstring{\csa{#1}}{\textbackslash\detokenize{#1}}} \newcommand\csbh[1] {\texorpdfstring{\csbnolk{#1}}{\textbackslash\detokenize{#1}}} % --- \xintname, \xintnameimp etc... % 7 mars 2015, je résous (non!) un problème de color stack overflow avec % dvipdfmx qui venait au final des page headers, et à cause d'un brace % stripping qui enlevait la protection de mes \color ci-dessous. Il a suffi de % rajouter un \empty pour me débarrasser finalement du problème. % % Bon c'est bizarre, en fait le problème n'est pas résolu. Après avoir % supprimé fichiers auxiliaires et recompilé, il revient. % J'ai dû remettre %\def\everbatimxprehook {} %\def\everbatimxposthook {} % avant la section Command of xintseries % et aussi j'ai dû supprimer la couleur dans \digitstt là-bas. % C'est très étrange que j'ai cru le problème réglé un temps. \xintForpair #1#2 in {(xintkernel,kernel), (xinttools,tools), (xintcore,core),(xint,xint),(xintbinhex,binhex),(xintgcd,gcd),% (xintfrac,frac),(xintseries,series),(xintcfrac,cfrac),(xintexpr,expr)} \do {% \expandafter\def\csname #1name\endcsname {\texorpdfstring {\hyperref[sec:#2]% {\relax{\color{joli}\ttzfamily #1}}} {#1}% \xspace }% \expandafter\def\csname #1nameimp\endcsname {\texorpdfstring {\hyperref[sec:#2imp]% {\relax{\color[named]{RoyalPurple}\ttzfamily #1}}} {#1}% \xspace }% }% %--- \printnumber % new version, october 11, 2014 \catcode`_ 11 \makeatletter \hyphenpenalty \z@ \def\allowsplits_a #1{\ifx \relax #1\xint_dothis\xint_gobble_i\fi \if ,#1\xint_dothis {\discretionary{\rlap,}{}{,} }\fi \xint_orthat{\discretionary {\copy\SoftWrapIcon}% {}% {}#1}\allowsplits_a }% \def\allowsplits #1{#1\allowsplits_a}% évite un discretionary au premier. \def\printnumber #1{\expandafter\allowsplits \romannumeral-`0#1\relax }% \makeatother \catcode`_ 8 %--- counts used in particular in the samples from the documentation of the % xintseries.sty package \newcount\cnta \newcount\cntb \newcount\cntc %--- \fexpan 22 octobre 2013 \newcommand\fexpan {\textit{f}-expan} \ifnum\dosourcexint=1 \else % Dependency graph done using TikZ (manually) \usepackage{tikz} \usetikzlibrary{shapes,arrows} \fi \colorlet {codeboxbg}{yellow!10} \colorlet {codeboxframe}{black!30} \colorlet {execboxfringe}{black!10} % 12 octobre 2014 \AtBeginDocument{% \leftmargini \dimexpr4\fontcharwd\font`X\relax \leftmarginii\dimexpr3\fontcharwd\font`X\relax \leftmarginiii \leftmarginii \leftmarginiv \leftmarginii \parindent\dimexpr2\fontcharwd\font`X\relax \leftmargin\leftmargini % pourquoi pas 0? % attention à un deuxième relax! %\advance\linewidth\dimexpr-\everbatimindent-\everbatimindent\relax % était alors bogué! \edef\everbatimindent{\the\dimexpr\leftmargini\relax\space }% \cftsubsecnumwidth 2\leftmarginii \cftsubsubsecnumwidth 2\leftmargini \cftsubsecindent 0pt \cftsubsubsecindent \cftsubsecnumwidth }% %--- CodeBox \frenchspacing \renewcommand\familydefault\sfdefault \begin{document}\thispagestyle{empty}% \ttzfamily already done \pdfbookmark[1]{Title page}{TOP} % \makeatletter % @ n'est plus actif dans dtx 1.1, ouf! {% \normalfont\Large\parindent0pt \parfillskip 0pt\relax \leftskip 2cm plus 1fil \rightskip 2cm plus 1fil \ifnum\dosourcexint=1 The \xintnameimp source code\par \else The \xintname bundle\par \fi } {\centering \textsc{Jean-François Burnol}\par \footnotesize jfbu (at) free (dot) fr\par Package version: \xintbndlversion\ (\xintbndldate); documentation date: \xintdocdate.\par {From source file \texttt{xint.dtx}. \xintdtxtimestamp.}\par } \bigskip % Mercredi 08 octobre 2014 à 22:03:19 % Skips safely. \ifnum\dosourcexint=1 \catcode`+ 0 \catcode`\\ 12 +expandafter+iffalse+fi \fi % ---- % Fibonacci code % December 7, 2013. Expandably computing a big Fibonacci number % with the help of TeX+\numexpr+\xintexpr, (c) Jean-François Burnol \catcode`_ 11 % % ajouté 7 janvier 2014 au xint.dtx pour 1.07j. % % Le 17 janvier je me décide de simplifier l'algorithme car l'original ne tenait % pas compte de la relation toujours vraie A=B+C dans les matrices symétriques % utilisées en sous-main [[A,B],[B,C]]. % % la version ici est celle avec les * omis: car multiplication tacite devant les % sous-expressions depuis 1.09j, et aussi devant les parenthèses depuis 1.09k. % (pour tester) \def\Fibonacci #1{% \expandafter\Fibonacci_a\expandafter {\the\numexpr #1\expandafter}\expandafter {\romannumeral0\xintiieval 1\expandafter\relax\expandafter}\expandafter {\romannumeral0\xintiieval 1\expandafter\relax\expandafter}\expandafter {\romannumeral0\xintiieval 1\expandafter\relax\expandafter}\expandafter {\romannumeral0\xintiieval 0\relax}} % \def\Fibonacci_a #1{% \ifcase #1 \expandafter\Fibonacci_end_i \or \expandafter\Fibonacci_end_ii \else \ifodd #1 \expandafter\expandafter\expandafter\Fibonacci_b_ii \else \expandafter\expandafter\expandafter\Fibonacci_b_i \fi \fi {#1}% }% \def\Fibonacci_b_i #1#2#3{\expandafter\Fibonacci_a\expandafter {\the\numexpr #1/2\expandafter}\expandafter {\romannumeral0\xintiieval sqr(#2)+sqr(#3)\expandafter\relax\expandafter}\expandafter {\romannumeral0\xintiieval (2#2-#3)#3\relax}% }% end of Fibonacci_b_i \def\Fibonacci_b_ii #1#2#3#4#5{\expandafter\Fibonacci_a\expandafter {\the\numexpr (#1-1)/2\expandafter}\expandafter {\romannumeral0\xintiieval sqr(#2)+sqr(#3)\expandafter\relax\expandafter}\expandafter {\romannumeral0\xintiieval (2#2-#3)#3\expandafter\relax\expandafter}\expandafter {\romannumeral0\xintiieval #2#4+#3#5\expandafter\relax\expandafter}\expandafter {\romannumeral0\xintiieval #2#5+#3(#4-#5)\relax}% }% end of Fibonacci_b_ii \def\Fibonacci_end_i #1#2#3#4#5{\xintthe#5} \def\Fibonacci_end_ii #1#2#3#4#5{\xinttheiiexpr #2#5+#3(#4-#5)\relax} \catcode`_ 8 \def\Fibo #1.{\Fibonacci {#1}} % nice background added for 1.09j release, January 7, 2014. % superbe, non? moi très content! % bon je peaufine ce background le 17 janvier, c'est hard-coded mais je ne veux % pas y passer plus de temps (ce qui est amusant c'est que j'ai constaté a % posteriori qu'il y a 17 chiffres par lignes donc 1 chiffre avec son padding = % 1cm... % *\message{\xinttheexpr round(\dimexpr 8cm\relax/17,3)\relax} % 877496.353 \def\specialprintone #1% {% \ifx #1\relax \else \makebox[877496sp]{#1}\hskip 0pt plus 2sp\relax \expandafter\specialprintone\fi }% \def\specialprintnumber #1% first ``fully'' expands its argument. {\expandafter\specialprintone \romannumeral-`0#1\relax }% \AddToShipoutPicture*{% \put(10.5cm,14.85cm) {\makebox(0,0) {\resizebox{17cm}{!}{\vbox {\hsize 8cm\Huge\baselineskip.8\baselineskip\color{black!10}% \specialprintnumber{F(1250)=}% \specialprintnumber{\Fibonacci{1250}}}\par}% }% }% } % Samedi 27 septembre 2014 à 16:04:52 \pdfbookmark[1]{Dependency graph}{DependencyGraph} \tikzstyle{block} = [rectangle, draw, fill=codeboxbg, fill opacity=0.5,% fill opacity Octobre 2014 draw=codeboxframe, line width=2pt, text width=6em, text centered, rounded corners, minimum height=4em] \tikzstyle{line} = [draw, line width=1pt, color=codeboxframe] \vspace{2\baselineskip} \begin{figure}[ht!] \phantomsection\label{dependencygraph} \centeredline{% \begin{tikzpicture}[node distance = 2.5cm] % Place nodes \node [block] (kernel) {xintkernel}; \node [left of=kernel] (A) {}; \node [right of=kernel] (B) {}; \node [block, below right of=B] (core) {\xintcorename}; \node [block, below left of=A] (tools) {\xinttoolsname}; \node [block, right of=core, xshift=1cm] (bnumexpr) {\href{http://www.ctan.org/pkg/bnumexpr}{bnumexpr}}; \node [block, below of=core] (xint) {\xintname}; \node [block, left of=xint, xshift=-.5cm] (binhex) {\xintbinhexname}; \node [block, left of=binhex] (gcd) {\xintgcdname}; \node [block, below of=xint] (frac) {\xintfracname}; \node [block, below of=frac, yshift=-.5cm] (expr) {\xintexprname}; \node [block, below right of=frac, xshift=1cm] (cfrac) {\xintcfracname}; \node [block, right of=cfrac] (series) {\xintseriesname}; % Draw edges \path [line] (kernel) -- (core); \path [line] (kernel) -- (tools); \path [line] (core) -- (bnumexpr); \path [line] (core) -- (gcd.north); \path [line] (core) -- (binhex.north); \path [line] (core) -- (xint); \path [line] (xint) -- (frac); \path [line] (frac) -- (expr); \path [line] (frac) -- (series.north); \path [line] (frac) -- (cfrac.north); \path [line,dashed] (binhex.south) -- (expr); \path [line,dashed] (gcd.south) -- (expr); \path [line,dashed] (tools) -- (gcd); \path [line] (tools) to [out=270,in=180] (expr); \end{tikzpicture}}\bigskip \end{figure} \vspace{2\baselineskip} \begin{addmargin}{2cm} \normalfont\footnotesize Dependency graph for the \xintname bundle components: modules at the bottom import modules at the top when connected by a continuous line. No module will be loaded twice, this is managed internally under Plain as well as \LaTeX. Dashed lines indicate a partial dependency, and to enable the corresponding functionalities of the lower module it is necessary for the user to issue the suitable |\usepackage{top_module}| in the preamble (or |\input top_module.sty\relax| in Plain \TeX). The \href{http://ctan.org/pkg/bnumexpr}{bnumexpr} package is a separate package (\LaTeX{} only) by the author.\par \end{addmargin} \vfill \clearpage \etocsetlevel{toctobookmark}{6} % 9 octobre 2013, je fais des petits tricks. % 18 novembre 2013, je n'inclus plus la TOC détaillée de xintexpr. Je % reconfigure la TOC. \etocsettocdepth {subsection} \renewcommand*{\etocbelowtocskip}{0pt} \renewcommand*{\etocinnertopsep}{0pt} \renewcommand*{\etoctoclineleaders} {\hbox{\normalfont\normalsize\hbox to 1ex {\hss.\hss}}} \etocmulticolstyle [1]{% \phantomsection\section* {Contents} \etoctoccontentsline*{toctobookmark}{Contents}{1}% } \etocsettagdepth {description}{subsection} \etocsettagdepth {commands} {none} \etocsettagdepth {implementation}{none} \tableofcontents \renewcommand*\etocabovetocskip{\bigskipamount} \makeatletter \etocmulticolstyle [2]{\parskip\z@skip\raggedcolumns }% \makeatother \etocsettagdepth {description}{none} \etocsettagdepth {commands} {section} \ifnum\NoSourceCode=1 \etocsettagdepth {implementation}{none} \else \etocsettagdepth {implementation}{section} \fi \tableofcontents % pour la suite: [voir aussi juste avant la section Commandes de xint] % 12 octobre 2014, je supprime tous les "Contents", maintenant que les % TOC sont déplacées vers immédiatement après le titre de la section. \etocignoredepthtags \etocmulticolstyle [1]{% \phantomsection% \section* {Contents} \etoctoccontentsline*{toctobookmark}{Contents}{2}% } \etocdepthtag.toc {description} \section{Read this first}\label{sec:quickintro} This section provides recommended reading on first discovering the package. % local TOC supprimée 12 octobre 2014 % finalement non, car LaTeX laisse un énorme vide au bas de la page à la % place!!! Bon, je ne le mets que s'il y a la place. \ifnum\NoSourceCode=1 {\etocdefaultlines\etocsettocstyle{}{}\localtableofcontents} \fi \subsection{Installation instructions} \label{ssec:install} \xintname is made available under the \href{http://www.latex-project.org/lppl/lppl-1-3c.txt}{LaTeX Project Public License 1.3c} (or any later version). It is included in the major \TeX\ distributions, thus there is probably no need for a custom install: just use the package manager to update if necessary \xintname to the latest version available. After installation, issuing in terminal |texdoc --list xint|, on installations with a |"texdoc"| or similar utility, will offer the choice to display one of the documentation files: |xint.pdf| (this file), |sourcexint.pdf| (source code), |README|, |README.pdf|, |README.html|, |CHANGES.pdf|, and |CHANGES.html|. For manual installation, follow the instructions from the |README| file which is to be found on \href{http://www.ctan.org/pkg/xint}{CTAN}; it is also available there in PDF and HTML formats. The simplest method proposed is to use the archive file \href{http://www.ctan.org/pkg/xint}{xint.tds.zip}, downloadable from the same location. The next simplest one is to make use of the |Makefile|, which is also downloadable from \href{http://www.ctan.org/pkg/xint}{CTAN}. This is for GNU/Linux systems and Mac OS X, and necessitates use of the command line. If for some reason you have |xint.dtx| but no internet access, you can recreate |Makefile| as a file with this name and the following contents: {\def\everbatimindent {0pt }% \begin{everbatim} include Makefile.mk Makefile.mk: xint.dtx ; etex xint.dtx \end{everbatim}} Then run |make| in a working repertory where there is |xint.dtx| and the file named |Makefile| and having only the two lines above. The |make| will extract the package files from |xint.dtx| and display some further instructions. If you have |xint.dtx|, no internet access and can not use the Makefile method : |etex xint.dtx| extracts all files and among them the |README| as a file with name |README.md|. Further help and options will be found therein. \subsection{Presentation of the packages} The components of the \xintname bundle provide macros dedicated to \emph{expandable} computations on numbers exceeding the \TeX{} (and \eTeX{}) limit of \dtt{\number"7FFFFFFF}. The \eTeX{} extensions (dating back to 1999) must be enabled; this is the case by default in modern distributions, except for the |tex| executable itself which has to be the pure \textsc{D.~Knuth} software with no additions. The name for the extended binary is |etex|. In |TL2014| for example |etex| is a symbolic link to the |pdftex| executable which will then run in |DVI| output mode, the \eTeX{} extensions being automatically active. All components may be loaded with \LaTeX{} |\usepackage| or |\RequirePackage| or, for any other format based on \TeX{}, directly via \string\input{}, e.g. |\input xint.sty\relax|. There are no package options. % % {\makeatother\footnote{\csa{empty}, \csa{space}, \csa{z@}, % \csa{@ne}, and \csa{m@ne} should have the same meaning as in Plain and % \LaTeX.}} % Each package automatically loads those not already loaded it depends on.\smallskip %% \pdfbookmark[1]{Abstract}{ABSTRACT} \begin{addmargin}{1cm}\small % \begin{center} \bfseries\large Description of the packages\par\smallskip % \end{center}\medskip \makeatletter \renewenvironment{description} {\list{}{\topsep\z@\partopsep\z@ \parsep\z@ \labelwidth\z@ \itemindent-\leftmargin \let\makelabel\descriptionlabel}} {\endlist} \makeatother \begin{description} \item[\xinttoolsname] provides utilities of independent interest such as expandable and non-expandable loops. It is \fbox{not} loaded\MyMarginNote{Changed} automatically (nor needed) by the other bundle packages, apart from \xintexprname. \item[\xintcorename] provides\MyMarginNote{Formerly, part of \xintname.} the expandable \TeX{} macros doing additions, subtractions, multiplications, divisions and powers on arbitrarily long numbers (loaded automatically by \xintname, and also by package \href{http://ctan.org/pkg/bnumexpr}{bnumexpr} in its default configuration). \item[\xintname] extends \xintcorename with additional operations on big integers. \item[\xintfracname] extends the scope of \xintname to decimal numbers, to numbers in scientific notation and also to fractions with arbitrarily long such numerators and denominators separated by a forward slash. \item[\xintexprname] extends \xintfracname with expandable parsers doing algebra (exact or float, or limited to integers) on comma separated expressions using standard infix notations with parentheses, numbers in decimal notation, and scientific notation, comparison operators, Boolean logic, twofold and threefold way conditionals, sub-expressions, some functions with one or many arguments, user-definable variables, evaluation of sub-expressions over a dummy variable range, with possible recursion, omit, abort, break instructions, nesting. \end{description} Further modules: \begin{description} \item[\xintbinhexname] is for conversions to and from binary and hexadecimal bases. \item[\xintseriesname] provides some basic functionality for computing in an expandable manner partial sums of series and power series with fractional coefficients. \item[\xintgcdname] implements the Euclidean algorithm and its typesetting. \item[\xintcfracname] deals with the computation of continued fractions. \end{description} \end{addmargin} \subsection {Changes} See file \href{http://mirrors.ctan.org/macros/generic/xint/CHANGES.html}{CHANGES.html} for the cumulative change log since the initial release. Release of |2015/03/07| only improves a few things in the documentation. The version number is kept unchanged at |1.1a|. \subsubsection{\unexpanded{\unexpanded{Changes from |1.1| to |1.1a|}}} Bug fix in \csbxint{NewExpr} which should have accepted comma separated replacement text. New \csbxint{iiSqrtR} for rounded integer square root, the already provided \csbxint{iiSqrt} computing truncated integral square root. Numerous small fixes to the documentation. \subsubsection{\unexpanded{\unexpanded{Changes from |1.09n| to |1.1|}}} |1.1| brings many extensions, particularly to \xintexprname, among them the evaluation of expressions with dummy variables, possibly iteratively, in a nestable way. See \autoref{sec:expr11} for these changes. Apart from that, the two main other changes are that |\xintiiexpr...\relax| now maps |/| to the \emph{rounded} division (the |//| operator does \emph{truncated} division) to be in synchrony with the habits of |\numexpr|, and that the \xintfracname macro \csbxint{Add} (corresponding naturally to |+| in expressions) does not anymore blindly multiply denominators but at least checks if one is a multiple of the other. However doing systematic reduction to smallest terms, or only computing always the |LCM| of the denominators would be too costly. Also worth mentioning is the fact that \xintname does not load \xinttoolsname anymore (only \xintexprname does) and that the core arithmetic macros have been moved to a new package \xintcorename which is loaded automatically by \xintname. The further package by the author \href{http://www.ctan.org/pkg/bnumexpr}{bnumexpr} (\LaTeX{} only) now loads only \xintcorename. \subsection{User interface} The user interface for executing operations on numbers is via macros such as \csbxint{Add} or \csbxint{Mul} which have two arguments, or via expressions \csbxint{expr}|..\relax| which use infix notations such as |+|, |-|, |*|, |/| and |^| (or |**|) for the basic operations, and recognize functions of one or more comma separated arguments (such as |max|, or |round|, or |sqrt|), parentheses, logic operators of conjunction |&&|, disjunction \verb+||+, as well as two-way |?| and three-way |??| conditionals and more. A few examples: % \begin{everbatim*} \begin{enumerate}[nosep] \item \xintiiAdd {2719873981798137981381789317981279}{13819093809180120910390190} \item \xintiiMul {2719873981798137981381789317981279}{13819093809180120910390190} \item \xintthefloatexpr (19317/21913+2198/9291)^3\relax \item \xintDigits:=64;\xintthefloatexpr (19317/21913+2198/9291)^3\relax % Let's compute the inner sum exactly, not as a float, before raising to third power: \item \xintDigits:=16;\xintthefloatexpr \xintexpr 19317/21913+2198/9291\relax^3\relax \end{enumerate} \end{everbatim*} In \csbxint{expr}|..\relax| the contents are expanded completely from left to right until the ending |\relax| is found and swallowed, and spaces and even (to some extent) catcodes do not matter. Algebraic operations are done \emph{exactly}. The \csbxint{floatexpr} variant is for operations which are done using the precision set via the |\xintDigits:=N;| assignment (default is with significands of \dtt{16} digits). For all |\xintexpr| variants, prefixing with |\xintthe| allows to print the result or use it in other contexts. Shortcuts \csbxint{theexpr}, \csbxint{thefloatexpr}, \csbxint{theiiexpr}, \dots\ are available. The \csbxint{iiexpr} variant is only for big integers, it does not know fractions. There are some important differences of syntax between |\numexpr| and |\xintiiexpr| and variants: \begin{itemize} \item Contrarily to |\numexpr|, the |\xintiiexpr| parser will stop expanding only after having encountered (and swallowed) a \emph{mandatory} |\relax| token. \item In particular, spaces between digits (and not only around infix operators or parentheses) do not stop |\xintiiexpr|, contrarily to the situation with |numexpr|: |\the\numexpr 7 + 3 5\relax| expands (in one step) to \dtt{\detokenize\expandafter{\the\numexpr 7 + 3 5\relax}\unskip}, whereas |\xintthe\xintiiexpr 7 + 3 5\relax| expands (in two steps) to \dtt{\detokenize\expandafter\expandafter\expandafter {\xintthe\xintiiexpr 7 + 3 5\relax}}. \item Also worth mentioning is the fact that |\numexpr -(1)\relax| is illegal. But this is perfectly legal and with the expected result in |\xintiiexpr...\relax|. \item Inside an |\edef|, expressions |\xintiiexpr...\relax| get fully evaluated, but need the prefix |\xintthe| to get printed or used as arguments to some macros, whereas expansion of |\numexpr| in an |\edef| occurs only if prefixed with |\the| or |\number| (except if in a bigger |\numexpr| which will be the one to have to be prefixed\dots .) \end{itemize} For macros such as \csbxint{Add} or \csbxint{Mul} the arguments are each subjected to the process of \fexpan sion: repeated expansion of the first token until finding something unexpandable (or being stopped by a space token). Conversely this process of \fexpan sion always provokes the complete expansion of the package macros and |\xintexpr..\relax| also will expand completely under \fexpan sion, but to a private format; the \csbxint{the} prefix allows the computation result either to be passed as argument to one of the package macros,\footnote{the \csa{xintthe} prefix \fexpan ds the \csa{xintexpr}-ession then unlocks it from its private format; it should not be used for sub-expressions inside a bigger one as it is more efficient for the expression parser to keep the result in the private format.} or also end up on the printed page (or in an auxiliary file). To recapitulate, all macros dealing with computations \begin{enumerate} \item \emph{expand completely under the sole process of repeated expansion of the first token, (and two expansions suffice)},\footnote{see in \autoref{sec:expansions} for more details.} \item \emph{apply this \fexpan sion to each one of their arguments.} \end{enumerate} Hence they can be nested one within the other up to arbitrary depths. Conditional evaluations either within the macro arguments themselves, or with branches defined in terms of these macros are made possible via macros such as as \csbxint{ifSgn} or \csbxint{ifCmp}. \begin{framed} There is no notion of \emph{declaration of a variable} to \xintname, \xintfracname, or \xintexprname. The user employs the |\def|, |\edef|, or |\newcommand| (in \LaTeX) as usual, for example: \IMPORTANT % \begin{everbatim*} \def\x{1729728} \def\y{352827927} \edef\z{\xintMul {\x}{\y}} \meaning\z \end{everbatim*}\ (see below for the |A/B[N]| output format; with |\xintiiMul| in place of |\xintMul| there would not be the strange looking |/1[0]|.) As a faster alternative to |\edef| (when hundreds of digits are involved), the package provides |\oodef| which only expands twice its argument. This provokes full expansion of the \xintname \fexpan dable macros (nested to possibly many levels), inclusive of |\xintexpr| and variants. \end{framed} \begingroup % pour \z, \zz The \xintexprname package has a private internal representation for the evaluated computation result. With % \begin{everbatim*} \oodef\z {\xintexpr 3.141^18\relax} \end{everbatim*} % the macro |\z| is already fully evaluated (two expansions were applied, and this is enough), and can be reused in other |\xintexpr|-essions, such as for example % \begin{everbatim*} \edef\zz {\xintexpr \z+1/\z\relax} % (using short macro names such as \z and \zz is not too recommended in real % life, some may have already definitions; I did it all in a group). \end{everbatim*} % But to print it, or to use it as argument to one of the package macros, it must be prefixed by |\xintthe| (a synonym for |\xintthe\xintexpr| is \csbxint{theexpr}). Application of this |\xintthe| prefix outputs the value in the \xintfracname semi-private internal format |A/B[N]|,\footnote{there is also the notion of \csbxint{floatexpr}, for which the output format after the action of \csa{xintthe} is a number in floating point scientific notation.} representing the fraction $(A/B)\times 10^N$. The |\zz| above produces a somewhat large output: \begin{everbatim*} \printnumber{\xintthe\zz }${}\approx{}$\xintFloat{\xintthe\zz} \end{everbatim*} \endgroup % pour \z, \zz \begin{framed} By default, computations done by the macros of \xintfracname or within |\xintexpr..\relax| are exact. Inputs containing decimal points or scientific parts do not make the package switch to a `floating-point' mode. The inputs, however long, are converted into exact internal representations. % % Floating point evaluations are done via special macros containing % `Float' in their names, or inside |\xintfloatexpr|-essions. Manipulating exactly big fractions quickly leads to \dots bigger fractions. There is a command \csbxint{Irr} (or the function |reduce| in an expression) to reduce to smallest terms, but it has to be explicitely requested. Prior to release |1.1| addition and subtraction blindly multiplied denominators; they now check if one is a multiple of the other.\IMPORTANT\ But systematic reduction of the result to its smallest terms would be too costly.\def\everbatimindent{0pt } \begin{everbatim*} \xinttheexpr 27/25+46/50\relax\ is a bit simpler than \xinttheexpr (27*50+25*46)/(25*50)\relax, but less so than \xinttheexpr reduce(27/25+46/50)\relax. And \xinttheexpr 3/75+4/50+2/100\relax\ looks weird, but systematically reducing fractions would be too costly. \end{everbatim*} \end{framed} % The |A/B[N]| shape is the output format of most \xintfracname macros, it benefits from accelerated parsing when used on input, compared to the normal user syntax which has no |[N]| part. An example of valid user input for a fraction is % \leftedline{|-123.45602e78/+765.987e-123|} % where both the decimal parts, the scientific exponent parts, and the whole denominator are optional components. The corresponding semi-private form in this case would be % \leftedline{\xintRaw{-123.45602e78/+765.987e-123}} % The forward slash |/| is simply a delimiter to separate numerator and denominator, in order to allow inputs having such denominators. Reduction to the irreducible form of the output must be asked for explicitely via the \csbxint{Irr} macro or the |reduce| function within |\xintexpr..\relax|. Elementary operations on fractions do very little of the simplifications which could be obvious to (some) human beings. \subsection{FAQ} We are honoured to present here this interview with the author, dating back to late March 2014. \begin{description} \item[Will \xintexprname implement \texttt{exp}, \texttt{log}, \texttt{cos}, \texttt{sin} \dots at some point?] I guess so. \item[\xintseriesname already provides generic tools.] Right, although the casual user of the \xintname bundle will not quite know how to do variable reduction expandably in order to use some series or Pad\'e approximants. Besides I wrote the code at the beginning of the project and perhaps I could do it better now (I have not looked at it for a while). Anyhow, generic things do not help much if one wants to optimize. \item[Optimizing? isn't \TeX's macro expansion mechanism intrinsically slow?] Intensive use of \csa{numexpr} and some token manipulation algorithms exploiting to the best I could \TeX{} macros with parameters grant \xintname a significant speed up in expandable arithmetic on big integers compared to previously available implementations. You can do some comparisons with multiplication on numbers with $100$ digits or division of one of $100$ digits by another of $50$ digits, for example. However expandability is antagonist of speed, and I agree it is not very exciting to optimize slow things. And I was disappointed last year to realize the slowness of \TeX's mouth when it has to keep hundreds of tokens in cheek to mix them later with new aliments. Believe me, I try not to think too much about the fact that the whole enterprise is made irrelevant by Lua\LaTeX's ability to access external libraries. \item[Well, why isn't this \texttt{log} etc\dots thing done yet?] I have to decide on the maximal precision to achieve: $24$, $32$, $48$, $64$,\dots ; to settle that I would need to implement some initial versions and benchmark them. \item[Fair enough. That's the common lot. So why not yet?] I am a bit overworked. It is also an opportunity to think over the basic underlying mathematics, and will need devoted thinking for some not insignificant amount of time. So far I didn't find the time, or rather I found out good means to waste it sillily. I also anticipate that originality could very well not pay off at all, so small is the window for the precision. \item[Any chance this could be done in time for TL2014?] No, sorry.\newline Release |1.09m| of |[2014/02/26]| was the end of a cycle, and this |1.09n| of |[2014/04/01]| is only for a bug fix and inclusion of this |FAQ| in the documentation. \footnotesize \item[and in time for TL2015?] ... (indistinct mumbles, something like \emph{too tired}, \emph{I need a life}, \emph{get yourself a calculator}, \emph{we'll see}\dots) \end{description} \section{Introduction via examples} The main goal is to allow expandable computations with integers and fractions of arbitrary sizes. \subsection{Printing big numbers on the page}\label{ssec:printnumber} When producing very long numbers there is the question of printing them on the page, without going beyond the page limits. In this document, I have most of the time made use of these macros (not provided by the package:) % \everb|@ \def\allowsplits #1{\ifx #1\relax \else #1\hskip 0pt plus 1pt\relax \expandafter\allowsplits\fi}% \def\printnumber #1{\expandafter\allowsplits \romannumeral-`0#1\relax }% % \printnumber thus first ``fully'' expands its argument. | It may be used like this: % \leftedline{|\printnumber {\xintiiQuo{\xintiiPow {2}{1000}}{\xintiFac{100}}}|} % or as |\printnumber\mybiginteger| or |\printnumber{\mybiginteger}| if |\mybiginteger| was previously defined via a |\newcommand|, a |\def| or an |\edef|. An alternative is to suitably configure the thousand separator with the \href{http://ctan.org/pkg/numprint}{numprint} package (see \autoref{fn:np}. This will not allow linebreaks when used in math mode; I also tried \href{http://ctan.org/pkg/siunitx}{siunitx} but even in text mode could not get it to break numbers accross lines). Recently I became aware of the \href{http://ctan.org/pkg/seqsplit}{seqsplit} package% % \footnote{\url{http://ctan.org/pkg/seqsplit}} % which can be used to achieve this splitting accross lines, and does work in inline math mode (however it doesn't allow to separate digits by groups of three, for example).\par \subsection{Randomly chosen examples} Here are some examples of use of the package macros. The first one uses only the base module \xintname, the next two require the \xintfracname package, which deals with fractions. Then two examples with the \xintgcdname package, one with the \xintseriesname package, and finally a computation with a float. Some inputs are simplified by the use of the \xintexprname package. \begin{itemize} \item {$123456^{99}$: }\\ |\xintiiPow {123456}{99}|: \dtt{\printnumber{\xintiiPow {123456}{99}}} \item {1234/56789 with 1500 digits after the decimal point: }\\ |\xintTrunc {1500}{1234/56789}\dots|: \dtt{\printnumber {\xintTrunc {1500}{1234/56789}}\dots } \item {$0.99^{-100}$ with 200 digits after the decimal point:}\\ |\xinttheexpr trunc(.99^-100,200)\relax\dots|: \dtt{\printnumber{\xinttheexpr trunc(.99^-100,200)\relax}\dots } \item Just to show off (again), let's print 300 digits (after the decimal point) of the decimal expansion of $0.7^{-25}$:% % \footnote{the |\np| typesetting macro is from the |numprint| package.} % \begin{everbatim*} % % in the preamble: % \usepackage[english]{babel} % \usepackage[autolanguage,np]{numprint} % \npthousandsep{,\hskip 1pt plus .5pt minus .5pt} % \usepackage{xintexpr} % in the body: \np {\xinttheexpr trunc(.7^-25,300)\relax}\dots \end{everbatim*} This computation is with \csbxint{theexpr} from package \xintexprname, which allows to use standard infix notations and function names to access the package macros, such as here |trunc| which corresponds to the \xintfracname macro \csbxint{Trunc}. \begin{snugframed} The fraction |0.7^-25| is first evaluated \emph{exactly}; for some more complex inputs, such as |0.7123045678952^-243|, the exact evaluation before truncation would be rather costly, and one would rather use floating point numbers: % \leftedline{|\xintDigits:=20; \np{\xintthefloatexpr .7123045678952^-243\relax}|}% % \leftedline{\xintDigits:=20;\dtt{\np{\xintthefloatexpr .7123045678952^-243\relax }}} % Side note: the exponent |-243| didn't have to be put inside parentheses, contrarily to what happens with some professional computational software. |;-)| % 6.342,022,117,488,416,127,3 10^35 % maple n'aime pas ^-243 il veut les parenthèses, bon et il donne, en Digits % = 24: 0.634202211748841612732270 10^36 \end{snugframed} \xintDigits:=16; \item Computation of a Bezout identity with |7^200-3^200| and |2^200-1|: (with \xintgcdname)\par \everb|@ \xintAssign \xintBezout {\xinttheiiexpr 7^200-3^200\relax} {\xinttheiiexpr 2^200-1\relax}\to\A\B\U\V\D $\U\times(7^{200}-3^{200})+\xintiOpp\V\times(2^{200}-1)=\D$ | \xintAssign \xintBezout {\xinttheiiexpr 7^200-3^200\relax}% {\xinttheiiexpr 2^200-1\relax}\to\A\B\U\V\D \dtt {\printnumber\U$\times(7^{200}-3^{200})+{}$% \printnumber{\xintiOpp\V}$\times(2^{200}-1)={}$\printnumber\D} % 11 octobre 2014, je modifie juste d'une unité le deuxième... plus joli. \item The Euclide algorithm applied to \np{22206980239027589097} and \np{8169486210102119257}: (with \xintgcdname)% % \footnote {this example is computed tremendously faster than the other ones, but we had to limit the space taken by the output hence picked up rather small big integers as input.}\par \noindent\begingroup\parskip0pt\relax |\xintTypesetEuclideAlgorithm {22206980239027589097}{8169486210102119257}|\par \dtt {\xintTypesetEuclideAlgorithm {22206980239027589097}{8169486210102119257}} \endgroup \smallskip \item $\sum_{n=1}^{500} (4n^2 - 9)^{-2}$ with each term rounded to twelve digits, and the sum to nine digits: \begin{everbatim*} \def\coeff #1{\xintiRound {12}{1/\xintiiSqr{\the\numexpr 4*#1*#1-9\relax }[0]}} \xintRound {9}{\xintiSeries {1}{500}{\coeff}[-12]} \end{everbatim*} The complete series, extended to infinity, has value $\frac{\pi^2}{144}-\frac1{162}={}$% \dtt{\np{0.06236607994583659534684445}\dots}\,% % \footnote{\label{fn:np}This number is typeset using the \href{http://www.ctan.org/pkg/numprint}{numprint} package, with |\npthousandsep{,\hskip 1pt plus .5pt minus .5pt}|. But the breaking across lines works only in text mode. The number itself was (of course...) computed initially with \xintname, with 30 digits of $\pi$ as input. See \hyperref[ssec:Machin]{{how {\xintname} may compute $\pi$ from scratch}}.} % I also used (this is a lengthier computation than the one above) \xintseriesname to evaluate the sum with \np{100000} terms, obtaining 16 correct decimal digits for the complete sum. The coefficient macro must be redefined to avoid a |\numexpr| overflow, as |\numexpr| inputs must not exceed $2^{31}-1$; my choice was: \everb|@ \def\coeff #1% {\xintiRound {22}{1/\xintiiSqr{\xintiiMul{\the\numexpr 2*#1-3\relax} {\the\numexpr 2*#1+3\relax}}[0]}} | \restoreMacroFont \edef\Temp {\xintFloatPow [24]{2}{999999999}} \item {Computation of $2^{\np{999999999}}$ with |24| significant figures:} % \leftedline{|\numprint{\xintFloatPow [24]{2}{999999999}}|} \leftedline{\dtt{\numprint{\Temp}}} % where the \href{http://www.ctan.org/pkg/numprint}{numprint} package was used (\autoref{fn:np}), directly in text mode (it can also naturally be used from inside math mode). \xintname provides a simple-minded \csbxint{Frac} typesetting macro,% % \footnote{Plain \TeX{} users of \xintname have \csbxint{FwOver}.} % which is math-mode only: % \leftedline{|$\xintFrac{\xintFloatPow [24]{2}{999999999}}$|} \leftedline{\dtt{$\xintFrac{\Temp}$}} % The exponent differs, but this is because |\xintFrac| does not use a decimal mark in the significand of the output. Admittedly most users will have the need of more powerful (and customizable) number formatting macros than |\xintFrac|. % \footnote{There should be a |\xintFloatFrac|, but it is lacking.} % We have already mentioned |\numprint| which is used above, there is also |\num| from package \href{http://www.ctan.org/pkg/siunitx}{siunitx}. The raw output from % \leftedline{\detokenize{\xintFloatPow[24]{2}{999999999}}} % is $\Temp$. \edef\x{\xintiiQuo{\xintiiPow {2}{1000}}{\xintiFac{100}}} \edef\y{\xintLen{\x}} \item As an example of nesting package macros, let us consider the following code snippet within a file with filename |myfile.tex|: \everb|@ \newwrite\outstream \immediate\openout\outstream \jobname-out\relax \immediate\write\outstream {\xintiiQuo{\xintiiPow{2}{1000}}{\xintiFac{100}}} % \immediate\closeout\outstream | \noindent The tex run creates a file |myfile-out.tex|, and then writes to it the quotient from the euclidean division of $2^{1000}$ by $100!$. The number of digits is |\xintLen{\xintiiQuo{\xintiiPow{2}{1000}}{\xintiFac{100}}}| which expands (in two steps) and tells us that $[2^{1000}/100!]$ has \dtt{\y} digits. This is not so many, let us print them here: \dtt{\printnumber\x}.% % % \footnote{See \autoref{ssec:printnumber} and \hyperref[fn:np]{a previous % footnote}.} \end{itemize} \subsection {More examples, some quite elaborate, within this document} \label{sec:awesome} \begin{itemize} \item The utilities provided by \xinttoolsname (\autoref{sec:tools}), some completely expandable, others not, are of independent interest. Their use is illustrated through various examples: among those, it is shown in \autoref{ssec:quicksort} how to implement in a completely expandable way the \hyperref[quicksort]{Quick Sort algorithm} and also how to illustrate it graphically. Other examples include some dynamically constructed alignments with automatically computed prime number cells: one using a completely expandable prime test and \csbxint{ApplyUnbraced} (\autoref{ssec:primesI}), another one with \csbxint{For*} (\autoref{ssec:primesIII}). \item One has also a \hyperref[edefprimes]{computation of primes within an \csa{edef}} (\autoref{xintiloop}), with the help of \csbxint{iloop}. Also with \csbxint{iloop} an \hyperref[ssec:factorizationtable]{automatically generated table of factorizations} (\autoref{ssec:factorizationtable}). \item The code for the title page fun with Fibonacci numbers is given in \autoref{ssec:fibonacci} with \csbxint{For*} joining the game. \item The computations of \hyperref[ssec:Machin]{ $\pi$ and $\log 2$} (\autoref{ssec:Machin}) using \xintname and the computation of the \hyperref[ssec:e-convergents]{convergents of $e$} with the further help of the \xintcfracname package are among further examples. \item There is also an example of an \hyperref[xintXTrunc]{interactive session}, where results are output to the log or to a file. \item The new functionalities of \xintexprname are illustrated with various examples in \autoref{sec:expr11}. \end{itemize} Almost all of the computational results interspersed throughout the documentation are not hard-coded in the source of the document. They are the result of evaluation of the package macros, and were selected to not impact too much the compilation time of this documentation. Nevertheless, there are so many computations done that compilation time is significantly increased compared to a \LaTeX\ run on a typical document of about the same size. \section{The \xintname bundle} \subsection{General overview} The main characteristics are: \begin{enumerate} \item exact algebra on arbitrarily big numbers, integers as well as fractions, \item floating point variants with user-chosen precision, \item implemented via macros compatible with expansion-only context. \end{enumerate} `Arbitrarily big' means with less than |2^31-1|\dtt{=\number"7FFFFFFF} digits, as most of the macros will have to compute the length of the inputs and these lengths must be treatable as \TeX{} integers, which are at most \dtt{\number "7FFFFFFF} in absolute value. This is a distant irrelevant upper bound, as no such thing can fit in \TeX's memory! And besides, the true limitation is from the \emph{time} taken by the expansion-compatible algorithms, as will be commented upon soon. As just recalled, ten-digits numbers starting with a $3$ already exceed the \TeX{} bound on integers; and \TeX{} does not have a native processing of floating point numbers (multiplication by a decimal number of a dimension register is allowed --- this is used for example by the \href{http://mirror.ctan.org/graphics/pgf/base}{pgf} basic math engine.) \TeX{} elementary operations on numbers are done via the non-expandable \emph{advance, multiply, \emph{and} divide} assignments. This was changed with \eTeX{}'s |\numexpr| which does expandable computations using standard infix notations with \TeX{} integers. But \eTeX{} did not modify the \TeX{} bound on acceptable integers, and did not add floating point support. The \href{http://www.ctan.org/pkg/bigintcalc}{bigintcalc} package by \textsc{Heiko Oberdiek} provided expandable operations (using some of |\numexpr| possibilities, when available) on arbitrarily big integers, beyond the \TeX{} bound. The present package does this again, using more of |\numexpr| (\xintname requires the \eTeX{} extensions) for higher speed, and also on fractions, not only integers. Arbitrary precision floating points operations are a derivative, and not the initial design goal.% % \footnote{currently (|v1.08|), the only non-elementary operation implemented for floating point numbers is the square-root extraction; no signed infinities, signed zeroes, |NaN|'s, error trapes\dots, have been implemented, only the notion of `scientific notation with a given number of significant figures'.}% % ${}^{\text{,\,}}$% % \footnote{multiplication of two floats with |P=\xinttheDigits| digits is first done exactly then rounded to |P| digits, rather than using a specially tailored multiplication for floating point numbers which would be more efficient (it is a waste to evaluate fully the multiplication result with |2P| or |2P-1| digits.)} The \LaTeX3 project has implemented expandably floating-point computations with 16 significant figures (\href{http://www.ctan.org/pkg/l3kernel}{l3fp}), including special functions such as exp, log, sine and cosine.% % \footnote{at the time of writing the \href{http://www.ctan.org/pkg/l3kernel}{l3fp} (exactly represented) floating point numbers have their exponents limited to $\pm$\dtt{9999}.} There is also \href{http://latex-project.org/svnroot/experimental/trunk/l3trial/l3bigint}{l3bigint}, which (a.t.t.o.w.) is part of the experimental trunk of the \href{http://latex-project.org}{\LaTeX3 Project}. Like \href{http://www.ctan.org/pkg/bigintcalc}{bigintcalc} and \xintname it provides macros for big integer arithmetics. All three implementations of the basic arithmetic macros can be mapped to easier infix notations via the services of the \href{http://www.ctan.org/pkg/bnumexpr}{bnumexpr} package. The \xintname package can be used for $24$, $40$, etc\dots{} significant figures but one rather quickly (not much beyond $100$ figures) hits against a `wall' created by the constraint of expandability: currently, multiplying out two one-hundred digits numbers takes circa $80$ or $90$ times longer than for two ten-digits numbers, which is reasonable, but multiplying out two one-thousand digits numbers takes more than $500$ times longer than for two one hundred-digits numbers. This shows that the algorithm is drifting from quadratic to cubic in that range. On my laptop multiplication of two $1000$-digits numbers takes some seconds, so it can not be done routinely in a document.% % \footnote{without entering into too much technical details, the source of this `wall' is that when dealing with two long operands, when one wants to pick some digits from the second one, one has to jump above all digits constituting the first one, which can not be stored away: expandability forbids assignments to memory storage. One may envision some sophisticated schemes, dealing with this problem in less naive ways, trying to move big chunks of data higher up in the input stream and come back to it later, etc...; but each `better' algorithm adds overhead for the smaller inputs. For example, I have another version of addition which is twice faster on inputs with 500 digits or more, but it is slightly less efficient for 50 digits or less. This `wall' dissuaded me to look into implementing `intelligent' multiplication which would be sub-quadratic in a model where storing and retrieving from memory would not cost much.} The conclusion perhaps could be that it is in the end lucky that the speed gains brought by \xintname for expandable operations on big numbers do open some non-empty range of applicability in terms of the number of kept digits for routine floating point operations. The second conclusion, somewhat depressing after all the hard work, is that if one really wants to do computations with \emph{hundreds} of digits, one should drop the expandability requirement. And indeed, as clearly demonstrated long ago by the \href{http://www.ctan.org/pkg/pi}{pi computing file} by \textsc{D. Roegel} one can program \TeX{} to compute with many digits at a much higher speed than what \xintname achieves: but, direct access to memory storage in one form or another seems a necessity for this kind of speed and one has to renounce at the complete expandability.% % \footnote{I could, naturally, be proven wrong!}\,% % \footnote{The Lua\TeX{} project possibly makes endeavours such as \xintname appear even more insane that they are, in truth.} % \section{Missing things} % `Arbitrary-precision' floating-point % operations are currently limited to the basic four operations, the power % function with integer exponent, and the extraction of square-roots. \subsection{Origins of the package} Package |bigintcalc| by \textsc{Heiko Oberdiek} already provides expandable arithmetic operations on ``big integers'', exceeding the \TeX{} limits (of $2^{31}-1$), so why another% % \footnote{this section was written before the \xintfracname package; the author is not aware of another package allowing expandable computations with arbitrarily big fractions.} % one? I got started on this in early March 2013, via a thread on the |c.t.tex| usenet group, where \textsc{Ulrich D\,i\,e\,z} used the previously cited package together with a macro (|\ReverseOrder|) which I had contributed to another thread.% % \footnote{the \csa{ReverseOrder} could be avoided in that circumstance, but it does play a crucial r\^ole here.} % What I had learned in this other thread thanks to interaction with \textsc{Ulrich D\,i\,e\,z} and \textsc{GL} on expandable manipulations of tokens motivated me to try my hands at addition and multiplication. I wrote macros \csa{bigMul} and \csa{bigAdd} which I posted to the newsgroup; they appeared to work comparatively fast. These first versions did not use the \eTeX{} \csa{numexpr} primitive, they worked one digit at a time, having previously stored carry-arithmetic in 1200 macros. I noticed that the |bigintcalc| package used \csa{numexpr} if available, but (as far as I could tell) not to do computations many digits at a time. Using \csa{numexpr} for one digit at a time for \csa{bigAdd} and \csa{bigMul} slowed them a tiny bit but avoided cluttering \TeX{} memory with the 1200 macros storing pre-computed digit arithmetic. I wondered if some speed could be gained by using \csa{numexpr} to do four digits at a time for elementary multiplications (as the maximal admissible number for \csa{numexpr} has ten digits). The present package is the result of this initial questioning. % \begin{framed}\centering % \xintname requires the \eTeX{} extensions. % \end{framed} \subsection{Expansion matters} \label{sec:expansions} By convention in this manual \fexpan sion (``full expansion'' or ``full first expansion'') is the process of expanding repeatedly the first token seen until hitting against something not further expandable like an unexpandable \TeX-primitive or an opening brace |{| or a character (inactive). For those familiar with \LaTeX3 (which is not used by \xintname) this is what is called in its documentation full expansion. Technically, macro arguments in \xintname which are submitted to such a \fexpan sion are so via prefixing them with |\romannumeral-`0|. An explicit or implicit space token stops such an expansion and is gobbled. % Most of the package macros, and all those dealing with computations, are expandable in the strong sense that they expand to their final result via this \fexpan sion. Again copied from \LaTeX3 documentation conventions, this will be signaled in the description of the macro by a \etype{}star in the margin. All% % \footnote{except \csbxint{loop} and \csbxint{iloop}.} % expandable macros of the \xintname packages completely expand in two steps. Furthermore the macros dealing with computations, as well as many utilities from \xinttoolsname, apply this process of \fexpan sion to their arguments. Again from \LaTeX3's conventions this will be signaled by a% % \ntype{{\setbox0 \hbox{\Ff}\hbox to \wd0 {\hss f\hss}}} % margin annotation. Some additional parsing which is done by most macros of \xintname is indicated with a variant\ntype{\Numf{\kern.5cm}}; and the extended fraction parsing done by most macros of \xintfracname has its own symbol\ntype{\Ff}. When the argument has a priori to obey the \TeX{} bound of \dtt{\number"7FFFFFFF} it is systematically fed to a |\numexpr..\relax| hence the expansion is then a \emph{complete} one, signaled with an \ntype{\numx}\emph{x} in the margin. This means not only complete expansion, but also that spaces are ignored, infix algebra is possible, count registers are allowed, etc\dots The \csbxint{ApplyInline} and \csbxint{For*} macros from \xinttoolsname apply a special iterated \fexpan sion, which gobbles spaces, to all those items which are found \emph{unbraced} from left to right in the list argument; this is denoted specially as here\ntype{{\lowast f}} in the margin. Some other macros such as \csbxint{Sum} from \xintfracname first do an \fexpan sion, then treat each found (braced or not) item (skipping spaces between such items) via the general fraction input parsing, this is signaled as here\ntype{f{$\to$}{\lowast\Ff}} in the margin where the signification of the \lowast{} is thus a bit different from the previous case. A few macros from \xinttoolsname do not expand, or expand only once their argument\ntype{n{{\color{black}\upshape, resp.}} o}. This is also signaled in the margin with notations \`a la \LaTeX3. As the computations are done by \fexpan dable macros which \fexpan d their argument they may be chained up to arbitrary depths and still produce expandable macros. Conversely, wherever the package expects on input a ``big'' integers, or a ``fraction'', \fexpan sion of the argument \emph{must result in a complete expansion} for this argument to be acceptable.% % \footnote{this is not quite as stringent as claimed here, see \autoref{sec:useofcount} for more details.} The main exception is inside \csbxint{expr}|...\relax| where everything will be expanded from left to right, completely. Summary of important expansion aspects: \begin{enumerate} \item the macros \fexpan d their arguments, this means that they expand the first token seen (for each argument), then expand, etc..., until something un-expandable such as a\strut{} digit or a brace is hit against. This example % \leftedline{|\def\x{98765}\def\y{43210}| |\xintAdd {\x}{\x\y}|} % is \emph{not} a legal construct, as the |\y| will remain untouched by expansion and not get converted into the digits which are expected by the sub-routines of |\xintAdd|. It is a |\numexpr| which will expand it and an arithmetic overflow will arise as |9876543210| exceeds the \TeX{} bounds. \begingroup\slshape With \csbxint{theexpr} one could write |\xinttheexpr \x+\x\y\relax|, or |\xintAdd\x{\xinttheexpr\x\y\relax}|.\hfill \endgroup \item\label{fn:expansions} using |\if...\fi| constructs \emph{inside} the package macro arguments requires suitably mastering \TeX niques (|\expandafter|'s and/or swapping techniques) to ensure that the \fexpan sion will indeed absorb the \csa{else} or closing \csa{fi}, else some error will arise in further processing. Therefore it is highly recommended to use the package provided conditionals such as \csbxint{ifEq}, \csbxint{ifGt}, \csbxint{ifSgn}, \csbxint{ifOdd}\dots, or, for \LaTeX{} users and when dealing with short integers the \href{http://www.ctan.org/pkg/etoolbox}{etoolbox}% % \footnote{\url{http://www.ctan.org/pkg/etoolbox}} expandable conditionals (for small integers only) such as \texttt{\char92 ifnumequal}, \texttt{\char92 ifnumgreater}, \dots . Use of \emph{non-expandable} things such as \csa{ifthenelse} is impossible inside the arguments of \xintname macros. \begingroup\slshape One can use naive |\if..\fi| things inside an \csbxint{theexpr}-ession and cousins, as long as the test is expandable, for example\upshape % \leftedline{|\xinttheiexpr\ifnum3>2 143\else 33\fi 0^2\relax|$\to$\dtt{\xinttheiexpr \ifnum3>2 143\else 33\fi 0^2\relax =1430\char`\^2}} % \endgroup \item after the definition |\def\x {12}|, one can not use {\color{blue}|-\x|} as input to one of the package macros: the \fexpan sion will act only on the minus sign, hence do nothing. The only way is to use the \csbxint{Opp} macro, or perhaps here rather \csbxint{iOpp} which does maintains integer format on output, as they replace a number with its opposite. \begingroup\slshape Again, this is otherwise inside an \csbxint{theexpr}-ession or \csbxint{thefloatexpr}-ession. There, the minus sign may prefix macros which will expand to numbers (or parentheses etc...) \endgroup \def\x {12}% \def\AplusBC #1#2#3{\xintAdd {#1}{\xintMul {#2}{#3}}}% \item \label{item:xpxp} With the definition % \leftedline{|\def\AplusBC #1#2#3{\xintAdd {#1}{\xintMul {#2}{#3}}}|} % one obtains an expandable macro producing the expected result, not in two, but rather in three steps: a first expansion is consumed by the macro expanding to its definition. As the package macros expand their arguments until no more is possible (regarding what comes first), this |\AplusBC| may be used inside them: {|\xintAdd {\AplusBC {1}{2}{3}}{4}|} does work and returns \dtt{\xintAdd {\AplusBC {1}{2}{3}}{4}}. If, for some reason, it is important to create a macro expanding in two steps to its final value, one may either do: % \smallskip % \leftedline {|\def\AplusBC #1#2#3{\romannumeral-`0\xintAdd {#1}{\xintMul {#2}{#3}}}|} % or use the \emph{lowercase} form of \csa{xintAdd}: % \smallskip % \leftedline {|\def\AplusBC #1#2#3{\romannumeral0\xintadd {#1}{\xintMul {#2}{#3}}}|} and then \csa{AplusBC} will share the same properties as do the other \xintname `primitive' macros. \end{enumerate} The |\romannumeral0| and |\romannumeral-`0| things above look like an invitation to hacker's territory; if it is not important that the macro expands in two steps only, there is no reason to follow these guidelines. Just chain arbitrarily the package macros, and the new ones will be completely expandable and usable one within the other. Since release |1.07| the \csbxint{NewExpr} command automatizes the creation of such expandable macros: % \leftedline{|\xintNewExpr\AplusBC[3]{#1+#2*#3}|} % creates the |\AplusBC| macro doing the above and expanding in two expansion steps. \subsection{Efficiency; floating point macros} The size of the manipulated numbers is limited by two factors:\footnote{there is an intrinsic limit of \dtt{\number"7FFFFFFF} on the number of digits, but it is irrelevant, in view of the other limiting factors.} (1.)~\emph{the available memory as configured in the |tex| executable}, (2.)~\emph{the \emph{time} necessary to fully expand the computations themselves}. The most limiting factor is the second one, the time needed (for multiplication and division, and even more for powers) explodes with increasing input sizes long before the computations could get limited by constraints on \TeX's available memory: computations with $100$ digits are still reasonably fast, but the situation then deteriorates swiftly, as it takes of the order of seconds (on my laptop) for the package to multiply exactly two numbers each of $1000$ digits and it would take hours for numbers each of $20000$ digits.\footnote{Perhaps some faster routines could emerge from an approach which, while maintaining expandability would renounce at \fexpan dability (without impacting the input save stack). There is one such routine \csbxint{XTrunc} which is able to write to a file (or inside an \csa{edef}) tens of thousands of digits of a (reasonably-sized) fraction.} To address this issue, floating point macros are provided to work with a given arbitrary precision. The default size for significands is $16$ digits. Working with significands of $24$, $32$, $48$, $64$, or even $80$ digits is well within the reach of the package. But routine multiplications and divisions will become too slow if the precision goes into the hundreds, although the syntax to set it (|\xintDigits:=P;|) allows values up to $32767$.\footnote{for a one-shot conversion of a fraction to float format, or one addition, a precision exceeding \dtt{32767} may be passed as optional argument to the used macro.} The exponents may be as big as \dtt{$\pm$\number"7FFFFFFF}.\footnote{almost\dots{} as inner manipulations may either add or subtract the precision value to the exponent, arithmetic overflow may occur if the exponents are a bit too close to the \TeX{} bound \dtt{$\pm$\number"7FFFFFFF}.} Here is such a floating point computation: % \leftedline{|\xintFloatPower [48] {1.1547}{\xintiiPow {2}{35}}|} % which thus computes $(1.1547)^{2^{35}}=(1.1547)^{\xintiiPow {2}{35}}$ to be approximately % \leftedline{\dtt{\np{\xintFloatPower [48] {1.1547}{\xintiiPow {2}{35}}}}} % Notice that $2^{35}$ exceeds \TeX's bound, but \csa{xintFloatPower} allows it, what counts is the exponent of the result which, while dangerously close to $2^{31}$ is not quite there yet. The printing of the result was done via the |\numprint| command from the \href{http://ctan.org/pkg/numprint}{numprint} package\footnote{\url{http://ctan.org/pkg/numprint}}. The same computation can be done via the non-expandable assignment |\xintDigits:=48;| and then % \leftedline{|\xintthefloatexpr 1.1547^(2^35)\relax|} % Notice though that |2^35| will be evaluated as a floating point number, and if the floating point precision had been too low, this computation would have given an inexact value. It is safer, and also more efficient to code this as: % \leftedline{|\xintthefloatexpr 1.1547^\xintiiexpr 2^35\relax\relax|} % The \csbxint{iiexpr} is a cousin of \csbxint{expr} which is big integer-only and skips the overhead of fraction management. Notice on this example that being embedded inside the |floatexpr|-ession has nil influence on the |iiexpr|-ession: expansion proceeds in exactly the same way as if it had been at the `top' level. \xintexprname provides \emph{no} implementation of the |IEEE| standard: no |NaN|s, signed infinities, signed zeroes, error traps, \dots; what is achieved though is exact rounding for the basic operations. The only non-algebraic operation currently implemented is square root extraction. The power functions (there are three of them: \csbxint{Pow} to which |^| is mapped in |\xintexpr..\relax|, \csbxint{FloatPower} for |^| in |\xintfloatexpr..\relax|, and \csbxint{FloatPow} which is slighty faster but limits the exponent to the \TeX{} bound) allow only integral exponents. \section{User interface} Maintaining complete expandability is not for the faint of heart as it excludes doing macro definitions in the midst of the computation; in many cases, one does not need complete expandability, and definitions are allowed. In such contexts, there is no declaration for the user to be made to the package of a ``typed variable'' such as a long integer, or a (long) fraction, or possibly an |\xintexpr|-ession. Rather, the user has at its disposal the general tools of the \TeX{} language: |\def| and |\edef|. In \LaTeX\ there is |\newcommand| as wrapper to |\def|, but \LaTeX\ chose not to provide an analogous wrapper for |\edef|. It can still be used directly of course.\footnote{I don't know if \LaTeX3 will still allow direct use of |\def| and |\edef|\dots} The \xinttoolsname package provides |\oodef| which expands twice the replacement text\footnote{only for parameter less undelimited macros.}, hence forces complete expansion when the top level of this replacement text is a call to one of the \xintname bundle macros, its arguments being themselves chains of such macros. There is also |\fdef| which will apply \fexpan sion to the replacement text. Both are in such uses faster alternatives to |\edef|. This section will explain the various inputs which are recognized by the package macros and the format for their outputs. Inputs have mainly five possible shapes: \begin{enumerate} \item expressions which will end up inside a |\numexpr..\relax|, \item long integers in the strict format (no |+|, no leading zeroes, a count register or variable must be prefixed by |\the| or |\number|) \item long integers in the general format allowing both |-| and |+| signs, then leading zeroes, and a count register or variable without prefix is allowed, \item fractions with numerators and denominators as in the previous item, or also decimal numbers, possibly in scientific notation (with a lowercase |e|), and also optionally the semi-private |A/B[N]| format, \item and finally expandable material understood by the |\xintexpr| parser. \end{enumerate} Outputs are mostly of the following types: \begin{enumerate} \item long integers in the strict format, \item fractions in the |A/B[N]| format where |A| and |B| are both strict long integers, and |B| is positive, \item numbers in scientific format (with a lowercase |e|), \item the private |\xintexpr| format which needs the |\xintthe| prefix in order to end up on the printed page (or get expanded in the log) or be used as argument to the package macros. \end{enumerate} {\etocdefaultlines\etocsettocstyle{}{}\localtableofcontents} \subsection {Input formats}\label{sec:inputs} % \edef\z {\xintAdd % {+--0367.8920280/-++278.289287}{-109.2882/+270.12898}} Some macro arguments are by nature `short' integers,\ntype{\numx} \emph{i.e.} less than (or equal to) in absolute value \np{\number "7FFFFFFF}. This is generally the case for arguments which serve to count or index something. They will be embedded in a |\numexpr..\relax| hence on input one may even use count registers or variables and expressions with infix operators. Notice though that |-(..stuff..)| is surprisingly not legal in the |\numexpr| syntax! But \xintname is mainly devoted to big numbers; the allowed input formats for `long numbers' and `fractions' are: \begin{enumerate} \item the strict format\ntype{f} is for some macros of \xintname which only \fexpan d their arguments. After this \fexpan sion the input should be a string of digits, optionally preceded by a unique minus sign. The first digit can be zero only if the number is zero. A plus sign is not accepted. |-0| is not legal in the strict format. A count register can serve as argument of such a macro only if prefixed by |\the| or |\number|. Most macros of \xintname are like \csbxint{Add} and accept the extended format described in the next item; they may have a `strict' variant such as \csbxint{iiAdd} which remains available even with \xintfracname loaded, for optimization purposes. \item the macro \csbxint{Num} normalizes into strict format an input having arbitrarily many minus and plus signs, followed by a string of zeroes, then digits:% % \leftedline{|\xintNum {+-+-+----++-++----00000000009876543210}|\dtt{=\xintNum {+-+-+----++-++----0000000009876543210}}} % The extended integer format\ntype{\Numf} is thus for the arithmetic macros of \xintname which automatically parse their arguments via this \csbxint{Num}.% % \footnote{A \LaTeX{} \texttt{\char 92value\{countername\}} is accepted as macro argument.} \item the fraction format\ntype{\Ff} is what is expected by the macros of \xintfracname: a fraction is constituted of a numerator |A| and optionally a denominator |B|, separated by a forward slash |/| and |A| and |B| may be macros which will be automatically given to \csbxint{Num}. Each of |A| and |B| may be decimal numbers (the decimal mark must be a |.|). Here is an example:% % \footnote{the square brackets one sees in various outputs are explained near the end of this section.} % % \leftedline{|\xintAdd {+--0367.8920280/-++278.289287}{-109.2882/+270.12898}|} % Scientific notation is accepted for both numerator and denominator of a fraction, and is produced on output by \csbxint{Float}: % \begin{quote} |\xintAdd{10.1e1}{101.010e3}|\dtt{=\xintAdd{10.1e1}{101.010e3}}\\ % |\xintFloatAdd{10.1e1}{101.010e3}|\dtt{=\xintFloatAdd{10.1e1}{101.010e3}}\\ % |\xintPow {2}{100}|\dtt{=\xintPow {2}{100}}\\ % |\xintFloat{\xintPow {2}{100}}|\dtt{=\xintFloat{\xintPow {2}{100}}}\\ % |\xintFloatPow {2}{100}|\dtt{=\xintFloatPow {2}{100}} \end{quote} % Produced fractions having a denominator equal to one are, as a general rule, nevertheless printed as fractions. In math mode \csbxint{Frac} will remove such dummy denominators, and in inline text mode one has \csbxint{PRaw} with the similar effect. % \begin{quote} |\xintPRaw{\xintAdd{10.1e1}{101.010e3}}|\dtt{=\xintPRaw{\xintAdd{10.1e1}{101.010e3}}}\\ % |\xintRaw{1.234e5/6.789e3}|\dtt{=\xintRaw{1.234e5/6.789e3}}% \end{quote} \item the \hyperref[xintexpr]{expression format} is for inclusion in an \csbxint{expr}|...\relax|, it uses infix notations, function names, complete expansion, and is described in \autoref{sec:expr11} and \autoref{sec:expr}. \end{enumerate} Generally speaking, there should be no spaces among the digits in the inputs (in arguments to the package macros). Although most would be harmless in most macros, there are some cases where spaces could break havoc. So the best is to avoid them entirely. This is entirely otherwise inside an |\xintexpr|-ession, where spaces are ignored (except when they occur inside arguments to some macros, thus escaping the |\xintexpr| parser). See the \hyperref[sec:expr]{documentation}. Even with \xintfracname loaded, some macros by their nature can not accept fractions on input. Those parsing their inputs through \csbxint{Num} will now accept fractions, truncating them first to integers. With \xintfracname loaded, a number may be empty or start directly with a decimal point: \begin{quote} |\xintRaw{}=\xintRaw{.}|\dtt{=\xintRaw{}}\\ |\xintPow{-.3/.7}{11}|\dtt{=\xintPow{-.3/+.7}{11}}\\ |\xinttheexpr (-.3/.7)^11\relax|\dtt{=\xinttheexpr (-.3/.7)^11\relax} \end{quote} It is also licit to use |\A/\B| as input if each of |\A| and |\B| expands (in the sense previously described) to a ``decimal number'' as examplified above by the numerators and denominators (thus, possibly with a `scientific' exponent part, with a lowercase `e'). Or one may have just one macro |\C| which expands to such a ``fraction with optional decimal points'', or mixed things such as |\A 245/7.77|, where the numerator will be the concatenation of the expansion of |\A| and |245|. But, as explained already |123\A| is a no-go, \emph{except inside an |\xintexpr|-ession}! The scientific notation is necessarily (except in |\xintexpr..\relax|) with a lowercase |e|. It may appear both at the numerator and at the denominator of a fraction. % \leftedline{|\xintRaw {+--+1253.2782e++--3/---0087.123e---5}|\dtt{=\xintRaw {+--+1253.2782e++--3/---0087.123e---5}}} Arithmetic macros of \xintname which parse their arguments automatically through \csbxint{Num} are signaled by a special symbol%\ntype{\Numf{\unskip\kern\dimexpr\FrameSep+\FrameRule\relax}} \ntype{\Numf} in the margin. This symbol also means that these arguments may contain to some extent infix algebra with count registers, see the section \hyperref[sec:useofcount]{Use of count registers}. With \xintfracname loaded the symbol \smash{\Numf} means that a fraction is accepted if it is a whole number in disguise; and for macros accepting the full fraction format with no restriction there is the corresponding symbol in the margin\ntype{\Ff}. The \xintfracname macros generally output their result in |A/B[n]| format, representing the fraction |A/B| times |10^n|. This format with a trailing |[n]| (possibly, |n=0|) is accepted on input but it presupposes that the numerator and denominator |A| and |B| are in the strict integer format described above. So |16000/289072[17]| or |3[-4]| are authorized and it is even possible to use |\A/\B[17]| if |\A| expands to |16000| and |\B| to |289072|, or |\A| if |\A| expands to |3[-4]|. However, NEITHER the numerator NOR the denominator may then have a decimal point\IMPORTANT{}. And, for this format, ONLY the numerator may carry a UNIQUE minus sign (and no superfluous leading zeroes; and NO plus sign). It is allowed for user input but the parsing is minimal and it is mandatory to follow the above rules. This reduced flexibility, compared to the format without the square brackets, allows nesting package macros without too much speed impact. \subsection{Output formats} With package \xintfracname loaded, the routines \csbxint{Add}, \csbxint{Sub}, \csbxint{Mul}, \csbxint{Pow}, initiallly synonyms in \xintname of \csbxint{iAdd}, \csbxint{iSub}, \csbxint{iMul}, \csbxint{iPow}, are modified to become the fraction handling routines.% % \footnote{the power function does not accept a fractional exponent. Or rather, does not expect, and errors will result if one is provided.} % \footnote{as commented upon more later, for that very reason use of \csbxint{Add} etc\dots when only \xintname is loaded is strongly discouraged.}\,% % % \footnote{macros \csbxint{iAdd}, \csbxint{iSub}, \csbxint{iMul}, % \csbxint{iPow}, are the original ones dealing only with integers. They are % available as synonyms, also when \xintfracname is not loaded. With % \xintfracname loaded they accept on input also fractions, which they first % truncate to integers, and then the output format is the integer one. The macros \csbxint{iiAdd}, \csbxint{iiSub}, \csbxint{iiMul}, % \csbxint{iiPow}, \csbxint{iiSum}, \csbxint{iiPrd} are strictly integer-only: % they skip the overhead of parsing their arguments via % \csbxint{Num}.}\,% % % \footnote{also \csbxint{Cmp}, \csbxint{Sgn}, \csbxint{Geq}, % \csbxint{Opp}, \csbxint{Abs}, \csbxint{Max}, \csbxint{Min} are extended to % fractions; and the last four have the integer-only variants \csbxint{iOpp}, % \csbxint{iAbs}, \csbxint{iMax}, \csbxint{iMin}.}\,% % % % \footnote{and \csbxint{Fac}, % \csbxint{Quo}, \csbxint{Rem}, \csbxint{Division}, \csbxint{FDg}, % \csbxint{LDg}, \csbxint{Odd}, \csbxint{MON}, \csbxint{MMON} all accept a % fractional input as long as it reduces to an integer.} % They produce on output a fractional number |f=A/B[n]| where |A| and |B| are integers, with |B| positive, and |n| is a ``short'' integer. % % (\emph{i.e} less in absolute value than |2^{31}-9|). % This represents |(A/B)| times |10^n|. % \footnote{at each stage of the computations, the sum of |n| and the length of |A|, or of the absolute value of |n| and the length of |B|, must be kept less than |2^{31}-9|.} \begin{framed} The fraction output format for most \xintfracname macros is {|A/B[n]|} which stands for |(A/B)|$\times$|10^n|. The |A| and |B| may end in zeroes (\emph{i.e}, |n| does not represent all powers of ten), and will generally have a common factor. The denominator |B| is always strictly positive. Conversely, this format is accepted on input and is parsed more quickly than fractions containing decimal points or in scientific notation; the input denominator is optional. \end{framed} \begin{itemize} \item A macro \csbxint{Frac} is provided for the typesetting (math-mode only) of such a `raw' output. The command \csbxint{Frac} is not accepted as input to the package macros, it is for typesetting only (in math mode). \item \csbxint{Raw} prints the fraction directly as its internal representation |A/B[n]|. \begin{everbatim*} $\xintRaw{273.3734e5/3395.7200e-2}=\xintFrac {273.3734e5/3395.7200e-2}$ \end{everbatim*} \item \csbxint{PRaw} does the same but without printing the |[n]| if |n=0| and without printing |/1| if |B=1|. \item \csbxint{Irr} reduces the fraction to its irreducible form |C/D| (without a trailing |[0]|), and it prints the |D| even if |D=1|. \begin{everbatim*} $\xintIrr{273.3734e5/3395.7200e-2}$ \end{everbatim*} \item \csbxint{Num} from package \xintname becomes when \xintfracname is loaded a synonym to its macro \csbxint{TTrunc} (same as \csbxint{iTrunc}|{0}|) which truncates to the nearest integer. \item See also the documentations of \csbxint{Trunc}, \csbxint{iTrunc}, \csbxint{XTrunc}, \csbxint{Round}, \csbxint{iRound} and \csbxint{Float}. \item The \csbxint{iAdd}, \csbxint{iSub}, \csbxint{iMul}, \csbxint{iPow} macros and some others accept fractions on input which they truncate via \csbxint{TTrunc}. On output they still produce an integer with no fraction slash nor trailing |[n]|. \item The \csbxint{iiAdd}, \csbxint{iiSub}, \csbxint{iiMul}, \csbxint{iiPow}, and others with `\textcolor{blue}{ii}' in their names accept on input only integers in the strict format (they skip the overhead of the \csbxint{Num} parsing) and naturally they output an integer, with no fraction slash nor trailing |[n]|. \end{itemize} %\subsection{Multiple outputs}\label{sec:multout} Some macros return a token list of two or more numbers or fractions; they are then each enclosed in braces. Examples are \csbxint{iiDivision} which gives first the quotient and then the remainder of euclidean division, \csbxint{Bezout} from the \xintgcdname package which outputs five numbers, \csbxint{FtoCv} from the \xintcfracname package which returns the list of the convergents of a fraction, ... \autoref{sec:assign} and \autoref{sec:utils} mention utilities, expandable or not, to cope with such outputs. Another type of multiple number output is when using commas inside \csbxint{expr}|..\relax|: % \leftedline{|\xinttheiexpr 10!,2^20,lcm(1000,725)\relax|% $\to$\dtt{\xinttheiexpr 10!,2^20,lcm(1000,725)\relax}} This returns a comma separated list, with a space after each comma. % \section{Use of \TeX{} registers and variables} % {\etocdefaultlines\etocsettocstyle{}{}\localtableofcontents} \subsection{Use of count registers}\label{sec:useofcount} Inside |\xintexpr..\relax| and its variants, a count register or count control sequence is automatically unpacked using |\number|, with tacit multiplication: |1.23\counta| is like |1.23*\number\counta|. There is a subtle difference between count \emph{registers} and count \emph{variables}. In |1.23*\counta| the unpacked |\counta| variable defines a complete operand thus |1.23*\counta 7| is a syntax error. But |1.23*\count0| just replaces |\count0| by |\number\count0| hence |1.23*\count0 7| is like |1.23*57| if |\count0| contains the integer value |5|. Regarding now the package macros, there is first the case of arguments having to be short integers: this means that they are fed to a |\numexpr...\relax|, hence submitted to a \emph{complete expansion} which must deliver an integer, and count registers and even algebraic expressions with them like |\mycountA+\mycountB*17-\mycountC/12+\mycountD| are admissible arguments (the slash stands here for the rounded integer division done by |\numexpr|). This applies in particular to the number of digits to truncate or round with, to the indices of a series partial sum, \dots The macros allowing the extended format for long numbers or dealing with fractions will \emph{to some extent} allow the direct use of count registers and even infix algebra inside their arguments: a count register |\mycountA| or |\count 255| is admissible as numerator or also as denominator, with no need to be prefixed by |\the| or |\number|. It is possible to have as argument an algebraic expression as would be acceptable by a |\numexpr...\relax|, under this condition: \emph{each of the numerator and denominator is expressed with at most \emph{eight} tokens}.% % \footnote{Attention! there is no problem with a \LaTeX{} \csa{value}\texttt{\{countername\}} if if comes first, but if it comes later in the input it will not get expanded, and braces around the name will be removed and chaos\IMPORTANT{} will ensue inside a \csa{numexpr}. One should enclose the whole input in \csa{the}\csa{numexpr}|...|\csa{relax} in such cases.} % The slash for rounded division in a |\numexpr| should be written with braces |{/}| to not be confused with the \xintfracname delimiter between numerator and denominator (braces will be removed internally). Example: |\mycountA+\mycountB{/}17/1+\mycountA*\mycountB|, or |\count 0+\count 2{/}17/1+\count 0*\count 2|, but in the latter case the numerator has the maximal allowed number of tokens (the braced slash counts for only one). % \leftedline{|\cnta 10 \cntb 35 \xintRaw {\cnta+\cntb{/}17/1+\cnta*\cntb}|\dtt{->\cnta 10 \cntb 35 \xintRaw {\cnta+\cntb{/}17/1+\cnta*\cntb}}} % For longer algebraic expressions using count registers, there are two possibilities: \begin{enumerate} \item encompass each of the numerator and denominator in |\the\numexpr...\relax|, \item encompass each of the numerator and denominator in |\numexpr {...}\relax|. \end{enumerate} \everb|@ \cnta 100 \cntb 10 \cntc 1 \xintPRaw {\numexpr {\cnta*\cnta+\cntb*\cntb+\cntc*\cntc+ 2*\cnta*\cntb+2*\cnta*\cntc+2*\cntb*\cntc}\relax/% \numexpr {\cnta*\cnta+\cntb*\cntb+\cntc*\cntc}\relax } | \cnta 100 \cntb 10 \cntc 1 % \leftedline{\dtt{\xintPRaw {\numexpr {\cnta*\cnta+\cntb*\cntb+\cntc*\cntc+ 2*\cnta*\cntb+2*\cnta*\cntc+2*\cntb*\cntc}\relax/% \numexpr {\cnta*\cnta+\cntb*\cntb+\cntc*\cntc}\relax }}} % The braces would not be accepted as regular |\numexpr|-syntax: and indeed, they are removed at some point in the processing. \subsection{Dimensions} \label{sec:Dimensions} \meta{dimen} variables can be converted into (short) integers suitable for the \xintname macros by prefixing them with |\number|. This transforms a dimension into an explicit short integer which is its value in terms of the |sp| unit ($1/65536$\,|pt|). When |\number| is applied to a \meta{glue} variable, the stretch and shrink components are lost. For \LaTeX{} users: a length is a \meta{glue} variable, prefixing a length command defined by \csa{newlength} with \csa{number} will thus discard the |plus| and |minus| glue components and return the dimension component as described above, and usable in the \xintname bundle macros. This conversion is done automatically inside an |\xintexpr|-essions, with tacit multiplication implied if prefixed by some (integral or decimal) number. One may thus compute areas or volumes with no limitations, in units of |sp^2| respectively |sp^3|, do arithmetic with them, compare them, etc..., and possibly express some final result back in another unit, with the suitable conversion factor and a rounding to a given number of decimal places. A \hyperref[tableofdimensions]{table of dimensions} illustrates that the internal values used by \TeX{} do not correspond always to the closest rounding. For example a millimeter exact value in terms of |sp| units is \dtt{72.27/10/2.54*65536=\xinttheexpr trunc(72.27/10/2.54*65536,3)\relax ...} and \TeX{} uses internally \dtt{\number\dimexpr 1mm\relax}|sp| (it thus appears that \TeX{} truncates to get an integral multiple of the |sp| unit). % impossible avec le \ignorespaces mis par LaTeX de faire \number\dimexpr % idem à la fin avec \unskip, si je veux xinttheexpr \begin{figure*}[ht!] \phantomsection\label{tableofdimensions} \begingroup\let\ignorespaces\empty \let\unskip\empty \def\T{\expandafter\TT\number\dimexpr} \def\TT#1!{\gdef\tempT{#1}} \def\E{\expandafter\expandafter\expandafter \EE\xintexpr reduce(} \def\EE#1!{\gdef\tempE{#1}} \centeredline{\begin{tabular}{% >{\bfseries\strut}c% c% >{\E}c<{)\relax!}@{}% >{\xintthe\tempE}r@{${}={}$}% >{\xinttheexpr trunc(\tempE,3)\relax...}l% >{\T}c<{!}@{}% >{\tempT}r% >{\xinttheexpr round(100*(\tempT-\tempE)/\tempE,4)\relax\%}c} \hline Unit&% definition&% \omit &% \multicolumn{2}{c}{Exact value in \texttt{sp} units\strut}&% \omit &% \omit\parbox{2cm}{\centering\strut\TeX's value in \texttt{sp} units\strut}&% \omit\parbox{2cm}{\centering\strut Relative error\strut}\\\hline cm&0.01 m&72.27/2.54*65536&&&1cm&&\\ mm&0.001 m&72.27/10/2.54*65536&&&1mm&&\\ in&2.54 cm&72.27*65536&&&1in&&\\ pc&12 pt&12*65536&&&1pc&&\\ pt&1/72.27 in&65536&&&1pt&&\\ bp&1/72 in&72.27*65536/72&&&1bp&&\\ \omit\hfil\llap{3}bp\hfil&1/24 in&72.27*65536/24&&&3bp&&\\ \omit\hfil\llap{12}bp\hfil&1/6 in&72.27*65536/6&&&12bp&&\\ \omit\hfil\llap{72}bp\hfil&1 in&72.27*65536&&&72bp&&\\ dd&1238/1157 pt&1238/1157*65536&&&1dd&&\\ \omit\hfil\llap{11}dd\hfil&11*1238/1157 pt&11*1238/1157*65536&&&11dd&&\\ \omit\hfil\llap{12}dd\hfil&12*1238/1157 pt&12*1238/1157*65536&&&12dd&&\\ sp&1/65536 pt&1&&&1sp&&\\\hline \multicolumn{8}{c}{\bfseries\large\TeX{} \strut dimensions}\\\hline \end{tabular}} \endgroup \end{figure*} There is something quite amusing with the Didot point. According to the \TeX Book, $1157$\,|dd|=$1238$\,|pt|. The actual internal value of $1$\,|dd| in \TeX{} is $70124$\,|sp|. We can use \xintcfracname to display the list of centered convergents of the fraction $70124/65536$: % \leftedline{|\xintListWithSep{, }{\xintFtoCCv{70124/65536}}|} % \xintFor* #1 in {\xintFtoCCv{70124/65536}}\do {$\printnumber{#1}$, }% and we don't find $1238/1157$ therein, but another approximant $1452/1357$! And indeed multiplying $70124/65536$ by $1157$, and respectively $1357$, we find the approximations (wait for more, later): % \leftedline{``$1157$\,|dd|''\dtt{=\xinttheexpr trunc(1157\dimexpr 1dd\relax/\dimexpr 1pt\relax,12)\relax}\dots|pt|} % \leftedline{``$1357$\,|dd|''\dtt{=\xinttheexpr trunc(1357\dimexpr 1dd\relax/\dimexpr 1pt\relax,12)\relax}\dots|pt|} % and we seemingly discover that $1357$\,|dd|=$1452$\,|pt| is \emph{far more accurate} than the \TeX Book formula $1157$\,|dd|=$1238$\,|pt|~! The formula to compute $N$\,|dd| was % \leftedline{|\xinttheexpr trunc(N\dimexpr 1dd\relax/\dimexpr 1pt\relax,12)\relax}|} % What's the catch? The catch is that \TeX{} \emph{does not} compute $1157$\,|dd| like we just did:% % \leftedline{$1157$\,|dd|=|\number\dimexpr 1157dd\relax/65536|% \dtt{=\xintTrunc{12}{\number\dimexpr 1157dd\relax/65536}}\dots|pt|} % \leftedline{$1357$\,|dd|=|\number\dimexpr 1357dd\relax/65536|% \dtt{=\xintTrunc{12}{\number\dimexpr 1357dd\relax/65536}}\dots|pt|} % We thus discover that \TeX{} (or rather here, e-\TeX{}, but one can check that this works the same in \TeX82), uses indeed $1238/1157$ as a conversion factor, and necessarily intermediate computations are done with more precision than is possible with only integers less than $2^{31}$ (or $2^{30}$ for dimensions). Hence the $1452/1357$ ratio is irrelevant, a misleading artefact of the necessary rounding (or, as we see, truncating) for one |dd| as an integral number of |sp|'s. Let us now use |\xintexpr| to compute the value of the Didot point in millimeters, if the above rule is exactly verified: % \leftedline{|\xinttheexpr trunc(1238/1157*25.4/72.27,12)\relax|% \dtt{=\xinttheexpr trunc(1238/1157*25.4/72.27,12)\relax}|...mm|} % This fits very well with the possible values of the Didot point as listed in the \href{http://en.wikipedia.org/wiki/Point_%28typography%29#Didot}{Wikipedia Article}. % The value $0.376065$\,|mm| is said to be \emph{the traditional value in European printers' offices}. So the $1157$\,|dd|=$1238$\,|pt| rule refers to this Didot point, or more precisely to the \emph{conversion factor} to be used between this Didot and \TeX{} points. The actual value in millimeters of exactly one Didot point as implemented in \TeX{} is % \leftedline {|\xinttheexpr trunc(\dimexpr 1dd\relax/65536/72.27*25.4,12)\relax|} % \leftedline{\dtt{=\xinttheexpr trunc(\dimexpr 1dd\relax/65536/72.27*25.4,12)\relax}|...mm|} % The difference of circa $5$\AA\ is arguably tiny! % 543564351/508000000 By the way the \emph{European printers' offices \emph{(dixit Wikipedia)} Didot} is thus exactly % \leftedline{|\xinttheexpr reduce(.376065/(25.4/72.27))\relax|% \dtt{=\xinttheexpr reduce(.376065/(25.4/72.27))\relax}\,|pt|} % and the centered convergents of this fraction are \xintFor* #1 in {\xintFtoCCv{543564351/508000000}}\do {\dtt{\printnumber{#1}}\xintifForLast{.}{, }} We do recover the $1238/1157$ therein! % As a final comment on the \hyperref[tableofdimensions]{table of dimensions}, we % conclude that the ``Relative Error'' column is misleading as these relative % errors by necessity decrease for integer multiples of the given dimension units. % This was already indicated by the \textbf{72bp} row. % To conclude our comments on the % \hyperref[tableofdimensions]{table of dimensions}, the big point, now known as % \emph{Desktop Publishing Point} is less accurately implemented in \TeX{} than % other units. Let us test for example the relation $1$\,|in|$=72$\,|bp|, the difference is % % % \centeredline{|\number\numexpr\dimexpr1in\relax-72*\dimexpr1bp\relax\relax|% % \dtt{=\number\numexpr\dimexpr1in\relax-72*\dimexpr1bp\relax\relax}\,|sp|} % \centeredline{|\number\dimexpr1in-72bp\relax|% % \dtt{=\number\dimexpr1in-72bp\relax}\,|sp|} % on the other hand % \centeredline{|\xinttheexpr reduce(\dimexpr1in\relax-72.27*\dimexpr1pt\relax)\relax|} % \centeredline % \dtt{=\xinttheexpr reduce(\dimexpr1in\relax-72.27*\dimexpr1pt\relax)\relax}\,|sp|=$-0.72$\,|sp|} % \centeredline % {\dtt{=\number\dimexpr1in-72.27pt\relax}\,|sp|=$-0.72$\,|sp|} \subsection{\csh{ifcase}, \csh{ifnum}, ... constructs}\label{sec:ifcase} When using things such as |\ifcase \xintSgn{\A}| one has to make sure to leave a space after the closing brace for \TeX{} to stop its scanning for a number: once \TeX{} has finished expanding |\xintSgn{\A}| and has so far obtained either |1|, |0|, or |-1|, a space (or something `unexpandable') must stop it looking for more digits. Using |\ifcase\xintSgn\A| without the braces is very dangerous, because the blanks (including the end of line) following |\A| will be skipped and not serve to stop the number which |\ifcase| is looking for. % \begin{everbatim*} \begin{enumerate}[nosep]\def\A{1} \item \ifcase \xintSgn\A 0\or OK\else ERROR\fi \item \ifcase \xintSgn\A\space 0\or OK\else ERROR\fi \item \ifcase \xintSgn{\A} 0\or OK\else ERROR\fi \end{enumerate} \end{everbatim*} In order to use successfully |\if...\fi| constructions either as arguments to the \xintname bundle expandable macros, or when building up a completely expandable macro of one's own, one needs some \TeX nical expertise (see also \autoref{fn:expansions} on page~\pageref{fn:expansions}). It is thus much to be recommended to opt rather for already existing expandable branching macros, such as the ones which are provided by \xintname/\xintfracname: among them \csbxint{SgnFork}, \csbxint{ifSgn}, \csbxint{ifZero}, \csbxint{ifOne}, \csbxint{ifNotZero}, \csbxint{ifTrueAelseB}, \csbxint{ifCmp}, \csbxint{ifGt}, \csbxint{ifLt}, \csbxint{ifEq}, \csbxint{ifOdd}, and \csbxint{ifInt}. See their respective documentations. All these conditionals always have either two or three branches, and empty brace pairs |{}| for unused branches should not be forgotten. If these tests are to be applied to standard \TeX{} short integers, it is more efficient to use (under \LaTeX{}) the equivalent conditional tests from the \href{http://www.ctan.org/pkg/etoolbox}{etoolbox}% % \footnote{\url{http://www.ctan.org/pkg/etoolbox}} package. \subsection{Expandable implementations of mathematical algorithms} It is possible to chain |\xintexpr|-essions with |\expandafter|'s, like experts do with |\numexpr| to compute multiple things at once. See \autoref{ssec:fibonacci} for an example devoted to Fibonacci numbers (this section provides the code which was used on the title page for the \dtt{$F(1250)$} evaluation.) Notice that the $47$th Fibonacci number is \dtt{\Fibonacci {47}} thus already too big for \TeX{} and \eTeX{}. The |\Fibonacci| macro found in \autoref{ssec:fibonacci} is completely expandable, (it is even \fexpan dable in the sense previously explained) hence can be used for example within |\message| to write to the log and terminal. \begingroup \def\A {1859}\def\B {1573} \edef\C {\xintiiGCD\A\B} \edef\X {\Fibonacci\A} \edef\Y {\Fibonacci\B} % Also, one can thus use it as argument to the \xintname macros: for example if we are interested in knowing how many digits $F(1250)$ has, it suffices to issue |\xintLen {\Fibonacci {1250}}| (which expands to \dtt{\xintLen {\Fibonacci {1250}}}). Or if we want to check the formula $gcd(F(1859),F(1573))=F(gcd(1859,1573))=F(143)$, we only need% % \footnote{The \csa{xintiiGCD} macro is provided by the \xintgcdname package.} % \leftedline{|$\xintiiGCD{\Fibonacci{1859}}{\Fibonacci{1573}}=\Fibonacci{\xintiiGCD{1859}{1573}}$|} % which outputs: % \leftedline{$\dtt{\xintiiGCD{\X}{\Y}}=\dtt{\Fibonacci{\C}}$} The |\Fibonacci| macro expanded its |\xintiiGCD{1859}{1573}| argument via the services of |\numexpr|: this step allows only things obeying the \TeX{} bound, naturally! (but \dtt{F(\xintiiPow2{31}}) would be rather big anyhow...). In practice, whenever one typesets things, one has left the expansion only contexts; hence there is no objection to, on the contrary it is recommended, assign the result of earlier computations to macros via an |\edef| (or an |\oodef|, see \ref{oodef}), for later use. The above could thus be coded \begin{everbatim} \begingroup \def\A {1859} \def\B {1573} \edef\C {\xintiiGCD\A\B} \edef\X {\Fibonacci\A} \edef\Y {\Fibonacci\B} The identity $\gcd(F(\A),F(\B))=F(\gcd(\A,\B))$ can be checked via evaluation of both sides: $\gcd(F(\A),F(\B))=\gcd(\printnumber\X,\printnumber\Y)= \printnumber{\xintiiGCD\X\Y} = F(\gcd(\A,\B))$.\par % some further computations involving \A, \B, \C, \X, \Y \endgroup % closing the group removes assignments to \A, \B, ... % or choose longer names less susceptible to overwriting something. Note that there % is no LaTeX \newecommand which would be to \edef like \newcommand is to \def \end{everbatim} The identity $\gcd(F(\A),F(\B))=F(\gcd(\A,\B))$ can be checked via evaluation of both sides: $\gcd(F(\A),F(\B))=\gcd(\dtt{\printnumber\X{\normalcolor,}\printnumber\Y})= \dtt{\printnumber{\xintiiGCD\X\Y}} = F(\C) = F(\gcd(\A,\B))$.\par \endgroup One may thus legitimately ask the author: why expandability to such extremes, for things such as big fractions or floating point numbers (even continued fractions...) which anyhow can not be used directly within \TeX's primitives such as |\ifnum|? the answer is that the author chose, seemingly, at some point back in his past to waste from then on his time on such useless things! \subsection{Possible syntax errors to avoid} \edef\x{\xintMul {3}{5}/\xintMul{7}{9}} Here is a list of imaginable input errors. Some will cause compilation errors, others are more annoying as they may pass through unsignaled. \begin{itemize} \item using |-| to prefix some macro: |-\xintiSqr{35}/271|.% % \footnote{to the contrary, this \emph{is} allowed inside an |\xintexpr|-ession.} \item using one pair of braces too many |\xintIrr{{\xintiPow {3}{13}}/243}| (the computation goes through with no error signaled, but the result is completely wrong). \item using |[]| and decimal points at the same time |1.5/3.5[2]|, or with a sign in the denominator |3/-5[7]|. The scientific notation has no such restriction, the two inputs |1.5/-3.5e-2| and |-1.5e2/3.5| are equivalent: |\xintRaw{1.5/-3.5e-2}|\dtt{=\xintRaw{1.5/-3.5e-2}}, |\xintRaw{-1.5e2/3.5}|\dtt{=\xintRaw{-1.5e2/3.5}}. \item specifying numerators and denominators with macros producing fractions when \xintfracname is loaded: |\edef\x{|\allowbreak|\xintMul {3}{5}/\xintMul{7}{9}}|. This expands to \texttt{\x} which is invalid on input. Using this |\x| in a fraction macro will most certainly cause a compilation error, with its usual arcane and undecipherable accompanying message. The fix here would be to use |\xintiMul|. The simpler alternative with package \xintexprname: |\xinttheexpr 3*5/(7*9)\relax|. \item generally speaking, using in a context expecting an integer (possibly restricted to the \TeX{} bound) a macro or expression which returns a fraction: |\xinttheexpr 4/2\relax| outputs \dtt{\xinttheexpr 4/2\relax}, not $2$. Use |\xintNum {\xinttheexpr 4/2\relax}| or |\xinttheiexpr 4/2\relax| (which rounds the result to the nearest integer, here, the result is already an integer) or |\xinttheiiexpr 4/2\relax|. \item use of square brackets |[|, |]| in |\xintexpr...\name| has some traps, see \autoref{sec:expr}. \end{itemize} \subsection{Error messages} In situations such as division by zero, the package will insert in the \TeX{} processing an undefined control sequence (we copy this method from the |bigintcalc| package). This will trigger the writing to the log of a message signaling an undefined control sequence. The name of the control sequence is the message. The error is raised \emph{before} the end of the expansion so as to not disturb further processing of the token stream, after completion of the operation. Generally the problematic operation will output a zero. Possible such error message control sequences: % \the\parskip\par % attention 0pt plus 1pt \begin{multicols}{2}\parskip0pt\relax \begin{everbatim} \xintError:ArrayIndexIsNegative \xintError:ArrayIndexBeyondLimit \xintError:FactorialOfNegativeNumber \xintError:FactorialOfTooBigNumber \xintError:DivisionByZero \xintError:NaN \xintError:FractionRoundedToZero \xintError:NotAnInteger \xintError:ExponentTooBig \xintError:TooBigDecimalShift \xintError:TooBigDecimalSplit \xintError:RootOfNegative \xintError:NoBezoutForZeros \xintError:ignored \xintError:removed \xintError:inserted \xintError:unknownfunction \xintError:we_are_doomed \xintError:missing_xintthe! \end{everbatim} \end{multicols} % NOTES 12 octobre 2014 % J'ai voulu faire avec verbatim, mais bizarrement il met dans la % colonne de gauche 10 et 8 dans celle de droite. Je n'ai pas réussi à % reproduire le problème sur un MWE, en tout cas un exemple naïf ne % reproduit pas le problème. Ensuite avec \everb c'est beaucoup mieux % mais j'ai dû mettre \raggedcolumns. J'ai essayé avec \strut. Ah, mais % le problème c'est \parskip. % par ailleurs il y a trop d'espace vertical avant le multicols, mais % bon. Don't forget to set |\errorcontextlines| to at least |2| to get from \LaTeX\ more meaningful error messages. Errors occuring during the parsing of |\xintexpr-essions| try to provide helpful information about the offending token. Release |1.1| employs in some situations delimited macros and there is the possibility in case of an ill-formed expression to end up beyond the |\relax| end-marker. The errors inevitably arising could then lead to very cryptic messages; but nothing unusual or especially traumatizing for the daring experienced \TeX/\LaTeX\ user. \subsection{Package namespace, catcodes} The \xintname bundle packages presuppose that the \csa{space}, \csa{empty} and |\m@ne| control sequences are pre-defined with meanings as in Plain \TeX{} or \LaTeX2e. Private macros of \xintkernelname, \xintcorename, \xinttoolsname, \xintname, \xintfracname, \xintexprname, \xintbinhexname, \xintgcdname, \xintseriesname, and \xintcfracname{} use one or more underscores |_| as private letter, to reduce the risk of getting overwritten. They almost all begin either with |\XINT_| or with |\xint_|, a handful of these private macros such as \csa{XINTsetupcatcodes}, \csa{XINTdigits} and those with names such as |\XINTinFloat...| or |\XINTinfloat...| do not have any underscore in their names (for obscure legacy reasons). \xinttoolsname provides \hyperref[odef]{|\odef|}, \hyperref[oodef]{|\oodef|}, \hyperref[fdef]{|\fdef|} (if macros with these names already exist \xinttoolsname will not overwrite them but provide |\xintodef| etc... ) but all other public macros from the \xintname bundle packages start with |\xint|. For the good functioning of the macros, standard catcodes are assumed for the minus sign, the forward slash, the square brackets, the letter `e'. These requirements are dropped inside an |\xintexpr|-ession: spaces are gobbled, catcodes mostly do not matter, the |e| of scientific notation may be |E| (on input) \dots{} If a character used in the |\xintexpr| syntax is made active, this will surely cause problems; prefixing it with |\string| is one option. There is \csbxint{exprSafeCatcodes} and \csbxint{exprRestoreCatcodes} to temporarily turn off potentially active characters (but setting catcodes is an un-expandable action). \begin{framed} For advanced \TeX\ users. At loading time of the packages the catcode configuration may be arbitrary as long as it satisfies the following requirements: the percent is of category code comment character, the backslash is of category code escape character, digits have category code other and letters have category code letter. Nothing else is assumed. \end{framed} \section{Some utilities from the \xinttoolsname package} This is a first overview. Many examples combining these utilities with the arithmetic macros of \xintname are to be found in \autoref{sec:tools}. \subsection{Assignments}\label{sec:assign} \xintAssign \xintBezout{357}{323}\to\tmpA\tmpB\tmpU\tmpV\tmpD It might not be necessary to maintain at all times complete expandability. A devoted syntax is provided to make these things more efficient, for example when using the \csbxint{iDivision} macro which computes both quotient and remainder at the same time: % \leftedline{\csbxint{Assign} |\xintiiDivision{\xintiiPow {2}{1000}}{\xintFac{100}}|\csbnolk{to}|\A\B|} % give: \xintAssign\xintiiDivision{\xintiPow {2}{1000}}{\xintFac{100}}\to\A\B |\meaning\A|\dtt{: \printnumber{\meaning\A}\relax} and |\meaning\B|\dtt{: \printnumber{\meaning\B}\relax}. % Another example (which uses \csbxint{Bezout} from the \xintgcdname package): % \leftedline{\csbxint{Assign} % |\xintBezout{357}{323}|\csbnolk{to}|\A\B\U\V\D|} % is equivalent to setting |\A| to \dtt{\tmpA}, |\B| to \dtt{\tmpB}, |\U| to \dtt{\tmpU}, |\V| to \dtt{\tmpV}, and |\D| to \dtt{\tmpD}. And indeed \dtt{(\tmpU)$\times$\tmpA-(\tmpV)$\times$\tmpB$=$% \xintiSub{\xintiMul\tmpU\tmpA}{\xintiMul\tmpV\tmpB}} is a Bezout Identity. Thus, what |\xintAssign| does is to first apply an \hyperref[sec:expansions]{\fexpan sion} to what comes next; it then defines one after the other (using |\def|; an optional argument allows to modify the expansion type, see \autoref{xintAssign} for details), the macros found after |\to| to correspond to the successive braced contents (or single tokens) located prior to |\to|. \xintAssign \xintBezout{3570902836026}{200467139463}\to\tmpA\tmpB\tmpU\tmpV\tmpD \leftedline {\csbxint{Assign}|\xintBezout{3570902836026}{200467139463}|% \csbnolk{to}|\A\B\U\V\D|} \noindent gives then |\U|\dtt{: \printnumber\tmpU}, |\V|\dtt{: \printnumber\tmpV} and |\D|\dtt{=\tmpD}. % In situations when one does not know in advance the number of items, one has \csbxint{AssignArray} or its synonym \csbxint{DigitsOf}: % \leftedline{\csbxint{DigitsOf}|\xintiPow{2}{100}|\csbnolk{to}\csa{DIGITS}} % This defines \csa{DIGITS} to be macro with one parameter, \csa{DIGITS}|{0}| gives the size |N| of the array and \csa{DIGITS}|{n}|, for |n| from |1| to |N| then gives the |n|th element of the array, here the |n|th digit of $2^{100}$, from the most significant to the least significant. As usual, the generated macro \csa{DIGITS} is completely expandable (in two steps). As it wouldn't make much sense to allow indices exceeding the \TeX{} bounds, the macros created by \csbxint{AssignArray} put their argument inside a \csa{numexpr}, so it is completely expanded and may be a count register, not necessarily prefixed by |\the| or |\number|. Consider the following code snippet: % \begin{everbatim*} % \newcount\cnta % \newcount\cntb \begingroup \xintDigitsOf\xintiPow{2}{100}\to\DIGITS \cnta = 1 \cntb = 0 \loop \advance \cntb \xintiSqr{\DIGITS{\cnta}} \ifnum \cnta < \DIGITS{0} \advance\cnta 1 \repeat |2^{100}| (=\xintiPow {2}{100}) has \DIGITS{0} digits and the sum of their squares is \the\cntb. These digits are, from the least to the most significant: \cnta = \DIGITS{0} \loop \DIGITS{\cnta}\ifnum \cnta > 1 \advance\cnta -1 , \repeat.\endgroup \end{everbatim*} Warning: \csbxint{Assign}, \csbxint{AssignArray} and \csbxint{DigitsOf} \emph{do not do any check} on whether the macros they define are already defined. \subsection{Utilities for expandable manipulations}\label{sec:utils} The package now has more utilities to deal expandably with `lists of things', which were treated un-expandably in the previous section with \csa{xintAssign} and \csa{xintAssignArray}: \csbxint{ReverseOrder} and \csbxint{Length} since the first release, \csbxint{Apply} and \csbxint{ListWithSep} since |1.04|, \csbxint{RevWithBraces}, \csbxint{CSVtoList}, \csbxint{NthElt} since |1.06|, \csbxint{ApplyUnbraced}, since |1.06b|, \csbxint{loop} and \csbxint{iloop} since |1.09g|.% % \footnote{All these utilities, as well as \csbxint{Assign}, \csbxint{AssignArray} and the \csbxint{For} loops are now available from the \xinttoolsname package, independently of the big integers facilities of \xintname.} As an example the following code uses only expandable operations: \begin{everbatim*} $2^{100}$ (=\xintiPow {2}{100}) has \xintLen{\xintiPow {2}{100}} digits and the sum of their squares is \xintiiSum{\xintApply {\xintiSqr}{\xintiPow {2}{100}}}. These digits are, from the least to the most significant: \xintListWithSep {, }{\xintRev{\xintiPow {2}{100}}}. The thirteenth most significant digit is \xintNthElt{13}{\xintiPow {2}{100}}. The seventh least significant one is \xintNthElt{7}{\xintRev{\xintiPow {2}{100}}}. \end{everbatim*} It would be more efficient to do once and for all |\oodef\z{\xintiPow {2}{100}}|, and then use |\z| in place of |\xintiPow {2}{100}| everywhere as this would spare the CPU some repetitions. Expandably computing primes is done in \autoref{xintSeq}. \subsection{A new kind of for loop} As part of the \hyperref[sec:tools]{utilities} coming with the \xinttoolsname package, there is a new kind of for loop, \csbxint{For}. Check it out (\autoref{xintFor}). \subsection{A new kind of expandable loop} Also included in \xinttoolsname, \csbxint{iloop} is an expandable loop giving access to an iteration index, without using count registers which would break expandability. Check it out (\autoref{xintiloop}). % Lundi 06 octobre 2014 à 22:02:44 % je décide de ne plus inclure le README verbatim % \begingroup % \makeatletter\def\x{\baselineskip10pt % \ttfamily % %\settowidth\dimen@{X}% % %\parindent \dimexpr.5\linewidth-33\dimen@\relax % \parindent\z@ % \let\do\do@noligs\verbatim@nolig@list % \let\do\@makeother\dospecials % \def\par{\leavevmode \null\@@par\penalty\interlinepenalty}% % \makestarlowast % \@vobeyspaces\obeylines % \noindent\kern\parindent\input README.md % \endgroup }\x \section{New features of the \xintexprname package} \label{sec:expr11} Release |1.1| has brought many changes to \xintexprname. This chapter is for people already familiar with earlier versions. A more systematic item per item syntax description is provided in \autoref{sec:expr}. \subsection{\texorpdfstring{\unexpanded{\unexpanded{|1.1|}}}{1.1} brought some breaking changes and quite a few novelties} First, there are some breaking changes: \begin{itemize} \item in |\xintiiexpr|, |/| does \emph{rounded} division, rather than as in earlier releases the Euclidean division (for positive arguments, this is truncated division). The new |//| operator does truncated division, \item the |:| operator for three-way branching is gone, replaced with |??|, \item |1e(3+5)| is now illegal. The number parser identifies |e| and |E| in the same way it does for the decimal mark, earlier versions treated |e| as |E| rather as postfix operators, \item the |add| and |mul| have a new syntax, old syntax is with |`+`| and |`*`| (quotes mandatory), |sum| and |prd| are gone, \item no more special treatment for encountered brace pairs |{..}| by the number scanner, |a/b[N]| notation can be used without use of braces (the |N| will end up space-stripped in a |\numexpr|, it is not parsed by the |\xintexpr|-ession scanner). \item although |&| and \verb+|+ are still available as Boolean operators the use of |&&| and \verb+||+ is strongly recommended. The single letter operators might be assigned some other meaning in later releases (bitwise operations, perhaps). Do not use them. \item place holders for |\xintNewExpr| could be denoted |#1|, |#2|, ... or also, for special purposes |$1|, |$2|, ... Only the first form is now accepted and the special cases previously treated via the second form are now managed via a |protect(...)| function. \end{itemize} The novelties are numerous. \begin{itemize}[parsep=0pt] \item |\xintiexpr|, |\xinttheiexpr| admit an optional argument within brackets |[d]|, it then presents the computation result (or results, if comma separated) after rounding to |d| digits after decimal mark, (the whole computation is done exactly, as in |xintexpr|), \begin{everbatim*} \xinttheiexpr [32] 1.23^50, 1.231^50\relax \end{everbatim*} \item |\xintfloatexpr|, |\xintthefloatexpr| similarly admit an optional argument which serves to keep only |d| digits of precision, getting rid of cumulated uncertainties in the last digits (the whole computation is done according to the precision set via |\xintDigits|), \begin{everbatim*} \xintDigits:=32;\xintthefloatexpr 1.010101^10-1.0101^10\relax \xintDigits:=16;\xintthefloatexpr 1.010101^10-1.0101^10\relax \xintthefloatexpr [12] 1.010101^10-1.0101^10\relax \end{everbatim*} \item |\xinttheexpr| and |\xintthefloatexpr| ``pretty-print'' if possible, the former removing unit denominator or |[0]| brackets, the latter avoiding scientific notation if decimal notation is practical, \item the |//| does truncated division and |/:| is the associated modulo, \item multi-character operators |&&|, \verb+||+, |==|, |<=|, |>=|, |!=|, |**|, \item multi-letter infix binary words |'and'|, |'or'|, |'xor'|, |'mod'| (quotes mandatory), \item functions |even|, |odd|, |first|, |last|, \item |\xintdefvar A3:=3.1415;| for variable definitions (non expandable, naturally), usable in subsequent expressions; variable names may contain letters, digits, underscores. They should not start with a digit, the |@| is reserved, and single lowercase and uppercase Latin letters are predefined to work as dummy variables (see next), \item generation of comma separated lists |a..b|, |a..[d]..b|, \item Python syntax-like list extractors |[list][n:]|, |[list][:n]|, |[list][a:b]| and |[list][n]| (|n=0| for the number of list items), the step is always |+1|, \item function |reversed|, to reverse the order of list items, \item itemwise sequence operations |a*[list]|, etc.., on both sides |a*[list]^b|, \item dummy variables in |add| and |mul|: |add(x(x+1)(x-1), x=-10..10)|, \item variable substitutions with |subs|: |subs(subs(add(x^2+y^2,x=1..y),y=t),t=20)|, \item sequence generation using |seq| with a dummy variable: |seq(x^3, x=-10..10)|, \item simple recursive sequences with |rseq|, with |@| given the last value, |rseq(1;2@+1,i=1..10)|, \item higher recursion with |rrseq|, |@1|, |@2|, |@3|, |@4|, and |@@(n)| for earlier values, up to |n=K| where |K| is the number of terms of the initial stretch |rrseq(0,1;@1+@2,i=2..100)|, \item iteration with |iter| which is like |rrseq| but outputs only the last |K| terms, where |K| was the number of initial terms, \item inside |seq|, |rseq|, |rrseq|, |iter|, possibility to use |omit|, |abort| and |break| to control termination, \item |n++| potentially infinite index generation for |seq|, |rseq|, |rrseq|, and |iter|, it is advised to use |abort| or |break(..)| at some point, \item the |add|, |mul|, |seq|, ... are nestable, \item |\xintthecoords| converts a comma separated list of an even number of items to the format as expected by the |TikZ| |coordinates| syntax, \item completely rewritten |\xintNewExpr|, new |protect| function to handle external macros. However not all constructs are compatible with |\xintNewExpr|. \end{itemize} \subsection{Examples with the \texorpdfstring{\unexpanded{\unexpanded{|v1.1|}}}{v1.1} \csh{xintexpr}} \begin{itemize}[parsep=0pt, listparindent=.5\leftmargini] \item One can define variables (the definition itself is a non expandable step). The allowed names are composed of letters, digits, and underscores. The variable should not start with a digit and single letters |a..z|, |A..Z| are predefined for use as dummy variables --- see below. The |@| is reserved. \begin{everbatim*} \begingroup \xintdefvar a_1 := 3.14159;\xintdefvar a2 := 2.71828;\xinttheiexpr [5] a_1+a2\relax \endgroup \end{everbatim*} \item |add| and |mul| have a new syntax requiring a dummy variable: \begin{everbatim*} \xinttheexpr add(x, x=1,3,19), mul(x^2, x=1,3,19), add(x(x+1), x= 1,3,19)\relax \end{everbatim*} Use |`+`| and |`*`| (left ticks mandatory) for syntax without dummy variables: \begin{everbatim*} \xinttheexpr `+`(1,3,19), `*`(1^2,3^2,19^2), `+`(1*2,3*4,19*20)\relax \end{everbatim*} \item The |seq| function generates sequences according to a given formula: \begin{everbatim*} \xinttheexpr seq(x(x+1)(x+2), x=1,3,19), `+`(seq(x(x+1)(x+2), x=1,3,19)), add(x(x+1)(x+2), x=1,3,19)\relax \end{everbatim*} \begin{everbatim*} And this is nestable! \xinttheexpr seq(seq(x^y, y=1..5),x=1..5), add(mul(x^y,y=1..5), x=1..5), add(x^15, x=1..5)\relax % 15 = 1+2+3+4+5 \end{everbatim*} One should use parentheses appropriately. The \csbxint{expr} parser in normal operation is not bad at identifying missing or extra opening or closing parentheses, but when it handles |seq|, |add|, |mul| or similar constructs it switches to another mode of operation (it starts using delimited macros, something which is almost non-existent in all its other operations) and ill-formed expressions are much more likely to let the parser fetch tokens from beyond the mandatory ending |\relax|. Thus, in case of a missing parenthesis in such circumstances the error message from \TeX{} might be very cryptic, even for the seasoned \xintname user. \item As seen in the last example |a..b| constructs the integers from |a| to |b|. This is (small) integer only. A more general |a..[d]..b| works with big integers, or fractions, from |a| to |b| with step |d|. \begin{everbatim*} \xinttheexpr seq(2x+1, x=1..10, 100..110, 3/5..[1/5]..7/5)\relax \end{everbatim*} \item itemwise operations on lists are possible, as well as item extractions: \begin{everbatim*} \xinttheiiexpr 2*[1,10,100]^3, 5+[2*[1,10,100]^3]*100 \relax \end{everbatim*} \begin{everbatim*} \xinttheiiexpr 1+[seq(3^j, j=1..10, 21..30)][17], 1+3^27\relax \end{everbatim*} We used the |[list][n]| construct which gives the nth item from the list. In this context there are also the functions |last| and |first|. There is no real concept of a list object, nor list operations, although itemwise manipulation are made possible as shown above via the |[..]| constructor. The list manipulation utilities are so far a bit limited. There is no notion of an ``nuple'' object. The variable |nil| is reserved, it represents an empty list. \item |subs| is similar to |seq| in syntax but is for variable substitution: \begin{everbatim*} \xinttheexpr subs(100*subs(10*subs(3*x+5,x=y+50)+2,y=z^2),z=10)\relax % 100(10(3*150+5)+2) \end{everbatim*} \begin{everbatim*} \xinttheexpr subs(subs(add(x^2+y^2,x=1..y),y=t),t=20)\relax \end{everbatim*} The substituted variable may be a comma separated list (this is impossible with |seq| which will always pick one item after the other of a list). \begin{everbatim*} \xinttheexpr subs([x]^2,x=-123,17,32)\relax \end{everbatim*} \item last but not least, |seq| has variants |rseq| and |rrseq| which allow recursive definitions. They start with at least one initial value, then a semi-colon, then the formula, then the list of indices to iterate over. |@| (or |@1|) evaluates to the last computed item, and |rrseq| keeps the memory of the |K| last results, where |K| was the number of initial terms. One accesses them via |@1, @2, @3, @4| and |@@(N)| for |N>4|. It is even possible to nest them and use |@@@| to access the values of the master recursion... \begin{everbatim*} \xinttheiiexpr rseq(1; 2*@, i=1..10), `+`(rseq(1; 2*@, i=1..10))\relax \end{everbatim*} \begin{everbatim*} \xinttheiiexpr rseq(2; @(@+1)/2, i=1..5)\relax \end{everbatim*} \begin{everbatim*} \xinttheiiexpr rseq(0,1; (@1,add(x,x=@1)), y=2..10)\relax \end{everbatim*} Some Fibonacci fun \begin{everbatim*} \xinttheiiexpr rrseq(0,1; @1+@2, x=2..10), last(rrseq(0,1; @1+@2, x=2..100))\relax \end{everbatim*} \begin{everbatim*} Sum of previous last three: \xinttheiiexpr rrseq(0,0,1; @1+@2+@3, i=1..20)\relax \end{everbatim*} \begin{everbatim*} Big numbers: \printnumber{\xinttheexpr rseq(1; @(@+1), j=1..10)\relax } \end{everbatim*} Nested recursion often quickly leads to gigantic outputs. This is an experimental feature, susceptible to be removed or altered in the future. \begin{everbatim*} \xinttheexpr rrseq(1; `+`(rrseq(0,1; @@@(1)+@1+@2, i=1..10)), j=1..5)\relax \end{everbatim*} \item The special keywords |omit|, |abort| and |break(..)| are available inside |seq|, |rseq|, |rrseq|, as well as the |n++| for a potentially infinite iteration. The |n++| construct in conjunction with an |abort| or |break| is often more efficient, because in other cases the list to iterate over is first completely constructed. \begin{everbatim*} First Fibonacci number at least |2^31| and its index \xinttheiiexpr iter(0,1; (@1>=2^31)?{break(i)}{@2+@1}, i=1++)\relax \end{everbatim*} \begin{everbatim*} Prime numbers are always cool \xinttheiiexpr seq((seq((subs((x/:m)?{(m*m>x)?{1}{0}}{-1},m=2n+1)) ??{break(0)}{omit}{break(1)},n=1++))?{x}{omit}, x=10001..[2]..10200)\relax \end{everbatim*} The syntax in this last example may look a bit involved. First |x/:m| computes |x modulo m| (this is the modulo with respect to truncated division, which here for positive arguments is like Euclidean division; in |\xintexpr...\relax|, |a/:b| is such that |a = b*(a//b)+a/:b|, with |a//b| the algebraic quotient |a/b| truncated to an integer.). The |(x)?{yes}{no}| construct checks if |x| (which \emph{must} be within parentheses) is true or false, i.e. non zero or zero. It then executes either the |yes| or the |no| branch, the non chosen branch is \emph{not} evaluated. Thus if |m| divides |x| we are in the second (``false'') branch. This gives a |-1|. This |-1| is the argument to a |??| branch which is of the type |(y)??{y<0}{y=0}{y>0}|, thus here the |y<0|, i.e., |break(0)| is chosen. This |0| is thus given to another |?| which consequently chooses |omit|, hence the number is not kept in the list. The numbers which survive are the prime numbers. % A006877 In the `3x+1' problem, these values for the starting value set new % records for number of steps to reach 1. (Formerly M0748) 14 1, 2, 3, 6, 7, % 9, 18, 25, 27, 54, 73, 97, 129, 171, 231, 313, 327, 649, 703, 871, 1161, % 2223, 2463, 2919, 3711, 6171, 10971, 13255, 17647, 23529, 26623, 34239, % 35655, 52527, 77031, 106239, 142587, 156159, 216367, 230631, 410011, 511935, % 626331, 837799 \item The |iter| function is like |rrseq| but does not leave a trace of earlier items, it starts with |K| initial values, then it iterates: either a fixed number of times, or until aborting or breaking. And ultimately it prints |K| final values. \begin{everbatim*} The first Fibonacci number beyond the \TeX{} bound is \xinttheiiexpr subs(iter(0,1;(@1>N)?{break(i)}{@1+@2},i=1++),N=2^31)\relax{} and the previous number was its index. \end{everbatim*}But this was a bit too easy, what is the smallest Fibonacci number not representable on 64 bits? \begin{everbatim*} The first Fibonacci number beyond |2^64| bound is \xinttheiiexpr subs(iter(0,1;(@1>N)?{break(i)}{@1+@2},i=1++),N=2^64)\relax{} and the previous number was its index. \end{everbatim*} One more recursion: \begin{everbatim*} \def\syr #1{\xinttheiiexpr rseq(#1; (@<=1)?{break(i)}{odd(@)?{3@+1}{@//2}},i=0++)\relax} The 3x+1 problem: \syr{231}\par \end{everbatim*} Ok, a final one: \begin{everbatim*} \def\syrMax #1{\xinttheiiexpr iter(#1,#1;even(i)? {(@2<=1)?{break(i/2)}{odd(@2)?{3@2+1}{@2//2}}} {(@1>@2)?{@1}{@2}},i=0++)\relax } With initial value 1161, the maximal number attained is \syrMax{1161} and that latter number is the number of steps which was needed to reach 1.\par \end{everbatim*} Well, one more: \begin{everbatim*} \newcommand\GCD [2]{\xinttheiiexpr rrseq(#1,#2; (@1=0)?{abort}{@2/:@1}, i=1++)\relax } \GCD {13^10*17^5*29^5}{2^5*3^6*17^2} \end{everbatim*} and the ultimate: \begin{everbatim*} \newcommand\Factors [1]{\xinttheiiexpr subs(seq((i/:3=2)?{omit}{[L][i]},i=1..([L][0])), L=rseq(#1;(p^2>[@][1])?{([@][1]>1)?{break(1,[@][1],1)}{abort}} {(([@][1])/:p)?{omit} {iter(([@][1])//p; (@/:p)?{break(@,p,e)}{@//p},e=1++)}},p=2++))\relax } \Factors {41^4*59^2*29^3*13^5*17^8*29^2*59^4*37^6} \end{everbatim*} This might look a bit scary, I admit. \xintexprname has minimal tools and is obstinate about doing everything expandably! We are hampered by absence of a notion of ``nuple''. The algorithm divides |N| by |2| until no more possible, then by |3|, then by |4| (which is silly), then by |5|, then by |6| (silly again), \dots. The variable |L=rseq(#1;...)| expands, if one follows the steps, to a comma separated list starting with the initial (evaluated) |N=#1| and then pseudo-triplets where the first item is |N| trimmed of small primes, the second item is the last prime divisor found, and the third item is its exponent in original |N|. The algorithm needs to keep handy the last computed quotient by prime powers, hence all of them, but at the very end it will be cleaner to get rid of them (this corresponds to the first line in the code above). This is achieved in a cumbersome inefficient way; indeed each item extraction |[L][i]| is costly: it is not like accessing an array stored in memory, due to expandability, nothing can be stored in memory! Nevertheless, this step could be done here in a far less inefficient manner if there was a variant of |seq| which, in the spirit of \csbxint{iloopindex}, would know how many steps it had been through so far. This is a feature to be added to |\xintexpr|! (as well as a |++| construct allowing a non unit step). Notice that in |iter(([@][1])//p;| the |@| refers to the previous triplet (or in the first step to |N|), but the latter |@| showing up in |(@/:p)?| refers to the previous value computed by |iter|. \begin{snugframed} Parentheses are essential in |..([y][0])| else the parser will see |..[| and end up in ultimate confusion, and also in |([@][1])/:p| else the parser will see the itemwise operator |]/| on lists and again be very confused (I could implement a |]/:| on lists, but in this situation this would also be very confusing to the parser.) \end{snugframed} For comparison, here is an \fexpan dable macro expanding to the same result, but coded directly with the \xintname macros. Here |#1| can not be itself an expression, naturally. But at least we let |\Factorize| \fexpan d its argument. \begin{everbatim} \makeatletter \newcommand\Factorize [1] {\romannumeral0\expandafter\factorize\expandafter{\romannumeral-`0#1}}% \newcommand\factorize [1]{\xintiiifOne{#1}{ 1}{\factors@a #1.{#1};}}% \def\factors@a #1.{\xintiiifOdd{#1} {\factors@c 3.#1.}% {\expandafter\factors@b \expandafter1\expandafter.\romannumeral0\xinthalf{#1}.}}% \def\factors@b #1.#2.{\xintiiifOne{#2} {\factors@end {2, #1}}% {\xintiiifOdd{#2}{\factors@c 3.#2.{2, #1}}% {\expandafter\factors@b \the\numexpr #1+\@ne\expandafter.% \romannumeral0\xinthalf{#2}.}}% }% \def\factors@c #1.#2.{% \expandafter\factors@d\romannumeral0\xintiidivision {#2}{#1}{#1}{#2}% }% \def\factors@d #1#2#3#4{\xintiiifNotZero{#2} {\xintiiifGt{#3}{#1} {\factors@end {#4, 1}}% ultimate quotient is a prime with power 1 {\expandafter\factors@c\the\numexpr #3+\tw@.#4.}}% {\factors@e 1.#3.#1.}% }% \def\factors@e #1.#2.#3.{\xintiiifOne{#3} {\factors@end {#2, #1}}% {\expandafter\factors@f\romannumeral0\xintiidivision {#3}{#2}{#1}{#2}{#3}}% }% \def\factors@f #1#2#3#4#5{\xintiiifNotZero{#2} {\expandafter\factors@c\the\numexpr #4+\tw@.#5.{#4, #3}}% {\expandafter\factors@e\the\numexpr #3+\@ne.#4.#1.}% }% \def\factors@end #1;{\xintlistwithsep{, }{\xintRevWithBraces {#1}}}% \makeatother \end{everbatim} The macro |\Factorize| puts a little stress on the input save stack in order not be bothered with previously gathered things. I timed it to be about eight times faster than |\Factors| in test cases such as |16246355912554185673266068721806243461403654781833| and others. Among the various things explaining the speed-up, there is fact that we step by increments of two, not one, and also that we divide only once, obtaining quotient and remainder in one go. These two things already make for a speed-up factor of about four. Thus, our earlier |\Factors| was not completely inefficient, and was quite easier to come up with than |\Factorize|. If we only considered small integers, we could write pure |\numexpr| methods which would be very much faster (especially if we had a table of small primes prepared first) but still ridiculously slow compared to any non expandable implementation, not to mention use of programming languages directly accessing the CPU registers\dots \end{itemize} %\phantomsection \phantomsection\label{sec:expr11coords} To conclude with this overview of the new features in \xintexprname |1.1|, I will mention {\bfseries |\xintthecoords|} which converts a comma separated list as produced by |\xintfloatexpr| or |\xintiexpr [d]| to the format expected by the |TikZ| |coordinates| syntax. \begin{everbatim*} {\centering\begin{tikzpicture}[scale=10]\xintDigits:=8; \clip (-1.1,-.25) rectangle (.3,.25); \draw [blue] (-1.1,0)--(1,0); \draw [blue] (0,-1)--(0,+1); \draw plot[smooth] coordinates {\xintthecoords % converts into (x1, y1) (x2, y2)... format \xintfloatexpr seq((x^2-1,mul(x-t,t=-1+[0..4]/2)),x=-1.2..[0.1]..+1.2) \relax }; \end{tikzpicture}\par } \end{everbatim*} % Notice: if x goes no take exactly value 1 or -1, the origin appears slightly % off the curve, not MY fault!!! \csbxint{thecoords} should be followed immediately by \csbxint{floatexpr} or \csbxint{iexpr} or \csbxint{iiexpr}, but not |\xintthefloatexpr|, etc\dots Besides, as |TikZ| will not understand the |A/B[N]| format which is used on output by |\xintexpr|, |\xintexpr| is not really usable with |\xintthecoords| for a |TikZ| picture, but one may use it on its own, and the reason for the spaces in and between coordinate pairs is to allow if necessary to print on the page for examination with about correct line-breaks. \begin{everbatim*} \oodef\x{\xintthecoords \xintexpr rrseq(1/2,1/3; @1+@2, x=1..20)\relax } \meaning\x +++ \end{everbatim*} \etocdepthtag.toc {commands} \indescriptionfalse \addtocontents{toc}{\gdef\string\sectioncouleur{{joli}}} \renewcommand{\etocaftertochook}{\addvspace{\bigskipamount}} \section{Commands of the \xintkernelname package} \label{sec:kernel} \localtableofcontents The \xintkernelname package contains mainly the common code base for handling the load-order of the bundle packages, the management of catcodes at loading time, definition of common constants and macro utilities which are used throughout the code etc ... it is automatically loaded by all packages of the bundle. It provides a few macros possibly useful in other contexts. \subsection{\csbh{odef}, \csbh{oodef}, \csbh{fdef}} \label{odef} \label{oodef} \label{fdef} \csa{oodef}|\controlsequence {}| does \everb|@ \expandafter\expandafter\expandafter\def \expandafter\expandafter\expandafter\controlsequence \expandafter\expandafter\expandafter{} | This works only for a single |\controlsequence|, with no parameter text, even without parameters. An alternative would be: \everb|@ \def\oodef #1#{\def\oodefparametertext{#1}% \expandafter\expandafter\expandafter\expandafter \expandafter\expandafter\expandafter\def \expandafter\expandafter\expandafter\oodefparametertext \expandafter\expandafter\expandafter } | \noindent but it does not allow |\global| as prefix, and, besides, would have anyhow its use (almost) limited to parameter texts without macro parameter tokens (except if the expanded thing does not see them, or is designed to deal with them). There is a similar macro |\odef| with only one expansion of the replacement text ||, and |\fdef| which expands fully || using |\romannumeral-`0|. These tools are provided as it is sometimes wasteful (from the point of view of running time) to do an |\edef| when one knows that the contents expand in only two steps for example, as is the case with all (except \csbxint{loop} and \csbxint{iloop}) the expandable macros of the \xintname packages. Each will be defined only if \xintkernelname finds them currently undefined. They can be prefixed with |\global|. \subsection{\csbh{xintReverseOrder}}\label{xintReverseOrder} \csa{xintReverseOrder}\marg{list}\etype{n} does not do any expansion of its argument and just reverses the order of the tokens in the \meta{list}. Braces are removed once and the enclosed material, now unbraced, does not get reversed. Unprotected spaces (of any character code) are gobbled. % \leftedline{|\xintReverseOrder{\xintDigitsOf\xintiPow {2}{100}\to\Stuff}|} % \leftedline{gives: \ttfamily{\string\Stuff\string\to1002\string\xintiPow\string\xintDigitsOf}} \subsection{\csbh{xintLength}}\label{xintLength} \csa{xintLength}\marg{list}\etype{n} does not do \emph{any} expansion of its argument and just counts how many tokens there are (possibly none). So to use it to count things in the replacement text of a macro one should do |\expandafter\xintLength\expandafter{\x}|. One may also use it inside macros as |\xintLength{#1}|. Things enclosed in braces count as one. Blanks between tokens are not counted. See \csbxint{NthElt}|{0}| (from \xinttoolsname) for a variant which first \fexpan ds its argument. % \leftedline{|\xintLength {\xintiPow {2}{100}}|\dtt{=\xintLength {\xintiPow{2}{100}}}} % \leftedline{${}\neq{}$|\xintLen {\xintiPow {2}{100}}|\dtt{=\xintLen {\xintiPow{2}{100}}}} \section{Commands of the \xinttoolsname package} \label{sec:tools} \localtableofcontents \def\n{|{N}|} \def\m{|{M}|} \def\x{|{x}|} These utilities used to be provided within the \xintname package; since |1.09g| (|2013/11/22|) they have been moved to an independently usable package \xinttoolsname, which has none of the \xintname facilities regarding big numbers. Whenever relevant release |1.09h| has made the macros |\long| so they accept |\par| tokens on input. First the completely expandable utilities up to \csbxint{iloop}, then the non expandable utilities. This section contains various concrete examples and ends with a \hyperref[ssec:quicksort]{completely expandable implementation of the Quick Sort algorithm} together with a graphical illustration of its action. See also \ref{xintReverseOrder} and \ref{xintLength} which come with package \xintkernelname, automatically loaded by \xinttoolsname. \subsection{\csbh{xintRevWithBraces}}\label{xintRevWithBraces} %{\small New in release |1.06|.\par} \edef\X{\xintRevWithBraces{12345}} \edef\y{\xintRevWithBraces\X} \expandafter\def\expandafter\w\expandafter {\romannumeral0\xintrevwithbraces{{\A}{\B}{\C}{\D}{\E}}} % \csa{xintRevWithBraces}\marg{list}\etype{f} first does the \fexpan sion of its argument then it reverses the order of the tokens, or braced material, it encounters, maintaining existing braces and adding a brace pair around each naked token encountered. Space tokens (in-between top level braces or naked tokens) are gobbled. This macro is mainly thought out for use on a \meta{list} of such braced material; with such a list as argument the \fexpan sion will only hit against the first opening brace, hence do nothing, and the braced stuff may thus be macros one does not want to expand. % \leftedline{|\edef\x{\xintRevWithBraces{12345}}|} % \leftedline{|\meaning\x:|\dtt{\meaning\X}} % \leftedline{|\edef\y{\xintRevWithBraces\x}|} % \leftedline{|\meaning\y:|\dtt{\meaning\y}} % The examples above could be defined with |\edef|'s because the braced material did not contain macros. Alternatively: % \leftedline{|\expandafter\def\expandafter\w\expandafter|} % \leftedline{|{\romannumeral0\xintrevwithbraces{{\A}{\B}{\C}{\D}{\E}}}|} % \leftedline{|\meaning\w:|\dtt{\meaning\w}} % The macro \csa{xintReverseWithBracesNoExpand}\etype{n} does the same job without the initial expansion of its argument. \subsection{\csbh{xintZapFirstSpaces}, \csbh{xintZapLastSpaces}, \csbh{xintZapSpaces}, \csbh{xintZapSpacesB}} \label{xintZapFirstSpaces} \label{xintZapLastSpaces} \label{xintZapSpaces} \label{xintZapSpacesB} %{\small New with release |1.09f|.\par} \csa{xintZapFirstSpaces}\marg{stuff}\etype{n} does not do \emph{any} expansion of its argument, nor brace removal of any sort, nor does it alter \meta{stuff} in anyway apart from stripping away all \emph{leading} spaces. This macro will be mostly of interest to programmers who will know what I will now be talking about. \emph{The essential points, naturally, are the complete expandability and the fact that no brace removal nor any other alteration is done to the input.} \TeX's input scanner already converts consecutive blanks into single space tokens, but |\xintZapFirstSpaces| handles successfully also inputs with consecutive multiple space tokens. However, it is assumed that \meta{stuff} does not contain (except inside braced sub-material) space tokens of character code distinct from $32$. It expands in two steps, and if the goal is to apply it to the expansion text of |\x| to define |\y|, then one should do: |\expandafter\def\expandafter\y\expandafter {\romannumeral0\expandafter\xintzapfirstspaces\expandafter{\x}}|. Other use case: inside a macro as |\edef\x{\xintZapFirstSpaces {#1}}| assuming naturally that |#1| is compatible with such an |\edef| once the leading spaces have been stripped. \begingroup \def\x { \a { \X } { \b \Y } } % \leftedline{|\xintZapFirstSpaces { \a { \X } { \b \Y } }->|% \dtt{\color{magenta}{}\expandafter\detokenize\expandafter {\romannumeral0\expandafter\xintzapfirstspaces\expandafter{\x}}}+++} \endgroup \medskip \noindent\csbxint{ZapLastSpaces}\marg{stuff}\etype{n} does not do \emph{any} expansion of its argument, nor brace removal of any sort, nor does it alter \meta{stuff} in anyway apart from stripping away all \emph{ending} spaces. The same remarks as for \csbxint{ZapFirstSpaces} apply. % ATTENTION à l'\ignorespaces fait par \color! \begingroup \def\x { \a { \X } { \b \Y } } % \leftedline{|\xintZapLastSpaces { \a { \X } { \b \Y } }->|% \dtt{\color{magenta}{}\expandafter\detokenize\expandafter {\romannumeral0\expandafter\xintzaplastspaces\expandafter{\x}}}+++} \endgroup \medskip \noindent\csbxint{ZapSpaces}\marg{stuff}\etype{n} does not do \emph{any} expansion of its argument, nor brace removal of any sort, nor does it alter \meta{stuff} in anyway apart from stripping away all \emph{leading} and all \emph{ending} spaces. The same remarks as for \csbxint{ZapFirstSpaces} apply. \begingroup \def\x { \a { \X } { \b \Y } } % \leftedline{|\xintZapSpaces { \a { \X } { \b \Y } }->|% \dtt{\color{magenta}{}\expandafter\detokenize\expandafter {\romannumeral0\expandafter\xintzapspaces\expandafter{\x}}}+++} \endgroup \medskip \noindent\csbxint{ZapSpacesB}\marg{stuff}\etype{n} does not do \emph{any} expansion of its argument, nor does it alter \meta{stuff} in anyway apart from stripping away all leading and all ending spaces and possibly removing one level of braces if \meta{stuff} had the shape |{braced}|. The same remarks as for \csbxint{ZapFirstSpaces} apply. \begingroup \def\x { \a { \X } { \b \Y } } % \leftedline{|\xintZapSpacesB { \a { \X } { \b \Y } }->|% \dtt{\color{magenta}{}\expandafter\detokenize\expandafter {\romannumeral0\expandafter\xintzapspacesb\expandafter{\x}}}+++} \def\x { { \a { \X } { \b \Y } } } % \leftedline{|\xintZapSpacesB { { \a { \X } { \b \Y } } }->|% \dtt{\color{magenta}{}\expandafter\detokenize\expandafter {\romannumeral0\expandafter\xintzapspacesb\expandafter{\x}}}+++} \endgroup The spaces here at the start and end of the output come from the braced material, and are not removed (one would need a second application for that; recall though that the \xintname zapping macros do not expand their argument). \subsection{\csbh{xintCSVtoList}} \label{xintCSVtoList} \label{xintCSVtoListNoExpand} % {\small New with release |1.06|. Starting with |1.09f|, \fbox{\emph{removes % spaces around commas}!}\par} \csa{xintCSVtoList}|{a,b,c...,z}|\etype{f} returns |{a}{b}{c}...{z}|. A \emph{list} is by convention in this manual simply a succession of tokens, where each braced thing will count as one item (``items'' are defined according to the rules of \TeX{} for fetching undelimited parameters of a macro, which are exactly the same rules as for \LaTeX{} and command arguments [they are the same things]). The word `list' in `comma separated list of items' has its usual linguistic meaning, and then an ``item'' is what is delimited by commas. So \csa{xintCSVtoList} takes on input a `comma separated list of items' and converts it into a `\TeX{} list of braced items'. The argument to |\xintCSVtoList| may be a macro: it will first be \hyperref[sec:expansions]{\fexpan ded}. Hence the item before the first comma, if it is itself a macro, will be expanded which may or may not be a good thing. A space inserted at the start of the first item serves to stop that expansion (and disappears). The macro \csbxint{CSVtoListNoExpand}\etype{n} does the same job without the initial expansion of the list argument. Apart from that no expansion of the items is done and the list items may thus be completely arbitrary (and even contain perilous stuff such as unmatched |\if| and |\fi| tokens). Contiguous spaces and tab characters, are collapsed by \TeX{} into single spaces. All such spaces around commas% % \footnote{and multiple space tokens are not a problem; but those at the top level (not hidden inside braces) \emph{must} be of character code |32|.} % \fbox{are removed}, as well as the spaces at the start and the spaces at the end of the list.% % \footnote{let us recall that this is all done completely expandably... There is absolutely no alteration of any sort of the item apart from the stripping of initial and final space tokens (of character code |32|) and brace removal if and only if the item apart from intial and final spaces (or more generally multiple |char 32| space tokens) is braced.} % The items may contain explicit |\par|'s or empty lines (converted by the \TeX{} input parsing into |\par| tokens). \begingroup \edef\X{\xintCSVtoList { 1 ,{ 2 , 3 , 4 , 5 }, a , {b,T} U , { c , d } , { {x , y} } }} % \leftedline{|\xintCSVtoList { 1 ,{ 2 , 3 , 4 , 5 }, a , {b,T} U , { c , d } , { {x , y} } }|} % \leftedline{|->|% {\makeatletter\dtt{\expandafter\strip@prefix\meaning\X}}} One sees on this example how braces protect commas from sub-lists to be perceived as delimiters of the top list. Braces around an entire item are removed, even when surrounded by spaces before and/or after. Braces for sub-parts of an item are not removed. We observe also that there is a slight difference regarding the brace stripping of an item: if the braces were not surrounded by spaces, also the initial and final (but no other) spaces of the \emph{enclosed} material are removed. This is the only situation where spaces protected by braces are nevertheless removed. From the rules above: for an empty argument (only spaces, no braces, no comma) the output is \dtt{\expandafter\detokenize\expandafter{\romannumeral0\xintcsvtolist { }}} (a list with one empty item), for ``|{}|'' the output is \dtt{\expandafter\detokenize\expandafter {\romannumeral0\xintcsvtolist { {} }}} (again a list with one empty item, the braces were removed), for ``|{ }|'' the output is \dtt{\expandafter\detokenize\expandafter {\romannumeral0\xintcsvtolist {{ }}}} (again a list with one empty item, the braces were removed and then the inner space was removed), for ``| { }|'' the output is \dtt{\expandafter\detokenize\expandafter {\romannumeral0\xintcsvtolist { { }}}} (again a list with one empty item, the initial space served only to stop the expansion, so this was like ``|{ }|'' as input, the braces were removed and the inner space was stripped), for ``\texttt{\ \{\ \ \}\ }'' the output is \dtt{\expandafter\detokenize\expandafter {\romannumeral0\xintcsvtolist { { } }}} (this time the ending space of the first item meant that after brace removal the inner spaces were kept; recall though that \TeX{} collapses on input consecutive blanks into one space token), for ``|,|'' the output consists of two consecutive empty items \dtt{\expandafter\detokenize\expandafter{\romannumeral0\xintcsvtolist {,}}}. Recall that on output everything is braced, a |{}| is an ``empty'' item. % Most of the above is mainly irrelevant for every day use, apart perhaps from the fact to be noted that an empty input does not give an empty output but a one-empty-item list (it is as if an ending comma was always added at the end of the input). \def\y { \a,\b,\c,\d,\e} \expandafter\def\expandafter\Y\expandafter{\romannumeral0\xintcsvtolist{\y}} \def\t {{\if},\ifnum,\ifx,\ifdim,\ifcat,\ifmmode} \expandafter\def\expandafter\T\expandafter{\romannumeral0\xintcsvtolist{\t}} % \leftedline{|\def\y{ \a,\b,\c,\d,\e} \xintCSVtoList\y->|% {\makeatletter\dtt{\expandafter\strip@prefix\meaning\Y}}} % \leftedline{|\def\t {{\if},\ifnum,\ifx,\ifdim,\ifcat,\ifmmode}|} % \leftedline {|\xintCSVtoList\t->|\makeatletter\dtt{\expandafter\strip@prefix\meaning\T}} % The results above were automatically displayed using \TeX's primitive \csa{meaning}, which adds a space after each control sequence name. These spaces are not in the actual braced items of the produced lists. The first items |\a| and |\if| were either preceded by a space or braced to prevent expansion. The macro \csa{xintCSVtoListNoExpand} would have done the same job without the initial expansion of the list argument, hence no need for such protection but if |\y| is defined as |\def\y{\a,\b,\c,\d,\e}| we then must do: % \leftedline{|\expandafter\xintCSVtoListNoExpand\expandafter {\y}|} Else, we may have direct use: % % \leftedline{|\xintCSVtoListNoExpand {\if,\ifnum,\ifx,\ifdim,\ifcat,\ifmmode}|} % % ATTENTION 18 novembre TEST DE newtxtt 1.05 PAS POSSIBLE \textsc DANS \dtt % mais on peut avec \scshape. Finalement je n'utilise pas les old style figures. \leftedline{|->|\dtt{\expandafter\detokenize\expandafter {\romannumeral0\xintcsvtolistnoexpand {\if,\ifnum,\ifx,\ifdim,\ifcat,\ifmmode}}}} % Again these spaces are an artefact from the use in the source of the document of \csa{meaning} (or rather here, \csa{detokenize}) to display the result of using \csa{xintCSVtoListNoExpand} (which is done for real in this document source). For the similar conversion from comma separated list to braced items list, but without removal of spaces around the commas, there is \csa{xintCSVtoListNonStripped}\etype{f} and \csa{xintCSVtoListNonStrippedNoExpand}\etype{n}. \endgroup \subsection{\csbh{xintNthElt}}\label{xintNthElt} % {\small New in release |1.06|. With |1.09b| negative indices count from the tail.\par} \def\macro #1{\the\numexpr 9-#1\relax} \csa{xintNthElt\x}\marg{list}\etype{\numx f} gets (expandably) the |x|th braced item of the \meta{list}. An unbraced item token will be returned as is. The list itself may be a macro which is first \fexpan ded. \leftedline{|\xintNthElt {3}{{agh}\u{zzz}\v{Z}}| is \texttt{\xintNthElt {3}{{agh}\u{zzz}\v{Z}}}} % \leftedline{|\xintNthElt {3}{{agh}\u{{zzz}}\v{Z}}| is \texttt{\expandafter\expandafter\expandafter \detokenize\expandafter\expandafter\expandafter {\xintNthElt {3}{{agh}\u{{zzz}}\v{Z}}}}} % \leftedline{|\xintNthElt {2}{{agh}\u{{zzz}}\v{Z}}| is \texttt{\expandafter\expandafter\expandafter \detokenize\expandafter\expandafter\expandafter {\xintNthElt {2}{{agh}\u{{zzz}}\v{Z}}}}} % \leftedline{|\xintNthElt {37}{\xintFac {100}}|\dtt{=\xintNthElt {37}{\xintFac {100}}} is the thirty-seventh digit of $100!$.} % \leftedline{|\xintNthElt {10}{\xintFtoCv {566827/208524}}|\dtt{=\xintNthElt {10}{\xintFtoCv {566827/208524}}}} \leftedline{is the tenth convergent of $566827/208524$ (uses \xintcfracname package).} % \leftedline{|\xintNthElt {7}{\xintCSVtoList {1,2,3,4,5,6,7,8,9}}|% \dtt{=\xintNthElt {7}{\xintCSVtoList {1,2,3,4,5,6,7,8,9}}}} % \leftedline{|\xintNthElt {0}{\xintCSVtoList {1,2,3,4,5,6,7,8,9}}|% \dtt{=\xintNthElt {0}{\xintCSVtoList {1,2,3,4,5,6,7,8,9}}}} % \leftedline{|\xintNthElt {-3}{\xintCSVtoList {1,2,3,4,5,6,7,8,9}}|% \dtt{=\xintNthElt {-3}{\xintCSVtoList {1,2,3,4,5,6,7,8,9}}}} If |x=0|, the macro returns the \emph{length} of the expanded list: this is not equivalent to \csbxint{Length} which does no pre-expansion. And it is different from \csbxint{Len} which is to be used only on integers or fractions. If |x<0|, the macro returns the \verb+|x|+th element from the end of the list. % \leftedline {|\xintNthElt {-5}{{{agh}}\u{zzz}\v{Z}}| is \texttt{\expandafter\expandafter\expandafter \detokenize \expandafter\expandafter\expandafter{\xintNthElt {-5}{{{agh}}\u{zzz}\v{Z}}}}} The macro \csa{xintNthEltNoExpand}\etype{\numx n} does the same job but without first expanding the list argument: |\xintNthEltNoExpand {-4}{\u\v\w T\x\y\z}| is \xintNthEltNoExpand {-4}{\a\b\c\u\v\w T\x\y\z}. In cases where |x| is larger (in absolute value) than the length of the list then |\xintNthElt| returns nothing. \subsection{\csbh{xintKeep}}\label{xintKeep} \csa{xintKeep\x}\marg{list}\etype{\numx f} expands the list argument and returns a new list containing only the first |x| elements.\NewWith {1.09m} If |x<0| the macro returns the last \verb+|x|+ elements (in the same order as in the initial list). If \verb+|x|+ equals or exceeds the length of the list, the list (as arising from expansion of the second argument) is returned. For |x=0| the empty list is returned. Naked (non space) tokens from the original count each as one item and they end up braced in the output (if present there): if one later wants to remove all brace pairs (either added to a naked token, or initially present), one may use \csbxint {ListWithSep} with an empty separator. \csa{xintKeepNoExpand} does the same without first \fexpan ding its list argument. % \begin{everbatim*} \oodef\test {\xintKeep {17}{\xintKeep {-69}{\xintSeq {1}{100}}}}\meaning\test \end{everbatim*} % \subsection{\csbh{xintTrim}}\label{xintTrim} \csa{xintTrim\x}\marg{list}\etype{\numx f} expands the list argument and gobbles its first |x| elements. If |x<0| the macro gobbles the last \verb+|x|+ elements.\NewWith {1.09m} If \verb+|x|+ equals or exceeds the length of the list, the empty list is returned. For |x=0| the full list is returned. Naked (non space) tokens from the original count each as one item and they end up braced in the output (if present there). \csa{xintTrimNoExpand} does the same without first \fexpan ding its list argument. \begin{everbatim*} \oodef\test {\xintTrim {17}{\xintTrim {-69}{\xintSeq {1}{100}}}}\meaning\test \end{everbatim*} \subsection{\csbh{xintListWithSep}}\label{xintListWithSep} %{\small New with release |1.04|.\par} \def\macro #1{\the\numexpr 9-#1\relax} \csa{xintListWithSep}|{sep}|\marg{list}\etype{nf} inserts the given separator |sep| in-between all items of the given list of braced items: this separator may be a macro (or multiple tokens) but will not be expanded. The second argument also may be itself a macro: it is \fexpan ded. Applying \csa{xintListWithSep} removes the braces from the list items (for example |{1}{2}{3}| turns into \dtt{\xintListWithSep,{123}} via |\xintListWithSep{,}{{1}{2}{3}}|). An empty input gives an empty output, a singleton gives a singleton, the separator is used starting with at least two elements. Using an empty separator has the net effect of unbracing the braced items constituting the \meta{list} (in such cases the new list may thus be longer than the original). % \leftedline{|\xintListWithSep{:}{\xintFac {20}}|\dtt{=\xintListWithSep{:}{\xintFac {20}}}} The macro \csa{xintListWithSepNoExpand}\etype{nn} does the same job without the initial expansion. \subsection{\csbh{xintApply}}\label{xintApply} %{\small New with release |1.04|.\par} \def\macro #1{\the\numexpr 9-#1\relax} \csa{xintApply}|{\macro}|\marg{list}\etype{ff} expandably applies the one parameter command |\macro| to each item in the \meta{list} given as second argument and returns a new list with these outputs: each item is given one after the other as parameter to |\macro| which is expanded at that time (as usual, \emph{i.e.} fully for what comes first), the results are braced and output together as a succession of braced items (if |\macro| is defined to start with a space, the space will be gobbled and the |\macro| will not be expanded; it is allowed to have its own arguments, the list items serve as last arguments to |\macro|). Hence |\xintApply{\macro}{{1}{2}{3}}| returns |{\macro{1}}{\macro{2}}{\macro{3}}| where all instances of |\macro| have been already \fexpan ded. Being expandable, |\xintApply| is useful for example inside alignments where implicit groups make standard loops constructs usually fail. In such situation it is often not wished that the new list elements be braced, see \csbxint{ApplyUnbraced}. The |\macro| does not have to be expandable: |\xintApply| will try to expand it, the expansion may remain partial. The \meta{list} may itself be some macro expanding (in the previously described way) to the list of tokens to which the command |\macro| will be applied. For example, if the \meta{list} expands to some positive number, then each digit will be replaced by the result of applying |\macro| on it. % % \leftedline{|\def\macro #1{\the\numexpr 9-#1\relax}|} % % \leftedline{|\xintApply\macro{\xintFac {20}}|\dtt{=\xintApply\macro{\xintFac {20}}}} The macro \csa{xintApplyNoExpand}\etype{fn} does the same job without the first initial expansion which gave the \meta{list} of braced tokens to which |\macro| is applied. \subsection{\csbh{xintApplyUnbraced}}\label{xintApplyUnbraced} %{\small New in release |1.06b|.\par} \csa{xintApplyUnbraced}|{\macro}|\marg{list}\etype{ff} is like \csbxint{Apply}. The difference is that after having expanded its list argument, and applied |\macro| in turn to each item from the list, it reassembles the outputs without enclosing them in braces. The net effect is the same as doing % \leftedline{|\xintListWithSep {}{\xintApply {\macro}|\marg{list}|}|} This is useful for preparing a macro which will itself define some other macros or make assignments, as the scope will not be limited by brace pairs. % \begin{everbatim*} \def\macro #1{\expandafter\def\csname myself#1\endcsname {#1}} \xintApplyUnbraced\macro{{elta}{eltb}{eltc}} \begin{enumerate}[nosep,label=(\arabic{*})] \item \meaning\myselfelta \item \meaning\myselfeltb \item \meaning\myselfeltc \end{enumerate} \end{everbatim*} % The macro \csa{xintApplyUnbracedNoExpand}\etype{fn} does the same job without the first initial expansion which gave the \meta{list} of braced tokens to which |\macro| is applied. \subsection{\csbh{xintSeq}}\label{xintSeq} %{\small New with release |1.09c|.\par} \csa{xintSeq}|[d]{x}{y}|\etype{{{\upshape[\numx]}}\numx\numx} generates expandably |{x}{x+d}...| up to and possibly including |{y}| if |d>0| or down to and including |{y}| if |d<0|. Naturally |{y}| is omitted if |y-x| is not a multiple of |d|. If |d=0| the macro returns |{x}|. If |y-x| and |d| have opposite signs, the macro returns nothing. If the optional argument |d| is omitted it is taken to be the sign of |y-x| (beware that |\xintSeq {1}{0}| is thus not empty but |{1}{0}|, use |\xintSeq [1]{1}{N}| if you want an empty sequence for |N| zero or negative). The current implementation is only for (short) integers; possibly, a future variant could allow big integers and fractions, although one already has access to similar functionality using \csbxint{Apply} to get any arithmetic sequence of long integers. Currently thus, |x| and |y| are expanded inside a |\numexpr| so they may be count registers or a \LaTeX{} |\value{countername}|, or arithmetic with such things. % \begin{everbatim*} \xintListWithSep{,\hskip2pt plus 1pt minus 1pt }{\xintSeq {12}{-25}} \end{everbatim*} % \begin{everbatim*} \xintiiSum{\xintSeq [3]{1}{1000}} \end{everbatim*} \textbf{Important:} for reasons of efficiency, this macro, when not given the optional argument |d|, works backwards, leaving in the token stream the already constructed integers, from the tail down (or up). But this will provoke a failure of \IMPORTANT{} the |tex| run if the number of such items exceeds the input stack limit; on my installation this limit is at $5000$. However, when given the optional argument |d| (which may be $+1$ or $-1$), the macro proceeds differently and does not put stress on the input stack (but is significantly slower for sequences with thousands of integers, especially if they are somewhat big). For example: |\xintSeq [1]{0}{5000}| works and |\xintiiSum{\xintSeq [1]{0}{5000}}| returns the correct value \dtt{\xintHalf{\xintiMul{5000}{5001}}}. The produced integers are with explicit litteral digits, so if used in |\ifnum| or other tests they should be properly terminated% % \footnote{a \csa{space} will stop the \TeX{} scanning of a number and be gobbled in the process, maintaining expandability if this is required; the \csa{relax} stops the scanning but is not gobbled and remains afterwards as a token.}. \subsection{Completely expandable prime test}\label{ssec:primesI} Let us now construct a completely expandable macro which returns $1$ if its given input is prime and $0$ if not: \everb|@ \def\remainder #1#2{\the\numexpr #1-(#1/#2)*#2\relax } \def\IsPrime #1% {\xintANDof {\xintApply {\remainder {#1}}{\xintSeq {2}{\xintiSqrt{#1}}}}} | This uses \csbxint{iSqrt} and assumes its input is at least $5$. Rather than \xintname's own \csbxint{iRem} we used a quicker |\numexpr| expression as we are dealing with short integers. Also we used \csbxint{ANDof} which will return $1$ only if all the items are non-zero. The macro is a bit silly with an even input, ok, let's enhance it to detect an even input: \everb|@ \def\IsPrime #1% {\xintifOdd {#1} {\xintANDof % odd case {\xintApply {\remainder {#1}} {\xintSeq [2]{3}{\xintiSqrt{#1}}}% }% } {\xintifEq {#1}{2}{1}{0}}% } | We used the \xintname provided expandable tests (on big integers or fractions) in oder for |\IsPrime| to be \fexpan dable. Our integers are short, but without |\expandafter|'s with %\makeatletter|\@firstoftwo|\catcode`@ \active, |\@firstoftwo|, % @ n'est plus actif dans le dtx 1.1 ! or some other related techniques, direct use of |\ifnum..\fi| tests is dangerous. So to make the macro more efficient we are going to use the expandable tests provided by the package \href{http://ctan.org/pkg/etoolbox}{etoolbox}% % \footnote{\url{http://ctan.org/pkg/etoolbox}}. % The macro becomes: % \everb|@ \def\IsPrime #1% {\ifnumodd {#1} {\xintANDof % odd case {\xintApply {\remainder {#1}}{\xintSeq [2]{3}{\xintiSqrt{#1}}}}} {\ifnumequal {#1}{2}{1}{0}}} | In the odd case however we have to assume the integer is at least $7$, as |\xintSeq| generates an empty list if |#1=3| or |5|, and |\xintANDof| returns $1$ when supplied an empty list. Let us ease up a bit |\xintANDof|'s work by letting it work on only $0$'s and $1$'s. We could use: % \everb|@ \def\IsNotDivisibleBy #1#2% {\ifnum\numexpr #1-(#1/#2)*#2=0 \expandafter 0\else \expandafter1\fi} | \noindent where the |\expandafter|'s are crucial for this macro to be \fexpan dable and hence work within the applied \csbxint{ANDof}. Anyhow, now that we have loaded \href{http://ctan.org/pkg/etoolbox}{etoolbox}, we might as well use: % \everb|@ \newcommand{\IsNotDivisibleBy}[2]{\ifnumequal{#1-(#1/#2)*#2}{0}{0}{1}} | \noindent Let us enhance our prime macro to work also on the small primes: \everb|@ \newcommand{\IsPrime}[1] % returns 1 if #1 is prime, and 0 if not {\ifnumodd {#1} {\ifnumless {#1}{8} {\ifnumequal{#1}{1}{0}{1}}% 3,5,7 are primes {\xintANDof {\xintApply { \IsNotDivisibleBy {#1}}{\xintSeq [2]{3}{\xintiSqrt{#1}}}}% }}% END OF THE ODD BRANCH {\ifnumequal {#1}{2}{1}{0}}% EVEN BRANCH } | The input is still assumed positive. There is a deliberate blank before \csa{IsNotDivisibleBy} to use this feature of \csbxint{Apply}: a space stops the expansion of the applied macro (and disappears). This expansion will be done by \csbxint{ANDof}, which has been designed to skip everything as soon as it finds a false (i.e. zero) input. This way, the efficiency is considerably improved. We did generate via the \csbxint{Seq} too many potential divisors though. Later sections give two variants: one with \csbxint{iloop} (\autoref{ssec:primesII}) which is still expandable and another one (\autoref{ssec:primesIII}) which is a close variant of the |\IsPrime| code above but with the \csbxint{For} loop, thus breaking expandability. The \hyperref[ssec:primesII]{xintiloop variant} does not first evaluate the integer square root, the \hyperref[ssec:primesIII]{xintFor variant} still does. I did not compare their efficiencies. % Hmm, if one really needs to compute primes fast, sure I do applaud using % \xintname, but, well, there is some slight % overhead\MyMarginNoteWithBrace{funny private joke} in using \TeX{} for these % things (something like a factor $1000$? not tested\dots) compared to accessing % to the |CPU| ressources via standard compiled code from a standard programming % language\dots Let us construct with this expandable primality test a table of the prime numbers up to $1000$. We need to count how many we have in order to know how many tab stops one shoud add in the last row.% % \footnote{although a tabular row may have less tabs than in the preamble, there is a problem with the \char`\|\space\space vertical rule, if one does that.} % There is some subtlety for this last row. Turns out to be better to insert a |\\| only when we know for sure we are starting a new row; this is how we have designed the |\OneCell| macro. And for the last row, there are many ways, we use again |\xintApplyUnbraced| but with a macro which gobbles its argument and replaces it with a tabulation character. The \csbxint{For*} macro would be more elegant here. % \everb?@ \newcounter{primecount} \newcounter{cellcount} \newcommand{\NbOfColumns}{13} \newcommand{\OneCell}[1]{% \ifnumequal{\IsPrime{#1}}{1} {\stepcounter{primecount} \ifnumequal{\value{cellcount}}{\NbOfColumns} {\\\setcounter{cellcount}{1}#1} {&\stepcounter{cellcount}#1}% } % was prime {}% not a prime, nothing to do } \newcommand{\OneTab}[1]{&} \begin{tabular}{|*{\NbOfColumns}{r}|} \hline 2 \setcounter{cellcount}{1}\setcounter{primecount}{1}% \xintApplyUnbraced \OneCell {\xintSeq [2]{3}{999}}% \xintApplyUnbraced \OneTab {\xintSeq [1]{1}{\the\numexpr\NbOfColumns-\value{cellcount}\relax}}% \\ \hline \end{tabular} There are \arabic{primecount} prime numbers up to 1000. ? The table has been put in \hyperref[primesupto1000]{float} which appears \vpageref{primesupto1000}. We had to be careful to use in the last row \csbxint{Seq} with its optional argument |[1]| so as to not generate a decreasing sequence from |1| to |0|, but really an empty sequence in case the row turns out to already have all its cells (which doesn't happen here but would with a number of columns dividing $168$). % \newcommand{\IsNotDivisibleBy}[2]{\ifnumequal{#1-(#1/#2)*#2}{0}{0}{1}} \newcommand{\IsPrime}[1] {\ifnumodd {#1} {\ifnumless {#1}{8} {\ifnumequal{#1}{1}{0}{1}}% 3,5,7 are primes {\xintANDof {\xintApply { \IsNotDivisibleBy {#1}}{\xintSeq [2]{3}{\xintiSqrt{#1}}}}% }}% END OF THE ODD BRANCH {\ifnumequal {#1}{2}{1}{0}}% EVEN BRANCH } \newcounter{primecount} \newcounter{cellcount} \newcommand{\NbOfColumns}{13} \newcommand{\OneCell}[1] {\ifnumequal{\IsPrime{#1}}{1} {\stepcounter{primecount} \ifnumequal{\value{cellcount}}{\NbOfColumns} {\\\setcounter{cellcount}{1}#1} {&\stepcounter{cellcount}#1}% } % was prime {}% not a prime nothing to do } \newcommand{\OneTab}[1]{&} \begin{figure*}[ht!] \centering \phantomsection\label{primesupto1000} \begin{tabular}{|*{\NbOfColumns}{r}|} \hline 2\setcounter{cellcount}{1}\setcounter{primecount}{1}% \xintApplyUnbraced \OneCell {\xintSeq [2]{3}{999}}% \xintApplyUnbraced \OneTab {\xintSeq [1]{1}{\the\numexpr\NbOfColumns-\value{cellcount}\relax}}% \\ \hline \end{tabular} \smallskip \centeredline{There are \arabic{primecount} prime numbers up to 1000.} \end{figure*} \subsection{\csbh{xintloop}, \csbh{xintbreakloop}, \csbh{xintbreakloopanddo}, \csbh{xintloopskiptonext}} \label{xintloop} \label{xintbreakloop} \label{xintbreakloopanddo} \label{xintloopskiptonext} % {\small New with release |1.09g|. Release |1.09h| % makes them long macros.\par} |\xintloop|\meta{stuff}|\if...\repeat|\retype{} is an expandable loop compatible with nesting. However to break out of the loop one almost always need some un-expandable step. The cousin \csbxint{iloop} is \csbxint{loop} with an embedded expandable mechanism allowing to exit from the loop. The iterated commands may contain |\par| tokens or empty lines. If a sub-loop is to be used all the material from the start of the main loop and up to the end of the entire subloop should be braced; these braces will be removed and do not create a group. The simplest to allow the nesting of one or more sub-loops is to brace everything between \csa{xintloop} and \csa{repeat}, being careful not to leave a space between the closing brace and |\repeat|. As this loop and \csbxint{iloop} will primarily be of interest to experienced \TeX{} macro programmers, my description will assume that the user is knowledgeable enough. Some examples in this document will be perhaps more illustrative than my attemps at explanation of use. One can abort the loop with \csbxint{breakloop}; this should not be used inside the final test, and one should expand the |\fi| from the corresponding test before. One has also \csbxint{breakloopanddo} whose first argument will be inserted in the token stream after the loop; one may need a macro such as |\xint_afterfi| to move the whole thing after the |\fi|, as a simple |\expandafter| will not be enough. One will usually employ some count registers to manage the exit test from the loop; this breaks expandability, see \csbxint{iloop} for an expandable integer indexed loop. Use in alignments will be complicated by the fact that cells create groups, and also from the fact that any encountered unexpandable material will cause the \TeX{} input scanner to insert |\endtemplate| on each encountered |&| or |\cr|; thus |\xintbreakloop| may not work as expected, but the situation can be resolved via |\xint_firstofone{&}| or use of |\TAB| with |\def\TAB{&}|. It is thus simpler for alignments to use rather than \csbxint{loop} either the expandable \csbxint{ApplyUnbraced} or the non-expandable but alignment compatible \csbxint{ApplyInline}, \csbxint{For} or \csbxint{For*}. As an example, let us suppose we have two macros |\A|\marg{i}\marg{j} and |\B|\marg{i}\marg{j} behaving like (small) integer valued matrix entries, and we want to define a macro |\C|\marg{i}\marg{j} giving the matrix product (|i| and |j| may be count registers). We will assume that |\A[I]| expands to the number of rows, |\A[J]| to the number of columns and want the produced |\C| to act in the same manner. The code is very dispendious in use of |\count| registers, not optimized in any way, not made very robust (the defined macro can not have the same name as the first two matrices for example), we just wanted to quickly illustrate use of the nesting capabilities of |\xintloop|.% % \footnote{for a more sophisticated implementation of matrix multiplication, inclusive of determinants, inverses, and display utilities, with entries big integers or decimal numbers or even fractions see \url{http://tex.stackexchange.com/a/143035/4686} from November 11, 2013.} % %\def\everbhook {\makeatother } \begin{everbatim*} \newcount\rowmax \newcount\colmax \newcount\summax \newcount\rowindex \newcount\colindex \newcount\sumindex \newcount\tmpcount \makeatletter \def\MatrixMultiplication #1#2#3{% \rowmax #1[I]\relax \colmax #2[J]\relax \summax #1[J]\relax \rowindex 1 \xintloop % loop over row index i {\colindex 1 \xintloop % loop over col index k {\tmpcount 0 \sumindex 1 \xintloop % loop over intermediate index j \advance\tmpcount \numexpr #1\rowindex\sumindex*#2\sumindex\colindex\relax \ifnum\sumindex<\summax \advance\sumindex 1 \repeat }% \expandafter\edef\csname\string#3{\the\rowindex.\the\colindex}\endcsname {\the\tmpcount}% \ifnum\colindex<\colmax \advance\colindex 1 \repeat }% \ifnum\rowindex<\rowmax \advance\rowindex 1 \repeat \expandafter\edef\csname\string#3{I}\endcsname{\the\rowmax}% \expandafter\edef\csname\string#3{J}\endcsname{\the\colmax}% \def #3##1{\ifx[##1\expandafter\Matrix@helper@size \else\expandafter\Matrix@helper@entry\fi #3{##1}}% }% \def\Matrix@helper@size #1#2#3]{\csname\string#1{#3}\endcsname }% \def\Matrix@helper@entry #1#2#3% {\csname\string#1{\the\numexpr#2.\the\numexpr#3}\endcsname }% \def\A #1{\ifx[#1\expandafter\A@size \else\expandafter\A@entry\fi {#1}}% \def\A@size #1#2]{\ifx I#23\else4\fi}% 3rows, 4columns \def\A@entry #1#2{\the\numexpr #1+#2-1\relax}% not pre-computed... \def\B #1{\ifx[#1\expandafter\B@size \else\expandafter\B@entry\fi {#1}}% \def\B@size #1#2]{\ifx I#24\else3\fi}% 4rows, 3columns \def\B@entry #1#2{\the\numexpr #1-#2\relax}% not pre-computed... \makeatother \MatrixMultiplication\A\B\C \MatrixMultiplication\C\C\D \MatrixMultiplication\C\D\E \MatrixMultiplication\C\E\F \begin{multicols}2 \[\begin{pmatrix} \A11&\A12&\A13&\A14\\ \A21&\A22&\A23&\A24\\ \A31&\A32&\A33&\A34 \end{pmatrix} \times \begin{pmatrix} \B11&\B12&\B13\\ \B21&\B22&\B23\\ \B31&\B32&\B33\\ \B41&\B42&\B43 \end{pmatrix} = \begin{pmatrix} \C11&\C12&\C13\\ \C21&\C22&\C23\\ \C31&\C32&\C33 \end{pmatrix}\] \[\begin{pmatrix} \C11&\C12&\C13\\ \C21&\C22&\C23\\ \C31&\C32&\C33 \end{pmatrix}^2 = \begin{pmatrix} \D11&\D12&\D13\\ \D21&\D22&\D23\\ \D31&\D32&\D33 \end{pmatrix}\] \[\begin{pmatrix} \C11&\C12&\C13\\ \C21&\C22&\C23\\ \C31&\C32&\C33 \end{pmatrix}^3 = \begin{pmatrix} \E11&\E12&\E13\\ \E21&\E22&\E23\\ \E31&\E32&\E33 \end{pmatrix}\] \[\begin{pmatrix} \C11&\C12&\C13\\ \C21&\C22&\C23\\ \C31&\C32&\C33 \end{pmatrix}^4 = \begin{pmatrix} \F11&\F12&\F13\\ \F21&\F22&\F23\\ \F31&\F32&\F33 \end{pmatrix}\] \end{multicols} \end{everbatim*} % \restoreeverbhook \subsection{\csbh{xintiloop}, \csbh{xintiloopindex}, \csbh{xintouteriloopindex}, \csbh{xintbreakiloop}, \csbh{xintbreakiloopanddo}, \csbh{xintiloopskiptonext}, \csbh{xintiloopskipandredo}} \label{xintiloop} \label{xintbreakiloop} \label{xintbreakiloopanddo} \label{xintiloopskiptonext} \label{xintiloopskipandredo} \label{xintiloopindex} \label{xintouteriloopindex} %{\small New with release |1.09g|.\par} \csa{xintiloop}|[start+delta]|\meta{stuff}|\if ... \repeat|\retype{} is a completely expandable nestable loop. complete expandability depends naturally on the actual iterated contents, and complete expansion will not be achievable under a sole \fexpan sion, as is indicated by the hollow star in the margin; thus the loop can be used inside an |\edef| but not inside arguments to the package macros. It can be used inside an |\xintexpr..\relax|. This loop benefits via \csbxint{iloopindex} to (a limited access to) the integer index of the iteration. The starting value |start| (which may be a |\count|) and increment |delta| (\emph{id.}) are mandatory arguments. A space after the closing square bracket is not significant, it will be ignored. Spaces inside the square brackets will also be ignored as the two arguments are first given to a |\numexpr...\relax|. Empty lines and explicit |\par| tokens are accepted. As with \csbxint{loop}, this tool will mostly be of interest to advanced users. For nesting, one puts inside braces all the material from the start (immediately after |[start+delta]|) and up to and inclusive of the inner loop, these braces will be removed and do not create a loop. In case of nesting, \csbxint{outeriloopindex} gives access to the index of the outer loop. If needed one could write on its model a macro giving access to the index of the outer outer loop (or even to the |nth| outer loop). The \csa{xintiloopindex} and \csa{xintouteriloopindex} can not be used inside braces, and generally speaking this means they should be expanded first when given as argument to a macro, and that this macro receives them as delimited arguments, not braced ones. Or, but naturally this will break expandability, one can assign the value of \csa{xintiloopindex} to some |\count|. Both \csa{xintiloopindex} and \csa{xintouteriloopindex} extend to the litteral representation of the index, thus in |\ifnum| tests, if it comes last one has to correctly end the macro with a |\space|, or encapsulate it in a |\numexpr..\relax|. When the repeat-test of the loop is, for example, |\ifnum\xintiloopindex<10 \repeat|, this means that the last iteration will be with |\xintiloopindex=10| (assuming |delta=1|). There is also |\ifnum\xintiloopindex=10 \else\repeat| to get the last iteration to be the one with |\xintiloopindex=10|. One has \csbxint{breakiloop} and \csbxint{breakiloopanddo} to abort the loop. The syntax of |\xintbreakiloopanddo| is a bit surprising, the sequence of tokens to be executed after breaking the loop is not within braces but is delimited by a dot as in: % \leftedline{|\xintbreakiloopanddo .etc.. etc... \repeat|} % The reason is that one may wish to use the then current value of |\xintiloopindex| in || but it can't be within braces at the time it is evaluated. However, it is not that easy as |\xintiloopindex| must be expanded before, so one ends up with code like this: % \leftedline {|\expandafter\xintbreakiloopanddo\expandafter\macro\xintiloopindex.%|} % \leftedline{|etc.. etc.. \repeat|} % As moreover the |\fi| from the test leading to the decision of breaking out of the loop must be cleared out of the way, the above should be a branch of an expandable conditional test, else one needs something such as: % \leftedline {|\xint_afterfi{\expandafter\xintbreakiloopanddo\expandafter\macro\xintiloopindex.}%|} % \leftedline{|\fi etc..etc.. \repeat|} There is \csbxint{iloopskiptonext} to abort the current iteration and skip to the next, \hyperref[xintiloopskipandredo]{\ttfamily\hyphenchar\font45 \char92 xintiloopskip\-and\-redo} to skip to the end of the current iteration and redo it with the same value of the index (something else will have to change for this not to become an eternal loop\dots ). Inside alignments, if the looped-over text contains a |&| or a |\cr|, any un-expandable material before a \csbxint{iloopindex} will make it fail because of |\endtemplate|; in such cases one can always either replace |&| by a macro expanding to it or replace it by a suitable |\firstofone{&}|, and similarly for |\cr|. \phantomsection\label{edefprimes} As an example, let us construct an |\edef\z{...}| which will define |\z| to be a list of prime numbers: \begin{everbatim*} \begingroup \edef\z {\xintiloop [10001+2] {\xintiloop [3+2] \ifnum\xintouteriloopindex<\numexpr\xintiloopindex*\xintiloopindex\relax \xintouteriloopindex, \expandafter\xintbreakiloop \fi \ifnum\xintouteriloopindex=\numexpr (\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax \else \repeat }% no space here \ifnum \xintiloopindex < 10999 \repeat }% \meaning\z\endgroup \end{everbatim*}and we should have taken some steps to not have a trailing comma, but the point was to show that one can do that in an |\edef|\,! See also \autoref{ssec:primesII} which extracts from this code its way of testing primality. Let us create an alignment where each row will contain all divisors of its first entry. Here is the output, thus obtained without any count register: \begin{everbatim*} \begin{multicols}2 \tabskip1ex \normalcolor \halign{&\hfil#\hfil\cr \xintiloop [1+1] {\expandafter\bfseries\xintiloopindex & \xintiloop [1+1] \ifnum\xintouteriloopindex=\numexpr (\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax \xintiloopindex&\fi \ifnum\xintiloopindex<\xintouteriloopindex\space % CRUCIAL \space HERE \repeat \cr }% \ifnum\xintiloopindex<30 \repeat } \end{multicols} \end{everbatim*} We wanted this first entry in bold face, but |\bfseries| leads to unexpandable tokens, so the |\expandafter| was necessary for |\xintiloopindex| and |\xintouteriloopindex| not to be confronted with a hard to digest |\endtemplate|. An alternative way of coding: % \begin{everbatim} \tabskip1ex \def\firstofone #1{#1}% \halign{&\hfil#\hfil\cr \xintiloop [1+1] {\bfseries\xintiloopindex\firstofone{&}% \xintiloop [1+1] \ifnum\xintouteriloopindex=\numexpr (\xintouteriloopindex/\xintiloopindex)*\xintiloopindex\relax \xintiloopindex\firstofone{&}\fi \ifnum\xintiloopindex<\xintouteriloopindex\space % \space is CRUCIAL \repeat \firstofone{\cr}}% \ifnum\xintiloopindex<30 \repeat } \end{everbatim} \subsection{Another completely expandable prime test}\label{ssec:primesII} The |\IsPrime| macro from \autoref{ssec:primesI} checked expandably if a (short) integer was prime, here is a partial rewrite using \csbxint{iloop}. We use the |etoolbox| expandable conditionals for convenience, but not everywhere as |\xintiloopindex| can not be evaluated while being braced. This is also the reason why |\xintbreakiloopanddo| is delimited, and the next macro |\SmallestFactor| which returns the smallest prime factor examplifies that. One could write more efficient completely expandable routines, the aim here was only to illustrate use of the general purpose \csbxint{iloop}. A little table giving the first values of |\SmallestFactor| follows, its coding uses \csbxint{For}, which is described later; none of this uses count registers. % %\tracingmacros1 \begin{everbatim*} \let\IsPrime\undefined \let\SmallestFactor\undefined % clean up possible previous mess \newcommand{\IsPrime}[1] % returns 1 if #1 is prime, and 0 if not {\ifnumodd {#1} {\ifnumless {#1}{8} {\ifnumequal{#1}{1}{0}{1}}% 3,5,7 are primes {\if \xintiloop [3+2] \ifnum#1<\numexpr\xintiloopindex*\xintiloopindex\relax \expandafter\xintbreakiloopanddo\expandafter1\expandafter.% \fi \ifnum#1=\numexpr (#1/\xintiloopindex)*\xintiloopindex\relax \else \repeat 00\expandafter0\else\expandafter1\fi }% }% END OF THE ODD BRANCH {\ifnumequal {#1}{2}{1}{0}}% EVEN BRANCH }% \catcode`_ 11 \newcommand{\SmallestFactor}[1] % returns the smallest prime factor of #1>1 {\ifnumodd {#1} {\ifnumless {#1}{8} {#1}% 3,5,7 are primes {\xintiloop [3+2] \ifnum#1<\numexpr\xintiloopindex*\xintiloopindex\relax \xint_afterfi{\xintbreakiloopanddo#1.}% \fi \ifnum#1=\numexpr (#1/\xintiloopindex)*\xintiloopindex\relax \xint_afterfi{\expandafter\xintbreakiloopanddo\xintiloopindex.}% \fi \iftrue\repeat }% }% END OF THE ODD BRANCH {2}% EVEN BRANCH }% \catcode`_ 8 {\centering \begin{tabular}{|c|*{10}c|} \hline \xintFor #1 in {0,1,2,3,4,5,6,7,8,9}\do {&\bfseries #1}\\ \hline \bfseries 0&--&--&2&3&2&5&2&7&2&3\\ \xintFor #1 in {1,2,3,4,5,6,7,8,9}\do {\bfseries #1% \xintFor #2 in {0,1,2,3,4,5,6,7,8,9}\do {&\SmallestFactor{#1#2}}\\}% \hline \end{tabular}\par } \end{everbatim*} \subsection{A table of factorizations} \label{ssec:factorizationtable} As one more example with \csbxint{iloop} let us use an alignment to display the factorization of some numbers. The loop will actually only play a minor r\^ole here, just handling the row index, the row contents being almost entirely produced via a macro |\factorize|. The factorizing macro does not use |\xintiloop| as it didn't appear to be the convenient tool. As |\factorize| will have to be used on |\xintiloopindex|, it has been defined as a delimited macro. To spare some fractions of a second in the compilation time of this document (which has many many other things to do), \number"7FFFFFED{} and \number"7FFFFFFF, which turn out to be prime numbers, are not given to |factorize| but just typeset directly; this illustrates use of \csbxint{iloopskiptonext}. The code next generates a \hyperref[floatfactorize]{table} which has been made into a float appearing \vpageref{floatfactorize}. Here is now the code for factorization; the conditionals use the package provided |\xint_firstoftwo| and |\xint_secondoftwo|, one could have employed rather \LaTeX{}'s own |\@firstoftwo| and |\@secondoftwo|, or, simpler still in \LaTeX{} context, the |\ifnumequal|, |\ifnumless| \dots, utilities from the package |etoolbox| which do exactly that under the hood. Only \TeX{} acceptable numbers are treated here, but it would be easy to make a translation and use the \xintname macros, thus extending the scope to big numbers; naturally up to a cost in speed. The reason for some strange looking expressions is to avoid arithmetic overflow. \begin{everbatim*} \catcode`_ 11 \def\abortfactorize #1\xint_secondoftwo\fi #2#3{\fi} \def\factorize #1.{\ifnum#1=1 \abortfactorize\fi \ifnum\numexpr #1-2=\numexpr ((#1/2)-1)*2\relax \expandafter\xint_firstoftwo \else\expandafter\xint_secondoftwo \fi {2&\expandafter\factorize\the\numexpr#1/2.}% {\factorize_b #1.3.}}% \def\factorize_b #1.#2.{\ifnum#1=1 \abortfactorize\fi \ifnum\numexpr #1-(#2-1)*#2<#2 #1\abortfactorize \fi \ifnum \numexpr #1-#2=\numexpr ((#1/#2)-1)*#2\relax \expandafter\xint_firstoftwo \else\expandafter\xint_secondoftwo \fi {#2&\expandafter\factorize_b\the\numexpr#1/#2.#2.}% {\expandafter\factorize_b\the\numexpr #1\expandafter.% \the\numexpr #2+2.}}% \catcode`_ 8 \begin{figure*}[ht!] \centering\phantomsection\label{floatfactorize}\normalcolor \tabskip1ex \centeredline{\vbox{\halign {\hfil\strut#\hfil&&\hfil#\hfil\cr\noalign{\hrule} \xintiloop ["7FFFFFE0+1] \expandafter\bfseries\xintiloopindex & \ifnum\xintiloopindex="7FFFFFED \number"7FFFFFED\cr\noalign{\hrule} \expandafter\xintiloopskiptonext \fi \expandafter\factorize\xintiloopindex.\cr\noalign{\hrule} \ifnum\xintiloopindex<"7FFFFFFE \repeat \bfseries \number"7FFFFFFF&\number "7FFFFFFF\cr\noalign{\hrule} }}} \centeredline{A table of factorizations} \end{figure*} \end{everbatim*} \begin{framed} The next utilities are not compatible with expansion-only context. \end{framed} \subsection{\csbh{xintApplyInline}}\label{xintApplyInline} % {\small |1.09a|, enhanced in |1.09c| to be usable within alignments, and % corrected in |1.09d| for a problem related to spaces at the very end of the % list parameter.\par} \csa{xintApplyInline}|{\macro}|\marg{list}\ntype{o{\lowast f}} works non expandably. It applies the one-parameter |\macro| to the first element of the expanded list (|\macro| may have itself some arguments, the list item will be appended as last argument), and is then re-inserted in the input stream after the tokens resulting from this first expansion of |\macro|. The next item is then handled. This is to be used in situations where one needs to do some repetitive things. It is not expandable and can not be completely expanded inside a macro definition, to prepare material for later execution, contrarily to what \csbxint{Apply} or \csbxint{ApplyUnbraced} achieve. \begin{everbatim*} \def\Macro #1{\advance\cnta #1 , \the\cnta} \cnta 0 0\xintApplyInline\Macro {3141592653}. \end{everbatim*} The first argument |\macro| does not have to be an expandable macro. \csa{xintApplyInline} submits its second, token list parameter to an \hyperref[sec:expansions]{\fexpan sion}. Then, each \emph{unbraced} item will also be \fexpan ded. This provides an easy way to insert one list inside another. \emph{Braced} items are not expanded. Spaces in-between items are gobbled (as well as those at the start or the end of the list), but not the spaces \emph{inside} the braced items. \csa{xintApplyInline}, despite being non-expandable, does survive to contexts where the executed |\macro| closes groups, as happens inside alignments with the tabulation character |&|. This tabular provides an example:\par \begin{everbatim*} \centerline{\normalcolor\begin{tabular}{ccc} $N$ & $N^2$ & $N^3$ \\ \hline \def\Row #1{ #1 & \xintiiSqr {#1} & \xintiiPow {#1}{3} \\ \hline }% \xintApplyInline \Row {\xintCSVtoList{17,28,39,50,61}} \end{tabular}}\medskip \end{everbatim*} We see that despite the fact that the first encountered tabulation character in the first row close a group and thus erases |\Row| from \TeX's memory, |\xintApplyInline| knows how to deal with this. Using \csbxint{ApplyUnbraced} is an alternative: the difference is that this would have prepared all rows first and only put them back into the token stream once they are all assembled, whereas with |\xintApplyInline| each row is constructed and immediately fed back into the token stream: when one does things with numbers having hundreds of digits, one learns that keeping on hold and shuffling around hundreds of tokens has an impact on \TeX{}'s speed (make this ``thousands of tokens'' for the impact to be noticeable). One may nest various |\xintApplyInline|'s. For example (see the \hyperref[float]{table} \vpageref{float}):\par \begin{everbatim*} \begin{figure*}[ht!] \centering\phantomsection\label{float} \def\Row #1{#1:\xintApplyInline {\Item {#1}}{0123456789}\\ }% \def\Item #1#2{&\xintiPow {#1}{#2}}% \centeredline {\begin{tabular}{ccccccccccc} &0&1&2&3&4&5&6&7&8&9\\ \hline \xintApplyInline \Row {0123456789} \end{tabular}} \end{figure*} \end{everbatim*} One could not move the definition of |\Item| inside the tabular, as it would get lost after the first |&|. But this works: \everb|@ \begin{tabular}{ccccccccccc} &0&1&2&3&4&5&6&7&8&9\\ \hline \def\Row #1{#1:\xintApplyInline {&\xintiPow {#1}}{0123456789}\\ }% \xintApplyInline \Row {0123456789} \end{tabular} | A limitation is that, contrarily to what one may have expected, the |\macro| for an |\xintApplyInline| can not be used to define the |\macro| for a nested sub-|\xintApplyInline|. For example, this does not work:\par \everb|@ \def\Row #1{#1:\def\Item ##1{&\xintiPow {#1}{##1}}% \xintApplyInline \Item {0123456789}\\ }% \xintApplyInline \Row {0123456789} % does not work | \noindent But see \csbxint{For}. \subsection{\csbh{xintFor}, \csbh{xintFor*}}\label{xintFor}\label{xintFor*} % {\small New with |1.09c|. Extended in |1.09e| (\csbxint{BreakFor}, % \csbxint{integers}, \dots). |1.09f| version handles all macro parameters up % to % |#9| and removes spaces around commas.\par} \csbxint{For}\ntype{on} is a new kind of for loop. Rather than using macros for encapsulating list items, its behavior is more like a macro with parameters: |#1|, |#2|, \dots, |#9| are used to represent the items for up to nine levels of nested loops. Here is an example: % \everb|@ \xintFor #9 in {1,2,3} \do {% \xintFor #1 in {4,5,6} \do {% \xintFor #3 in {7,8,9} \do {% \xintFor #2 in {10,11,12} \do {% $$#9\times#1\times#3\times#2=\xintiiPrd{{#1}{#2}{#3}{#9}}$$}}}} | \noindent This example illustrates that one does not have to use |#1| as the first one: the order is arbitrary. But each level of nesting should have its specific macro parameter. Nine levels of nesting is presumably overkill, but I did not know where it was reasonable to stop. |\par| tokens are accepted in both the comma separated list and the replacement text. \begin{framed} A macro |\macro| whose definition uses internally an \csbxint{For} loop may be used inside another \csbxint{For} loop even if the two loops both use the same macro parameter. Note: the loop definition inside |\macro| must double the character |#| as is the general rule in \TeX{} with definitions done inside macros. The macros \csa{xintFor} and \csa{xintFor*} are not expandable, one can not use them inside an |\edef|. But they may be used inside alignments (such as a \LaTeX{} |tabular|), as will be shown in examples. \end{framed} The spaces between the various declarative elements are all optional; furthermore spaces around the commas or at the start and end of the list argument are allowed, they will be removed. If an item must contain itself commas, it should be braced to prevent these commas from being misinterpreted as list separator. These braces will be removed during processing. The list argument may be a macro |\MyList| expanding in one step to the comma separated list (if it has no arguments, it does not have to be braced). It will be expanded (only once) to reveal its comma separated items for processing, comma separated items will not be expanded before being fed into the replacement text as |#1|, or |#2|, etc\dots, only leading and trailing spaces are removed. A starred variant \csbxint{For*}\ntype{{\lowast f}n} deals with lists of braced items, rather than comma separated items. It has also a distinct expansion policy, which is detailed below. Contrarily to what happens in loops where the item is represented by a macro, here it is truly exactly as when defining (in \LaTeX{}) a ``command'' with parameters |#1|, etc... This may avoid the user quite a few troubles with |\expandafter|s or other |\edef/\noexpand|s which one encounters at times when trying to do things with \LaTeX's {\makeatother|\@for|} or other loops which encapsulate the item in a macro expanding to that item. \begin{framed} The non-starred variant \csbxint{For} deals with comma separated values (\emph{spaces before and after the commas are removed}) and the comma separated list may be a macro which is only expanded once (to prevent expansion of the first item |\x| in a list directly input as |\x,\y,...| it should be input as |{\x},\y,..| or |\x,\y,..|, naturally all of that within the mandatory braces of the \csa{xintFor \#n in \{list\}} syntax). The items are not expanded, if the input is |,\x,| then |#1| will be at some point |\x| not its expansion (and not either a macro with |\x| as replacement text, just the token |\x|). Input such as |,,| creates an empty |#1|, the iteration is not skipped. An empty list does lead to the use of the replacement text, once, with an empty |#1| (or |#n|). Except if the entire list is represented as a single macro with no parameters, \fbox{it must be braced.} \end{framed} \begin{framed} The starred variant \csbxint{For*} deals with token lists (\emph{spaces between braced items or single tokens are not significant}) and \hyperref[sec:expansions]{\fexpan ds} each \emph{unbraced} list item. This makes it easy to simulate concatenation of various list macros |\x|, |\y|, ... If |\x| expands to |{1}{2}{3}| and |\y| expands to |{4}{5}{6}| then |{\x\y}| as argument to |\xintFor*| has the same effect as |{{1}{2}{3}{4}{5}{6}}|% \stepcounter{footnote}% \makeatletter\hbox {\@textsuperscript {\normalfont \thefootnote }}\makeatother. Spaces at the start, end, or in-between items are gobbled (but naturally not the spaces which may be inside \emph{braced} items). Except if the list argument is a single macro with no parameters, \fbox{it must be braced.} Each item which is not braced will be fully expanded (as the |\x| and |\y| in the example above). An empty list leads to an empty result. \end{framed} \begingroup\makeatletter \def\@footnotetext #1{\insert\footins {\reset@font \footnotesize \interlinepenalty \interfootnotelinepenalty \splittopskip \footnotesep \splitmaxdepth \dp \strutbox \floatingpenalty \@MM \hsize \columnwidth \@parboxrestore \color@begingroup \@makefntext {\rule \z@ \footnotesep \ignorespaces #1\@finalstrut \strutbox }\color@endgroup }} \addtocounter{footnote}{-1} \edef\@thefnmark {\thefootnote} \@footnotetext{braces around single token items are optional so this is the same as \texttt{\{123456\}}.} % \stepcounter{footnote} % \edef\@thefnmark {\thefootnote} % \@footnotetext{the \csa{space} will stop the \TeX{} scanning of a number and be % gobbled in the process; the \csa{relax} stops the scanning but is not % gobbled. Or one may do \csa{numexpr}\texttt{\#1}\csa{relax}, and then the % \csa{relax} is gobbled.} \endgroup %\addtocounter{Hfootnote}{2} \addtocounter{Hfootnote}{1} The macro \csbxint{Seq} which generates arithmetic sequences may only be used with \csbxint{For*} (numbers from output of |\xintSeq| are braced, not separated by commas). % % \leftedline{|\xintFor* #1 in {\xintSeq [+2]{-7}{+2}}\do {stuff with #1}|} will have |#1=-7,-5,-3,-1, and 1|. The |#1| as issued from the list produced by \csbxint{Seq} is the litteral representation as would be produced by |\arabic| on a \LaTeX{} counter, it is not a count register. When used in |\ifnum| tests or other contexts where \TeX{} looks for a number it should thus be postfixed with |\relax| or |\space|. When nesting \csa{xintFor*} loops, using \csa{xintSeq} in the inner loops is inefficient, as the arithmetic sequence will be re-created each time. A more efficient style is: % \begin{everbatim} \edef\innersequence {\xintSeq[+2]{-50}{50}}% \xintFor* #1 in {\xintSeq {13}{27}} \do {\xintFor* #2 in \innersequence \do {stuff with #1 and #2}% .. some other macros .. } \end{everbatim} This is a general remark applying for any nesting of loops, one should avoid recreating the inner lists of arguments at each iteration of the outer loop. However, in the example above, if the |.. some other macros ..| part closes a group which was opened before the |\edef\innersequence|, then this definition will be lost. An alternative to |\edef|, also efficient, exists when dealing with arithmetic sequences: it is to use the \csbxint{integers} keyword (described later) which simulates infinite arithmetic sequences; the loops will then be terminated via a test |#1| (or |#2| etc\dots) and subsequent use of \csbxint{BreakFor}. The \csbxint{For} loops are not completely expandable; but they may be nested and used inside alignments or other contexts where the replacement text closes groups. Here is an example (still using \LaTeX's tabular): \begin{everbatim*} \begin{tabular}{rccccc} \xintFor #7 in {A,B,C} \do {% #7:\xintFor* #3 in {abcde} \do {&($ #3 \to #7 $)}\\ }% \end{tabular} \end{everbatim*} When inserted inside a macro for later execution the |#| characters must be doubled.% % \footnote{sometimes what seems to be a macro argument isn't really; in \csa{raisebox\{1cm\}\{}\csa{xintFor \#1 in \{a,b,c\} }\csa{do \{\#1\}\}} no doubling should be done.} % For example: % \begin{everbatim*} \def\T{\def\z {}% \xintFor* ##1 in {{u}{v}{w}} \do {% \xintFor ##2 in {x,y,z} \do {% \expandafter\def\expandafter\z\expandafter {\z\sep (##1,##2)} }% }% }% \T\def\sep {\def\sep{, }}\z \end{everbatim*} Similarly when the replacement text of |\xintFor| defines a macro with parameters, the macro character |#| must be doubled. It is licit to use inside an \csbxint{For} a |\macro| which itself has been defined to use internally some other \csbxint{For}. The same macro parameter |#1| can be used with no conflict (as mentioned above, in the definition of |\macro| the |#| used in the \csbxint{For} declaration must be doubled, as is the general rule in \TeX{} with things defined inside other things). The iterated commands as well as the list items are allowed to contain explicit |\par| tokens. Neither \csbxint{For} nor \csbxint{For*} create groups. The effect is like piling up the iterated commands with each time |#1| (or |#2| ...) replaced by an item of the list. However, contrarily to the completely expandable \csbxint{ApplyUnbraced}, but similarly to the non completely expandable \csbxint{ApplyInline} each iteration is executed first before looking at the next |#1|% % \footnote{to be completely honest, both \csbxint{For} and \csbxint{For*} initially scoop up both the list and the iterated commands; \csbxint{For} scoops up a second time the entire comma separated list in order to feed it to \csbxint{CSVtoList}. The starred variant \csbxint{For*} which does not need this step will thus be a bit faster on equivalent inputs.} % (and the starred variant \csbxint{For*} keeps on expanding each unbraced item it finds, gobbling spaces). \subsection{\csbh{xintifForFirst}, \csbh{xintifForLast}} \label{xintifForFirst}\label{xintifForLast} % {\small New in |1.09e|.\par} \csbxint{ifForFirst}\,\texttt{\{YES branch\}\{NO branch\}}\etype{nn} and \csbxint{ifForLast}\,\texttt{\{YES branch\}\hskip 0pt plus 0.2em \{NO branch\}}\etype{nn} execute the |YES| or |NO| branch if the \csbxint{For} or \csbxint{For*} loop is currently in its first, respectively last, iteration. Designed to work as expected under nesting. Don't forget an empty brace pair |{}| if a branch is to do nothing. May be used multiple times in the replacement text of the loop. There is no such thing as an iteration counter provided by the \csa{xintFor} loops; the user is invited to define if needed his own count register or \LaTeX{} counter, for example with a suitable |\stepcounter| inside the replacement text of the loop to update it. \begin{framed} It is a known feature of these conditionals that they cease to function if put at a location of the |\xintFor| replacement text which has closed a group, for example in the last cell of an alignment created by the loop, assuming the replacement text of the |\xintFor| loop creates a row. The conditional must be used before the first cell is closed. This is not likely to change in future versions. It is not an intrinsic limitation as the branches of the conditional can be the complete rows, inclusive of all |&|'s and the tabular newline |\\|. \end{framed} \subsection{ \csbh{xintBreakFor}, \csbh{xintBreakForAndDo}} \label{xintBreakFor}\label{xintBreakForAndDo} %{\small New in |1.09e|.\par} One may immediately terminate an \csbxint{For} or \csbxint{For*} loop with \csbxint{BreakFor}. As the criterion for breaking will be decided on a basis of some test, it is recommended to use for this test the syntax of \href{http://ctan.org/pkg/ifthen}{ifthen}% % \footnote{\url{http://ctan.org/pkg/ifthen}} % or \href{http://ctan.org/pkg/etoolbox}{etoolbox}% % \footnote{\url{http://ctan.org/pkg/etoolbox}} % or the \xintname own conditionals, rather than one of the various |\if...\fi| of \TeX{}. Else (and this is without even mentioning all the various pecularities of the |\if...\fi| constructs), one has to carefully move the break after the closing of the conditional, typically with |\expandafter\xintBreakFor\fi|.% % \footnote{the difficulties here are similar to those mentioned in \autoref{sec:ifcase}, although less severe, as complete expandability is not to be maintained; hence the allowed use of \href{http://ctan.org/pkg/ifthen}{ifthen}.} There is also \csbxint{BreakForAndDo}. Both are illustrated by various examples in the next section which is devoted to ``forever'' loops. \subsection{\csbh{xintintegers}, \csbh{xintdimensions}, \csbh{xintrationals}} \label{xintegers}\label{xintintegers} \label{xintdimensions}\label{xintrationals} %{\small New in |1.09e|.\par} If the list argument to \csbxint{For} (or \csbxint{For*}, both are equivalent in this context) is \csbxint{integers} (equivalently \csbxint{egers}) or more generally \csbxint{integers}|[||start|\allowbreak|+|\allowbreak|delta||]| (\emph{the whole within braces}!)% % \footnote{the |start+delta| optional specification may have extra spaces around the plus sign of near the square brackets, such spaces are removed. The same applies with \csa{xintdimensions} and \csa{xintrationals}.}, % then \csbxint{For} does an infinite iteration where |#1| (or |#2|, \dots, |#9|) will run through the arithmetic sequence of (short) integers with initial value |start| and increment |delta| (default values: |start=1|, |delta=1|; if the optional argument is present it must contains both of them, and they may be explicit integers, or macros or count registers). The |#1| (or |#2|, \dots, |#9|) will stand for |\numexpr \relax|, and the litteral representation as a string of digits can thus be obtained as \fbox{\csa{the\#1}} or |\number#1|. Such a |#1| can be used in an |\ifnum| test with no need to be postfixed with a space or a |\relax| and one should \emph{not} add them. If the list argument is \csbxint{dimensions} or more generally \csbxint{dimensions}|[||start|\allowbreak|+|\allowbreak|delta||]| (\emph{within braces}!), then \csbxint{For} does an infinite iteration where |#1| (or |#2|, \dots, |#9|) will run through the arithmetic sequence of dimensions with initial value |start| and increment |delta|. Default values: |start=0pt|, |delta=1pt|; if the optional argument is present it must contain both of them, and they may be explicit specifications, or macros, or dimen registers, or length commands in \LaTeX{} (the stretch and shrink components will be discarded). The |#1| will be |\dimexpr sp\relax|, from which one can get the litteral (approximate) representation in points via |\the#1|. So |#1| can be used anywhere \TeX{} expects a dimension (and there is no need in conditionals to insert a |\relax|, and one should \emph{not} do it), and to print its value one uses \fbox{\csa{the\#1}}. The chosen representation guarantees exact incrementation with no rounding errors accumulating from converting into points at each step. % original definitions, a bit slow. %\def\DimToNum #1{\number\dimexpr #1\relax } % cube %\xintNewIExpr \FA [2] {protect(\DimToNum {#2})^3/protect(\DimToNum{#1})^2} % square root %\xintNewIExpr \FB [2] {sqrt (protect(\DimToNum {#2})*protect(\DimToNum {#1}))} %\xintNewExpr \Ratio [2] {trunc(protect(\DimToNum {#2})/protect(\DimToNum{#1}),3)} % improved faster code (4 four times faster) \def\DimToNum #1{\the\numexpr \dimexpr#1\relax/10000\relax } \def\FA #1#2{\xintDSH{-4}{\xintiQuo {\xintiPow {\DimToNum {#2}}{3}}{\xintiSqr {\DimToNum{#1}}}}} \def\FB #1#2{\xintDSH {-4}{\xintiSqrt {\xintiMul {\DimToNum {#2}}{\DimToNum{#1}}}}} \def\Ratio #1#2{\xintTrunc {2}{\DimToNum {#2}/\DimToNum{#1}}} % a further 2.5 gain is made through using .25pt as horizontal step. \begin{figure*}[ht!] \phantomsection\hypertarget{graphic}{}% \centeredline{% \raisebox{-1cm}{\xintFor #1 in {\xintdimensions [0pt+.25pt]} \do {\ifdim #1>2cm \expandafter\xintBreakFor\fi {\color [rgb]{\Ratio {2cm}{#1},0,0}% \vrule width .25pt height \FB {2cm}{#1}sp depth -\FA {2cm}{#1}sp }% }% end of For iterated text }% \hspace{.5cm}% \scriptsize\baselineskip8pt\relax \begin{minipage}{\dimexpr\linewidth-2.5cm-\parindent\relax}\def\everbatimindent{0pt }% \begin{everbatim} \def\DimToNum #1{\number\dimexpr #1\relax } \xintNewIExpr \FA [2] {protect(\DimToNum {#2})^3/protect(\DimToNum{#1})^2} %cube \xintNewIExpr \FB [2] {sqrt (protect(\DimToNum {#2})*protect(\DimToNum {#1}))} %sqrt \xintNewExpr \Ratio [2] {trunc(protect(\DimToNum {#2})/protect(\DimToNum{#1}),3)} \xintFor #1 in {\xintdimensions [0pt+.1pt]} \do {\ifdim #1>2cm \expandafter\xintBreakFor\fi {\color [rgb]{\Ratio {2cm}{#1},0,0}% \vrule width .1pt height \FB {2cm}{#1}sp depth -\FA {2cm}{#1}sp }% }% end of For iterated text \end{everbatim} \end{minipage}} \end{figure*} The\xintNewIExpr \FA [2] {protect(\DimToNum {#2})^3/protect(\DimToNum{#1})^2} \hyperlink{graphic}{graphic}, with the code on its right% % \footnote{see \autoref{sssec:protect} for the significance of the |protect|'s: they are needed because the expression has macro parameters inside macros, and not only functions from the \csbxint{expr} syntax. The \csa{FA} turns out to have meaning \texttt{\meaning\FA}. The \csa{romannumeral} part is only to ensure it expands in only two steps, and could be removed. The \expandafter|\string\xintRound::csv| and \expandafter|\string\xintSPRaw::csv| commands are used internally by \csbxint{iexpr} to round and pretty print its result (or comma separated results). See also the next footnote.}, % is for illustration only, not only because of pdf rendering artefacts when displaying adjacent rules (which do \emph{not} show in |dvi| output as rendered by |xdvi|, and depend from your viewer), but because not using anything but rules it is quite inefficient and must do lots of computations to not confer a too ragged look to the borders. With a width of |.5pt| rather than |.1pt| for the rules, one speeds up the drawing by a factor of five, but the boundary is then visibly ragged. \newbox\codebox \begingroup\makeatletter \def\x{% \parindent0pt \def\par{\@@par\leavevmode\null}% \let\do\do@noligs \verbatim@nolig@list \let\do\@makeother \dospecials \catcode`\@ 14 \makestarlowast \ttfamily \scriptsize\baselineskip 8pt \obeylines \@vobeyspaces \catcode`\|\active \lccode`\~`\|\lowercase{\let~\egroup}}% \global\setbox\codebox \vbox\bgroup\x \def\DimToNum #1{\the\numexpr \dimexpr#1\relax/10000\relax } % no need to be more precise! \def\FA #1#2{\xintDSH {-4}{\xintiQuo {\xintiPow {\DimToNum {#2}}{3}}{\xintiSqr {\DimToNum{#1}}}}} \def\FB #1#2{\xintDSH {-4}{\xintiSqrt {\xintiMul {\DimToNum {#2}}{\DimToNum{#1}}}}} \def\Ratio #1#2{\xintTrunc {2}{\DimToNum {#2}/\DimToNum{#1}}} \xintFor #1 in {\xintdimensions [0pt+.25pt]} \do {\ifdim #1>2cm \expandafter\xintBreakFor\fi {\color [rgb]{\Ratio {2cm}{#1},0,0}% \vrule width .25pt height \FB {2cm}{#1}sp depth -\FA {2cm}{#1}sp }% }% end of For iterated text |% \endgroup \footnote{to tell the whole truth we cheated and divided by |10| the computation time through using the following definitions, together with a horizontal step of |.25pt| rather than |.1pt|. The displayed original code would make the slowest computation of all those done in this document using the \xintname bundle macros!\par\smallskip \noindent\box \codebox\par } If the list argument to \csbxint{For} (or \csbxint{For*}) is \csbxint{rationals} or more generally \csbxint{rationals}|[||start|\allowbreak|+|\allowbreak|delta||]| (\emph{within braces}!), then \csbxint{For} does an infinite iteration where |#1| (or |#2|, \dots, |#9|) will run through the arithmetic sequence of \xintfracname fractions with initial value |start| and increment |delta| (default values: |start=1/1|, |delta=1/1|). This loop works \emph{only with \xintfracname loaded}. if the optional argument is present it must contain both of them, and they may be given in any of the formats recognized by \xintfracname (fractions, decimal numbers, numbers in scientific notations, numerators and denominators in scientific notation, etc...) , or as macros or count registers (if they are short integers). The |#1| (or |#2|, \dots, |#9|) will be an |a/b| fraction (without a |[n]| part), where the denominator |b| is the product of the denominators of |start| and |delta| (for reasons of speed |#1| is not reduced to irreducible form, and for another reason explained later |start| and |delta| are not put either into irreducible form; the input may use explicitely \csa{xintIrr} to achieve that). \begin{everbatim*} \begingroup\small \noindent\parbox{\dimexpr\linewidth-3em}{\color[named]{OrangeRed}% \xintFor #1 in {\xintrationals [10/21+1/21]} \do {#1=\xintifInt {#1} {\textcolor{blue}{\xintTrunc{10}{#1}}} {\xintTrunc{10}{#1}}% display in blue if an integer \xintifGt {#1}{1.123}{\xintBreakFor}{, }% }} \endgroup\smallskip \end{everbatim*} \smallskip The example above confirms that computations are done exactly, and illustrates that the two initial (reduced) denominators are not multiplied when they are found to be equal. It is thus recommended to input |start| and |delta| with a common smallest possible denominator, or as fixed point numbers with the same numbers of digits after the decimal mark; and this is also the reason why |start| and |delta| are not by default made irreducible. As internally the computations are done with numerators and denominators completely expanded, one should be careful not to input numbers in scientific notation with exponents in the hundreds, as they will get converted into as many zeroes. \begin{everbatim*} \noindent\parbox{\dimexpr.7\linewidth}{\raggedright \xintFor #1 in {\xintrationals [0.000+0.125]} \do {\edef\tmp{\xintTrunc{3}{#1}}% \xintifInt {#1} {\textcolor{blue}{\tmp}} {\tmp}% \xintifGt {#1}{2}{\xintBreakFor}{, }% }}\smallskip \end{everbatim*} We see here that \csbxint{Trunc} outputs (deliberately) zero as $0$, not (here) $0.000$, the idea being not to lose the information that the truncated thing was truly zero. Perhaps this behavior should be changed? or made optional? Anyhow printing of fixed points numbers should be dealt with via dedicated packages such as |numprint| or |siunitx|.\par \subsection{Another table of primes}\label{ssec:primesIII} As a further example, let us dynamically generate a tabular with the first $50$ prime numbers after $12345$. First we need a macro to test if a (short) number is prime. Such a completely expandable macro was given in \autoref{xintSeq}, here we consider a variant which will be slightly more efficient. This new |\IsPrime| has two parameters. The first one is a macro which it redefines to expand to the result of the primality test applied to the second argument. For convenience we use the \href{http://ctan.org/pkg/etoolbox}{etoolbox} wrappers to various |\ifnum| tests, although here there isn't anymore the constraint of complete expandability (but using explicit |\if..\fi| in tabulars has its quirks); equivalent tests are provided by \xintname, but they have some overhead as they are able to deal with arbitrarily big integers. \def\IsPrime #1#2% {\edef\TheNumber {\the\numexpr #2}% positive integer \ifnumodd {\TheNumber} {\ifnumgreater {\TheNumber}{1} {\edef\ItsSquareRoot{\xintiSqrt \TheNumber}% \xintFor ##1 in {\xintintegers [3+2]}\do {\ifnumgreater {##1}{\ItsSquareRoot} {\def#1{1}\xintBreakFor} {}% \ifnumequal {\TheNumber}{(\TheNumber/##1)*##1} {\def#1{0}\xintBreakFor } {}% }} {\def#1{0}}}% 1 is not prime {\ifnumequal {\TheNumber}{2}{\def#1{1}}{\def#1{0}}}% }% \everb|@ \def\IsPrime #1#2% """color[named]{PineGreen}#1=\Result, #2=tested number (assumed >0).;! {\edef\TheNumber {\the\numexpr #2}%"""color[named]{PineGreen} hence #2 may be a count or \numexpr.;! \ifnumodd {\TheNumber} {\ifnumgreater {\TheNumber}{1} {\edef\ItsSquareRoot{\xintiSqrt \TheNumber}% \xintFor """color{red}##1;! in {"""color{red}\xintintegers;! [3+2]}\do {\ifnumgreater {"""color{red}##1;!}{\ItsSquareRoot} """color[named]{PineGreen}% "textcolor{red}{##1} is a \numexpr.;! {\def#1{1}\xintBreakFor} {}% \ifnumequal {\TheNumber}{(\TheNumber/##1)*##1} {\def#1{0}\xintBreakFor } {}% }} {\def#1{0}}}% 1 is not prime {\ifnumequal {\TheNumber}{2}{\def#1{1}}{\def#1{0}}}% } | %\newcounter{primecount} %\newcounter{cellcount} As we used \csbxint{For} inside a macro we had to double the |#| in its |#1| parameter. Here is now the code which creates the prime table (the table has been put in a \hyperref[primes]{float}, which should be found on page \pageref{primes}): \everb?@ \newcounter{primecount} \newcounter{cellcount} \begin{figure*}[ht!] \centering \begin{tabular}{|*{7}c|} \hline \setcounter{primecount}{0}\setcounter{cellcount}{0}% \xintFor """color{red}#1;! in {"""color{red}\xintintegers;! [12345+2]} \do """color[named]{PineGreen}% "textcolor{red}{#1} is a \numexpr.;! {\IsPrime\Result{#1}% \ifnumgreater{\Result}{0} {\stepcounter{primecount}% \stepcounter{cellcount}% \ifnumequal {\value{cellcount}}{7} {"""color{red}\the#1;! \\\setcounter{cellcount}{0}} {"""color{red}\the#1;! &}} {}% \ifnumequal {\value{primecount}}{50} {\xintBreakForAndDo {\multicolumn {6}{l|}{These are the first 50 primes after 12345.}\\}} {}% }\hline \end{tabular} \end{figure*} ? \begin{figure*}[ht!] \centering\phantomsection\label{primes} \begin{tabular}{|*{7}c|} \hline \setcounter{primecount}{0}\setcounter{cellcount}{0}% \xintFor #1 in {\xintintegers [12345+2]} \do {\IsPrime\Result{#1}% \ifnumgreater{\Result}{0} {\stepcounter{primecount}% \stepcounter{cellcount}% \ifnumequal {\value{cellcount}}{7} {\the#1 \\\setcounter{cellcount}{0}} {\the#1 &}} {}% \ifnumequal {\value{primecount}}{50} {\xintBreakForAndDo {\multicolumn {6}{l|}{These are the first 50 primes after 12345.}\\}} {}% }\hline \end{tabular} \end{figure*} \subsection{Some arithmetic with Fibonacci numbers} \label{ssec:fibonacci} Here is the code employed on the title page to compute (expandably, of course!) the 1250th Fibonacci number: \begin{everbatim*} \catcode`_ 11 \def\Fibonacci #1{% \Fibonacci{N} computes F(N) with F(0)=0, F(1)=1. \expandafter\Fibonacci_a\expandafter {\the\numexpr #1\expandafter}\expandafter {\romannumeral0\xintiieval 1\expandafter\relax\expandafter}\expandafter {\romannumeral0\xintiieval 1\expandafter\relax\expandafter}\expandafter {\romannumeral0\xintiieval 1\expandafter\relax\expandafter}\expandafter {\romannumeral0\xintiieval 0\relax}} % \def\Fibonacci_a #1{% \ifcase #1 \expandafter\Fibonacci_end_i \or \expandafter\Fibonacci_end_ii \else \ifodd #1 \expandafter\expandafter\expandafter\Fibonacci_b_ii \else \expandafter\expandafter\expandafter\Fibonacci_b_i \fi \fi {#1}% }% * signs are omitted from the next macros, tacit multiplications \def\Fibonacci_b_i #1#2#3{\expandafter\Fibonacci_a\expandafter {\the\numexpr #1/2\expandafter}\expandafter {\romannumeral0\xintiieval sqr(#2)+sqr(#3)\expandafter\relax\expandafter}\expandafter {\romannumeral0\xintiieval (2#2-#3)#3\relax}% }% end of Fibonacci_b_i \def\Fibonacci_b_ii #1#2#3#4#5{\expandafter\Fibonacci_a\expandafter {\the\numexpr (#1-1)/2\expandafter}\expandafter {\romannumeral0\xintiieval sqr(#2)+sqr(#3)\expandafter\relax\expandafter}\expandafter {\romannumeral0\xintiieval (2#2-#3)#3\expandafter\relax\expandafter}\expandafter {\romannumeral0\xintiieval #2#4+#3#5\expandafter\relax\expandafter}\expandafter {\romannumeral0\xintiieval #2#5+#3(#4-#5)\relax}% }% end of Fibonacci_b_ii % code as used on title page: %\def\Fibonacci_end_i #1#2#3#4#5{\xintthe#5} %\def\Fibonacci_end_ii #1#2#3#4#5{\xinttheiiexpr #2#5+#3(#4-#5)\relax} % new definitions: \def\Fibonacci_end_i #1#2#3#4#5{{#4}{#5}}% {F(N+1)}{F(N)} in \xintexpr format \def\Fibonacci_end_ii #1#2#3#4#5% {\expandafter {\romannumeral0\xintiieval #2#4+#3#5\expandafter\relax \expandafter}\expandafter {\romannumeral0\xintiieval #2#5+#3(#4-#5)\relax}}% idem. % \FibonacciN returns F(N) (in encapsulated format: needs \xintthe for printing) \def\FibonacciN {\expandafter\xint_secondoftwo\romannumeral-`0\Fibonacci }% \catcode`_ 8 \end{everbatim*} % ok % \def\Fibo #1.{\xintthe\FibonacciN {#1}}% to use \xintiloopindex... % \message{\xintiloop [0+1] % \expandafter\Fibo\xintiloopindex., % \ifnum\xintiloopindex<49 \repeat \xintthe\FibonacciN{50}.} I have modified the ending: we want not only one specific value |F(N)| but a pair of successive values which can serve as starting point of another routine devoted to compute a whole sequence |F(N), F(N+1), F(N+2),....|. This pair is, for efficiency, kept in the encapsulated internal \xintexprname format. |\FibonacciN| outputs the single |F(N)|, also as an |\xintexpr|-ession, and printing it will thus need the |\xintthe| prefix. \begingroup\footnotesize\sffamily\baselineskip 10pt Here a code snippet which checks the routine via a \string\message\ of the first $51$ Fibonacci numbers (this is not an efficient way to generate a sequence of such numbers, it is only for validating \csa{FibonacciN}). % \begin{everbatim} \def\Fibo #1.{\xintthe\FibonacciN {#1}}% \message{\xintiloop [0+1] \expandafter\Fibo\xintiloopindex., \ifnum\xintiloopindex<49 \repeat \xintthe\FibonacciN{50}.} \end{everbatim} \endgroup The various |\romannumeral0\xintiieval| could very well all have been |\xintiiexpr|'s but then we would have needed more |\expandafter|'s. Indeed the order of expansion must be controlled for the whole thing to work, and |\romannumeral0\xintiieval| is the first expanded form of |\xintiiexpr|. The way we use |\expandafter|'s to chain successive |\xintexpr| evaluations is exactly analogous to well-known expandable techniques made possible by |\numexpr|. \begin{framed} There is a difference though: |\numexpr| is \emph{NOT} expandable, and to force its expansion we must prefix it with |\the| or |\number|. On the other hand |\xintexpr|, |\xintiexpr|, ..., (or |\xinteval|, |\xintieval|, ...) expand fully when prefixed by |\romannumeral-`0|: the computation is fully executed and its result encapsulated in a private format. Using |\xintthe| as prefix is necessary to print the result (this is like |\the| for |\numexpr|), but it is not necessary to get the computation done (contrarily to the situation with |\numexpr|). And, starting with release |1.09j|, it is also allowed to expand a non |\xintthe| prefixed |\xintexpr|-ession inside an |\edef|: the private format is now protected, hence the error message complaining about a missing |\xintthe| will not be executed, and the integrity of the format will be preserved. This new possibility brings some efficiency gain, when one writes non-expandable algorithms using \xintexprname. If |\xintthe| is employed inside |\edef| the number or fraction will be un-locked into its possibly hundreds of digits and all these tokens will possibly weigh on the upcoming shuffling of (braced) tokens. The private encapsulated format has only a few tokens, hence expansion will proceed a bit faster. \indent see footnote\footnotemark \end{framed} \footnotetext{To be completely honest the examination by \TeX{} of all successive digits was not avoided, as it occurs already in the locking-up of the result, what is avoided is to spend time un-locking, and then have the macros shuffle around possibly hundreds of digit tokens rather than a few control words.} Our |\Fibonacci| expands completely under \fexpan sion, so we can use \hyperref[fdef]{\ttfamily\char92fdef} rather than |\edef| in a situation such as % \leftedline {|\fdef \X {\FibonacciN {100}}|} but for the reasons explained above, it is as efficient to employ |\edef|. And if we want % \leftedline{|\edef \Y {(\FibonacciN{100},\FibonacciN{200})}|,} then |\edef| is necessary. Allright, so let's now give the code to generate a sequence of braced Fibonacci numbers |{F(N)}{F(N+1)}{F(N+2)}...|, using |\Fibonacci| for the first two and then using the standard recursion |F(N+2)=F(N+1)+F(N)|: \catcode`_ 11 \def\FibonacciSeq #1#2{%#1=starting index, #2>#1=ending index \expandafter\Fibonacci_Seq\expandafter {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2-1}% }% \def\Fibonacci_Seq #1#2{% \expandafter\Fibonacci_Seq_loop\expandafter {\the\numexpr #1\expandafter}\romannumeral0\Fibonacci {#1}{#2}% }% \def\Fibonacci_Seq_loop #1#2#3#4{% standard Fibonacci recursion {#3}\unless\ifnum #1<#4 \Fibonacci_Seq_end\fi \expandafter\Fibonacci_Seq_loop\expandafter {\the\numexpr #1+1\expandafter}\expandafter {\romannumeral0\xintiieval #2+#3\relax}{#2}{#4}% }% \def\Fibonacci_Seq_end\fi\expandafter\Fibonacci_Seq_loop\expandafter #1\expandafter #2#3#4{\fi {#3}}% \catcode`_ 8 \begingroup\footnotesize\baselineskip10pt \everb|@ \catcode`_ 11 \def\FibonacciSeq #1#2{%#1=starting index, #2>#1=ending index \expandafter\Fibonacci_Seq\expandafter {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2-1}% }% \def\Fibonacci_Seq #1#2{% \expandafter\Fibonacci_Seq_loop\expandafter {\the\numexpr #1\expandafter}\romannumeral0\Fibonacci {#1}{#2}% }% \def\Fibonacci_Seq_loop #1#2#3#4{% standard Fibonacci recursion {#3}\unless\ifnum #1<#4 \Fibonacci_Seq_end\fi \expandafter\Fibonacci_Seq_loop\expandafter {\the\numexpr #1+1\expandafter}\expandafter {\romannumeral0\xintiieval #2+#3\relax}{#2}{#4}% }% \def\Fibonacci_Seq_end\fi\expandafter\Fibonacci_Seq_loop\expandafter #1\expandafter #2#3#4{\fi {#3}}% \catcode`_ 8 | \endgroup Deliberately and for optimization, this |\FibonacciSeq| macro is completely expandable but not \fexpan dable. It would be easy to modify it to be so. But I wanted to check that the \csbxint{For*} does apply full expansion to what comes next each time it fetches an item from its list argument. Thus, there is no need to generate lists of braced Fibonacci numbers beforehand, as \csbxint{For*}, without using any |\edef|, still manages to generate the list via iterated full expansion. I initially used only one |\halign| in a three-column |multicols| environment, but |multicols| only knows to divide the page horizontally evenly, thus I employed in the end one |\halign| for each column (I could have then used a |tabular| as no column break was then needed). \begin{figure*}[ht!] \phantomsection\label{fibonacci} \newcounter{index} \fdef\Fibxxx{\FibonacciN {30}}% \setcounter{index}{30}% \centeredline{\tabskip 1ex \vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr \xintFor* #1 in {\FibonacciSeq {30}{59}}\do {\theindex &\xintthe#1 & \xintiRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{index}\cr }}% }\vrule \vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr \xintFor* #1 in {\FibonacciSeq {60}{89}}\do {\theindex &\xintthe#1 & \xintiRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{index}\cr }}% }\vrule \vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr \xintFor* #1 in {\FibonacciSeq {90}{119}}\do {\theindex &\xintthe#1 & \xintiRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{index}\cr }}% }}% % \centeredline{Some Fibonacci numbers together with their residues modulo |F(30)|\dtt{=\xintthe\Fibxxx}} \end{figure*} \begingroup\footnotesize\baselineskip10pt \everb|@ \newcounter{index} \tabskip 1ex \fdef\Fibxxx{\FibonacciN {30}}% \setcounter{index}{30}% \vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr \xintFor* #1 in {\FibonacciSeq {30}{59}}\do {\theindex &\xintthe#1 & \xintiRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{index}\cr }}% }\vrule \vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr \xintFor* #1 in {\FibonacciSeq {60}{89}}\do {\theindex &\xintthe#1 & \xintiRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{index}\cr }}% }\vrule \vbox{\halign{\bfseries#.\hfil&#\hfil &\hfil #\cr \xintFor* #1 in {\FibonacciSeq {90}{119}}\do {\theindex &\xintthe#1 & \xintiRem{\xintthe#1}{\xintthe\Fibxxx}\stepcounter{index}\cr }}% }% | \endgroup This produces the Fibonacci numbers from |F(30)| to |F(119)|, and computes also all the congruence classes modulo |F(30)|. The output has been put in a \hyperref[fibonacci]{float}, which appears \vpageref[above]{fibonacci}. I leave to the mathematically inclined readers the task to explain the visible patterns\dots |;-)|. \subsection{\csbh{xintForpair}, \csbh{xintForthree}, \csbh{xintForfour}}\label{xintForpair}\label{xintForthree}\label{xintForfour} % {\small New in |1.09c|. The \csa{xintifForFirst} % |1.09e| mechanism was missing and has been added for |1.09f|. The |1.09f| % version handles better spaces and admits all (consecutive) macro % parameters.\par} The syntax\ntype{on} is illustrated in this example. The notation is the usual one for |n|-uples, with parentheses and commas. Spaces around commas and parentheses are ignored. % \begin{everbatim*} {\centering\begin{tabular}{cccc} \xintForpair #1#2 in { ( A , a ) , ( B , b ) , ( C , c ) } \do {% \xintForpair #3#4 in { ( X , x ) , ( Y , y ) , ( Z , z ) } \do {% $\Biggl($\begin{tabular}{cc} -#1- & -#3-\\ -#4- & -#2-\\ \end{tabular}$\Biggr)$&}\\\noalign{\vskip1\jot}}% \end{tabular}\\} \end{everbatim*} Only |#1#2|, |#2#3|, |#3#4|, \dots, |#8#9| are valid (no error check is done on the input syntax, |#1#3| or similar all end up in errors). One can nest with \csbxint{For}, for disjoint sets of macro parameters. There is also \csa{xintForthree} (from |#1#2#3| to |#7#8#9|) and \csa{xintForfour} (from |#1#2#3#4| to |#6#7#8#9|). |\par| tokens are accepted in both the comma separated list and the replacement text. % These three macros |\xintForpair|, |\xintForthree| and |\xintForfour| are to % be considered in experimental status, and may be removed, replaced or % substantially modified at some later stage. \subsection{\csbh{xintAssign}}\label{xintAssign} %\small{ |1.09i| adds optional parameter. |1.09j| has default optional % parameter |[]| rather than |[e]|\par} \csa{xintAssign}\meta{braced things}\csa{to}% \meta{as many cs as they are things} %\ntype{{(f$\to$\lowast [x)}{\lowast N}} % defines (without checking if something gets overwritten) the control sequences on the right of \csa{to} to expand to the successive tokens or braced items found one after the otehr on the on the left of \csa{to}. It is not expandable. A `full' expansion is first applied to the material in front of \csa{xintAssign}, which may thus be a macro expanding to a list of braced items. \xintAssign \xintiiPow {7}{13}\to\SevenToThePowerThirteen \xintAssign \xintiiDivision{1000000000000}{133333333}\to\Q\R Special case: if after this initial expansion no brace is found immediately after \csa{xintAssign}, it is assumed that there is only one control sequence following |\to|, and this control sequence is then defined via |\def| to expand to the material between \csa{xintAssign} and \csa{to}. Other types of expansions are specified through an optional parameter to \csa{xintAssign}, see \emph{infra}. % \leftedline{|\xintAssign \xintiiDivision{1000000000000}{133333333}\to\Q\R|} % \leftedline{|\meaning\Q: |\dtt{\meaning\Q}, |\meaning\R:| \dtt{\meaning\R}} % % \leftedline{|\xintAssign \xintiiPow {7}{13}\to\SevenToThePowerThirteen|} % \leftedline{|\SevenToThePowerThirteen|\dtt{=\SevenToThePowerThirteen}} % \leftedline{(same as |\edef\SevenToThePowerThirteen{\xintiPow {7}{13}}|)} \noindent\csa{xintAssign} admits since |1.09i| an optional parameter, for example |\xintAssign [e]...| or |\xintAssign [oo] ...|. The latter means that the definitions of the macros initially on the right of |\to| will be made with \hyperref[oodef]{\ttfamily\char92oodef} which expands twice the replacement text. The default is simply to make the definitions with |\def|, corresponding to an empty optional paramter |[]|. Possibilities: |[], [g], [e], [x], [o], [go], [oo], [goo], [f], [gf]|. In all cases, recall that |\xintAssign| starts with an \fexpan sion of what comes next; this produces some list of tokens or braced items, and the optional parameter only intervenes to decide the expansion type to be applied then to each one of these items. \emph{Note:} prior to release |1.09j|, |\xintAssign| did an |\edef| by default, but it now does |\def|. Use the optional parameter |[e]| to force use of |\edef|. \begin{framed} It is known that \csa{xintAssign} is very picky and does not want a space before the |\to| or will give a surprising result if the material prior to |\to| does not start with a brace but does contain brace pairs. Next release of \xinttoolsname will presumably modify these ``features''. \end{framed} % This % macro uses various \csa{edef}'s, thus is incompatible with expansion-only % contexts. \subsection{\csbh{xintAssignArray}}\label{xintAssignArray} % {\small Changed in release |1.06| to let the defined macro pass its % argument through a |\numexpr...\relax|. |1.09i| adds optional % parameter. \par} \xintAssignArray \xintBezout {1000}{113}\to\Bez \csa{xintAssignArray}\meta{braced things}\csa{to}\csa{myArray} %\ntype{{(f$\to$\lowast x)}N} % first expands fully what comes immediately after |\xintAssignArray| and expects to find a list of braced things |{A}{B}...| (or tokens). It then defines \csa{myArray} as a macro with one parameter, such that \csa{myArray\x} expands to give the |x|th braced thing of this original list (the argument \texttt{\x} itself is fed to a |\numexpr| by |\myArray|, and |\myArray| expands in two steps to its output). With |0| as parameter, \csa{myArray}|{0}| returns the number |M| of elements of the array so that the successive elements are \csa{myArray}|{1}|, \dots, \csa{myArray}|{M}|. % \leftedline{|\xintAssignArray \xintBezout {1000}{113}\to\Bez|} will set |\Bez{0}| to \dtt{\Bez0}, |\Bez{1}| to \dtt{\Bez1}, |\Bez{2}| to \dtt{\Bez2}, |\Bez{3}| to \dtt{\Bez3}, |\Bez{4}| to \dtt{\Bez4}, and |\Bez{5}| to \dtt{\Bez5}: \dtt{(\Bez3)${}\times{}$\Bez1${}-{}$(\Bez4)${}\times{}$\Bez2${}={}$\Bez5.} This macro is incompatible with expansion-only contexts. \csa{xintAssignArray} admits now an optional parameter, for example |\xintAssignArray [e]...|. This means that the definitions of the macros will be made with |\edef|. The default is |[]|, which makes the definitions with |\def|. Other possibilities: |[], [o], [oo], [f]|. Contrarily to \csbxint{Assign} one can not use the |g| here to make the definitions global. For this, one should rather do |\xintAssignArray| within a group starting with |\globaldefs 1|. Note that prior to release |1.09j| each item (token or braced material) was submitted to an |\edef|, but the default is now to use |\def|. \subsection{\csbh{xintRelaxArray}}\label{xintRelaxArray} \csa{xintRelaxArray}\csa{myArray} %\ntype{N} % (globally) sets to \csa{relax} all macros which were defined by the previous \csa{xintAssignArray} with \csa{myArray} as array macro. \subsection{The Quick Sort algorithm illustrated}\label{ssec:quicksort} First a completely expandable macro which sorts a list of numbers. The |\QSfull| macro expands its list argument, which may thus be a macro; its items must expand to possibly big integers (or also decimal numbers or fractions if using \xintfracname), but if an item is expressed as a computation, this computation will be redone each time the item is considered! If the numbers have many digits (i.e. hundreds of digits...), the expansion of |\QSfull| is fastest if each number, rather than being explicitely given, is represented as a single token which expands to it in one step. If the interest is only in \TeX{} integers, then one should replace the macros |\QSMore|, |QSEqual|, |QSLess| with versions using the \href{http://ctan.org/pkg/etoolbox}{etoolbox} (\LaTeX{} only) |\ifnumgreater|, |\ifnumequal| and |\ifnumless| conditionals rather than \csbxint{ifGt}, \csbxint{ifEq}, \csbxint{ifLt}. %% \makeatletter\let\check@percent\relax lorsque je faisais avec verbatim %% ne pas changer la taille dans \MacroFont %% \def\MacroFont{\ttbfamily \small } %% anciennement avec \dverb, puis \everb %% \everb|"makeatletter"@gobble \begin{everbatim*} % THE QUICK SORT ALGORITHM EXPANDABLY % \usepackage{xintfrac} in the preamble (latex), or \input xintfrac.sty (Plain) \catcode`@ 11 % = \makeatletter \def\QSMore #1#2{\xintifGt {#2}{#1}{{#2}}{ }} % the spaces stop the \romannumeral-`0 done by \xintapplyunbraced each time % it applies its macro argument to an item \def\QSEqual #1#2{\xintifEq {#2}{#1}{{#2}}{ }} \def\QSLess #1#2{\xintifLt {#2}{#1}{{#2}}{ }} % \def\QSfull {\romannumeral0\qsfull } \def\qsfull #1{\expandafter\qsfull@a\expandafter{\romannumeral-`0#1}} \def\qsfull@a #1{\expandafter\qsfull@b\expandafter {\xintLength {#1}}{#1}} \def\qsfull@b #1{\ifcase #1 \expandafter\qsfull@empty \or\expandafter\qsfull@single \else\expandafter\qsfull@c \fi } \def\qsfull@empty #1{ }% the space stops the \QSfull \romannumeral0 \def\qsfull@single #1{ #1} \def\qsfull@c #1{\qsfull@ci #1\undef {#1}}% we pick up the first as Pivot \def\qsfull@ci #1#2\undef {\qsfull@d {#1}} \def\qsfull@d #1#2{\expandafter\qsfull@e\expandafter {\romannumeral0\qsfull {\xintApplyUnbraced {\QSMore {#1}}{#2}}}% {\romannumeral0\xintapplyunbraced {\QSEqual {#1}}{#2}}% {\romannumeral0\qsfull {\xintApplyUnbraced {\QSLess {#1}}{#2}}}% } \def\qsfull@e #1#2#3{\expandafter\qsfull@f\expandafter {#2}{#3}{#1}} \def\qsfull@f #1#2#3{\expandafter\space #2#1#3} \catcode`@ 12 % = \makeatother % EXAMPLE \begingroup \edef\z {\QSfull {{1.0}{0.5}{0.3}{1.5}{1.8}{2.0}{1.7}{0.4}{1.2}{1.4}% {1.3}{1.1}{0.7}{1.6}{0.6}{0.9}{0.8}{0.2}{0.1}{1.9}}} \printnumber{\meaning\z} \def\a {3.123456789123456789}\def\b {3.123456789123456788} \def\c {3.123456789123456790}\def\d {3.123456789123456787} \expandafter\def\expandafter\z\expandafter {\romannumeral0\qsfull {{\a}\b\c\d}}% \a is braced to not be expanded \printnumber{\meaning\z} \endgroup \end{everbatim*} We then turn to a graphical illustration of the algorithm. For simplicity the pivot is always chosen to be the first list item. We also show later how to illustrate the variant which picks up the last item of each unsorted chunk as pivot. \begin{everbatim*} % in LaTeX preamble: % \usepackage{xintfrac} % \usepackage{color} % or, when using Plain TeX: % \input xintfrac.sty % \input color.tex % % Color definitions \definecolor{LEFT}{RGB}{216,195,88} \definecolor{RIGHT}{RGB}{208,231,153} \definecolor{INERT}{RGB}{199,200,194} \definecolor{PIVOT}{RGB}{109,8,57} % Start of macro defintions \catcode`@ 11 % = \makeatletter in latex \def\QSMore #1#2{\xintifGt {#2}{#1}{{#2}}{ }}% space will be gobbled \def\QSEqual #1#2{\xintifEq {#2}{#1}{{#2}}{ }} \def\QSLess #1#2{\xintifLt {#2}{#1}{{#2}}{ }} % \def\QS@a #1{\expandafter \QS@b \expandafter {\xintLength {#1}}{#1}} \def\QS@b #1{\ifcase #1 \expandafter\QS@empty \or\expandafter\QS@single \else\expandafter\QS@c \fi } \def\QS@empty #1{} \def\QS@single #1{\QSIr {#1}} \def\QS@c #1{\QS@d #1!{#1}} % we pick up the first as pivot. \def\QS@d #1#2!{\QS@e {#1}} % #1 = first element, #3 = list \def\QS@e #1#2{\expandafter\QS@f\expandafter {\romannumeral0\xintapplyunbraced {\QSMore {#1}}{#2}}% {\romannumeral0\xintapplyunbraced {\QSEqual {#1}}{#2}}% {\romannumeral0\xintapplyunbraced {\QSLess {#1}}{#2}}} \def\QS@f #1#2#3{\expandafter\QS@g\expandafter {#2}{#3}{#1}} % #2= elements < pivot, #1 = elements = pivot, #3 = elements > pivot % Here \QSLr, \QSIr, \QSr have been let to \relax, so expansion stops. \def\QS@g #1#2#3{\QSLr {#2}\QSIr {#1}\QSRr {#3}} % \def\DecoLEFT #1{\xintFor* ##1 in {#1} \do {\colorbox{LEFT}{##1}}} \def\DecoINERT #1{\xintFor* ##1 in {#1} \do {\colorbox{INERT}{##1}}} \def\DecoRIGHT #1{\xintFor* ##1 in {#1} \do {\colorbox{RIGHT}{##1}}} \def\DecoPivot #1{\begingroup\color{PIVOT}\advance\fboxsep-\fboxrule\fbox{#1}\endgroup} \def\DecoLEFTwithPivot #1{% \xintFor* ##1 in {#1} \do {\xintifForFirst {\DecoPivot {##1}}{\colorbox{LEFT}{##1}}}} \def\DecoRIGHTwithPivot #1{% \xintFor* ##1 in {#1} \do {\xintifForFirst {\DecoPivot {##1}}{\colorbox{RIGHT}{##1}}}} % \def\QSinitialize #1{\def\QS@list{\QSRr {#1}}\let\QSRr\DecoRIGHT \par\centerline{\QS@list}} \def\QSoneStep {\let\QSLr\DecoLEFTwithPivot \let\QSIr\DecoINERT \let\QSRr\DecoRIGHTwithPivot \centerline{\QS@list}% \def\QSLr {\noexpand\QS@a}\let\QSIr\relax\def\QSRr {\noexpand\QS@a}% \edef\QS@list{\QS@list}% \let\QSLr\relax\let\QSRr\relax \edef\QS@list{\QS@list}% \let\QSLr\DecoLEFT \let\QSIr\DecoINERT \let\QSRr\DecoRIGHT \centerline{\QS@list}} \catcode`@ 12 % = \makeatother in latex % End of macro definitions. % The next line is for xint.pdf use only. \normalcolor\phantomsection\label{quicksort} % Start of Example \begingroup\offinterlineskip \small \QSinitialize {{1.0}{0.5}{0.3}{1.5}{1.8}{2.0}{1.7}{0.4}{1.2}{1.4}% {1.3}{1.1}{0.7}{1.6}{0.6}{0.9}{0.8}{0.2}{0.1}{1.9}} \QSoneStep\QSoneStep\QSoneStep\QSoneStep\QSoneStep \endgroup \end{everbatim*} If one wants rather to have the pivot from the end of the yet to sort chunks, then one should use the following variants: \begin{everbatim*} \normalcolor \makeatletter \def\QS@c #1{\expandafter\QS@e\expandafter {\romannumeral0\xintnthelt {-1}{#1}}{#1}} \def\DecoLEFTwithPivot #1{% \xintFor* ##1 in {#1} \do {\xintifForLast {\DecoPivot {##1}}{\colorbox{LEFT}{##1}}}} \def\DecoRIGHTwithPivot #1{% \xintFor* ##1 in {#1} \do{\xintifForLast {\DecoPivot {##1}}{\colorbox{RIGHT}{##1}}}} \def\QSinitialize #1{\def\QS@list{\QSLr {#1}}\let\QSLr\DecoLEFT\par\centerline{\QS@list}} \makeatother \begingroup\offinterlineskip \small \QSinitialize {{1.0}{0.5}{0.3}{1.5}{1.8}{2.0}{1.7}{0.4}{1.2}{1.4}% {1.3}{1.1}{0.7}{1.6}{0.6}{0.9}{0.8}{0.2}{0.1}{1.9}} \QSoneStep\QSoneStep\QSoneStep\QSoneStep\QSoneStep \QSoneStep\QSoneStep\QSoneStep\QSoneStep\QSoneStep \endgroup \end{everbatim*} It is possible to modify this code to let it do \csa{QSonestep} repeatedly and stop automatically when the sort is finished.% % \footnote{\url{http://tex.stackexchange.com/a/142634/4686}} \section{Commands of the \xintcorename package} \label{sec:core} \localtableofcontents Prior to release |1.1| the macros which are now included in the separate package \xintcorename were part of \xintname. Package \xintcorename is automatically loaded by \xintname.\IMPORTANT\ \xintcorename provides the five basic arithmetic operations on big integers: addition, subtraction, multiplication, division and powers. Division may be either rounded (\csbxint{iiDivRound}) (the rounding of |0.5| is |1| and the one of |-0.5| is |-1|) or Euclidean (\csbxint{iiQuo}) (which for positive operands is the same as truncated division), or truncated (\csbxint{iiDivTrunc}). In the description of the macros the \texttt{\n} and \texttt{\m} symbols stand for explicit (big) integers within braces or more generally any control sequence (possibly within braces) \hyperref[sec:expansions]{\fexpan ding} to such a big integer. The macros with a single |i| in their names parse their arguments automatically through \hyperref[xintiNum]{\string\xintNum}. This type of expansion applied to an argument is signaled by a \textcolor[named]{PineGreen}{\Numf} in the margin. The accepted input format is then a sequence of plus and minus signs, followed by some string of zeroes, followed by digits. If \xintfracname additionally to \xintcorename is loaded, \csbxint{Num} becomes a synonym to \csbxint{TTrunc}; this means that arbitrary\inmarg{Changed} fractions will be accepted as arguments of the macros with a single |i| in their names, but get truncated to integers before further processing. The format of the output will be as with only \xintname loaded. The only extension is in allowing a wider variety of inputs. The macros with |ii| in their names have arguments which will only be \fexpan ded, but will not be parsed via \hyperref[xintiNum]{\string\xintNum}. Arguments of this type are signaled by the margin annotation \textcolor[named]{PineGreen}{\emph{f}}. For such big integers only one minus sign and no plus sign, nor leading zeros, are accepted. |-0| is not valid in this strict input format. Loading \xintfracname does not bring any modification to these macros whether for input or output. The letter \texttt{x} (with margin annotation \textcolor[named]{PineGreen}{\numx}) stands for something which will be inserted in-between a |\numexpr| and a |\relax|. It will thus be completely expanded and must give an integer obeying the \TeX{} bounds. Thus, it may be for example a count register, or itself a \csa{numexpr} expression, or just a number written explicitely with digits or something like |4*\count 255 + 17|, etc... For the rules regarding direct use of count registers or \csa{numexpr} expression, in the arguments to the package macros, see the \hyperref[sec:useofcount]{Use of count} section. \begin{framed} \xintcorename also provides macros |\xintAdd|, |\xintMul|,\dots as synonyms to |\xintiAdd|, |\xintiMul|,\dots. Their usage is \fbox{deprecated}\IMPORTANT{} for the following reason: with \xintfracname loaded they become the routines dealing fully with fractions on input. But this means that they now use fraction format on output, even with integer arguments. Due to this variability of the output format on whether the document uses only \xintname or loads additionally \xintfracname, code using these macros is fragile, because loading at some later date a package which itself loads \xintfracname or \xintexprname will modify their output format, and this is catastrophic for example in locations expanded by |\ifnum|, or even in arguments to those other macros of \xintname with |ii| in their names. Prefer thus, when writing code loading only \xintcorename or \xintname, to use the macros \csbxint{iAdd}, \csbxint{iMul}, \dots, or \csbxint{iiAdd}, \csbxint{iiMul}, \dots. They are guaranteed to always output an integer without a trailing |/B[n]|. The latter have the less overhead, and the former do not complain, if \xintfracname is loaded, even if used with true fractions, as they will then truncate their arguments to integers.\MyMarginNote[\kern\dimexpr\FrameSep+\FrameRule\relax]{Changed} It was an error for the \xintname package (now \xintcorename) to provide macros |\xintAdd|, |\xintMul|, |\xintSub| \dots. They should be used only with \xintfracname loaded. \end{framed} The {\color[named]{PineGreen}$\star$}'s in the margin are there to remind of the complete expandability, even \fexpan dability of the macros, as discussed in \autoref{sec:expansions}. \subsection{\csbh{xintNum}}\label{xintiNum} |\xintNum|\n\etype{f} removes chains of plus or minus signs, followed by zeroes. % % \leftedline{|\xintNum{+---++----+--000000000367941789479}|\dtt {=\xintNum{+---++----+--000000000367941789479}}} All \xintname macros with a single |i| in their names, such as \csbxint{iAdd}, \csbxint{iMul} apply \csbxint{Num} to their arguments. When \xintfracname is loaded, \csbxint{Num} becomes a synonym to \csbxint{TTrunc}.\inmarg{Changed} \subsection{\csbh{xintSgn}, \csbh{xintiiSgn}}\label{xintiiSgn} |\xintiiSgn|\n\etype{f} returns 1 if the number is positive, 0 if it is zero and -1 if it is negative. It skips the \csbxint{Num} overhead. \csbxint{Sgn}\etype{\Numf} is the variant using \csbxint{Num} and getting extended by \xintfracname to fractions. \subsection{\csbh{xintiOpp}, \csbh{xintiiOpp}}\label{xintiOpp}\label{xintiiOpp} |\xintiOpp|\n\etype{\Numf} return the opposite |-N| of the number |N|. \csbxint{Opp} is initially a synonym but gets extended by \xintfracname to fractions (its output format will be a fraction even if the argument is an integer) and \csa{xintiiOpp} is the strict integer-only variant which skips the \csbxint{Num} overhead.\etype{f} \subsection{\csbh{xintiAbs}, \csbh{xintiiAbs}}\label{xintiAbs}\label{xintiiAbs} |\xintiAbs|\n\etype{\Numf} returns the absolute value of the number. \csbxint{Abs} is a synonym but gets modified by \xintfracname. \csa{xintiiAbs} skips the \csbxint{Num} overhead.\etype{f} \subsection{\csbh{xintiAdd}, \csbh{xintiiAdd}}\label{xintiAdd}\label{xintiiAdd} |\xintiAdd|\n\m\etype{\Numf\Numf} returns the sum of the two numbers. \csbxint{Add} is initially a synonym but gets extended by \xintfracname. \csa{xintiiAdd} skips the \csbxint{Num} overhead.\etype{ff} \subsection{\csbh{xintiSub}, \csbh{xintiiSub}}\label{xintiSub}\label{xintiiSub} |\xintiSub|\n\m\etype{\Numf\Numf} returns the difference |N-M|. \csbxint{Sub} is initially a synonym but gets extended by \xintfracname. \csa{xintiiSub} skips the \csbxint{Num} overhead.\etype{ff} \subsection{\csbh{xintiMul}, \csbh{xintiiMul}}\label{xintiMul}\label{xintiiMul} %{\small Modified in release |1.03|.\par} |\xintiMul|\n\m\etype{\Numf\Numf} returns the product of the two numbers. \csbxint{Mul} is the initial synonym modified by \xintfracname, and \csa{xintiiMul} skips the \csbxint{Num} overhead.\etype{ff} \subsection{\csbh{xintiSqr}, \csbh{xintiiSqr}}\label{xintiSqr}\label{xintiiSqr} |\xintiSqr|\n\etype{\Numf} returns the square. \csbxint{Sqr} is the initial synonym extended by \xintfracname to fractions. \csa{xintiiSqr} skips the \csbxint{Num} overhead.\etype{f} \subsection{\csbh{xintiPow}, \csbh{xintiiPow}}\label{xintiPow}\label{xintiiPow} |\xintiPow|\n\x\etype{\Numf\numx} returns |N^x|. When |x| is zero, this is 1. If |N=0| and |x<0|, if \verb+|N|>1+ and |x<0|, or if \verb+|N|>1+ and |x>100000|, then an error is raised. The |x>100000| condition should perhaps be made more strict: as it stands it allows launching operations taking hours to complete. Indeed, observe that |2^50000| already has \dtt{\xintLen{\xintFloatPow [1]{2}{50000}}} digits; as it turns out each exact multiplication done via \csbxint{iiMul} of two numbers with one thousand digits each already takes of the order of seconds, and it would take hours for arguments each with circa $15000$ digits. Perhaps some completely expandable but not \fexpan dable variants could fare better? \csa{xintiiPow} is an integer only variant skipping the \csbxint{Num} overhead\etype{f\numx}, it produces the same result as \csa{xintiPow} with stricter assumptions on the inputs, and is thus a tiny bit faster. \csbxint{Pow} is the initial synonym of \csa{xintiPow} which gets extended by \xintfracname to fractions (see also \csbxint{FloatPow} for which the exponent must still obey the \TeX{} bound and \csbxint{FloatPower} which has no restriction at all on the size of the exponent). Negative exponents do not then raise errors anymore. The float version is able to deal with things such as |2^999999999| without any problem. For example |\xintFloatPow[4]{2}{50000}|\dtt{=\xintFloatPow[4]{2}{50000}} and |\xintFloatPow[4]{2}{999999999}| \dtt{=\xintFloatPow[4]{2}{999999999}}.% % \footnote{On my laptop \texttt{\detokenize{\xintiiPow {2}{9999}}} obtains all |3010| digits in about ten or eleven seconds. In contrast, the float versions for |8|, |16|, |24|, or even more significant figures, do their jobs in less than one hundredth of a second (|1.09j|; we used in the text only four significant digits only for reasons of space, not time.) This is done without |log|/|exp| which are not (yet?) implemented in \xintfracname. The \LaTeX3 \href{http://www.ctan.org/pkg/l3kernel}{l3fp} package does this with |log|/|exp| and is ten times faster, but allows only |16| significant figures and the (exactly represented) floating point numbers must have their exponents limited to $\pm$\dtt{9999}.} Within an \csbxint{iiexpr}|..\relax| the infix operator |^| is mapped to \csa{xintiiPow}; within an \csbxint{expr}-ession it is mapped to \csbxint{Pow} (as extended by \xintfracname); in \csbxint{floatexpr}, it is mapped to \csbxint{FloatPower}. \subsection{\csbh{xintiDivision}, \csbh{xintiiDivision}}\label{xintiDivision}\label{xintiiDivision} % 17 octobre 2014: je supprime \xintDivision, seulement \xintiDivision. |\xintiiDivision|\n\m\etype{ff} returns |{quotient Q}{remainder R}|. This is euclidean division: |N = QM + R|, |0|${}\leq{}$\verb+R < |M|+. So the remainder is always non-negative and the formula |N = QM + R| always holds independently of the signs of |N| or |M|. Division by zero is an error (even if |N| vanishes) and returns |{0}{0}|. It skips the overhead of parsing via \csbxint{Num}. |\xintiDivision|\etype{\Numf\Numf} submits its arguments to \csbxint{Num} and is extended by \xintfracname to accept fractions on input, which it truncates first, and is not to be confused with the \xintfracname macro \csbxint{Div} which divides one fraction by another. Note: |\xintDivision| was the former name of |\xintiDivision|. Its use is deprecated since release |1.1|.\inmarg{Changed} \subsection{\csbh{xintiQuo}, \csbh{xintiiQuo}}\label{xintiQuo}\label{xintiiQuo} |\xintiiQuo|\n\m\etype{ff} returns the quotient from the euclidean division. It skips the overhead of parsing via \csbxint{Num}. |\xintiQuo|\etype{\Numf\Numf} submits its arguments to \csbxint{Num} and is extended by \xintfracname to accept fractions on input, which it truncates first. Note: |\xintQuo| is the former name of |\xintiQuo|. Its use is deprecated. \inmarg{Changed} \subsection{\csbh{xintiRem}, \csbh{xintiiRem}}\label{xintiRem}\label{xintiiRem} |\xintiiRem|\n\m\etype{ff} returns the remainder from the euclidean division. It skips the overhead of parsing via \csbxint{Num}. |\xintiRem|\etype{\Numf\Numf} submits its arguments to \csbxint{Num} and is extended by \xintfracname to accept fractions on input, which it truncates first. Note: |\xintRem| is the former name of |\xintiRem|. Its use is deprecated. \inmarg{Changed} \subsection{\csbh{xintiDivRound}, \csbh{xintiiDivRound}} \label{xintiDivRound}\label{xintiiDivRound} |\xintiiDivRound|\n\m\etype{ff} returns the rounded value of the algebraic quotient $N/M$ of two big integers. The rounding of half integers is towards the nearest integer of bigger absolute value. The macro skips the overhead of parsing via \csbxint{Num}. The rounding is away from zero. |\xintiDivRound|\etype{\Numf\Numf} submits its arguments to \csbxint{Num}. It is extended by \xintfracname to accept fractions on input, which it truncates first before computing the rounded quotient. \subsection{\csbh{xintiDivTrunc}, \csbh{xintiiDivTrunc}} \label{xintiDivTrunc}\label{xintiiDivTrunc} |\xintiiDivTrunc|\n\m\etype{ff} computes the truncation towards zero of the algebraic quotient $N/M$. It skips the overhead of parsing the operands with \csbxint{Num}. For $M>0$ it is the same as \csbxint{iiQuo}. \begin{everbatim*} $\xintiiQuo {1000}{-57}, \xintiiDivRound {1000}{-57}, \xintiiDivTrunc {1000}{-57}$ \end{everbatim*} |\xintiDivTrunc|\etype{\Numf\Numf} submits first its arguments to \csbxint{Num}. \subsection{\csbh{xintiMod}, \csbh{xintiiMod}} \label{xintiMod}\label{xintiiMod} |\xintiiMod|\n\m\etype{ff} computes $N - M*t(N/M)$, where $t(N/M)$ is the algebraic quotient truncated towards zero . The macro skips the overhead of parsing the operands with \csbxint{Num}. For $M>0$ it is the same as \csbxint{iiRem}. \begin{everbatim*} $\xintiiRem {1000}{-57}, \xintiiMod {1000}{-57}, \xintiiRem {-1000}{57}, \xintiiMod {-1000}{57}$ \end{everbatim*} |\xintiMod|\etype{\Numf\Numf} submits first its arguments to \csbxint{Num}. \subsection{\csbh{xintInc}, \csbh{xintDec}} \label{xintInc} \label{xintDec} %{\small New with |1.08|.\par} |\xintInc|\n\etype{f} is |N+1| and |\xintDec|\n{} is |N-1|. These macros remain integer-only, even with \xintfracname loaded. They skip the overhead of parsing via \csbxint{Num}. \section{Commands of the \xintname package} \label{sec:xint} \localtableofcontents Version |1.0| was released |2013/03/28|. This is \texttt{\xintbndlversion} of \texttt{\xintbndldate}. The core arithmetic macros have been moved\inmarg{Changed} to separate package \xintcorename, which is automatically loaded by \xintname. See the documentation of \xintcorename or \autoref{sec:expansions} for the significance of the \textcolor[named]{PineGreen}{\Numf}, \textcolor[named]{PineGreen}{\emph{f}}, \textcolor[named]{PineGreen}{\numx} and \textcolor[named]{PineGreen}{$\star$} margin annotations and some important background information. \subsection{\csbh{xintRev}} \label{xintRev} |\xintRev|\n\etype{f} will reverse the order of the digits of the number, keeping the optional sign. Leading zeroes resulting from the operation are not removed (see the \csa{xintNum} macro for this). This macro and all other macros dealing with numbers first expand `fully' their arguments. % \leftedline{|\xintRev{-123000}|\dtt{=\xintRev{-123000}}} % \leftedline{|\xintNum{\xintRev{-123000}}|% \dtt{=\xintNum{\xintRev{-123000}}}} \subsection{\csbh{xintLen}}\label{xintiLen} |\xintLen|\n\etype{\Numf} returns the length of the number, not counting the sign. % % \leftedline{|\xintLen{-12345678901234567890123456789}|\dtt {=\xintLen{-12345678901234567890123456789}}} Extended by \xintfracname to fractions: the length of |A/B[n]| is the length of |A| plus the length of |B| plus the absolute value of |n| and minus one (an integer input as |N| is internally represented in a form equivalent to |N/1[0]| so the minus one means that the extended \csa{xintLen} behaves the same as the original for integers). % % \leftedline{|\xintLen{-1e3/5.425}|\dtt {=\xintLen{-1e3/5.425}}} The length is computed on the |A/B[n]| which would have been returned by \csbxint{Raw}: |\xintRaw {-1e3/5.425}|\dtt{=\xintRaw {-1e3/5.425}}. Let's point out that the whole thing should sum up to less than circa $2^{31}$, but this is a bit theoretical. |\xintLen| is only for numbers or fractions. See \csbxint{Length} for counting tokens (or rather braced groups), more generally. \subsection{\csbh{xintDigitsOf}}\label{xintDigitsOf} This is a synonym for \csbxint{AssignArray},\ntype{fN} to be used to define an array giving all the digits of a given (positive, else the minus sign will be treated as first item) number. \begingroup\xintDigitsOf\xintiPow {7}{500}\to\digits % \leftedline{|\xintDigitsOf\xintiPow {7}{500}\to\digits|} \noindent $7^{500}$ has |\digits{0}=|\digits{0} digits, and the 123rd among them (starting from the most significant) is |\digits{123}=|\digits{123}. \endgroup \subsection{\csbh{xintCmp}, \csbh{xintiiCmp}} |\xintCmp|\n\m\etype{\Numf\Numf} returns \dtt{1} if |N>M|, \dtt{0} if |N=M|, and \dtt{-1} if |N$|M|, 0 otherwise. Extended by \xintfracname to fractions. \csa{xintiiGt} skips the \csbxint{Num} overhead.\etype{ff} \subsection{\csbh{xintLt}, \csbh{xintiiLt}}\label{xintLt} %{\small New with release |1.09a|.\par} |\xintLt|\n\m\etype{\Numf\Numf} returns 1 if |N|$<$|M|, 0 otherwise. Extended by \xintfracname to fractions. \csa{xintiiLt} skips the \csbxint{Num} overhead.\etype{ff} \subsection{\csbh{xintLtorEq}, \csbh{xintiiLtorEq}} |\xintLtorEq|\n\m\etype{\Numf\Numf} returns 1 if |N|$\leqslant$|M|, 0 otherwise. Extended by \xintfracname to fractions. \csa{xintiiLtorEq} skips the \csbxint{Num} overhead.\etype{ff} \subsection{\csbh{xintGtorEq}, \csbh{xintiiGtorEq}} |\xintGtorEq|\n\m\etype{\Numf\Numf} returns 1 if |N|$\geqslant$|M|, 0 otherwise. Extended by \xintfracname to fractions. \csa{xintiiGtorEq} skips the \csbxint{Num} overhead.\etype{ff} \subsection{\csbh{xintIsZero}, \csbh{xintiiIsZero}}\label{xintIsZero} %{\small New with release |1.09a|.\par} |\xintIsZero|\n\etype{\Numf} returns 1 if |N=0|, 0 otherwise. Extended by \xintfracname to fractions. \csa{xintiiIsZero} skips the \csbxint{Num} overhead.\etype{f} \subsection{\csbh{xintNot}}\label{xintNot} %{\small New with release |1.09c|.\par} \csa{xintNot}\etype{\Numf} is a synonym for \csa{xintIsZero}. \subsection{\csbh{xintIsNotZero}, \csbh{xintiiIsNotZero}}\label{xintIsNotZero} %{\small New with release |1.09a|.\par} |\xintIsNotZero|\n\etype{\Numf} returns 1 if |N<>0|, 0 otherwise. Extended by \xintfracname to fractions. \csa{xintiiIsNotZero} skips the \csbxint{Num} overhead.\etype{f} \subsection{\csbh{xintIsOne}, \csbh{xintiiIsOne}}\label{xintIsOne}\label{xintiiIsOne} %{\small New with release |1.09a|.\par} |\xintIsOne|\n\etype{\Numf} returns 1 if |N=1|, 0 otherwise. Extended by \xintfracname to fractions. \csa{xintiiIsOne} skips the \csbxint{Num} overhead.\etype{f} \subsection{\csbh{xintAND}}\label{xintAND} %{\small New with release |1.09a|.\par} |\xintAND|\n\m\etype{\Numf\Numf} returns 1 if |N<>0| and |M<>0| and zero otherwise. Extended by \xintfracname to fractions. \subsection{\csbh{xintOR}}\label{xintOR} %{\small New with release |1.09a|.\par} |\xintOR|\n\m\etype{\Numf\Numf} returns 1 if |N<>0| or |M<>0| and zero otherwise. Extended by \xintfracname to fractions. \subsection{\csbh{xintXOR}}\label{xintXOR} %{\small New with release |1.09a|.\par} |\xintXOR|\n\m\etype{\Numf\Numf} returns 1 if exactly one of |N| or |M| is true (i.e. non-zero). Extended by \xintfracname to fractions. \subsection{\csbh{xintANDof}}\label{xintANDof} %{\small New with release |1.09a|.\par} \csa{xintANDof}|{{a}{b}{c}...}|\etype{f{$\to$}\lowast\Numf} returns 1 if all are true (i.e. non zero) and zero otherwise. The list argument may be a macro, it (or rather its first token) is \fexpan ded first (each item also is \fexpan ded). Extended by \xintfracname to fractions. \subsection{\csbh{xintORof}}\label{xintORof} %{\small New with release |1.09a|.\par} \csa{xintORof}|{{a}{b}{c}...}|\etype{f{$\to$}\lowast\Numf} returns 1 if at least one is true (i.e. does not vanish). The list argument may be a macro, it is \fexpan ded first. Extended by \xintfracname to fractions. \subsection{\csbh{xintXORof}}\label{xintXORof} %{\small New with release |1.09a|.\par} \csa{xintXORof}|{{a}{b}{c}...}|\etype{f{$\to$}\lowast\Numf} returns 1 if an odd number of them are true (i.e. does not vanish). The list argument may be a macro, it is \fexpan ded first. Extended by \xintfracname to fractions. \subsection{\csbh{xintGeq}}\label{xintiGeq} |\xintGeq|\n\m\etype{\Numf\Numf} returns 1 if the \emph{absolute value} of the first number is at least equal to the absolute value of the second number. If \verb+|N|<|M|+ it returns 0. Extended by \xintfracname to fractions. %(starting with release |1.07|) Important: the macro compares \emph{absolute values}. \subsection{\csbh{xintiMax}, \csbh{xintiiMax}}\label{xintiMax}\label{xintiiMax} |\xintiMax|\n\m\etype{\Numf\Numf} returns the largest of the two in the sense of the order structure on the relative integers (\emph{i.e.} the right-most number if they are put on a line with positive numbers on the right): |\xintiMax {-5}{-6}|\dtt{=\xintiMax{-5}{-6}}. The initial synonym \csbxint{Max} gets modified by \xintfracname which extends it to fractions. Its usage when only \xintname is loaded is discouraged. The |\xintiiMax| macro skips the overhead of parsing the operands with \csbxint{Num}.\etype{ff} \subsection{\csbh{xintiMin}, \csbh{xintiiMin}}\label{xintiMin}\label{xintiiMin} |\xintiMin|\n\m\etype{\Numf\Numf} returns the smallest of the two in the sense of the order structure on the relative integers (\emph{i.e.} the left-most number if they are put on a line with positive numbers on the right): |\xintiMin {-5}{-6}|\dtt{=\xintiMin{-5}{-6}}. The initial synonym \csbxint{Min} gets modified by \xintfracname which extends it to fractions. Its usage when only \xintname is loaded is discouraged. The |\xintiiMin| macro skips the overhead of parsing the operands with \csbxint{Num}.\etype{ff} \subsection{\csbh{xintiMaxof}}\label{xintiMaxof} %{\small New with release |1.09a|.\par} \csa{xintiMaxof}|{{a}{b}{c}...}|\etype{f{$\to$}\lowast\Numf} returns the maximum. The list argument may be a macro, it is \fexpan ded first. Each item is submitted to |\xintNum| normalization. \csbxint{Maxof} is the initial synonym which gets extended by \xintfracname to fractions. Do not use it when only \xintname is loaded. \subsection{\csbh{xintiMinof}}\label{xintiMinof} %{\small New with release |1.09a|.\par} \csa{xintiMinof}|{{a}{b}{c}...}|\etype{f{$\to$}\lowast\Numf} returns the minimum. The list argument may be a macro, it is \fexpan ded first. Each item is submitted to |\xintNum| normalization. \csbxint{Minof} is the initial synonym which gets extended by \xintfracname to fractions. Do not use it when only \xintname is loaded. \subsection{\csbh{xintiiSum}}\label{xintiiSum} \csa{xintiiSum}\marg{braced things}\etype{{\lowast f}} after expanding its argument expects to find a sequence of tokens (or braced material). Each is expanded (with the usual meaning), and the sum of all these numbers is returned. Note: the summands are \emph{not} parsed by \csbxint{Num}. \csbxint{Sum} is initially a synonym, it gets extended by \xintfracname to fractions. % \leftedline{% \csa{xintiiSum}|{{123}{-98763450}{\xintFac{7}}{\xintiMul{3347}{591}}}|% \dtt{=\xintiiSum{{123}{-98763450}{\xintFac{7}}{\xintiMul{3347}{591}}}}} % \leftedline{\csa{xintiiSum}|{1234567890}|\dtt{=\xintiiSum{1234567890}}} An empty sum is no error and returns zero: |\xintiiSum {}|\dtt{=\xintiiSum {}}. A sum with only one term returns that number: |\xintiiSum {{-1234}}|\dtt{=\xintiiSum {{-1234}}}. Attention that |\xintiiSum {-1234}| is not legal input and will make the \TeX{} run fail. On the other hand |\xintiiSum {1234}|\dtt{=\xintiiSum{1234}}. % retiré de la doc le 22 octobre 2013 % \subsection{\csbh{xintSumExpr}}\label{xintiiSumExpr} \subsection{\csbh{xintiiPrd}}\label{xintiiPrd} \csa{xintiiPrd}\marg{braced things}\etype{{\lowast f}} after expanding its argument expects to find a sequence of (of braced items or unbraced single tokens). Each is expanded (with the usual meaning), and the product of all these numbers is returned. Note: the operands are \emph{not} parsed by \csbxint{Num}. % \leftedline{\csa{xintiiPrd}|{{-9876}{\xintFac{7}}{\xintiMul{3347}{591}}}|% \dtt{=% \xintiiPrd{{-9876}{\xintFac{7}}{\xintiMul{3347}{591}}}}} % \leftedline{\csa{xintiiPrd}|{123456789123456789}|\dtt{=% \xintiiPrd{123456789123456789}}} An empty product is no error and returns 1: |\xintiiPrd {}|\dtt{=\xintiiPrd {}}. A product reduced to a single term returns this number: |\xintiiPrd {{-1234}}=|\dtt{\xintiiPrd {{-1234}}}. Attention that |\xintiiPrd {-1234}| is not legal input and will make the \TeX{} compilation fail. On the other hand |\xintiiPrd {1234}|\dtt{=\xintiiPrd {1234}}. % % \begin{everbatim*} $2^{200}3^{100}7^{100}=\printnumber {\xintiiPrd {{\xintiPow {2}{200}}{\xintiPow {3}{100}}{\xintiPow {7}{100}}}}$ \end{everbatim*} With \xintexprname, this would be easier: % \leftedline {|\xinttheiiexpr 2^200*3^100*7^100\relax |} The initial synonym \csbxint{Prd} is extended by \xintfracname to fractions. % \subsection{\csbh{xintPrdExpr}}\label{xintiiPrdExpr} \subsection{\csbh{xintSgnFork}}\label{xintSgnFork} %{\small New with release |1.07|. See also \csbxint{ifSgn}.\par} \csa{xintSgnFork}\verb+{-1|0|1}+\marg{A}\marg{B}\marg{C}\etype{xnnn} expandably chooses to execute either the \meta{A}, \meta{B} or \meta{C} code, depending on its first argument. This first argument should be anything expanding to either |-1|, |0| or |1| in a non self-delimiting way (i.e. a count register must be prefixed by |\the| and a |\numexpr...\relax| also must be prefixed by |\the|). This utility is provided to help construct expandable macros choosing depending on a condition which one of the package macros to use, or which values to confer to their arguments. \subsection{\csbh{xintifSgn}, \csbh{xintiiifSgn}}\label{xintifSgn} %{\small New with release |1.09a|.\par} Similar to \csa{xintSgnFork}\etype{\Numf nnn} except that the first argument may expand to a (big) integer (or a fraction if \xintfracname is loaded), and it is its sign which decides which of the three branches is taken. Furthermore this first argument may be a count register, with no |\the| or |\number| prefix. \csa{xintiiifSgn} skips the \csbxint{Num} overhead.\etype{f} \subsection{\csbh{xintifZero}, \csbh{xintiiifZero}}\label{xintifZero} %{\small New with release |1.09a|.\par} \csa{xintifZero}\marg{N}\marg{IsZero}\marg{IsNotZero}\etype{\Numf nn} expandably checks if the first mandatory argument |N| (a number, possibly a fraction if \xintfracname is loaded, or a macro expanding to one such) is zero or not. It then either executes the first or the second branch. Beware that both branches must be present. \csa{xintiiifZero} skips the \csbxint{Num} overhead.\etype{f} \subsection{\csbh{xintifNotZero}, \csbh{xintiiifNotZero}}\label{xintifNotZero} %{\small New with release |1.09a|.\par} \csa{xintifNotZero}\marg{N}\marg{IsNotZero}\marg{IsZero}\etype{\Numf nn} expandably checks if the first mandatory argument |N| (a number, possibly a fraction if \xintfracname is loaded, or a macro expanding to one such) is not zero or is zero. It then either executes the first or the second branch. Beware that both branches must be present. \csa{xintiiifNotZero} skips the \csbxint{Num} overhead.\etype{f} \subsection{\csbh{xintifOne}, \csbh{xintiiifOne}}\label{xintifOne} %{\small New with release |1.09i|.\par} \csa{xintifOne}\marg{N}\marg{IsOne}\marg{IsNotOne}\etype{\Numf nn} expandably checks if the first mandatory argument |N| (a number, possibly a fraction if \xintfracname is loaded, or a macro expanding to one such) is one or not. It then either executes the first or the second branch. Beware that both branches must be present. \csa{xintiiifOne} skips the \csbxint{Num} overhead.\etype{f} \subsection{\csbh{xintifTrueAelseB}, \csbh{xintifFalseAelseB}} \label{xintifTrueAelseB} \label{xintifFalseAelseB} %\label{xintifFalseTrue} %{\small New with release |1.09c|, renamed in |1.09e|.\par} \csa{xintifTrueAelseB}\marg{N}\marg{true branch}\marg{false branch}\etype{\Numf nn} is a synonym for \csbxint{ifNotZero}. {\small \noindent 1. with |1.09i|, the synonyms |\xintifTrueFalse| and |\xintifTrue| are deprecated and will be removed in next release.\par \noindent 2. These macros have no lowercase versions, use |\xintifzero|, |\xintifnotzero|.\par } \csa{xintifFalseAelseB}\marg{N}\marg{false branch}\marg{true branch}\etype{\Numf nn} is a synonym for \csbxint{ifZero}. \subsection{\csbh{xintifCmp}, \csbh{xintiiifCmp}}\label{xintifCmp} %{\small New with release |1.09e|.\par} \csa{xintifCmp}\marg{A}\marg{B}\marg{if AB}\etype{\Numf\Numf nnn} compares its arguments and chooses accordingly the correct branch. \csa{xintiiifCmp} skips the \csbxint{Num} overhead.\etype{ff} \subsection{\csbh{xintifEq}, \csbh{xintiiifEq}}\label{xintifEq} %{\small New with release |1.09a|.\par} \csa{xintifEq}\marg{A}\marg{B}\marg{YES}\marg{NO}\etype{\Numf\Numf nn} checks equality of its two first arguments (numbers, or fractions if \xintfracname is loaded) and does the |YES| or the |NO| branch. \csa{xintiiifEq} skips the \csbxint{Num} overhead.\etype{ff} \subsection{\csbh{xintifGt}, \csbh{xintiiifGt}}\label{xintifGt} %{\small New with release |1.09a|.\par} \csa{xintifGt}\marg{A}\marg{B}\marg{YES}\marg{NO}\etype{\Numf\Numf nn} checks if $A>B$ and in that case executes the |YES| branch. Extended to fractions (in particular decimal numbers) by \xintfracname. \csa{xintiiifGt} skips the \csbxint{Num} overhead.\etype{ff} \subsection{\csbh{xintifLt}, \csbh{xintiiifLt}}\label{xintifLt} %{\small New with release |1.09a|.\par} \csa{xintifLt}\marg{A}\marg{B}\marg{YES}\marg{NO}\etype{\Numf\Numf nn} checks if $A0|, |M^2-d=N| and |M| smallest (hence |=1+\xintiSqrt{N}|). |\xintiiSquareRoot|\etype{f} is the variant skipping the |\xintNum| overhead. \begin{everbatim*} \xintAssign\xintiiSquareRoot {17000000000000000000000000}\to\A\B \xintiiSub{\xintiiSqr\A}\B=\A\string^2-\B \end{everbatim*} A rational approximation to $\sqrt{|N|}$ is $|M|-\frac{|d|}{|2M|}$ (this is a majorant and the error is at most |1/2M|; if |N| is a perfect square |k^2| then |M=k+1| and this gives |k+1/(2k+2)|, not |k|). Package \xintfracname has \csbxint{FloatSqrt} for square roots of floating point numbers. \begin{framed} The macros described next are strictly for integer-only arguments. These arguments are \emph{not} filtered via \csbxint{Num}. The macros are not usable with fractions, even with \xintfracname loaded. \end{framed} \subsection{\csbh{xintDouble}, \csbh{xintHalf}} \label{xintDouble} \label{xintHalf} %{\small New with |1.08|.\par} |\xintDouble|\n\etype{f} returns |2N| and |\xintHalf|\n is |N/2| rounded towards zero. These macros remain integer-only, even with \xintfracname loaded. \subsection{\csbh{xintDSL}}\label{xintDSL} |\xintDSL|\n\etype{f} is decimal shift left, \emph{i.e.} multiplication by ten. \subsection{\csbh{xintDSR}}\label{xintDSR} |\xintDSR|\n\etype{f} is decimal shift right, \emph{i.e.} it removes the last digit (keeping the sign), equivalently it is the closest integer to |N/10| when starting at zero. \subsection{\csbh{xintDSH}}\label{xintDSH} |\xintDSH|\x\n\etype{\numx f} is parametrized decimal shift. When |x| is negative, it is like iterating \csa{xintDSL} \verb+|x|+ times (\emph{i.e.} multiplication by $10^{-x}$). When |x| positive, it is like iterating \csa{DSR} |x| times (and is more efficient), and for a non-negative |N| this is thus the same as the quotient from the euclidean division by |10^x|. \subsection{\csbh{xintDSHr}, \csbh{xintDSx}}\label{xintDSHr}\label{xintDSx} %{\small New in release |1.01|.\par} |\xintDSHr|\x\n\etype{\numx f} expects |x| to be zero or positive and it returns then a value |R| which is correlated to the value |Q| returned by |\xintDSH|\x\n{} in the following manner: \begin{itemize} \item if |N| is positive or zero, |Q| and |R| are the quotient and remainder in the euclidean division by |10^x| (obtained in a more efficient manner than using \csa{xintiDivision}), \item if |N| is negative let |Q1| and |R1| be the quotient and remainder in the euclidean division by |10^x| of the absolute value of |N|. If |Q1| does not vanish, then |Q=-Q1| and |R=R1|. If |Q1| vanishes, then |Q=0| and |R=-R1|. \item for |x=0|, |Q=N| and |R=0|. \end{itemize} So one has |N = 10^x Q + R| if |Q| turns out to be zero or positive, and |N = 10^x Q - R| if |Q| turns out to be negative, which is exactly the case when |N| is at most |-10^x|. |\xintDSx|\x\n\etype{\numx f} for |x| negative is exactly as |\xintDSH|\x\n, \emph{i.e.} multiplication by $10^{-|x|}$. For |x| zero or positive it returns the two numbers |{Q}{R}| described above, each one within braces. So |Q| is |\xintDSH|\x\n, and |R| is |\xintDSHr|\x\n, but computed simultaneously. \xintAssign\xintDSx {-1}{-123456789}\to\M \leftedline{|\xintAssign\xintDSx {-1}{-123456789}\to\M|} \leftedline{|\meaning\M: |\dtt{\meaning\M}.} \xintAssign\xintDSx {-20}{1234567689}\to\M \leftedline{|\xintAssign\xintDSx {-20}{123456789}\to\M|} \leftedline{|\meaning\M: |\dtt{\meaning\M}.} \xintAssign\xintDSx{0}{-123004321}\to\Q\R \leftedline{|\xintAssign\xintDSx {0}{-123004321}\to\Q\R|} \leftedline{|\meaning\Q: |\dtt{\meaning\Q}, |\meaning\R:|\dtt{\meaning\R.}} \leftedline{|\xintDSH {0}{-123004321}|\dtt{=\xintDSH {0}{-123004321}}, |\xintDSHr {0}{-123004321}|\dtt{=\xintDSHr {0}{-123004321}}} \xintAssign\xintDSx {6}{-123004321}\to\Q\R \leftedline{|\xintAssign\xintDSx {6}{-123004321}\to\Q\R|} \leftedline{|\meaning\Q: |\dtt{\meaning\Q},|\meaning\R: |\dtt{\meaning\R.}} \leftedline{|\xintDSH {6}{-123004321}|\dtt{=\xintDSH {6}{-123004321}}, |\xintDSHr {6}{-123004321}|\dtt{=\xintDSHr {6}{-123004321}}} \xintAssign\xintDSx {8}{-123004321}\to\Q\R \leftedline{|\xintAssign\xintDSx {8}{-123004321}\to\Q\R|} \leftedline{|\meaning\Q: |\dtt{\meaning\Q},|\meaning\R: |\dtt{\meaning\R.}} \leftedline{|\xintDSH {8}{-123004321}|\dtt{=\xintDSH {8}{-123004321}}, |\xintDSHr {8}{-123004321}|\dtt{=\xintDSHr {8}{-123004321}}} \xintAssign\xintDSx {9}{-123004321}\to\Q\R \leftedline{|\xintAssign\xintDSx {9}{-123004321}\to\Q\R|} \leftedline{|\meaning\Q: |\dtt{\meaning\Q},|\meaning\R: |\dtt{\meaning\R.}} \leftedline{|\xintDSH {9}{-123004321}|\dtt{=\xintDSH {9}{-123004321}}, |\xintDSHr {9}{-123004321}|\dtt{=\xintDSHr {9}{-123004321}}} \subsection{\csbh{xintDecSplit}}\label{xintDecSplit} %{\small This has been modified in release |1.01|.\par} |\xintDecSplit|\x\n\etype{\numx f} cuts the number into two pieces (each one within a pair of enclosing braces). First the sign if present is \emph{removed}. Then, for |x| positive or null, the second piece contains the |x| least significant digits (\emph{empty} if |x=0|) and the first piece the remaining digits (\emph{empty} when |x| equals or exceeds the length of |N|). Leading zeroes in the second piece are not removed. When |x| is negative the first piece contains the \verb+|x|+ most significant digits and the second piece the remaining digits (\emph{empty} if $|x|$ equals or exceeds the length of |N|). Leading zeroes in this second piece are not removed. So the absolute value of the original number is always the concatenation of the first and second piece. {\footnotesize This macro's behavior for |N| non-negative is final and will not change. I am still hesitant about what to do with the sign of a negative |N|.\par} \xintAssign\xintDecSplit {0}{-123004321}\to\L\R \leftedline{|\xintAssign\xintDecSplit {0}{-123004321}\to\L\R|} \leftedline{|\meaning\L: |\dtt{\meaning\L}, |\meaning\R: |\dtt{\meaning\R.}} \xintAssign\xintDecSplit {5}{-123004321}\to\L\R \leftedline{|\xintAssign\xintDecSplit {5}{-123004321}\to\L\R|} \leftedline{|\meaning\L: |\dtt{\meaning\L}, |\meaning\R: |\dtt{\meaning\R.}} \xintAssign\xintDecSplit {9}{-123004321}\to\L\R \leftedline{|\xintAssign\xintDecSplit {9}{-123004321}\to\L\R|} \leftedline{|\meaning\L: |\dtt{\meaning\L}, |\meaning\R: |\dtt{\meaning\R.}} \xintAssign\xintDecSplit {10}{-123004321}\to\L\R \leftedline{|\xintAssign\xintDecSplit {10}{-123004321}\to\L\R|} \leftedline{|\meaning\L: |\dtt{\meaning\L}, |\meaning\R: |\dtt{\meaning\R.}} \xintAssign\xintDecSplit {-5}{-12300004321}\to\L\R \leftedline{|\xintAssign\xintDecSplit {-5}{-12300004321}\to\L\R|} \leftedline{|\meaning\L: |\dtt{\meaning\L}, |\meaning\R: |\dtt{\meaning\R.}} \xintAssign\xintDecSplit {-11}{-12300004321}\to\L\R \leftedline{|\xintAssign\xintDecSplit {-11}{-12300004321}\to\L\R|} \leftedline{|\meaning\L: |\dtt{\meaning\L}, |\meaning\R: |\dtt{\meaning\R.}} \xintAssign\xintDecSplit {-15}{-12300004321}\to\L\R \leftedline{|\xintAssign\xintDecSplit {-15}{-12300004321}\to\L\R|} \leftedline{|\meaning\L: |\dtt{\meaning\L}, |\meaning\R: |\dtt{\meaning\R.}} \subsection{\csbh{xintDecSplitL}}\label{xintDecSplitL} |\xintDecSplitL|\x\n\etype{\numx f} returns the first piece after the action of \csa{xintDecSplit}. \subsection{\csbh{xintDecSplitR}}\label{xintDecSplitR} |\xintDecSplitR|\x\n\etype{\numx f} returns the second piece after the action of \csa{xintDecSplit}. \subsection{\csbh{xintiiE}}\label{xintiiE} |\xintiiE|\n\x\etype{f\numx } serves to add zeros to the right of |N|. \begin{everbatim*} \xintiiE {123}{89} \end{everbatim*} \section{Commands of the \xintfracname package} \label{sec:frac} \localtableofcontents \def\x{|{x}|} This package was first included in release |1.03| (|2013/04/14|) of the \xintname bundle. The general rule of the bundle that each macro first expands (what comes first, fully) each one of its arguments applies. |f|\ntype{\Ff} stands for an integer or a fraction (see \autoref{sec:inputs} for the accepted input formats) or something which expands to an integer or fraction. It is possible to use in the numerator or the denominator of |f| count registers and even expressions with infix arithmetic operators, under some rules which are explained in the previous \hyperref[sec:useofcount]{Use of count registers} section. As in the \hyperref[sec:xint]{xint.sty} documentation, |x|\ntype{\numx} stands for something which will internally be embedded in a \csa{numexpr}. It may thus be a count register or something like |4*\count 255 + 17|, etc..., but must expand to an integer obeying the \TeX{} bound. The fraction format on output is the scientific notation for the `float' macros, and the |A/B[n]| format for all other fraction macros, with the exception of \csbxint{Trunc}, {\color{blue}\string\xint\-Round} (which produce decimal numbers) and \csbxint{Irr}, \csbxint{Jrr}, \csbxint{RawWithZeros} (which returns an |A/B| with no trailing |[n]|, and prints the |B| even if it is |1|), and \csbxint{PRaw} which does not print the |[n]| if |n=0| or the |B| if |B=1|. To be certain to print an integer output without trailing |[n]| nor fraction slash, one should use either |\xintPRaw {\xintIrr {f}}| or |\xintNum {f}| when it is already known that |f| evaluates to a (big) integer. For example |\xintPRaw {\xintAdd {2/5}{3/5}}| gives a perhaps disappointing \dtt{\xintPRaw {\xintAdd {2/5}{3/5}}}% % % % whereas |\xintPRaw {\xintIrr {\xintAdd {2/5}{3/5}}}| returns \dtt{\xintPRaw {\xintIrr {\xintAdd {2/5}{3/5}}}}. As we knew the result was an integer we could have used |\xintNum {\xintAdd {2/5}{3/5}}=|\xintNum {\xintAdd {2/5}{3/5}}. Some macros (such as \csbxint{iTrunc}, \csbxint{iRound}, and \csbxint{Fac}) always produce directly integers on output. \subsection{\csbh{xintNum}}\label{xintNum} The macro\etype{f} from \xintname is made a synonym to \csbxint{TTrunc}. (\textcolor[named]{PineGreen}{Changed!})\footnote{In earlier releases than |1.1|, \csbxint{Num} did \csbxint{Irr} and then complained if the denominator was not |1|, else, it silently removed the denominator.} The original (which normalizes big integers to strict format) is still available as \csbxint{iNum}. It is imprudent to apply \csa{xintNum} to numbers with a large power of ten given either in scientific notation or with the |[n]| notation, as the macro will according to its definition add all the needed zeroes to produce an explicit integer in strict format. \subsection{\csbh{xintifInt}}\label{xintifInt} %{\small New with release |1.09e|.\par} \csa{xintifInt}|{f}{YES branch}{NO branch}|\etype{\Ff nn} expandably chooses the |YES| branch if |f| reveals itself after expansion and simplification to be an integer. As with the other \xintname conditionals, both branches must be present although one of the two (or both, but why then?) may well be an empty brace pair |{}|. Spaces in-between the braced things do not matter, but a space after the closing brace of the |NO| branch is significant. \subsection{\csbh{xintLen}}\label{xintLen} The original macro\etype{\Ff} is extended to accept a fraction on input. % \leftedline {|\xintLen {201710/298219}|\dtt{=\xintLen {201710/298219}}, |\xintLen {1234/1}|\dtt{=\xintLen {1234/1}}, |\xintLen {1234}|% \dtt{=\xintLen {1234}}} \subsection{\csbh{xintRaw}}\label{xintRaw} %{\small New with release |1.04|.\par} %{\small \color{red}MODIFIED IN |1.07|.\par} This macro `prints' the\etype{\Ff} fraction |f| as it is received by the package after its parsing and expansion, in a form |A/B[n]| equivalent to the internal representation: the denominator |B| is always strictly positive and is printed even if it has value |1|. % \leftedline{|\xintRaw{\the\numexpr 571*987\relax.123e-10/\the\numexpr -201+59\relax e-7}=|} % \leftedline{\dtt{\xintRaw{\the\numexpr 571*987\relax.123e-10/\the\numexpr -201+59\relax e-7}}} \subsection{\csbh{xintPRaw}}\label{xintPRaw} %{\small New in |1.09b|.\par} |PRaw|\etype{\Ff} stands for ``pretty raw''. It does \emph{not} show the |[n]| if |n=0| and does \emph{not} show the |B| if |B=1|. % % % \leftedline{|\xintPRaw {123e10/321e10}=|\dtt{\xintPRaw {123e10/321e10}}, % |\xintPRaw {123e9/321e10}=|\dtt{\xintPRaw {123e9/321e10}}} % % % \leftedline{|\xintPRaw {\xintIrr{861/123}}=|\dtt{\xintPRaw{\xintIrr{861/123}}}\ vz.\ |\xintIrr{861/123}=|\dtt{\xintIrr{861/123}}} % % See also \csbxint{Frac} (or \csbxint{FwOver}) for math mode. As is examplified above the \csbxint{Irr} macro which puts the fraction into irreducible form does not remove the |/1| if the fraction is an integer. One can use |\xintNum{f}| or |\xintPRaw{\xintIrr{f}}| which produces the same output only if |f| is an integer (after simplication). \subsection{\csbh{xintNumerator}}\label{xintNumerator} This returns\etype{\Ff} the numerator corresponding to the internal representation of a fraction, with positive powers of ten converted into zeroes of this numerator: % % \leftedline{|\xintNumerator {178000/25600000[17]}|\dtt{=\xintNumerator {178000/25600000[17]}}} % \leftedline{|\xintNumerator {312.289001/20198.27}|% \dtt{=\xintNumerator {312.289001/20198.27}}} % \leftedline{|\xintNumerator {178000e-3/256e5}|\dtt{=\xintNumerator {178000e-3/256e5}}} % % \leftedline{|\xintNumerator {178.000/25600000}|\dtt{=\xintNumerator {178.000/25600000}}} As shown by the examples, no simplification of the input is done. For a result uniquely associated to the value of the fraction first apply \csa{xintIrr}. \subsection{\csbh{xintDenominator}}\label{xintDenominator} This returns\etype{\Ff} the denominator corresponding to the internal representation of the fraction:% % \footnote{recall that the |[]| construct excludes presence of a decimal point.} % \leftedline{|\xintDenominator {178000/25600000[17]}|\dtt{=\xintDenominator {178000/25600000[17]}}} % \leftedline{|\xintDenominator {312.289001/20198.27}|% \dtt{=\xintDenominator {312.289001/20198.27}}} % \leftedline{|\xintDenominator {178000e-3/256e5}|\dtt{=\xintDenominator {178000e-3/256e5}}} % % \leftedline{|\xintDenominator {178.000/25600000}|\dtt{=\xintDenominator {178.000/25600000}}} As shown by the examples, no simplification of the input is done. The denominator looks wrong in the last example, but the numerator was tacitly multiplied by $1000$ through the removal of the decimal point. For a result uniquely associated to the value of the fraction first apply \csa{xintIrr}. \subsection{\csbh{xintRawWithZeros}}\label{xintRawWithZeros} %{\small New name in |1.07| (former name |\xintRaw|).\par} This macro `prints'\etype{\Ff} the fraction |f| (after its parsing and expansion) in |A/B| form, with |A| as returned by \csa{xintNumerator}|{f}| and |B| as returned by \csa{xintDenominator}|{f}|. % \leftedline{|\xintRawWithZeros{\the\numexpr 571*987\relax.123e-10/\the\numexpr -201+59\relax e-7}=|} % \leftedline{\dtt{\xintRawWithZeros{\the\numexpr 571*987\relax.123e-10/\the\numexpr -201+59\relax e-7}}} \subsection{\csbh{xintREZ}}\label{xintREZ} This command\etype{\Ff} normalizes a fraction by removing the powers of ten from its numerator and denominator: % % \leftedline{|\xintREZ {178000/25600000[17]}|\dtt{=\xintREZ {178000/25600000[17]}}} % \leftedline{|\xintREZ {1780000000000e30/2560000000000e15}|\dtt{=\xintREZ {1780000000000e30/2560000000000e15}}} As shown by the example, it does not otherwise simplify the fraction. \subsection{\csbh{xintFrac}}\label{xintFrac} This is a \LaTeX{} only command,\etype{\Ff} to be used in math mode only. It will print a fraction, internally represented as something equivalent to |A/B[n]| as |\frac {A}{B}10^n|. The power of ten is omitted when |n=0|, the denominator is omitted when it has value one, the number being separated from the power of ten by a |\cdot|. |$\xintFrac {178.000/25600000}$| gives $\xintFrac {178.000/25600000}$, |$\xintFrac {178.000/1}$| gives $\xintFrac {178.000/1}$, |$\xintFrac {3.5/5.7}$| gives $\xintFrac {3.5/5.7}$, and |$\xintFrac {\xintNum {\xintFac{10}/|\allowbreak|\xintiSqr{\xintFac {5}}}}$| gives $\xintFrac {\xintNum {\xintFac{10}/\xintiSqr{\xintFac {5}}}}$. As shown by the examples, simplification of the input (apart from removing the decimal points and moving the minus sign to the numerator) is not done automatically and must be the result of macros such as |\xintIrr|, |\xintREZ|, or |\xintNum| (for fractions being in fact integers.) \subsection{\csbh{xintSignedFrac}}\label{xintSignedFrac} %{\small New with release |1.04|.\par} This is as \csbxint{Frac}\etype{\Ff} except that a negative fraction has the sign put in front, not in the numerator. % % \leftedline{|\[\xintFrac {-355/113}=\xintSignedFrac {-355/113}\]|} \[\xintFrac {-355/113}=\xintSignedFrac {-355/113}\] \subsection{\csbh{xintFwOver}}\label{xintFwOver} This does the same as \csa{xintFrac}\etype{\Ff} except that the \csa{over} primitive is used for the fraction (in case the denominator is not one; and a pair of braces contains the |A\over B| part). |$\xintFwOver {178.000/25600000}$| gives $\xintFwOver {178.000/25600000}$, |$\xintFwOver {178.000/1}$| gives $\xintFwOver {178.000/1}$, |$\xintFwOver {3.5/5.7}$| gives $\xintFwOver {3.5/5.7}$, and |$\xintFwOver {\xintNum {\xintFac{10}/\xintiSqr{\xintFac {5}}}}$| gives $\xintFwOver {\xintNum {\xintFac{10}/\xintiSqr{\xintFac {5}}}}$. \subsection{\csbh{xintSignedFwOver}}\label{xintSignedFwOver} %{\small New with release |1.04|.\par} This is as \csbxint{FwOver}\etype{\Ff} except that a negative fraction has the sign put in front, not in the numerator. % % \leftedline{|\[\xintFwOver {-355/113}=\xintSignedFwOver {-355/113}\]|} \[\xintFwOver {-355/113}=\xintSignedFwOver {-355/113}\] \subsection{\csbh{xintIrr}}\label{xintIrr} This puts the fraction\etype{\Ff} into its unique irreducible form: % \leftedline{|\xintIrr {178.256/256.178}|% \dtt{=\xintIrr {178.256/256.178}}${}=\xintFrac{\xintIrr {178.256/256.178}[0]}$} % Note that the current implementation does not cleverly first factor powers of 2 and 5, so input such as |\xintIrr {2/3[100]}| will make \xintfracname do the Euclidean division of |2|\raisebox{.5ex}{|.|}|10^{100}| by |3|, which is a bit stupid. Starting with release |1.08|, \csa{xintIrr} does not remove the trailing |/1| when the output is an integer. This was deemed better for various (stupid?) reasons and thus the output format is now \emph{always} |A/B| with |B>0|. Use \csbxint{PRaw} on top of \csa{xintIrr} if it is needed to get rid of a possible trailing |/1|. For display in math mode, use rather |\xintFrac{\xintIrr {f}}| or |\xintFwOver{\xintIrr {f}}|. \subsection{\csbh{xintJrr}}\label{xintJrr} This also puts the fraction\etype{\Ff} into its unique irreducible form: % \leftedline{|\xintJrr {178.256/256.178}|% \dtt{=\xintJrr {178.256/256.178}}} % This is faster than \csa{xintIrr} for fractions having some big common factor in the numerator and the denominator.\par {\centering |\xintJrr {\xintiPow{\xintFac {15}}{3}/\xintiiPrdExpr {\xintFac{10}}{\xintFac{30}}{\xintFac{5}}\relax }|\dtt{=% \xintJrr {\xintiPow{\xintFac {15}}{3}/\xintiiPrdExpr {\xintFac{10}}{\xintFac{30}}{\xintFac{5}}\relax }}\par} But to notice the difference one would need computations with much bigger numbers than in this example. Starting with release |1.08|, \csa{xintJrr} does not remove the trailing |/1| when the output is an integer. \subsection{\csbh{xintTrunc}}\label{xintTrunc} \csa{xintTrunc}|{x}{f}|\etype{\numx\Ff} returns the integral part, a dot, and then the first |x| digits of the decimal expansion of the fraction |f|. The argument |x| should be non-negative. In the special case when |f| evaluates to $0$, the output is $0$ with no decimal point nor decimal digits, else the post decimal mark digits are always printed. A non-zero negative |f| which is smaller in absolute value than |10^{-x}| will give $-0.000...$. % \leftedline{|\xintTrunc {16}{-803.2028/20905.298}|\dtt{=\xintTrunc {16}{-803.2028/20905.298}}} % \leftedline{|\xintTrunc {20}{-803.2028/20905.298}|\dtt{=\xintTrunc {20}{-803.2028/20905.298}}} % \leftedline{|\xintTrunc {10}{\xintPow {-11}{-11}}|\dtt{=\xintTrunc {10}{\xintPow {-11}{-11}}}} % \leftedline{|\xintTrunc {12}{\xintPow {-11}{-11}}|\dtt{=\xintTrunc {12}{\xintPow {-11}{-11}}}} % \leftedline{|\xintTrunc {12}{\xintAdd {-1/3}{3/9}}|\dtt{=\xintTrunc {12}{\xintAdd {-1/3}{3/9}}}} The digits printed are exact up to and including the last one. % The identity |\xintTrunc {x}{-f}=-\xintTrunc {x}{f}| % holds.% % % \footnote{Recall that |-\string\macro| is not valid as argument to any % package macro, one must use |\string\xintOpp\string{\string\macro\string}| or % |\string\xintiOpp\string{\string\macro\string}|, except inside % |\string\xinttheexpr...\string\relax|.} \subsection{\csbh{xintiTrunc}}\label{xintiTrunc} \csa{xintiTrunc}|{x}{f}|\etype{\numx\Ff} returns the integer equal to |10^x| times what \csa{xintTrunc}|{x}{f}| would produce. % \leftedline{|\xintiTrunc {16}{-803.2028/20905.298}|\dtt{=\xintiTrunc {16}{-803.2028/20905.298}}} % \leftedline{|\xintiTrunc {10}{\xintPow {-11}{-11}}|\dtt{=\xintiTrunc {10}{\xintPow {-11}{-11}}}} % \leftedline{|\xintiTrunc {12}{\xintPow {-11}{-11}}|\dtt{=\xintiTrunc {12}{\xintPow {-11}{-11}}}} % The difference between \csa{xintTrunc}|{0}{f}| and \csa{xintiTrunc}|{0}{f}| is that the latter never has the decimal mark always present in the former except for |f=0|. And \csa{xintTrunc}|{0}{-0.5}| returns ``\dtt{\xintTrunc 0{-0.5}}'' whereas \csa{xintiTrunc}|{0}{-0.5}| simply returns ``\dtt{\xintiTrunc 0{-0.5}}''. \subsection{\csbh{xintTTrunc}}\label{xintTTrunc} \csa{xintTTrunc}|{f}|\etype{\Ff} truncates to an integer (truncation towards zero; \textcolor[named]{PineGreen}{New}). This is the same as |\xintiTrunc {0}{f}| and as \csbxint{Num}. \subsection{\csbh{xintXTrunc}}\label{xintXTrunc} %{\small New with release |1.09j|.\par} \csa{xintXTrunc}|{x}{f}|\retype{\numx\Ff} is completely expandable but not \fexpan dable, as is indicated by the hollow star in the margin. It can not be used as argument to the other package macros, but is designed to be used inside an |\edef|, or rather a |\write|. Here is an example session where the user after some warming up checks that $1/66049=1/257^2$ has period $257*256=65792$ (it is also checked here that this is indeed the smallest period). % \begingroup\small \everb|@ xxx:_xint $ etex -jobname worksheet-66049 This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013) restricted \write18 enabled. **\relax entering extended mode *\input xintfrac.sty (./xintfrac.sty (./xint.sty (./xinttools.sty))) *\message{\xintTrunc {100}{1/71}}% Warming up! 0.01408450704225352112676056338028169014084507042253521126760563380281690140845 07042253521126760563380 *\message{\xintTrunc {350}{1/71}}% period is 35 0.01408450704225352112676056338028169014084507042253521126760563380281690140845 0704225352112676056338028169014084507042253521126760563380281690140845070422535 2112676056338028169014084507042253521126760563380281690140845070422535211267605 6338028169014084507042253521126760563380281690140845070422535211267605633802816 901408450704225352112676056338028169 *\edef\Z {\xintXTrunc {65792}{1/66049}}% getting serious... *\def\trim 0.{}\oodef\Z {\expandafter\trim\Z}% removing 0. *\edef\W {\xintXTrunc {131584}{1/66049}}% a few seconds *\oodef\W {\expandafter\trim\W} *\oodef\ZZ {\expandafter\Z\Z}% doubling the period *\ifx\W\ZZ \message{YES!}\else\message{BUG!}\fi % xint never has bugs... YES! *\message{\xintTrunc {260}{1/66049}}% check visually that 256 is not a period 0.00001514027464458205271843631243470756559523989765174340262532362337052794137 6856576178291874214598252812306015231116292449545034746930309315810988811337037 6538630410755651107511090251177156353616254598858423291798513225029902042423049 5541189117170585474420505 *\edef\X {\xintXTrunc {257*128}{1/66049}}% infix here ok, less than 8 tokens *\oodef\X {\expandafter\trim\X}% we now have the first 257*128 digits *\oodef\XX {\expandafter\X\X}% was 257*128 a period? *\ifx\XX\Z \message{257*128 is a period}\else \message{257 * 128 not a period}\fi 257 * 128 not a period *\immediate\write-1 {1/66049=0.\Z... (repeat)} *\oodef\ZA {\xintNum {\Z}}% we remove the 0000, or we could use next \xintiMul *\immediate\write-1 {10\string^65792-1=\xintiiMul {\ZA}{66049}} *% This was slow :( I should write a multiplication, still completely *% expandable, but not f-expandable, which could be much faster on such cases. *\bye No pages of output. Transcript written on worksheet-66049.log. xxx:_xint $ | \endgroup Using |\xintTrunc| rather than |\xintXTrunc| would be hopeless on such long outputs (and even |\xintXTrunc| needed of the order of seconds to complete here). But it is not worth it to use |\xintXTrunc| for less than hundreds of digits. Fraction arguments to |\xintXTrunc| corresponding to a |A/B[N]| with a negative |N| are treated somewhat less efficiently (additional memory impact) than for positive or zero |N|. This is because the algorithm tries to work with the smallest denominator hence does not extend |B| with zeroes, and technical reasons lead to the use of some tricks.% % \footnote{Technical note: I do not provide an |\xintXFloat| because this would almost certainly mean having to clone the entire core division routines into a ``long division'' variant. But this could have given another approach to the implementation of |\xintXTrunc|, especially for the case of a negative |N|. Doing these things with \TeX{} is an effort. Besides an |\xintXFloat| would be interesting only if also for example the square root routine was provided in an |X| version (I have not given thought to that). If feasible |X| routines would be interesting in the |\xintexpr| context where things are expanded inside |\csname..\endcsname|.} Contrarily to \csbxint{Trunc}, in the case of the second argument revealing itself to be exactly zero, \csbxint{XTrunc} will output $0.000...$, not $0$. Also, the first argument must be at least $1$. \subsection{\csbh{xintRound}}\label{xintRound} %{\small New with release |1.04|.\par} \csa{xintRound}|{x}{f}|\etype{\numx\Ff} returns the start of the decimal expansion of the fraction |f|, rounded to |x| digits precision after the decimal point. The argument |x| should be non-negative. Only when |f| evaluates exactly to zero does \csa{xintRound} return |0| without decimal point. When |f| is not zero, its sign is given in the output, also when the digits printed are all zero. % % \leftedline{|\xintRound {16}{-803.2028/20905.298}|\dtt{=\xintRound {16}{-803.2028/20905.298}}} % \leftedline{|\xintRound {20}{-803.2028/20905.298}|\dtt{=\xintRound {20}{-803.2028/20905.298}}} % \leftedline{|\xintRound {10}{\xintPow {-11}{-11}}|\dtt{=\xintRound {10}{\xintPow {-11}{-11}}}} % \leftedline{|\xintRound {12}{\xintPow {-11}{-11}}|\dtt{=\xintRound {12}{\xintPow {-11}{-11}}}} % \leftedline{|\xintRound {12}{\xintAdd {-1/3}{3/9}}|\dtt{=\xintRound {12}{\xintAdd {-1/3}{3/9}}}} The identity |\xintRound {x}{-f}=-\xintRound {x}{f}| holds. And regarding $(-11)^{-11}$ here is some more of its expansion: % \leftedline{\dtt{\xintTrunc {50}{\xintPow {-11}{-11}}\dots}} \subsection{\csbh{xintiRound}}\label{xintiRound} %{\small New with release |1.04|.\par} \csa{xintiRound}|{x}{f}|\etype{\numx\Ff} returns the integer equal to |10^x| times what \csa{xintRound}|{x}{f}| would return. % % \leftedline{|\xintiRound {16}{-803.2028/20905.298}|\dtt{=\xintiRound {16}{-803.2028/20905.298}}} % \leftedline{|\xintiRound {10}{\xintPow {-11}{-11}}|\dtt{=\xintiRound {10}{\xintPow {-11}{-11}}}} % Differences between \csa{xintRound}|{0}{f}| and \csa{xintiRound}|{0}{f}|: the former cannot be used inside integer-only macros, and the latter removes the decimal point, and never returns |-0| (and removes all superfluous leading zeroes.) \subsection{\csbh{xintFloor}, \csbh{xintiFloor}} \label{xintFloor}\label{xintiFloor} %{\small New with release |1.09a|.\par} |\xintFloor {f}|\etype{\Ff} returns the largest relative integer |N| with |N|${}\leqslant{}$|f|. % % \leftedline{|\xintFloor {-2.13}|\dtt{=\xintFloor {-2.13}}, |\xintFloor {-2}|\dtt{=\xintFloor {-2}}, |\xintFloor {2.13}|\dtt{=\xintFloor {2.13}} % } |\xintiFloor {f}|\etype{\Ff} does the same but without adding the |/1[0]|.\inmarg{New} % \leftedline{|\xintiFloor {-2.13}|\dtt{=\xintiFloor {-2.13}}, |\xintiFloor {-2}|\dtt{=\xintiFloor {-2}}, |\xintiFloor {2.13}|\dtt{=\xintiFloor {2.13}}} \subsection{\csbh{xintCeil}, \csbh{xintiCeil}} \label{xintCeil}\label{xintiCeil} %{\small New with release |1.09a|.\par} |\xintCeil {f}|\etype{\Ff} returns the smallest relative integer |N| with |N|${}>{}$|f|. % % \leftedline{|\xintCeil {-2.13}|\dtt{=\xintCeil {-2.13}}, |\xintCeil {-2}|\dtt{=\xintCeil {-2}}, |\xintCeil {2.13}|\dtt{=\xintCeil {2.13}} % } |\xintiCeil {f}|\etype{\Ff} does the same but without adding the |/1[0]|.\inmarg{New} \subsection{\csbh{xintTFrac}}\label{xintTFrac} \csa{xintTFrac}|{f}|\etype{\Ff} returns the fractional part, |f=trunc(f)+frac(f)|. The |T| stands for `Trunc', and there could similar macros associated to `Round', `Floor', and `Ceil'. Inside |\xintexpr..\relax|, the function |frac| is mapped to \csa{xintTFrac}. Inside |\xint|\-|floatexpr..\relax|, |frac| first applies \csa{xintTFrac} to its argument (which may be in float format, or an exact fraction), and only next makes the float conversion. % \leftedline{|\xintTFrac {1235/97}|\dtt{=\xintTFrac {1235/97}}\quad |\xintTFrac {-1235/97}|\dtt{=\xintTFrac {-1235/97}}} % \leftedline{|\xintTFrac {1235.973}|\dtt{=\xintTFrac {1235.973}}\quad |\xintTFrac {-1235.973}|\dtt{=\xintTFrac {-1235.973}}} % \leftedline{|\xintTFrac {1.122435727e5}|% \dtt{=\xintTFrac {1.122435727e5}}} \subsection{\csbh{xintE}}\label{xintE} %{\small New with |1.07|.} |\xintE {f}{x}|\etype{\Ff\numx} multiplies the fraction |f| by $10^x$. The \emph{second} argument |x| must obey the \TeX{} bounds. Example: % \leftedline{|\count 255 123456789 \xintE {10}{\count 255}|\dtt{->\count 255 123456789 \xintE {10}{\count 255}}} Be careful that for obvious reasons such gigantic numbers should not be given to \csbxint{Num}, or added to something with a widely different order of magnitude, as the package always works to get the \emph{exact} result. There is \emph{no problem} using them for \emph{float} operations:% % \leftedline{|\xintFloatAdd {1e1234567890}{1}|\dtt{=\xintFloatAdd {1e1234567890}{1}}} \subsection{\csbh{xintFloatE}}\label{xintFloatE} %{\small New with |1.097|.} |\xintFloatE [P]{f}{x}|\etype{{\upshape[\numx]}\Ff\numx} multiplies the input |f| by $10^x$, and converts it to float format according to the optional first argument or current value of |\xintDigits|. % \leftedline{|\xintFloatE {1.23e37}{53}|\dtt{=\xintFloatE {1.23e37}{53}}} \subsection{\csbh{xintDigits}, \csbh{xinttheDigits}}\label{xintDigits} %{\small New with release |1.07|.\par} The syntax |\xintDigits := D;| (where spaces do not matter) assigns the value of |D| to the number of digits to be used by floating point operations. The default is |16|. The maximal value is |32767|. The macro |\xinttheDigits|\etype{} serves to print the current value. \subsection{\csbh{xintFloat}}\label{xintFloat} %{\small New with release |1.07|.\par} The macro |\xintFloat [P]{f}|\etype{{\upshape[\numx]}\Ff} has an optional argument |P| which replaces the current value of |\xintDigits|. The (rounded truncation of the) fraction |f| is then printed in scientific form, with |P| digits, a lowercase |e| and an exponent |N|. The first digit is from |1| to |9|, it is preceded by an optional minus sign and is followed by a dot and |P-1| digits, the trailing zeroes are not trimmed. In the exceptional case where the rounding went to the next power of ten, the output is |10.0...0eN| (with a sign, perhaps). The sole exception is for a zero value, which then gets output as |0.e0| (in an \csa{xintCmp} test it is the only possible output of \csa{xintFloat} or one of the `Float' macros which will test positive for equality with zero). % \leftedline{|\xintFloat[32]{1234567/7654321}|% \dtt{=\xintFloat[32]{1234567/7654321}}} % \pdfresettimer % \leftedline{|\xintFloat[32]{1/\xintFac{100}}|% \dtt{=\xintFloat[32]{1/\xintFac{100}}}} % \the\pdfelapsedtime % 992: plus rapide que ce que j'aurais cru.. The argument to \csa{xintFloat} may be an |\xinttheexpr|-ession, like the other macros; only its final evaluation is submitted to \csa{xintFloat}: the inner evaluations of chained arguments are not at all done in `floating' mode. For this one must use |\xintthefloatexpr|. \subsection{\csbh{xintPFloat}}\label{xintPFloat} The macro |\xintPFloat [P]{f}|\etype{{\upshape[\numx]}\Ff} is like \csbxint{Float} but ``pretty-prints'' the output, in the sense of dropping the scientific notation if possible. Here are the rules: \begin{enumerate} \item if it is possible to drop the scientific part and express the number as a decimal number with the same number of digits as in the significand and a decimal mark, it is done so, \item if the number is less than one and at most four zeros need be inserted after the decimal mark to express it without scientific part, it is done so, \item if the number is zero it is printed as \dtt{\xintPFloat{0}}. All other cases have either a decimal mark or a scientific part or both. \item trailing zeros are not trimmed. \end{enumerate} \begin{everbatim*} \begin{itemize}[noitemsep] \item \xintPFloat {0} \item \xintPFloat {123} \item \xintPFloat {0.00004567} \item \xintPFloat {0.000004567} \item \xintPFloat {12345678e-12} \item \xintPFloat {12345678e-13} \item \xintPFloat {12345678.12345678} \item \xintPFloat {123456789.123456789} \item \xintPFloat {123456789123456789} \item \xintPFloat {1234567891234567} \end{itemize} \end{everbatim*} \subsection{\csbh{xintAdd}}\label{xintAdd} Computes the addition\etype{\Ff\Ff} of two fractions. To keep for integers the integer format on output use \csbxint{iAdd}. Checks if one denominator is a multiple of the other. Else multiplies the denominators. \subsection{\csbh{xintFloatAdd}}\label{xintFloatAdd} %{\small New with release |1.07|.\par} |\xintFloatAdd [P]{f}{g}|\etype{{\upshape[\numx]}\Ff\Ff} first replaces |f| and |g| with their float approximations, with 2 safety digits. It then adds exactly and outputs in float format with precision |P| (which is optional) or |\xintDigits| if |P| was absent, the result of this computation. \subsection{\csbh{xintSub}}\label{xintSub} Computes the difference\etype{\Ff\Ff} of two fractions (|\xintSub{F}{G}| computes |F-G|). To keep for integers the integer format on output use \csbxint{iSub}. Checks if one denominator is a multiple of the other. Else multiplies the denominators. \subsection{\csbh{xintFloatSub}}\label{xintFloatSub} %{\small New with release |1.07|.\par} |\xintFloatSub [P]{f}{g}|\etype{{\upshape[\numx]}\Ff\Ff} first replaces |f| and |g| with their float approximations, with 2 safety digits. It then subtracts exactly and outputs in float format with precision |P| (which is optional), or |\xintDigits| if |P| was absent, the result of this computation. \subsection{\csbh{xintMul}}\label{xintMul} Computes the product\etype{\Ff\Ff} of two fractions. To keep for integers the integer format on output use \csbxint{iMul}. No reduction attempted. \subsection{\csbh{xintSqr}}\label{xintSqr} Computes the square\etype{\Ff} of one fraction. To maintain for integer input an integer format on output use \csbxint{iSqr}. \subsection{\csbh{xintFloatMul}}\label{xintFloatMul} %{\small New with release |1.07|.\par} |\xintFloatMul [P]{f}{g}|\etype{{\upshape[\numx]}\Ff\Ff} first replaces |f| and |g| with their float approximations, with 2 safety digits. It then multiplies exactly and outputs in float format with precision |P| (which is optional), or |\xintDigits| if |P| was absent, the result of this computation. \subsection{\csbh{xintDiv}}\label{xintDiv} Computes the algebraic quotient \etype{\Ff\Ff} of two fractions. (|\xintDiv{F}{G}| computes |F/G|). To keep for integers the integer format on output use \csbxint{iMul}. No reduction attempted. \subsection{\csbh{xintFloatDiv}}\label{xintFloatDiv} %{\small New with release |1.07|.\par} |\xintFloatDiv [P]{f}{g}|\etype{{\upshape[\numx]}\Ff\Ff} first replaces |f| and |g| with their float approximations, with 2 safety digits. It then divides exactly and outputs in float format with precision |P| (which is optional), or |\xintDigits| if |P| was absent, the result of this computation. \subsection{\csbh{xintFac}}\label{xintFac} %{\small Modified in |1.08b| (to allow fractions on input).\par} The original\etype{\Numf} is extended to allow a fraction |f| which will be truncated first to an integer |n| (non negative and at most |999999|, but already |100000!| is prohibitively time-costly). On output |n!| (with no trailing |/1[0]|). The original macro\etype{\numx} (which parses its input via |\numexpr|) is still available as \csbxint{iFac}. \subsection{\csbh{xintPow}}\label{xintPow} \csa{xintPow}{|{f}{g}|}:\etype{\Ff\Numf} computes |f^g| with |f| a fraction and |g| possibly also, but |g| will first get truncated to an integer. The output will now always be in the form |A/B[n]| (even when the exponent vanishes: |\xintPow {2/3}{0}|\dtt{=\xintPow{2/3}{0}}). The original is available as \csbxint{iPow}. The exponent (after truncation to an integer) will be checked to not exceed |100000|. Indeed |2^50000| already has \dtt{\xintLen {\xintFloatPow [1]{2}{50000}}} digits, and squaring such a number would take hours (I think) with the expandable routine of \xintname. \subsection{\csbh{xintFloatPow}}\label{xintFloatPow} %{\small New with |1.07|.\par} |\xintFloatPow [P]{f}{x}|\etype{{\upshape[\numx]}\Ff\numx} uses either the optional argument |P| or the value of |\xintDigits|. It computes a floating approximation to |f^x|. The precision |P| must be at least |1|, naturally. The exponent |x| will be fed to a |\numexpr|, hence count registers are accepted on input for this |x|. And the absolute value \verb+|x|+ must obey the \TeX{} bound. For larger exponents use the slightly slower routine \csbxint{FloatPower} which allows the exponent to be a fraction simplifying to an integer and does not limit its size. This slightly slower routine is the one to which |^| is mapped inside |\xintthefloatexpr...\relax|. The macro |\xintFloatPow| chooses dynamically an appropriate number of digits for the intermediate computations, large enough to achieve the desired accuracy (hopefully). % \leftedline{|\xintFloatPow [8]{3.1415}{1234567890}|% \dtt{=\xintFloatPow [8]{3.1415}{1234567890}}} \subsection{\csbh{xintFloatPower}}\label{xintFloatPower} %{\small New with |1.07|.\par} \csa{xintFloatPower}|[P]{f}{g}|\etype{{\upshape[\numx]}\Ff\Numf} computes a floating point value |f^g| where the exponent |g| is not constrained to be at most the \TeX{} bound \texttt{\number "7FFFFFFF}. It may even be a fraction |A/B| but must simplify to a (possibly big) integer. % \leftedline{|\xintFloatPower [8]{1.000000000001}{1e12}|% \dtt{=\xintFloatPower [8]{1.000000000001}{1e12}}} % \leftedline{|\xintFloatPower [8]{3.1415}{3e9}|% \dtt{=\xintFloatPower [8]{3.1415}{3e9}}} Note that |3e9>2^31|. But the number following |e| in the output must at any rate obey the \TeX{} \dtt{\number"7FFFFFFF} bound. Inside an |\xintfloatexpr|-ession, \csa{xintFloatPower} is the function to which |^| is mapped. The exponent may then be something like |(144/3/(1.3-.5)-37)| which is, in disguise, an integer. The intermediate multiplications are done with a higher precision than |\xintDigits| or the optional |P| argument, in order for the final result to hopefully have the desired accuracy. \subsection{\csbh{xintFloatSqrt}}\label{xintFloatSqrt} %{\small New with |1.08|.\par} \csa{xintFloatSqrt}|[P]{f}|\etype{{\upshape[\numx]}\Ff} computes a floating point approximation of $\sqrt{|f|}$, either using the optional precision |P| or the value of |\xintDigits|. The computation is done for a precision of at least 17 figures (and the output is rounded if the asked-for precision was smaller). % \leftedline{|\xintFloatSqrt [50]{12.3456789e12}|} % \leftedline{${}\approx{}$\dtt{\xintFloatSqrt [50]{12.3456789e12}}} % \leftedline{|\xintDigits:=50;\xintFloatSqrt {\xintFloatSqrt {2}}|} % \leftedline{${}\approx{}$\xintDigits:=50;\dtt{\xintFloatSqrt {\xintFloatSqrt {2}}}} % maple: 0.351364182864446216166582311675807703715914271812431919843183 1O^7 % 3.5136418286444621616658231167580770371591427181243e6 % maple: 1.18920711500272106671749997056047591529297209246381741301900 % 1.1892071150027210667174999705604759152929720924638e0 \xintDigits:=16; % removed from doc october 22 % \subsection{\csbh{xintSum}, \csbh{xintSumExpr}}\label{xintSum} % \label{xintSumExpr} \subsection{\csbh{xintSum}}\label{xintSum}\label{xintSumExpr} % The original commands are extended to accept fractions on input and produce % fractions on output. Their outputs will now always be in the form |A/B[n]|. The % originals are available as \csa{xintiiSum} and \csa{xintiiSumExpr}. This\etype{f{$\to$}{\lowast\Ff}} computes the sum of fractions. The output will now always be in the form |A/B[n]|. The original, for big integers only (in strict format), is available as \csa{xintiiSum}. \begin{everbatim*} \xintSum {{1282/2196921}{-281710/291927}{4028/28612}} \end{everbatim*} No simplification attempted. % \subsection{\csbh{xintPrd}, \csbh{xintPrdExpr}}\label{xintPrd}\label{xintPrdExpr} \subsection{\csbh{xintPrd}}\label{xintPrd}\label{xintPrdExpr} TThis\etype{f{$\to$}{\lowast\Ff}} computes the product of fractions. The output will now always be in the form |A/B[n]|. The original, for big integers only (in strict format), is available as \csa{xintiiPrd}. \begin{everbatim*} \xintPrd {{1282/2196921}{-281710/291927}{4028/28612}} \end{everbatim*} No simplification attempted. \subsection{\csbh{xintCmp}}\label{xintCmp} %{\small Rewritten in |1.08a|.\par} This\etype{\Ff\Ff} compares two fractions |F| and |G| and produces |-1|, |0|, or |1| according to |FG|. For choosing branches according to the result of comparing |f| and |g|, the following syntax is recommended: |\xintSgnFork{\xintCmp{f}{g}}{code for fg}|. % Note that since release |1.08a| using this macro on inputs with large powers of % tens does not take a quasi-infinite time, contrarily to the earlier, somewhat % dumb version (the earlier version indirectly led to the creation of giant chains % of zeroes in certain circumstances, causing a serious efficiency impact). \subsection{\csbh{xintIsOne}} This\etype{\Ff} returns |1| if the fraction is |1| and |0| if not. \begin{everbatim*} \xintIsOne {21921379213/21921379213} but \xintIsOne {1.00000000000000000000000000000001} \end{everbatim*} \subsection{\csbh{xintGeq}}\label{xintGeq} %{\small Rewritten in |1.08a|.\par} This\etype{\Ff\Ff} compares the \emph{absolute values} of two fractions.|\xintGeq{f}{g}| returns |1| if {\catcode`| 12 $|f|\geqslant|g|$} and |0| if not. May be used for expandably branching as: \verb+\xintSgnFork{\xintGeq{f}{g}}{}{code for |f|<|g|}{code for |f|+$\geqslant$\verb+|g|}+ \subsection{\csbh{xintMax}}\label{xintMax} %{\small Rewritten in |1.08a|.\par} The maximum of two fractions.\etype{\Ff\Ff} But now |\xintMax {2}{3}| returns \dtt{\xintMax {2}{3}}. The original, for use with (possibly big) integers only with no need of normalization, is available as \csbxint{iiMax}: |\xintiiMax {2}{3}=|\dtt{\xintiMax {2}{3}}.\etype{ff} There is also \csbxint{iMax}\etype{\Numf\Numf} which works with fractions but first truncates them to integers. \begin{everbatim*} \xintMax {2.5}{7.2} but \xintiMax {2.5}{7.2} \end{everbatim*} \subsection{\csbh{xintMin}}\label{xintMin} %{\small Rewritten in |1.08a|.\par} The maximum of two fractions.\etype{\Ff\Ff} The original, for use with (possibly big) integers only with no need of normalization, is available as \csbxint{iiMin}: |\xintiiMin {2}{3}=|\dtt{\xintiMin {2}{3}}.\etype{ff} There is also \csbxint{iMin}\etype{\Numf\Numf} which works with fractions but first truncates them to integers. \begin{everbatim*} \xintMin {2.5}{7.2} but \xintiMin {2.5}{7.2} \end{everbatim*} \subsection{\csbh{xintMaxof}}\label{xintMaxof} The maximum of any number of fractions, each within braces, and the whole thing within braces. \etype{f{$\to$}{\lowast\Ff}} \begin{everbatim*} \xintMaxof {{1.23}{1.2299}{1.2301}} and \xintMaxof {{-1.23}{-1.2299}{-1.2301}} \end{everbatim*} \subsection{\csbh{xintMinof}}\label{xintMinof} The minimum of any number of fractions, each within braces, and the whole thing within braces. \etype{f{$\to$}{\lowast\Ff}} \begin{everbatim*} \xintMinof {{1.23}{1.2299}{1.2301}} and \xintMinof {{-1.23}{-1.2299}{-1.2301}} \end{everbatim*} \subsection{\csbh{xintAbs}}\label{xintAbs} The absolute value\etype{\Ff}. Note that |\xintAbs {-2}|\dtt{=\xintAbs {-2}} whereas |\xintiAbs {-2}|\dtt{=\xintiAbs {-2}}. \subsection{\csbh{xintSgn}}\label{xintSgn} The sign of a fraction.\etype{\Ff} \subsection{\csbh{xintOpp}}\label{xintOpp} The opposite of a fraction. Note that |\xintOpp {3}| now outputs \dtt{\xintOpp {3}} whereas |\xintiOpp {3}| returns \dtt{\xintiOpp {3}}. \subsection{\csbh{xintiDivision}, \csbh{xintiQuo}, \csbh{xintiRem}, \csbh{xintFDg}, \csbh{xintLDg}, \csbh{xintMON}, \csbh{xintMMON}, \csbh{xintOdd}} These macros\etype{\Ff\Ff} accept a fraction (or two) on input but will truncate it (them) to an integer using \csbxint{Num} (which is the same as \csbxint{TTrunc}). On output they produce integers without |/| nor |[N]|. All have variants from package \xintname whose names start with |xintii| rather than |xint|; these variants accept on input only integers in the strict format (they do not use \csbxint{Num}). They thus have less overhead, and may be used when one is dealing exclusively with (big) integers. % \leftedline{|\xintNum {1e80}|} % \leftedline{\dtt{\xintNum{1e80}}} %\etocdepthtag.toc {xintexpr} \section{Commands of the \xintexprname package}% \label{sec:expr} \localtableofcontents The \xintexprname package was first released with version |1.07| (|2013/05/25|) of the \xintname bundle. The package loads automatically \xintfracname and \xinttoolsname (it is now the only arithmetic package from the \xintname bundle which loads \xinttoolsname). \begin{itemize} \item for using the |gcd| and |lcm| functions, it is necessary to load package \xintgcdname. \begin{everbatim*} \xinttheexpr lcm (2^5*7*13^10*17^5,2^3*13^15*19^3,7^3*13*23^2)\relax \end{everbatim*} \item for allowing hexadecimal numbers (uppercase letters) on input, it is necessary to load package \xintbinhexname. \begin{everbatim*} \xinttheexpr "A*"B*"C*"D*"D*"F, "FF.FF, reduce("FF.FFF + 16^-3)\relax \end{everbatim*} \end{itemize} Release |1.1| has brought many changes to \xintexprname. See \autoref{sec:expr11} if you are already familiar with the earlier versions. \subsection{The \csbh{xintexpr} expressions}\label{xintexpr}% \label{xinttheexpr}\label{xintthe} An \xintexprname{}ession is a construct \csbxint{expr}\meta{expandable\_expression}|\relax|\etype{x} where the expandable expression is read and completely expanded from left to right. During this parsing, braced sub-content may be serving as usual as a macro parameter, or as a branch to the |?| two-way and |??| three-way operators. Prior to release |1.1|, there were also some other usage, but this has been removed. It was mainly needed because there was no other way to feed the number parser directtly with fractions in the |A/B[N]| notation which is the output format of the \xintfracname macros. There was no real need to use such macros anyhow. If one really wants to, one can now directly: \begin{everbatim*} \xinttheexpr \xintAdd{3/5[2]}{7/13[2]}+199/13[1]\relax \end{everbatim*} Notice in passing that the expressions benefit from the improved handling of denominators by \csbxint{Add} and \csbxint{Sub} from \xintfracname, which are the macros to which naturally |+| and |-| are mapped. An |\xintexpr..\relax| \emph{must} end in a |\relax| (which will be absorbed). Like a |\numexpr| expression, it is not printable as is, nor can it be directly employed as argument to the other package macros. For this one must use one of the two equivalent forms: \begin{itemize} \item \csbxint{theexpr}\meta{expandable\_expression}|\relax|\etype{x}, or \item \csbxint{the}|\xintexpr|\meta{expandable\_expression}|\relax|.\etype{x} \end{itemize} The computations are done \emph{exactly}, and with no simplification of the result. The result can be modified via the functions |round|, |trunc|, |float|, or |reduce|.% % \footnote{In |round| and |trunc| the second optional parameter is the number of digits of the fractional part; in |float| it is the total number of digits of the mantissa.} % Here are some examples\par \leftedline{|\xinttheexpr 1/5!-1/7!-1/9!\relax|% \dtt{=\xinttheexpr 1/5!-1/7!-1/9!\relax}} \leftedline{|\xinttheexpr round(1/5!-1/7!-1/9!,18)\relax|% \dtt{=\xinttheexpr round(1/5!-1/7!-1/9!,18)\relax}} \leftedline{|\xinttheexpr float(1/5!-1/7!-1/9!,18)\relax|% \dtt{=\xinttheexpr float(1/5!-1/7!-1/9!,18)\relax}} \leftedline{|\xinttheexpr reduce(1/5!-1/7!-1/9!)\relax|% \dtt{=\xinttheexpr reduce(1/5!-1/7!-1/9!)\relax}} \leftedline{|\xinttheexpr 1.99^-2 - 2.01^-2 \relax|% \dtt{=\xinttheexpr 1.99^-2 - 2.01^-2 \relax}} \leftedline{|\xinttheexpr round(1.99^-2 - 2.01^-2, 10)\relax|% \dtt{=\xinttheexpr round(1.99^-2 - 2.01^-2, 10) \relax}}\par With |1.1| on has: \leftedline{|\xinttheiexpr [10] 1.99^-2 - 2.01^-2\relax|% \dtt{=\xinttheiexpr [10] 1.99^-2 - 2.01^-2\relax}} \begin{itemize} \item the expression may contain arbitrarily many levels of nested parenthesized sub-expressions. \item to let sub-contents evaluate as a sub-unit it should be either \begin{enumerate} \item parenthesized, \item or a sub-expression |\xintexpr...\relax|. \end{enumerate} When the parser scans a number and hits against either an opening parenthesis or a sub-expression it inserts tacitly a |*|. \item to either give an expression as argument to the other package macros, or more generally to macros which expand their arguments, one must use the |\xinttheexpr...\relax| or |\xintthe\xintexpr...\relax| forms. Similarly, printing the result itself must be done with these forms. \item one should not use |\xinttheexpr...\relax| as a sub-constituent of an |\xintexpr...\relax| but rather the |\xintexpr...\relax| form which will be more efficient. \item each \xintexprname{}ession, whether prefixed or not with |\xintthe|, is completely expandable and obtains its result in two expansion steps. \end{itemize} In an algorithm implemented non-expandably, one may define macros to expand to infix expressions to be used within others. One then has the choice between parentheses or |\xintexpr...\relax|: |\def\x {(\a+\b)}| or |\def\x {\xintexpr \a+\b\relax}|. The latter is the better choice as it allows also to be prefixed with |\xintthe|. Furthemore, if |\a| and |\b| are already defined |\edef\x {\xintexpr \a+\b\relax}| will do the computation on the spot. Rather than |\edef| one can use |\oodef|. \subsection{The syntax} An expression is enclosed between either \csbxint{expr}, or \csbxint{iexpr}, or \csbxint{iiexpr}, or \csbxint{floatexpr}, or \csbxint{boolexpr} and a \emph{mandatory} ending |\relax|. An expression may be a sub-unit of another one. Apart from \csbxint{floatexpr} the evaluations of algebraic operations are \emph{exact}. The variant \csbxint{iiexpr} does not know fractions and is provided for integer-only calculations. The variant \csbxint{iexpr} is exactly like \csbxint{expr} except that it either rounds the final result to an integer, or in case of an optional parameter |[d]|, rounds to a fixed point number with |d| digits after decimal mark. The variant \csbxint{floatexpr} does float calculations according to the current value of the precision set by |\xintDigits|. The whole expression should be prefixed by |\xintthe| when it is destined to be printed on the typeset page, or given as argument to a macro (assuming this macro systematically expands its argument). As a shortcut to |\xintthe\xintexpr| there is |\xinttheexpr|. One gets used to not forget the two |t|'s. |\xintexpr|-essions and |\xinttheexpr|-essions are completely expandable, in two steps. \begin{itemize} \item An expression is built the standard way with opening and closing parentheses, infix operators, and (big) numbers, with possibly a fractional part, and/or scientific notation (except for \csbxint{iiexpr} which only admits big integers). All variants work with comma separated expressions. On output each comma will be followed by a space. \item as everything gets expanded, the characters |.|, |+|, |-|, |*|, |/|, |^|, |!|, |&|, \verb+|+, |?|, |:|, |<|, |>|, |=|, |(|, |)|, |"|, |]|, |[|, |@| and the comma |,| should not (if used in the expression) be active. For example, the French language in |Babel| system, for pdf\LaTeX, activates |!|, |?|, |;| and |:|. Turn off the activity before the expressions. Alternatively the command \csbxint{exprSafeCatcodes} resets all characters potentially needed by \csbxint{expr} to their standard catcodes and \csbxint{exprRestoreCatcodes} restores the status prevailing at the time of the previous \csa{xintexprSafeCatcodes}. \item The infix operators are |+|, |-|, |*|, |/|, |^| (or |**|) for exact or floating point algebra (only integer exponents for power operations), |&&| and \verb+||+ \footnote{with releases earlier than |1.1|, only single character operators |&| and \verb+|+ were available, because the parser did not handle multi-character operators. Their usage in this rôle is now deprecated,\IMPORTANT{} as they may be assigned some new meaning in the future.} for combining ``true'' (non zero) and ``false'' (zero) conditions, as can be formed for example with the |=| (or |==|), |<|, |>|, |<=|, |>=|, |!=| comparison operators. \item The |!| is either a function (the logical not) requiring an argument within parentheses, or a post-fix operator which does the factorial (so far, no float version). \item The |?| may serve either as a function (the truth value) requiring an argument within parentheses), or as two-way post-fix branching operator |(cond)?{YES}{NO}|. The false branch will \emph{not} be evaluated. \item There is also |??| which branches according to the scheme |(x)??{<0}{=0}{>0}|. \item Comma separated lists may be generated with |a..b| and |a..[d]..b| and they may be manipulated to some extent once put into brackets: \begin{itemize} \item |a..b| constructs the \textbf{small} integers from $\lceil a\rceil$ to $\lfloor b\rfloor$ (possibly a decreasing sequence), \begin{everbatim*} \xinttheexpr 1.5..11.23\relax \end{everbatim*} \item |a..[d]..b| allows big integers, or fractions, it proceeds by step of |d|. \begin{everbatim*} \xinttheexpr 1.5..[0.97]..11.23\relax \end{everbatim*} \item |[list][n]| extracts the |n|th element, or give the number of items if |n=0|. If |n<0| it extracts from the tail. \begin{everbatim*} \xinttheiexpr \empty[1..10][6], [1..10][0], [1..10][-1], [1..10][23*18-22*19]\relax\ (and 23*18-22*19 has value \the\numexpr 23*18-22*19\relax). \end{everbatim*} See the frame coming next for the |\empty| token. As shown, it is perfectly legal to do operations in the index parameter, which will be handled by the parser as everything else. The same remark applies to the next items. \item |[list][:n]| extracts the first |n| elements if |n>0|, or suppresses the last \verb+|n|+ elements if |n<0|. \begin{everbatim*} \xinttheiiexpr [1..10][:6]\relax\ and \xinttheiiexpr [1..10][:-6]\relax \end{everbatim*} \item |[list][n:]| suppresses the first |n| elements if |n>0|, or extracts the last \verb+|n|+ elements if |n<0|. \begin{everbatim*} \xinttheiiexpr [1..10][6:]\relax\ and \xinttheiiexpr [1..10][-6:]\relax \end{everbatim*} \item More generally, |[list][a:b]| works according to the Python ``slicing'' rules (inclusive of negative indices). Notice though that there is no optional third argument for the step, which always defaults to |+1|. \begin{everbatim*} \xinttheiiexpr [1..20][6:13]\relax\ = \xinttheiiexpr [1..20][6-20:13-20]\relax \end{everbatim*} \item It is naturally possible to nest these things: \begin{everbatim*} \xinttheexpr [[1..50][13:37]][10:-10]\relax \end{everbatim*} \item itemwise operations either on the left or the right are possible: \begin{everbatim*} \xinttheiiexpr 123*[1..10]^2\relax \end{everbatim*} \begin{snugframed} As list operations are implemented using square brackets, it is necessary in |\xintiexpr| and |\xintfloatexpr| to insert something before the first bracket if it belongs to a list, to avoid confusion with the bracket of an optional parameter. We need something expandable which does not leave a trace: the |\empty| does the trick.\IMPORTANT{} \begin{everbatim*} \xinttheiexpr \empty [1,3,6,99,100,200][2:4]\relax \end{everbatim*} An alternative is to use parentheses \begin{everbatim*} \xinttheiexpr ([1,3,6,99,100,200][2:4])\relax \end{everbatim*} Notice though that |([1,3,6,99,100,200])[2:4]| would not work. It is mandatory for |][| and |][:| not to be interspersed with parentheses. On the other hand spaces are perfectly legal: \begin{everbatim*} \xinttheiiexpr [1..10 ] [ : 7 ]\relax \end{everbatim*} Similarly all the |+[|, |*[|, \dots and |]**|, |]/|, \dots operators admit spaces but nothing else in-between their constituent characters. \begin{everbatim*} \xinttheiiexpr [ 1 . . 1 0 ] * * 1 1 \relax \end{everbatim*} In an other vein, the parser will be confused by |1..[list][3]|, one must write |1..([list][3])|. Also things such as |[100,300,500,700][2]//11| will be confusing because the |]/| is an operator with higher priority than the |][|, and then there will a dangling |/11| which does not make sense. In fact even |[100,300,500,700][2]/11| is a syntax error: one must write |([100,300,500,700][2])//11|. \end{snugframed} \end{itemize} \item count registers and |\numexpr|-essions are accepted (LaTeX{}'s counters can be inserted using |\value|) natively without |\the| or |\number| as prefix. Also dimen registers and control sequences, skip registers and control sequences (\LaTeX{}'s lengths), |\dimexpr|-essions, |\glueexpr|-essions are automatically unpacked using |\number|, discarding the stretch and shrink components and giving the dimension value in |sp| units ($1/65536$th of a \TeX{} point). Furthermore, tacit multiplication is implied, when the register, variable, or expression is immediately prefixed by a (decimal) number. \item tacit multiplication (the parser inserts a |*|) applies when the parser is currently scanning the digits of a number (or its decimal part or scientific part), or is looking for an infix operator, and: (1.)~\emph{encounters a register, variable or \eTeX{} expression (as described in the previous item)}, (2.)~\emph{encounters a sub-\csa{xintexpr}-ession}, or (3.)~\emph{encounters an opening parenthesis.} \item when defining a macro to expand to an expression either via % \leftedline{|\def\x {\xintexpr \a + \b \relax}| or |\edef\x {\xintexpr \a+\b\relax}|} % one may then do |\xintthe\x|, either for printing the result on the page or to use it in some other macros expanding their arguments. The |\edef| does the computation but keeps it in an internal private format. Naturally, the |\edef| is only possible if |\a| and |\b| are already defined, either as macros expanding to legal syntax like |37^23*17| or themselves in the same way |\x| above was defined. Indeed in both cases (the `yet-to-be computed' and the `already computed') |\x| can then be inserted in other expressions, as for example % \leftedline {|\edef\y {\xintexpr \x^3\relax}|} % This would have worked also with |\x| defined as |\def\x {(\a+\b)}| but |\edef\x| would not have been an option then, and |\x| could have been used only inside an |\xintexpr|-ession, whereas the previous |\x| can also be used as |\xintthe\x| in any context triggering the expansion of |\xintthe|. \item there is also \csbxint{boolexpr}| ... \relax| and \csbxint{theboolexpr}| ... \relax|. Same as |\xintexpr| with the final result converted to $1$ if it is not zero. See also \csbxint{ifboolexpr} (\autoref{xintifboolexpr}) and the \hyperlink{item:bool}{discussion} of the |bool| and |togl| functions in \autoref{sec:expr}. Here is an example: \catcode`| 12 % \xintNewBoolExpr le fait mais ça sera trop tard % après le \scantokens qui aura redonné à | son % caractère actif... avant j'utilisais ici \everb % avec délimiteur ! \begin{everbatim*} \xintNewBoolExpr \AssertionA[3]{ #1 && (#2|#3) } \xintNewBoolExpr \AssertionB[3]{ #1 || (#2) } \xintNewBoolExpr \AssertionC[3]{ xor(#1,#2,#3) } {\centering\normalcolor\xintFor #1 in {0,1} \do {% \xintFor #2 in {0,1} \do {% \xintFor #3 in {0,1} \do {% #1 AND (#2 OR #3) is \textcolor[named]{OrangeRed}{\AssertionA {#1}{#2}{#3}}\hfil #1 OR (#2 AND #3) is \textcolor[named]{OrangeRed}{\AssertionB {#1}{#2}{#3}}\hfil #1 XOR #2 XOR #3 is \textcolor[named]{OrangeRed}{\AssertionC {#1}{#2}{#3}}\\}}}} \end{everbatim*}\catcode`| 13 This example used for efficiency \csbxint{NewBoolExpr}. See also the \autoref{xintNewExpr}. \item there is \csbxint{floatexpr}| ... \relax| where the algebra is done in floating point approximation (also for each intermediate result). Use the syntax |\xintDigits:=N;| to set the precision. Default: $16$ digits. % \leftedline{|\xintthefloatexpr 2^100000\relax:| \dtt{\xintthefloatexpr 2^100000\relax }} % The square-root operation can be used in |\xintexpr|, it is computed as a float with the precision set by |\xintDigits| or by the optional second argument: % \begin{everbatim*} \xinttheexpr sqrt(2,60)\relax Here the [60] is to avoid truncation to |\xintDigits| of precision on output. \printnumber{\xintthefloatexpr [60] sqrt(2,60)\relax} \end{everbatim*} \item Floats are quickly indispensable when using the power function (which can only have an integer exponent), as exact results will easily have hundreds, if not thousands, of digits. % \begin{everbatim*} \xintDigits:=48;\xintthefloatexpr 2^100000\relax \end{everbatim*} \item hexadecimal \TeX{} number denotations (\emph{i.e.}, with a |"| prefix) are recognized by the |\xintexpr| parser and its variants. \fbox{This requires \xintbinhexname}. Except in |\xintiiexpr|, a (possibly empty) fractional part with the dot |.| as ``hexadecimal'' mark is allowed. % \leftedline{|\xinttheexpr "FEDCBA9876543210\relax|$\to$\dtt{\xinttheexpr "FEDCBA9876543210\relax}} % \leftedline{|\xinttheiexpr 16^5-("F75DE.0A8B9+"8A21.F5746+16^-5)\relax|$\to$\dtt{\xinttheiexpr 16^5-("F75DE.0A8B9+"8A21.F5746+16^-5)\relax}} % Letters must be uppercased, as with standard \TeX{} hexadecimal denotations. \end{itemize} Note that |2^-10| is perfectly accepted input, no need for parentheses; operators of power |^|, division |/|, and subtraction |-| are all left-associative: |2^4^8| is evaluated as |(2^4)^8|. The minus sign as prefix has various precedence levels: |\xintexpr -3-4*-5^-7\relax| evaluates as |(-3)-(4*(-(5^(-7))))| and |-3^-4*-5-7| as |(-((3^(-4))*(-5)))-7|. If one uses directly macros within |\xintexpr..\relax|, rather than the operators or the functions which are described next, one should obviously take into account that the parser will \emph{not} see the macro arguments. Here is, listed from the highest priority to the lowest, the complete list of operators and functions. % \ctexttt is a remnant of 1.09n manual, don't have time to get rid of it now. \newcommand\ctexttt [1]{\begingroup\color[named]{DarkOrchid}%\bfseries #1\endgroup} \begin{itemize} \item Functions are at the same top level of priority. All functions even |?| and |!| (as prefix) require parentheses around their arguments. \begin{snugframed} \ctexttt{num, reduce, abs, sgn, frac, floor, ceil, sqr, sqrt, sqrtr, float, round, trunc, mod, quo, rem, gcd, lcm, max, min, `+`, `*`, ?, !, not, all, any, xor, if, ifsgn, even, odd, first, last, reversed, bool, togl, add, mul, seq, subs, rseq, rrseq, iter} |quo|, |rem|, |even|, |odd|, |gcd| and |lcm| will first truncate their arguments to integers; the latter two require package \xintgcdname; |togl| requires the |etoolbox| package; |all|, |any|, |xor|, |`+`|, |`*`|, |max| and |min| are functions with arbitrarily many comma separated arguments. |bool| and |togl| use delimited macros to fetch their argument whose closing parenthesis thus must be explicit, not arising from expansion. Similarly |add|, |mul|, |subs|, |seq|, |rseq|, |rrseq|, |iter| use at some stages delimited macros. They work with \emph{dummy variables}, represented as one Latin letter (lowercase or uppercase) followed by a mandatory |=| sign, then a comma separated list of values to assign in turn to the dummy variable, which will be substituted in the expression which was parsed as the first, comma delimited, argument to the function; additionally |rseq|, |rrseq| and |iter| have a mandatory initial comma separated list which is separated by a semi-colon from the expression to evaluate iteratively. |seq|, |rseq|, |rrseq|, |iter| but not |add|, |mul|, |subs| admit the |omit|, |abort|, and |break(..)| keywords, possibly but not necessarily in combination with a potentially infinite list generated by a |n++| expression. They may be nested. \end{snugframed} \begin{description} \item[functions with a single (numeric) argument] \noindent\par \begin{description} \item[num] truncates to the nearest integer (truncation towards zero) \begin{everbatim*} \xinttheexpr num(3.1415^20)\relax \end{everbatim*} \item[reduce] reduces a fraction to smallest terms \begin{everbatim*} \xinttheexpr reduce(50!/20!/20!/10!)\relax \end{everbatim*} Recall that this is NOT done automatically, for example when adding fractions. \item[abs] absolute value \item[sgn] sign \item[frac] fractional part \begin{everbatim*} \xinttheexpr frac(-355/113), frac(-1129.218921791279)\relax \end{everbatim*} \item[floor] floor function \item[ceil] ceil function \item[sqr] square \item[sqrt] in |\xintiiexpr|, truncated square root; in |\xintexpr| or |\xintfloatexpr| this is the floating point square root, and there is an optional second argument for the precision. \item[sqrtr] in |\xintiiexpr| only, rounded square root. \item[?] |?(x)| is the truth value, $1$ if non zero, $0$ if zero. Must use parentheses. \item[!] |!(x)| is logical not, $0$ if non zero, $1$ if zero. Must use parentheses. \item[not] logical not \item[even] evenness of the truncation \begin{everbatim*} \xinttheexpr seq((x,even(x)), x=-5/2..[1/3]..+5/2)\relax \end{everbatim*} \item[odd] oddness of the truncation \begin{everbatim*} \xinttheexpr seq((x,odd(x)), x=-5/2..[1/3]..+5/2)\relax \end{everbatim*} \end{description} \item[functions with an alphabetical argument] \noindent\par \hypertarget{item:bool} {\ctexttt{bool,togl}}. |bool(name)| returns $1$ if the \TeX{} conditional |\ifname| would act as |\iftrue| and $0$ otherwise. This works with conditionals defined by |\newif| (in \TeX{} or \LaTeX{}) or with primitive conditionals such as |\ifmmode|. For example: % \leftedline{|\xintifboolexpr{25*4-if(bool(mmode),100,75)}{YES}{NO}|} % will return $\xintifboolexpr{25*4-if(bool(mmode),100,75)}{YES}{NO}$ if executed in math mode (the computation is then $100-100=0$) and \xintifboolexpr{25*4-if(bool(mmode),100,75)}{YES}{NO} if not (the \ctexttt{if} conditional is described below; the \csbxint{ifboolexpr} test automatically encapsulates its first argument in an |\xintexpr| and follows the first branch if the result is non-zero (see \autoref{xintifboolexpr})). The alternative syntax |25*4-\ifmmode100\else75\fi| could have been used here, the usefulness of |bool(name)| lies in the availability in the |\xintexpr| syntax of the logic operators of conjunction |&&|, inclusive disjunction \verb+||+, negation |!| (or |not|), of the multi-operands functions |all|, |any|, |xor|, of the two branching operators |if| and |ifsgn| (see also |?| and |??|), which allow arbitrarily complicated combinations of various |bool(name)|. Similarly |togl(name)| returns $1$ if the \LaTeX{} package \href{http://www.ctan.org/pkg/etoolbox}{etoolbox}% % % % \footnote{\url{http://www.ctan.org/pkg/etoolbox}} % has been used to define a toggle named |name|, and this toggle is currently set to |true|. Using |togl| in an |\xintexpr..\relax| without having loaded \href{http://www.ctan.org/pkg/etoolbox}{etoolbox} will result in an error from |\iftoggle| being a non-defined macro. If |etoolbox| is loaded but |togl| is used on a name not recognized by |etoolbox| the error message will be of the type ``ERROR: Missing |\endcsname| inserted.'', with further information saying that |\protect| should have not been encountered (this |\protect| comes from the expansion of the non-expandable |etoolbox| error message). When |bool| or |togl| is encountered by the |\xintexpr| parser, the argument enclosed in a parenthesis pair is expanded as usual from left to right, token by token, until the closing parenthesis is found, but everything is taken literally, no computations are performed. For example |togl(2+3)| will test the value of a toggle declared to |etoolbox| with name |2+3|, and not |5|. Spaces are gobbled in this process. It is impossible to use |togl| on such names containing spaces, but |\iftoggle{name with spaces}{1}{0}| will work, naturally, as its expansion will pre-empt the |\xintexpr| scanner. There isn't in |\xintexpr...| a |test| function available analogous to the |test{\ifsometest}| construct from the |etoolbox| package; but any \emph{expandable} |\ifsometest| can be inserted directly in an |\xintexpr|-ession as |\ifsometest10| (or |\ifsometest{1}{0}|), for example |if(\ifsometest{1}{0},YES,NO)| (see the |if| operator below) works. A straight |\ifsometest{YES}{NO}| would do the same more efficiently, the point of |\ifsometest10| is to allow arbitrary boolean combinations using the (described later) \verb+&+ and \verb+|+ logic operators: \verb+\ifsometest10 & \ifsomeothertest10 | \ifsomethirdtest10+, etc... |YES| or |NO| above stand for material compatible with the |\xintexpr| parser syntax. See also \csbxint{ifboolexpr}, in this context. \item[functions with one mandatory and a second but optional argument] \noindent\par \begin{description} \item[round] For example |round(-2^9/3^5,12)=|\dtt{\xinttheexpr round(-2^9/3^5,12)\relax.} \item[trunc] For example |trunc(-2^9/3^5,12)=|\dtt{\xinttheexpr trunc(-2^9/3^5,12)\relax.} \item[float] For example |float(-20^9/3^5,12)=|\dtt{\xinttheexpr float(-20^9/3^5,12)\relax.} \item [sqrt] in \csbxint{expr} and \csbxint{floatexpr}, uses the float evaluation with the precision given by the optional second argument. \begin{everbatim*} \xinttheexpr sqrt(2,31)\relax\ and \xinttheiiexpr sqrt(num(2e60))\relax \end{everbatim*} \end{description} \item[functions with two arguments] \noindent\par \begin{description} \item[quo] first truncates the arguments then computes the Euclidean quotient. \item[rem] first truncates the arguments then computes the Euclidean remainder. \item[mod] computes the modulo associated to the truncated division, same as |/:| infix operator \begin{everbatim*} \xinttheexpr mod(11/7,1/13), reduce(((11/7)//(1/13))*1/13+mod(11/7,1/13)), mod(11/7,1/13)- (11/7)/:(1/13), (11/7)//(1/13)\relax \end{everbatim*} \end{description} \item[the if conditional (twofold way)] \noindent\par \ctexttt{if}|(cond,yes,no)| checks if |cond| is true or false and takes the corresponding branch. Any non zero number or fraction is logical true. The zero value is logical false. Both ``branches'' are evaluated (they are not really branches but just numbers). See also the |?| operator. \item[the ifsgn conditional (threefold way)] \noindent\par \ctexttt{ifsgn}|(cond,<0,=0,>0)| checks the sign of |cond| and proceeds correspondingly. All three are evaluated. See also the |??| operator. \item[functions with an arbitrary number of arguments] \noindent\par This argument may well be generated by one or many |a..b| or |a..[d]..b| constructs, separated by commas. \begin{description} \item[all] inserts a logical |AND| in between arguments and evaluates, \item[any] inserts a logical |OR| in between all arguments and evaluates, \item[xor] inserts a logical |XOR| in between all arguments and evaluates, \item[|`+`|] adds (left ticks mandatory), \item[|`*`|] multiplies (left ticks mandatory), \item[max] maximum, \item[min] minimum, \item[gcd] first truncates to integers then computes the |GCD|, requires \xintgcdname, \item[lcm] first truncates to integers then computes the |LCM|, requires \xintgcdname, \item[first] first among comma separated items, |first(list)| is like |[list][:1]|. \begin{everbatim*} \xinttheiiexpr first(-7..3), [-7..3][:1]\relax \end{everbatim*} \item[last] last among comma separated items, |last(list)| is like |[list][-1:]|. \begin{everbatim*} \xinttheiiexpr last(-7..3), [-7..3][-1:]\relax \end{everbatim*} \item[reversed] reverses the order \begin{everbatim*} \xinttheiiexpr reversed(123..150)\relax \end{everbatim*} \end{description} \item[functions using dummy variables] \noindent\par They are nestable to arbitrary depth if suitably parenthesized. \begin{description} \item [subs] for variable substitution, useful to get something evaluated only once \begin{everbatim*} % ATTENTION that xz generates an error, 'unknown variable xz', one must use x*z \xinttheexpr subs(subs(seq(x*z,x=1..10),z=y^2),y=10)\relax \end{everbatim*} \item[add] addition \begin{everbatim*} \xinttheiiexpr add(x^3,x=1..50)\relax \end{everbatim*} \item[mul] multiplication \begin{everbatim*} \xinttheiiexpr subs(mul(2n+1,n=1..N),N=30)\relax \end{everbatim*} \item[seq] comma separated values generated according to a formula \begin{everbatim*} \xinttheiiexpr seq(x(x+1)(x+2)(x+3),x=1..10)\relax \end{everbatim*} \begin{everbatim*} \xinttheiiexpr seq(seq(i^2+j^2, i=0..j), j=0..10)\relax \end{everbatim*} \end{description} \item[rseq] recursive sequence, |@| for the previous value. \begin{everbatim*} % ATTENTION y/2@ would give (y/2)@, that is (y/2)*@ !! \printnumber {\xintthefloatexpr subs(rseq (1; @/2+y/(2@), i=1..10),y=1000)\relax } \end{everbatim*} In case the initial stretch is a comma separated list, |@| refers at the first iteration to the whole list. Use parentheses at each iteration to maintain this ``nuple''. \begin{everbatim*} \printnumber{\xintthefloatexpr rseq(1,10^6; (sqrt([@][1]*[@][2]),([@][1]+[@][2])/2), i=1..10)\relax } \end{everbatim*} \item[rrseq] recursive sequence with multiple initial terms. Say, there are |K| of them. Then |@1|, ..., |@4| and then |@@(n)| up to |n=K| refer to the last |K| values. Notice the difference with |rseq| for which |@| refers to the complete list of all initial terms (if there are more than one). \begin{everbatim*} \xinttheiiexpr rrseq(0,1; @1+@2, i=2..30)\relax \end{everbatim*} \begin{everbatim*} \xinttheiiexpr rrseq(0,1,2,3,4,5; @1+@2+@3+@4+@@(5)+@@(6), i=1..20)\relax \end{everbatim*} I implemented an |Rseq| which at all times keeps the memory of \emph{all} previous items, but decided to drop it as the package was becoming big. \item[iter] same as |rrseq| but does not print any value until the last |K|. \begin{everbatim*} \xinttheiiexpr iter(0,1; @1+@2, i=2..5, 6..10)\relax % the iterated over list is allowed to have disjoint defining parts. \end{everbatim*} \end{description} Recursions may be nested, with |@@@(n)| giving access to the values of the outer recursion\dots and there is even |@@@@(n)| but I never tried it! With |seq|, |rseq|, |rrseq|, |iter|, but not with |subs|, |add|, |mul|, one has: \begin{description} \item[abort] stop here and now. \item[omit] omit this value. \item[break] |break(stuff)| to abort and have |stuff| as last value. \item[n++] serves to generate a potentially infinite list \begin{everbatim*} \xinttheiiexpr iter(1;(@>10^40)?{break(@)}{2@},i=1++)\relax % this would not work with i=1,2,3++. Only n++ syntax, nothing before. \end{everbatim*} \end{description} Refer to \autoref{sec:expr11} for more examples. \item The postfix operators \ctexttt{!} and the branching conditionals \ctexttt{?, ??}. \begin{description} \item[{\color[named]{DarkOrchid}!}] computes the factorial of an integer. This is the exact factorial even when used inside |\xintfloatexpr|. \item[{\color[named]{DarkOrchid}?}] is used as |(cond)?{yes}{no}|. It evaluates the (numerical) condition (any non-zero value counts as |true|, zero counts as |false|). It then acts as a macro with two mandatory arguments within braces (hence this escapes from the parser scope, the braces can not be hidden in a macro), chooses the correct branch \emph{without evaluating the wrong one}. Once the braces are removed, the parser scans and expands the uncovered material so for example % \leftedline{|\xinttheiexpr (3>2)?{5+6}{7-1}2^3\relax|} % is legal and computes |5+62^3=|\dtt{\xinttheiexpr(3>2)?{5+(6}{7-(1}2^3)\relax}. Note though that it would be better practice to include here the |2^3| inside the branches. The contents of the branches may be arbitrary as long as once glued to what is next the syntax is respected: {|\xintexpr (3>2)?{5+(6}{7-(1}2^3)\relax| also works.} Differs thus from the |if| conditional in two ways: the false branch is not at all computed, and the number scanner is still active on exit, more digits may follow. \item[{\color[named]{DarkOrchid}??}] is used as |(cond)??{<0}{=0}{>0}|. |cond| is anything, its sign is evaluated and depending on the sign the correct branch is un-braced, the two others are swallowed. The un-braced branch will then be parsed as usual. Differs from the |ifsgn| conditional as the two false branches are not evaluated and furthermore the number scanner is still active on exit. % \leftedline{|\def\x{0.33}\def\y{1/3}|} % \leftedline{|\xinttheexpr (\x-\y)??{sqrt}{0}{1/}(\y-\x)\relax|% \dtt{=\def\x{0.33}\def\y{1/3}% \xinttheexpr (\x-\y)??{sqrt}{0}{1/}(\y-\x)\relax }} % \end{description} \item \def\MicroFont{\color[named]{DarkOrchid}\ttfamily}The |.| as decimal mark; the number scanner treats it as an inherent, optional and unique component of a being formed number. One can do things such as % \leftedline{\restoreMicroFont|\xinttheexpr .^2+2^.\relax|} % which is |0^2+2^0| and produces \dtt{\xinttheexpr .^2+2^.\relax}. \item The |e| and |E| for scientific notation.\inmarg{Changed} They are parsed like the decimal mark is. Thus |1e(3+2)| is no legal syntax anymore, one must use |10^(3+2)| in such cases. \begingroup \restoreMicroFont |1e3^2| is \dtt{\xinttheexpr 1e3^2\relax} \endgroup \item The |"| for hexadecimal numbers: it is treated with highest priority, allowed only at locations where the parser expects to start forming a numeric operand, once encountered it triggers the hexadecimal scanner which looks for successive hexadecimal digits (as usual skipping spaces and expanding forward everything) possibly a unique optional dot (allowed directly in front) and then an optional (possibly empty) fractional part. The dot and fractional part are not allowed in {\restoreMicroFont|\xintiiexpr..\relax|}. The |"| functionality \fbox{requires package \xintbinhexname} (there is no warning, but an ``undefined control sequence'' error will naturally results if the package has not been loaded). \begingroup \restoreMicroFont |"A*"A^"A| is \dtt{\xinttheexpr "A*"A^"A\relax}. \endgroup \item The power operator |^|, or |**|. It is left associative: {\restoreMicroFont|\xinttheiexpr 2^2^3\relax|} evaluates to \xinttheiexpr 2^2^3\relax, not \xinttheiexpr 2^(2^3)\relax. Note that if the float precision is too low, iterated powers within |\xintfloatexpr..\relax| may fail: for example with the default setting |(1+1e-8)^(12^16)| will be computed with |12^16| approximated from its $16$ most significant digits but it has $18$ digits (\dtt{={\xintiiPow{12}{16}}}), hence the result is wrong: % REVOIR CECI \begingroup % \leftedline{$\np{\xintthefloatexpr (1+1e-8)^(12^16)\relax }$} % One should code % \leftedline{\restoreMicroFont|\xintthe\xintfloatexpr (1+1e-8)^\xintiiexpr 12^16\relax \relax|} % to obtain the correct floating point evaluation % REVOIR CECI % \leftedline{$\np{1.00000001}^{12^{16}}\approx\np{\xintthefloatexpr (1+1e-8)^\xintiiexpr 12^16\relax\relax }$} % \endgroup \item Multiplication and division \raisebox{-.3\height}{|*|}, |/|. The division is left associative, too: % \begingroup\restoreMicroFont % |\xinttheiexpr 100/50/2\relax| evaluates to \xinttheiexpr 100/50/2\relax, not \xinttheiexpr 100/(50/2)\relax. % \endgroup Inside \csbxint{iiexpr}, |/| does \emph{rounded} division.\inmarg{Changed} \item Truncated division |//| and modulo |/:| (equivalently |'mod'|, quotes mandatory) are at the same level of priority than multiplication and division, thus left-associative with them. Apply parentheses for disambiguation. \begin{everbatim*} \xinttheexpr 100000//13, 100000/:13, 100000 'mod' 13, trunc(100000/13,10), trunc(100000/:13/13,10)\relax \end{everbatim*} \item The list itemwise operators |*[|, |/[|, |^[|, |**[|, |]*|, |]/|, |]^|, |]**| are at the same precedence level as, respectively, |*| and |/| or |^| and |**|. \item Addition and subtraction |+|, |-|. Again, |-| is left associative: % \begingroup\restoreMicroFont % |\xinttheiexpr 100-50-2\relax| evaluates to \xinttheiexpr 100-50-2\relax, not \xinttheiexpr 100-(50-2)\relax. % \endgroup \item The list itemwise operators |+[|, |-[|, |]+|, |]-|, are at the same precedence level as |+| and |-|, \item Comparison operators |<|, |>|, |=| (same as |==|), |<=|, |>=|, |!=| all at the same level of precedence, use parentheses for disambiguation. \item Conjunction (logical and): |&&| or equivalently |'and'| (quotes mandatory). \item Inclusive disjunction (logical or): \verb+||+ and equivalently |'or'| (quotes mandatory). \item XOR: |'xor'| with mandatory quotes is at the same level of precedence as \verb+||+. \item The comma: \restoreMicroFont With |\xinttheexpr 2^3,3^4,5^6\relax| one obtains as output \xinttheexpr 2^3,3^4,5^6\relax{}. \item The parentheses. \end{itemize} % See \autoref{ssec:countinexpr} for count and dimen registers and variables. \subsection{\texorpdfstring{\texttt{\protect\string\numexpr}}{\textbackslash numexpr} or \texorpdfstring{\texttt{\protect\string\dimexpr}}{\textbackslash dimexpr} expressions, count and dimension registers and variables} \label{ssec:countinexpr} Count registers, count control sequences, dimen registers, dimen control sequences, skips and skip control sequences, |\numexpr|, |\dimexpr|, |\glueexpr| can be inserted directly, they will be unpacked using |\number| (which gives the internal value in terms of scaled points for the dimensional variables: $1$\,|pt|${}=65536$\,|sp|; stretch and shrink components are thus discarded). Tacit multiplication is implied, when a number or decimal number prefixes such a register or control sequence. \LaTeX{} lengths are skip control sequences and \LaTeX{} counters should be inserted using |\value|. In the case of numbered registers like |\count255| or |\dimen0|, the resulting digits will be re-parsed, so for example |\count255 0| is like |100| if |\the\count255| would give |10|. Control sequences define complete numbers, thus cannot be extended that way with more digits, on the other hand they are more efficient as they avoid the re-parsing of their unpacked contents. A token list variable must be prefixed by |\the|, it will not be unpacked automatically (the parser will actually try |\number|, and thus fail). Do not use |\the| but only |\number| with a dimen or skip, as the |\xintexpr| parser doesn't understand |pt| and its presence is a syntax error. To use a dimension expressed in terms of points or other \TeX{} recognized units, incorporate it in |\dimexpr...\relax|. % REVOIR % If one needs to optimize, |1.72\dimexpr 3.2pt\relax| is less efficient % than |1.72*{\number\dimexpr 3.2pt\relax}| as the latter avoids re-parsing the % digits of the representation of the dimension as scaled points. % \centeredline{|\xinttheexpr 1.72\dimexpr 3.2pt\relax/2.71828\relax=|} % \centeredline{|\xinttheexpr 1.72*{\number\dimexpr 3.2pt\relax}/2.71828\relax|} % \centeredline{\dtt{\xinttheexpr 1.72\dimexpr % 3.2pt\relax/2.71828\relax=\xinttheexpr 1.72*{\number\dimexpr % 3.2pt\relax}/2.71828\relax}} Regarding how dimensional expressions are converted by \TeX{} into scaled points see \autoref{sec:Dimensions}. \subsection{Catcodes and spaces} Active characters may (and will) break the functioning of \csbxint{expr}. Inside an expression one may prefix, for example a |:| with |\string|. Or, for a more radical way, there is \csbxint{exprSafeCatcodes}. This is a non-expandable step as it changes catcodes. \subsubsection{\csbh{xintexprSafeCatcodes}} \label{xintexprSafeCatcodes} %{\small New with release |1.09a|.\par} This command sets the catcodes of the relevant characters to safe values. This is used internally by \csbxint{NewExpr} (restoring the catcodes on exit), hence \csbxint{NewExpr} does not have to be protected against active characters. \subsubsection{\csbh{xintexprRestoreCatcodes}}\label{xintexprRestoreCatcodes} %{\small New with release |1.09a|.\par} Restores the catcodes to the earlier state. \bigskip Spaces inside an |\xinttheexpr...\relax| should mostly be innocuous (except inside macro arguments). |\xintexpr| and |\xinttheexpr| are for the most part agnostic regarding catcodes: (unbraced) digits, binary operators, minus and plus signs as prefixes, dot as decimal mark, parentheses, may be indifferently of catcode letter or other or subscript or superscript, ..., it doesn't matter.% % \footnote{Furthermore, although \csbxint{expr} uses \csa{string}, it is (we hope) escape-char agnostic.} The characters |+|, |-|, |*|, |/|, |^|, |!|, |&|, \verb+|+, |?|, |:|, |<|, |>|, |=|, |(|, |)|, |"|, |[|, |]|, |;|, the dot and the comma should not be active if in the expression, as everything is expanded along the way. If one of them is active, it should be prefixed with |\string|. The |!| as either logical negation or postfix factorial operator must be a standard (\emph{i.e.} catcode $12$) |!|, more precisely a catcode $11$ exclamation point |!| must be avoided as it is used internally by |\xintexpr| for various special purposes. Digits, slash, square brackets, minus sign, in the output from an |\xinttheexpr| are all of catcode 12. For |\xintthefloatexpr| the `e' in the output has its standard catcode ``letter''. A macro with arguments will expand and grab its arguments before the parser may get a chance to see them, so the situation with catcodes and spaces is not the same within such macro arguments. \subsection{Expandability, \csh{xinteval}} As is the case with all other package macros |\xintexpr| \fexpan ds (in two steps) to its final (non-printable) result; and |\xinttheexpr| \fexpan ds (in two steps) to the chain of digits (and possibly minus sign |-|, decimal mark |.|, fraction slash |/|, scientific |e|, square brackets |[|, |]|) representing the result. Starting with |1.09j|, an |\xintexpr..\relax| can be inserted without |\xintthe| prefix inside an |\edef|, or a |\write|. It expands to a private more compact representation (five tokens) than |\xinttheexpr| or |\xintthe\xintexpr|. The material between |\xintexpr| and |\relax| should contain only expandable material. The once expanded |\xintexpr| is |\romannumeral0\xinteval|. And there is similarly |\xintieval|, |\xintiieval|, and |\xintfloateval|. For the other cases one can use |\romannumeral-`0| as prefix. For an example of expandable algorithms making use of chains of |\xinteval|-uations connected via |\expandafter| see \autoref{ssec:fibonacci}. An expression can only be legally finished by a |\relax| token, which will be absorbed. It is quite possible to nest expressions among themselves; for example, if one needs inside an |\xintiiexpr...\relax| to do some computations with fractions, rounding the final result to an integer, on just has to insert |\xintiexpr...\relax|. The functioning of the infix operators will not be in the least affected from the fact that the surrounding ``environment'' is the |\xintiiexpr| one. \subsection{Memory considerations} The parser creates an undefined control sequence for each intermediate computation evaluation: addition, subtraction, etc\dots Thus, a moderately sized expression might create 10, or 20 such control sequences. On my \TeX{} installation, the memory available for such things is of circa \np{200000} multi-letter control words. So this means that a document containing hundreds, perhaps even thousands of expressions will compile with no problem. Besides the hash table, also \TeX{} main memory is impacted. Thus, if \xintexprname is used for computing plots% % \footnote{this is not very probable as so far \xintname does not include a mathematical library with floating point calculations, but provides only the basic operations of algebra.}% % , this may cause a problem. There is a (partial) solution.% % \footnote{which convinced me that I could stick with the parser implementation despite its potential impact on the hash-table and other parts of \TeX{}'s memory.} A document can possibly do tens of thousands of evaluations only if some formulas are being used repeatedly, for example inside loops, with counters being incremented, or with data being fetched from a file. So it is the same formula used again and again with varying numbers inside. With the \csbxint{NewExpr} command, it is possible to convert once and for all an expression containing parameters into an expandable macro with parameters. Only this initial definition of this macro actually activates the \csbxint{expr} parser and will (very moderately) impact the hash-table: once this unique parsing is done, a macro with parameters is produced which is built-up recursively from the \csbxint{Add}, \csbxint{Mul}, etc... macros, exactly as it would be necessary to do without the facilities of the \xintexprname package. \subsection{The \csbh{xintNewExpr} command}\label{xintNewExpr} % This allows to define a completely expandable macro with parameters, expanding % in two steps to its final evaluation, and corresponding to the given % \xintname{}expression where the parameters are input using the usual % macro-parameter: |#1|, ..., |#9|. The command is used as: % \leftedline{|\xintNewExpr{\myformula}[n]|\marg{stuff}, where} \begin{itemize} \item \meta{stuff} will be inserted inside |\xinttheexpr . . . \relax|, \item |n| is an integer between zero and nine, inclusive, and tells how many parameters will |\myformula| have (it is \emph{mandatory} even if |n=0|% % \footnote{there is some use for \csa{xintNewExpr}|[0]| compared to an \csa{edef} as \csa{xintNewExpr} has some built-in catcode protection.}) % \item the placeholders |#1|, |#2|, ..., |#n| are used inside \meta{stuff} in their usual r\^ole. \end{itemize} The macro |\myformula| is defined without checking if it already exists, \LaTeX{} users might prefer to do first |\newcommand*\myformula {}| to get a reasonable error message in case |\myformula| already exists. The definition of |\myformula| made by |\xintNewExpr| is global (i.e. it does not obey the scope of environments). The protection against active characters is done automatically. It will be a completely expandable macro entirely built-up using |\xintAdd|, |\xintSub|, |\xintMul|, |\xintDiv|, |\xintPow|, etc\dots as corresponds to the expression written with the infix operators. Macros created by |\xintNewExpr| can thus be nested. \begin{everbatim*} \xintNewFloatExpr \FA [2]{(#1+#2)^10} \xintNewFloatExpr \FB [2]{sqrt(#1*#2)} \begin{enumerate}[nosep] \item \FA {5}{5} \item \FB {30}{10} \item \FA {\FB {30}{10}}{\FB {40}{20}} \end{enumerate} \end{everbatim*} \begin{framed} The whole point of using \csbxint{NewExpr} is to produce a macro whose execution will not populate the hash table contrarily to what |\xintexpr| does to some extent (this impact on some of \TeX{}'s memory gets noticeable only if many of thousands of \csbxint{expr}-essions are evaluated). A ``formula'' created by |\xintNewExpr| is thus a macro whose parameters are given to a possibly very complicated combination of the various macros of \xintname and \xintfracname. Consequently, one can not use at all any infix notation there, but only the input format recognized by the \xintfracname macros. The situation is thus quite distinct from a macro with parameters defined via a simple |\def| such as: % \leftedline{|\def\myformula #1{\xinttheexpr (#1)^3\relax}|} \end{framed} |\xintNewExpr| tries to do as many evaluations as are possible at the time the macro parameters are still parameters. Let's see a few examples. For this I will use |\meaning| which reveals the contents of a macro. We will thus see some private macros of the \xintname bundle, which should not be directly used. If the things look a bit complicated, it is because they have to cater for many possibilities. With |\meaning| we will see what has already been evaluated. \emph{Remark:} In these examples we sometimes use |\printnumber| to avoid for the meaning to go into the right margin, but this zaps all spaces originally in the output from |\meaning|. \begin{everbatim*} \xintNewIIExpr\FA [1]{13*25*78*#1+2826*292}\meaning\FA \end{everbatim*} \smallskip \begin{everbatim*} \xintNewIExpr\FA [2]{(3/5*9/7*13/11*#1-#2)*3^7} \printnumber{\meaning\FA} \end{everbatim*} \smallskip \begin{everbatim*} % an example with optional parameter \xintNewIExpr\FA [3]{[24] (#1+#2)/(#1-#2)^#3} \printnumber{\meaning\FA} \end{everbatim*} \smallskip \begin{everbatim*} \xintNewFloatExpr\FA [2]{[12] 3.1415^3*#1-#2^5} \printnumber{\meaning\FA} \end{everbatim*} \smallskip \begin{everbatim*} \xintNewExpr\DET[9]{ #1*#5*#9+#2*#6*#7+#3*#4*#8-#1*#6*#8-#2*#4*#9-#3*#5*#7 } \printnumber{\meaning\DET} \end{everbatim*} \smallskip \begin{everbatim*} \xintNewExpr\FA[3]{ #1*#1+#2*#2+#3*#3-(#1*#2+#2*#3+#3*#1) } \printnumber{\meaning\FA } \end{everbatim*} One can even do some quite daring things: \begin{everbatim*} \xintNewExpr\FA[5]{[#1..[#2]..#3][#4:#5]} And this works: \begin{itemize}[nosep] \item \FA{1}{3}{90}{20}{30} \item \FA{1}{3}{90}{-40}{-15} \item \FA{1.234}{-0.123}{-10}{3}{7} \end{itemize} \oodef\test {\FA {0}{10}{100}{3}{6}}\meaning\test +++ \end{everbatim*} In the last example though, do not hope to use empty |#4| or |#5|: this is possible in an expression, because the parser identifies |][:| or |:]| and handles them appropriately. Here the macro |\FA| is built with idea that there is something non-empty as it found the place holders |#4| and |#5|. \subsubsection {Conditional operators and \csbh{NewExpr}} The |?| and |??| conditional operators cannot be parsed by |\xintNewExpr| when they contain macro parameters |#1|,\dots, |#9| within their scope. However replacing them with the functions |if| and, respectively |ifsgn|, the parsing should succeed. And the created macro will \emph{not evaluate the branches to be skipped}, thus behaving exactly like |?| and |??| would have in the |\xintexpr|. \begin{everbatim*} \xintNewExpr\Formula [3]{ if((#1>#2) && (#2>#3), sqrt(#1-#2)*sqrt(#2-#3), #1^2+#3/#2) }% \printnumber{\meaning\Formula } \end{everbatim*} This formula (with its |\xintiiifNotZero|) will gobble the false branch without evaluating it when used with given arguments. Remark: the meaning above reveals some of the private macros used by the package. They are not for direct use. Another example \begin{everbatim*} \xintNewExpr\myformula[3]{ ifsgn(#1,#2/#3,#2-#3,#2*#3) }% \meaning\myformula \end{everbatim*} Again, this macro gobbles the false branches, as would have the operator |??| inside an |\xintexpr|-ession. \subsubsection{External macros and \csbh{NewExpr}; the protect function} \label{sssec:protect} For macros within such a created \xintname-formula command, there are two cases:\inmarg{Changed} \begin{itemize} \item the macro does not involve the numbered parameters in its arguments: it may then be left as is, and will be evaluated once during the construction of the formula, \item it does involve at least one of the macro parameters as argument. Then: \begin{snugframed} the whole thing (macro + argument) should be |protect|-ed, not in the \LaTeX{} sense (!), but in the following way: |protect(\macro {#1})|.\IMPORTANT \end{snugframed} \end{itemize} Here is a silly example illustrating the general principle: the macros here have equivalent functional forms which are more convenient; but some of the more obscure package macros of \xintname dealing with integers do not have functions pre-defined to be in correspondance with them, use this mechanism could be applied to them. \begin{everbatim*} \xintNewExpr\myformI[2]{protect(\xintRound{#1}{#2}) - protect(\xintTrunc{#1}{#2})}% \meaning\myformI \xintNewIIExpr\formula [3]{rem(#1,quo(protect(\the\numexpr #2\relax),#3))}% \noindent\meaning\formula \end{everbatim*} Only macros involving the |#1|, |#2|, etc\dots should be protected in this way; the |+|, |*|, etc\dots symbols, the functions from the \csbxint{expr} syntax, none should ever be included in a protected string. \subsubsection{Limitations of \csbxint{NewExpr}} All depends on where the macro parameters arise |#1|, |#2|, ... we went to some effort to allow many things but not everything goes through. |\xintNewExpr| tries to evaluate completely as many things as possible which do not involve the macro parameters. A somewhat elaborate scheme allows to handle also complicated situations with list operations: \begin{everbatim*} \xintNewIExpr \FA [3] {[3] `+`([1.5..[3.5+#1]..#2]*#3)} \begin{itemize}[nosep] \item \FA {3.5}{50}{100} (cf. \xinttheiexpr [3] 1.5..[7]..50\relax) \item \FA {-15}{-100}{20} (cf. \xinttheiexpr [3] 1.5..[-11.5]..-100\relax) \item \FA {0}{20}{1} (cf. \xinttheiexpr [3] 1.5..[3.5]..20\relax) \end{itemize} \end{everbatim*} Some things are definitely expected not to work therein: particularly the |seq|, |rseq|, |rrseq|, |iter| with |omit|, |abort|, |break|. Also, but this is quite anecdotical, |first| and |last| should not work (I did not try; actually I did not try the functions with dummy letters either, because each time I think about compatibility with \csbxint{NewExpr}, my head starts spinning.) Also, using sub-|\xintexpr|-essions (including some of the macro parameters) inside something given to |\xintNewExpr| will probably not work. Naturally, it is always possible to use, after the macro has been constructed, |\xinttheexpr...\relax| among the arguments. \subsection{\csbh{xintiexpr}, \csbh{xinttheiexpr}} \label{xintiexpr}\label{xinttheiexpr} % \label{xintnumexpr}\label{xintthenumexpr} Equivalent\etype{x} to doing |\xintexpr round(...)\relax|. Thus, \emph{only} the final result is rounded to an integer. Half integers are rounded towards $+\infty$ for positive numbers and towards $-\infty$ for negative ones. Comma separated lists of expressions are allowed. An optional parameter within brackets is allowed: if strictly positive it instructs the expression to do its final rounding to the nearest value with that many digits after the decimal mark.\inmarg{New} % Le temps est venu pour leur obsolescence % Initially baptized |\xintnumexpr|, % |\xintthenumexpr| but % I am not too happy about this choice of name; one should keep in mind that % |\numexpr|'s integer division rounds, whereas in |\xintiexpr|, the |/| is an % exact fractional operation, and only the final result is rounded to an integer. % So |\xintnumexpr|, |\xintthenumexpr| are deprecated, and although still provided % for the time being this might change in the future. \subsection{\csbh{xintiiexpr}, \csbh{xinttheiiexpr}} \label{xintiiexpr}\label{xinttheiiexpr} This variant\etype{x} does not know fractions. It deals almost only with long integers. Comma separated lists of expressions are allowed. \begin{framed} It maps |/| to the \emph{rounded} quotient.\inmarg{Changed} The operator |//| is, like in |\xintexpr...\relax|, mapped to \emph{truncated} division. The euclidean quotient (which for positive operands is like the truncated quotient) was, prior to release |1.1|, associated to |/|. The function |quo(a,b)| can still be employed. \end{framed} The \csbxint{iiexpr}-essions use the `ii' macros for addition, subtraction, multiplication, power, square, sums, products, euclidean quotient and remainder. The |round|, |trunc|, |floor|, |ceil| functions are still available, and are about the only places where fractions can be used, but |/| can not be used! This dilemma is solved using |protect|.\inmarg{Changed} For understanding the next example, recall that |round| and |trunc| have a second (non negative) optional argument. In a normal \csbxint{expr}-essions, |round| and |trunc| are mapped to \csbxint{Round} and \csbxint{Trunc}, in \csbxint{iiexpr}-essions, they are mapped to \csbxint{iRound} and \csbxint{iTrunc}. \begin{everbatim*} \xinttheiiexpr 5/3, round(5/3,3), trunc(5/3,3), trunc(\xintDiv {5}{3},3), trunc(\xintRaw {5/3},3)\relax{}, but \xinttheiiexpr 5/3, round(protect(5/3),3), trunc(protect(5/3),3), floor(protect(5/3)), ceil(protect(5/3))\relax{} works! \noindent And with negative numbers: \xinttheiiexpr -5/3, round(protect(-5/3),3), trunc(protect(-5/3),3), floor(protect(-5/3)), ceil(protect(-5/3))\relax. \end{everbatim*} Decimal numbers and numbers using scientific notations must be given as arguments to one of the |num|, or |round|, or etc\dots functions, which will truncate them to an integer.% \inmarg{Changed} Internally the number will be represented with as many zeros as is necessary, thus one does not want to do |num(1e100000)| for example! % \begin{everbatim*} \xinttheiiexpr num(13.4567e3)+num(10000123e-3)\relax % should compute 13456+10000 \end{everbatim*} % The |reduce| function is not available and will raise un error. The |frac| function also. The |sqrt| function is mapped to \csbxint{iiSqrt} which gives a truncated square root. The |sqrtr| function is mapped to \csbxint{iiSqrtR} which gives a rounded square root. One can use the Float macros if one is careful to use |num|, or |round| on their output, \begin{everbatim*} \xinttheiiexpr \xintFloatSqrt [20]{2}, \xintFloatSqrt [20]{3}\relax % no operations \noindent The next example requires the |round|, and one could not put the |+| inside it: \xinttheiiexpr round(\xintFloatSqrt [20]{2},19)+round(\xintFloatSqrt [20]{3},19)\relax (the second argument of |round| and |trunc| tells how many digits from after the decimal mark one should keep.) \end{everbatim*} The whole point of \csbxint{iiexpr} is to gain some speed in \emph{integer-only} algorithms, and the above explanations related to how to nevertheless use fractions therein are a bit peripheral. We observed of the order of $30$\% speed gain when dealing with numbers with circa one hundred digits, but this gain decreases the longer the manipulated numbers become and becomes negligible for numbers with thousand digits: the overhead from parsing fraction format is little compared to other expensive aspects of the expandable shuffling of tokens. \subsection{\csbh{xintboolexpr}, \csbh{xinttheboolexpr}}\label{xintboolexpr}\label{xinttheboolexpr} %{\small New in |1.09c|.\par} Equivalent\etype{x} to doing |\xintexpr ...\relax| and returning $1$ if the result does not vanish, and $0$ is the result is zero. As |\xintexpr|, this can be used on comma separated lists of expressions, and will return a comma separated list of $0$'s and $1$'s. \subsection{\csbh{xintfloatexpr}, \csbh{xintthefloatexpr}}\label{xintfloatexpr}\label{xintthefloatexpr} \csbxint{floatexpr}|...\relax|\etype{x} is exactly like |\xintexpr...\relax| but with the four binary operations and the power function mapped to \csa{xintFloatAdd}, \csa{xintFloatSub}, \csa{xintFloatMul}, \csa{xintFloatDiv} and \csa{xintFloatPower}. The precision for the computation is from the current setting of |\xintDigits|. Comma separated lists of expressions are allowed. An optional parameter within brackets is allowed: the final float will have that many digits of precision. This is provided to get rid of non-relevant last digits.\inmarg{New} Currently, the factorial function hasn't yet a float version; so inside |\xintthefloatexpr . . . \relax|, |n!| will be computed exactly. Perhaps this will be improved in a future release. \xintDigits:= 9; Note that |1.000000001| and |(1+1e-9)| will not be equivalent for |D=\xinttheDigits| set to nine or less. Indeed the addition implicit in |1+1e-9| (and executed when the closing parenthesis is found) will provoke the rounding to |1|. Whereas |1.000000001|, when found as operand of one of the four elementary operations is kept with |D+2| digits, and even more for the power function. % REVOIR ceci % \leftedline{|\xintDigits:= 9; \xintthefloatexpr (1+1e-9)-1\relax|\dtt{=\xintthefloatexpr (1+1e-9)-1\relax}} % \leftedline{|\xintDigits:= 9; \xintthefloatexpr 1.000000001-1\relax|\dtt{=\xintthefloatexpr 1.000000001-1\relax}} For the fun of it:\xintDigits:=20; |\xintDigits:=20;|% % \leftedline{|\xintthefloatexpr (1+1e-7)^1e7\relax|% \dtt{=\xintthefloatexpr (1+1e-7)^1e7\relax}} |\xintDigits:=36;|\xintDigits:=36; % \leftedline{|\xintthefloatexpr ((1/13+1/121)*(1/179-1/173))/(1/19-1/18)\relax|} % \leftedline{\dtt{\xintthefloatexpr ((1/13+1/121)*(1/179-1/173))/(1/19-1/18)\relax}} % \leftedline{|\xintFloat{\xinttheexpr ((1/13+1/121)*(1/179-1/173))/(1/19-1/18)\relax}|} % \leftedline{\dtt{\xintFloat {\xinttheexpr((1/13+1/121)*(1/179-1/173))/(1/19-1/18)\relax}}} \xintDigits := 16; The latter result is the rounding of the exact result. The previous one has rounding errors coming from the various roundings done for each sub-expression. It was a bit funny to discover that |maple|, configured with |Digits:=36;| and with decimal dots everywhere to let it input the numbers as floats, gives exactly the same result with the same rounding errors as does |\xintthefloatexpr|! Using |\xintthefloatexpr| only pays off compared to using |\xinttheexpr| followed with |\xintFloat| if the computations turn out to involve hundreds of digits. For elementary calculations with hand written numbers (not using the scientific notation with exponents differing greatly) it will generally be more efficient to use |\xinttheexpr|. The situation is quickly otherwise if one starts using the Power function. Then, |\xintthefloat| is often useful; and sometimes indispensable to achieve the (approximate) computation in reasonable time. We can try some crazy things: % \leftedline{|\xintDigits:=12;\xintthefloatexpr 1.000000000000001^1e15\relax|} % \leftedline{\xintDigits:=12;% \dtt{\xintthefloatexpr 1.000000000000001^1e15\relax}} % Contrarily to some professional computing sofware which are our concurrents on this market, the \dtt{1.000000000000001} wasn't rounded to |1| despite the setting of \csa{xintDigits}; it would have been if we had input it as |(1+1e-15)|. % \xintDigits:=12; % \pdfresettimer % \edef\z{\xintthefloatexpr 1.000000000000001^1e15\relax}% % \edef\temps{\the\pdfelapsedtime}% % \xintRound {5}{\temps/65536}s\endgraf \xintDigits := 16; % mais en fait \centeredline crée un groupe. \subsection{\csbh{xintifboolexpr}}\label{xintifboolexpr} %{\small New in |1.09c|.\par} \csh{xintifboolexpr}|{}{YES}{NO}|\etype{xnn} does |\xinttheexpr \relax| and then executes the |YES| or the |NO| branch depending on whether the outcome was non-zero or zero. || can involve various |&| and \verb+|+, parentheses, |all|, |any|, |xor|, the |bool| or |togl| operators, but is not limited to them: the most general computation can be done, the test is on whether the outcome of the computation vanishes or not. Will not work on an expression composed of comma separated sub-expressions. \subsection{\csbh{xintifboolfloatexpr}}\label{xintifboolfloatexpr} %{\small New in |1.09c|.\par} \csh{xintifboolfloatexpr}|{}{YES}{NO}|\etype{xnn} does |\xintthefloatexpr \relax| and then executes the |YES| or the |NO| branch depending on whether the outcome was non zero or zero. \subsection{\csbh{xintifbooliiexpr}}\label{xintifbooliiexpr} %{\small New in |1.09i|.\par} \csh{xintifbooliiexpr}|{}{YES}{NO}|\etype{xnn} does |\xinttheiiexpr \relax| and then executes the |YES| or the |NO| branch depending on whether the outcome was non zero or zero. \subsection{\csbh{xintNewFloatExpr}}\label{xintNewFloatExpr} This is exactly like \csbxint{NewExpr} except that the created formulas are set-up to use |\xintthefloatexpr|. The precision used for the computation will be the one given by |\xintDigits| at the time of use of the created formulas. However, the numbers hard-wired in the original expression will have been evaluated with the then current setting for |\xintDigits|. \begin{everbatim*} \xintNewFloatExpr \f [1] {sqrt(#1)} \f {2} (with \xinttheDigits{} of precision). {\xintDigits := 32;\f {2} (with \xinttheDigits{} of precision).} \xintNewFloatExpr \f [1] {sqrt(#1)*sqrt(2)} \f {2} (with \xinttheDigits {} of precision). {\xintDigits := 32;\f {2} (?? we thought we had a higher precision.Explanation next)} The sqrt(2) in the second formula was computed with only \xinttheDigits{} of precision. Setting |\xintDigits| to a higher value at the time of definition will confirm that the result above is from a mismatch of the precision for |sqrt(2)| at the time of its evaluation and the precision for the new |sqrt(2)| with |#1=2| at the time of use. {\xintDigits := 32;\xintNewFloatExpr \f [1] {sqrt(#1)*sqrt(2)} \f {2} (with \xinttheDigits {} of precision)} \end{everbatim*} \subsection{\csbh{xintNewIExpr}}\label{xintNewIExpr} %{\small New in |1.09c|.\par } Like \csbxint{NewExpr} but using |\xinttheiexpr|. %Former denomination was %|\xintNewNumExpr| which is deprecated and should not be used. \subsection{\csbh{xintNewIIExpr}}\label{xintNewIIExpr} %{\small New in |1.09i|.\par } Like \csbxint{NewExpr} but using |\xinttheiiexpr|. \subsection{\csbh{xintNewBoolExpr}}\label{xintNewBoolExpr} %{\small New in |1.09c|.\par } Like \csbxint{NewExpr} but using |\xinttheboolexpr|. \xintDigits:= 16; \subsection{\csbh{xintthecoords}}\label{xintthecoords} From a comma separated output of an even number of items as output by |\xintfloatexpr [P] ...\relax| or by |\xintiexpr [D] ...\relax|, creates coordinate pairs for |TikZ|. See \hyperref[sec:expr11coords]{an example} on page \pageref{sec:expr11coords}. \subsection{Technicalities} As already mentioned \csa{xintNewExpr}|\myformula[n]| does not check the prior existence of a macro |\myformula|. And the number of parameters |n| given as mandatory argument within square brackets should be (at least) equal to the number of parameters in the expression. Obviously I should mention that \csa{xintNewExpr} itself can not be used in an expansion-only context, as it creates a macro. The |\escapechar| setting may be arbitrary when using |\xintexpr|. The format of the output of |\xintexpr|\meta{stuff}|\relax| is a |!| (with catcode 11) followed by various things: \begin{everbatim*} \oodef\f {\xintexpr 1.23^10\relax }\meaning\f \end{everbatim*} \begin{framed} Note that |\xintexpr| is thus compatible with complete expansion, contrarily to |\numexpr| which is non-expandable, if not prefixed by |\the| or |\number|, and away from contexts where \TeX{} is building a number. See \autoref{ssec:fibonacci} for some illustration. % pour mémoire: % \MyMarginNote[\kern\dimexpr\FrameSep+\FrameRule\relax]{New with 1.09j!} \end{framed} I decided to put all intermediate results (from each evaluation of an infix operators, or of a parenthesized subpart of the expression, or from application of the minus as prefix, or of the exclamation sign as postfix, or any encountered braced material) inside |\csname...\endcsname|, as this can be done expandably and encapsulates an arbitrarily long fraction in a single token (left with undefined meaning), thus providing tremendous relief to the programmer in his/her expansion control. \begin{framed} As the |\xintexpr| computations corresponding to functions and infix or postfix operators are done inside |\csname...\endcsname|, the \fexpan dability could possibly be dropped and one could imagine implementing the basic operations with expandable but not \fexpan dable macros (as \csbxint{XTrunc}.) I have not investigated that possibility. \end{framed} % \begin{framed} % This implementation and user interface are still to be considered % \emph{experimental}. % \end{framed} Syntax errors in the input such as using a one-argument function with two arguments will generate low-level \TeX{} processing unrecoverable errors, with cryptic accompanying message. Some other problems will give rise to `error messages' macros giving some indication on the location and nature of the problem. Mainly, an attempt has been made to handle gracefully missing or extraneous parentheses. However, this mechanism is completely inoperant for parentheses involved in the syntax of the |seq|, |add|, |mul|, |subs|, |rseq| and |rrseq| functions. % When the scanner is looking for a number and finds something else not otherwise % treated, it assumes it is the start of the function name and will expand forward % in the hope of hitting an opening parenthesis; if none is found at least it % should stop when encountering the |\relax| marking the end of the expressions. Note that |\relax| is \emph{mandatory} (contrarily to a |\numexpr|). \subsection{Acknowledgements} I was greatly helped in my preparatory thinking, prior to producing such an expandable parser, by the commented source of the \href{http://www.ctan.org/pkg/l3kernel}{l3fp} package, specifically the |l3fp-parse.dtx| file (in the version of April-May 2013). Also the source of the |calc| package was instructive, despite the fact that here for |\xintexpr| the principles are necessarily different due to the aim of achieving expandability. %\etocdepthtag.toc {commandsB} \section{Commands of the \xintbinhexname package} \label{sec:binhex} \localtableofcontents This package was first included in the |1.08| (|2013/06/07|) release of \xintname. It provides expandable conversions of arbitrarily big integers to and from binary and hexadecimal. The argument is first \fexpan ded. It then may start with an optional minus sign (unique, of category code other), followed with optional leading zeroes (arbitrarily many, category code other) and then ``digits'' (hexadecimal letters may be of category code letter or other, and must be uppercased). The optional (unique) minus sign (plus sign is not allowed) is kept in the output. Leading zeroes are allowed, and stripped. The hexadecimal letters on output are of category code letter, and uppercased. % \clearpage \subsection{\csbh{xintDecToHex}}\label{xintDecToHex} Converts from decimal to hexadecimal.\etype{f} \texttt{\string\xintDecToHex \string{\printnumber{2718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003}\string}}\endgraf\noindent\dtt{->\printnumber{\xintDecToHex{2718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003}}} \subsection{\csbh{xintDecToBin}}\label{xintDecToBin} Converts from decimal to binary.\etype{f} \texttt{\string\xintDecToBin \string{\printnumber{2718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003}\string}}\endgraf\noindent\dtt{->\printnumber{\xintDecToBin{2718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003}}} \subsection{\csbh{xintHexToDec}}\label{xintHexToDec} Converts from hexadecimal to decimal.\etype{f} \texttt{\string\xintHexToDec \string{\printnumber{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C6032936BF37DAC918814C63}\string}}\endgraf\noindent \dtt{->\printnumber{\xintHexToDec{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C6032936BF37DAC918814C63}}} \subsection{\csbh{xintBinToDec}}\label{xintBinToDec} Converts from binary to decimal.\etype{f} \texttt{\string\xintBinToDec \string{\printnumber{100011010100100111001011111000110011010010100100110101001011100000101000111110111110100001010100000010111100100010100111000111110000010110001011111000100000110110001000111000100100010111010111011110010101101010111011000001011101100111000110100100111001011110100011011011100111001000110110001100000001100101001001101101011111100110111110110101100100100011000100000010100110001100011}\string}}\endgraf\noindent \dtt{->\printnumber{\xintBinToDec{100011010100100111001011111000110011010010100100110101001011100000101000111110111110100001010100000010111100100010100111000111110000010110001011111000100000110110001000111000100100010111010111011110010101101010111011000001011101100111000110100100111001011110100011011011100111001000110110001100000001100101001001101101011111100110111110110101100100100011000100000010100110001100011}}} \subsection{\csbh{xintBinToHex}}\label{xintBinToHex} Converts from binary to hexadecimal.\etype{f} \texttt{\string\xintBinToHex \string{\printnumber{100011010100100111001011111000110011010010100100110101001011100000101000111110111110100001010100000010111100100010100111000111110000010110001011111000100000110110001000111000100100010111010111011110010101101010111011000001011101100111000110100100111001011110100011011011100111001000110110001100000001100101001001101101011111100110111110110101100100100011000100000010100110001100011}\string}}\endgraf\noindent \dtt{->\printnumber{\xintBinToHex{100011010100100111001011111000110011010010100100110101001011100000101000111110111110100001010100000010111100100010100111000111110000010110001011111000100000110110001000111000100100010111010111011110010101101010111011000001011101100111000110100100111001011110100011011011100111001000110110001100000001100101001001101101011111100110111110110101100100100011000100000010100110001100011}}} \subsection{\csbh{xintHexToBin}}\label{xintHexToBin} Converts from hexadecimal to binary.\etype{f} \texttt{\string\xintHexToBin \string{\printnumber{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C6032936BF37DAC918814C63}\string}}\endgraf\noindent \dtt{->\printnumber{\xintHexToBin{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C6032936BF37DAC918814C63}}} \subsection{\csbh{xintCHexToBin}}\label{xintCHexToBin} Also converts from hexadecimal to binary.\etype{f} Faster on inputs with at least one hundred hexadecimal digits. \texttt{\string\xintCHexToBin \string{\printnumber{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C6032936BF37DAC918814C63}\string}}\endgraf\noindent \dtt{->\printnumber{\xintCHexToBin{11A9397C66949A97051F7D0A817914E3E0B17C41B11C48BAEF2B5760BB38D272F46DCE46C6032936BF37DAC918814C63}}} \section{Commands of the \xintgcdname package} \label{sec:gcd} \localtableofcontents This package was included in the original release |1.0| (|2013/03/28|) of the \xintname bundle. Since release |1.09a| the macros filter their inputs through the \csbxint{Num} macro, so one can use count registers, or fractions as long as they reduce to integers. Since release |1.1|, the two ``|typeset|'' macros require the explicit loading by the user of package \xinttoolsname.\inmarg{Changed} %% \clearpage \subsection{\csbh{xintGCD}, \csbh{xintiiGCD}}\label{xintGCD}\label{xintiiGCD} |\xintGCD|\n\m\etype{\Numf\Numf} computes the greatest common divisor. It is positive, except when both |N| and |M| vanish, in which case the macro returns zero. % \leftedline{\csa{xintGCD}|{10000}{1113}|\dtt{=\xintGCD{10000}{1113}}} % \leftedline{|\xintiiGCD{123456789012345}{9876543210321}=|\dtt {\xintiiGCD{123456789012345}{9876543210321}}} \csa{xintiiGCD} skips the \csbxint{Num} overhead.\etype{ff} \subsection{\csbh{xintGCDof}}\label{xintGCDof} %{\small New with release |1.09a|.\par} \csa{xintGCDof}|{{a}{b}{c}...}|\etype{f{$\to$}{\lowast\Numf}} computes the greatest common divisor of all integers |a|, |b|, \dots{} The list argument may be a macro, it is \fexpan ded first and must contain at least one item. \subsection{\csbh{xintLCM}, \csbh{xintiiLCM}}\label{xintLCM}\label{xintiiLCM} %{\small New with release |1.09a|.\par} |\xintGCD|\n\m\etype{\Numf\Numf} computes the least common multiple. It is |0| if one of the two integers vanishes. \csa{xintiiLCM} skips the \csbxint{Num} overhead.\etype{ff} \subsection{\csbh{xintLCMof}}\label{xintLCMof} %{\small New with release |1.09a|.\par} \csa{xintLCMof}|{{a}{b}{c}...}|\etype{f{$\to$}{\lowast\Numf}} computes the least common multiple of all integers |a|, |b|, \dots{} The list argument may be a macro, it is \fexpan ded first and must contain at least one item. \subsection{\csbh{xintBezout}}\label{xintBezout} \xintAssign{{\xintBezout {10000}{1113}}}\to\X \xintAssign {\xintBezout {10000}{1113}}\to\A\B\U\V\D |\xintBezout|\n\m\etype{\Numf\Numf} returns five numbers |A|, |B|, |U|, |V|, |D| within braces. |A| is the first (expanded, as usual) input number, |B| the second, |D| is the GCD, and \dtt{UA - VB = D}. % % \leftedline{|\xintAssign {{\xintBezout {10000}{1113}}}\to\X|} % % \leftedline{|\meaning\X: |\dtt{\meaning\X }.} \noindent{|\xintAssign {\xintBezout {10000}{1113}}\to\A\B\U\V\D|}\\ |\A: |\dtt{\A }, |\B: |\dtt{\B }, |\U: |\dtt{\U }, |\V: |\dtt{\V }, |\D: |\dtt{\D }.\\ \xintAssign {\xintBezout {123456789012345}{9876543210321}}\to\A\B\U\V\D \noindent{|\xintAssign {\xintBezout {123456789012345}{9876543210321}}\to\A\B\U\V\D |}\\ |\A: |\dtt{\A }, |\B: |\dtt{\B }, |\U: |\dtt{\U }, |\V: |\dtt{\V }, |\D: |\dtt{\D }. \subsection{\csbh{xintEuclideAlgorithm}}\label{xintEuclideAlgorithm} \xintAssign {{\xintEuclideAlgorithm {10000}{1113}}}\to\X \def\restorebracecatcodes {\catcode`\{=1 \catcode`\}=2 } \def\allowlistsplit {\catcode`\{=12 \catcode`\}=12 \allowlistsplita } \def\allowlistsplitx {\futurelet\listnext\allowlistsplitxx } \def\allowlistsplitxx {\ifx\listnext\relax \restorebracecatcodes \else \expandafter\allowlistsplitxxx \fi } \begingroup \catcode`\[=1 \catcode`\]=2 \catcode`\{=12 \catcode`\}=12 \gdef\allowlistsplita #1{[#1\allowlistsplitx {] \gdef\allowlistsplitxxx {#1}% [{#1}\hskip 0pt plus 1pt \allowlistsplitx ] \endgroup |\xintEuclideAlgorithm|\n\m\etype{\Numf\Numf} applies the Euclide algorithm and keeps a copy of all quotients and remainders. % % \leftedline{|\xintAssign {{\xintEuclideAlgorithm {10000}{1113}}}\to\X|} |\meaning\X: |\dtt{\expandafter\allowlistsplit\meaning\X\relax .} The first token is the number of steps, the second is |N|, the third is the GCD, the fourth is |M| then the first quotient and remainder, the second quotient and remainder, \dots until the final quotient and last (zero) remainder. \subsection{\csbh{xintBezoutAlgorithm}}\label{xintBezoutAlgorithm} \xintAssign {{\xintBezoutAlgorithm {10000}{1113}}}\to\X |\xintBezoutAlgorithm|\n\m\etype{\Numf\Numf} applies the Euclide algorithm and keeps a copy of all quotients and remainders. Furthermore it computes the entries of the successive products of the 2 by 2 matrices $\left(\vcenter{\halign {\,#&\,#\cr q & 1 \cr 1 & 0 \cr}}\right)$ formed from the quotients arising in the algorithm. % % \leftedline{|\xintAssign {{\xintBezoutAlgorithm {10000}{1113}}}\to\X|} |\meaning\X: |\dtt{\expandafter\allowlistsplit\meaning\X \relax .} The first token is the number of steps, the second is |N|, then |0|, |1|, the GCD, |M|, |1|, |0|, the first quotient, the first remainder, the top left entry of the first matrix, the bottom left entry, and then these four things at each step until the end. \subsection{\csbh{xintTypesetEuclideAlgorithm}}\label{xintTypesetEuclideAlgorithm} % Requires explicit loading by the user of package \xinttoolsname.\inmarg{Changed} This macro is just an example of how to organize the data returned by \csa{xintEuclideAlgorithm}.\ntype{\Numf\Numf} Copy the source code to a new macro and modify it to what is needed. % \leftedline{|\xintTypesetEuclideAlgorithm {123456789012345}{9876543210321}|} \xintTypesetEuclideAlgorithm {123456789012345}{9876543210321} \subsection{\csbh{xintTypesetBezoutAlgorithm}}% \label{xintTypesetBezoutAlgorithm} % Requires explicit loading by the user of package \xinttoolsname.\inmarg{Changed} This macro is just an example of how to organize the data returned by \csa{xintBezoutAlgorithm}.\ntype{\Numf\Numf} Copy the source code to a new macro and modify it to what is needed. % \leftedline{|\xintTypesetBezoutAlgorithm {10000}{1113}|} \xintTypesetBezoutAlgorithm {10000}{1113} % problème de color stack overflow avec dvipdfmx % 14 octobre puis 28 octobre 2014 % 7 mars 2015 \def\everbatimxprehook {} \def\everbatimxposthook {} \def\digitstt #1{\begingroup #1\endgroup} \let\dtt\digitstt \section{Commands of the \xintseriesname package} \label{sec:series} \localtableofcontents This package was first released with version |1.03| (|2013/04/14|) of the \xintname bundle. The \Ff{} expansion type of various macro arguments is only a \Numf{} if only \xintname but not \xintfracname is loaded. The macro \csbxint{iSeries} is special and expects summing big integers obeying the strict format, even if \xintfracname is loaded. The arguments serving as indices are of the \numx{} expansion type. In some cases one or two of the macro arguments are only expanded at a later stage not immediately. %% \clearpage \subsection{\csbh{xintSeries}}\label{xintSeries} \csa{xintSeries}|{A}{B}{\coeff}|\etype{\numx\numx\Ff} computes $\sum_{\text{|n=A|}}^{\text{|n=B|}}|\coeff{n}|$. The initial and final indices must obey the |\numexpr| constraint of expanding to numbers at most |2^31-1|. The |\coeff| macro must be a one-parameter \fexpan dable command, taking on input an explicit number |n| and producing some number or fraction |\coeff{n}|; it is expanded at the time it is needed.% % \footnote{\label{fn:xintiiMON}\csbxint{iiMON} is like \csbxint{MON} but does not parse its argument through \csbxint{Num}, for efficiency; other macros of this type are \csbxint{iiAdd}, \csbxint{iiMul}, \csbxint{iiSum}, \csbxint{iiPrd}, \csbxint{iiMMON}, \csbxint{iiLDg}, \csbxint{iiFDg}, \csbxint{iiOdd}, \dots} \begin{everbatim*} \def\coeff #1{\xintiiMON{#1}/#1.5} % (-1)^n/(n+1/2) \oodef\w {\xintSeries {0}{50}{\coeff}} % we want to re-use it \oodef\z {\xintJrr {\w}[0]} % the [0] for a microsecond gain. % \xintJrr preferred to \xintIrr: a big common factor is suspected. % But numbers much bigger would be needed to show the greater efficiency. \[ \sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12} = \xintFrac\z \] \end{everbatim*} The definition of |\coeff| as |\xintiiMON{#1}/#1.5| is quite suboptimal. It allows |#1| to be a big integer, but anyhow only small integers are accepted as initial and final indices (they are of the \numx{} type). Second, when the \xintfracname parser sees the |#1.5| it will remove the dot hence create a denominator with one digit more. For example |1/3.5| turns internally into |10/35| whereas it would be more efficient to have |2/7|. For info here is the non-reduced |\w|: \[\xintFrac\w\] It would have been bigger still in releases earlier than |1.1|: now, the \xintfracname \csbxint{Add} routine does not multiply blindly denominators anymore, it checks if one is a multiple of the other. However it does not practice systematic reduction to lowest terms. A more efficient way to code |\coeff| is illustrated next. \begin{everbatim*} \def\coeff #1{\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}% % The [0] in \coeff is a tiny optimization: in its presence the \xintfracname parser % sees something which is already in internal format. \oodef\w {\xintSeries {0}{50}{\coeff}} \[\sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12}=\xintFrac\w\] \end{everbatim*} The reduced form |\z| as displayed above only differs from this one by a factor of \dtt{\xintNum {\xintDenominator\w/\xintDenominator\z}}. \setlength{\columnsep}{0pt} \everb|@ \def\coeffleibnitz #1{\the\numexpr\ifodd #1 1\else-1\fi\relax/#1[0]} \cnta 1 \loop % in this loop we recompute from scratch each partial sum! % we can afford that, as \xintSeries is fast enough. \noindent\hbox to 2em{\hfil\texttt{\the\cnta.} }% \xintTrunc {12}{\xintSeries {1}{\cnta}{\coeffleibnitz}}\dots \endgraf \ifnum\cnta < 30 \advance\cnta 1 \repeat | \begin{multicols}{3} \def\coeffleibnitz #1{\the\numexpr\ifodd #1 1\else-1\fi\relax/#1[0]} \cnta 1 \loop \noindent\hbox to 2em{\hfil\dtt{\the\cnta.} }% \xintTrunc {12}{\xintSeries {1}{\cnta}{\coeffleibnitz}}\dots \endgraf \ifnum\cnta < 30 \advance\cnta 1 \repeat \end{multicols} \subsection{\csbh{xintiSeries}}\label{xintiSeries} \def\coeff #1{\xintiTrunc {40} {\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}}% \csa{xintiSeries}|{A}{B}{\coeff}|\etype{\numx\numx f} computes $\sum_{\text{|n=A|}}^{\text{|n=B|}}|\coeff{n}|$ where |\coeff{n}| must \fexpan d to a (possibly long) integer in the strict format. \everb|@ \def\coeff #1{\xintiTrunc {40}{\xintMON{#1}/#1.5}}% % better: \def\coeff #1{\xintiTrunc {40} {\the\numexpr 2*\xintiiMON{#1}\relax/\the\numexpr 2*#1+1\relax [0]}}% % better still: \def\coeff #1{\xintiTrunc {40} {\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}}% % (-1)^n/(n+1/2) times 10^40, truncated to an integer. \[ \sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12} \approx \xintTrunc {40}{\xintiSeries {0}{50}{\coeff}[-40]}\dots\] | \[ \sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12} \approx \xintTrunc {40}{\xintiSeries {0}{50}{\coeff}[-40]}\] We should have cut out at least the last two digits: truncating errors originating with the first coefficients of the sum will never go away, and each truncation introduces an uncertainty in the last digit, so as we have 40 terms, we should trash the last two digits, or at least round at 38 digits. It is interesting to compare with the computation where rounding rather than truncation is used, and with the decimal expansion of the exactly computed partial sum of the series: \everb|@ \def\coeff #1{\xintiRound {40} % rounding at 40 {\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}}% % (-1)^n/(n+1/2) times 10^40, rounded to an integer. \[ \sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12} \approx \xintTrunc {40}{\xintiSeries {0}{50}{\coeff}[-40]}\] \def\exactcoeff #1% {\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}% \[ \sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12} = \xintTrunc {50}{\xintSeries {0}{50}{\exactcoeff}}\dots\] | \def\coeff #1{\xintiRound {40} {\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}}% % (-1)^n/(n+1/2) times 10^40, rounded to an integer. \[ \sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12} \approx \xintTrunc {40}{\xintiSeries {0}{50}{\coeff}[-40]}\] \def\exactcoeff #1% {\the\numexpr\ifodd #1 -2\else2\fi\relax/\the\numexpr 2*#1+1\relax [0]}% \[ \sum_{n=0}^{n=50} \frac{(-1)^n}{n+\frac12} = \xintTrunc {50}{\xintSeries {0}{50}{\exactcoeff}}\dots\] This shows indeed that our sum of truncated terms estimated wrongly the 39th and 40th digits of the exact result% % \footnote{as the series is alternating, we can roughly expect an error of $\sqrt{40}$ and the last two digits are off by 4 units, which is not contradictory to our expectations.} % and that the sum of rounded terms fared a bit better. \subsection{\csbh{xintRationalSeries}}\label{xintRationalSeries} %{\small \hspace*{\parindent}New with release |1.04|.\par} \noindent \csa{xintRationalSeries}|{A}{B}{f}{\ratio}|\etype{\numx\numx\Ff\Ff} evaluates $\sum_{\text{|n=A|}}^{\text{|n=B|}}|F(n)|$, where |F(n)| is specified indirectly via the data of |f=F(A)| and the one-parameter macro |\ratio| which must be such that |\macro{n}| expands to |F(n)/F(n-1)|. The name indicates that \csa{xintRationalSeries} was designed to be useful in the cases where |F(n)/F(n-1)| is a rational function of |n| but it may be anything expanding to a fraction. The macro |\ratio| must be an expandable-only compatible command and expand to its value after iterated full expansion of its first token. |A| and |B| are fed to a |\numexpr| hence may be count registers or arithmetic expressions built with such; they must obey the \TeX{} bound. The initial term |f| may be a macro |\f|, it will be expanded to its value representing |F(A)|. % 7 mars 2015, problème de color stack overflow, je dois supprimer textcolor % j'essaie en supprimant \normalcolor aussi % et aussi dans le multicols plus bas après % «Here is a slightly more complicated evaluation» \begin{everbatim*} \def\ratio #1{2/#1[0]}% 2/n, to compute exp(2) \cnta 0 % previously declared count \begin{quote} \loop \oodef\z {\xintRationalSeries {0}{\cnta}{1}{\ratio }}% \noindent$\sum_{n=0}^{\the\cnta} \frac{2^n}{n!}= \xintTrunc{12}\z\dots= \xintFrac\z=\xintFrac{\xintIrr\z}$\vtop to 5pt{}\par \ifnum\cnta<20 \advance\cnta 1 \repeat \end{quote} \end{everbatim*} \begin{everbatim*} \def\ratio #1{-1/#1[0]}% -1/n, comes from the series of exp(-1) \cnta 0 % previously declared count \begin{quote} \loop \oodef\z {\xintRationalSeries {0}{\cnta}{1}{\ratio }}% \noindent$\sum_{n=0}^{\the\cnta} \frac{(-1)^n}{n!}= \xintTrunc{20}\z\dots=\xintFrac{\z}=\xintFrac{\xintIrr\z}$% \vtop to 5pt{}\par \ifnum\cnta<20 \advance\cnta 1 \repeat \end{quote} \end{everbatim*} \def\ratioexp #1#2{\xintDiv{#1}{#2}}% #1/#2 \medskip We can incorporate an indeterminate if we define |\ratio| to be a macro with two parameters: |\def\ratioexp #1#2{\xintDiv{#1}{#2}}|\texttt{\%}| x/n: x=#1, n=#2|. Then, if |\x| expands to some fraction |x|, the command % % \leftedline{|\xintRationalSeries {0}{b}{1}{\ratioexp{\x}}|} will compute $\sum_{n=0}^{n=b} x^n/n!$:\par \begin{everbatim*} \cnta 0 \def\ratioexp #1#2{\xintDiv{#1}{#2}}% #1/#2 \loop \noindent $\sum_{n=0}^{\the\cnta} (.57)^n/n! = \xintTrunc {50} {\xintRationalSeries {0}{\cnta}{1}{\ratioexp{.57}}}\dots$ \vtop to 5pt {}\endgraf \ifnum\cnta<50 \advance\cnta 10 \repeat \end{everbatim*} Observe that in this last example the |x| was directly inserted; if it had been a more complicated explicit fraction it would have been worthwile to use |\ratioexp\x| with |\x| defined to expand to its value. In the further situation where this fraction |x| is not explicit but itself defined via a complicated, and time-costly, formula, it should be noted that \csa{xintRationalSeries} will do again the evaluation of |\x| for each term of the partial sum. The easiest is thus when |x| can be defined as an |\edef|. If however, you are in an expandable-only context and cannot store in a macro like |\x| the value to be used, a variant of \csa{xintRationalSeries} is needed which will first evaluate this |\x| and then use this result without recomputing it. This is \csbxint{RationalSeriesX}, documented next. Here is a slightly more complicated evaluation: \begin{everbatim*} \cnta 1 \begin{multicols}{2} \loop \oodef\z {\xintRationalSeries {\cnta} {2*\cnta-1} {\xintiPow {\the\cnta}{\cnta}/\xintFac{\cnta}} {\ratioexp{\the\cnta}}}% \oodef\w {\xintRationalSeries {0}{2*\cnta-1}{1}{\ratioexp{\the\cnta}}}% \noindent $\sum_{n=\the\cnta}^{\the\numexpr 2*\cnta-1\relax} \frac{\the\cnta^n}{n!}/% \sum_{n=0}^{\the\numexpr 2*\cnta-1\relax} \frac{\the\cnta^n}{n!} = \xintTrunc{8}{\xintDiv\z\w}\dots$ \vtop to 5pt{}\endgraf \ifnum\cnta<20 \advance\cnta 1 \repeat \end{multicols} \end{everbatim*} \subsection{\csbh{xintRationalSeriesX}}\label{xintRationalSeriesX} %{\small \hspace*{\parindent}New with release |1.04|.\par} \noindent\csa{xintRationalSeriesX}|{A}{B}{\first}{\ratio}{\g}|% \etype{\numx\numx\Ff\Ff f} is a parametrized version of \csa{xintRationalSeries} where |\first| is now a one-parameter macro such that |\first{\g}| gives the initial term and |\ratio| is a two-parameter macro such that |\ratio{n}{\g}| represents the ratio of one term to the previous one. The parameter |\g| is evaluated only once at the beginning of the computation, and can thus itself be the yet unevaluated result of a previous computation. Let |\ratio| be such a two-parameter macro; note the subtle differences between% % \leftedline{|\xintRationalSeries {A}{B}{\first}{\ratio{\g}}|} % \leftedline{and |\xintRationalSeriesX {A}{B}{\first}{\ratio}{\g}|.} First the location of braces differ... then, in the former case |\first| is a \emph{no-parameter} macro expanding to a fractional number, and in the latter, it is a \emph{one-parameter} macro which will use |\g|. Furthermore the |X| variant will expand |\g| at the very beginning whereas the former non-|X| former variant will evaluate it each time it needs it (which is bad if this evaluation is time-costly, but good if |\g| is a big explicit fraction encapsulated in a macro). The example will use the macro \csbxint{PowerSeries} which computes efficiently exact partial sums of power series, and is discussed in the next section. \begin{everbatim*} \def\firstterm #1{1[0]}% first term of the exponential series % although it is the constant 1, here it must be defined as a % one-parameter macro. Next comes the ratio function for exp: \def\ratioexp #1#2{\xintDiv {#1}{#2}}% x/n % These are the (-1)^{n-1}/n of the log(1+h) series: \def\coefflog #1{\the\numexpr\ifodd #1 1\else-1\fi\relax/#1[0]}% % Let L(h) be the first 10 terms of the log(1+h) series and % let E(t) be the first 10 terms of the exp(t) series. % The following computes E(L(a/10)) for a=1,...,12. \begin{multicols}{3}\raggedcolumns \cnta 0 \loop \noindent\xintTrunc {18}{% \xintRationalSeriesX {0}{9}{\firstterm}{\ratioexp} {\xintPowerSeries{1}{10}{\coefflog}{\the\cnta[-1]}}}\dots \endgraf \ifnum\cnta < 12 \advance \cnta 1 \repeat \end{multicols} \end{everbatim*} These completely exact operations rapidly create numbers with many digits. Let us print in full the raw fractions created by the operation illustrated above: \oodef\z{\xintRationalSeriesX {0}{9}{\firstterm} {\ratioexp}{\xintPowerSeries{1}{10}{\coefflog}{1[-1]}}} |E(L(1[-1]))=|\dtt{\printnumber{\z}} (length of numerator: \xintLen {\xintNumerator \z}) \oodef\z{\xintRationalSeriesX {0}{9}{\firstterm} {\ratioexp}{\xintPowerSeries{1}{10}{\coefflog}{12[-2]}}} |E(L(12[-2]))=|\dtt{\printnumber{\z}} (length of numerator: \xintLen {\xintNumerator \z}) \oodef\z{\xintRationalSeriesX {0}{9}{\firstterm} {\ratioexp}{\xintPowerSeries{1}{10}{\coefflog}{123[-3]}}} |E(L(123[-3]))=|\dtt{\printnumber{\z}} (length of numerator: \xintLen {\xintNumerator \z}) We see that the denominators here remain the same, as our input only had various powers of ten as denominators, and \xintfracname efficiently assemble (some only, as we can see) powers of ten. Notice that 1 more digit in an input denominator seems to mean 90 more in the raw output. We can check that with some other test cases: \oodef\z{\xintRationalSeriesX {0}{9}{\firstterm} {\ratioexp}{\xintPowerSeries{1}{10}{\coefflog}{1/7}}} |E(L(1/7))=|\dtt{\printnumber{\z}} (length of numerator: \xintLen {\xintNumerator \z}; length of denominator: \xintLen {\xintDenominator \z}) \oodef\z{\xintRationalSeriesX {0}{9}{\firstterm} {\ratioexp}{\xintPowerSeries{1}{10}{\coefflog}{1/71}}} |E(L(1/71))=|\dtt{\printnumber{\z}} (length of numerator: \xintLen {\xintNumerator \z}; length of denominator: \xintLen {\xintDenominator \z}) \oodef\z{\xintRationalSeriesX {0}{9}{\firstterm} {\ratioexp}{\xintPowerSeries{1}{10}{\coefflog}{1/712}}} |E(L(1/712))=|\dtt{\printnumber{\z}} (length of numerator: \xintLen {\xintNumerator \z}; length of denominator: \xintLen {\xintDenominator \z}) % \pdfresettimer % \edef\w{\xintDenominator{\xintIrr{\z}}} % \the\pdfelapsedtime Thus decimal numbers such as |0.123| (equivalently |123[-3]|) give less computing intensive tasks than fractions such as |1/712|: in the case of decimal numbers the (raw) denominators originate in the coefficients of the series themselves, powers of ten of the input within brackets being treated separately. And even then the numerators will grow with the size of the input in a sort of linear way, the coefficient being given by the order of series: here 10 from the log and 9 from the exp, so 90. One more digit in the input means 90 more digits in the numerator of the output: obviously we can not go on composing such partial sums of series and hope that \xintname will joyfully do all at the speed of light! Hence, truncating the output (or better, rounding) is the only way to go if one needs a general calculus of special functions. This is why the package \xintseriesname provides, besides \csbxint{Series}, \csbxint{RationalSeries}, or \csbxint{PowerSeries} which compute \emph{exact} sums, \csbxint{FxPtPowerSeries} for fixed-point computations and a (tentative naive) \csbxint{FloatPowerSeries}. \subsection{\csbh{xintPowerSeries}}\label{xintPowerSeries} \csa{xintPowerSeries}|{A}{B}{\coeff}{f}|\etype{\numx\numx\Ff\Ff} evaluates the sum $\sum_{\text{|n=A|}}^{\text{|n=B|}}|\coeff{n}|\cdot |f|^{\text{|n|}}$. The initial and final indices are given to a |\numexpr| expression. The |\coeff| macro (which, as argument to \csa{xintPowerSeries} is expanded only at the time |\coeff{n}| is needed) should be defined as a one-parameter expandable command, its input will be an explicit number. The |f| can be either a fraction directly input or a macro |\f| expanding to such a fraction. It is actually more efficient to encapsulate an explicit fraction |f| in such a macro, if it has big numerators and denominators (`big' means hundreds of digits) as it will then take less space in the processing until being (repeatedly) used. This macro computes the \emph{exact} result (one can use it also for polynomial evaluation), using a Horner scheme which helps avoiding a denominator build-up (this problem however, even if using a naive additive approach, is much less acute since release |1.1| and its new policy regarding \csbxint{Add}). \begin{everbatim*} \def\geom #1{1[0]} % the geometric series \def\f {5/17[0]} \[ \sum_{n=0}^{n=20} \Bigl(\frac 5{17}\Bigr)^n =\xintFrac{\xintIrr{\xintPowerSeries {0}{20}{\geom}{\f}}} =\xintFrac{\xinttheexpr (17^21-5^21)/12/17^20\relax}\] \end{everbatim*} \begin{everbatim*} \def\coefflog #1{1/#1[0]}% 1/n \def\f {1/2[0]}% \[ \log 2 \approx \sum_{n=1}^{20} \frac1{n\cdot 2^n} = \xintFrac {\xintIrr {\xintPowerSeries {1}{20}{\coefflog}{\f}}}\] \[ \log 2 \approx \sum_{n=1}^{50} \frac1{n\cdot 2^n} = \xintFrac {\xintIrr {\xintPowerSeries {1}{50}{\coefflog}{\f}}}\] \end{everbatim*} \begin{everbatim*} \setlength{\columnsep}{0pt} \begin{multicols}{3} \cnta 1 % previously declared count \loop % in this loop we recompute from scratch each partial sum! % we can afford that, as \xintPowerSeries is fast enough. \noindent\hbox to 2em{\hfil\texttt{\the\cnta.} }% \xintTrunc {12} {\xintPowerSeries {1}{\cnta}{\coefflog}{\f}}\dots \endgraf \ifnum \cnta < 30 \advance\cnta 1 \repeat \end{multicols} \end{everbatim*} \begin{everbatim*} \def\coeffarctg #1{1/\the\numexpr\ifodd #1 -2*#1-1\else2*#1+1\fi\relax }% % the above gives (-1)^n/(2n+1). The sign being in the denominator, % **** no [0] should be added ****, % else nothing is guaranteed to work (even if it could by sheer luck) % Notice in passing this aspect of \numexpr: % **** \numexpr -(1)\relax is ilegal !!! **** \def\f {1/25[0]}% 1/5^2 \[\mathrm{Arctg}(\frac15)\approx \frac15\sum_{n=0}^{15} \frac{(-1)^n}{(2n+1)25^n} = \xintFrac{\xintIrr {\xintDiv {\xintPowerSeries {0}{15}{\coeffarctg}{\f}}{5}}}\] \end{everbatim*} \subsection{\csbh{xintPowerSeriesX}}\label{xintPowerSeriesX} %{\small\hspace*{\parindent}New with release |1.04|.\par} \noindent This is the same as \csbxint{PowerSeries}\ntype{\numx\numx\Ff\Ff} apart from the fact that the last parameter |f| is expanded once and for all before being then used repeatedly. If the |f| parameter is to be an explicit big fraction with many (dozens) digits, rather than using it directly it is slightly better to have some macro |\g| defined to expand to the explicit fraction and then use \csbxint{PowerSeries} with |\g|; but if |f| has not yet been evaluated and will be the output of a complicated expansion of some |\f|, and if, due to an expanding only context, doing |\edef\g{\f}| is no option, then \csa{xintPowerSeriesX} should be used with |\f| as last parameter. % \begin{everbatim*} \def\ratioexp #1#2{\xintDiv {#1}{#2}}% x/n % These are the (-1)^{n-1}/n of the log(1+h) series: \def\coefflog #1{\the\numexpr\ifodd #1 1\else-1\fi\relax/#1[0]}% % Let L(h) be the first 10 terms of the log(1+h) series and % let E(t) be the first 10 terms of the exp(t) series. % The following computes L(E(a/10)-1) for a=1,..., 12. \begin{multicols}{3}\raggedcolumns \cnta 1 \loop \noindent\xintTrunc {18}{% \xintPowerSeriesX {1}{10}{\coefflog} {\xintSub {\xintRationalSeries {0}{9}{1[0]}{\ratioexp{\the\cnta[-1]}}} {1}}}\dots \endgraf \ifnum\cnta < 12 \advance \cnta 1 \repeat \end{multicols} \end{everbatim*} \subsection{\csbh{xintFxPtPowerSeries}}\label{xintFxPtPowerSeries} \csa{xintFxPtPowerSeries}|{A}{B}{\coeff}{f}{D}|\etype{\numx\numx} computes $\sum_{\text{|n=A|}}^{\text{|n=B|}}|\coeff{n}|\cdot |f|^{\,\text{|n|}}$ with each term of the series truncated to |D| digits\etype{\Ff\Ff\numx} after the decimal point. As usual, |A| and |B| are completely expanded through their inclusion in a |\numexpr| expression. Regarding |D| it will be similarly be expanded each time it is used inside an \csa{xintTrunc}. The one-parameter macro |\coeff| is similarly expanded at the time it is used inside the computations. Idem for |f|. If |f| itself is some complicated macro it is thus better to use the variant \csbxint{FxPtPowerSeriesX} which expands it first and then uses the result of that expansion. The current (|1.04|) implementation is: the first power |f^A| is computed exactly, then \emph{truncated}. Then each successive power is obtained from the previous one by multiplication by the exact value of |f|, and truncated. And |\coeff{n}|\raisebox{.5ex}{|.|}|f^n| is obtained from that by multiplying by |\coeff{n}| (untruncated) and then truncating. Finally the sum is computed exactly. Apart from that \csa{xintFxPtPowerSeries} (where |FxPt| means `fixed-point') is like \csa{xintPowerSeries}. There should be a variant for things of the type $\sum c_n \frac {f^n}{n!}$ to avoid having to compute the factorial from scratch at each coefficient, the same way \csa{xintFxPtPowerSeries} does not compute |f^n| from scratch at each |n|. Perhaps in the next package release. \def\coeffexp #1{1/\xintFac {#1}[0]}% [0] for faster parsing \def\f {-1/2[0]}% \newcount\cnta \setlength{\multicolsep}{0pt} \begin{multicols}{3}[% \centeredline{$e^{-\frac12}\approx{}$}]% \cnta 0 \noindent\loop $\xintFxPtPowerSeries {0}{\cnta}{\coeffexp}{\f}{20}$\\ \ifnum\cnta<19 \advance\cnta 1 \repeat\par \end{multicols} \everb|@ \def\coeffexp #1{1/\xintFac {#1}[0]}% 1/n! \def\f {-1/2[0]}% [0] for faster input parsing \cnta 0 % previously declared \count register \noindent\loop $\xintFxPtPowerSeries {0}{\cnta}{\coeffexp}{\f}{20}$\\ \ifnum\cnta<19 \advance\cnta 1 \repeat\par % One should **not** trust the final digits, as the potential truncation % errors of up to 10^{-20} per term accumulate and never disappear! (the % effect is attenuated by the alternating signs in the series). We can % confirm that the last two digits (of our evaluation of the nineteenth % partial sum) are wrong via the evaluation with more digits: | % \leftedline{|\xintFxPtPowerSeries {0}{19}{\coeffexp}{\f}{25}=| \dtt{\xintFxPtPowerSeries {0}{19}{\coeffexp}{\f}{25}}} \oodef\z{\xintIrr {\xintPowerSeries {0}{19}{\coeffexp}{\f}}} % \texttt{\hyphenchar\font45 }% It is no difficulty for \xintfracname to compute exactly, with the help of \csa{xintPowerSeries}, the nineteenth partial sum, and to then give (the start of) its exact decimal expansion: % \leftedline{|\xintPowerSeries {0}{19}{\coeffexp}{\f}| ${}= \displaystyle\xintFrac{\z}$% \vphantom{\vrule height 20pt depth 12pt}}% % \leftedline{${}=\xintTrunc {30}{\z}\dots$} Thus, one should always estimate a priori how many ending digits are not reliable: if there are |N| terms and |N| has |k| digits, then digits up to but excluding the last |k| may usually be trusted. If we are optimistic and the series is alternating we may even replace |N| with $\sqrt{|N|}$ to get the number |k| of digits possibly of dubious significance. \subsection{\csbh{xintFxPtPowerSeriesX}}\label{xintFxPtPowerSeriesX} %{\small\hspace*{\parindent}New with release |1.04|.\par} \noindent\csa{xintFxPtPowerSeriesX}|{A}{B}{\coeff}{\f}{D}|% \ntype{\numx\numx} computes, exactly as \csa{xintFxPtPowerSeries}, the sum of |\coeff{n}|\raisebox{.5ex}{|.|}|\f^n|\etype{\Ff\Ff\numx} from |n=A| to |n=B| with each term of the series being \emph{truncated} to |D| digits after the decimal point. The sole difference is that |\f| is first expanded and it is the result of this which is used in the computations. % Let us illustrate this on the computation of |(1+y)^{5/3}| where % |1+y=(1+x)^{3/5}| and each of the two binomial series is evaluated with ten % terms, the results being computed with |8| digits after the decimal point, and % $|f|<1/10$. Let us illustrate this on the numerical exploration of the identity % \leftedline{|log(1+x) = -log(1/(1+x))|} % Let |L(h)=log(1+h)|, and |D(h)=L(h)+L(-h/(1+h))|. Theoretically thus, |D(h)=0| but we shall evaluate |L(h)| and |-h/(1+h)| keeping only 10 terms of their respective series. We will assume $|h|<0.5$. With only ten terms kept in the power series we do not have quite 3 digits precision as $2^{10}=1024$. So it wouldn't make sense to evaluate things more precisely than, say circa 5 digits after the decimal points. \begin{everbatim*} \cnta 0 \def\coefflog #1{\the\numexpr\ifodd#1 1\else-1\fi\relax/#1[0]}% (-1)^{n-1}/n \def\coeffalt #1{\the\numexpr\ifodd#1 -1\else1\fi\relax [0]}% (-1)^n \begin{multicols}2 \loop \noindent \hbox to 2.5cm {\hss\texttt{D(\the\cnta/100): }}% \xintAdd {\xintFxPtPowerSeriesX {1}{10}{\coefflog}{\the\cnta [-2]}{5}} {\xintFxPtPowerSeriesX {1}{10}{\coefflog} {\xintFxPtPowerSeriesX {1}{10}{\coeffalt}{\the\cnta [-2]}{5}} {5}}\endgraf \ifnum\cnta < 49 \advance\cnta 7 \repeat \end{multicols} \end{everbatim*} Let's say we evaluate functions on |[-1/2,+1/2]| with values more or less also in |[-1/2,+1/2]| and we want to keep 4 digits of precision. So, roughly we need at least 14 terms in series like the geometric or log series. Let's make this 15. Then it doesn't make sense to compute intermediate summands with more than 6 digits precision. So we compute with 6 digits precision but return only 4 digits (rounded) after the decimal point. This result with 4 post-decimal points precision is then used as input to the next evaluation. \begin{everbatim*} \begin{multicols}2 \loop \noindent \hbox to 2.5cm {\hss\texttt{D(\the\cnta/100): }}% \dtt{\xintRound{4} {\xintAdd {\xintFxPtPowerSeriesX {1}{15}{\coefflog}{\the\cnta [-2]}{6}} {\xintFxPtPowerSeriesX {1}{15}{\coefflog} {\xintRound {4}{\xintFxPtPowerSeriesX {1}{15}{\coeffalt} {\the\cnta [-2]}{6}}} {6}}% }}\endgraf \ifnum\cnta < 49 \advance\cnta 7 \repeat \end{multicols} \end{everbatim*} Not bad... I have cheated a bit: the `four-digits precise' numeric evaluations were left unrounded in the final addition. However the inner rounding to four digits worked fine and made the next step faster than it would have been with longer inputs. The morale is that one should not use the raw results of \csa{xintFxPtPowerSeriesX} with the |D| digits with which it was computed, as the last are to be considered garbage. Rather, one should keep from the output only some smaller number of digits. This will make further computations faster and not less precise. I guess there should be some command to do this final truncating, or better, rounding, at a given number |D'200 \textcolor{red}{#1}\else #1\fi} $$\xintFtoCx {+\cfrac1\\ \highlight}{104348/33215}\endcfrac$$ | Due to the different and extremely cumbersome syntax of |\cfrac| under \LaTeX{} it proves a bit tortuous to obtain there the same effect. Actually, it is partly for this purpose that |1.09m| added \csbxint {GGCFrac}. We thus use \csa{xintFtoCx} with a suitable separator, and\; then the whole thing as argument to \csbxint{GGCFrac}: \begin{everbatim*} \def\highlight #1{\ifnum #1>200 \fcolorbox{blue}{white}{\boldmath\color{red}$#1$}% \else #1\fi} \[\xintGGCFrac {\xintFtoCx {+1/\highlight}{208341/66317}}\] \end{everbatim*} \subsection{\csbh{xintFtoGC}}\label{xintFtoGC} \csa{xintFtoGC}|{f}|\etype{\Ff} does the same as \csa{xintFtoCx}|{+1/}{f}|. Its output may thus be used in the package macros expecting such an `inline format'. % This continued fraction is a \emph{simple} one, not a % \emph{generalized} one, but as it is produced in the format used for % user input of generalized continued fractions, the macro was called % \csa{xintFtoGC} rather than \csa{xintFtoC} for example. % \begin{everbatim*} 566827/208524=\xintFtoGC {566827/208524} \end{everbatim*} \subsection{\csbh{xintFGtoC}}\label{xintFGtoC} \csa{xintFGtoC}|{f}{g}|\etype{\Ff\Ff} computes the common initial coefficients to two given fractions |f| and |g|. Notice\NewWith {1.09m} that any real number |fx>g| will then necessarily share with |f| and |g| these common initial coefficients for its regular continued fraction. The coefficients are output as a sequence of braced numbers. This list can then be manipulated via macros from \xinttoolsname, or other macros of \xintcfracname. \begin{everbatim*} \oodef\test{\xintFGtoC{-5262046/89233}{-5314647/90125}}\texttt{\meaning\test} \end{everbatim*} \begin{everbatim*} \oodef\test{\xintFGtoC{3.141592653}{3.141592654}}\texttt{\meaning\test} \end{everbatim*} \begin{everbatim*} \oodef\test{\xintFGtoC{3.1415926535897932384}{3.1415926535897932385}}\meaning\test \end{everbatim*} \begin{everbatim*} \xintRound {30}{\xintCstoF{\xintListWithSep{,}{\test}}} \end{everbatim*} \begin{everbatim*} \xintRound {30}{\xintCtoF{\test}} \end{everbatim*} \begin{everbatim*} \oodef\test{\xintFGtoC{1.41421356237309}{1.4142135623731}}\meaning\test \end{everbatim*} \subsection{\csbh{xintFtoCC}}\label{xintFtoCC} \csa{xintFtoCC}|{f}|\etype{\Ff} returns the `centered' continued fraction of |f|, in `inline format'. % \begin{everbatim*} 566827/208524=\xintFtoCC {566827/208524} \end{everbatim*} \begin{everbatim*} \[\xintFrac{566827/208524} = \xintGCFrac{\xintFtoCC{566827/208524}}\] \end{everbatim*} \subsection{\csbh{xintCstoF}}\label{xintCstoF} \csa{xintCstoF}|{a,b,c,d,...,z}|\etype{f} computes the fraction corresponding to the coefficients, which may be fractions or even macros expanding to such fractions. The final fraction may then be highly reducible. Starting with release |1.09m| spaces before commas are allowed and trimmed automatically (spaces after commas were already silently handled in earlier releases). \begin{everbatim*} \[\xintGCFrac {-1+1/3+1/-5+1/7+1/-9+1/11+1/-13}= \xintSignedFrac{\xintCstoF {-1,3,-5,7,-9,11,-13}}=\xintSignedFrac{\xintGCtoF {-1+1/3+1/-5+1/7+1/-9+1/11+1/-13}}\] \end{everbatim*} \begin{everbatim*} \[\xintGCFrac{{1/2}+1/{1/3}+1/{1/4}+1/{1/5}}=\xintFrac{\xintCstoF {1/2,1/3,1/4,1/5}}\] \end{everbatim*} % A generalized continued fraction may produce a reducible fraction (\csa{xintCstoF} tries its best not to accumulate in a silly way superfluous factors but will not do simplifications which would be obvious to a human, like simplification by 3 in the result above). \subsection{\csbh{xintCtoF}}\label{xintCtoF} \csa{xintCtoF}|{{a}{b}{c}...{z}}|\etype{f} computes the fraction corresponding to the coefficients, which may be fractions or even macros.\NewWith {1.09m} \begin{everbatim*} \xintCtoF {\xintApply {\xintiiPow 3}{\xintSeq {1}{5}}} \end{everbatim*} \begin{everbatim*} \[ \xintFrac{14946960/4805083}=\xintCFrac {14946960/4805083}\] \end{everbatim*} In the example above the power of $3$ was already pre-computed via the expansion done by |\xintApply|, but if we try with |\xintApply { \xintiiPow 3}| where the space will stop this expansion, we can check that |\xintCtoF| will itself provoke the needed coefficient expansion.% ok \subsection{\csbh{xintGCtoF}}\label{xintGCtoF} \csa{xintGCtoF}|{a+b/c+d/e+f/g+......+v/w+x/y}|\etype{f} computes the fraction defined by the inline generalized continued fraction. Coefficients may be fractions but must then be put within braces. They can be macros. The plus signs are mandatory. \begin{everbatim*} \[\xintGCFrac {1+\xintPow{1.5}{3}/{1/7}+{-3/5}/\xintFac {6}} = \xintFrac{\xintGCtoF {1+\xintPow{1.5}{3}/{1/7}+{-3/5}/\xintFac {6}}} = \xintFrac{\xintIrr{\xintGCtoF {1+\xintPow{1.5}{3}/{1/7}+{-3/5}/\xintFac {6}}}}\] \end{everbatim*} \begin{everbatim*} \[ \xintGCFrac{{1/2}+{2/3}/{4/5}+{1/2}/{1/5}+{3/2}/{5/3}} = \xintFrac{\xintGCtoF {{1/2}+{2/3}/{4/5}+{1/2}/{1/5}+{3/2}/{5/3}}} \] \end{everbatim*} The macro tries its best not to accumulate superfluous factor in the denominators, but doesn't reduce the fraction to irreducible form before returning it and does not do simplifications which would be obvious to a human. \subsection{\csbh{xintCstoCv}}\label{xintCstoCv} \csa{xintCstoCv}|{a,b,c,d,...,z}|\etype{f} returns the sequence of the corresponding convergents, each one within braces. It is allowed to use fractions as coefficients (the computed convergents have then no reason to be the real convergents of the final fraction). When the coefficients are integers, the convergents are irreducible fractions, but otherwise it is not necessarily the case. \begin{everbatim*} \xintListWithSep:{\xintCstoCv{1,2,3,4,5,6}} \end{everbatim*} \begin{everbatim*} \xintListWithSep:{\xintCstoCv{1,1/2,1/3,1/4,1/5,1/6}} \end{everbatim*} \begin{everbatim*} \[\xintListWithSep{\to}{\xintApply\xintFrac{\xintCstoCv {\xintPow {-.3}{-5},7.3/4.57,\xintCstoF{3/4,9,-1/3}}}}\] \end{everbatim*} \subsection{\csbh{xintCtoCv}}\label{xintCtoCv} \csa{xintCtoCv}|{{a}{b}{c}...{z}}|\etype{f} returns the sequence of the corresponding convergents, each one within braces.\NewWith {1.09m} \begin{everbatim*} \oodef\test{\xintCtoCv {11111111111}}\texttt{\meaning\test} \end{everbatim*} \subsection{\csbh{xintGCtoCv}}\label{xintGCtoCv} \csa{xintGCtoCv}|{a+b/c+d/e+f/g+......+v/w+x/y}|\etype{f} returns the list of the corresponding convergents. The coefficients may be fractions, but must then be inside braces. Or they may be macros, too. The convergents will in the general case be reducible. To put them into irreducible form, one needs one more step, for example it can be done with |\xintApply\xintIrr|. \begin{everbatim*} \[\xintListWithSep{,}{\xintApply\xintFrac {\xintGCtoCv{3+{-2}/{7/2}+{3/4}/12+{-56}/3}}}\] \[\xintListWithSep{,}{\xintApply\xintFrac{\xintApply\xintIrr {\xintGCtoCv{3+{-2}/{7/2}+{3/4}/12+{-56}/3}}}}\] \end{everbatim*} \subsection{\csbh{xintFtoCv}}\label{xintFtoCv} \csa{xintFtoCv}|{f}|\etype{\Ff} returns the list of the (braced) convergents of |f|, with no separator. To be treated with \csbxint{AssignArray} or \csbxint{ListWithSep}. \begin{everbatim*} \[\xintListWithSep{\to}{\xintApply\xintFrac{\xintFtoCv{5211/3748}}}\] \end{everbatim*} \subsection{\csbh{xintFtoCCv}}\label{xintFtoCCv} \csa{xintFtoCCv}|{f}|\etype{\Ff} returns the list of the (braced) centered convergents of |f|, with no separator. To be treated with \csbxint{AssignArray} or \csbxint{ListWithSep}. \begin{everbatim*} \[\xintListWithSep{\to}{\xintApply\xintFrac{\xintFtoCCv{5211/3748}}}\] \end{everbatim*} \subsection{\csbh{xintCntoF}}\label{xintCntoF} \csa{xintCntoF}|{N}{\macro}|\etype{\numx f} computes the fraction |f| having coefficients |c(j)=\macro{j}| for |j=0,1,...,N|. The |N| parameter is given to a |\numexpr|. The values of the coefficients, as returned by |\macro| do not have to be positive, nor integers, and it is thus not necessarily the case that the original |c(j)| are the true coefficients of the final |f|. \begin{everbatim*} \def\macro #1{\the\numexpr 1+#1*#1\relax} \xintCntoF {5}{\macro} \end{everbatim*} This example shows that the fraction is output with a trailing number in square brackets (representing a power of ten), this is for consistency with what do most macros of \xintfracname, and does not have to be always this annoying |[0]| as the coefficients may for example be numbers in scientific notation. To avoid these trailing square brackets, for example if the coefficients are known to be integers, there is always the possibility to filter the output via \csbxint{PRaw}, or \csbxint{Irr} (the latter is overkill in the case of integer coefficients, as the fraction is guaranteed to be irreducible then). \subsection{\csbh{xintGCntoF}}\label{xintGCntoF} \csa{xintGCntoF}|{N}{\macroA}{\macroB}|\etype{\numx ff} returns the fraction |f| corresponding to the inline generalized continued fraction |a0+b0/a1+b1/a2+....+b(N-1)/aN|, with |a(j)=\macroA{j}| and |b(j)=\macroB{j}|. The |N| parameter is given to a |\numexpr|. \begin{everbatim*} \def\coeffA #1{\the\numexpr #1+4-3*((#1+2)/3)\relax }% \def\coeffB #1{\the\numexpr \ifodd #1 -\fi 1\relax }% (-1)^n \[\xintGCFrac{\xintGCntoGC {6}{\coeffA}{\coeffB}} = \xintFrac{\xintGCntoF {6}{\coeffA}{\coeffB}}\] \end{everbatim*} There is also \csbxint{GCntoGC} to get the `inline format' continued fraction. \subsection{\csbh{xintCntoCs}}\label{xintCntoCs} \csa{xintCntoCs}|{N}{\macro}|\etype{\numx f} produces the comma separated list of the corresponding coefficients, from |n=0| to |n=N|. The |N| is given to a |\numexpr|. % \begin{everbatim*} \xintCntoCs {5}{\macro} \end{everbatim*} \begin{everbatim*} \[ \xintFrac{\xintCntoF{5}{\macro}}=\xintCFrac{\xintCntoF {5}{\macro}}\] \end{everbatim*} \subsection{\csbh{xintCntoGC}}\label{xintCntoGC} % \csa{xintCntoGC}|{N}{\macro}|\etype{\numx f} evaluates the |c(j)=\macro{j}| from |j=0| to |j=N| and returns a continued fraction written in inline format: |{c(0)}+1/{c(1)}+1/...+1/{c(N)}|. The parameter |N| is given to a |\numexpr|. The coefficients, after expansion, are, as shown, being enclosed in an added pair of braces, they may thus be fractions. \begin{everbatim*} \def\macro #1{\the\numexpr\ifodd#1 -1-#1\else1+#1\fi\relax/\the\numexpr 1+#1*#1\relax} \oodef\x{\xintCntoGC {5}{\macro}}\meaning\x \[\xintGCFrac{\xintCntoGC {5}{\macro}}\] \end{everbatim*} \subsection{\csbh{xintGCntoGC}}\label{xintGCntoGC} \csa{xintGCntoGC}|{N}{\macroA}{\macroB}|\etype{\numx ff} evaluates the coefficients and then returns the corresponding |{a0}+{b0}/{a1}+{b1}/{a2}+...+{b(N-1)}/{aN}| inline generalized fraction. |N| is givent to a |\numexpr|. The coefficients are enclosed into pairs of braces, and may thus be fractions, the fraction slash will not be confused in further processing by the continued fraction slashes. % \begin{everbatim*} \def\an #1{\the\numexpr #1*#1*#1+1\relax}% \def\bn #1{\the\numexpr \ifodd#1 -\fi 1*(#1+1)\relax}% $\xintGCntoGC {5}{\an}{\bn}=\xintGCFrac {\xintGCntoGC {5}{\an}{\bn}} = \displaystyle\xintFrac {\xintGCntoF {5}{\an}{\bn}}$\par \end{everbatim*} \subsection{\csbh{xintCstoGC}}\label{xintCstoGC} \csa{xintCstoGC}|{a,b,..,z}|\etype{f} transforms a comma separated list (or something expanding to such a list) into an `inline format' continued fraction |{a}+1/{b}+1/...+1/{z}|. The coefficients are just copied and put within braces, without expansion. The output can then be used in \csbxint{GCFrac} for example. \begin{everbatim*} \[\xintGCFrac {\xintCstoGC {-1,1/2,-1/3,1/4,-1/5}}=\xintSignedFrac{\xintCstoF {-1,1/2,-1/3,1/4,-1/5}}\] \end{everbatim*} \subsection{\csbh{xintiCstoF}, \csbh{xintiGCtoF}, \csbh{xintiCstoCv}, \csbh{xintiGCtoCv}}\label{xintiCstoF} \label{xintiGCtoF} \label{xintiCstoCv} \label{xintiGCtoCv} Essentially\etype{f} the same as the corresponding macros without the `i', but for integer-only input. Infinitesimally faster, mainly for internal use by the package. \subsection{\csbh{xintGCtoGC}}\label{xintGCtoGC} \csa{xintGCtoGC}|{a+b/c+d/e+f/g+......+v/w+x/y}|\etype{f} expands (with the usual meaning) each one of the coefficients and returns an inline continued fraction of the same type, each expanded coefficient being enclosed within braces. % \begin{everbatim*} \oodef\x {\xintGCtoGC {1+\xintPow{1.5}{3}/{1/7}+{-3/5}/% \xintFac {6}+\xintCstoF {2,-7,-5}/16}} \meaning\x \end{everbatim*} To be honest I have forgotten for which purpose I wrote this macro in the first place. \subsection{Euler's number \texorpdfstring{$e$}{e}}\label{ssec:e-convergents} Let us explore the convergents of Euler's number $e$. \smallskip The volume of computation is kept minimal by the following steps: \begin{itemize} \item a comma separated list of the first 36 coefficients is produced by \csbxint{CntoCs}, \item this is then given to \csbxint{iCstoCv} which produces the list of the convergents (there is also \csbxint{CstoCv}, but our coefficients being integers we used the infinitesimally faster \csbxint{iCstoCv}), \item then the whole list was converted into a sequence of one-line paragraphs, each convergent becomes the argument to a macro printing it together with its decimal expansion with 30 digits after the decimal point. \item A count register |\cnta| was used to give a line count serving as a visual aid: we could also have done that in an expandable way, but well, let's relax from time to time\dots \end{itemize} \begin{everbatim*} \def\cn #1{\the\numexpr\ifcase \numexpr #1+3-3*((#1+2)/3)\relax 1\or1\or2*(#1/3)\fi\relax } % produces the pattern 1,1,2,1,1,4,1,1,6,1,1,8,... which are the % coefficients of the simple continued fraction of e-1. \cnta 0 \def\mymacro #1{\advance\cnta by 1 \noindent \hbox to 3em {\hfil\small\dtt{\the\cnta.} }% $\xintTrunc {30}{\xintAdd {1[0]}{#1}}\dots= \xintFrac{\xintAdd {1[0]}{#1}}$}% \xintListWithSep{\vtop to 6pt{}\vbox to 12pt{}\par} {\xintApply\mymacro{\xintiCstoCv{\xintCntoCs {35}{\cn}}}} \end{everbatim*} % \def\testmacro #1{\xintTrunc {30}{\xintAdd {1[0]}{#1}}\xintAdd {1[0]}{#1}} % \pdfresettimer % \oodef\z{\xintApply\testmacro{\xintiCstoCv{\xintCntoCs {35}{\cn}}}} % (\the\pdfelapsedtime) \smallskip % The actual computation of the list of all 36 convergents accounts for % only 8\% of the total time (total time equal to about 5 hundredths of a second % in my testing, on my laptop): another 80\% is occupied with the computation of % the truncated decimal expansions (and the addition of 1 to everything as the % formula gives the continued fraction of $e-1$). One can with no problem compute much bigger convergents. Let's get the 200th convergent. It turns out to have the same first 268 digits after the decimal point as $e-1$. Higher convergents get more and more digits in proportion to their index: the 500th convergent already gets 799 digits correct! To allow speedy compilation of the source of this document when the need arises, I limit here to the 200th convergent. % (getting the 500th took about 1.2s on my laptop last time I tried, % and the 200th convergent is obtained ten times faster). \begin{everbatim*} \oodef\z {\xintCntoF {199}{\cn}}% \begingroup\parindent 0pt \leftskip 2.5cm \indent\llap {Numerator = }\printnumber{\xintNumerator\z}\par \indent\llap {Denominator = }\printnumber{\xintDenominator\z}\par \indent\llap {Expansion = }\printnumber{\xintTrunc{268}\z}\dots\par\endgroup \end{everbatim*} One can also use a centered continued fraction: we get more digits but there are also more computations as the numerators may be either $1$ or $-1$. \ifnum\NoSourceCode=1 \bigskip \begin{framed} \small This documentation has been compiled without the source code, which is available in the separate file: % \centeredline{|sourcexint.pdf|,} % which should be among the candidates proposed by |texdoc --list xint|. To produce a single file including both the user documentation and the source code, run |tex xint.dtx| to generate |xint.tex| (if not already available), then edit |xint.tex| to set the |\NoSourceCode| toggle to |0|, then run thrice |latex| on |xint.tex| and finally |dvipdfmx| on |xint.dvi|. Alternatively, run |pdflatex| either directly on |xint.dtx|, or on |xint.tex| with |\NoSourceCode| set to |0|. \end{framed} \fi % Mercredi 08 octobre 2014 à 22:09:54 \ifnum\dosourcexint=1 +fi +catcode`\ 0 \catcode`\+ 12 \etocignoredepthtags \etocsetnexttocdepth{section} \tableofcontents \makeatletter \@gobble\fi \StopEventually{\end{document}\endinput} \ifnum\dosourcexint=1 \renewcommand{\etocaftertochook}{\addvspace{\bigskipamount}} \etocsettocstyle {}{} \else \clearpage % \newgeometry{%hmarginratio=4:3, % hscale=0.75,vscale=0.75}% ATTENTION \newgeometry fait % % un reset de vscale si on ne le % % précise pas ici !!! \fi \def\MARGEPAGENO{1.25em} \etocdepthtag.toc {implementation} \addtocontents{toc}{\gdef\string\sectioncouleur{[named]{RoyalPurple}}} \makeatletter \def\storedlinecounts {} \def\StoreCodelineNo #1{\edef\storedlinecounts{% \unexpanded\expandafter{\storedlinecounts}% {{#1}{\the\c@CodelineNo}}}\c@CodelineNo\z@ } % Pour le code des macros % On va redéfinir \macro@font % Pas de couleur, et 0 slashed \def\macro@font {\ttbfamily } % Pour \lverb \def\MicroFont {\ttzfamily\color[named]{Purple}\makestarlowast } \makeatother \MakePercentIgnore % % \catcode`\<=0 \catcode`\>=11 \catcode`\*=11 \catcode`\/=11 % \let\relax % \def<*xintkernel>{\catcode`\<=12 \catcode`\>=12 \catcode`\*=12 \catcode`\/=12 } % %<*xintkernel> % % \bigskip % This is \expandafter|\xintbndlversion| of \expandafter|\xintbndldate|. % % Extensive changes in release |1.1| of |2014/10/28| were located in % \xintexprnameimp. Also with that release, % packages \xintkernelnameimp and \xintcorenameimp were extracted from % \xinttoolsnameimp and \xintnameimp, and |\xintAdd| was modified to not % multiply denominators blindly. % % \smallskip % \noindent\fbox{\xinttoolsnameimp is not loaded anymore by % \xintnameimp, nor by \xintfracnameimp. It is loaded by \xintexprnameimp.} % % \section {Package \xintkernelnameimp implementation} % \label{sec:kernelimp} % % \localtableofcontents % % This package provides the common minimal code base for loading management % and catcode control and also a few programming utilities. It is loaded by both % |xintcore.sty| and |xinttools.sty| hence by all other packages. % % First appeared as a separate package with release |1.1|. % % \subsection{Catcodes, \protect\eTeX{} and reload detection} % % The code for reload detection was initially copied from \textsc{Heiko % Oberdiek}'s packages, then modified. % % The method for catcodes was also initially directly inspired by these % packages. % % Starting with version |1.06| of the package, also |`| must be % catcode-protected, because we replace everywhere in the code the % twice-expansion done with |\expandafter| by the systematic use of % |\romannumeral-`0|. % % Starting with version |1.06b| I decide that I suffer from an indigestion of @ % signs, so I replace them all with underscores |_|, \`a la \LaTeX 3. % % Release |1.09b| is more economical: some macros are defined already in % |xint.sty| (now in |xintkernel.sty|) and re-used in other modules. All catcode % changes have been unified and \csa{XINT_storecatcodes} will be used by each % module to redefine |\XINT_restorecatcodes_endinput| in case catcodes have % changed in-between the loading of |xint.sty| (now |xintkernel.sty|) and the % module (not very probable but...). % \begin{macrocode} \begingroup\catcode61\catcode48\catcode32=10\relax% \catcode13=5 % ^^M \endlinechar=13 % \catcode123=1 % { \catcode125=2 % } \catcode35=6 % # \catcode44=12 % , \catcode45=12 % - \catcode46=12 % . \catcode58=12 % : \catcode95=11 % _ \expandafter \ifx\csname PackageInfo\endcsname\relax \def\y#1#2{\immediate\write-1{Package #1 Info: #2.}}% \else \def\y#1#2{\PackageInfo{#1}{#2}}% \fi \expandafter \ifx\csname numexpr\endcsname\relax \y{xintkernel}{\numexpr not available, aborting input}% \aftergroup\endinput \else \expandafter \ifx\csname XINTsetupcatcodes\endcsname\relax \else \y{xintkernel}{I was already loaded, aborting input}% \aftergroup\endinput \fi \fi \def\SetCatcodesIfInputNotAborted {% \endgroup \def\XINT_restorecatcodes {% takes care of all, to allow more economical code in modules \catcode59=\the\catcode59 % ; xintexpr \catcode126=\the\catcode126 % ~ xintexpr \catcode39=\the\catcode39 % ' xintexpr \catcode34=\the\catcode34 % " xintbinhex, and xintexpr \catcode63=\the\catcode63 % ? xintexpr \catcode124=\the\catcode124 % | xintexpr \catcode38=\the\catcode38 % & xintexpr \catcode64=\the\catcode64 % @ xintexpr \catcode33=\the\catcode33 % ! xintexpr \catcode93=\the\catcode93 % ] -, xintfrac, xintseries, xintcfrac \catcode91=\the\catcode91 % [ -, xintfrac, xintseries, xintcfrac \catcode36=\the\catcode36 % $ xintgcd only \catcode94=\the\catcode94 % ^ \catcode96=\the\catcode96 % ` \catcode47=\the\catcode47 % / \catcode41=\the\catcode41 % ) \catcode40=\the\catcode40 % ( \catcode42=\the\catcode42 % * \catcode43=\the\catcode43 % + \catcode62=\the\catcode62 % > \catcode60=\the\catcode60 % < \catcode58=\the\catcode58 % : \catcode46=\the\catcode46 % . \catcode45=\the\catcode45 % - \catcode44=\the\catcode44 % , \catcode35=\the\catcode35 % # \catcode95=\the\catcode95 % _ \catcode125=\the\catcode125 % } \catcode123=\the\catcode123 % { \endlinechar=\the\endlinechar \catcode13=\the\catcode13 % ^^M \catcode32=\the\catcode32 % \catcode61=\the\catcode61\relax % = }% \edef\XINT_restorecatcodes_endinput {% \XINT_restorecatcodes\noexpand\endinput % }% \def\XINT_setcatcodes {% \catcode61=12 % = \catcode32=10 % space \catcode13=5 % ^^M \endlinechar=13 % \catcode123=1 % { \catcode125=2 % } \catcode95=11 % _ LETTER \catcode35=6 % # \catcode44=12 % , \catcode45=12 % - \catcode46=12 % . \catcode58=11 % : LETTER \catcode60=12 % < \catcode62=12 % > \catcode43=12 % + \catcode42=12 % * \catcode40=12 % ( \catcode41=12 % ) \catcode47=12 % / \catcode96=12 % ` \catcode94=11 % ^ LETTER \catcode36=3 % $ \catcode91=12 % [ \catcode93=12 % ] \catcode33=11 % ! LETTER \catcode64=11 % @ LETTER \catcode38=12 % & \catcode124=12 % | \catcode63=11 % ? LETTER \catcode34=12 % " \catcode39=12 % ' \catcode126=3 % ~ \catcode59=12 % ; }% \XINT_setcatcodes }% \SetCatcodesIfInputNotAborted % \end{macrocode} % Other modules could possibly be loaded under a different catcode regime. % \begin{macrocode} \def\XINTsetupcatcodes {% for use by other modules \edef\XINT_restorecatcodes_endinput {% \XINT_restorecatcodes\noexpand\endinput % }% \XINT_setcatcodes }% % \end{macrocode} % \subsection{Package identification} % % Inspired from \textsc{Heiko Oberdiek}'s packages. Modified in |1.09b| to allow % re-use in the other modules. Also I assume now that if |\ProvidesPackage| % exists it then does define |\ver@.sty|, code of |HO| for some reason % escaping me (compatibility with LaTeX 2.09 or other things ??) seems to set % extra precautions. % % |1.09c| uses e-\TeX{} |\ifdefined|. % \begin{macrocode} \ifdefined\ProvidesPackage \let\XINT_providespackage\relax \else \def\XINT_providespackage #1#2[#3]% {\immediate\write-1{Package: #2 #3}% \expandafter\xdef\csname ver@#2.sty\endcsname{#3}}% \fi \XINT_providespackage \ProvidesPackage {xintkernel}% [2014/11/07 v1.1a Paraphernalia for the xint packages (jfB)]% % \end{macrocode} % \subsection{Token management utilities} % \begin{macrocode} \long\def\xint_gobble_ {}% \long\def\xint_gobble_i #1{}% \long\def\xint_gobble_ii #1#2{}% \long\def\xint_gobble_iii #1#2#3{}% \long\def\xint_gobble_iv #1#2#3#4{}% \long\def\xint_gobble_v #1#2#3#4#5{}% \long\def\xint_gobble_vi #1#2#3#4#5#6{}% \long\def\xint_gobble_vii #1#2#3#4#5#6#7{}% \long\def\xint_gobble_viii #1#2#3#4#5#6#7#8{}% \long\def\xint_firstofone #1{#1}% \long\def\xint_firstoftwo #1#2{#1}% \long\def\xint_secondoftwo #1#2{#2}% \long\def\xint_firstofone_thenstop #1{ #1}% \long\def\xint_firstoftwo_thenstop #1#2{ #1}% \long\def\xint_secondoftwo_thenstop #1#2{ #2}% % \end{macrocode} % \subsection{gob til macros and UD style fork} % \begin{macrocode} \def\xint_gob_til_zero #10{}% \def\xint_UDzerominusfork #10-#2#3\krof {#2}% \long\def\xint_gob_til_R #1\R {}% \long\def\xint_gob_til_W #1\W {}% \long\def\xint_gob_til_Z #1\Z {}% \let\xint_relax\relax \def\xint_brelax {\xint_relax }% \long\def\xint_gob_til_xint_relax #1\xint_relax {}% % \end{macrocode} % \subsection{\csh{xint_afterfi}} % \begin{macrocode} \long\def\xint_afterfi #1#2\fi {\fi #1}% % \end{macrocode} % \subsection{\csh{xint_bye}} % \begin{macrocode} \long\def\xint_bye #1\xint_bye {}% % \end{macrocode} % \subsection{\csh{xint_dothis}, \csh{xint_orthat}} % \lverb|New with 1.1. Used as \if..\xint_dothis{..}\fi % followed by \xint_orthat{...}. To be used with less probable things first.| % \begin{macrocode} \long\def\xint_dothis #1#2\xint_orthat #3{\fi #1}% v1.1 \let\xint_orthat \xint_firstofone % \end{macrocode} % \subsection{\csh{xint_zapspaces}} % \lverb|1.1. Zaps leading, intermediate, trailing, spaces in completely % expanding context (\edef, \csname...\endcsname). To be used as % % \xint_zapspaces foo \xint_gobble_i % notice the mandatory space after foo % % Will remove some brace pairs (but not spaces inside them). By the way the % \zap@spaces of LaTeX2e handles unexpectedly things such as \zap@spaces 1 % {22} 3 4 \@empty (spaces are not all removed). This does not happen with % \xint_zapspaces. % % Explanation: if there are leading spaces, then the first #1 will be empty, % and the first #2 being undelimited will be stripped from all the remaining % leading spaces, if there was more than one to start with. Of course % brace-stripping may occur. And this iterates: each time a #2 is removed, % either we then have spaces and next #1 will be empty, or we have no spaces % and #1 will end at the first space. Ultimately #2 will be \xint_gobble_i. % % Code comment from 1.1 release said to do: % % \xint_zapspaces foo \xint_bye\xint_bye % % perhaps because it was pretty. It works also, but \xint_gobble_i is one % token less. Compatible with an empty foo.| % \begin{macrocode} \def\xint_zapspaces #1 #2{#1#2\xint_zapspaces }% v1.1 % \end{macrocode} % \subsection{Constants} % \begin{macrocode} \chardef\xint_c_ 0 \chardef\xint_c_i 1 \chardef\xint_c_ii 2 \chardef\xint_c_iii 3 \chardef\xint_c_iv 4 \chardef\xint_c_v 5 \chardef\xint_c_vi 6 \chardef\xint_c_vii 7 \chardef\xint_c_viii 8 % \end{macrocode} % \subsection{\csh{odef}, \csh{oodef}, \csh{fdef}} % \lverb|May be prefixed with \global. No parameter text.| % \begin{macrocode} \def\xintodef #1{\expandafter\def\expandafter#1\expandafter }% \def\xintoodef #1{\expandafter\expandafter\expandafter\def \expandafter\expandafter\expandafter#1% \expandafter\expandafter\expandafter }% \def\xintfdef #1#2{\expandafter\def\expandafter#1\expandafter {\romannumeral-`0#2}}% \ifdefined\odef\else\let\odef\xintodef\fi \ifdefined\oodef\else\let\oodef\xintoodef\fi \ifdefined\fdef\else\let\fdef\xintfdef\fi % \end{macrocode} % \subsection{\csh{xintReverseOrder}} % \lverb|\xintReverseOrder: does NOT expand its argument.| % \begin{macrocode} \def\xintReverseOrder {\romannumeral0\xintreverseorder }% \long\def\xintreverseorder #1% {% \XINT_rord_main {}#1% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax }% \long\def\XINT_rord_main #1#2#3#4#5#6#7#8#9% {% \xint_bye #9\XINT_rord_cleanup\xint_bye \XINT_rord_main {#9#8#7#6#5#4#3#2#1}% }% \long\edef\XINT_rord_cleanup\xint_bye\XINT_rord_main #1#2\xint_relax {% \noexpand\expandafter\space\noexpand\xint_gob_til_xint_relax #1% }% % \end{macrocode} % \subsection{\csh{xintLength}} % \lverb|\xintLength does NOT expand its argument.| % \begin{macrocode} \def\xintLength {\romannumeral0\xintlength }% \long\def\xintlength #1% {% \XINT_length_loop 0.#1\xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye }% \long\def\XINT_length_loop #1.#2#3#4#5#6#7#8#9% {% \xint_gob_til_xint_relax #9\XINT_length_finish_a\xint_relax \expandafter\XINT_length_loop\the\numexpr #1+\xint_c_viii.% }% \def\XINT_length_finish_a\xint_relax\expandafter\XINT_length_loop \the\numexpr #1+\xint_c_viii.#2\xint_bye {% \XINT_length_finish_b #2\W\W\W\W\W\W\W\Z {#1}% }% \def\XINT_length_finish_b #1#2#3#4#5#6#7#8\Z {% \xint_gob_til_W #1\XINT_length_finish_c \xint_c_ #2\XINT_length_finish_c \xint_c_i #3\XINT_length_finish_c \xint_c_ii #4\XINT_length_finish_c \xint_c_iii #5\XINT_length_finish_c \xint_c_iv #6\XINT_length_finish_c \xint_c_v #7\XINT_length_finish_c \xint_c_vi \W\XINT_length_finish_c \xint_c_vii\Z }% \edef\XINT_length_finish_c #1#2\Z #3% {\noexpand\expandafter\space\noexpand\the\numexpr #3+#1\relax}% \XINT_restorecatcodes_endinput% % \end{macrocode} %\catcode`\<=0 \catcode`\>=11 \catcode`\*=11 \catcode`\/=11 %\let\relax %\def<*xinttools>{\catcode`\<=12 \catcode`\>=12 \catcode`\*=12 \catcode`\/=12 } % %<*xinttools> % % \StoreCodelineNo {xintkernel} % % \section{Package \xinttoolsnameimp implementation} % \label{sec:toolsimp} % % \localtableofcontents % % Release |1.09g| of |2013/11/22| splits off |xinttools.sty| from |xint.sty|. % Starting with |1.1|, \xinttoolsnameimp ceases being loaded automatically by % \xintnameimp. % % \subsection{Catcodes, \protect\eTeX{} and reload detection} % % The code for reload detection was initially copied from \textsc{Heiko % Oberdiek}'s packages, then modified. % % The method for catcodes was also initially directly inspired by these % packages. % % \begin{macrocode} \begingroup\catcode61\catcode48\catcode32=10\relax% \catcode13=5 % ^^M \endlinechar=13 % \catcode123=1 % { \catcode125=2 % } \catcode64=11 % @ \catcode35=6 % # \catcode44=12 % , \catcode45=12 % - \catcode46=12 % . \catcode58=12 % : \let\z\endgroup \expandafter\let\expandafter\x\csname ver@xinttools.sty\endcsname \expandafter\let\expandafter\w\csname ver@xintkernel.sty\endcsname \expandafter \ifx\csname PackageInfo\endcsname\relax \def\y#1#2{\immediate\write-1{Package #1 Info: #2.}}% \else \def\y#1#2{\PackageInfo{#1}{#2}}% \fi \expandafter \ifx\csname numexpr\endcsname\relax \y{xinttools}{\numexpr not available, aborting input}% \aftergroup\endinput \else \ifx\x\relax % plain-TeX, first loading of xinttools.sty \ifx\w\relax % but xintkernel.sty not yet loaded. \def\z{\endgroup\input xintkernel.sty\relax}% \fi \else \def\empty {}% \ifx\x\empty % LaTeX, first loading, % variable is initialized, but \ProvidesPackage not yet seen \ifx\w\relax % xintkernel.sty not yet loaded. \def\z{\endgroup\RequirePackage{xintkernel}}% \fi \else \aftergroup\endinput % xinttools already loaded. \fi \fi \fi \z% \XINTsetupcatcodes% defined in xintkernel.sty % \end{macrocode} % \subsection{Package identification} % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xinttools}% [2014/11/07 v1.1a Expandable and non-expandable utilities (jfB)]% % \end{macrocode} % \lverb|\XINT_toks is used in macros such as \xintFor. It is not used % elsewhere in the xint bundle.| % \begin{macrocode} \newtoks\XINT_toks \xint_firstofone{\let\XINT_sptoken= } %<- space here! % \end{macrocode} % \subsection{\csh{xintgodef}, \csh{xintgoodef}, \csh{xintgfdef}} % \lverb|1.09i. For use in \xintAssign.| % \begin{macrocode} \def\xintgodef {\global\xintodef }% \def\xintgoodef {\global\xintoodef }% \def\xintgfdef {\global\xintfdef }% % \end{macrocode} % \subsection{\csh{xintRevWithBraces}} % \lverb|New with 1.06. Makes the expansion of its argument and then reverses % the resulting tokens or braced tokens, adding a pair of braces to each (thus, % maintaining it when it was already there.) The reason for % \xint_relax, here and in other locations, is in case #1 expands to nothing, % the \romannumeral-`0 must be stopped| % \begin{macrocode} \def\xintRevWithBraces {\romannumeral0\xintrevwithbraces }% \def\xintRevWithBracesNoExpand {\romannumeral0\xintrevwithbracesnoexpand }% \long\def\xintrevwithbraces #1% {% \expandafter\XINT_revwbr_loop\expandafter{\expandafter}% \romannumeral-`0#1\xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye }% \long\def\xintrevwithbracesnoexpand #1% {% \XINT_revwbr_loop {}% #1\xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye }% \long\def\XINT_revwbr_loop #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_xint_relax #9\XINT_revwbr_finish_a\xint_relax \XINT_revwbr_loop {{#9}{#8}{#7}{#6}{#5}{#4}{#3}{#2}#1}% }% \long\def\XINT_revwbr_finish_a\xint_relax\XINT_revwbr_loop #1#2\xint_bye {% \XINT_revwbr_finish_b #2\R\R\R\R\R\R\R\Z #1% }% \def\XINT_revwbr_finish_b #1#2#3#4#5#6#7#8\Z {% \xint_gob_til_R #1\XINT_revwbr_finish_c 8% #2\XINT_revwbr_finish_c 7% #3\XINT_revwbr_finish_c 6% #4\XINT_revwbr_finish_c 5% #5\XINT_revwbr_finish_c 4% #6\XINT_revwbr_finish_c 3% #7\XINT_revwbr_finish_c 2% \R\XINT_revwbr_finish_c 1\Z }% \def\XINT_revwbr_finish_c #1#2\Z {% \expandafter\expandafter\expandafter \space \csname xint_gobble_\romannumeral #1\endcsname }% % \end{macrocode} % \subsection{\csh{xintZapFirstSpaces}} % \lverb|1.09f, written [2013/11/01]. Modified (2014/10/21) for release 1.1 to % correct the bug in case of an empty argument, or argument containing only % spaces, which had been forgotten in first version. New version is simpler than % the initial one. This macro does NOT expand its argument.| % \begin{macrocode} \def\xintZapFirstSpaces {\romannumeral0\xintzapfirstspaces }% % \end{macrocode} % \lverb|defined via an \edef in order to inject space tokens inside.| % \begin{macrocode} \long\edef\xintzapfirstspaces #1% {\noexpand\XINT_zapbsp_a \space #1\xint_relax \space\space\xint_relax }% \xint_firstofone {\long\edef\XINT_zapbsp_a #1 } %<- space token here {% % \end{macrocode} % \lverb|If the original #1 started with a space, the grabbed #1 is empty. Thus % _again? will see #1=\xint_bye, and hand over control to _again which will loop % back into \XINT_zapbsp_a, with one initial space less. If the original #1 did % not start with a space, or was empty, then the #1 below will be a , % then an extract of the original #1, not empty and not starting with a space, % which contains what was up to the first present in original #1, or, % if none preexisted, and all of #1 (possibly empty) plus an ending % \xint_relax. The added initial space will stop later the \romannumeral0. No % brace stripping is possible. Control is handed over to \XINT_zapbsp_b which % strips out the ending \xint_relax\xint_relax| % \begin{macrocode} \noexpand\XINT_zapbsp_again? #1\noexpand\xint_bye\noexpand\XINT_zapbsp_b #1\space\space }% \long\def\XINT_zapbsp_again? #1{\xint_bye #1\XINT_zapbsp_again }% \xint_firstofone{\def\XINT_zapbsp_again\XINT_zapbsp_b} {\XINT_zapbsp_a }% \long\def\XINT_zapbsp_b #1\xint_relax #2\xint_relax {#1}% % \end{macrocode} % \subsection{\csh{xintZapLastSpaces}} % \lverb+1.09f, written [2013/11/01]. + % \begin{macrocode} \def\xintZapLastSpaces {\romannumeral0\xintzaplastspaces }% % \end{macrocode} % \lverb|Next macro is defined via an \edef for the space tokens.| % \begin{macrocode} \long\edef\xintzaplastspaces #1{\noexpand\XINT_zapesp_a {}\noexpand\empty#1% \space\space\noexpand\xint_bye\xint_relax}% % \end{macrocode} % \lverb|The \empty from \xintzaplastspaces is to prevent brace removal in the % #2 below. The \expandafter chain removes it.| % \begin{macrocode} \xint_firstofone {\long\def\XINT_zapesp_a #1#2 } %<- second space here {\expandafter\XINT_zapesp_b\expandafter{#2}{#1}}% % \end{macrocode} % \lverb|Notice again an \empty added here. This is in preparation for possibly looping % back to \XINT_zapesp_a. If the initial #1 had no , the stuff however % will not loop, because #3 will already be \xint_bye. Notice % that this macro fetches all way to the ending \xint_relax. This looks not % very efficient, but how often do we have to strip ending spaces from % something which also has inner stretches of _multiple_ space tokens ?;-). | % \begin{macrocode} \long\def\XINT_zapesp_b #1#2#3\xint_relax {\XINT_zapesp_end? #3\XINT_zapesp_e {#2#1}\empty #3\xint_relax }% % \end{macrocode} % \lverb|When we have been over all possible things, we reach the % ending space tokens, and #3 will be a bunch of spaces (possibly none) % followed by \xint_bye. So the #1 in _end? will be \xint_bye. In all other cases % #1 can not be \xint_bye (assuming naturally this token does nor arise in % original input), hence control falls back to \XINT_zapesp_e which will loop back % to \XINT_zapesp_a.| % \begin{macrocode} \long\def\XINT_zapesp_end? #1{\xint_bye #1\XINT_zapesp_end }% % \end{macrocode} % \lverb|We are done. The #1 here has accumulated all the previous material, % and is stripped of its ending spaces, if any.| % \begin{macrocode} \long\def\XINT_zapesp_end\XINT_zapesp_e #1#2\xint_relax { #1}% % \end{macrocode} % \lverb|We haven't yet reached the end, so we need to re-inject two space % tokens after what we have gotten so far. Then we loop.| % \begin{macrocode} \long\edef\XINT_zapesp_e #1{\noexpand \XINT_zapesp_a {#1\space\space}}% % \end{macrocode} % \subsection{\csh{xintZapSpaces}} % \lverb+1.09f, written [2013/11/01]. Modified for 1.1, 2014/10/21 as it has the % same bug as \xintZapFirstSpaces. We in effect do first \xintZapFirstSpaces, % then \xintZapLastSpaces.+ % \begin{macrocode} \def\xintZapSpaces {\romannumeral0\xintzapspaces }% \long\edef\xintzapspaces #1% like \xintZapFirstSpaces. {\noexpand\XINT_zapsp_a \space #1\xint_relax \space\space\xint_relax }% \xint_firstofone {\long\edef\XINT_zapsp_a #1 } % {\noexpand\XINT_zapsp_again? #1\noexpand\xint_bye\noexpand\XINT_zapsp_b #1\space\space}% \long\def\XINT_zapsp_again? #1{\xint_bye #1\XINT_zapsp_again }% \xint_firstofone{\def\XINT_zapsp_again\XINT_zapsp_b} {\XINT_zapsp_a }% \xint_firstofone{\def\XINT_zapsp_b} {\XINT_zapsp_c }% \long\edef\XINT_zapsp_c #1\xint_relax #2\xint_relax {\noexpand\XINT_zapesp_a {}\noexpand \empty #1\space\space\noexpand\xint_bye\xint_relax }% % \end{macrocode} % \subsection{\csh{xintZapSpacesB}} % \lverb+1.09f, written [2013/11/01]. Strips up to one pair of braces (but then % does not strip spaces inside).+ % \begin{macrocode} \def\xintZapSpacesB {\romannumeral0\xintzapspacesb }% \long\def\xintzapspacesb #1{\XINT_zapspb_one? #1\xint_relax\xint_relax \xint_bye\xintzapspaces {#1}}% \long\def\XINT_zapspb_one? #1#2% {\xint_gob_til_xint_relax #1\XINT_zapspb_onlyspaces\xint_relax \xint_gob_til_xint_relax #2\XINT_zapspb_bracedorone\xint_relax \xint_bye {#1}}% \def\XINT_zapspb_onlyspaces\xint_relax \xint_gob_til_xint_relax\xint_relax\XINT_zapspb_bracedorone\xint_relax \xint_bye #1\xint_bye\xintzapspaces #2{ }% \long\def\XINT_zapspb_bracedorone\xint_relax \xint_bye #1\xint_relax\xint_bye\xintzapspaces #2{ #1}% % \end{macrocode} % \subsection{\csh{xintCSVtoList}, \csh{xintCSVtoListNonStripped}} % \lverb|\xintCSVtoList transforms a,b,..,z into {a}{b}...{z}. The comma % separated list may be a macro which is first f-expanded. First included in % release 1.06. Here, use of \Z (and \R) perfectly safe. % % [2013/11/02]: Starting with 1.09f, automatically filters items with % \xintZapSpacesB to strip away all spaces around commas, and spaces at the start % and end of the list. The original is kept as \xintCSVtoListNonStripped, and is % faster. But ... it doesn't strip spaces.| % \begin{macrocode} \def\xintCSVtoList {\romannumeral0\xintcsvtolist }% \long\def\xintcsvtolist #1{\expandafter\xintApply \expandafter\xintzapspacesb \expandafter{\romannumeral0\xintcsvtolistnonstripped{#1}}}% \def\xintCSVtoListNoExpand {\romannumeral0\xintcsvtolistnoexpand }% \long\def\xintcsvtolistnoexpand #1{\expandafter\xintApply \expandafter\xintzapspacesb \expandafter{\romannumeral0\xintcsvtolistnonstrippednoexpand{#1}}}% \def\xintCSVtoListNonStripped {\romannumeral0\xintcsvtolistnonstripped }% \def\xintCSVtoListNonStrippedNoExpand {\romannumeral0\xintcsvtolistnonstrippednoexpand }% \long\def\xintcsvtolistnonstripped #1% {% \expandafter\XINT_csvtol_loop_a\expandafter {\expandafter}\romannumeral-`0#1% ,\xint_bye,\xint_bye,\xint_bye,\xint_bye ,\xint_bye,\xint_bye,\xint_bye,\xint_bye,\Z }% \long\def\xintcsvtolistnonstrippednoexpand #1% {% \XINT_csvtol_loop_a {}#1,\xint_bye,\xint_bye,\xint_bye,\xint_bye ,\xint_bye,\xint_bye,\xint_bye,\xint_bye,\Z }% \long\def\XINT_csvtol_loop_a #1#2,#3,#4,#5,#6,#7,#8,#9,% {% \xint_bye #9\XINT_csvtol_finish_a\xint_bye \XINT_csvtol_loop_b {#1}{{#2}{#3}{#4}{#5}{#6}{#7}{#8}{#9}}% }% \long\def\XINT_csvtol_loop_b #1#2{\XINT_csvtol_loop_a {#1#2}}% \long\def\XINT_csvtol_finish_a\xint_bye\XINT_csvtol_loop_b #1#2#3\Z {% \XINT_csvtol_finish_b #3\R,\R,\R,\R,\R,\R,\R,\Z #2{#1}% }% \def\XINT_csvtol_finish_b #1,#2,#3,#4,#5,#6,#7,#8\Z {% \xint_gob_til_R #1\XINT_csvtol_finish_c 8% #2\XINT_csvtol_finish_c 7% #3\XINT_csvtol_finish_c 6% #4\XINT_csvtol_finish_c 5% #5\XINT_csvtol_finish_c 4% #6\XINT_csvtol_finish_c 3% #7\XINT_csvtol_finish_c 2% \R\XINT_csvtol_finish_c 1\Z }% \def\XINT_csvtol_finish_c #1#2\Z {% \csname XINT_csvtol_finish_d\romannumeral #1\endcsname }% \long\def\XINT_csvtol_finish_dviii #1#2#3#4#5#6#7#8#9{ #9}% \long\def\XINT_csvtol_finish_dvii #1#2#3#4#5#6#7#8#9{ #9{#1}}% \long\def\XINT_csvtol_finish_dvi #1#2#3#4#5#6#7#8#9{ #9{#1}{#2}}% \long\def\XINT_csvtol_finish_dv #1#2#3#4#5#6#7#8#9{ #9{#1}{#2}{#3}}% \long\def\XINT_csvtol_finish_div #1#2#3#4#5#6#7#8#9{ #9{#1}{#2}{#3}{#4}}% \long\def\XINT_csvtol_finish_diii #1#2#3#4#5#6#7#8#9{ #9{#1}{#2}{#3}{#4}{#5}}% \long\def\XINT_csvtol_finish_dii #1#2#3#4#5#6#7#8#9% { #9{#1}{#2}{#3}{#4}{#5}{#6}}% \long\def\XINT_csvtol_finish_di #1#2#3#4#5#6#7#8#9% { #9{#1}{#2}{#3}{#4}{#5}{#6}{#7}}% % \end{macrocode} % \subsection{\csh{xintListWithSep}} % \lverb|1.04. % \xintListWithSep {\sep}{{a}{b}...{z}} returns a \sep b \sep ....\sep z. It % f-expands its second argument. The 'sep' may be \par's: the macro % \xintlistwithsep etc... are all declared long. 'sep' does not have to be a % single token. It is not expanded.| % \begin{macrocode} \def\xintListWithSep {\romannumeral0\xintlistwithsep }% \def\xintListWithSepNoExpand {\romannumeral0\xintlistwithsepnoexpand }% \long\def\xintlistwithsep #1#2% {\expandafter\XINT_lws\expandafter {\romannumeral-`0#2}{#1}}% \long\def\XINT_lws #1#2{\XINT_lws_start {#2}#1\xint_bye }% \long\def\xintlistwithsepnoexpand #1#2{\XINT_lws_start {#1}#2\xint_bye }% \long\def\XINT_lws_start #1#2% {% \xint_bye #2\XINT_lws_dont\xint_bye \XINT_lws_loop_a {#2}{#1}% }% \long\def\XINT_lws_dont\xint_bye\XINT_lws_loop_a #1#2{ }% \long\def\XINT_lws_loop_a #1#2#3% {% \xint_bye #3\XINT_lws_end\xint_bye \XINT_lws_loop_b {#1}{#2#3}{#2}% }% \long\def\XINT_lws_loop_b #1#2{\XINT_lws_loop_a {#1#2}}% \long\def\XINT_lws_end\xint_bye\XINT_lws_loop_b #1#2#3{ #1}% % \end{macrocode} % \subsection{\csh{xintNthElt}} % \lverb+First included in release 1.06. % % \xintNthElt {i}{stuff f-expanding to {a}{b}...{z}} (or `tokens' % abcd...z)returns the i th element (one pair of braces removed). The list is % first f-expanded. The \xintNthEltNoExpand does no expansion of its second % argument. Both variants expand the first argument inside \numexpr. % % With i = 0, the number of items is returned. This is different from \xintLen % which is only for numbers (particularly, it checks the sign) and different % from \xintLength which does not f-expand its argument. % % Negative values return the |i|th element from the end. Release 1.09m % rewrote the initial bits of the code (which checked the sign of #1 and % expanded or not #2), ome `improvements' made earlier in 1.09c were quite % sub-efficient. Now uses \xint_UD$-zero$-minus$-fork, moved from xint.sty.+ % \begin{macrocode} \def\xintNthElt {\romannumeral0\xintnthelt }% \def\xintNthEltNoExpand {\romannumeral0\xintntheltnoexpand }% \def\xintnthelt #1#2% {% \expandafter\XINT_nthelt_a\the\numexpr #1\expandafter.% \expandafter{\romannumeral-`0#2}% }% \def\xintntheltnoexpand #1% {% \expandafter\XINT_nthelt_a\the\numexpr #1.% }% \def\XINT_nthelt_a #1#2.% {% \xint_UDzerominusfork #1-{\XINT_nthelt_bzero}% 0#1{\XINT_nthelt_bneg {#2}}% 0-{\XINT_nthelt_bpos {#1#2}}% \krof }% \long\def\XINT_nthelt_bzero #1% {% \XINT_length_loop 0.#1\xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye }% \long\def\XINT_nthelt_bneg #1#2% {% \expandafter\XINT_nthelt_loop_a\expandafter {\the\numexpr #1\expandafter}% \romannumeral0\xintrevwithbracesnoexpand {#2}% \xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye }% \long\def\XINT_nthelt_bpos #1#2% {% \XINT_nthelt_loop_a {#1}#2\xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye }% \def\XINT_nthelt_loop_a #1% {% \ifnum #1>\xint_c_viii \expandafter\XINT_nthelt_loop_b \else \XINT_nthelt_getit \fi {#1}% }% \long\def\XINT_nthelt_loop_b #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_xint_relax #9\XINT_nthelt_silentend\xint_relax \expandafter\XINT_nthelt_loop_a\expandafter{\the\numexpr #1-\xint_c_viii}% }% \def\XINT_nthelt_silentend #1\xint_bye { }% \def\XINT_nthelt_getit\fi #1% {% \fi\expandafter\expandafter\expandafter\XINT_nthelt_finish \csname xint_gobble_\romannumeral\numexpr#1-\xint_c_i\endcsname }% \long\edef\XINT_nthelt_finish #1#2\xint_bye {\noexpand\xint_gob_til_xint_relax #1\noexpand\expandafter\space \noexpand\xint_gobble_ii\xint_relax\space #1}% % \end{macrocode} % \subsection{\csh{xintKeep}} % \lverb+First included in release 1.09m. % % \xintKeep {i}{stuff f-expanding to {a}{b}...{z}} (or `tokens' abcd...z, % but each naked token ends up braced in the output) returns (in two % expansion steps) the first i elements from the list, which is first % f-expanded. The i is expanded inside \numexpr. The variant % \xintKeepNoExpand does not expand the list argument. % % With i = 0, the empty sequence is returned. % % With i<0, the last |i| elements are returned (in the same order as in % the original list). % % With |i| equal to or bigger than the length of the (f-expanded) list, % the full list is returned.+ % \begin{macrocode} \def\xintKeep {\romannumeral0\xintkeep }% \def\xintKeepNoExpand {\romannumeral0\xintkeepnoexpand }% \def\xintkeep #1#2% {% \expandafter\XINT_keep_a\the\numexpr #1\expandafter.% \expandafter{\romannumeral-`0#2}% }% \def\xintkeepnoexpand #1% {% \expandafter\XINT_keep_a\the\numexpr #1.% }% \def\XINT_keep_a #1#2.% {% \xint_UDzerominusfork #1-{\expandafter\space\xint_gobble_i }% 0#1{\XINT_keep_bneg_a {#2}}% 0-{\XINT_keep_bpos {#1#2}}% \krof }% \long\def\XINT_keep_bneg_a #1#2% {% \expandafter\XINT_keep_bneg_b \the\numexpr \xintLength{#2}-#1.{#2}% }% \def\XINT_keep_bneg_b #1#2.% {% \xint_UDzerominusfork #1-{\xint_firstofone_thenstop }% 0#1{\xint_firstofone_thenstop }% 0-{\XINT_trim_bpos {#1#2}}% \krof }% \long\def\XINT_keep_bpos #1#2% {% \XINT_keep_loop_a {#1}{}#2\xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_bye }% \def\XINT_keep_loop_a #1% {% \ifnum #1>\xint_c_vi \expandafter\XINT_keep_loop_b \else \XINT_keep_finish \fi {#1}% }% \long\def\XINT_keep_loop_b #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_xint_relax #9\XINT_keep_enda\xint_relax \expandafter\XINT_keep_loop_c\expandafter{\the\numexpr #1-\xint_c_vii}% {{#3}{#4}{#5}{#6}{#7}{#8}{#9}}{#2}% }% \long\def\XINT_keep_loop_c #1#2#3{\XINT_keep_loop_a {#1}{#3#2}}% \long\def\XINT_keep_enda\xint_relax \expandafter\XINT_keep_loop_c\expandafter #1#2#3#4\xint_bye {% \XINT_keep_endb #4\W\W\W\W\W\W\Z #2{#3}% }% \def\XINT_keep_endb #1#2#3#4#5#6#7\Z {% \xint_gob_til_W #1\XINT_keep_endc_ #2\XINT_keep_endc_i #3\XINT_keep_endc_ii #4\XINT_keep_endc_iii #5\XINT_keep_endc_iv #6\XINT_keep_endc_v \W\XINT_keep_endc_vi\Z }% \long\def\XINT_keep_endc_ #1\Z #2#3#4#5#6#7#8#9{ #9}% \long\def\XINT_keep_endc_i #1\Z #2#3#4#5#6#7#8#9{ #9{#2}}% \long\def\XINT_keep_endc_ii #1\Z #2#3#4#5#6#7#8#9{ #9{#2}{#3}}% \long\def\XINT_keep_endc_iii #1\Z #2#3#4#5#6#7#8#9{ #9{#2}{#3}{#4}}% \long\def\XINT_keep_endc_iv #1\Z #2#3#4#5#6#7#8#9{ #9{#2}{#3}{#4}{#5}}% \long\def\XINT_keep_endc_v #1\Z #2#3#4#5#6#7#8#9{ #9{#2}{#3}{#4}{#5}{#6}}% \long\def\XINT_keep_endc_vi\Z #1#2#3#4#5#6#7#8{ #8{#1}{#2}{#3}{#4}{#5}{#6}}% \long\def\XINT_keep_finish\fi #1#2#3#4#5#6#7#8#9\xint_bye {% \fi\XINT_keep_finish_loop_a {#1}{}{#3}{#4}{#5}{#6}{#7}{#8}\Z {#2}% }% \def\XINT_keep_finish_loop_a #1% {% \xint_gob_til_zero #1\XINT_keep_finish_z0% \expandafter\XINT_keep_finish_loop_b\expandafter {\the\numexpr #1-\xint_c_i}% }% \long\def\XINT_keep_finish_z0% \expandafter\XINT_keep_finish_loop_b\expandafter #1#2#3\Z #4{ #4#2}% \long\def\XINT_keep_finish_loop_b #1#2#3% {% \xint_gob_til_xint_relax #3\XINT_keep_finish_exit\xint_relax \XINT_keep_finish_loop_c {#1}{#2}{#3}% }% \long\def\XINT_keep_finish_exit\xint_relax \XINT_keep_finish_loop_c #1#2#3\Z #4{ #4#2}% \long\def\XINT_keep_finish_loop_c #1#2#3% {\XINT_keep_finish_loop_a {#1}{#2{#3}}}% % \end{macrocode} % \subsection{\csh{xintTrim}} % \lverb+First included in release 1.09m. % % \xintTrim {i}{stuff f-expanding to {a}{b}...{z}} (or `tokens' abcd...z, % but each naked token ends up braced in the output) returns (in two % expansion steps) the sequence with the first i elements omitted. The % list is first f-expanded. The i is expanded inside \numexpr. Variant % \xintTrimNoExpand does not expand the list argument. % % With i = 0, the original (expanded) list is returned. % % With i<0, the last |i| elements from the tail are suppressed. % % With |i| equal to or bigger than the length of the (f-expanded) list, % the empty list is returned.+ % \begin{macrocode} \def\xintTrim {\romannumeral0\xinttrim }% \def\xintTrimNoExpand {\romannumeral0\xinttrimnoexpand }% \def\xinttrim #1#2% {% \expandafter\XINT_trim_a\the\numexpr #1\expandafter.% \expandafter{\romannumeral-`0#2}% }% \def\xinttrimnoexpand #1% {% \expandafter\XINT_trim_a\the\numexpr #1.% }% \def\XINT_trim_a #1#2.% {% \xint_UDzerominusfork #1-{\xint_firstofone_thenstop }% 0#1{\XINT_trim_bneg_a {#2}}% 0-{\XINT_trim_bpos {#1#2}}% \krof }% \long\def\XINT_trim_bneg_a #1#2% {% \expandafter\XINT_trim_bneg_b \the\numexpr \xintLength{#2}-#1.{#2}% }% \def\XINT_trim_bneg_b #1#2.% {% \xint_UDzerominusfork #1-{\expandafter\space\xint_gobble_i }% 0#1{\expandafter\space\xint_gobble_i }% 0-{\XINT_keep_bpos {#1#2}}% \krof }% \long\def\XINT_trim_bpos #1#2% {% \XINT_trim_loop_a {#1}#2\xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye }% \def\XINT_trim_loop_a #1% {% \ifnum #1>\xint_c_vii \expandafter\XINT_trim_loop_b \else \XINT_trim_finish \fi {#1}% }% \long\def\XINT_trim_loop_b #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_xint_relax #9\XINT_trim_silentend\xint_relax \expandafter\XINT_trim_loop_a\expandafter{\the\numexpr #1-\xint_c_viii}% }% \def\XINT_trim_silentend #1\xint_bye { }% \def\XINT_trim_finish\fi #1% {% \fi\expandafter\expandafter\expandafter\XINT_trim_finish_a \expandafter\expandafter\expandafter\space % avoids brace removal \csname xint_gobble_\romannumeral\numexpr#1\endcsname }% \long\def\XINT_trim_finish_a #1\xint_relax #2\xint_bye {#1}% % \end{macrocode} % \subsection{\csh{xintApply}} % \lverb|\xintApply {\macro}{{a}{b}...{z}} returns {\macro{a}}...{\macro{b}} % where each instance of \macro is f-expanded. The list itself is first % f-expanded and may thus be a macro. Introduced with release 1.04.| % \begin{macrocode} \def\xintApply {\romannumeral0\xintapply }% \def\xintApplyNoExpand {\romannumeral0\xintapplynoexpand }% \long\def\xintapply #1#2% {% \expandafter\XINT_apply\expandafter {\romannumeral-`0#2}% {#1}% }% \long\def\XINT_apply #1#2{\XINT_apply_loop_a {}{#2}#1\xint_bye }% \long\def\xintapplynoexpand #1#2{\XINT_apply_loop_a {}{#1}#2\xint_bye }% \long\def\XINT_apply_loop_a #1#2#3% {% \xint_bye #3\XINT_apply_end\xint_bye \expandafter \XINT_apply_loop_b \expandafter {\romannumeral-`0#2{#3}}{#1}{#2}% }% \long\def\XINT_apply_loop_b #1#2{\XINT_apply_loop_a {#2{#1}}}% \long\def\XINT_apply_end\xint_bye\expandafter\XINT_apply_loop_b \expandafter #1#2#3{ #2}% % \end{macrocode} % \subsection{\csh{xintApplyUnbraced}} % \lverb|\xintApplyUnbraced {\macro}{{a}{b}...{z}} returns \macro{a}...\macro{z} % where each instance of \macro is f-expanded using \romannumeral-`0. The second % argument may be a macro as it is itself also f-expanded. No braces % are added: this allows for example a non-expandable \def in \macro, without % having to do \gdef. Introduced with release 1.06b.| % \begin{macrocode} \def\xintApplyUnbraced {\romannumeral0\xintapplyunbraced }% \def\xintApplyUnbracedNoExpand {\romannumeral0\xintapplyunbracednoexpand }% \long\def\xintapplyunbraced #1#2% {% \expandafter\XINT_applyunbr\expandafter {\romannumeral-`0#2}% {#1}% }% \long\def\XINT_applyunbr #1#2{\XINT_applyunbr_loop_a {}{#2}#1\xint_bye }% \long\def\xintapplyunbracednoexpand #1#2% {\XINT_applyunbr_loop_a {}{#1}#2\xint_bye }% \long\def\XINT_applyunbr_loop_a #1#2#3% {% \xint_bye #3\XINT_applyunbr_end\xint_bye \expandafter\XINT_applyunbr_loop_b \expandafter {\romannumeral-`0#2{#3}}{#1}{#2}% }% \long\def\XINT_applyunbr_loop_b #1#2{\XINT_applyunbr_loop_a {#2#1}}% \long\def\XINT_applyunbr_end\xint_bye\expandafter\XINT_applyunbr_loop_b \expandafter #1#2#3{ #2}% % \end{macrocode} % \subsection{\csh{xintSeq}} % \lverb|1.09c. Without the optional argument puts stress on the input stack, % should not be used to generated thousands of terms then.| % \begin{macrocode} \def\xintSeq {\romannumeral0\xintseq }% \def\xintseq #1{\XINT_seq_chkopt #1\xint_bye }% \def\XINT_seq_chkopt #1% {% \ifx [#1\expandafter\XINT_seq_opt \else\expandafter\XINT_seq_noopt \fi #1% }% \def\XINT_seq_noopt #1\xint_bye #2% {% \expandafter\XINT_seq\expandafter {\the\numexpr#1\expandafter}\expandafter{\the\numexpr #2}% }% \def\XINT_seq #1#2% {% \ifcase\ifnum #1=#2 0\else\ifnum #2>#1 1\else -1\fi\fi\space \expandafter\xint_firstoftwo_thenstop \or \expandafter\XINT_seq_p \else \expandafter\XINT_seq_n \fi {#2}{#1}% }% \def\XINT_seq_p #1#2% {% \ifnum #1>#2 \expandafter\expandafter\expandafter\XINT_seq_p \else \expandafter\XINT_seq_e \fi \expandafter{\the\numexpr #1-\xint_c_i}{#2}{#1}% }% \def\XINT_seq_n #1#2% {% \ifnum #1<#2 \expandafter\expandafter\expandafter\XINT_seq_n \else \expandafter\XINT_seq_e \fi \expandafter{\the\numexpr #1+\xint_c_i}{#2}{#1}% }% \def\XINT_seq_e #1#2#3{ }% \def\XINT_seq_opt [\xint_bye #1]#2#3% {% \expandafter\XINT_seqo\expandafter {\the\numexpr #2\expandafter}\expandafter {\the\numexpr #3\expandafter}\expandafter {\the\numexpr #1}% }% \def\XINT_seqo #1#2% {% \ifcase\ifnum #1=#2 0\else\ifnum #2>#1 1\else -1\fi\fi\space \expandafter\XINT_seqo_a \or \expandafter\XINT_seqo_pa \else \expandafter\XINT_seqo_na \fi {#1}{#2}% }% \def\XINT_seqo_a #1#2#3{ {#1}}% \def\XINT_seqo_o #1#2#3#4{ #4}% \def\XINT_seqo_pa #1#2#3% {% \ifcase\ifnum #3=\xint_c_ 0\else\ifnum #3>\xint_c_ 1\else -1\fi\fi\space \expandafter\XINT_seqo_o \or \expandafter\XINT_seqo_pb \else \xint_afterfi{\expandafter\space\xint_gobble_iv}% \fi {#1}{#2}{#3}{{#1}}% }% \def\XINT_seqo_pb #1#2#3% {% \expandafter\XINT_seqo_pc\expandafter{\the\numexpr #1+#3}{#2}{#3}% }% \def\XINT_seqo_pc #1#2% {% \ifnum #1>#2 \expandafter\XINT_seqo_o \else \expandafter\XINT_seqo_pd \fi {#1}{#2}% }% \def\XINT_seqo_pd #1#2#3#4{\XINT_seqo_pb {#1}{#2}{#3}{#4{#1}}}% \def\XINT_seqo_na #1#2#3% {% \ifcase\ifnum #3=\xint_c_ 0\else\ifnum #3>\xint_c_ 1\else -1\fi\fi\space \expandafter\XINT_seqo_o \or \xint_afterfi{\expandafter\space\xint_gobble_iv}% \else \expandafter\XINT_seqo_nb \fi {#1}{#2}{#3}{{#1}}% }% \def\XINT_seqo_nb #1#2#3% {% \expandafter\XINT_seqo_nc\expandafter{\the\numexpr #1+#3}{#2}{#3}% }% \def\XINT_seqo_nc #1#2% {% \ifnum #1<#2 \expandafter\XINT_seqo_o \else \expandafter\XINT_seqo_nd \fi {#1}{#2}% }% \def\XINT_seqo_nd #1#2#3#4{\XINT_seqo_nb {#1}{#2}{#3}{#4{#1}}}% % \end{macrocode} %\subsection{\csh{xintloop}, \csh{xintbreakloop}, \csh{xintbreakloopanddo}, % \csh{xintloopskiptonext}} % \lverb|1.09g [2013/11/22]. Made long with 1.09h.| % \begin{macrocode} \long\def\xintloop #1#2\repeat {#1#2\xintloop_again\fi\xint_gobble_i {#1#2}}% \long\def\xintloop_again\fi\xint_gobble_i #1{\fi #1\xintloop_again\fi\xint_gobble_i {#1}}% \long\def\xintbreakloop #1\xintloop_again\fi\xint_gobble_i #2{}% \long\def\xintbreakloopanddo #1#2\xintloop_again\fi\xint_gobble_i #3{#1}% \long\def\xintloopskiptonext #1\xintloop_again\fi\xint_gobble_i #2{% #2\xintloop_again\fi\xint_gobble_i {#2}}% % \end{macrocode} % \subsection{\csh{xintiloop}, \csh{xintiloopindex}, \csh{xintouteriloopindex}, % \csh{xintbreakiloop}, \csh{xintbreakiloopanddo}, \csh{xintiloopskiptonext}, % \csh{xintiloopskipandredo}} % \lverb|1.09g [2013/11/22]. Made long with 1.09h.| % \begin{macrocode} \def\xintiloop [#1+#2]{% \expandafter\xintiloop_a\the\numexpr #1\expandafter.\the\numexpr #2.}% \long\def\xintiloop_a #1.#2.#3#4\repeat{% #3#4\xintiloop_again\fi\xint_gobble_iii {#1}{#2}{#3#4}}% \def\xintiloop_again\fi\xint_gobble_iii #1#2{% \fi\expandafter\xintiloop_again_b\the\numexpr#1+#2.#2.}% \long\def\xintiloop_again_b #1.#2.#3{% #3\xintiloop_again\fi\xint_gobble_iii {#1}{#2}{#3}}% \long\def\xintbreakiloop #1\xintiloop_again\fi\xint_gobble_iii #2#3#4{}% \long\def\xintbreakiloopanddo #1.#2\xintiloop_again\fi\xint_gobble_iii #3#4#5{#1}% \long\def\xintiloopindex #1\xintiloop_again\fi\xint_gobble_iii #2% {#2#1\xintiloop_again\fi\xint_gobble_iii {#2}}% \long\def\xintouteriloopindex #1\xintiloop_again #2\xintiloop_again\fi\xint_gobble_iii #3% {#3#1\xintiloop_again #2\xintiloop_again\fi\xint_gobble_iii {#3}}% \long\def\xintiloopskiptonext #1\xintiloop_again\fi\xint_gobble_iii #2#3{% \expandafter\xintiloop_again_b \the\numexpr#2+#3.#3.}% \long\def\xintiloopskipandredo #1\xintiloop_again\fi\xint_gobble_iii #2#3#4{% #4\xintiloop_again\fi\xint_gobble_iii {#2}{#3}{#4}}% % \end{macrocode} % \subsection{\csh{XINT_xflet}} % \lverb|1.09e [2013/10/29]: we f-expand unbraced tokens and swallow arising % space tokens until the dust settles.| % \begin{macrocode} \def\XINT_xflet #1% {% \def\XINT_xflet_macro {#1}\XINT_xflet_zapsp }% \def\XINT_xflet_zapsp {% \expandafter\futurelet\expandafter\XINT_token \expandafter\XINT_xflet_sp?\romannumeral-`0% }% \def\XINT_xflet_sp? {% \ifx\XINT_token\XINT_sptoken \expandafter\XINT_xflet_zapsp \else\expandafter\XINT_xflet_zapspB \fi }% \def\XINT_xflet_zapspB {% \expandafter\futurelet\expandafter\XINT_tokenB \expandafter\XINT_xflet_spB?\romannumeral-`0% }% \def\XINT_xflet_spB? {% \ifx\XINT_tokenB\XINT_sptoken \expandafter\XINT_xflet_zapspB \else\expandafter\XINT_xflet_eq? \fi }% \def\XINT_xflet_eq? {% \ifx\XINT_token\XINT_tokenB \expandafter\XINT_xflet_macro \else\expandafter\XINT_xflet_zapsp \fi }% % \end{macrocode} % \subsection{\csh{xintApplyInline}} % \lverb|1.09a: \xintApplyInline\macro{{a}{b}...{z}} has the same effect as % executing \macro{a} and then applying again \xintApplyInline to the shortened % list {{b}...{z}} until nothing is left. This is a non-expandable command % which will result in quicker code than using \xintApplyUnbraced. It f-expands % its second (list) argument first, which may thus be encapsulated in a macro. % % Rewritten in 1.09c. Nota bene: uses catcode 3 Z as privated list terminator.| % \begin{macrocode} \catcode`Z 3 \long\def\xintApplyInline #1#2% {% \long\expandafter\def\expandafter\XINT_inline_macro \expandafter ##\expandafter 1\expandafter {#1{##1}}% \XINT_xflet\XINT_inline_b #2Z% this Z has catcode 3 }% \def\XINT_inline_b {% \ifx\XINT_token Z\expandafter\xint_gobble_i \else\expandafter\XINT_inline_d\fi }% \long\def\XINT_inline_d #1% {% \long\def\XINT_item{{#1}}\XINT_xflet\XINT_inline_e }% \def\XINT_inline_e {% \ifx\XINT_token Z\expandafter\XINT_inline_w \else\expandafter\XINT_inline_f\fi }% \def\XINT_inline_f {% \expandafter\XINT_inline_g\expandafter{\XINT_inline_macro {##1}}% }% \long\def\XINT_inline_g #1% {% \expandafter\XINT_inline_macro\XINT_item \long\def\XINT_inline_macro ##1{#1}\XINT_inline_d }% \def\XINT_inline_w #1% {% \expandafter\XINT_inline_macro\XINT_item }% % \end{macrocode} % \subsection{\csh{xintFor}, \csh{xintFor*}, \csh{xintBreakFor}, \csh{xintBreakForAndDo}} % \lverb|1.09c [2013/10/09]: a new kind of loop which uses macro parameters % #1, #2, #3, #4 rather than macros; while not expandable it survives executing % code closing groups, like what happens in an alignment with the $& character. % When inserted in a macro for later use, the # character must be doubled. % % The non-star variant works on a csv list, which it expands once, the % star variant works on a token list, which it (repeatedly) f-expands. % % 1.09e adds \XINT_forever with \xintintegers, \xintdimensions, \xintrationals % and \xintBreakFor, \xintBreakForAndDo, \xintifForFirst, \xintifForLast. On % this occasion \xint_firstoftwo and \xint_secondoftwo are made long. % % 1.09f: rewrites large parts of \xintFor code in order to filter the comma % separated list via \xintCSVtoList which gets rid of spaces. The #1 in % \XINT_for_forever? has an initial space token which serves two purposes: % preventing brace stripping, and stopping the expansion made by \xintcsvtolist. % If the \XINT_forever branch is taken, the added space will not be a problem % there. % % 1.09f rewrites (2013/11/03) the code which now allows all macro parameters % from #1 to #9 in \xintFor, \xintFor*, and \XINT_forever.| % \begin{macrocode} \def\XINT_tmpa #1#2{\ifnum #2<#1 \xint_afterfi {{#########2}}\fi}% \def\XINT_tmpb #1#2{\ifnum #1<#2 \xint_afterfi {{#########2}}\fi}% \def\XINT_tmpc #1% {% \expandafter\edef \csname XINT_for_left#1\endcsname {\xintApplyUnbraced {\XINT_tmpa #1}{123456789}}% \expandafter\edef \csname XINT_for_right#1\endcsname {\xintApplyUnbraced {\XINT_tmpb #1}{123456789}}% }% \xintApplyInline \XINT_tmpc {123456789}% \long\def\xintBreakFor #1Z{}% \long\def\xintBreakForAndDo #1#2Z{#1}% \def\xintFor {\let\xintifForFirst\xint_firstoftwo \futurelet\XINT_token\XINT_for_ifstar }% \def\XINT_for_ifstar {\ifx\XINT_token*\expandafter\XINT_forx \else\expandafter\XINT_for \fi }% \catcode`U 3 % with numexpr \catcode`V 3 % with xintfrac.sty (xint.sty not enough) \catcode`D 3 % with dimexpr \def\XINT_flet_zapsp {% \futurelet\XINT_token\XINT_flet_sp? }% \def\XINT_flet_sp? {% \ifx\XINT_token\XINT_sptoken \xint_afterfi{\expandafter\XINT_flet_zapsp\romannumeral0}% \else\expandafter\XINT_flet_macro \fi }% \long\def\XINT_for #1#2in#3#4#5% {% \expandafter\XINT_toks\expandafter {\expandafter\XINT_for_d\the\numexpr #2\relax {#5}}% \def\XINT_flet_macro {\expandafter\XINT_for_forever?\space}% \expandafter\XINT_flet_zapsp #3Z% }% \def\XINT_for_forever? #1Z% {% \ifx\XINT_token U\XINT_to_forever\fi \ifx\XINT_token V\XINT_to_forever\fi \ifx\XINT_token D\XINT_to_forever\fi \expandafter\the\expandafter\XINT_toks\romannumeral0\xintcsvtolist {#1}Z% }% \def\XINT_to_forever\fi #1\xintcsvtolist #2{\fi \XINT_forever #2}% \long\def\XINT_forx *#1#2in#3#4#5% {% \expandafter\XINT_toks\expandafter {\expandafter\XINT_forx_d\the\numexpr #2\relax {#5}}% \XINT_xflet\XINT_forx_forever? #3Z% }% \def\XINT_forx_forever? {% \ifx\XINT_token U\XINT_to_forxever\fi \ifx\XINT_token V\XINT_to_forxever\fi \ifx\XINT_token D\XINT_to_forxever\fi \XINT_forx_empty? }% \def\XINT_to_forxever\fi #1\XINT_forx_empty? {\fi \XINT_forever }% \catcode`U 11 \catcode`D 11 \catcode`V 11 \def\XINT_forx_empty? {% \ifx\XINT_token Z\expandafter\xintBreakFor\fi \the\XINT_toks }% \long\def\XINT_for_d #1#2#3% {% \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}% \XINT_toks {{#3}}% \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname \the\XINT_toks \csname XINT_for_right#1\endcsname }% \XINT_toks {\XINT_x\let\xintifForFirst\xint_secondoftwo\XINT_for_d #1{#2}}% \futurelet\XINT_token\XINT_for_last? }% \long\def\XINT_forx_d #1#2#3% {% \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}% \XINT_toks {{#3}}% \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname \the\XINT_toks \csname XINT_for_right#1\endcsname }% \XINT_toks {\XINT_x\let\xintifForFirst\xint_secondoftwo\XINT_forx_d #1{#2}}% \XINT_xflet\XINT_for_last? }% \def\XINT_for_last? {% \let\xintifForLast\xint_secondoftwo \ifx\XINT_token Z\let\xintifForLast\xint_firstoftwo \xint_afterfi{\xintBreakForAndDo{\XINT_x\xint_gobble_i Z}}\fi \the\XINT_toks }% % \end{macrocode} % \subsection{\csh{XINT_forever}, \csh{xintintegers}, \csh{xintdimensions}, \csh{xintrationals}} % \lverb|New with 1.09e. But this used inadvertently \xintiadd/\xintimul which % have the unnecessary \xintnum overhead. Changed in 1.09f to use % \xintiiadd/\xintiimul which do not have this overhead. Also 1.09f uses % \xintZapSpacesB for the \xintrationals case to get rid of leading and ending % spaces in the #4 and #5 delimited parameters of \XINT_forever_opt_a % (for \xintintegers and \xintdimensions this is not necessary, due to the use % of \numexpr resp. \dimexpr in \XINT_?expr_Ua, resp.\XINT_?expr_Da).| % \begin{macrocode} \catcode`U 3 \catcode`D 3 \catcode`V 3 \let\xintegers U% \let\xintintegers U% \let\xintdimensions D% \let\xintrationals V% \def\XINT_forever #1% {% \expandafter\XINT_forever_a \csname XINT_?expr_\ifx#1UU\else\ifx#1DD\else V\fi\fi a\expandafter\endcsname \csname XINT_?expr_\ifx#1UU\else\ifx#1DD\else V\fi\fi i\expandafter\endcsname \csname XINT_?expr_\ifx#1UU\else\ifx#1DD\else V\fi\fi \endcsname }% \catcode`U 11 \catcode`D 11 \catcode`V 11 \def\XINT_?expr_Ua #1#2% {\expandafter{\expandafter\numexpr\the\numexpr #1\expandafter\relax \expandafter\relax\expandafter}% \expandafter{\the\numexpr #2}}% \def\XINT_?expr_Da #1#2% {\expandafter{\expandafter\dimexpr\number\dimexpr #1\expandafter\relax \expandafter s\expandafter p\expandafter\relax\expandafter}% \expandafter{\number\dimexpr #2}}% \catcode`Z 11 \def\XINT_?expr_Va #1#2% {% \expandafter\XINT_?expr_Vb\expandafter {\romannumeral-`0\xintrawwithzeros{\xintZapSpacesB{#2}}}% {\romannumeral-`0\xintrawwithzeros{\xintZapSpacesB{#1}}}% }% \catcode`Z 3 \def\XINT_?expr_Vb #1#2{\expandafter\XINT_?expr_Vc #2.#1.}% \def\XINT_?expr_Vc #1/#2.#3/#4.% {% \xintifEq {#2}{#4}% {\XINT_?expr_Vf {#3}{#1}{#2}}% {\expandafter\XINT_?expr_Vd\expandafter {\romannumeral0\xintiimul {#2}{#4}}% {\romannumeral0\xintiimul {#1}{#4}}% {\romannumeral0\xintiimul {#2}{#3}}% }% }% \def\XINT_?expr_Vd #1#2#3{\expandafter\XINT_?expr_Ve\expandafter {#2}{#3}{#1}}% \def\XINT_?expr_Ve #1#2{\expandafter\XINT_?expr_Vf\expandafter {#2}{#1}}% \def\XINT_?expr_Vf #1#2#3{{#2/#3}{{0}{#1}{#2}{#3}}}% \def\XINT_?expr_Ui {{\numexpr 1\relax}{1}}% \def\XINT_?expr_Di {{\dimexpr 0pt\relax}{65536}}% \def\XINT_?expr_Vi {{1/1}{0111}}% \def\XINT_?expr_U #1#2% {\expandafter{\expandafter\numexpr\the\numexpr #1+#2\relax\relax}{#2}}% \def\XINT_?expr_D #1#2% {\expandafter{\expandafter\dimexpr\the\numexpr #1+#2\relax sp\relax}{#2}}% \def\XINT_?expr_V #1#2{\XINT_?expr_Vx #2}% \def\XINT_?expr_Vx #1#2% {% \expandafter\XINT_?expr_Vy\expandafter {\romannumeral0\xintiiadd {#1}{#2}}{#2}% }% \def\XINT_?expr_Vy #1#2#3#4% {% \expandafter{\romannumeral0\xintiiadd {#3}{#1}/#4}{{#1}{#2}{#3}{#4}}% }% \def\XINT_forever_a #1#2#3#4% {% \ifx #4[\expandafter\XINT_forever_opt_a \else\expandafter\XINT_forever_b \fi #1#2#3#4% }% \def\XINT_forever_b #1#2#3Z{\expandafter\XINT_forever_c\the\XINT_toks #2#3}% \long\def\XINT_forever_c #1#2#3#4#5% {\expandafter\XINT_forever_d\expandafter #2#4#5{#3}Z}% \def\XINT_forever_opt_a #1#2#3[#4+#5]#6Z% {% \expandafter\expandafter\expandafter \XINT_forever_opt_c\expandafter\the\expandafter\XINT_toks \romannumeral-`0#1{#4}{#5}#3% }% \long\def\XINT_forever_opt_c #1#2#3#4#5#6{\XINT_forever_d #2{#4}{#5}#6{#3}Z}% \long\def\XINT_forever_d #1#2#3#4#5% {% \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#5}% \XINT_toks {{#2}}% \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname \the\XINT_toks \csname XINT_for_right#1\endcsname }% \XINT_x \let\xintifForFirst\xint_secondoftwo \expandafter\XINT_forever_d\expandafter #1\romannumeral-`0#4{#2}{#3}#4{#5}% }% % \end{macrocode} % \subsection{\csh{xintForpair}, \csh{xintForthree}, \csh{xintForfour}} % \lverb|1.09c. % % [2013/11/02] 1.09f \xintForpair delegate to \xintCSVtoList and its % \xintZapSpacesB the handling of spaces. Does not share code with \xintFor % anymore. % % [2013/11/03] 1.09f: \xintForpair extended to accept #1#2, #2#3 etc... up to % #8#9, \xintForthree, #1#2#3 up to #7#8#9, \xintForfour id. | % \begin{macrocode} \catcode`j 3 \long\def\xintForpair #1#2#3in#4#5#6% {% \let\xintifForFirst\xint_firstoftwo \XINT_toks {\XINT_forpair_d #2{#6}}% \expandafter\the\expandafter\XINT_toks #4jZ% }% \long\def\XINT_forpair_d #1#2#3(#4)#5% {% \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}% \XINT_toks \expandafter{\romannumeral0\xintcsvtolist{ #4}}% \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname \the\XINT_toks \csname XINT_for_right\the\numexpr#1+\xint_c_i\endcsname}% \let\xintifForLast\xint_secondoftwo \ifx #5j\expandafter\xint_firstoftwo \else\expandafter\xint_secondoftwo \fi {\let\xintifForLast\xint_firstoftwo \xintBreakForAndDo {\XINT_x \xint_gobble_i Z}}% \XINT_x \let\xintifForFirst\xint_secondoftwo\XINT_forpair_d #1{#2}% }% \long\def\xintForthree #1#2#3in#4#5#6% {% \let\xintifForFirst\xint_firstoftwo \XINT_toks {\XINT_forthree_d #2{#6}}% \expandafter\the\expandafter\XINT_toks #4jZ% }% \long\def\XINT_forthree_d #1#2#3(#4)#5% {% \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}% \XINT_toks \expandafter{\romannumeral0\xintcsvtolist{ #4}}% \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname \the\XINT_toks \csname XINT_for_right\the\numexpr#1+\xint_c_ii\endcsname}% \let\xintifForLast\xint_secondoftwo \ifx #5j\expandafter\xint_firstoftwo \else\expandafter\xint_secondoftwo \fi {\let\xintifForLast\xint_firstoftwo \xintBreakForAndDo {\XINT_x \xint_gobble_i Z}}% \XINT_x \let\xintifForFirst\xint_secondoftwo\XINT_forthree_d #1{#2}% }% \long\def\xintForfour #1#2#3in#4#5#6% {% \let\xintifForFirst\xint_firstoftwo \XINT_toks {\XINT_forfour_d #2{#6}}% \expandafter\the\expandafter\XINT_toks #4jZ% }% \long\def\XINT_forfour_d #1#2#3(#4)#5% {% \long\def\XINT_y ##1##2##3##4##5##6##7##8##9{#2}% \XINT_toks \expandafter{\romannumeral0\xintcsvtolist{ #4}}% \long\edef\XINT_x {\noexpand\XINT_y \csname XINT_for_left#1\endcsname \the\XINT_toks \csname XINT_for_right\the\numexpr#1+\xint_c_iii\endcsname}% \let\xintifForLast\xint_secondoftwo \ifx #5j\expandafter\xint_firstoftwo \else\expandafter\xint_secondoftwo \fi {\let\xintifForLast\xint_firstoftwo \xintBreakForAndDo {\XINT_x \xint_gobble_i Z}}% \XINT_x \let\xintifForFirst\xint_secondoftwo\XINT_forfour_d #1{#2}% }% \catcode`Z 11 \catcode`j 11 % \end{macrocode} % \subsection{\csh{xintAssign}, \csh{xintAssignArray}, \csh{xintDigitsOf}} % \lverb|\xintAssign {a}{b}..{z}\to\A\B...\Z or \xintAssignArray {a}{b}..{z}\to\U| % \begin{macrocode} \def\xintAssign{\def\XINT_flet_macro {\XINT_assign_fork}\XINT_flet_zapsp }% \def\XINT_assign_fork {% \let\XINT_assign_def\def \ifx\XINT_token[\expandafter\XINT_assign_opt \else\expandafter\XINT_assign_a \fi }% \def\XINT_assign_opt [#1]% {% \ifcsname #1def\endcsname \expandafter\let\expandafter\XINT_assign_def \csname #1def\endcsname \else \expandafter\let\expandafter\XINT_assign_def \csname xint#1def\endcsname \fi \XINT_assign_a }% \long\def\XINT_assign_a #1\to {% \expandafter\XINT_assign_b\romannumeral-`0#1{}\to }% \long\def\XINT_assign_b #1% attention to the # at the beginning of next line #{% \def\xint_temp {#1}% \ifx\empty\xint_temp \expandafter\XINT_assign_c \else \expandafter\XINT_assign_d \fi }% \long\def\XINT_assign_c #1#2\to #3% {% \XINT_assign_def #3{#1}% \def\xint_temp {#2}% \unless\ifx\empty\xint_temp\xint_afterfi{\XINT_assign_b #2\to }\fi }% \def\XINT_assign_d #1\to #2% normally #1 is {} here. {% \expandafter\XINT_assign_def\expandafter #2\expandafter{\xint_temp}% }% \def\xintRelaxArray #1% {% \edef\XINT_restoreescapechar {\escapechar\the\escapechar\relax}% \escapechar -1 \expandafter\def\expandafter\xint_arrayname\expandafter {\string #1}% \XINT_restoreescapechar \xintiloop [\csname\xint_arrayname 0\endcsname+-1] \global \expandafter\let\csname\xint_arrayname\xintiloopindex\endcsname\relax \ifnum \xintiloopindex > \xint_c_ \repeat \global\expandafter\let\csname\xint_arrayname 00\endcsname\relax \global\let #1\relax }% \def\xintAssignArray{\def\XINT_flet_macro {\XINT_assignarray_fork}% \XINT_flet_zapsp }% \def\XINT_assignarray_fork {% \let\XINT_assignarray_def\def \ifx\XINT_token[\expandafter\XINT_assignarray_opt \else\expandafter\XINT_assignarray \fi }% \def\XINT_assignarray_opt [#1]% {% \ifcsname #1def\endcsname \expandafter\let\expandafter\XINT_assignarray_def \csname #1def\endcsname \else \expandafter\let\expandafter\XINT_assignarray_def \csname xint#1def\endcsname \fi \XINT_assignarray }% \long\def\XINT_assignarray #1\to #2% {% \edef\XINT_restoreescapechar {\escapechar\the\escapechar\relax }% \escapechar -1 \expandafter\def\expandafter\xint_arrayname\expandafter {\string #2}% \XINT_restoreescapechar \def\xint_itemcount {0}% \expandafter\XINT_assignarray_loop \romannumeral-`0#1\xint_relax \csname\xint_arrayname 00\expandafter\endcsname \csname\xint_arrayname 0\expandafter\endcsname \expandafter {\xint_arrayname}#2% }% \long\def\XINT_assignarray_loop #1% {% \def\xint_temp {#1}% \ifx\xint_brelax\xint_temp \expandafter\def\csname\xint_arrayname 0\expandafter\endcsname \expandafter{\the\numexpr\xint_itemcount}% \expandafter\expandafter\expandafter\XINT_assignarray_end \else \expandafter\def\expandafter\xint_itemcount\expandafter {\the\numexpr\xint_itemcount+\xint_c_i}% \expandafter\XINT_assignarray_def \csname\xint_arrayname\xint_itemcount\expandafter\endcsname \expandafter{\xint_temp }% \expandafter\XINT_assignarray_loop \fi }% \def\XINT_assignarray_end #1#2#3#4% {% \def #4##1% {% \romannumeral0\expandafter #1\expandafter{\the\numexpr ##1}% }% \def #1##1% {% \ifnum ##1<\xint_c_ \xint_afterfi {\xintError:ArrayIndexIsNegative\space }% \else \xint_afterfi {% \ifnum ##1>#2 \xint_afterfi {\xintError:ArrayIndexBeyondLimit\space }% \else\xint_afterfi {\expandafter\expandafter\expandafter\space\csname #3##1\endcsname}% \fi}% \fi }% }% \let\xintDigitsOf\xintAssignArray \let\XINT_tmpa\relax \let\XINT_tmpb\relax \let\XINT_tmpc\relax \XINT_restorecatcodes_endinput% % \end{macrocode} %\catcode`\<=0 \catcode`\>=11 \catcode`\*=11 \catcode`\/=11 %\let\relax %\def<*xintcore>{\catcode`\<=12 \catcode`\>=12 \catcode`\*=12 \catcode`\/=12 } % %<*xintcore> % % \StoreCodelineNo {xinttools} % % \section{Package \xintcorenameimp implementation} % \label{sec:coreimp} % % \localtableofcontents % % Got split off from \xintnameimp with release |1.1|. Adds % |\xintiiDivRound|. Does not load \xinttoolsnameimp. % % Since release |xint 1.09a| these macros doing arithmetic operations % apply systematically |\xintnum| to their arguments; this adds a little % overhead but this is more convenient for using count registers even % with infix notation; also this is what |xintfrac.sty| did all along. % Simplifies the discussion in the documentation too. % % \subsection{Catcodes, \protect\eTeX{} and reload detection} % % The code for reload detection was initially copied from \textsc{Heiko % Oberdiek}'s packages, then modified. % % The method for catcodes was also initially directly inspired by these % packages. % % \begin{macrocode} \begingroup\catcode61\catcode48\catcode32=10\relax% \catcode13=5 % ^^M \endlinechar=13 % \catcode123=1 % { \catcode125=2 % } \catcode64=11 % @ \catcode35=6 % # \catcode44=12 % , \catcode45=12 % - \catcode46=12 % . \catcode58=12 % : \let\z\endgroup \expandafter\let\expandafter\x\csname ver@xintcore.sty\endcsname \expandafter\let\expandafter\w\csname ver@xintkernel.sty\endcsname \expandafter \ifx\csname PackageInfo\endcsname\relax \def\y#1#2{\immediate\write-1{Package #1 Info: #2.}}% \else \def\y#1#2{\PackageInfo{#1}{#2}}% \fi \expandafter \ifx\csname numexpr\endcsname\relax \y{xintcore}{\numexpr not available, aborting input}% \aftergroup\endinput \else \ifx\x\relax % plain-TeX, first loading of xintcore.sty \ifx\w\relax % but xintkernel.sty not yet loaded. \def\z{\endgroup\input xintkernel.sty\relax}% \fi \else \def\empty {}% \ifx\x\empty % LaTeX, first loading, % variable is initialized, but \ProvidesPackage not yet seen \ifx\w\relax % xintkernel.sty not yet loaded. \def\z{\endgroup\RequirePackage{xintkernel}}% \fi \else \aftergroup\endinput % xintkernel already loaded. \fi \fi \fi \z% \XINTsetupcatcodes% defined in xintkernel.sty % \end{macrocode} % \subsection{Package identification} % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintcore}% [2014/11/07 v1.1a Expandable arithmetic on big integers (jfB)]% % \end{macrocode} % \subsection{More token management, constants} % \begin{macrocode} \def\xint_minus_thenstop { -}% \def\xint_gob_til_zeros_iii #1000{}% \def\xint_gob_til_zeros_iv #10000{}% \def\xint_gob_til_one #11{}% \def\xint_gob_til_G #1G{}% \def\xint_gob_til_minus #1-{}% \def\xint_gob_til_relax #1\relax {}% \def\xint_exchangetwo_keepbraces #1#2{{#2}{#1}}% \def\xint_exchangetwo_keepbraces_thenstop #1#2{ {#2}{#1}}% \def\xint_UDzerofork #10#2#3\krof {#2}% \def\xint_UDsignfork #1-#2#3\krof {#2}% \def\xint_UDwfork #1\W#2#3\krof {#2}% \def\xint_UDzerosfork #100#2#3\krof {#2}% \def\xint_UDonezerofork #110#2#3\krof {#2}% \def\xint_UDsignsfork #1--#2#3\krof {#2}% \chardef\xint_c_ix 9 \chardef\xint_c_x 10 \chardef\xint_c_ii^v 32 % not used in xint, common to xintfrac and xintbinhex \chardef\xint_c_ii^vi 64 \mathchardef\xint_c_ixixixix 9999 \mathchardef\xint_c_x^iv 10000 \newcount\xint_c_x^viii \xint_c_x^viii 100000000 % \end{macrocode} % \subsection{\csh{XINT_RQ}} % \lverb|Cette macro renverse et ajoute le nombre minimal de zéros à % la fin pour que la longueur soit alors multiple de 4$\ % \romannumeral0\XINT_RQ {}\R\R\R\R\R\R\R\R\Z$\ % Attention, ceci n'est utilisé que pour des chaînes de chiffres, et donc le % comportement avec des {..} ou autres espaces n'a fait l'objet d'aucune % attention.| % \begin{macrocode} \def\XINT_RQ #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_R #9\XINT_RQ_end_a\R\XINT_RQ {#9#8#7#6#5#4#3#2#1}% }% \def\XINT_RQ_end_a\R\XINT_RQ #1#2\Z {% \XINT_RQ_end_b #1\Z }% \def\XINT_RQ_end_b #1#2#3#4#5#6#7#8% {% \xint_gob_til_R #8\XINT_RQ_end_viii #7\XINT_RQ_end_vii #6\XINT_RQ_end_vi #5\XINT_RQ_end_v #4\XINT_RQ_end_iv #3\XINT_RQ_end_iii #2\XINT_RQ_end_ii \R\XINT_RQ_end_i \Z #2#3#4#5#6#7#8% }% \def\XINT_RQ_end_viii #1\Z #2#3#4#5#6#7#8#9\Z { #9}% \def\XINT_RQ_end_vii #1\Z #2#3#4#5#6#7#8#9\Z { #8#9000}% \def\XINT_RQ_end_vi #1\Z #2#3#4#5#6#7#8#9\Z { #7#8#900}% \def\XINT_RQ_end_v #1\Z #2#3#4#5#6#7#8#9\Z { #6#7#8#90}% \def\XINT_RQ_end_iv #1\Z #2#3#4#5#6#7#8#9\Z { #5#6#7#8#9}% \def\XINT_RQ_end_iii #1\Z #2#3#4#5#6#7#8#9\Z { #4#5#6#7#8#9000}% \def\XINT_RQ_end_ii #1\Z #2#3#4#5#6#7#8#9\Z { #3#4#5#6#7#8#900}% \def\XINT_RQ_end_i \Z #1#2#3#4#5#6#7#8\Z { #1#2#3#4#5#6#7#80}% % \end{macrocode} % \subsection{\csh{XINT_OQ}} % \begin{macrocode} \def\XINT_OQ #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_R #9\XINT_OQ_end_a\R\XINT_OQ {#9#8#7#6#5#4#3#2#1}% }% \def\XINT_OQ_end_a\R\XINT_OQ #1#2\Z {% \XINT_OQ_end_b #1\Z }% \def\XINT_OQ_end_b #1#2#3#4#5#6#7#8% {% \xint_gob_til_R #8\XINT_OQ_end_viii #7\XINT_OQ_end_vii #6\XINT_OQ_end_vi #5\XINT_OQ_end_v #4\XINT_OQ_end_iv #3\XINT_OQ_end_iii #2\XINT_OQ_end_ii \R\XINT_OQ_end_i \Z #2#3#4#5#6#7#8% }% \def\XINT_OQ_end_viii #1\Z #2#3#4#5#6#7#8#9\Z { #9}% \def\XINT_OQ_end_vii #1\Z #2#3#4#5#6#7#8#9\Z { #8#90000000}% \def\XINT_OQ_end_vi #1\Z #2#3#4#5#6#7#8#9\Z { #7#8#9000000}% \def\XINT_OQ_end_v #1\Z #2#3#4#5#6#7#8#9\Z { #6#7#8#900000}% \def\XINT_OQ_end_iv #1\Z #2#3#4#5#6#7#8#9\Z { #5#6#7#8#90000}% \def\XINT_OQ_end_iii #1\Z #2#3#4#5#6#7#8#9\Z { #4#5#6#7#8#9000}% \def\XINT_OQ_end_ii #1\Z #2#3#4#5#6#7#8#9\Z { #3#4#5#6#7#8#900}% \def\XINT_OQ_end_i \Z #1#2#3#4#5#6#7#8\Z { #1#2#3#4#5#6#7#80}% % \end{macrocode} % \subsection{\csh{XINT_cuz}} % \begin{macrocode} \edef\xint_cleanupzeros_andstop #1#2#3#4% {% \noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4\relax }% \def\xint_cleanupzeros_nostop #1#2#3#4% {% \the\numexpr #1#2#3#4\relax }% \def\XINT_rev_andcuz #1% {% \expandafter\xint_cleanupzeros_andstop \romannumeral0\XINT_rord_main {}#1% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax }% % \end{macrocode} % \lverb|& % routine CleanUpZeros. Utilisée en particulier par la % soustraction.$\ % INPUT: longueur **multiple de 4** (<-- ATTENTION)$\ % OUTPUT: on a retiré tous les leading zéros, on n'est **plus* % nécessairement de longueur 4n$\ % Délimiteur pour _main: \W\W\W\W\W\W\W\Z avec SEPT \W| % \begin{macrocode} \def\XINT_cuz #1% {% \XINT_cuz_loop #1\W\W\W\W\W\W\W\Z% }% \def\XINT_cuz_loop #1#2#3#4#5#6#7#8% {% \xint_gob_til_W #8\xint_cuz_end_a\W \xint_gob_til_Z #8\xint_cuz_end_A\Z \XINT_cuz_check_a {#1#2#3#4#5#6#7#8}% }% \def\xint_cuz_end_a #1\XINT_cuz_check_a #2% {% \xint_cuz_end_b #2% }% \edef\xint_cuz_end_b #1#2#3#4#5\Z {% \noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4\relax }% \def\xint_cuz_end_A \Z\XINT_cuz_check_a #1{ 0}% \def\XINT_cuz_check_a #1% {% \expandafter\XINT_cuz_check_b\the\numexpr #1\relax }% \def\XINT_cuz_check_b #1% {% \xint_gob_til_zero #1\xint_cuz_backtoloop 0\XINT_cuz_stop #1% }% \def\XINT_cuz_stop #1\W #2\Z{ #1}% \def\xint_cuz_backtoloop 0\XINT_cuz_stop 0{\XINT_cuz_loop }% % \end{macrocode} % \subsection{\csh{xintNum}} % \lverb|& % For example \xintNum {----+-+++---+----000000000000003}$\ % 1.05 defines \xintiNum, which allows redefinition of \xintNum by xintfrac.sty % Slightly modified in 1.06b (\R->\xint_relax) to avoid initial re-scan of % input stack (while still allowing empty #1). In versions earlier than 1.09a % it was entirely up to the user to apply \xintnum; starting with 1.09a % arithmetic % macros of xint.sty (like earlier already xintfrac.sty with its own \xintnum) % make use of \xintnum. This allows arguments to % be count registers, or even \numexpr arbitrary long expressions (with the % trick of braces, see the user documentation). % % Note (22/06/14): \xintiNum jamais utilisé sous ce nom, le supprimer? % \XINT_num maintenant utilisé par le parseur de xintexpr.| % \begin{macrocode} \def\xintiNum {\romannumeral0\xintinum }% \def\xintinum #1% {% \expandafter\XINT_num_loop \romannumeral-`0#1\xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\Z }% \let\xintNum\xintiNum \let\xintnum\xintinum \def\XINT_num #1% {% \XINT_num_loop #1\xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\Z }% \def\XINT_num_loop #1#2#3#4#5#6#7#8% {% \xint_gob_til_xint_relax #8\XINT_num_end\xint_relax \XINT_num_NumEight #1#2#3#4#5#6#7#8% }% \edef\XINT_num_end\xint_relax\XINT_num_NumEight #1\xint_relax #2\Z {% \noexpand\expandafter\space\noexpand\the\numexpr #1+\xint_c_\relax }% \def\XINT_num_NumEight #1#2#3#4#5#6#7#8% {% \ifnum \numexpr #1#2#3#4#5#6#7#8+\xint_c_= \xint_c_ \xint_afterfi {\expandafter\XINT_num_keepsign_a \the\numexpr #1#2#3#4#5#6#7#81\relax}% \else \xint_afterfi {\expandafter\XINT_num_finish \the\numexpr #1#2#3#4#5#6#7#8\relax}% \fi }% \def\XINT_num_keepsign_a #1% {% \xint_gob_til_one#1\XINT_num_gobacktoloop 1\XINT_num_keepsign_b }% \def\XINT_num_gobacktoloop 1\XINT_num_keepsign_b {\XINT_num_loop }% \def\XINT_num_keepsign_b #1{\XINT_num_loop -}% \def\XINT_num_finish #1\xint_relax #2\Z { #1}% % \end{macrocode} % \subsection{\csh{xintSgn}, \csh{xintiiSgn}, \csh{XINT_Sgn}, \csh{XINT_cntSgn}} % \lverb|& % Changed in 1.05. Earlier code was unnecessarily strange. 1.09a with \xintnum % % 1.09i defines \XINT_Sgn and \XINT_cntSgn (was \XINT__Sgn in 1.09i) for reasons % of internal optimizations. % % xintfrac.sty will overwrite \xintsgn with use of \xintraw rather than % \xintnum, naturally.| % \begin{macrocode} \def\xintiiSgn {\romannumeral0\xintiisgn }% \def\xintiisgn #1% {% \expandafter\XINT_sgn \romannumeral-`0#1\Z% }% \def\xintSgn {\romannumeral0\xintsgn }% \def\xintsgn #1% {% \expandafter\XINT_sgn \romannumeral0\xintnum{#1}\Z% }% \def\XINT_sgn #1#2\Z {% \xint_UDzerominusfork #1-{ 0}% 0#1{ -1}% 0-{ 1}% \krof }% \def\XINT_Sgn #1#2\Z {% \xint_UDzerominusfork #1-{0}% 0#1{-1}% 0-{1}% \krof }% \def\XINT_cntSgn #1#2\Z {% \xint_UDzerominusfork #1-\xint_c_ 0#1\m@ne % I will not allocate a count only for -1? 0-\xint_c_i \krof }% % \end{macrocode} % \subsection{\csh{xintiOpp}} % \lverb|\xintnum added in 1.09a| % \begin{macrocode} \def\xintiiOpp {\romannumeral0\xintiiopp }% \def\xintiiopp #1% {% \expandafter\XINT_opp \romannumeral-`0#1% }% \def\xintiOpp {\romannumeral0\xintiopp }% \def\xintiopp #1% {% \expandafter\XINT_opp \romannumeral0\xintnum{#1}% }% \let\xintOpp\xintiOpp \let\xintopp\xintiopp \def\XINT_Opp #1{\romannumeral0\XINT_opp #1}% \def\XINT_opp #1% {% \xint_UDzerominusfork #1-{ 0}% zero 0#1{ }% negative 0-{ -#1}% positive \krof }% % \end{macrocode} % \subsection{\csh{xintiAbs}, \csh{xintiiAbs}} % \lverb|Release 1.09a has now \xintiabs which does \xintnum and this is % inherited by DecSplit, by Sqr, and macros of xintgcd.sty. Attention, car ces % macros de toute façon doivent passer à la valeur absolue et donc en profite % pour faire le \xintnum, mais pour optimisation sans overhead il vaut mieux % utiliser \xintiiAbs ou autre point d'accès.| % \begin{macrocode} \def\xintiiAbs {\romannumeral0\xintiiabs }% \def\xintiiabs #1% {% \expandafter\XINT_abs \romannumeral-`0#1% }% \def\xintiAbs {\romannumeral0\xintiabs }% \def\xintiabs #1% {% \expandafter\XINT_abs \romannumeral0\xintnum{#1}% }% \let\xintAbs\xintiAbs \let\xintabs\xintiabs \def\XINT_Abs #1{\romannumeral0\XINT_abs #1}% \def\XINT_abs #1% {% \xint_UDsignfork #1{ }% -{ #1}% \krof }% % \end{macrocode} % \lverb|& % -----------------------------------------------------------------$\ % -----------------------------------------------------------------$\ % ARITHMETIC OPERATIONS: ADDITION, SUBTRACTION, SUMS, % MULTIPLICATION, PRODUCTS, FACTORIAL, POWERS, EUCLIDEAN DIVISION. % % Release 1.03 re-organizes sub-routines to facilitate future developments: the % diverse variants of addition, with diverse conditions on inputs and output are % first listed; they will be used in multiplication, or in the summation, or in % the power routines. I am aware that the commenting is close to non-existent, % sorry about that. % % ADDITION I: \XINT_add_A % % INPUT:$\ % \romannumeral0\XINT_add_A 0{}\W\X\Y\Z \W\X\Y\Z$\ % 1. et renversés $\ % 2. de longueur 4n (avec des leading zéros éventuels)$\ % 3. l'un des deux ne doit pas se terminer par 0000$\$relax % [Donc on peut avoir 0000 comme input si l'autre est >0 et ne se termine pas en % 0000 bien sûr]. On peut avoir l'un des deux vides. Mais alors l'autre ne doit % être ni vide ni 0000. % % OUTPUT: la somme +, ordre normal, plus sur 4n, pas de leading zeros % La procédure est plus rapide lorsque est le plus court des deux.$\ % Nota bene: (30 avril 2013). J'ai une version qui est deux fois plus rapide sur % des nombres d'environ 1000 chiffres chacun, et qui commence à être avantageuse % pour des nombres d'au moins 200 chiffres. Cependant il serait vraiment % compliqué d'en étendre l'utilisation aux emplois de l'addition dans les % autres routines, comme celle de multiplication ou celle de division; et son % implémentation ajouterait au minimum la mesure de la longueur des summands.| % \begin{macrocode} \def\XINT_add_A #1#2#3#4#5#6% {% \xint_gob_til_W #3\xint_add_az\W \XINT_add_AB #1{#3#4#5#6}{#2}% }% \def\xint_add_az\W\XINT_add_AB #1#2% {% \XINT_add_AC_checkcarry #1% }% % \end{macrocode} % \lverb|& % ici #2 est prévu pour l'addition, mais attention il devra être renversé % pour \numexpr. #3 = résultat partiel. #4 = chiffres qui restent. On vérifie si % le deuxième nombre s'arrête.| % \begin{macrocode} \def\XINT_add_AB #1#2#3#4\W\X\Y\Z #5#6#7#8% {% \xint_gob_til_W #5\xint_add_bz\W \XINT_add_ABE #1#2{#8#7#6#5}{#3}#4\W\X\Y\Z }% \def\XINT_add_ABE #1#2#3#4#5#6% {% \expandafter\XINT_add_ABEA\the\numexpr #1+10#5#4#3#2+#6.% }% \def\XINT_add_ABEA #1#2#3.#4% {% \XINT_add_A #2{#3#4}% }% % \end{macrocode} % \lverb|& % ici le deuxième nombre est fini % #6 part à la poubelle, #2#3#4#5 est le #2 dans \XINT_add_AB % on ne vérifie pas la retenue cette fois, mais les fois suivantes| % \begin{macrocode} \def\xint_add_bz\W\XINT_add_ABE #1#2#3#4#5#6% {% \expandafter\XINT_add_CC\the\numexpr #1+10#5#4#3#2.% }% \def\XINT_add_CC #1#2#3.#4% {% \XINT_add_AC_checkcarry #2{#3#4}% on va examiner et \'eliminer #2 }% % \end{macrocode} % \lverb|& % retenue plus chiffres qui restent de l'un des deux nombres. % #2 = résultat partiel % #3#4#5#6 = summand, avec plus significatif à droite| % \begin{macrocode} \def\XINT_add_AC_checkcarry #1% {% \xint_gob_til_zero #1\xint_add_AC_nocarry 0\XINT_add_C }% \def\xint_add_AC_nocarry 0\XINT_add_C #1#2\W\X\Y\Z {% \expandafter \xint_cleanupzeros_andstop \romannumeral0% \XINT_rord_main {}#2% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax #1% }% \def\XINT_add_C #1#2#3#4#5% {% \xint_gob_til_W #2\xint_add_cz\W \XINT_add_CD {#5#4#3#2}{#1}% }% \def\XINT_add_CD #1% {% \expandafter\XINT_add_CC\the\numexpr 1+10#1.% }% \def\xint_add_cz\W\XINT_add_CD #1#2{ 1#2}% % \end{macrocode} % \lverb|Addition II: \XINT_addr_A.$\ % INPUT: \romannumeral0\XINT_addr_A 0{}\W\X\Y\Z \W\X\Y\Z % % Comme \XINT_add_A, la différence principale c'est qu'elle donne son résultat % aussi *sur 4n*, renversé. De plus cette variante accepte que l'un ou même les % deux inputs soient vides. Utilisé par la sommation et par la division (pour % les quotients). Et aussi par la multiplication d'ailleurs.$\ % INPUT: comme pour \XINT_add_A$\ % 1. et renversés $\ % 2. de longueur 4n (avec des leading zéros éventuels)$\ % 3. l'un des deux ne doit pas se terminer par 0000$\ % OUTPUT: la somme +, *aussi renversée* et *sur 4n*| % \begin{macrocode} \def\XINT_addr_A #1#2#3#4#5#6% {% \xint_gob_til_W #3\xint_addr_az\W \XINT_addr_B #1{#3#4#5#6}{#2}% }% \def\xint_addr_az\W\XINT_addr_B #1#2% {% \XINT_addr_AC_checkcarry #1% }% \def\XINT_addr_B #1#2#3#4\W\X\Y\Z #5#6#7#8% {% \xint_gob_til_W #5\xint_addr_bz\W \XINT_addr_E #1#2{#8#7#6#5}{#3}#4\W\X\Y\Z }% \def\XINT_addr_E #1#2#3#4#5#6% {% \expandafter\XINT_addr_ABEA\the\numexpr #1+10#5#4#3#2+#6\relax }% \def\XINT_addr_ABEA #1#2#3#4#5#6#7% {% \XINT_addr_A #2{#7#6#5#4#3}% }% \def\xint_addr_bz\W\XINT_addr_E #1#2#3#4#5#6% {% \expandafter\XINT_addr_CC\the\numexpr #1+10#5#4#3#2\relax }% \def\XINT_addr_CC #1#2#3#4#5#6#7% {% \XINT_addr_AC_checkcarry #2{#7#6#5#4#3}% }% \def\XINT_addr_AC_checkcarry #1% {% \xint_gob_til_zero #1\xint_addr_AC_nocarry 0\XINT_addr_C }% \def\xint_addr_AC_nocarry 0\XINT_addr_C #1#2\W\X\Y\Z { #1#2}% \def\XINT_addr_C #1#2#3#4#5% {% \xint_gob_til_W #2\xint_addr_cz\W \XINT_addr_D {#5#4#3#2}{#1}% }% \def\XINT_addr_D #1% {% \expandafter\XINT_addr_CC\the\numexpr 1+10#1\relax }% \def\xint_addr_cz\W\XINT_addr_D #1#2{ #21000}% % \end{macrocode} % \lverb|ADDITION III, \XINT_addm_A$\ % INPUT:\romannumeral0\XINT_addm_A 0{}\W\X\Y\Z \W\X\Y\Z$\ % 1. et renversés$\ % 2. de longueur 4n ; non$\ % 3. est *garanti au moins aussi long* que $\ % OUTPUT: la somme +, ordre normal, pas sur 4n, leading zeros retirés. % Utilisé par la multiplication.| % \begin{macrocode} \def\XINT_addm_A #1#2#3#4#5#6% {% \xint_gob_til_W #3\xint_addm_az\W \XINT_addm_AB #1{#3#4#5#6}{#2}% }% \def\xint_addm_az\W\XINT_addm_AB #1#2% {% \XINT_addm_AC_checkcarry #1% }% \def\XINT_addm_AB #1#2#3#4\W\X\Y\Z #5#6#7#8% {% \XINT_addm_ABE #1#2{#8#7#6#5}{#3}#4\W\X\Y\Z }% \def\XINT_addm_ABE #1#2#3#4#5#6% {% \expandafter\XINT_addm_ABEA\the\numexpr #1+10#5#4#3#2+#6.% }% \def\XINT_addm_ABEA #1#2#3.#4% {% \XINT_addm_A #2{#3#4}% }% \def\XINT_addm_AC_checkcarry #1% {% \xint_gob_til_zero #1\xint_addm_AC_nocarry 0\XINT_addm_C }% \def\xint_addm_AC_nocarry 0\XINT_addm_C #1#2\W\X\Y\Z {% \expandafter \xint_cleanupzeros_andstop \romannumeral0% \XINT_rord_main {}#2% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax #1% }% \def\XINT_addm_C #1#2#3#4#5% {% \xint_gob_til_W #5\xint_addm_cw #4\xint_addm_cx #3\xint_addm_cy #2\xint_addm_cz \W\XINT_addm_CD {#5#4#3#2}{#1}% }% \def\XINT_addm_CD #1% {% \expandafter\XINT_addm_CC\the\numexpr 1+10#1.% }% \def\XINT_addm_CC #1#2#3.#4% {% \XINT_addm_AC_checkcarry #2{#3#4}% }% \def\xint_addm_cw #1\xint_addm_cx #2\xint_addm_cy #3\xint_addm_cz \W\XINT_addm_CD {% \expandafter\XINT_addm_CDw\the\numexpr 1+#1#2#3.% }% \def\XINT_addm_CDw #1.#2#3\X\Y\Z {% \XINT_addm_end #1#3% }% \def\xint_addm_cx #1\xint_addm_cy #2\xint_addm_cz \W\XINT_addm_CD {% \expandafter\XINT_addm_CDx\the\numexpr 1+#1#2.% }% \def\XINT_addm_CDx #1.#2#3\Y\Z {% \XINT_addm_end #1#3% }% \def\xint_addm_cy #1\xint_addm_cz \W\XINT_addm_CD {% \expandafter\XINT_addm_CDy\the\numexpr 1+#1.% }% \def\XINT_addm_CDy #1.#2#3\Z {% \XINT_addm_end #1#3% }% \def\xint_addm_cz\W\XINT_addm_CD #1#2#3{\XINT_addm_end #1#3}% \edef\XINT_addm_end #1#2#3#4#5% {\noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4#5\relax}% % \end{macrocode} % \lverb|ADDITION IV, variante \XINT_addp_A$\ % INPUT: % \romannumeral0\XINT_addp_A 0{}\W\X\Y\Z \W\X\Y\Z$\ % 1. et renversés$\ % 2. de longueur 4n ; non$\ % 3. est *garanti au moins aussi long* que $\ % OUTPUT: la somme +, dans l'ordre renversé, sur 4n, et en faisant % attention de ne pas terminer en 0000. % Utilisé par la multiplication servant pour le calcul des puissances.| % \begin{macrocode} \def\XINT_addp_A #1#2#3#4#5#6% {% \xint_gob_til_W #3\xint_addp_az\W \XINT_addp_AB #1{#3#4#5#6}{#2}% }% \def\xint_addp_az\W\XINT_addp_AB #1#2% {% \XINT_addp_AC_checkcarry #1% }% \def\XINT_addp_AC_checkcarry #1% {% \xint_gob_til_zero #1\xint_addp_AC_nocarry 0\XINT_addp_C }% \def\xint_addp_AC_nocarry 0\XINT_addp_C {% \XINT_addp_F }% \def\XINT_addp_AB #1#2#3#4\W\X\Y\Z #5#6#7#8% {% \XINT_addp_ABE #1#2{#8#7#6#5}{#3}#4\W\X\Y\Z }% \def\XINT_addp_ABE #1#2#3#4#5#6% {% \expandafter\XINT_addp_ABEA\the\numexpr #1+10#5#4#3#2+#6\relax }% \def\XINT_addp_ABEA #1#2#3#4#5#6#7% {% \XINT_addp_A #2{#7#6#5#4#3}%<-- attention on met donc \`a droite }% \def\XINT_addp_C #1#2#3#4#5% {% \xint_gob_til_W #5\xint_addp_cw #4\xint_addp_cx #3\xint_addp_cy #2\xint_addp_cz \W\XINT_addp_CD {#5#4#3#2}{#1}% }% \def\XINT_addp_CD #1% {% \expandafter\XINT_addp_CC\the\numexpr 1+10#1\relax }% \def\XINT_addp_CC #1#2#3#4#5#6#7% {% \XINT_addp_AC_checkcarry #2{#7#6#5#4#3}% }% \def\xint_addp_cw #1\xint_addp_cx #2\xint_addp_cy #3\xint_addp_cz \W\XINT_addp_CD {% \expandafter\XINT_addp_CDw\the\numexpr \xint_c_i+10#1#2#3\relax }% \def\XINT_addp_CDw #1#2#3#4#5#6% {% \xint_gob_til_zeros_iv #2#3#4#5\XINT_addp_endDw_zeros 0000\XINT_addp_endDw #2#3#4#5% }% \def\XINT_addp_endDw_zeros 0000\XINT_addp_endDw 0000#1\X\Y\Z{ #1}% \def\XINT_addp_endDw #1#2#3#4#5\X\Y\Z{ #5#4#3#2#1}% \def\xint_addp_cx #1\xint_addp_cy #2\xint_addp_cz \W\XINT_addp_CD {% \expandafter\XINT_addp_CDx\the\numexpr \xint_c_i+100#1#2\relax }% \def\XINT_addp_CDx #1#2#3#4#5#6% {% \xint_gob_til_zeros_iv #2#3#4#5\XINT_addp_endDx_zeros 0000\XINT_addp_endDx #2#3#4#5% }% \def\XINT_addp_endDx_zeros 0000\XINT_addp_endDx 0000#1\Y\Z{ #1}% \def\XINT_addp_endDx #1#2#3#4#5\Y\Z{ #5#4#3#2#1}% \def\xint_addp_cy #1\xint_addp_cz\W\XINT_addp_CD {% \expandafter\XINT_addp_CDy\the\numexpr \xint_c_i+1000#1\relax }% \def\XINT_addp_CDy #1#2#3#4#5#6% {% \xint_gob_til_zeros_iv #2#3#4#5\XINT_addp_endDy_zeros 0000\XINT_addp_endDy #2#3#4#5% }% \def\XINT_addp_endDy_zeros 0000\XINT_addp_endDy 0000#1\Z{ #1}% \def\XINT_addp_endDy #1#2#3#4#5\Z{ #5#4#3#2#1}% \def\xint_addp_cz\W\XINT_addp_CD #1#2{ #21000}% \def\XINT_addp_F #1#2#3#4#5% {% \xint_gob_til_W #5\xint_addp_Gw #4\xint_addp_Gx #3\xint_addp_Gy #2\xint_addp_Gz \W\XINT_addp_G {#2#3#4#5}{#1}% }% \def\XINT_addp_G #1#2% {% \XINT_addp_F {#2#1}% }% \def\xint_addp_Gw #1\xint_addp_Gx #2\xint_addp_Gy #3\xint_addp_Gz \W\XINT_addp_G #4% {% \xint_gob_til_zeros_iv #3#2#10\XINT_addp_endGw_zeros 0000\XINT_addp_endGw #3#2#10% }% \def\XINT_addp_endGw_zeros 0000\XINT_addp_endGw 0000#1\X\Y\Z{ #1}% \def\XINT_addp_endGw #1#2#3#4#5\X\Y\Z{ #5#1#2#3#4}% \def\xint_addp_Gx #1\xint_addp_Gy #2\xint_addp_Gz \W\XINT_addp_G #3% {% \xint_gob_til_zeros_iv #2#100\XINT_addp_endGx_zeros 0000\XINT_addp_endGx #2#100% }% \def\XINT_addp_endGx_zeros 0000\XINT_addp_endGx 0000#1\Y\Z{ #1}% \def\XINT_addp_endGx #1#2#3#4#5\Y\Z{ #5#1#2#3#4}% \def\xint_addp_Gy #1\xint_addp_Gz \W\XINT_addp_G #2% {% \xint_gob_til_zeros_iv #1000\XINT_addp_endGy_zeros 0000\XINT_addp_endGy #1000% }% \def\XINT_addp_endGy_zeros 0000\XINT_addp_endGy 0000#1\Z{ #1}% \def\XINT_addp_endGy #1#2#3#4#5\Z{ #5#1#2#3#4}% \def\xint_addp_Gz\W\XINT_addp_G #1#2{ #2}% % \end{macrocode} % \subsection{\csh{xintiAdd}, \csh{xintiiAdd}} % \lverb|ADDITION % [algo plus efficace lorsque le premier argument plus long que le second] % % Note (octobre 2014, pendant la préparation de la sortie de 1.1) % % Je n'aurais pas dû l'appeler \xintAdd, mais seulement \xintiAdd. Le format % de sortie de \xintAdd est modifié par xintfrac.sty, celui de \xintiAdd ne % bouge pas, et \xintiiAdd reste la version stricte.| % \begin{macrocode} \def\xintiiAdd {\romannumeral0\xintiiadd }% \def\xintiiadd #1{\expandafter\xint_iiadd\romannumeral-`0#1\Z }% \def\xint_iiadd #1#2\Z #3% {% \expandafter\XINT_add_fork\expandafter #1\romannumeral-`0#3\Z #2\Z }% \def\xintiAdd {\romannumeral0\xintiadd }% \def\xintiadd #1% {% \expandafter\xint_add\romannumeral0\xintnum{#1}\Z }% \def\xint_add #1#2\Z #3% {% \expandafter\XINT_add_fork\expandafter #1\romannumeral0\xintnum{#3}\Z #2\Z }% \let\xintAdd\xintiAdd \let\xintadd\xintiadd \def\XINT_add_fork #1#2% {% \xint_UDzerofork #1\XINT_add_firstiszero #2\XINT_add_secondiszero 0{}% \krof \xint_UDsignsfork #1#2\XINT_add_minusminus #1-\XINT_add_minusplus #2-\XINT_add_plusminus --\XINT_add_plusplus \krof #1#2% }% \def\XINT_add_firstiszero #1\krof #2#3\Z #4\Z { #3}% \def\XINT_add_secondiszero #1\krof #2#3\Z #4\Z { #2#4}% \def\XINT_add_plusplus #1#2#3\Z #4\Z {\XINT_add_pre {#1#4}{#2#3}}% \def\XINT_add_minusminus #1#2#3\Z #4\Z {\expandafter\xint_minus_thenstop\romannumeral0\XINT_add_pre {#4}{#3}}% \def\XINT_add_minusplus #1#2#3\Z #4\Z {\XINT_sub_pre {#2#3}{#4}}% \def\XINT_add_plusminus #1#2#3\Z #4\Z {\XINT_sub_pre {#1#4}{#3}}% % \end{macrocode} % \lverb|positive summands| % \begin{macrocode} \def\XINT_add_pre #1% {% \expandafter\XINT_add_pre_b\expandafter {\romannumeral0\XINT_RQ {}#1\R\R\R\R\R\R\R\R\Z }% }% \def\XINT_add_pre_b #1#2% {% \expandafter\XINT_add_A \expandafter0\expandafter{\expandafter}% \romannumeral0\XINT_RQ {}#2\R\R\R\R\R\R\R\R\Z \W\X\Y\Z #1\W\X\Y\Z }% % \end{macrocode} % \subsection{\csh{xintiSub}, \csh{xintiiSub}} % \lverb|Release 1.09a has \xintnum added into \xintiSub.| % \begin{macrocode} \def\xintiiSub {\romannumeral0\xintiisub }% \def\xintiisub #1{\expandafter\xint_iisub\romannumeral-`0#1\Z }% \def\xint_iisub #1#2\Z #3% {% \expandafter\XINT_sub_fork\expandafter #1\romannumeral-`0#3\Z #2\Z }% \def\xintiSub {\romannumeral0\xintisub }% \def\xintisub #1% {% \expandafter\xint_sub\romannumeral0\xintnum{#1}\Z }% \def\xint_sub #1#2\Z #3% {% \expandafter\XINT_sub_fork\expandafter #1\romannumeral0\xintnum{#3}\Z #2\Z }% \let\xintSub\xintiSub \let\xintsub\xintisub \def\XINT_sub_fork #1#2% {% \xint_UDzerofork #1\XINT_sub_firstiszero #2\XINT_sub_secondiszero 0{}% \krof \xint_UDsignsfork #1#2\XINT_sub_minusminus #1-\XINT_sub_minusplus #2-\XINT_sub_plusminus --\XINT_sub_plusplus \krof #1#2% }% \def\XINT_sub_firstiszero #1\krof #2#3\Z #4\Z {\XINT_opp #3}% \def\XINT_sub_secondiszero #1\krof #2#3\Z #4\Z { #2#4}% \def\XINT_sub_plusplus #1#2#3\Z #4\Z {\XINT_sub_pre {#1#4}{#2#3}}% \def\XINT_sub_minusminus #1#2#3\Z #4\Z {\XINT_sub_pre {#3}{#4}}% \def\XINT_sub_minusplus #1#2#3\Z #4\Z {\expandafter\xint_minus_thenstop\romannumeral0\XINT_add_pre {#4}{#2#3}}% \def\XINT_sub_plusminus #1#2#3\Z #4\Z {\XINT_add_pre {#1#4}{#3}}% % \end{macrocode} % \lverb|SOUSTRACTION A-B avec A premier argument, B second argument de % \xintSub et ensuite \XINT_sub_pre ici| % \begin{macrocode} \def\XINT_sub_pre #1% {% \expandafter\XINT_sub_pre_b\expandafter {\romannumeral0\XINT_RQ {}#1\R\R\R\R\R\R\R\R\Z }% }% \def\XINT_sub_pre_b #1#2% {% \expandafter\XINT_sub_A \expandafter1\expandafter{\expandafter}% \romannumeral0\XINT_RQ {}#2\R\R\R\R\R\R\R\R\Z \W\X\Y\Z #1 \W\X\Y\Z }% % \end{macrocode} % \lverb|& % \romannumeral0\XINT_sub_A 1{}\W\X\Y\Z\W\X\Y\Z$\ % N1 et N2 sont présentés à l'envers ET ON A RAJOUTÉ DES ZÉROS % POUR QUE LEURS LONGUEURS À CHACUN SOIENT MULTIPLES DE 4, MAIS % AUCUN NE SE TERMINE EN 0000.$\ output: N2 - N1$\ % Elle donne le résultat dans le **bon ordre**, avec le bon signe, % et sans zéros superflus.| % \begin{macrocode} \def\XINT_sub_A #1#2#3\W\X\Y\Z #4#5#6#7% {% \xint_gob_til_W #4\xint_sub_az \W\XINT_sub_B #1{#4#5#6#7}{#2}#3\W\X\Y\Z }% \def\XINT_sub_B #1#2#3#4#5#6#7% {% \xint_gob_til_W #4\xint_sub_bz \W\XINT_sub_onestep #1#2{#7#6#5#4}{#3}% }% % \end{macrocode} % \lverb|& % d'abord la branche principale % #6 = 4 chiffres de N1, plus significatif en *premier*, % #2#3#4#5 chiffres de N2, plus significatif en *dernier* % On veut N2 - N1.| % \begin{macrocode} \def\XINT_sub_onestep #1#2#3#4#5#6% {% \expandafter\XINT_sub_backtoA\the\numexpr 11#5#4#3#2-#6+#1-\xint_c_i.% }% % \end{macrocode} % \lverb|ON PRODUIT LE RÉSULTAT DANS LE BON ORDRE| % \begin{macrocode} \def\XINT_sub_backtoA #1#2#3.#4% {% \XINT_sub_A #2{#3#4}% }% \def\xint_sub_bz \W\XINT_sub_onestep #1#2#3#4#5#6#7% {% \xint_UDzerofork #1\XINT_sub_C % une retenue 0\XINT_sub_D % pas de retenue \krof {#7}#2#3#4#5% }% \def\XINT_sub_D #1#2\W\X\Y\Z {% \expandafter \xint_cleanupzeros_andstop \romannumeral0% \XINT_rord_main {}#2% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax #1% }% \def\XINT_sub_C #1#2#3#4#5% {% \xint_gob_til_W #2\xint_sub_cz \W\XINT_sub_AC_onestep {#5#4#3#2}{#1}% }% \def\XINT_sub_AC_onestep #1% {% \expandafter\XINT_sub_backtoC\the\numexpr 11#1-\xint_c_i.% }% \def\XINT_sub_backtoC #1#2#3.#4% {% \XINT_sub_AC_checkcarry #2{#3#4}% la retenue va \^etre examin\'ee }% \def\XINT_sub_AC_checkcarry #1% {% \xint_gob_til_one #1\xint_sub_AC_nocarry 1\XINT_sub_C }% \def\xint_sub_AC_nocarry 1\XINT_sub_C #1#2\W\X\Y\Z {% \expandafter \XINT_cuz_loop \romannumeral0% \XINT_rord_main {}#2% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax #1\W\W\W\W\W\W\W\Z }% \def\xint_sub_cz\W\XINT_sub_AC_onestep #1% {% \XINT_cuz }% \def\xint_sub_az\W\XINT_sub_B #1#2#3#4#5#6#7% {% \xint_gob_til_W #4\xint_sub_ez \W\XINT_sub_Eenter #1{#3}#4#5#6#7% }% % \end{macrocode} % \lverb|le premier nombre continue, le résultat sera < 0.| % \begin{macrocode} \def\XINT_sub_Eenter #1#2% {% \expandafter \XINT_sub_E\expandafter1\expandafter{\expandafter}% \romannumeral0% \XINT_rord_main {}#2% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax \W\X\Y\Z #1% }% \def\XINT_sub_E #1#2#3#4#5#6% {% \xint_gob_til_W #3\xint_sub_F\W \XINT_sub_Eonestep #1{#6#5#4#3}{#2}% }% \def\XINT_sub_Eonestep #1#2% {% \expandafter\XINT_sub_backtoE\the\numexpr 109999-#2+#1.% }% \def\XINT_sub_backtoE #1#2#3.#4% {% \XINT_sub_E #2{#3#4}% }% \def\xint_sub_F\W\XINT_sub_Eonestep #1#2#3#4% {% \xint_UDonezerofork #4#1{\XINT_sub_Fdec 0}% soustraire 1. Et faire signe - #1#4{\XINT_sub_Finc 1}% additionner 1. Et faire signe - 10\XINT_sub_DD % terminer. Mais avec signe - \krof {#3}% }% \def\XINT_sub_DD {\expandafter\xint_minus_thenstop\romannumeral0\XINT_sub_D }% \def\XINT_sub_Fdec #1#2#3#4#5#6% {% \xint_gob_til_W #3\xint_sub_Fdec_finish\W \XINT_sub_Fdec_onestep #1{#6#5#4#3}{#2}% }% \def\XINT_sub_Fdec_onestep #1#2% {% \expandafter\XINT_sub_backtoFdec\the\numexpr 11#2+#1-\xint_c_i.% }% \def\XINT_sub_backtoFdec #1#2#3.#4% {% \XINT_sub_Fdec #2{#3#4}% }% \def\xint_sub_Fdec_finish\W\XINT_sub_Fdec_onestep #1#2% {% \expandafter\xint_minus_thenstop\romannumeral0\XINT_cuz }% \def\XINT_sub_Finc #1#2#3#4#5#6% {% \xint_gob_til_W #3\xint_sub_Finc_finish\W \XINT_sub_Finc_onestep #1{#6#5#4#3}{#2}% }% \def\XINT_sub_Finc_onestep #1#2% {% \expandafter\XINT_sub_backtoFinc\the\numexpr 10#2+#1.% }% \def\XINT_sub_backtoFinc #1#2#3.#4% {% \XINT_sub_Finc #2{#3#4}% }% \def\xint_sub_Finc_finish\W\XINT_sub_Finc_onestep #1#2#3% {% \xint_UDzerofork #1{\expandafter\expandafter\expandafter \xint_minus_thenstop\xint_cleanupzeros_nostop}% 0{ -1}% \krof #3% }% \def\xint_sub_ez\W\XINT_sub_Eenter #1% {% \xint_UDzerofork #1\XINT_sub_K % il y a une retenue 0\XINT_sub_L % pas de retenue \krof }% \def\XINT_sub_L #1\W\X\Y\Z {\XINT_cuz_loop #1\W\W\W\W\W\W\W\Z }% \def\XINT_sub_K #1% {% \expandafter \XINT_sub_KK\expandafter1\expandafter{\expandafter}% \romannumeral0% \XINT_rord_main {}#1% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax }% \def\XINT_sub_KK #1#2#3#4#5#6% {% \xint_gob_til_W #3\xint_sub_KK_finish\W \XINT_sub_KK_onestep #1{#6#5#4#3}{#2}% }% \def\XINT_sub_KK_onestep #1#2% {% \expandafter\XINT_sub_backtoKK\the\numexpr 109999-#2+#1.% }% \def\XINT_sub_backtoKK #1#2#3.#4% {% \XINT_sub_KK #2{#3#4}% }% \def\xint_sub_KK_finish\W\XINT_sub_KK_onestep #1#2#3% {% \expandafter\xint_minus_thenstop \romannumeral0\XINT_cuz_loop #3\W\W\W\W\W\W\W\Z }% % \end{macrocode} % \subsection{\csh{xintiMul}, \csh{xintiiMul}} % \lverb|1.09a adds \xintnum| % \begin{macrocode} \def\xintiiMul {\romannumeral0\xintiimul }% \def\xintiimul #1% {% \expandafter\xint_iimul\expandafter {\romannumeral-`0#1}% }% \def\xint_iimul #1#2% {% \expandafter\XINT_mul_fork \romannumeral-`0#2\Z #1\Z }% \def\xintiMul {\romannumeral0\xintimul }% \def\xintimul #1% {% \expandafter\xint_mul\expandafter {\romannumeral0\xintnum{#1}}% }% \def\xint_mul #1#2% {% \expandafter\XINT_mul_fork \romannumeral0\xintnum{#2}\Z #1\Z }% \let\xintMul\xintiMul \let\xintmul\xintimul \def\XINT_Mul #1#2{\romannumeral0\XINT_mul_fork #2\Z #1\Z }% % \end{macrocode} % \lverb|& % MULTIPLICATION$\ % Ici #1#2 = 2e input et #3#4 = 1er input $\ % Release 1.03 adds some overhead to first compute and compare the % lengths of the two inputs. The algorithm is asymmetrical and whether % the first input is the longest or the shortest sometimes has a strong % impact. 50 digits times 1000 digits used to be 5 times faster % than 1000 digits times 50 digits. With the new code, the user input % order does not matter as it is decided by the routine what is best. % This is important for the extension to fractions, as there is no way % then to generally control or guess the most frequent sizes of the % inputs besides actually computing their lengths. | % \begin{macrocode} \def\XINT_mul_fork #1#2\Z #3#4\Z {% \xint_UDzerofork #1\XINT_mul_zero #3\XINT_mul_zero 0{}% \krof \xint_UDsignsfork #1#3\XINT_mul_minusminus % #1 = #3 = - #1-{\XINT_mul_minusplus #3}% % #1 = - #3-{\XINT_mul_plusminus #1}% % #3 = - --{\XINT_mul_plusplus #1#3}% \krof {#2}{#4}% }% \def\XINT_mul_zero #1\krof #2#3{ 0}% \def\XINT_mul_minusminus #1#2% {% \expandafter\XINT_mul_choice_a \expandafter{\romannumeral0\xintlength {#2}}% {\romannumeral0\xintlength {#1}}{#1}{#2}% }% \def\XINT_mul_minusplus #1#2#3% {% \expandafter\xint_minus_thenstop\romannumeral0\expandafter \XINT_mul_choice_a \expandafter{\romannumeral0\xintlength {#1#3}}% {\romannumeral0\xintlength {#2}}{#2}{#1#3}% }% \def\XINT_mul_plusminus #1#2#3% {% \expandafter\xint_minus_thenstop\romannumeral0\expandafter \XINT_mul_choice_a \expandafter{\romannumeral0\xintlength {#3}}% {\romannumeral0\xintlength {#1#2}}{#1#2}{#3}% }% \def\XINT_mul_plusplus #1#2#3#4% {% \expandafter\XINT_mul_choice_a \expandafter{\romannumeral0\xintlength {#2#4}}% {\romannumeral0\xintlength {#1#3}}{#1#3}{#2#4}% }% \def\XINT_mul_choice_a #1#2% {% \expandafter\XINT_mul_choice_b\expandafter{#2}{#1}% }% \def\XINT_mul_choice_b #1#2% {% \ifnum #1<\xint_c_v \expandafter\XINT_mul_choice_littlebyfirst \else \ifnum #2<\xint_c_v \expandafter\expandafter\expandafter\XINT_mul_choice_littlebysecond \else \expandafter\expandafter\expandafter\XINT_mul_choice_compare \fi \fi {#1}{#2}% }% \def\XINT_mul_choice_littlebyfirst #1#2#3#4% {% \expandafter\XINT_mul_M \expandafter{\the\numexpr #3\expandafter}% \romannumeral0\XINT_RQ {}#4\R\R\R\R\R\R\R\R\Z \Z\Z\Z\Z }% \def\XINT_mul_choice_littlebysecond #1#2#3#4% {% \expandafter\XINT_mul_M \expandafter{\the\numexpr #4\expandafter}% \romannumeral0\XINT_RQ {}#3\R\R\R\R\R\R\R\R\Z \Z\Z\Z\Z }% \def\XINT_mul_choice_compare #1#2% {% \ifnum #1>#2 \expandafter \XINT_mul_choice_i \else \expandafter \XINT_mul_choice_ii \fi {#1}{#2}% }% \def\XINT_mul_choice_i #1#2% {% \ifnum #1<\numexpr\ifcase \numexpr (#2-\xint_c_iii)/\xint_c_iv\relax \or 330\or 168\or 109\or 80\or 66\or 52\else 0\fi\relax \expandafter\XINT_mul_choice_same \else \expandafter\XINT_mul_choice_permute \fi }% \def\XINT_mul_choice_ii #1#2% {% \ifnum #2<\numexpr\ifcase \numexpr (#1-\xint_c_iii)/\xint_c_iv\relax \or 330\or 168\or 109\or 80\or 66\or 52\else 0\fi\relax \expandafter\XINT_mul_choice_permute \else \expandafter\XINT_mul_choice_same \fi }% \def\XINT_mul_choice_same #1#2% {% \expandafter\XINT_mul_enter \romannumeral0\XINT_RQ {}#1\R\R\R\R\R\R\R\R\Z \Z\Z\Z\Z #2\W\W\W\W }% \def\XINT_mul_choice_permute #1#2% {% \expandafter\XINT_mul_enter \romannumeral0\XINT_RQ {}#2\R\R\R\R\R\R\R\R\Z \Z\Z\Z\Z #1\W\W\W\W }% % \end{macrocode} % \lverb|& % Cette portion de routine d'addition se branche directement sur _addr_ % lorsque % le premier nombre est épuisé, ce qui est garanti arriver avant le second % nombre. Elle produit son résultat toujours sur 4n, renversé. Ses deux inputs % sont garantis sur 4n.| % \begin{macrocode} \def\XINT_mul_Ar #1#2#3#4#5#6% {% \xint_gob_til_Z #6\xint_mul_br\Z\XINT_mul_Br #1{#6#5#4#3}{#2}% }% \def\xint_mul_br\Z\XINT_mul_Br #1#2% {% \XINT_addr_AC_checkcarry #1% }% \def\XINT_mul_Br #1#2#3#4\W\X\Y\Z #5#6#7#8% {% \expandafter\XINT_mul_ABEAr \the\numexpr #1+10#2+#8#7#6#5.{#3}#4\W\X\Y\Z }% \def\XINT_mul_ABEAr #1#2#3#4#5#6.#7% {% \XINT_mul_Ar #2{#7#6#5#4#3}% }% % \end{macrocode} % \lverb|& % << Petite >> multiplication. % mul_Mr renvoie le résultat *à l'envers*, sur *4n*$\ % \romannumeral0\XINT_mul_Mr {}\Z\Z\Z\Z$\ % Fait la multiplication de par , qui est < 10000. % est présenté *à l'envers*, sur *4n*. Lorsque vaut 0, donne 0000.| % \begin{macrocode} \def\XINT_mul_Mr #1% {% \expandafter\XINT_mul_Mr_checkifzeroorone\expandafter{\the\numexpr #1}% }% \def\XINT_mul_Mr_checkifzeroorone #1% {% \ifcase #1 \expandafter\XINT_mul_Mr_zero \or \expandafter\XINT_mul_Mr_one \else \expandafter\XINT_mul_Nr \fi {0000}{}{#1}% }% \def\XINT_mul_Mr_zero #1\Z\Z\Z\Z { 0000}% \def\XINT_mul_Mr_one #1#2#3#4\Z\Z\Z\Z { #4}% \def\XINT_mul_Nr #1#2#3#4#5#6#7% {% \xint_gob_til_Z #4\xint_mul_pr\Z\XINT_mul_Pr {#1}{#3}{#7#6#5#4}{#2}{#3}% }% \def\XINT_mul_Pr #1#2#3% {% \expandafter\XINT_mul_Lr\the\numexpr \xint_c_x^viii+#1+#2*#3\relax }% \def\XINT_mul_Lr 1#1#2#3#4#5#6#7#8#9% {% \XINT_mul_Nr {#1#2#3#4}{#9#8#7#6#5}% }% \def\xint_mul_pr\Z\XINT_mul_Pr #1#2#3#4#5% {% \xint_gob_til_zeros_iv #1\XINT_mul_Mr_end_nocarry 0000% \XINT_mul_Mr_end_carry #1{#4}% }% \def\XINT_mul_Mr_end_nocarry 0000\XINT_mul_Mr_end_carry 0000#1{ #1}% \def\XINT_mul_Mr_end_carry #1#2#3#4#5{ #5#4#3#2#1}% % \end{macrocode} % \lverb|& % << Petite >> multiplication. % renvoie le résultat *à l'endroit*, avec *nettoyage des leading zéros*.$\ % \romannumeral0\XINT_mul_M {}\Z\Z\Z\Z$\ % Fait la multiplication de par , qui est < 10000. % est présenté *à l'envers*, sur *4n*. | % \begin{macrocode} \def\XINT_mul_M #1% {% \expandafter\XINT_mul_M_checkifzeroorone\expandafter{\the\numexpr #1}% }% \def\XINT_mul_M_checkifzeroorone #1% {% \ifcase #1 \expandafter\XINT_mul_M_zero \or \expandafter\XINT_mul_M_one \else \expandafter\XINT_mul_N \fi {0000}{}{#1}% }% \def\XINT_mul_M_zero #1\Z\Z\Z\Z { 0}% \def\XINT_mul_M_one #1#2#3#4\Z\Z\Z\Z {% \expandafter\xint_cleanupzeros_andstop\romannumeral0\xintreverseorder{#4}% }% \def\XINT_mul_N #1#2#3#4#5#6#7% {% \xint_gob_til_Z #4\xint_mul_p\Z\XINT_mul_P {#1}{#3}{#7#6#5#4}{#2}{#3}% }% \def\XINT_mul_P #1#2#3% {% \expandafter\XINT_mul_L\the\numexpr \xint_c_x^viii+#1+#2*#3\relax }% \def\XINT_mul_L 1#1#2#3#4#5#6#7#8#9% {% \XINT_mul_N {#1#2#3#4}{#5#6#7#8#9}% }% \def\xint_mul_p\Z\XINT_mul_P #1#2#3#4#5% {% \XINT_mul_M_end #1#4% }% \edef\XINT_mul_M_end #1#2#3#4#5#6#7#8% {% \noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4#5#6#7#8\relax }% % \end{macrocode} % \lverb|& % Routine de multiplication principale % (attention délimiteurs modifiés pour 1.08)$\ % Le résultat partiel est toujours maintenu avec significatif à % droite et il a un nombre multiple de 4 de chiffres$\ % \romannumeral0\XINT_mul_enter \Z\Z\Z\Z \W\W\W\W$\ % avec *renversé*, *longueur 4n* (zéros éventuellement ajoutés % au-delà du chiffre le plus significatif) % et dans l'ordre *normal*, et pas forcément longueur 4n. % pas de signes.$\ % Pour 1.08: dans \XINT_mul_enter et les modifs de 1.03 % qui filtrent les courts, on pourrait croire que le % second opérande a au moins quatre chiffres; mais le problème c'est que % ceci est appelé par \XINT_sqr. Et de plus \XINT_sqr est utilisé dans % la nouvelle routine d'extraction de racine carrée: je ne veux pas % rajouter l'overhead à \XINT_sqr de voir si a longueur est au moins 4. % Dilemme donc. Il ne semble pas y avoir d'autres accès % directs (celui de big fac n'est pas un problème). J'ai presque été % tenté de faire du 5x4, mais si on veut maintenir les résultats % intermédiaires sur 4n, il y a des complications. Par ailleurs, % je modifie aussi un petit peu la façon de coder la suite, compte tenu % du style que j'ai développé ultérieurement. Attention terminaison % modifiée pour le deuxième opérande.| % \begin{macrocode} \def\XINT_mul_enter #1\Z\Z\Z\Z #2#3#4#5% {% \xint_gob_til_W #5\XINT_mul_exit_a\W \XINT_mul_start {#2#3#4#5}#1\Z\Z\Z\Z }% \def\XINT_mul_exit_a\W\XINT_mul_start #1% {% \XINT_mul_exit_b #1% }% \def\XINT_mul_exit_b #1#2#3#4% {% \xint_gob_til_W #2\XINT_mul_exit_ci #3\XINT_mul_exit_cii \W\XINT_mul_exit_ciii #1#2#3#4% }% \def\XINT_mul_exit_ciii #1\W #2\Z\Z\Z\Z \W\W\W {% \XINT_mul_M {#1}#2\Z\Z\Z\Z }% \def\XINT_mul_exit_cii\W\XINT_mul_exit_ciii #1\W\W #2\Z\Z\Z\Z \W\W {% \XINT_mul_M {#1}#2\Z\Z\Z\Z }% \def\XINT_mul_exit_ci\W\XINT_mul_exit_cii \W\XINT_mul_exit_ciii #1\W\W\W #2\Z\Z\Z\Z \W {% \XINT_mul_M {#1}#2\Z\Z\Z\Z }% \def\XINT_mul_start #1#2\Z\Z\Z\Z {% \expandafter\XINT_mul_main\expandafter {\romannumeral0\XINT_mul_Mr {#1}#2\Z\Z\Z\Z}#2\Z\Z\Z\Z }% \def\XINT_mul_main #1#2\Z\Z\Z\Z #3#4#5#6% {% \xint_gob_til_W #6\XINT_mul_finish_a\W \XINT_mul_compute {#3#4#5#6}{#1}#2\Z\Z\Z\Z }% \def\XINT_mul_compute #1#2#3\Z\Z\Z\Z {% \expandafter\XINT_mul_main\expandafter {\romannumeral0\expandafter \XINT_mul_Ar\expandafter0\expandafter{\expandafter}% \romannumeral0\XINT_mul_Mr {#1}#3\Z\Z\Z\Z \W\X\Y\Z 0000#2\W\X\Y\Z }#3\Z\Z\Z\Z }% % \end{macrocode} % \lverb|& % Ici, le deuxième nombre se termine. Fin du calcul. On utilise la variante % \XINT_addm_A de l'addition car on sait que le deuxième terme est au moins % aussi long que le premier. Lorsque le multiplicateur avait longueur 4n, la % dernière addition a fourni le résultat à l'envers, il faut donc encore le % renverser. | % \begin{macrocode} \def\XINT_mul_finish_a\W\XINT_mul_compute #1% {% \XINT_mul_finish_b #1% }% \def\XINT_mul_finish_b #1#2#3#4% {% \xint_gob_til_W #1\XINT_mul_finish_c #2\XINT_mul_finish_ci #3\XINT_mul_finish_cii \W\XINT_mul_finish_ciii #1#2#3#4% }% \def\XINT_mul_finish_ciii #1\W #2#3\Z\Z\Z\Z \W\W\W {% \expandafter\XINT_addm_A\expandafter0\expandafter{\expandafter}% \romannumeral0\XINT_mul_Mr {#1}#3\Z\Z\Z\Z \W\X\Y\Z 000#2\W\X\Y\Z }% \def\XINT_mul_finish_cii \W\XINT_mul_finish_ciii #1\W\W #2#3\Z\Z\Z\Z \W\W {% \expandafter\XINT_addm_A\expandafter0\expandafter{\expandafter}% \romannumeral0\XINT_mul_Mr {#1}#3\Z\Z\Z\Z \W\X\Y\Z 00#2\W\X\Y\Z }% \def\XINT_mul_finish_ci #1\XINT_mul_finish_ciii #2\W\W\W #3#4\Z\Z\Z\Z \W {% \expandafter\XINT_addm_A\expandafter0\expandafter{\expandafter}% \romannumeral0\XINT_mul_Mr {#2}#4\Z\Z\Z\Z \W\X\Y\Z 0#3\W\X\Y\Z }% \def\XINT_mul_finish_c #1\XINT_mul_finish_ciii \W\W\W\W #2#3\Z\Z\Z\Z {% \expandafter\xint_cleanupzeros_andstop\romannumeral0\xintreverseorder{#2}% }% % \end{macrocode} % \lverb|& % Variante de la Multiplication$\ % \romannumeral0\XINT_mulr_enter \Z\Z\Z\Z \W\W\W\W $\ % Ici est à l'envers sur 4n, et est à l'endroit, pas sur 4n, comme % dans \XINT_mul_enter, mais le résultat est lui-même fourni *à l'envers*, sur % *4n* (en faisant attention de ne pas avoir 0000 à la fin).$\ % Utilisé par le calcul des puissances. J'ai modifié dans 1.08 sur le % modèle de la nouvelle version de \XINT_mul_enter. Je pourrais économiser des % macros et fusionner \XINT_mul_enter et \XINT_mulr_enter. Une autre fois.| % \begin{macrocode} \def\XINT_mulr_enter #1\Z\Z\Z\Z #2#3#4#5% {% \xint_gob_til_W #5\XINT_mulr_exit_a\W \XINT_mulr_start {#2#3#4#5}#1\Z\Z\Z\Z }% \def\XINT_mulr_exit_a\W\XINT_mulr_start #1% {% \XINT_mulr_exit_b #1% }% \def\XINT_mulr_exit_b #1#2#3#4% {% \xint_gob_til_W #2\XINT_mulr_exit_ci #3\XINT_mulr_exit_cii \W\XINT_mulr_exit_ciii #1#2#3#4% }% \def\XINT_mulr_exit_ciii #1\W #2\Z\Z\Z\Z \W\W\W {% \XINT_mul_Mr {#1}#2\Z\Z\Z\Z }% \def\XINT_mulr_exit_cii\W\XINT_mulr_exit_ciii #1\W\W #2\Z\Z\Z\Z \W\W {% \XINT_mul_Mr {#1}#2\Z\Z\Z\Z }% \def\XINT_mulr_exit_ci\W\XINT_mulr_exit_cii \W\XINT_mulr_exit_ciii #1\W\W\W #2\Z\Z\Z\Z \W {% \XINT_mul_Mr {#1}#2\Z\Z\Z\Z }% \def\XINT_mulr_start #1#2\Z\Z\Z\Z {% \expandafter\XINT_mulr_main\expandafter {\romannumeral0\XINT_mul_Mr {#1}#2\Z\Z\Z\Z}#2\Z\Z\Z\Z }% \def\XINT_mulr_main #1#2\Z\Z\Z\Z #3#4#5#6% {% \xint_gob_til_W #6\XINT_mulr_finish_a\W \XINT_mulr_compute {#3#4#5#6}{#1}#2\Z\Z\Z\Z }% \def\XINT_mulr_compute #1#2#3\Z\Z\Z\Z {% \expandafter\XINT_mulr_main\expandafter {\romannumeral0\expandafter \XINT_mul_Ar\expandafter0\expandafter{\expandafter}% \romannumeral0\XINT_mul_Mr {#1}#3\Z\Z\Z\Z \W\X\Y\Z 0000#2\W\X\Y\Z }#3\Z\Z\Z\Z }% \def\XINT_mulr_finish_a\W\XINT_mulr_compute #1% {% \XINT_mulr_finish_b #1% }% \def\XINT_mulr_finish_b #1#2#3#4% {% \xint_gob_til_W #1\XINT_mulr_finish_c #2\XINT_mulr_finish_ci #3\XINT_mulr_finish_cii \W\XINT_mulr_finish_ciii #1#2#3#4% }% \def\XINT_mulr_finish_ciii #1\W #2#3\Z\Z\Z\Z \W\W\W {% \expandafter\XINT_addp_A\expandafter0\expandafter{\expandafter}% \romannumeral0\XINT_mul_Mr {#1}#3\Z\Z\Z\Z \W\X\Y\Z 000#2\W\X\Y\Z }% \def\XINT_mulr_finish_cii \W\XINT_mulr_finish_ciii #1\W\W #2#3\Z\Z\Z\Z \W\W {% \expandafter\XINT_addp_A\expandafter0\expandafter{\expandafter}% \romannumeral0\XINT_mul_Mr {#1}#3\Z\Z\Z\Z \W\X\Y\Z 00#2\W\X\Y\Z }% \def\XINT_mulr_finish_ci #1\XINT_mulr_finish_ciii #2\W\W\W #3#4\Z\Z\Z\Z \W {% \expandafter\XINT_addp_A\expandafter0\expandafter{\expandafter}% \romannumeral0\XINT_mul_Mr {#2}#4\Z\Z\Z\Z \W\X\Y\Z 0#3\W\X\Y\Z }% \def\XINT_mulr_finish_c #1\XINT_mulr_finish_ciii \W\W\W\W #2#3\Z\Z\Z\Z { #2}% % \end{macrocode} % \subsection{\csh{xintiSqr}, \csh{xintiiSqr}} % \begin{macrocode} \def\xintiiSqr {\romannumeral0\xintiisqr }% \def\xintiisqr #1% {% \expandafter\XINT_sqr\expandafter {\romannumeral0\xintiiabs{#1}}% }% \def\xintiSqr {\romannumeral0\xintisqr }% \def\xintisqr #1% {% \expandafter\XINT_sqr\expandafter {\romannumeral0\xintiabs{#1}}% }% \let\xintSqr\xintiSqr \let\xintsqr\xintisqr \def\XINT_sqr #1% {% \expandafter\XINT_mul_enter \romannumeral0% \XINT_RQ {}#1\R\R\R\R\R\R\R\R\Z \Z\Z\Z\Z #1\W\W\W\W }% % \end{macrocode} % \subsection{\csh{xintiPow}, \csh{xintiiPow}} % \lverb|1.02 modified the \XINT_posprod routine, the was renamed % \XINT_pow_posprod and moved here, as it was well adapted for computing powers. % Then 1.03 moved the special variants of multiplication (hence of addition) % which were needed to earlier in this style file. % % Modified in 1.06, the exponent is given to a \numexpr rather than twice % expanded. \xintnum added in 1.09a. % % \XINT_pow_posprod: Routine de produit servant pour le calcul des % puissances. Chaque nouveau terme est plus grand que ce qui a déjà été calculé. % Par conséquent on a intérêt à le conserver en second dans la routine de % multiplication, donc le précédent calcul a intérêt à avoir été donné sur 4n, à % l'envers. Il faut donc modifier la multiplication pour qu'elle fasse cela. Ce % qui oblige à utiliser une version spéciale de l'addition également. % % 1.09j has reorganized the main loop, the described above \XINT_pow_posprod % routine has been removed, intermediate multiplications are done % immediately. Also, the maximal accepted exponent is now 100000 (no such % restriction in \xintFloatPow, which accepts any exponent less than 2^31, and % in \xintFloatPower which accepts long integers as exponent). % % 2^100000=9.990020930143845e30102 and multiplication of two numbers % with 30000 digits would take hours on my laptop (seconds for 1000 digits).| % \begin{macrocode} \def\xintiiPow {\romannumeral0\xintiipow }% \def\xintiipow #1% {% \expandafter\xint_pow\romannumeral-`0#1\Z% }% \def\xintiPow {\romannumeral0\xintipow }% \def\xintipow #1% {% \expandafter\xint_pow\romannumeral0\xintnum{#1}\Z% }% \let\xintPow\xintiPow \let\xintpow\xintipow \def\xint_pow #1#2\Z {% \xint_UDsignfork #1\XINT_pow_Aneg -\XINT_pow_Anonneg \krof #1{#2}% }% \def\XINT_pow_Aneg #1#2#3% {% \expandafter\XINT_pow_Aneg_\expandafter{\the\numexpr #3}#2\Z }% \def\XINT_pow_Aneg_ #1% {% \ifodd #1 \expandafter\XINT_pow_Aneg_Bodd \fi \XINT_pow_Anonneg_ {#1}% }% \def\XINT_pow_Aneg_Bodd #1% {% \expandafter\XINT_opp\romannumeral0\XINT_pow_Anonneg_ }% % \end{macrocode} % \lverb|B = #3, faire le xpxp. Modified with 1.06: use of \numexpr.| % \begin{macrocode} \def\XINT_pow_Anonneg #1#2#3% {% \expandafter\XINT_pow_Anonneg_\expandafter {\the\numexpr #3}#1#2\Z }% % \end{macrocode} % \lverb+#1 = B, #2 = |A|. Modifié pour v1.1, car utilisait \XINT_Cmp, ce qui % d'ailleurs n'était sans doute pas super efficace, et m'obligeait à mettre % \xintCmp dans xintcore. Donc ici A est déjà #2#3 et il y a un \Z après.+ % \begin{macrocode} \def\XINT_pow_Anonneg_ #1#2#3\Z {% \if\relax #3\relax\xint_dothis {\ifcase #2 \expandafter\XINT_pow_AisZero \or\expandafter\XINT_pow_AisOne \else\expandafter\XINT_pow_AatleastTwo \fi }\fi \xint_orthat \XINT_pow_AatleastTwo {#1}{#2#3}% }% \def\XINT_pow_AisOne #1#2{ 1}% % \end{macrocode} % \lverb|#1 = B| % \begin{macrocode} \def\XINT_pow_AisZero #1#2% {% \ifcase\XINT_cntSgn #1\Z \xint_afterfi { 1}% \or \xint_afterfi { 0}% \else \xint_afterfi {\xintError:DivisionByZero\space 0}% \fi }% \def\XINT_pow_AatleastTwo #1% {% \ifcase\XINT_cntSgn #1\Z \expandafter\XINT_pow_BisZero \or \expandafter\XINT_pow_checkBsize \else \expandafter\XINT_pow_BisNegative \fi {#1}% }% \edef\XINT_pow_BisNegative #1#2% {\noexpand\xintError:FractionRoundedToZero\space 0}% \def\XINT_pow_BisZero #1#2{ 1}% % \end{macrocode} % \lverb|B = #1 > 0, A = #2 > 1. With 1.05, I replace \xintiLen{#1}>9 by % direct use of \numexpr [to generate an error message if the exponent is too % large] 1.06: \numexpr was already used above.| % \begin{macrocode} \def\XINT_pow_checkBsize #1% {% \ifnum #1>100000 \expandafter\XINT_pow_BtooBig \else \expandafter\XINT_pow_loopI \fi {#1}% }% \edef\XINT_pow_BtooBig #1#2{\noexpand\xintError:ExponentTooBig\space 0}% \def\XINT_pow_loopI #1% {% \ifnum #1=\xint_c_i\XINT_pow_Iend\fi \ifodd #1 \expandafter\XINT_pow_loopI_odd \else \expandafter\XINT_pow_loopI_even \fi {#1}% }% \edef\XINT_pow_Iend\fi #1\fi #2#3{\noexpand\fi\space #3}% \def\XINT_pow_loopI_even #1#2% {% \expandafter\XINT_pow_loopI\expandafter {\the\numexpr #1/\xint_c_ii\expandafter}\expandafter {\romannumeral0\xintiisqr {#2}}% }% \def\XINT_pow_loopI_odd #1#2% {% \expandafter\XINT_pow_loopI_odda\expandafter {\romannumeral0\XINT_RQ {}#2\R\R\R\R\R\R\R\R\Z }{#1}{#2}% }% \def\XINT_pow_loopI_odda #1#2#3% {% \expandafter\XINT_pow_loopII\expandafter {\the\numexpr #2/\xint_c_ii-\xint_c_i\expandafter}\expandafter {\romannumeral0\xintiisqr {#3}}{#1}% }% \def\XINT_pow_loopII #1% {% \ifnum #1 = \xint_c_i\XINT_pow_IIend\fi \ifodd #1 \expandafter\XINT_pow_loopII_odd \else \expandafter\XINT_pow_loopII_even \fi {#1}% }% \def\XINT_pow_loopII_even #1#2% {% \expandafter\XINT_pow_loopII\expandafter {\the\numexpr #1/\xint_c_ii\expandafter}\expandafter {\romannumeral0\xintiisqr {#2}}% }% \def\XINT_pow_loopII_odd #1#2#3% {% \expandafter\XINT_pow_loopII_odda\expandafter {\romannumeral0\XINT_mulr_enter #3\Z\Z\Z\Z #2\W\W\W\W}{#1}{#2}% }% \def\XINT_pow_loopII_odda #1#2#3% {% \expandafter\XINT_pow_loopII\expandafter {\the\numexpr #2/\xint_c_ii-\xint_c_i\expandafter}\expandafter {\romannumeral0\xintiisqr {#3}}{#1}% }% \def\XINT_pow_IIend\fi #1\fi #2#3#4% {% \fi\XINT_mul_enter #4\Z\Z\Z\Z #3\W\W\W\W }% % \end{macrocode} % \subsection{\csh{xintiDivision}, \csh{xintiQuo}, \csh{xintiRem}, % \csh{xintiiDivision}, \csh{xintiiQuo}, \csh{xintiiRem}} % \lverb|The 1.09a release inserted the use of \xintnum. The \xintiiDivision % etc... are the ones which do only \romannumeral-`0. % % January 5, 2014: Naturally, addition, subtraction, multiplication and division % are the first things I did and since then I had left the division % untouched. So in preparation of release 1.09j, I started revisiting the % division, I did various minor improvements obtaining roughly % 10$% efficiency gain. Then I decided I % should deliberately impact the input save stack, with the hope to gain more % speed from removing tokens and leaving them upstream. % % For this however I had to modify the underlying mathematical algorithm. The % initial one is a bit unusual I guess, and, I trust, rather efficient, but it % does not produce the quotient digits (in base 10000) one by one; at any given % time it is possible that some correction will be made, which means it is not % an appropriate algorithm for a TeX implementation which will abandon the % quotient upstream. Thus I now have with 1.09j a new underlying mathematical % algorithm, presumably much more standard. It is a bit complicated to implement % expandably these things, but in the end I had regained the already mentioned % 10$% efficiency and even more for % small to medium sized inputs (up to 30$% perhaps). And in passing I did a % special routine for divisors < 10000, which is 5 to 10 times faster still. % % But, I then tested a variant of my new implementation which again did % not impact the input save stack and, for sizes of up to 200 digits, it % is not much worse, indeed it is perhaps actually better than the one % abandoning the quotient digits upstream (and in the end putting them % in the correct order). So, finally, I re-incorporated the produced % quotient digits within a tail recursion. Hence \xintiDivision, like all % other routines in xint (except \xintSeq without optional parameter) % does not impact the input save stack. One can have a produced % quotient longer than 4x5000=20000 digits, and no need to worry about % consequences propagating to \xintTrunc, \xintRound, \xintFloat, % \xintFloatSqrt, etc... and all other places using the division. See % also \xintXTrunc in this context.| % \begin{macrocode} \def\xintiiQuo {\romannumeral0\xintiiquo }% \def\xintiiRem {\romannumeral0\xintiirem }% \def\xintiiquo {\expandafter\xint_firstoftwo_thenstop\romannumeral0\xintiidivision }% \def\xintiirem {\expandafter\xint_secondoftwo_thenstop\romannumeral0\xintiidivision }% \def\xintiQuo {\romannumeral0\xintiquo }% \def\xintiRem {\romannumeral0\xintirem }% \def\xintiquo {\expandafter\xint_firstoftwo_thenstop\romannumeral0\xintidivision }% \def\xintirem {\expandafter\xint_secondoftwo_thenstop\romannumeral0\xintidivision }% \let\xintQuo\xintiQuo\let\xintquo\xintiquo % deprecated (1.1) \let\xintRem\xintiRem\let\xintrem\xintirem % deprecated (1.1) % \end{macrocode} % \lverb-#1 = A, #2 = B. On calcule le quotient et le reste dans la division % euclidienne de A par B: A=BQ+R, 0<= R < |B|.- % \begin{macrocode} \def\xintiDivision {\romannumeral0\xintidivision }% \def\xintidivision #1{\expandafter\XINT_division\romannumeral0\xintnum{#1}\Z }% \let\xintDivision\xintiDivision \let\xintdivision\xintidivision % deprecated \def\XINT_division #1#2\Z #3{\expandafter\XINT_iidivision_a\expandafter #1% \romannumeral0\xintnum{#3}\Z #2\Z }% \def\xintiiDivision {\romannumeral0\xintiidivision }% \def\xintiidivision #1{\expandafter\XINT_iidivision \romannumeral-`0#1\Z }% \def\XINT_iidivision #1#2\Z #3{\expandafter\XINT_iidivision_a\expandafter #1% \romannumeral-`0#3\Z #2\Z }% \def\XINT_iidivision_a #1#2% #1 de A, #2 de B. {% \if0#2\xint_dothis\XINT_iidivision_divbyzero\fi \if0#1\xint_dothis\XINT_iidivision_aiszero\fi \if-#2\xint_dothis{\expandafter\XINT_iidivision_bneg \romannumeral0\XINT_iidivision_bpos #1}\fi \xint_orthat{\XINT_iidivision_bpos #1#2}% }% \def\XINT_iidivision_divbyzero #1\Z #2\Z {\xintError:DivisionByZero\space {0}{0}}% \def\XINT_iidivision_aiszero #1\Z #2\Z { {0}{0}}% \def\XINT_iidivision_bneg #1% q->-q, r unchanged {\expandafter\space\expandafter{\romannumeral0\XINT_opp #1}}% \def\XINT_iidivision_bpos #1% {% \xint_UDsignfork #1\XINT_iidivision_aneg -{\XINT_iidivision_apos #1}% \krof }% \def\XINT_iidivision_apos #1#2\Z #3\Z{\XINT_div_prepare {#2}{#1#3}}% \def\XINT_iidivision_aneg #1\Z #2\Z {\expandafter \XINT_iidivision_aneg_b\romannumeral0\XINT_div_prepare {#1}{#2}{#1}}% \def\XINT_iidivision_aneg_b #1#2{\if0\XINT_Sgn #2\Z \expandafter\XINT_iidivision_aneg_rzero \else \expandafter\XINT_iidivision_aneg_rpos \fi {#1}{#2}}% \def\XINT_iidivision_aneg_rzero #1#2#3{ {-#1}{0}}% necessarily q was >0 \def\XINT_iidivision_aneg_rpos #1% {% \expandafter\XINT_iidivision_aneg_end\expandafter {\expandafter-\romannumeral0\xintinc {#1}}% q-> -(1+q) }% \def\XINT_iidivision_aneg_end #1#2#3% {% \expandafter\xint_exchangetwo_keepbraces_thenstop \expandafter{\romannumeral0\XINT_sub_pre {#3}{#2}}{#1}% r-> b-r }% % \end{macrocode} % \lverb|& % Pour la suite A et B sont > 0. % #1 = B. Pour le moment à l'endroit. % Calcul du plus petit K = 4n >= longueur de B| % \begin{macrocode} \def\XINT_div_prepare #1% {% \expandafter \XINT_div_prepareB_aa \expandafter {\romannumeral0\xintlength {#1}}{#1}% B > 0 ici }% \def\XINT_div_prepareB_aa #1% {% \ifnum #1=\xint_c_i \expandafter\XINT_div_prepareB_onedigit \else \expandafter\XINT_div_prepareB_a \fi {#1}% }% \def\XINT_div_prepareB_a #1% {% \expandafter\XINT_div_prepareB_c\expandafter {\the\numexpr \xint_c_iv*((#1+\xint_c_i)/\xint_c_iv)}{#1}% }% % \end{macrocode} % \lverb|B=1 and B=2 treated specially.| % \begin{macrocode} \def\XINT_div_prepareB_onedigit #1#2% {% \ifcase#2 \or\expandafter\XINT_div_BisOne \or\expandafter\XINT_div_BisTwo \else\expandafter\XINT_div_prepareB_e \fi {000}{0}{4}{#2}% }% \def\XINT_div_BisOne #1#2#3#4#5{ {#5}{0}}% \def\XINT_div_BisTwo #1#2#3#4#5% {% \expandafter\expandafter\expandafter\XINT_div_BisTwo_a \ifodd\xintiiLDg{#5} \expandafter1\else \expandafter0\fi {#5}% }% \edef\XINT_div_BisTwo_a #1#2% {% \noexpand\expandafter\space\noexpand\expandafter {\noexpand\romannumeral0\noexpand\xinthalf {#2}}{#1}% }% % \end{macrocode} % \lverb|#1 = K. 1.09j uses \csname, earlier versions did it with % \ifcase.| % \begin{macrocode} \def\XINT_div_prepareB_c #1#2% {% \csname XINT_div_prepareB_d\romannumeral\numexpr#1-#2\endcsname {#1}% }% \def\XINT_div_prepareB_d {\XINT_div_prepareB_e {}{0000}}% \def\XINT_div_prepareB_di {\XINT_div_prepareB_e {0}{000}}% \def\XINT_div_prepareB_dii {\XINT_div_prepareB_e {00}{00}}% \def\XINT_div_prepareB_diii {\XINT_div_prepareB_e {000}{0}}% \def\XINT_div_cleanR #10000.{{#1}}% % \end{macrocode} % \lverb|#1 = zéros à rajouter à B, #2=c [modifié dans 1.09j, ce sont maintenant % des zéros explicites en nombre 4 - ancien c, et on utilisera % \XINT_div_cleanR et non plus \XINT_dsh_checksignx pour nettoyer à la fin % des zéros en excès dans le Reste; in all comments next, «c» stands now {0} or % {00} or {000} or {0000} rather than a digit as in earlier versions], #3=K, #4 % = B| % \begin{macrocode} \def\XINT_div_prepareB_e #1#2#3#4% {% \ifnum#3=\xint_c_iv\expandafter\XINT_div_prepareLittleB_f \else\expandafter\XINT_div_prepareB_f \fi #4#1{#3}{#2}{#1}% }% % \end{macrocode} % \lverb|x = #1#2#3#4 = 4 premiers chiffres de B. #1 est non nul. B is reversed. % With 1.09j or latter x+1 and (x+1)/2 are pre-computed. Si K=4 on ne renverse % pas B, et donc B=x dans la suite. De plus pour K=4 on ne travaille pas avec % x+1 et (x+1)/2 mais avec x et x/2.| % \begin{macrocode} \def\XINT_div_prepareB_f #1#2#3#4#5#{% \expandafter\XINT_div_prepareB_g \the\numexpr #1#2#3#4+\xint_c_i\expandafter .\the\numexpr (#1#2#3#4+\xint_c_i)/\xint_c_ii\expandafter .\romannumeral0\xintreverseorder {#1#2#3#4#5}.{#1#2#3#4}% }% \def\XINT_div_prepareLittleB_f #1#{% \expandafter\XINT_div_prepareB_g \the\numexpr #1/\xint_c_ii.{}.{}.{#1}% }% % \end{macrocode} % \lverb|& % #1 = x' = x+1= 1+quatre premiers chiffres de B, #2 = y = (x+1)/2 précalculé % #3 = B préparé et maintenant renversé, #4=x, % #5 = K, #6 = «c», #7= {} ou {0} ou {00} ou {000}, #8 = A initial % On multiplie aussi A par 10^c. -> AK{x'yx}B«c». Par contre dans le % cas little on a #1=y=(x/2), #2={}, #3={}, #4=x, donc cela donne % ->AK{y{}x}{}«c», il n'y a pas de B.| % \begin{macrocode} \def\XINT_div_prepareB_g #1.#2.#3.#4#5#6#7#8% {% \XINT_div_prepareA_a {#8#7}{#5}{{#1}{#2}{#4}}{#3}{#6}% }% % \end{macrocode} % \lverb|A, K, {x'yx}, B«c» | % \begin{macrocode} \def\XINT_div_prepareA_a #1% {% \expandafter\XINT_div_prepareA_b\expandafter {\romannumeral0\xintlength {#1}}{#1}% }% % \end{macrocode} % \lverb|L0, A, K, {x'yx}, B«c»| % \begin{macrocode} \def\XINT_div_prepareA_b #1% {% \expandafter\XINT_div_prepareA_c\expandafter {\the\numexpr \xint_c_iv*((#1+\xint_c_i)/\xint_c_iv)}{#1}% }% % \end{macrocode} % \lverb|L, L0, A, K, {x'yx}, B, «c»| % \begin{macrocode} \def\XINT_div_prepareA_c #1#2% {% \csname XINT_div_prepareA_d\romannumeral\numexpr #1-#2\endcsname {#1}% }% \def\XINT_div_prepareA_d {\XINT_div_prepareA_e {}}% \def\XINT_div_prepareA_di {\XINT_div_prepareA_e {0}}% \def\XINT_div_prepareA_dii {\XINT_div_prepareA_e {00}}% \def\XINT_div_prepareA_diii {\XINT_div_prepareA_e {000}}% % \end{macrocode} % \lverb|#1#3 = A préparé, #2 = longueur de ce A préparé, #4=K, #5={x'yx}-> % LKAx'yxB«c»| % \begin{macrocode} \def\XINT_div_prepareA_e #1#2#3#4#5% {% \XINT_div_start_a {#2}{#4}{#1#3}#5% }% % \end{macrocode} % \lverb|L, K, A, x',y,x, B, «c» (avec y{}x{} au lieu de x'yxB dans la % variante little)| % \begin{macrocode} \def\XINT_div_start_a #1#2% {% \ifnum #2=\xint_c_iv \expandafter\XINT_div_little_b \else \ifnum #1 < #2 \expandafter\expandafter\expandafter\XINT_div_III_aa \else \expandafter\expandafter\expandafter\XINT_div_start_b \fi \fi {#1}{#2}% }% % \end{macrocode} % \lverb|L, K, A, x',y,x, B, «c».| % \begin{macrocode} \def\XINT_div_III_aa #1#2#3#4#5#6#7% {% \expandafter\expandafter\expandafter \XINT_div_III_b\xint_cleanupzeros_nostop #3.{0000}% }% % \end{macrocode} % \lverb|R.Q«c».| % \begin{macrocode} \def\XINT_div_III_b #1% {% \if0#1% \expandafter\XINT_div_III_bRzero \else \expandafter\XINT_div_III_bRpos \fi #1% }% \def\XINT_div_III_bRzero 0.#1#2% {% \expandafter\space\expandafter {\romannumeral0\XINT_cuz_loop #1\W\W\W\W\W\W\W\Z}{0}% }% \def\XINT_div_III_bRpos #1.#2#3% {% \expandafter\XINT_div_III_c \XINT_div_cleanR #1#3.{#2}% }% \def\XINT_div_III_c #1#2% {% \expandafter\space\expandafter {\romannumeral0\XINT_cuz_loop #2\W\W\W\W\W\W\W\Z}{#1}% }% % \end{macrocode} % \lverb|L, K, A, x',y,x, B, «c»->K.A.x{LK{x'y}x}B«c»| % \begin{macrocode} \def\XINT_div_start_b #1#2#3#4#5#6% {% \XINT_div_start_c {#2}.#3.{#6}{{#1}{#2}{{#4}{#5}}{#6}}% }% % \end{macrocode} % \lverb|Kalpha.A.x{LK{x'y}x}, B, «c», au début #2=alpha est vide| % \begin{macrocode} \def\XINT_div_start_c #1#2.#3#4#5#6% {% \ifnum #1=\xint_c_iv\XINT_div_start_ca\fi \expandafter\XINT_div_start_c\expandafter {\the\numexpr #1-\xint_c_iv}#2#3#4#5#6.% }% \def\XINT_div_start_ca\fi\expandafter\XINT_div_start_c\expandafter #1#2#3#4#5{\fi\XINT_div_start_d {#2#3#4#5}#2#3#4#5}% % \end{macrocode} % \lverb|#1=a, #2=alpha (de longueur K, à l'endroit).#3=reste de A.#4=x, % #5={LK{x'y}x},#6=B,«c» -> a, x, alpha, B, {0000}, L, K, {x'y},x, % alpha'=reste de A, B{}«c». Pour K=4 on a en fait B=x, faudra revoir après.| % \begin{macrocode} \def\XINT_div_start_d #1#2.#3.#4#5#6% {% \XINT_div_I_a {#1}{#4}{#2}{#6}{0000}#5{#3}{#6}{}% }% % \end{macrocode} % \lverb|Ceci est le point de retour de la boucle principale. a, x, alpha, B, % q0, L, K, {x'y}, x, alpha', BQ«c» | % \begin{macrocode} \def\XINT_div_I_a #1#2% {% \expandafter\XINT_div_I_b\the\numexpr #1/#2.{#1}{#2}% }% \def\XINT_div_I_b #1% {% \xint_gob_til_zero #1\XINT_div_I_czero 0\XINT_div_I_c #1% }% % \end{macrocode} % \lverb|On intercepte quotient nul: #1=a, x, alpha, B, #5=q0, L, K, {x'y}, x, % alpha', BQ«c» -> q{alpha} L, K, {x'y}, x, alpha', BQ«c»| % \begin{macrocode} \def\XINT_div_I_czero 0% \XINT_div_I_c 0.#1#2#3#4#5{\XINT_div_I_g {#5}{#3}}% \def\XINT_div_I_c #1.#2#3% {% \expandafter\XINT_div_I_da\the\numexpr #2-#1*#3.#1.% }% % \end{macrocode} % \lverb|r.q.alpha, B, q0, L, K, {x'y}, x, alpha', BQ«c»| % \begin{macrocode} \def\XINT_div_I_da #1.% {% \ifnum #1>\xint_c_ix \expandafter\XINT_div_I_dP \else \ifnum #1<\xint_c_ \expandafter\expandafter\expandafter\XINT_div_I_dN \else \expandafter\expandafter\expandafter\XINT_div_I_db \fi \fi }% \def\XINT_div_I_dN #1.% {% \expandafter\XINT_div_I_dP\the\numexpr #1-\xint_c_i.% }% \def\XINT_div_I_db #1.#2#3% #1=q=un chiffre, #2=alpha, #3=B {% \expandafter\XINT_div_I_dc\expandafter {\romannumeral0\expandafter\XINT_div_sub_xpxp\expandafter {\romannumeral0\xintreverseorder{#2}}% {\romannumeral0\XINT_mul_Mr {#1}#3\Z\Z\Z\Z }}% #1{#2}{#3}% }% \def\XINT_div_I_dc #1#2% {% \if-#1% s'arranger pour que si n\'egatif on ait renvoy\'e alpha=-. \expandafter\xint_firstoftwo \else\expandafter\xint_secondoftwo\fi {\expandafter\XINT_div_I_dP\the\numexpr #2-\xint_c_i.}% {\XINT_div_I_e {#1}#2}% }% % \end{macrocode} % \lverb|alpha,q,ancien alpha,B, q0->1nouveauq.alpha, L, K, {x'y},x, alpha', % BQ«c»| % \begin{macrocode} \def\XINT_div_I_e #1#2#3#4#5% {% \expandafter\XINT_div_I_f \the\numexpr \xint_c_x^iv+#2+#5{#1}% }% % \end{macrocode} % \lverb|q.alpha, B, q0, L, K, {x'y},x, alpha'BQ«c» (intercepter q=0?) % -> 1nouveauq.nouvel alpha, L, K, {x'y}, x, alpha',BQ«c»| % \begin{macrocode} \def\XINT_div_I_dP #1.#2#3#4% {% \expandafter \XINT_div_I_f \the\numexpr \xint_c_x^iv+#1+#4\expandafter {\romannumeral0\expandafter\XINT_div_sub_xpxp\expandafter {\romannumeral0\xintreverseorder{#2}}% {\romannumeral0\XINT_mul_Mr {#1}#3\Z\Z\Z\Z }}% }% % \end{macrocode} % \lverb|1#1#2#3#4=nouveau q, nouvel alpha, L, K, {x'y},x,alpha', BQ«c»| % \begin{macrocode} \def\XINT_div_I_f 1#1#2#3#4{\XINT_div_I_g {#1#2#3#4}}% % \end{macrocode} % \lverb|#1=q,#2=nouvel alpha,#3=L, #4=K, #5={x'y}, #6=x, #7= alpha',#8=B, % #9=Q«c» -> {x'y}alpha.alpha'.{{x'y}xKL}B{Qq}«c»| % \begin{macrocode} \def\XINT_div_I_g #1#2#3#4#5#6#7#8#9% {% \ifnum#3=#4 \expandafter\XINT_div_III_ab \else \expandafter\XINT_div_I_h \fi {#5}#2.#7.{{#5}{#6}{#4}{#3}}{#8}{#9#1}% }% % \end{macrocode} % \lverb|{x'y}alpha.alpha'.{{x'y}xKL}B{Qq}«c» -> R sans leading zeros.{Qq}«c»| % \begin{macrocode} \def\XINT_div_III_ab #1#2.#3.#4#5% {% \expandafter\XINT_div_III_b \romannumeral0\XINT_cuz_loop #2#3\W\W\W\W\W\W\W\Z.% }% % \end{macrocode} % \lverb|#1={x'y}alpha.#2#3#4#5#6=reste de A. % #7={{x'y},x,K,L},#8=B,nouveauQ«c» devient {x'y},alpha sur K+4 chiffres.B, % {{x'y},x,K,L}, #6= nouvel alpha',B,nouveauQ«c»| % \begin{macrocode} \def\XINT_div_I_h #1.#2#3#4#5#6.#7#8% {% \XINT_div_II_b #1#2#3#4#5.{#8}{#7}{#6}{#8}% }% % \end{macrocode} % \lverb|{x'y}alpha.B, {{x'y},x,K,L}, nouveau alpha',B, Q«c» On % intercepte la situation avec alpha débutant par 0000 qui est la seule qui % pourrait donner un q1 nul. Donc q1 est non nul et la soustraction spéciale % recevra un q1*B de longueur K ou K+4 et jamais 0000. Ensuite un q2 éventuel % s'il est calculé est nécessairement non nul lui aussi. Comme dans la phase I % on a aussi intercepté un q nul, la soustraction spéciale ne reçoit donc jamais % un qB nul. Note: j'ai testé plusieurs fois que ma technique de gob_til_zeros % est plus rapide que d'utiliser un \ifnum | % \begin{macrocode} \def\XINT_div_II_b #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_zeros_iv #2#3#4#5\XINT_div_II_skipc 0000% \XINT_div_II_c #1{#2#3#4#5}{#6#7#8#9}% }% % \end{macrocode} % \lverb|x'y{0000}{4chiffres}reste de alpha.#6=B,#7={{x'y},x,K,L}, alpha',B, % Q«c» -> {x'y}x,K,L (à diminuer de 4), {alpha sur % K}B{q1=0000}{alpha'}B,Q«c»| % \begin{macrocode} \def\XINT_div_II_skipc 0000\XINT_div_II_c #1#2#3#4#5.#6#7% {% \XINT_div_II_k #7{#4#5}{#6}{0000}% }% % \end{macrocode} % \lverb|x'ya->1qx'yalpha.B, {{x'y},x,K,L}, nouveau alpha',B, Q«c»| % \begin{macrocode} \def\XINT_div_II_c #1#2#3#4% {% \expandafter\XINT_div_II_d\the\numexpr (#3#4+#2)/#1+\xint_c_ixixixix\relax {#1}{#2}#3#4% }% % \end{macrocode} % \lverb|1 suivi de q1 sur quatre chiffres, #5=x', #6=y, #7=alpha.#8=B, % {{x'y},x,K,L}, alpha', B, Q«c» --> nouvel alpha.x',y,B,q1,{{x'y},x,K,L}, % alpha', B, Q«c» | % \begin{macrocode} \def\XINT_div_II_d 1#1#2#3#4#5#6#7.#8% {% \expandafter\XINT_div_II_e \romannumeral0\expandafter\XINT_div_sub_xpxp\expandafter {\romannumeral0\xintreverseorder{#7}}% {\romannumeral0\XINT_mul_Mr {#1#2#3#4}#8\Z\Z\Z\Z }.% {#5}{#6}{#8}{#1#2#3#4}% }% % \end{macrocode} % \lverb|alpha.x',y,B,q1, {{x'y},x,K,L}, alpha', B, Q«c»| % \begin{macrocode} \def\XINT_div_II_e #1#2#3#4% {% \xint_gob_til_zeros_iv #1#2#3#4\XINT_div_II_skipf 0000% \XINT_div_II_f #1#2#3#4% }% % \end{macrocode} % \lverb|0000alpha sur K chiffres.#2=x',#3=y,#4=B,#5=q1, #6={{x'y},x,K,L}, % #7=alpha',BQ«c» -> {x'y}x,K,L (à diminuer de 4), % {alpha sur K}B{q1}{alpha'}BQ«c»| % \begin{macrocode} \def\XINT_div_II_skipf 0000\XINT_div_II_f 0000#1.#2#3#4#5#6% {% \XINT_div_II_k #6{#1}{#4}{#5}% }% % \end{macrocode} % \lverb|a1 (huit chiffres), alpha (sur K+4), x', y, B, q1, {{x'y},x,K,L}, % alpha', B,Q«c»| % \begin{macrocode} \def\XINT_div_II_f #1#2#3#4#5#6#7#8#9.% {% \XINT_div_II_fa {#1#2#3#4#5#6#7#8}{#1#2#3#4#5#6#7#8#9}% }% \def\XINT_div_II_fa #1#2#3#4% {% \expandafter\XINT_div_II_g\expandafter {\the\numexpr (#1+#4)/#3-\xint_c_i}{#2}% }% % \end{macrocode} % \lverb|#1=q, #2=alpha (K+4), #3=B, #4=q1, {{x'y},x,K,L}, alpha', BQ«c» % -> 1 puis nouveau q sur 4 chiffres, nouvel alpha sur K chiffres, % B, {{x'y},x,K,L}, alpha',BQ«c» | % \begin{macrocode} \def\XINT_div_II_g #1#2#3#4% {% \expandafter \XINT_div_II_h \the\numexpr #4+#1+\xint_c_x^iv\expandafter\expandafter\expandafter {\expandafter\xint_gobble_iv \romannumeral0\expandafter\XINT_div_sub_xpxp\expandafter {\romannumeral0\xintreverseorder{#2}}% {\romannumeral0\XINT_mul_Mr {#1}#3\Z\Z\Z\Z }}{#3}% }% % \end{macrocode} % \lverb|1 puis nouveau q sur 4 chiffres, #5=nouvel alpha sur K chiffres, % #6=B, #7={{x'y},x,K,L} avec L à ajuster, alpha', BQ«c» % -> {x'y}x,K,L à diminuer de 4, {alpha}B{q}, alpha', BQ«c»| % \begin{macrocode} \def\XINT_div_II_h 1#1#2#3#4#5#6#7% {% \XINT_div_II_k #7{#5}{#6}{#1#2#3#4}% }% % \end{macrocode} % \lverb|{x'y}x,K,L à diminuer de 4, alpha, B{q}alpha',BQ«c» % ->nouveau L.K,x',y,x,alpha.B,q,alpha',B,Q«c» % ->{LK{x'y}x},x,a,alpha.B,q,alpha',B,Q«c»| % \begin{macrocode} \def\XINT_div_II_k #1#2#3#4#5% {% \expandafter\XINT_div_II_l \the\numexpr #4-\xint_c_iv.{#3}#1{#2}#5.% }% \def\XINT_div_II_l #1.#2#3#4#5#6#7#8#9% {% \XINT_div_II_m {{#1}{#2}{{#3}{#4}}{#5}}{#5}{#6#7#8#9}#6#7#8#9% }% % \end{macrocode} % \lverb|{LK{x'y}x},x,a,alpha.B{q}alpha'BQ -> a, x, alpha, B, q, % L, K, {x'y}, x, alpha', BQ«c» | % \begin{macrocode} \def\XINT_div_II_m #1#2#3#4.#5#6% {% \XINT_div_I_a {#3}{#2}{#4}{#5}{#6}#1% }% % \end{macrocode} % \lverb|L, K, A, y,{},x, {},«c»->A.{yx}L{}«c» Comme ici K=4, dans % la phase I on n'a pas besoin de alpha, car a = alpha. De plus on a maintenu B % dans l'ordre qui est donc la même chose que x. Par ailleurs la phase I est % simplifiée, il s'agit simplement de la division euclidienne de a par x, et de % plus on n'a à la faire qu'une unique fois et ensuite la phase II peut boucler % sur elle-même au lieu de revenir en phase I, par conséquent il n'y a pas non % plus de q0 ici. Enfin, le y est (x/2) pas ((x+1)/2) il n'y a pas de x'=x+1| % \begin{macrocode} \def\XINT_div_little_b #1#2#3#4#5#6#7% {% \XINT_div_little_c #3.{{#4}{#6}}{#1}% }% % \end{macrocode} % \lverb|#1#2#3#4=a, #5=alpha'=reste de A.#6={yx}, #7=L, «c» -> a, % y, x, L, alpha'=reste de A, «c».| % \begin{macrocode} \def\XINT_div_little_c #1#2#3#4#5.#6#7% {% \XINT_div_littleI_a {#1#2#3#4}#6{#7}{#5}% }% % \end{macrocode} % \lverb|a, y, x, L, alpha',«c» On calcule ici (contrairement à la % phase I générale) le vrai quotient euclidien de a par x=B, c'est donc un % chiffre de 0 à 9. De plus on n'a à faire cela qu'une unique fois.| % \begin{macrocode} \def\XINT_div_littleI_a #1#2#3% {% \expandafter\XINT_div_littleI_b \the\numexpr (#1+#2)/#3-\xint_c_i{#1}{#2}{#3}% }% % \end{macrocode} % \lverb|On intercepte quotient nul: [est-ce vraiment utile? ou n'est-ce pas % plutôt une perte de temps en moyenne? il faudrait tester] q=0#1=a, % #2=y, x, L, alpha', «c» -> % II_a avec L{alpha}alpha'.{yx}{0000}«c». Et en cas de quotient non nul on % procède avec littleI_c avec #1=q, #2=a, #3=y, #4=x -> {nouvel alpha sur 4 % chiffres}q{yx},L,alpha',«c».| % \begin{macrocode} \def\XINT_div_littleI_b #1% {% \xint_gob_til_zero #1\XINT_div_littleI_skip 0\XINT_div_littleI_c #1% }% \def\XINT_div_littleI_skip 0\XINT_div_littleI_c 0#1#2#3#4#5% {\XINT_div_littleII_a {#4}{#1}#5.{{#2}{#3}}{0000}}% \def\XINT_div_littleI_c #1#2#3#4% {% \expandafter\expandafter\expandafter\XINT_div_littleI_e \expandafter\expandafter\expandafter {\expandafter\xint_gobble_i\the\numexpr \xint_c_x^iv+#2-#1*#4}#1{{#3}{#4}}% }% % \end{macrocode} % \lverb|#1=nouvel alpha sur 4 chiffres#2=q,#3={yx}, #4=L, #5=alpha',«c» -> % L{alpha}alpha'.{yx}{000q}«c» point d'entrée de la boucle principale| % \begin{macrocode} \def\XINT_div_littleI_e #1#2#3#4#5% {\XINT_div_littleII_a {#4}{#1}#5.{#3}{000#2}}% % \end{macrocode} % \lverb|L{alpha}alpha'.{yx}Q«c» et c'est là qu'on boucle| % \begin{macrocode} \def\XINT_div_littleII_a #1% {% \ifnum#1=\xint_c_iv \expandafter\XINT_div_littleIII_ab \else \expandafter\XINT_div_littleII_b \fi {#1}% }% % \end{macrocode} % \lverb|L{alpha}alpha'.{yx}Q«c» -> (en fait #3 est vide normalement ici) R % sans leading zeros.Q«c»| % \begin{macrocode} \def\XINT_div_littleIII_ab #1#2#3.#4% {% \expandafter\XINT_div_III_b\the\numexpr #2#3.% }% % \end{macrocode} % \lverb|L{alpha}alpha'.{yx}Q«c». On diminue L de quatre, comme cela c'est % fait.| % \begin{macrocode} \def\XINT_div_littleII_b #1% {% \expandafter\XINT_div_littleII_c\expandafter {\the\numexpr #1-\xint_c_iv}% }% % \end{macrocode} % \lverb|{nouveauL}{alpha}alpha'.{yx}Q«c». On prélève 4 chiffres de alpha' -> % {nouvel alpha sur huit chiffres}yx{nouveau L}{nouvel alpha'}Q«c». Regarder % si l'ancien alpha était 0000 n'avancerait à rien car obligerait à refaire une % chose comme la phase I, donc on ne perd pas de temps avec ça, on reste en % permanence en phase II.| % \begin{macrocode} \def\XINT_div_littleII_c #1#2#3#4#5#6#7.#8% {% \XINT_div_littleII_d {#2#3#4#5#6}#8{#1}{#7}% }% \def\XINT_div_littleII_d #1#2#3% {% \expandafter\XINT_div_littleII_e\the\numexpr (#1+#2)/#3+\xint_c_ixixixix.% {#1}{#2}{#3}% }% % \end{macrocode} % \lverb|1 suivi de #1=q1 sur quatre chiffres.#2=alpha, #3=y, #4=x, % L, alpha', Q«c» --> nouvel alpha sur 4.{q1}{yx},L,alpha', Q«c» | % \begin{macrocode} \def\XINT_div_littleII_e 1#1.#2#3#4% {% \expandafter\expandafter\expandafter\XINT_div_littleII_f \expandafter\xint_gobble_i\the\numexpr \xint_c_x^iv+#2-#1*#4.% {#1}{{#3}{#4}}% }% % \end{macrocode} % \lverb|alpha.q,{yx},L,alpha',Q«c»->L{alpha}alpha'.{yx}{Qq}«c»| % \begin{macrocode} \def\XINT_div_littleII_f #1.#2#3#4#5#6% {% \XINT_div_littleII_a {#4}{#1}#5.{#3}{#6#2}% }% % \end{macrocode} % \lverb|La soustraction spéciale. Dans 1.09j, elle fait A-qB, pour A (en fait % alpha dans mes dénominations des commentaires du code) et qB chacun de % longueur K ou K+4, avec K au moins huit multiple de quatre, qB a ses quatre % chiffres significatifs (qui sont à droite) non nuls. Si A-qB<0 il suffit de % renvoyer -, le résultat n'importe pas. On est sûr que qB est non nul. On le % met dans cette version en premier pour tester plus facilement le cas avec qB % de longueur K+4 et A de longueur seulement K. Lorsque la longueur de qB est % inférieure ou égale à celle de A, on va jusqu'à la fin de A et donc c'est la % retenue finale qui décide du cas négatif éventuel. Le résultat non négatif est % toujours donc renvoyé avec la même longueur que A, et il est dans l'ordre. % J'ai fait une implémentation des phases I et II en maintenant alpha toujours à % l'envers afin d'éviter le reverse order systématique fait sur A (ou plutôt % alpha), mais alors il fallait que la soustraction ici s'arrange pour repérer % les huit chiffres les plus significatifs, au final ce n'était pas plus rapide, % et même pénalisant pour de gros inputs. Dans les versions 1.09i et antérieures % (en fait je pense qu'ici rien quasiment n'avait bougé depuis la première % implémentation), la soustraction spéciale n'était pratiquée que dans des cas % avec certainement A-qB positif ou nul. De plus on n'excluait pas q=0, donc il % fallait aussi faire un éventuel reverseorder sur ce qui était encore non % traité. Les cas avec q=0 sont maintenant interceptés en amont et comme A et qB % ont toujours quasiment la même longueur on ne s'embarrasse pas de % complications pour la fin.| % \begin{macrocode} \def\XINT_div_sub_xpxp #1#2% #1=alpha d\'ej\`a renvers\'e, #2 se d\'eveloppe en qB {% \expandafter\XINT_div_sub_xpxp_b #2\W\X\Y\Z #1\W\X\Y\Z }% \def\XINT_div_sub_xpxp_b {% \XINT_div_sub_A 1{}% }% \def\XINT_div_sub_A #1#2#3#4#5#6% {% \xint_gob_til_W #3\xint_div_sub_az\W \XINT_div_sub_B #1{#3#4#5#6}{#2}% }% \def\XINT_div_sub_B #1#2#3#4\W\X\Y\Z #5#6#7#8% {% \xint_gob_til_W #5\xint_div_sub_bz\W \XINT_div_sub_onestep #1#2{#8#7#6#5}{#3}#4\W\X\Y\Z }% \def\XINT_div_sub_onestep #1#2#3#4#5#6% {% \expandafter\XINT_div_sub_backtoA \the\numexpr 11#6-#5#4#3#2+#1-\xint_c_i.% }% \def\XINT_div_sub_backtoA #1#2#3.#4% {% \XINT_div_sub_A #2{#3#4}% }% % \end{macrocode} % \lverb|si on arrive en sub_bz c'est que qB était de longueur K+4 et A % seulement de longueur K, le résultat est donc < 0, renvoyer juste -| % \begin{macrocode} \def\xint_div_sub_bz\W\XINT_div_sub_onestep #1\Z { -}% % \end{macrocode} % \lverb|si on arrive en sub_az c'est que qB était de longueur inférieure ou % égale à celle de A, donc on continue jusqu'à la fin de A, et on vérifiera la % retenue à la fin.| % \begin{macrocode} \def\xint_div_sub_az\W\XINT_div_sub_B #1#2{\XINT_div_sub_C #1}% \def\XINT_div_sub_C #1#2#3#4#5#6% {% \xint_gob_til_W #3\xint_div_sub_cz\W \XINT_div_sub_C_onestep #1{#6#5#4#3}{#2}% }% \def\XINT_div_sub_C_onestep #1#2% {% \expandafter\XINT_div_sub_backtoC \the\numexpr 11#2+#1-\xint_c_i.% }% \def\XINT_div_sub_backtoC #1#2#3.#4% {% \XINT_div_sub_C #2{#3#4}% }% % \end{macrocode} % \lverb|une fois arrivé en sub_cz on teste la retenue pour voir si le résultat % final est en fait négatif, dans ce cas on renvoie seulement -| % \begin{macrocode} \def\xint_div_sub_cz\W\XINT_div_sub_C_onestep #1#2% {% \if#10% retenue \expandafter\xint_div_sub_neg \else\expandafter\xint_div_sub_ok \fi }% \def\xint_div_sub_neg #1{ -}% \def\xint_div_sub_ok #1{ #1}% % \end{macrocode} % \subsection{\csh{xintiDivRound}, \csh{xintiiDivRound}} % \lverb|v1.1, transferred from first release of bnumexpr.| % \begin{macrocode} \def\xintiDivRound {\romannumeral0\xintidivround }% \def\xintidivround #1{\expandafter\XINT_iidivround\romannumeral0\xintnum{#1}\Z }% \def\xintiiDivRound {\romannumeral0\xintiidivround }% \def\xintiidivround #1{\expandafter\XINT_iidivround \romannumeral-`0#1\Z }% \def\XINT_iidivround #1#2\Z #3{\expandafter\XINT_iidivround_a\expandafter #1% \romannumeral-`0#3\Z #2\Z }% \def\XINT_iidivround_a #1#2% #1 de A, #2 de B. {% \if0#2\xint_dothis\XINT_iidivround_divbyzero\fi \if0#1\xint_dothis\XINT_iidivround_aiszero\fi \if-#2\xint_dothis{\XINT_iidivround_bneg #1}\fi \xint_orthat{\XINT_iidivround_bpos #1#2}% }% \def\XINT_iidivround_divbyzero #1\Z #2\Z {\xintError:DivisionByZero\space 0}% \def\XINT_iidivround_aiszero #1\Z #2\Z { 0}% \def\XINT_iidivround_bpos #1% {% \xint_UDsignfork #1{\xintiiopp\XINT_iidivround_pos {}}% -{\XINT_iidivround_pos #1}% \krof }% \def\XINT_iidivround_bneg #1% {% \xint_UDsignfork #1{\XINT_iidivround_pos {}}% -{\xintiiopp\XINT_iidivround_pos #1}% \krof }% \def\XINT_iidivround_pos #1#2\Z #3\Z{\expandafter\XINT_iidivround_pos_a \romannumeral0\XINT_div_prepare {#2}{#1#30}}% \def\XINT_iidivround_pos_a #1#2{\xintReverseOrder {#1\XINT_iidivround_pos_b}\Z }% \def\XINT_iidivround_pos_b #1#2{\xint_gob_til_Z #2\XINT_iidivround_pos_small\Z \XINT_iidivround_pos_c #1#2}% \def\XINT_iidivround_pos_c #1#2\Z {\ifnum #1>\xint_c_iv \expandafter\XINT_iidivround_pos_up \else \expandafter\xintreverseorder \fi {#2}}% \def\XINT_iidivround_pos_up #1{\xintinc {\xintReverseOrder{#1}}}% \def\XINT_iidivround_pos_small\Z\XINT_iidivround_pos_c #1#2% {\ifnum #1>\xint_c_iv\expandafter\xint_secondoftwo\else\expandafter \xint_firstoftwo\fi { 0}{ 1}}% % \end{macrocode} % \subsection{\csh{xintiDivTrunc}, \csh{xintiiDivTrunc}} % \begin{macrocode} \def\xintiDivTrunc {\romannumeral0\xintidivtrunc }% \def\xintidivtrunc #1{\expandafter\XINT_iidivtrunc\romannumeral0\xintnum{#1}\Z }% \def\xintiiDivTrunc {\romannumeral0\xintiidivtrunc }% \def\xintiidivtrunc #1{\expandafter\XINT_iidivtrunc \romannumeral-`0#1\Z }% \def\XINT_iidivtrunc #1#2\Z #3{\expandafter\XINT_iidivtrunc_a\expandafter #1% \romannumeral-`0#3\Z #2\Z }% \def\XINT_iidivtrunc_a #1#2% #1 de A, #2 de B. {% \if0#2\xint_dothis\XINT_iidivround_divbyzero\fi \if0#1\xint_dothis\XINT_iidivround_aiszero\fi \if-#2\xint_dothis{\XINT_iidivtrunc_bneg #1}\fi \xint_orthat{\XINT_iidivtrunc_bpos #1#2}% }% \def\XINT_iidivtrunc_bpos #1% {% \xint_UDsignfork #1{\xintiiopp\XINT_iidivtrunc_pos {}}% -{\XINT_iidivtrunc_pos #1}% \krof }% \def\XINT_iidivtrunc_bneg #1% {% \xint_UDsignfork #1{\XINT_iidivtrunc_pos {}}% -{\xintiiopp\XINT_iidivtrunc_pos #1}% \krof }% \def\XINT_iidivtrunc_pos #1#2\Z #3\Z% {\expandafter\xint_firstoftwo_thenstop\romannumeral0\XINT_div_prepare {#2}{#1#3}}% % \end{macrocode} % \subsection{\csh{xintiMod}, \csh{xintiiMod}} % \begin{macrocode} \def\xintiMod {\romannumeral0\xintimod }% \def\xintimod #1{\expandafter\XINT_iimod\romannumeral0\xintnum{#1}\Z }% \def\xintiiMod {\romannumeral0\xintiimod }% \def\xintiimod #1{\expandafter\XINT_iimod \romannumeral-`0#1\Z }% \def\XINT_iimod #1#2\Z #3{\expandafter\XINT_iimod_a\expandafter #1% \romannumeral-`0#3\Z #2\Z }% \def\XINT_iimod_a #1#2% #1 de A, #2 de B. {% \if0#2\xint_dothis\XINT_iidivround_divbyzero\fi \if0#1\xint_dothis\XINT_iidivround_aiszero\fi \if-#2\xint_dothis{\XINT_iimod_bneg #1}\fi \xint_orthat{\XINT_iimod_bpos #1#2}% }% \def\XINT_iimod_bpos #1% {% \xint_UDsignfork #1{\xintiiopp\XINT_iimod_pos {}}% -{\XINT_iimod_pos #1}% \krof }% \def\XINT_iimod_bneg #1% {% \xint_UDsignfork #1{\xintiiopp\XINT_iimod_pos {}}% -{\XINT_iimod_pos #1}% \krof }% \def\XINT_iimod_pos #1#2\Z #3\Z% {\expandafter\xint_secondoftwo_thenstop\romannumeral0\XINT_div_prepare {#2}{#1#3}}% % \end{macrocode} % \subsection{\csh{xintDec}} % \lverb!v1.08! % \begin{macrocode} \def\xintDec {\romannumeral0\xintdec }% \def\xintdec #1% {% \expandafter\XINT_dec\romannumeral-`0#1% \R\R\R\R\R\R\R\R\Z \W\W\W\W\W\W\W\W }% \def\XINT_dec #1% {% \xint_UDzerominusfork #1-\XINT_dec_zero 0#1\XINT_dec_neg 0-{\XINT_dec_pos #1}% \krof }% \def\XINT_dec_zero #1\W\W\W\W\W\W\W\W { -1}% \def\XINT_dec_neg {\expandafter\xint_minus_thenstop\romannumeral0\XINT_inc_pos }% \def\XINT_dec_pos {% \expandafter\XINT_dec_a \expandafter{\expandafter}% \romannumeral0\XINT_OQ {}% }% \def\XINT_dec_a #1#2#3#4#5#6#7#8#9% {% \expandafter\XINT_dec_b \the\numexpr 11#9#8#7#6#5#4#3#2-\xint_c_i\relax {#1}% }% \def\XINT_dec_b 1#1% {% \xint_gob_til_one #1\XINT_dec_A 1\XINT_dec_c }% \def\XINT_dec_c #1#2#3#4#5#6#7#8#9{\XINT_dec_a {#1#2#3#4#5#6#7#8#9}}% \def\XINT_dec_A 1\XINT_dec_c #1#2#3#4#5#6#7#8#9% {\XINT_dec_B {#1#2#3#4#5#6#7#8#9}}% \def\XINT_dec_B #1#2\W\W\W\W\W\W\W\W {% \expandafter\XINT_dec_cleanup \romannumeral0\XINT_rord_main {}#2% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax #1% }% \edef\XINT_dec_cleanup #1#2#3#4#5#6#7#8% {\noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4#5#6#7#8\relax }% % \end{macrocode} % \subsection{\csh{xintInc}} % \lverb!v1.08! % \begin{macrocode} \def\xintInc {\romannumeral0\xintinc }% \def\xintinc #1% {% \expandafter\XINT_inc\romannumeral-`0#1% \R\R\R\R\R\R\R\R\Z \W\W\W\W\W\W\W\W }% \def\XINT_inc #1% {% \xint_UDzerominusfork #1-\XINT_inc_zero 0#1\XINT_inc_neg 0-{\XINT_inc_pos #1}% \krof }% \def\XINT_inc_zero #1\W\W\W\W\W\W\W\W { 1}% \def\XINT_inc_neg {\expandafter\XINT_opp\romannumeral0\XINT_dec_pos }% \def\XINT_inc_pos {% \expandafter\XINT_inc_a \expandafter{\expandafter}% \romannumeral0\XINT_OQ {}% }% \def\XINT_inc_a #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_W #9\XINT_inc_end\W \expandafter\XINT_inc_b \the\numexpr 10#9#8#7#6#5#4#3#2+\xint_c_i\relax {#1}% }% \def\XINT_inc_b 1#1% {% \xint_gob_til_zero #1\XINT_inc_A 0\XINT_inc_c }% \def\XINT_inc_c #1#2#3#4#5#6#7#8#9{\XINT_inc_a {#1#2#3#4#5#6#7#8#9}}% \def\XINT_inc_A 0\XINT_inc_c #1#2#3#4#5#6#7#8#9% {\XINT_dec_B {#1#2#3#4#5#6#7#8#9}}% \def\XINT_inc_end\W #1\relax #2{ 1#2}% \XINT_restorecatcodes_endinput% % \end{macrocode} %\catcode`\<=0 \catcode`\>=11 \catcode`\*=11 \catcode`\/=11 %\let\relax %\def<*xint>{\catcode`\<=12 \catcode`\>=12 \catcode`\*=12 \catcode`\/=12 } % %<*xint> % \StoreCodelineNo {xintcore} % % \section{Package \xintnameimp implementation} % \label{sec:xintimp} % % \localtableofcontents % % The basic arithmetic routines |\xintiiAdd|, |\xintiiSub|, % |\xintiiMul|, |\xintiiQuo| and |\xintiiPow| have been moved to new % package \xintcorenameimp. % \begin{macrocode} \begingroup\catcode61\catcode48\catcode32=10\relax% \catcode13=5 % ^^M \endlinechar=13 % \catcode123=1 % { \catcode125=2 % } \catcode64=11 % @ \catcode35=6 % # \catcode44=12 % , \catcode45=12 % - \catcode46=12 % . \catcode58=12 % : \let\z\endgroup \expandafter\let\expandafter\x\csname ver@xint.sty\endcsname \expandafter\let\expandafter\w\csname ver@xintcore.sty\endcsname \expandafter \ifx\csname PackageInfo\endcsname\relax \def\y#1#2{\immediate\write-1{Package #1 Info: #2.}}% \else \def\y#1#2{\PackageInfo{#1}{#2}}% \fi \expandafter \ifx\csname numexpr\endcsname\relax \y{xint}{\numexpr not available, aborting input}% \aftergroup\endinput \else \ifx\x\relax % plain-TeX, first loading of xintcore.sty \ifx\w\relax % but xintkernel.sty not yet loaded. \def\z{\endgroup\input xintcore.sty\relax}% \fi \else \def\empty {}% \ifx\x\empty % LaTeX, first loading, % variable is initialized, but \ProvidesPackage not yet seen \ifx\w\relax % xintcore.sty not yet loaded. \def\z{\endgroup\RequirePackage{xintcore}}% \fi \else \aftergroup\endinput % xint already loaded. \fi \fi \fi \z% \XINTsetupcatcodes% defined in xintkernel.sty (loaded by xintcore.sty) % \end{macrocode} % \subsection{Package identification} % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xint}% [2014/11/07 v1.1a Expandable operations on big integers (jfB)]% % \end{macrocode} % \subsection{More token management} % \begin{macrocode} \long\def\xint_firstofthree #1#2#3{#1}% \long\def\xint_secondofthree #1#2#3{#2}% \long\def\xint_thirdofthree #1#2#3{#3}% \long\def\xint_firstofthree_thenstop #1#2#3{ #1}% 1.09i \long\def\xint_secondofthree_thenstop #1#2#3{ #2}% \long\def\xint_thirdofthree_thenstop #1#2#3{ #3}% % \end{macrocode} % \subsection{\csh{xintSgnFork}} % \lverb|Expandable three-way fork added in 1.07. The argument #1 must expand % to non-self-ending -1,0 or 1. 1.09i with _thenstop.| % \begin{macrocode} \def\xintSgnFork {\romannumeral0\xintsgnfork }% \def\xintsgnfork #1% {% \ifcase #1 \expandafter\xint_secondofthree_thenstop \or\expandafter\xint_thirdofthree_thenstop \else\expandafter\xint_firstofthree_thenstop \fi }% % \end{macrocode} % \subsection{\csh{xintIsOne}, \csh{xintiiIsOne}} % \lverb|Added in 1.03. 1.09a defines \xintIsOne. 1.1a adds \xintiiIsOne.| % \begin{macrocode} \def\xintiiIsOne {\romannumeral0\xintiiisone }% \def\xintiiisone #1{\expandafter\XINT_isone\romannumeral-`0#1\W\Z }% \def\xintIsOne {\romannumeral0\xintisone }% \def\xintisone #1{\expandafter\XINT_isone\romannumeral0\xintnum{#1}\W\Z }% \def\XINT_isOne #1{\romannumeral0\XINT_isone #1\W\Z }% \def\XINT_isone #1#2% {% \xint_gob_til_one #1\XINT_isone_b 1% \expandafter\space\expandafter 0\xint_gob_til_Z #2% }% \def\XINT_isone_b #1\xint_gob_til_Z #2% {% \xint_gob_til_W #2\XINT_isone_yes \W \expandafter\space\expandafter 0\xint_gob_til_Z }% \def\XINT_isone_yes #1\Z { 1}% % \end{macrocode} % \subsection{\csh{XINT_SQ}} % \begin{macrocode} \def\XINT_SQ #1#2#3#4#5#6#7#8% {% \xint_gob_til_R #8\XINT_SQ_end_a\R\XINT_SQ {#8#7#6#5#4#3#2#1}% }% \def\XINT_SQ_end_a\R\XINT_SQ #1#2\Z {% \XINT_SQ_end_b #1\Z }% \def\XINT_SQ_end_b #1#2#3#4#5#6#7% {% \xint_gob_til_R #7\XINT_SQ_end_vii #6\XINT_SQ_end_vi #5\XINT_SQ_end_v #4\XINT_SQ_end_iv #3\XINT_SQ_end_iii #2\XINT_SQ_end_ii \R\XINT_SQ_end_i \Z #2#3#4#5#6#7% }% \def\XINT_SQ_end_vii #1\Z #2#3#4#5#6#7#8\Z { #8}% \def\XINT_SQ_end_vi #1\Z #2#3#4#5#6#7#8\Z { #7#8000000}% \def\XINT_SQ_end_v #1\Z #2#3#4#5#6#7#8\Z { #6#7#800000}% \def\XINT_SQ_end_iv #1\Z #2#3#4#5#6#7#8\Z { #5#6#7#80000}% \def\XINT_SQ_end_iii #1\Z #2#3#4#5#6#7#8\Z { #4#5#6#7#8000}% \def\XINT_SQ_end_ii #1\Z #2#3#4#5#6#7#8\Z { #3#4#5#6#7#800}% \def\XINT_SQ_end_i \Z #1#2#3#4#5#6#7\Z { #1#2#3#4#5#6#70}% % \end{macrocode} % \subsection{\csh{xintRev}} % \lverb|& % \xintRev: expands fully its argument \romannumeral-`0, and checks the sign. % However this last aspect does not appear like a very useful thing. And despite % the fact that a special check is made for a sign, actually the input is not % given to \xintnum, contrarily to \xintLen. This is all a bit incoherent. % Should be fixed.| % \begin{macrocode} \def\xintRev {\romannumeral0\xintrev }% \def\xintrev #1% {% \expandafter\XINT_rev_fork \romannumeral-`0#1\xint_relax % empty #1 ok, \xint_relax stops expansion \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax }% \def\XINT_rev_fork #1% {% \xint_UDsignfork #1{\expandafter\xint_minus_thenstop\romannumeral0\XINT_rord_main {}}% -{\XINT_rord_main {}#1}% \krof }% % \end{macrocode} % \subsection{\csh{xintLen}} % \lverb|\xintLen is ONLY for (possibly long) integers. Gets extended to % fractions by xintfrac.sty| % \begin{macrocode} \def\xintLen {\romannumeral0\xintlen }% \def\xintlen #1% {% \expandafter\XINT_len_fork \romannumeral0\xintnum{#1}\xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye }% \def\XINT_Len #1% variant which does not expand via \xintnum. {% \romannumeral0\XINT_len_fork #1\xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\xint_bye }% \def\XINT_len_fork #1% {% \expandafter\XINT_length_loop \xint_UDsignfork #1{0.}% -{0.#1}% \krof }% % \end{macrocode} % \subsection{\csh{xintBool}, \csh{xintToggle}} % \lverb|1.09c| % \begin{macrocode} \def\xintBool #1{\romannumeral-`0% \csname if#1\endcsname\expandafter1\else\expandafter0\fi }% \def\xintToggle #1{\romannumeral-`0\iftoggle{#1}{1}{0}}% % \end{macrocode} % \subsection{\csh{xintifSgn}, \csh{xintiiifSgn}} % \lverb|Expandable three-way fork added in 1.09a. Branches expandably % depending on whether <0, =0, >0. Choice of branch guaranteed in two steps. % % 1.09i has \xint_firstofthreeafterstop (now _thenstop) etc for faster % expansion. % % 1.1 adds \xintiiifSgn for optimization in xintexpr-essions. Should I move % them to xintcore? (for bnumexpr)| % \begin{macrocode} \def\xintifSgn {\romannumeral0\xintifsgn }% \def\xintifsgn #1% {% \ifcase \xintSgn{#1} \expandafter\xint_secondofthree_thenstop \or\expandafter\xint_thirdofthree_thenstop \else\expandafter\xint_firstofthree_thenstop \fi }% \def\xintiiifSgn {\romannumeral0\xintiiifsgn }% \def\xintiiifsgn #1% {% \ifcase \xintiiSgn{#1} \expandafter\xint_secondofthree_thenstop \or\expandafter\xint_thirdofthree_thenstop \else\expandafter\xint_firstofthree_thenstop \fi }% % \end{macrocode} % \subsection{\csh{xintifZero}, \csh{xintifNotZero}, \csh{xintiiifZero}, \csh{xintiiifNotZero}} % \lverb|Expandable two-way fork added in 1.09a. Branches expandably depending on % whether the argument is zero (branch A) or not (branch B). 1.09i restyling. By % the way it appears (not thoroughly tested, though) that \if tests are faster % than \ifnum tests. 1.1 adds ii versions.| % \begin{macrocode} \def\xintifZero {\romannumeral0\xintifzero }% \def\xintifzero #1% {% \if0\xintSgn{#1}% \expandafter\xint_firstoftwo_thenstop \else \expandafter\xint_secondoftwo_thenstop \fi }% \def\xintifNotZero {\romannumeral0\xintifnotzero }% \def\xintifnotzero #1% {% \if0\xintSgn{#1}% \expandafter\xint_secondoftwo_thenstop \else \expandafter\xint_firstoftwo_thenstop \fi }% \def\xintiiifZero {\romannumeral0\xintiiifzero }% \def\xintiiifzero #1% {% \if0\xintiiSgn{#1}% \expandafter\xint_firstoftwo_thenstop \else \expandafter\xint_secondoftwo_thenstop \fi }% \def\xintiiifNotZero {\romannumeral0\xintiiifnotzero }% \def\xintiiifnotzero #1% {% \if0\xintiiSgn{#1}% \expandafter\xint_secondoftwo_thenstop \else \expandafter\xint_firstoftwo_thenstop \fi }% % \end{macrocode} % \subsection{\csh{xintifOne},\csh{xintiiifOne}} % \lverb|added in 1.09i. 1.1a adds \xintiiifOne.| % \begin{macrocode} \def\xintiiifOne {\romannumeral0\xintiiifone }% \def\xintiiifone #1% {% \if1\xintiiIsOne{#1}% \expandafter\xint_firstoftwo_thenstop \else \expandafter\xint_secondoftwo_thenstop \fi }% \def\xintifOne {\romannumeral0\xintifone }% \def\xintifone #1% {% \if1\xintIsOne{#1}% \expandafter\xint_firstoftwo_thenstop \else \expandafter\xint_secondoftwo_thenstop \fi }% % \end{macrocode} % \subsection{\csh{xintifTrueAelseB}, \csh{xintifFalseAelseB}} % \lverb|1.09i. Warning, \xintifTrueFalse, \xintifTrue deprecated, to be % removed| % \begin{macrocode} \let\xintifTrueAelseB\xintifNotZero \let\xintifFalseAelseB\xintifZero \let\xintifTrue\xintifNotZero \let\xintifTrueFalse\xintifNotZero % \end{macrocode} % \subsection{\csh{xintifCmp}, \csh{xintiiifCmp}} % \lverb|1.09e % \xintifCmp {n}{m}{if nm}. 1.1a adds ii variant| % \begin{macrocode} \def\xintifCmp {\romannumeral0\xintifcmp }% \def\xintifcmp #1#2% {% \ifcase\xintCmp {#1}{#2} \expandafter\xint_secondofthree_thenstop \or\expandafter\xint_thirdofthree_thenstop \else\expandafter\xint_firstofthree_thenstop \fi }% \def\xintiiifCmp {\romannumeral0\xintiiifcmp }% \def\xintiiifcmp #1#2% {% \ifcase\xintiiCmp {#1}{#2} \expandafter\xint_secondofthree_thenstop \or\expandafter\xint_thirdofthree_thenstop \else\expandafter\xint_firstofthree_thenstop \fi }% % \end{macrocode} % \subsection{\csh{xintifEq}, \csh{xintiiifEq}} % \lverb|1.09a \xintifEq {n}{m}{YES if n=m}{NO if n<>m}. 1.1a adds ii variant| % \begin{macrocode} \def\xintifEq {\romannumeral0\xintifeq }% \def\xintifeq #1#2% {% \if0\xintCmp{#1}{#2}% \expandafter\xint_firstoftwo_thenstop \else\expandafter\xint_secondoftwo_thenstop \fi }% \def\xintiiifEq {\romannumeral0\xintiiifeq }% \def\xintiiifeq #1#2% {% \if0\xintiiCmp{#1}{#2}% \expandafter\xint_firstoftwo_thenstop \else\expandafter\xint_secondoftwo_thenstop \fi }% % \end{macrocode} % \subsection{\csh{xintifGt}, \csh{xintiiifGt}} % \lverb|1.09a \xintifGt {n}{m}{YES if n>m}{NO if n<=m}. 1.1a adds ii variant| % \begin{macrocode} \def\xintifGt {\romannumeral0\xintifgt }% \def\xintifgt #1#2% {% \if1\xintCmp{#1}{#2}% \expandafter\xint_firstoftwo_thenstop \else\expandafter\xint_secondoftwo_thenstop \fi }% \def\xintiiifGt {\romannumeral0\xintiiifgt }% \def\xintiiifgt #1#2% {% \if1\xintiiCmp{#1}{#2}% \expandafter\xint_firstoftwo_thenstop \else\expandafter\xint_secondoftwo_thenstop \fi }% % \end{macrocode} % \subsection{\csh{xintifLt}, \csh{xintiiifLt}} % \lverb|1.09a \xintifLt {n}{m}{YES if n=m}. Restyled in 1.09i. % 1.1a adds ii variant| % \begin{macrocode} \def\xintifLt {\romannumeral0\xintiflt }% \def\xintiflt #1#2% {% \ifnum\xintCmp{#1}{#2}<\xint_c_ \expandafter\xint_firstoftwo_thenstop \else \expandafter\xint_secondoftwo_thenstop \fi }% \def\xintiiifLt {\romannumeral0\xintiiiflt }% \def\xintiiiflt #1#2% {% \ifnum\xintiiCmp{#1}{#2}<\xint_c_ \expandafter\xint_firstoftwo_thenstop \else \expandafter\xint_secondoftwo_thenstop \fi }% % \end{macrocode} % \subsection{\csh{xintifOdd}, \csh{xintiiifOdd}} % \lverb|1.09e. Restyled in 1.09i. 1.1a adds \xintiiifOdd.| % \begin{macrocode} \def\xintiiifOdd {\romannumeral0\xintiiifodd }% \def\xintiiifodd #1% {% \if\xintiiOdd{#1}1% \expandafter\xint_firstoftwo_thenstop \else \expandafter\xint_secondoftwo_thenstop \fi }% \def\xintifOdd {\romannumeral0\xintifodd }% \def\xintifodd #1% {% \if\xintOdd{#1}1% \expandafter\xint_firstoftwo_thenstop \else \expandafter\xint_secondoftwo_thenstop \fi }% % \end{macrocode} % \subsection{\csh{xintCmp}, \csh{xintiiCmp}} % \lverb|Release 1.09a has \xintnum inserted into \xintCmp. Unnecessary % \xintiCmp suppressed in 1.09f. And 1.1a does \xintiiCmp, for % optimization in \xintiiexpr. (not needed before, because \XINT_cmp_fork was % directly used, or \XINT_Cmp)| % \begin{macrocode} \def\xintCmp {\romannumeral0\xintcmp }% \def\xintcmp #1% {% \expandafter\xint_cmp\expandafter{\romannumeral0\xintnum{#1}}% }% \def\xint_cmp #1#2% {% \expandafter\XINT_cmp_fork \romannumeral0\xintnum{#2}\Z #1\Z }% \def\xintiiCmp {\romannumeral0\xintiicmp }% \def\xintiicmp #1% {% \expandafter\xint_iicmp\expandafter{\romannumeral-`0#1}% }% \def\xint_iicmp #1#2% {% \expandafter\XINT_cmp_fork \romannumeral-`0#2\Z #1\Z }% \def\XINT_Cmp #1#2{\romannumeral0\XINT_cmp_fork #2\Z #1\Z }% % \end{macrocode} % \lverb|& % COMPARAISON $\ % 1 si #3#4>#1#2, 0 si #3#4=#1#2, -1 si #3#4<#1#2$\ % #3#4 vient du *premier*,$ % #1#2 vient du *second*| % \begin{macrocode} \def\XINT_cmp_fork #1#2\Z #3#4\Z {% \xint_UDsignsfork #1#3\XINT_cmp_minusminus #1-\XINT_cmp_minusplus #3-\XINT_cmp_plusminus --{\xint_UDzerosfork #1#3\XINT_cmp_zerozero #10\XINT_cmp_zeroplus #30\XINT_cmp_pluszero 00\XINT_cmp_plusplus \krof }% \krof {#2}{#4}#1#3% }% \def\XINT_cmp_minusplus #1#2#3#4{ 1}% \def\XINT_cmp_plusminus #1#2#3#4{ -1}% \def\XINT_cmp_zerozero #1#2#3#4{ 0}% \def\XINT_cmp_zeroplus #1#2#3#4{ 1}% \def\XINT_cmp_pluszero #1#2#3#4{ -1}% \def\XINT_cmp_plusplus #1#2#3#4% {% \XINT_cmp_pre {#4#2}{#3#1}% }% \def\XINT_cmp_minusminus #1#2#3#4% {% \XINT_cmp_pre {#1}{#2}% }% \def\XINT_cmp_pre #1% {% \expandafter\XINT_cmp_pre_b\expandafter {\romannumeral0\XINT_RQ {}#1\R\R\R\R\R\R\R\R\Z }% }% \def\XINT_cmp_pre_b #1#2% {% \expandafter\XINT_cmp_A \expandafter1\expandafter{\expandafter}% \romannumeral0\XINT_RQ {}#2\R\R\R\R\R\R\R\R\Z \W\X\Y\Z #1\W\X\Y\Z }% % \end{macrocode} % \lverb|& % COMPARAISON$\ % N1 et N2 sont présentés à l'envers ET ON A RAJOUTÉ DES ZÉROS % POUR QUE LEUR LONGUEURS À CHACUN SOIENT MULTIPLES DE 4, MAIS % AUCUN NE SE TERMINE EN 0000. % routine appelée via$\ % \XINT_cmp_A 1{}\W\X\Y\Z\W\X\Y\Z$\ % ATTENTION RENVOIE 1 SI N1 < N2, 0 si N1 = N2, -1 si N1 > N2| % \begin{macrocode} \def\XINT_cmp_A #1#2#3\W\X\Y\Z #4#5#6#7% {% \xint_gob_til_W #4\xint_cmp_az\W \XINT_cmp_B #1{#4#5#6#7}{#2}#3\W\X\Y\Z }% \def\XINT_cmp_B #1#2#3#4#5#6#7% {% \xint_gob_til_W#4\xint_cmp_bz\W \XINT_cmp_onestep #1#2{#7#6#5#4}{#3}% }% \def\XINT_cmp_onestep #1#2#3#4#5#6% {% \expandafter\XINT_cmp_backtoA\the\numexpr 11#5#4#3#2-#6+#1-\xint_c_i.% }% \def\XINT_cmp_backtoA #1#2#3.#4% {% \XINT_cmp_A #2{#3#4}% }% \def\xint_cmp_bz\W\XINT_cmp_onestep #1\Z { 1}% \def\xint_cmp_az\W\XINT_cmp_B #1#2#3#4#5#6#7% {% \xint_gob_til_W #4\xint_cmp_ez\W \XINT_cmp_Eenter #1{#3}#4#5#6#7% }% \def\XINT_cmp_Eenter #1\Z { -1}% \def\xint_cmp_ez\W\XINT_cmp_Eenter #1% {% \xint_UDzerofork #1\XINT_cmp_K % il y a une retenue 0\XINT_cmp_L % pas de retenue \krof }% \def\XINT_cmp_K #1\Z { -1}% \def\XINT_cmp_L #1{\XINT_OneIfPositive_main #1}% \def\XINT_OneIfPositive #1% {% \XINT_OneIfPositive_main #1\W\X\Y\Z% }% \def\XINT_OneIfPositive_main #1#2#3#4% {% \xint_gob_til_Z #4\xint_OneIfPositive_terminated\Z \XINT_OneIfPositive_onestep #1#2#3#4% }% \def\xint_OneIfPositive_terminated\Z\XINT_OneIfPositive_onestep\W\X\Y\Z { 0}% \def\XINT_OneIfPositive_onestep #1#2#3#4% {% \expandafter\XINT_OneIfPositive_check\the\numexpr #1#2#3#4\relax }% \def\XINT_OneIfPositive_check #1% {% \xint_gob_til_zero #1\xint_OneIfPositive_backtomain 0% \XINT_OneIfPositive_finish #1% }% \def\XINT_OneIfPositive_finish #1\W\X\Y\Z{ 1}% \def\xint_OneIfPositive_backtomain 0\XINT_OneIfPositive_finish 0% {\XINT_OneIfPositive_main }% % \end{macrocode} % \subsection{\csh{xintEq}, \csh{xintGt}, \csh{xintLt}} % \lverb|1.09a.| % \begin{macrocode} \def\xintEq {\romannumeral0\xinteq }\def\xinteq #1#2{\xintifeq{#1}{#2}{1}{0}}% \def\xintGt {\romannumeral0\xintgt }\def\xintgt #1#2{\xintifgt{#1}{#2}{1}{0}}% \def\xintLt {\romannumeral0\xintlt }\def\xintlt #1#2{\xintiflt{#1}{#2}{1}{0}}% % \end{macrocode} % \subsection{\csh{xintNeq}, \csh{xintGtorEq}, \csh{xintLtorEq}} % \lverb|1.1. Pour xintexpr. No lowercase macros| % \begin{macrocode} \def\xintLtorEq #1#2{\romannumeral0\xintifgt {#1}{#2}{0}{1}}% \def\xintGtorEq #1#2{\romannumeral0\xintiflt {#1}{#2}{0}{1}}% \def\xintNeq #1#2{\romannumeral0\xintifeq {#1}{#2}{0}{1}}% % \end{macrocode} % \subsection{\csh{xintiiEq}, \csh{xintiiGt}, \csh{xintiiLt}} % \lverb|1.1a Pour \xintiiexpr. No lowercase macros.| % \begin{macrocode} \def\xintiiEq #1#2{\romannumeral0\xintiiifeq{#1}{#2}{1}{0}}% \def\xintiiGt #1#2{\romannumeral0\xintiiifgt{#1}{#2}{1}{0}}% \def\xintiiLt #1#2{\romannumeral0\xintiiiflt{#1}{#2}{1}{0}}% % \end{macrocode} % \subsection{\csh{xintiiNeq}, \csh{xintiiGtorEq}, \csh{xintiiLtorEq}} % \lverb|1.1a. Pour \xintiiexpr. No lowercase macros.| % \begin{macrocode} \def\xintiiLtorEq #1#2{\romannumeral0\xintiiifgt {#1}{#2}{0}{1}}% \def\xintiiGtorEq #1#2{\romannumeral0\xintiiiflt {#1}{#2}{0}{1}}% \def\xintiiNeq #1#2{\romannumeral0\xintiiifeq {#1}{#2}{0}{1}}% % \end{macrocode} % \subsection{\csh{xintIsZero}, \csh{xintIsNotZero}, \csh{xintiiIsZero}, % \csh{xintiiIsNotZero}} % \lverb|1.09a. restyled in 1.09i. 1.1 adds \xintiiIsZero, etc... for % optimization in \xintexpr| % \begin{macrocode} \def\xintIsZero {\romannumeral0\xintiszero }% \def\xintiszero #1{\if0\xintSgn{#1}\xint_afterfi{ 1}\else\xint_afterfi{ 0}\fi}% \def\xintIsNotZero {\romannumeral0\xintisnotzero }% \def\xintisnotzero #1{\if0\xintSgn{#1}\xint_afterfi{ 0}\else\xint_afterfi{ 1}\fi}% \def\xintiiIsZero {\romannumeral0\xintiiiszero }% \def\xintiiiszero #1{\if0\xintiiSgn{#1}\xint_afterfi{ 1}\else\xint_afterfi{ 0}\fi}% \def\xintiiIsNotZero {\romannumeral0\xintiiisnotzero }% \def\xintiiisnotzero #1{\if0\xintiiSgn{#1}\xint_afterfi{ 0}\else\xint_afterfi{ 1}\fi}% % \end{macrocode} % \subsection{\csh{xintIsTrue}, \csh{xintNot}, \csh{xintIsFalse}} % \lverb|1.09c| % \begin{macrocode} \let\xintIsTrue\xintIsNotZero \let\xintNot\xintIsZero \let\xintIsFalse\xintIsZero % \end{macrocode} % \subsection{\csh{xintAND}, \csh{xintOR}, \csh{xintXOR}} % \lverb|1.09a. Embarrasing bugs in \xintAND and \xintOR which inserted a space % token corrected in 1.09i. \xintxor restyled with \if (faster) in 1.09i| % \begin{macrocode} \def\xintAND {\romannumeral0\xintand }% \def\xintand #1#2{\if0\xintSgn{#1}\expandafter\xint_firstoftwo \else\expandafter\xint_secondoftwo\fi { 0}{\xintisnotzero{#2}}}% \def\xintOR {\romannumeral0\xintor }% \def\xintor #1#2{\if0\xintSgn{#1}\expandafter\xint_firstoftwo \else\expandafter\xint_secondoftwo\fi {\xintisnotzero{#2}}{ 1}}% \def\xintXOR {\romannumeral0\xintxor }% \def\xintxor #1#2{\if\xintIsZero{#1}\xintIsZero{#2}% \xint_afterfi{ 0}\else\xint_afterfi{ 1}\fi }% % \end{macrocode} % \subsection{\csh{xintANDof}} % \lverb|New with 1.09a. \xintANDof works also with an empty list.| % \begin{macrocode} \def\xintANDof {\romannumeral0\xintandof }% \def\xintandof #1{\expandafter\XINT_andof_a\romannumeral-`0#1\relax }% \def\XINT_andof_a #1{\expandafter\XINT_andof_b\romannumeral-`0#1\Z }% \def\XINT_andof_b #1% {\xint_gob_til_relax #1\XINT_andof_e\relax\XINT_andof_c #1}% \def\XINT_andof_c #1\Z {\xintifTrueAelseB {#1}{\XINT_andof_a}{\XINT_andof_no}}% \def\XINT_andof_no #1\relax { 0}% \def\XINT_andof_e #1\Z { 1}% % \end{macrocode} % \subsection{\csh{xintORof}} % \lverb|New with 1.09a. Works also with an empty list.| % \begin{macrocode} \def\xintORof {\romannumeral0\xintorof }% \def\xintorof #1{\expandafter\XINT_orof_a\romannumeral-`0#1\relax }% \def\XINT_orof_a #1{\expandafter\XINT_orof_b\romannumeral-`0#1\Z }% \def\XINT_orof_b #1% {\xint_gob_til_relax #1\XINT_orof_e\relax\XINT_orof_c #1}% \def\XINT_orof_c #1\Z {\xintifTrueAelseB {#1}{\XINT_orof_yes}{\XINT_orof_a}}% \def\XINT_orof_yes #1\relax { 1}% \def\XINT_orof_e #1\Z { 0}% % \end{macrocode} % \subsection{\csh{xintXORof}} % \lverb|New with 1.09a. Works with an empty list, too. \XINT_xorof_c more % efficient in 1.09i| % \begin{macrocode} \def\xintXORof {\romannumeral0\xintxorof }% \def\xintxorof #1{\expandafter\XINT_xorof_a\expandafter 0\romannumeral-`0#1\relax }% \def\XINT_xorof_a #1#2{\expandafter\XINT_xorof_b\romannumeral-`0#2\Z #1}% \def\XINT_xorof_b #1% {\xint_gob_til_relax #1\XINT_xorof_e\relax\XINT_xorof_c #1}% \def\XINT_xorof_c #1\Z #2% {\xintifTrueAelseB {#1}{\if #20\xint_afterfi{\XINT_xorof_a 1}% \else\xint_afterfi{\XINT_xorof_a 0}\fi}% {\XINT_xorof_a #2}% }% \def\XINT_xorof_e #1\Z #2{ #2}% % \end{macrocode} % \subsection{\csh{xintGeq}} % \lverb|& % Release 1.09a has \xintnum added into \xintGeq. % PLUS GRAND OU ÉGAL % attention compare les **valeurs absolues**| % \begin{macrocode} \def\xintGeq {\romannumeral0\xintgeq }% \def\xintgeq #1% {% \expandafter\xint_geq\expandafter {\romannumeral0\xintnum{#1}}% }% \def\xint_geq #1#2% {% \expandafter\XINT_geq_fork \romannumeral0\xintnum{#2}\Z #1\Z }% \def\XINT_Geq #1#2{\romannumeral0\XINT_geq_fork #2\Z #1\Z }% % \end{macrocode} % \lverb|& % PLUS GRAND OU ÉGAL % ATTENTION, TESTE les VALEURS ABSOLUES| % \begin{macrocode} \def\XINT_geq_fork #1#2\Z #3#4\Z {% \xint_UDzerofork #1\XINT_geq_secondiszero % |#1#2|=0 #3\XINT_geq_firstiszero % |#1#2|>0 0{\xint_UDsignsfork #1#3\XINT_geq_minusminus #1-\XINT_geq_minusplus #3-\XINT_geq_plusminus --\XINT_geq_plusplus \krof }% \krof {#2}{#4}#1#3% }% \def\XINT_geq_secondiszero #1#2#3#4{ 1}% \def\XINT_geq_firstiszero #1#2#3#4{ 0}% \def\XINT_geq_plusplus #1#2#3#4{\XINT_geq_pre {#4#2}{#3#1}}% \def\XINT_geq_minusminus #1#2#3#4{\XINT_geq_pre {#2}{#1}}% \def\XINT_geq_minusplus #1#2#3#4{\XINT_geq_pre {#4#2}{#1}}% \def\XINT_geq_plusminus #1#2#3#4{\XINT_geq_pre {#2}{#3#1}}% \def\XINT_geq_pre #1% {% \expandafter\XINT_geq_pre_b\expandafter {\romannumeral0\XINT_RQ {}#1\R\R\R\R\R\R\R\R\Z }% }% \def\XINT_geq_pre_b #1#2% {% \expandafter\XINT_geq_A \expandafter1\expandafter{\expandafter}% \romannumeral0\XINT_RQ {}#2\R\R\R\R\R\R\R\R\Z \W\X\Y\Z #1 \W\X\Y\Z }% % \end{macrocode} % \lverb|& % PLUS GRAND OU ÉGAL$\ % N1 et N2 sont présentés à l'envers ET ON A RAJOUTÉ DES ZÉROS % POUR QUE LEURS LONGUEURS À CHACUN SOIENT MULTIPLES DE 4, MAIS % AUCUN NE SE TERMINE EN 0000$\ % routine appelée via$\ % \romannumeral0\XINT_geq_A 1{}\W\X\Y\Z\W\X\Y\Z$\ % ATTENTION RENVOIE 1 SI N1 < N2 ou N1 = N2 et 0 si N1 > N2| % \begin{macrocode} \def\XINT_geq_A #1#2#3\W\X\Y\Z #4#5#6#7% {% \xint_gob_til_W #4\xint_geq_az\W \XINT_geq_B #1{#4#5#6#7}{#2}#3\W\X\Y\Z }% \def\XINT_geq_B #1#2#3#4#5#6#7% {% \xint_gob_til_W #4\xint_geq_bz\W \XINT_geq_onestep #1#2{#7#6#5#4}{#3}% }% \def\XINT_geq_onestep #1#2#3#4#5#6% {% \expandafter\XINT_geq_backtoA\the\numexpr 11#5#4#3#2-#6+#1-\xint_c_i.% }% \def\XINT_geq_backtoA #1#2#3.#4% {% \XINT_geq_A #2{#3#4}% }% \def\xint_geq_bz\W\XINT_geq_onestep #1\W\X\Y\Z { 1}% \def\xint_geq_az\W\XINT_geq_B #1#2#3#4#5#6#7% {% \xint_gob_til_W #4\xint_geq_ez\W \XINT_geq_Eenter #1% }% \def\XINT_geq_Eenter #1\W\X\Y\Z { 0}% \def\xint_geq_ez\W\XINT_geq_Eenter #1% {% \xint_UDzerofork #1{ 0} % il y a une retenue 0{ 1} % pas de retenue \krof }% % \end{macrocode} % \subsection{\csh{xintiMax}, \csh{xintiiMax}} % \lverb|& % The rationale is that it is more efficient than using \xintCmp. % 1.03 makes the code a tiny bit slower but easier to re-use for fractions. % Note: actually since 1.08a code for fractions does not all reduce to these % entry points, so perhaps I should revert the changes made in 1.03. Release % 1.09a has \xintnum added into \xintiMax. % % 1.1 adds the missing \xintiiMax. Using \xintMax and not \xintiMax in xint is % deprecated.| % \begin{macrocode} \def\xintiMax {\romannumeral0\xintimax }% \def\xintimax #1% {% \expandafter\xint_max\expandafter {\romannumeral0\xintnum{#1}}% }% \def\xint_max #1#2% {% \expandafter\XINT_max_pre\expandafter {\romannumeral0\xintnum{#2}}{#1}% }% \def\xintiiMax {\romannumeral0\xintiimax }% \def\xintiimax #1% {% \expandafter\xint_iimax\expandafter {\romannumeral-`0#1}% }% \def\xint_iimax #1#2% {% \expandafter\XINT_max_pre\expandafter {\romannumeral-`0#2}{#1}% }% \let\xintMax\xintiMax \let\xintmax\xintimax % deprecated, should be only with xintfrac \def\XINT_max_pre #1#2{\XINT_max_fork #1\Z #2\Z {#2}{#1}}% \def\XINT_Max #1#2{\romannumeral0\XINT_max_fork #2\Z #1\Z {#1}{#2}}% % \end{macrocode} % \lverb|& % #3#4 vient du *premier*, % #1#2 vient du *second*| % \begin{macrocode} \def\XINT_max_fork #1#2\Z #3#4\Z {% \xint_UDsignsfork #1#3\XINT_max_minusminus % A < 0, B < 0 #1-\XINT_max_minusplus % B < 0, A >= 0 #3-\XINT_max_plusminus % A < 0, B >= 0 --{\xint_UDzerosfork #1#3\XINT_max_zerozero % A = B = 0 #10\XINT_max_zeroplus % B = 0, A > 0 #30\XINT_max_pluszero % A = 0, B > 0 00\XINT_max_plusplus % A, B > 0 \krof }% \krof {#2}{#4}#1#3% }% % \end{macrocode} % \lverb|& % A = #4#2, B = #3#1| % \begin{macrocode} \def\XINT_max_zerozero #1#2#3#4{\xint_firstoftwo_thenstop }% \def\XINT_max_zeroplus #1#2#3#4{\xint_firstoftwo_thenstop }% \def\XINT_max_pluszero #1#2#3#4{\xint_secondoftwo_thenstop }% \def\XINT_max_minusplus #1#2#3#4{\xint_firstoftwo_thenstop }% \def\XINT_max_plusminus #1#2#3#4{\xint_secondoftwo_thenstop }% \def\XINT_max_plusplus #1#2#3#4% {% \ifodd\XINT_Geq {#4#2}{#3#1} \expandafter\xint_firstoftwo_thenstop \else \expandafter\xint_secondoftwo_thenstop \fi }% % \end{macrocode} % \lverb+#3=-, #4=-, #1 = |B| = -B, #2 = |A| = -A+ % \begin{macrocode} \def\XINT_max_minusminus #1#2#3#4% {% \ifodd\XINT_Geq {#1}{#2} \expandafter\xint_firstoftwo_thenstop \else \expandafter\xint_secondoftwo_thenstop \fi }% % \end{macrocode} % \subsection{\csh{xintMaxof}} % \lverb|New with 1.09a.| % \begin{macrocode} \def\xintiMaxof {\romannumeral0\xintimaxof }% \def\xintimaxof #1{\expandafter\XINT_imaxof_a\romannumeral-`0#1\relax }% \def\XINT_imaxof_a #1{\expandafter\XINT_imaxof_b\romannumeral0\xintnum{#1}\Z }% \def\XINT_imaxof_b #1\Z #2% {\expandafter\XINT_imaxof_c\romannumeral-`0#2\Z {#1}\Z}% \def\XINT_imaxof_c #1% {\xint_gob_til_relax #1\XINT_imaxof_e\relax\XINT_imaxof_d #1}% \def\XINT_imaxof_d #1\Z {\expandafter\XINT_imaxof_b\romannumeral0\xintimax {#1}}% \def\XINT_imaxof_e #1\Z #2\Z { #2}% \let\xintMaxof\xintiMaxof \let\xintmaxof\xintimaxof % \end{macrocode} % \subsection{\csh{xintiMin}, \csh{xintiiMin}} % \lverb|\xintnum added New with 1.09a. I add \xintiiMin in 1.1 and mark as % deprecated \xintMin, renamed \xintiMin.| % \begin{macrocode} \def\xintiMin {\romannumeral0\xintimin }% \def\xintimin #1% {% \expandafter\xint_min\expandafter {\romannumeral0\xintnum{#1}}% }% \def\xint_min #1#2% {% \expandafter\XINT_min_pre\expandafter {\romannumeral0\xintnum{#2}}{#1}% }% \def\xintiiMin {\romannumeral0\xintiimin }% \def\xintiimin #1% {% \expandafter\xint_iimin\expandafter {\romannumeral-`0#1}% }% \def\xint_iimin #1#2% {% \expandafter\XINT_min_pre\expandafter {\romannumeral-`0#2}{#1}% }% \let\xintMin\xintiMin \let\xintmin\xintimin % deprecated \def\XINT_min_pre #1#2{\XINT_min_fork #1\Z #2\Z {#2}{#1}}% \def\XINT_Min #1#2{\romannumeral0\XINT_min_fork #2\Z #1\Z {#1}{#2}}% % \end{macrocode} % \lverb|& % #3#4 vient du *premier*, % #1#2 vient du *second*| % \begin{macrocode} \def\XINT_min_fork #1#2\Z #3#4\Z {% \xint_UDsignsfork #1#3\XINT_min_minusminus % A < 0, B < 0 #1-\XINT_min_minusplus % B < 0, A >= 0 #3-\XINT_min_plusminus % A < 0, B >= 0 --{\xint_UDzerosfork #1#3\XINT_min_zerozero % A = B = 0 #10\XINT_min_zeroplus % B = 0, A > 0 #30\XINT_min_pluszero % A = 0, B > 0 00\XINT_min_plusplus % A, B > 0 \krof }% \krof {#2}{#4}#1#3% }% % \end{macrocode} % \lverb|& % A = #4#2, B = #3#1| % \begin{macrocode} \def\XINT_min_zerozero #1#2#3#4{\xint_firstoftwo_thenstop }% \def\XINT_min_zeroplus #1#2#3#4{\xint_secondoftwo_thenstop }% \def\XINT_min_pluszero #1#2#3#4{\xint_firstoftwo_thenstop }% \def\XINT_min_minusplus #1#2#3#4{\xint_secondoftwo_thenstop }% \def\XINT_min_plusminus #1#2#3#4{\xint_firstoftwo_thenstop }% \def\XINT_min_plusplus #1#2#3#4% {% \ifodd\XINT_Geq {#4#2}{#3#1} \expandafter\xint_secondoftwo_thenstop \else \expandafter\xint_firstoftwo_thenstop \fi }% % \end{macrocode} % \lverb+#3=-, #4=-, #1 = |B| = -B, #2 = |A| = -A+ % \begin{macrocode} \def\XINT_min_minusminus #1#2#3#4% {% \ifodd\XINT_Geq {#1}{#2} \expandafter\xint_secondoftwo_thenstop \else \expandafter\xint_firstoftwo_thenstop \fi }% % \end{macrocode} % \subsection{\csh{xintiMinof}} % \lverb|1.09a| % \begin{macrocode} \def\xintiMinof {\romannumeral0\xintiminof }% \def\xintiminof #1{\expandafter\XINT_iminof_a\romannumeral-`0#1\relax }% \def\XINT_iminof_a #1{\expandafter\XINT_iminof_b\romannumeral0\xintnum{#1}\Z }% \def\XINT_iminof_b #1\Z #2% {\expandafter\XINT_iminof_c\romannumeral-`0#2\Z {#1}\Z}% \def\XINT_iminof_c #1% {\xint_gob_til_relax #1\XINT_iminof_e\relax\XINT_iminof_d #1}% \def\XINT_iminof_d #1\Z {\expandafter\XINT_iminof_b\romannumeral0\xintimin {#1}}% \def\XINT_iminof_e #1\Z #2\Z { #2}% \let\xintMinof\xintiMinof \let\xintminof\xintiminof % \end{macrocode} % \subsection{\csh{xintiiSum}} % \lverb|& % \xintSum {{a}{b}...{z}}$\ % \xintSumExpr {a}{b}...{z}\relax$\ % 1.03 (drastically) simplifies and makes the routines more efficient (for big % computations). Also the way \xintSum and \xintSumExpr ...\relax are related. % has been modified. Now \xintSumExpr \z \relax is accepted input when % \z expands to a list of braced terms (prior only \xintSum {\z} or \xintSum \z % was possible). % % 1.09a does NOT add the \xintnum overhead. 1.09h renames \xintiSum to % \xintiiSum to correctly reflect this.| % \begin{macrocode} \def\xintiiSum {\romannumeral0\xintiisum }% \def\xintiisum #1{\xintiisumexpr #1\relax }% \def\xintiiSumExpr {\romannumeral0\xintiisumexpr }% \def\xintiisumexpr {\expandafter\XINT_sumexpr\romannumeral-`0}% \let\xintSum\xintiiSum \let\xintsum\xintiisum \let\xintSumExpr\xintiiSumExpr \let\xintsumexpr\xintiisumexpr \def\XINT_sumexpr {\XINT_sum_loop {0000}{0000}}% \def\XINT_sum_loop #1#2#3% {% \expandafter\XINT_sum_checksign\romannumeral-`0#3\Z {#1}{#2}% }% \def\XINT_sum_checksign #1% {% \xint_gob_til_relax #1\XINT_sum_finished\relax \xint_gob_til_zero #1\XINT_sum_skipzeroinput0% \xint_UDsignfork #1\XINT_sum_N -{\XINT_sum_P #1}% \krof }% \def\XINT_sum_finished #1\Z #2#3% {% \XINT_sub_A 1{}#3\W\X\Y\Z #2\W\X\Y\Z }% \def\XINT_sum_skipzeroinput #1\krof #2\Z {\XINT_sum_loop }% \def\XINT_sum_P #1\Z #2% {% \expandafter\XINT_sum_loop\expandafter {\romannumeral0\expandafter \XINT_addr_A\expandafter0\expandafter{\expandafter}% \romannumeral0\XINT_RQ {}#1\R\R\R\R\R\R\R\R\Z \W\X\Y\Z #2\W\X\Y\Z }% }% \def\XINT_sum_N #1\Z #2#3% {% \expandafter\XINT_sum_NN\expandafter {\romannumeral0\expandafter \XINT_addr_A\expandafter0\expandafter{\expandafter}% \romannumeral0\XINT_RQ {}#1\R\R\R\R\R\R\R\R\Z \W\X\Y\Z #3\W\X\Y\Z }{#2}% }% \def\XINT_sum_NN #1#2{\XINT_sum_loop {#2}{#1}}% % \end{macrocode} % \subsection{\csh{xintiiPrd}} % \lverb|& % \xintPrd {{a}...{z}}$\ % \xintPrdExpr {a}...{z}\relax$\ % Release 1.02 modified the product routine. The earlier version was faster in % situations where each new term is bigger than the product of all previous % terms, a situation which arises in the algorithm for computing powers. The % 1.02 version was changed to be more efficient on big products, where the new % term is small compared to what has been computed so far (the power algorithm % now has its own product routine). % % Finally, the 1.03 version just simplifies everything as the multiplication now % decides what is best, with the price of a little overhead. So the code has % been dramatically reduced here. % % In 1.03 I also modify the way \xintPrd and \xintPrdExpr ...\relax are % related. Now \xintPrdExpr \z \relax is accepted input when \z expands % to a list of braced terms (prior only \xintPrd {\z} or \xintPrd \z was % possible). % % In 1.06a I suddenly decide that \xintProductExpr was a silly name, and as the % package is new and certainly not used, I decide I may just switch to % \xintPrdExpr which I should have used from the beginning. % % 1.09a does NOT add the \xintnum overhead. 1.09h renames \xintiPrd to % \xintiiPrd to correctly reflect this.| % \begin{macrocode} \def\xintiiPrd {\romannumeral0\xintiiprd }% \def\xintiiprd #1{\xintiiprdexpr #1\relax }% \let\xintPrd\xintiiPrd \let\xintprd\xintiiprd \def\xintiiPrdExpr {\romannumeral0\xintiiprdexpr }% \def\xintiiprdexpr {\expandafter\XINT_prdexpr\romannumeral-`0}% \let\xintPrdExpr\xintiiPrdExpr \let\xintprdexpr\xintiiprdexpr \def\XINT_prdexpr {\XINT_prod_loop_a 1\Z }% \def\XINT_prod_loop_a #1\Z #2% {\expandafter\XINT_prod_loop_b \romannumeral-`0#2\Z #1\Z \Z}% \def\XINT_prod_loop_b #1% {\xint_gob_til_relax #1\XINT_prod_finished\relax\XINT_prod_loop_c #1}% \def\XINT_prod_loop_c {\expandafter\XINT_prod_loop_a\romannumeral0\XINT_mul_fork }% \def\XINT_prod_finished #1\Z #2\Z \Z { #2}% % \end{macrocode} % \subsection{\csh{xintFac}} % \lverb|& % Modified with 1.02 and again in 1.03 for greater efficiency. I am % tempted, % here and elsewhere, to use \ifcase\XINT_Geq {#1}{1000000000} rather than % \ifnum\xintLength {#1}>9 but for the time being I leave things as they stand. % With release 1.05, rather than using \xintLength I opt finally for direct use % of \numexpr (which will throw a suitable number too big message), and to raise % the \xintError:$\ FactorialOfTooBigNumber for argument larger than 1000000 % (rather than 1000000000). With 1.09a, \xintFac uses \xintnum. % % 1.09j for no special reason, I lower the maximal number from 999999 to 100000. % Any how this computation would need more memory than TL2013 standard allows to % TeX. And I don't even mention time... | % \begin{macrocode} \def\xintiFac {\romannumeral0\xintifac }% \def\xintifac #1% {% \expandafter\XINT_fac_fork\expandafter{\the\numexpr #1}% }% \let\xintFac\xintiFac \let\xintfac\xintifac \def\XINT_fac_fork #1% {% \ifcase\XINT_cntSgn #1\Z \xint_afterfi{\expandafter\space\expandafter 1\xint_gobble_i }% \or \expandafter\XINT_fac_checklength \else \xint_afterfi{\expandafter\xintError:FactorialOfNegativeNumber \expandafter\space\expandafter 1\xint_gobble_i }% \fi {#1}% }% \def\XINT_fac_checklength #1% {% \ifnum #1>100000 \xint_afterfi{\expandafter\xintError:FactorialOfTooBigNumber \expandafter\space\expandafter 1\xint_gobble_i }% \else \xint_afterfi{\ifnum #1>\xint_c_ixixixix \expandafter\XINT_fac_big_loop \else \expandafter\XINT_fac_loop \fi }% \fi {#1}% }% \def\XINT_fac_big_loop #1{\XINT_fac_big_loop_main {10000}{#1}{}}% \def\XINT_fac_big_loop_main #1#2#3% {% \ifnum #1<#2 \expandafter \XINT_fac_big_loop_main \expandafter {\the\numexpr #1+1\expandafter }% \else \expandafter\XINT_fac_big_docomputation \fi {#2}{#3{#1}}% }% \def\XINT_fac_big_docomputation #1#2% {% \expandafter \XINT_fac_bigcompute_loop \expandafter {\romannumeral0\XINT_fac_loop {9999}}#2\relax }% \def\XINT_fac_bigcompute_loop #1#2% {% \xint_gob_til_relax #2\XINT_fac_bigcompute_end\relax \expandafter\XINT_fac_bigcompute_loop\expandafter {\expandafter\XINT_mul_enter \romannumeral0\XINT_RQ {}#2\R\R\R\R\R\R\R\R\Z \Z\Z\Z\Z #1\W\W\W\W }% }% \def\XINT_fac_bigcompute_end #1#2#3#4#5% {% \XINT_fac_bigcompute_end_ #5% }% \def\XINT_fac_bigcompute_end_ #1\R #2\Z \W\X\Y\Z #3\W\X\Y\Z { #3}% \def\XINT_fac_loop #1{\XINT_fac_loop_main 1{1000}{#1}}% \def\XINT_fac_loop_main #1#2#3% {% \ifnum #3>#1 \else \expandafter\XINT_fac_loop_exit \fi \expandafter\XINT_fac_loop_main\expandafter {\the\numexpr #1+1\expandafter }\expandafter {\romannumeral0\XINT_mul_Mr {#1}#2\Z\Z\Z\Z }% {#3}% }% \def\XINT_fac_loop_exit #1#2#3#4#5#6#7% {% \XINT_fac_loop_exit_ #6% }% \def\XINT_fac_loop_exit_ #1#2#3% {% \XINT_mul_M }% % \end{macrocode} % \lverb|& % & % -----------------------------------------------------------------$\ % -----------------------------------------------------------------$\ % DECIMAL OPERATIONS: FIRST DIGIT, LASTDIGIT, ODDNESS, % MULTIPLICATION BY TEN, QUOTIENT BY TEN, QUOTIENT OR % MULTIPLICATION BY POWER OF TEN, SPLIT OPERATION.| % \subsection{\csh{xintFDg}, \csh{xintiiFDg}} % \lverb|& % FIRST DIGIT. Code simplified in 1.05. % And prepared for redefinition by xintfrac to parse through \xintNum. Version % 1.09a inserts the \xintnum already here.| % \begin{macrocode} \def\xintiiFDg {\romannumeral0\xintiifdg }% \def\xintiifdg #1% {% \expandafter\XINT_fdg \romannumeral-`0#1\W\Z }% \def\xintFDg {\romannumeral0\xintfdg }% \def\xintfdg #1% {% \expandafter\XINT_fdg \romannumeral0\xintnum{#1}\W\Z }% \def\XINT_FDg #1{\romannumeral0\XINT_fdg #1\W\Z }% \def\XINT_fdg #1#2#3\Z {% \xint_UDzerominusfork #1-{ 0}% zero 0#1{ #2}% negative 0-{ #1}% positive \krof }% % \end{macrocode} % \subsection{\csh{xintLDg}, \csh{xintiiLDg}} % \lverb|& % LAST DIGIT. Simplified in 1.05. And prepared for extension by xintfrac % to parse through \xintNum. Release 1.09a adds the \xintnum already here, % and this propagates to \xintOdd, etc... 1.09e The \xintiiLDg is for % defining \xintiiOdd which is used once (currently) elsewhere .| % \begin{macrocode} \def\xintiiLDg {\romannumeral0\xintiildg }% \def\xintiildg #1% {% \expandafter\XINT_ldg\expandafter {\romannumeral-`0#1}% }% \def\xintLDg {\romannumeral0\xintldg }% \def\xintldg #1% {% \expandafter\XINT_ldg\expandafter {\romannumeral0\xintnum{#1}}% }% \def\XINT_LDg #1{\romannumeral0\XINT_ldg {#1}}% \def\XINT_ldg #1% {% \expandafter\XINT_ldg_\romannumeral0\xintreverseorder {#1}\Z }% \def\XINT_ldg_ #1#2\Z{ #1}% % \end{macrocode} % \subsection{\csh{xintMON}, \csh{xintMMON}, \csh{xintiiMON}, \csh{xintiiMMON}} % \lverb|& % MINUS ONE TO THE POWER N and (-1)^{N-1}| % \begin{macrocode} \def\xintiiMON {\romannumeral0\xintiimon }% \def\xintiimon #1% {% \ifodd\xintiiLDg {#1} \xint_afterfi{ -1}% \else \xint_afterfi{ 1}% \fi }% \def\xintiiMMON {\romannumeral0\xintiimmon }% \def\xintiimmon #1% {% \ifodd\xintiiLDg {#1} \xint_afterfi{ 1}% \else \xint_afterfi{ -1}% \fi }% \def\xintMON {\romannumeral0\xintmon }% \def\xintmon #1% {% \ifodd\xintLDg {#1} \xint_afterfi{ -1}% \else \xint_afterfi{ 1}% \fi }% \def\xintMMON {\romannumeral0\xintmmon }% \def\xintmmon #1% {% \ifodd\xintLDg {#1} \xint_afterfi{ 1}% \else \xint_afterfi{ -1}% \fi }% % \end{macrocode} % \subsection{\csh{xintOdd}, \csh{xintiiOdd}, \csh{xintEven}, \csh{xintiiEven}} % \lverb|1.05 has \xintiOdd, whereas \xintOdd parses through \xintNum. % Inadvertently, 1.09a redefined \xintiLDg hence \xintiOdd also parsed through % \xintNum. Anyway, having a \xintOdd and a \xintiOdd was silly. Removed in % 1.09f, now only \xintOdd and \xintiiOdd. 1.1: \xintEven and \xintiiEven % added for \xintiiexpr.| % \begin{macrocode} \def\xintiiOdd {\romannumeral0\xintiiodd }% \def\xintiiodd #1% {% \ifodd\xintiiLDg{#1} \xint_afterfi{ 1}% \else \xint_afterfi{ 0}% \fi }% \def\xintiiEven {\romannumeral0\xintiieven }% \def\xintiieven #1% {% \ifodd\xintiiLDg{#1} \xint_afterfi{ 0}% \else \xint_afterfi{ 1}% \fi }% \def\xintOdd {\romannumeral0\xintodd }% \def\xintodd #1% {% \ifodd\xintLDg{#1} \xint_afterfi{ 1}% \else \xint_afterfi{ 0}% \fi }% \def\xintEven {\romannumeral0\xinteven }% \def\xinteven #1% {% \ifodd\xintLDg{#1} \xint_afterfi{ 0}% \else \xint_afterfi{ 1}% \fi }% % \end{macrocode} % \subsection{\csh{xintDSL}} % \lverb|& % DECIMAL SHIFT LEFT (=MULTIPLICATION PAR 10)| % \begin{macrocode} \def\xintDSL {\romannumeral0\xintdsl }% \def\xintdsl #1% {% \expandafter\XINT_dsl \romannumeral-`0#1\Z }% \def\XINT_DSL #1{\romannumeral0\XINT_dsl #1\Z }% \def\XINT_dsl #1% {% \xint_gob_til_zero #1\xint_dsl_zero 0\XINT_dsl_ #1% }% \def\xint_dsl_zero 0\XINT_dsl_ 0#1\Z { 0}% \def\XINT_dsl_ #1\Z { #10}% % \end{macrocode} % \subsection{\csh{xintDSR}} % \lverb|& % DECIMAL SHIFT RIGHT (=DIVISION PAR 10). Release 1.06b which replaced all @'s % by % underscores left undefined the \xint_minus used in \XINT_dsr_b, and this bug % was fixed only later in release 1.09b| % \begin{macrocode} \def\xintDSR {\romannumeral0\xintdsr }% \def\xintdsr #1% {% \expandafter\XINT_dsr_a\expandafter {\romannumeral-`0#1}\W\Z }% \def\XINT_DSR #1{\romannumeral0\XINT_dsr_a {#1}\W\Z }% \def\XINT_dsr_a {% \expandafter\XINT_dsr_b\romannumeral0\xintreverseorder }% \def\XINT_dsr_b #1#2#3\Z {% \xint_gob_til_W #2\xint_dsr_onedigit\W \xint_gob_til_minus #2\xint_dsr_onedigit-% \expandafter\XINT_dsr_removew \romannumeral0\xintreverseorder {#2#3}% }% \def\xint_dsr_onedigit #1\xintreverseorder #2{ 0}% \def\XINT_dsr_removew #1\W { }% % \end{macrocode} % \subsection{\csh{xintDSH}, \csh{xintDSHr}} % \lverb+DECIMAL SHIFTS \xintDSH {x}{A}$\ % si x <= 0, fait A -> A.10^(|x|). v1.03 corrige l'oversight pour A=0.$\ % si x > 0, et A >=0, fait A -> quo(A,10^(x))$\ % si x > 0, et A < 0, fait A -> -quo(-A,10^(x))$\ % (donc pour x > 0 c'est comme DSR itéré x fois)$\ % \xintDSHr donne le `reste' (si x<=0 donne zéro). % % Release 1.06 now feeds x to a \numexpr first. I will have to revise this code % at some point.+ % \begin{macrocode} \def\xintDSHr {\romannumeral0\xintdshr }% \def\xintdshr #1% {% \expandafter\XINT_dshr_checkxpositive \the\numexpr #1\relax\Z }% \def\XINT_dshr_checkxpositive #1% {% \xint_UDzerominusfork 0#1\XINT_dshr_xzeroorneg #1-\XINT_dshr_xzeroorneg 0-\XINT_dshr_xpositive \krof #1% }% \def\XINT_dshr_xzeroorneg #1\Z #2{ 0}% \def\XINT_dshr_xpositive #1\Z {% \expandafter\xint_secondoftwo_thenstop\romannumeral0\xintdsx {#1}% }% \def\xintDSH {\romannumeral0\xintdsh }% \def\xintdsh #1#2% {% \expandafter\xint_dsh\expandafter {\romannumeral-`0#2}{#1}% }% \def\xint_dsh #1#2% {% \expandafter\XINT_dsh_checksignx \the\numexpr #2\relax\Z {#1}% }% \def\XINT_dsh_checksignx #1% {% \xint_UDzerominusfork #1-\XINT_dsh_xiszero 0#1\XINT_dsx_xisNeg_checkA % on passe direct dans DSx 0-{\XINT_dsh_xisPos #1}% \krof }% \def\XINT_dsh_xiszero #1\Z #2{ #2}% \def\XINT_dsh_xisPos #1\Z #2% {% \expandafter\xint_firstoftwo_thenstop \romannumeral0\XINT_dsx_checksignA #2\Z {#1}% via DSx }% % \end{macrocode} % \subsection{\csh{xintDSx}} % \lverb+Je fais cette routine pour la version 1.01, après modification de % \xintDecSplit. Dorénavant \xintDSx fera appel à \xintDecSplit et de même % \xintDSH fera appel à \xintDSx. J'ai donc supprimé entièrement l'ancien code % de \xintDSH et re-écrit entièrement celui de \xintDecSplit pour x positif. % % --> Attention le cas x=0 est traité dans la même catégorie que x > 0 <--$\ % si x < 0, fait A -> A.10^(|x|)$\ % si x >= 0, et A >=0, fait A -> {quo(A,10^(x))}{rem(A,10^(x))}$\ % si x >= 0, et A < 0, d'abord on calcule {quo(-A,10^(x))}{rem(-A,10^(x))}$\ % puis, si le premier n'est pas nul on lui donne le signe -$\ % si le premier est nul on donne le signe - au second. % % On peut donc toujours reconstituer l'original A par 10^x Q \pm R % où il faut prendre le signe plus si Q est positif ou nul et le signe moins si % Q est strictement négatif. % % Release 1.06 has a faster and more compactly coded \XINT_dsx_zeroloop. % Also, x is now given to a \numexpr. The earlier code should be then % simplified, but I leave as is for the time being. % % Release 1.07 modified the coding of \XINT_dsx_zeroloop, to avoid impacting the % input stack. Indeed the truncating, rounding, and conversion to float routines % all use internally \XINT_dsx_zeroloop (via \XINT_dsx_addzerosnofuss), and they % were thus roughly limited to generating N = 8 times the input save stack size % digits. On TL2012 and TL2013, this means 40000 = 8x5000 digits. Although % generating more than 40000 digits is more like a one shot thing, I wanted to % open the possibility of outputting tens of thousands of digits to faile, thus % I re-organized \XINT_dsx_zeroloop. % % January 5, 2014: but it is only with the new division implementation of 1.09j % and also with its special \xintXTrunc routine that the possibility mentioned % in the last paragraph has become a concrete one in terms of computation time.+ % \begin{macrocode} \def\xintDSx {\romannumeral0\xintdsx }% \def\xintdsx #1#2% {% \expandafter\xint_dsx\expandafter {\romannumeral-`0#2}{#1}% }% \def\xint_dsx #1#2% {% \expandafter\XINT_dsx_checksignx \the\numexpr #2\relax\Z {#1}% }% \def\XINT_DSx #1#2{\romannumeral0\XINT_dsx_checksignx #1\Z {#2}}% \def\XINT_dsx #1#2{\XINT_dsx_checksignx #1\Z {#2}}% \def\XINT_dsx_checksignx #1% {% \xint_UDzerominusfork #1-\XINT_dsx_xisZero 0#1\XINT_dsx_xisNeg_checkA 0-{\XINT_dsx_xisPos #1}% \krof }% \def\XINT_dsx_xisZero #1\Z #2{ {#2}{0}}% attention comme x > 0 \def\XINT_dsx_xisNeg_checkA #1\Z #2% {% \XINT_dsx_xisNeg_checkA_ #2\Z {#1}% }% \def\XINT_dsx_xisNeg_checkA_ #1#2\Z #3% {% \xint_gob_til_zero #1\XINT_dsx_xisNeg_Azero 0% \XINT_dsx_xisNeg_checkx {#3}{#3}{}\Z {#1#2}% }% \def\XINT_dsx_xisNeg_Azero #1\Z #2{ 0}% \def\XINT_dsx_xisNeg_checkx #1% {% \ifnum #1>1000000 \xint_afterfi {\xintError:TooBigDecimalShift \expandafter\space\expandafter 0\xint_gobble_iv }% \else \expandafter \XINT_dsx_zeroloop \fi }% \def\XINT_dsx_addzerosnofuss #1{\XINT_dsx_zeroloop {#1}{}\Z }% \def\XINT_dsx_zeroloop #1#2% {% \ifnum #1<\xint_c_ix \XINT_dsx_exita\fi \expandafter\XINT_dsx_zeroloop\expandafter {\the\numexpr #1-\xint_c_viii}{#200000000}% }% \def\XINT_dsx_exita\fi\expandafter\XINT_dsx_zeroloop {% \fi\expandafter\XINT_dsx_exitb }% \def\XINT_dsx_exitb #1#2% {% \expandafter\expandafter\expandafter \XINT_dsx_addzeros\csname xint_gobble_\romannumeral -#1\endcsname #2% }% \def\XINT_dsx_addzeros #1\Z #2{ #2#1}% \def\XINT_dsx_xisPos #1\Z #2% {% \XINT_dsx_checksignA #2\Z {#1}% }% \def\XINT_dsx_checksignA #1% {% \xint_UDzerominusfork #1-\XINT_dsx_AisZero 0#1\XINT_dsx_AisNeg 0-{\XINT_dsx_AisPos #1}% \krof }% \def\XINT_dsx_AisZero #1\Z #2{ {0}{0}}% \def\XINT_dsx_AisNeg #1\Z #2% {% \expandafter\XINT_dsx_AisNeg_dosplit_andcheckfirst \romannumeral0\XINT_split_checksizex {#2}{#1}% }% \def\XINT_dsx_AisNeg_dosplit_andcheckfirst #1% {% \XINT_dsx_AisNeg_checkiffirstempty #1\Z }% \def\XINT_dsx_AisNeg_checkiffirstempty #1% {% \xint_gob_til_Z #1\XINT_dsx_AisNeg_finish_zero\Z \XINT_dsx_AisNeg_finish_notzero #1% }% \def\XINT_dsx_AisNeg_finish_zero\Z \XINT_dsx_AisNeg_finish_notzero\Z #1% {% \expandafter\XINT_dsx_end \expandafter {\romannumeral0\XINT_num {-#1}}{0}% }% \def\XINT_dsx_AisNeg_finish_notzero #1\Z #2% {% \expandafter\XINT_dsx_end \expandafter {\romannumeral0\XINT_num {#2}}{-#1}% }% \def\XINT_dsx_AisPos #1\Z #2% {% \expandafter\XINT_dsx_AisPos_finish \romannumeral0\XINT_split_checksizex {#2}{#1}% }% \def\XINT_dsx_AisPos_finish #1#2% {% \expandafter\XINT_dsx_end \expandafter {\romannumeral0\XINT_num {#2}}% {\romannumeral0\XINT_num {#1}}% }% \edef\XINT_dsx_end #1#2% {% \noexpand\expandafter\space\noexpand\expandafter{#2}{#1}% }% % \end{macrocode} % \subsection{\csh{xintDecSplit}, \csh{xintDecSplitL}, \csh{xintDecSplitR}} % \lverb!DECIMAL SPLIT % % The macro \xintDecSplit {x}{A} first replaces A with |A| (*) % This macro cuts the number into two pieces L and R. The concatenation LR % always reproduces |A|, and R may be empty or have leading zeros. The % position of the cut is specified by the first argument x. If x is zero or % positive the cut location is x slots to the left of the right end of the % number. If x becomes equal to or larger than the length of the number then L % becomes empty. If x is negative the location of the cut is |x| slots to the % right of the left end of the number. % % (*) warning: this may change in a future version. Only the behavior % for A non-negative is guaranteed to remain the same. % % v1.05a: \XINT_split_checksizex does not compute the length anymore, rather the % error will be from a \numexpr; but the limit of 999999999 does not make much % sense. % % v1.06: Improvements in \XINT_split_fromleft_loop, \XINT_split_fromright_loop % and related macros. More readable coding, speed gains. % Also, I now feed immediately a \numexpr with x. Some simplifications should % probably be made to the code, which is kept as is for the time being. % % 1.09e pays attention to the use of xintiabs which acquired in 1.09a the % xintnum overhead. So xintiiabs rather without that overhead. % ! % \begin{macrocode} \def\xintDecSplitL {\romannumeral0\xintdecsplitl }% \def\xintDecSplitR {\romannumeral0\xintdecsplitr }% \def\xintdecsplitl {% \expandafter\xint_firstoftwo_thenstop \romannumeral0\xintdecsplit }% \def\xintdecsplitr {% \expandafter\xint_secondoftwo_thenstop \romannumeral0\xintdecsplit }% \def\xintDecSplit {\romannumeral0\xintdecsplit }% \def\xintdecsplit #1#2% {% \expandafter \xint_split \expandafter {\romannumeral0\xintiiabs {#2}}{#1}% fait expansion de A }% \def\xint_split #1#2% {% \expandafter\XINT_split_checksizex\expandafter{\the\numexpr #2}{#1}% }% \def\XINT_split_checksizex #1% 999999999 is anyhow very big, could be reduced {% \ifnum\numexpr\XINT_Abs{#1}>999999999 \xint_afterfi {\xintError:TooBigDecimalSplit\XINT_split_bigx }% \else \expandafter\XINT_split_xfork \fi #1\Z }% \def\XINT_split_bigx #1\Z #2% {% \ifcase\XINT_cntSgn #1\Z \or \xint_afterfi { {}{#2}}% positive big x \else \xint_afterfi { {#2}{}}% negative big x \fi }% \def\XINT_split_xfork #1% {% \xint_UDzerominusfork #1-\XINT_split_zerosplit 0#1\XINT_split_fromleft 0-{\XINT_split_fromright #1}% \krof }% \def\XINT_split_zerosplit #1\Z #2{ {#2}{}}% \def\XINT_split_fromleft #1\Z #2% {% \XINT_split_fromleft_loop {#1}{}#2\W\W\W\W\W\W\W\W\Z }% \def\XINT_split_fromleft_loop #1% {% \ifnum #1<\xint_c_viii\XINT_split_fromleft_exita\fi \expandafter\XINT_split_fromleft_loop_perhaps\expandafter {\the\numexpr #1-\xint_c_viii\expandafter}\XINT_split_fromleft_eight }% \def\XINT_split_fromleft_eight #1#2#3#4#5#6#7#8#9{#9{#1#2#3#4#5#6#7#8#9}}% \def\XINT_split_fromleft_loop_perhaps #1#2% {% \xint_gob_til_W #2\XINT_split_fromleft_toofar\W \XINT_split_fromleft_loop {#1}% }% \def\XINT_split_fromleft_toofar\W\XINT_split_fromleft_loop #1#2#3\Z {% \XINT_split_fromleft_toofar_b #2\Z }% \def\XINT_split_fromleft_toofar_b #1\W #2\Z { {#1}{}}% \def\XINT_split_fromleft_exita\fi \expandafter\XINT_split_fromleft_loop_perhaps\expandafter #1#2% {\fi \XINT_split_fromleft_exitb #1}% \def\XINT_split_fromleft_exitb\the\numexpr #1-\xint_c_viii\expandafter {% \csname XINT_split_fromleft_endsplit_\romannumeral #1\endcsname }% \def\XINT_split_fromleft_endsplit_ #1#2\W #3\Z { {#1}{#2}}% \def\XINT_split_fromleft_endsplit_i #1#2% {\XINT_split_fromleft_checkiftoofar #2{#1#2}}% \def\XINT_split_fromleft_endsplit_ii #1#2#3% {\XINT_split_fromleft_checkiftoofar #3{#1#2#3}}% \def\XINT_split_fromleft_endsplit_iii #1#2#3#4% {\XINT_split_fromleft_checkiftoofar #4{#1#2#3#4}}% \def\XINT_split_fromleft_endsplit_iv #1#2#3#4#5% {\XINT_split_fromleft_checkiftoofar #5{#1#2#3#4#5}}% \def\XINT_split_fromleft_endsplit_v #1#2#3#4#5#6% {\XINT_split_fromleft_checkiftoofar #6{#1#2#3#4#5#6}}% \def\XINT_split_fromleft_endsplit_vi #1#2#3#4#5#6#7% {\XINT_split_fromleft_checkiftoofar #7{#1#2#3#4#5#6#7}}% \def\XINT_split_fromleft_endsplit_vii #1#2#3#4#5#6#7#8% {\XINT_split_fromleft_checkiftoofar #8{#1#2#3#4#5#6#7#8}}% \def\XINT_split_fromleft_checkiftoofar #1#2#3\W #4\Z {% \xint_gob_til_W #1\XINT_split_fromleft_wenttoofar\W \space {#2}{#3}% }% \def\XINT_split_fromleft_wenttoofar\W\space #1% {% \XINT_split_fromleft_wenttoofar_b #1\Z }% \def\XINT_split_fromleft_wenttoofar_b #1\W #2\Z { {#1}}% \def\XINT_split_fromright #1\Z #2% {% \expandafter \XINT_split_fromright_a \expandafter {\romannumeral0\xintreverseorder {#2}}{#1}{#2}% }% \def\XINT_split_fromright_a #1#2% {% \XINT_split_fromright_loop {#2}{}#1\W\W\W\W\W\W\W\W\Z }% \def\XINT_split_fromright_loop #1% {% \ifnum #1<\xint_c_viii\XINT_split_fromright_exita\fi \expandafter\XINT_split_fromright_loop_perhaps\expandafter {\the\numexpr #1-\xint_c_viii\expandafter }\XINT_split_fromright_eight }% \def\XINT_split_fromright_eight #1#2#3#4#5#6#7#8#9{#9{#9#8#7#6#5#4#3#2#1}}% \def\XINT_split_fromright_loop_perhaps #1#2% {% \xint_gob_til_W #2\XINT_split_fromright_toofar\W \XINT_split_fromright_loop {#1}% }% \def\XINT_split_fromright_toofar\W\XINT_split_fromright_loop #1#2#3\Z { {}}% \def\XINT_split_fromright_exita\fi \expandafter\XINT_split_fromright_loop_perhaps\expandafter #1#2% {\fi \XINT_split_fromright_exitb #1}% \def\XINT_split_fromright_exitb\the\numexpr #1-\xint_c_viii\expandafter {% \csname XINT_split_fromright_endsplit_\romannumeral #1\endcsname }% \edef\XINT_split_fromright_endsplit_ #1#2\W #3\Z #4% {% \noexpand\expandafter\space\noexpand\expandafter {\noexpand\romannumeral0\noexpand\xintreverseorder {#2}}{#1}% }% \def\XINT_split_fromright_endsplit_i #1#2% {\XINT_split_fromright_checkiftoofar #2{#2#1}}% \def\XINT_split_fromright_endsplit_ii #1#2#3% {\XINT_split_fromright_checkiftoofar #3{#3#2#1}}% \def\XINT_split_fromright_endsplit_iii #1#2#3#4% {\XINT_split_fromright_checkiftoofar #4{#4#3#2#1}}% \def\XINT_split_fromright_endsplit_iv #1#2#3#4#5% {\XINT_split_fromright_checkiftoofar #5{#5#4#3#2#1}}% \def\XINT_split_fromright_endsplit_v #1#2#3#4#5#6% {\XINT_split_fromright_checkiftoofar #6{#6#5#4#3#2#1}}% \def\XINT_split_fromright_endsplit_vi #1#2#3#4#5#6#7% {\XINT_split_fromright_checkiftoofar #7{#7#6#5#4#3#2#1}}% \def\XINT_split_fromright_endsplit_vii #1#2#3#4#5#6#7#8% {\XINT_split_fromright_checkiftoofar #8{#8#7#6#5#4#3#2#1}}% \def\XINT_split_fromright_checkiftoofar #1% {% \xint_gob_til_W #1\XINT_split_fromright_wenttoofar\W \XINT_split_fromright_endsplit_ }% \def\XINT_split_fromright_wenttoofar\W\XINT_split_fromright_endsplit_ #1\Z #2% { {}{#2}}% % \end{macrocode} % \subsection{\csh{xintDouble}} % \lverb|v1.08| % \begin{macrocode} \def\xintDouble {\romannumeral0\xintdouble }% \def\xintdouble #1% {% \expandafter\XINT_dbl\romannumeral-`0#1% \R\R\R\R\R\R\R\Z \W\W\W\W\W\W\W }% \def\XINT_dbl #1% {% \xint_UDzerominusfork #1-\XINT_dbl_zero 0#1\XINT_dbl_neg 0-{\XINT_dbl_pos #1}% \krof }% \def\XINT_dbl_zero #1\Z \W\W\W\W\W\W\W { 0}% \def\XINT_dbl_neg {\expandafter\xint_minus_thenstop\romannumeral0\XINT_dbl_pos }% \def\XINT_dbl_pos {% \expandafter\XINT_dbl_a \expandafter{\expandafter}\expandafter 0% \romannumeral0\XINT_SQ {}% }% \def\XINT_dbl_a #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_W #9\XINT_dbl_end_a\W \expandafter\XINT_dbl_b \the\numexpr \xint_c_x^viii+#2+\xint_c_ii*#9#8#7#6#5#4#3\relax {#1}% }% \def\XINT_dbl_b 1#1#2#3#4#5#6#7#8#9% {% \XINT_dbl_a {#2#3#4#5#6#7#8#9}{#1}% }% \def\XINT_dbl_end_a #1+#2+#3\relax #4% {% \expandafter\XINT_dbl_end_b #2#4% }% \edef\XINT_dbl_end_b #1#2#3#4#5#6#7#8% {% \noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4#5#6#7#8\relax }% % \end{macrocode} % \subsection{\csh{xintHalf}} % \lverb!v1.08! % \begin{macrocode} \def\xintHalf {\romannumeral0\xinthalf }% \def\xinthalf #1% {% \expandafter\XINT_half\romannumeral-`0#1% \R\R\R\R\R\R\R\Z \W\W\W\W\W\W\W }% \def\XINT_half #1% {% \xint_UDzerominusfork #1-\XINT_half_zero 0#1\XINT_half_neg 0-{\XINT_half_pos #1}% \krof }% \def\XINT_half_zero #1\Z \W\W\W\W\W\W\W { 0}% \def\XINT_half_neg {\expandafter\XINT_opp\romannumeral0\XINT_half_pos }% \def\XINT_half_pos {\expandafter\XINT_half_a\romannumeral0\XINT_SQ {}}% \def\XINT_half_a #1#2#3#4#5#6#7#8% {% \xint_gob_til_W #8\XINT_half_dont\W \expandafter\XINT_half_b \the\numexpr \xint_c_x^viii+\xint_c_v*#7#6#5#4#3#2#1\relax #8% }% \edef\XINT_half_dont\W\expandafter\XINT_half_b \the\numexpr \xint_c_x^viii+\xint_c_v*#1#2#3#4#5#6#7\relax \W\W\W\W\W\W\W {% \noexpand\expandafter\space \noexpand\the\numexpr (#1#2#3#4#5#6#7+\xint_c_i)/\xint_c_ii-\xint_c_i \relax }% \def\XINT_half_b 1#1#2#3#4#5#6#7#8% {% \XINT_half_c {#2#3#4#5#6#7}{#1}% }% \def\XINT_half_c #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_W #3\XINT_half_end_a #2\W \expandafter\XINT_half_d \the\numexpr \xint_c_x^viii+\xint_c_v*#9#8#7#6#5#4#3+#2\relax {#1}% }% \def\XINT_half_d 1#1#2#3#4#5#6#7#8#9% {% \XINT_half_c {#2#3#4#5#6#7#8#9}{#1}% }% \def\XINT_half_end_a #1\W #2\relax #3% {% \xint_gob_til_zero #1\XINT_half_end_b 0\space #1#3% }% \edef\XINT_half_end_b 0\space 0#1#2#3#4#5#6#7% {% \noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4#5#6#7\relax }% % \end{macrocode} % \subsection{\csh{xintiiSqrt}, \csh{xintiiSqrtR}, \csh{xintiiSquareRoot}} % \lverb|v1.08. 1.09a uses \xintnum. % % Some overhead was added inadvertently in 1.09a to inner routines when % \xintiquo and \xintidivision were also promoted to use \xintnum; release 1.09f % thus uses \xintiiquo and \xintiidivision which avoid this \xintnum overhead. % % 1.09j replaced the previous long \ifcase from \XINT_sqrt_c by some nested % \ifnum's. % % 1.1 Ajout de \xintiiSqrt et \xintiiSquareRoot. % % 1.1a ajoute \xintiiSqrtR, which provides the rounded, not truncated square % root.| % \begin{macrocode} \def\xintiiSqrt {\romannumeral0\xintiisqrt }% \def\xintiiSqrtR {\romannumeral0\xintiisqrtr }% \def\xintiiSquareRoot {\romannumeral0\xintiisquareroot }% \def\xintiSqrt {\romannumeral0\xintisqrt }% \def\xintiSquareRoot {\romannumeral0\xintisquareroot }% \def\xintisqrt {\expandafter\XINT_sqrt_post\romannumeral0\xintisquareroot }% \def\xintiisqrt {\expandafter\XINT_sqrt_post\romannumeral0\xintiisquareroot }% \def\xintiisqrtr {\expandafter\XINT_sqrtr_post\romannumeral0\xintiisquareroot }% \def\XINT_sqrt_post #1#2{\XINT_dec_pos #1\R\R\R\R\R\R\R\R\Z \W\W\W\W\W\W\W\W }% % \end{macrocode} % \lverb|N = (#1)^2 - #2 avec #1 le plus petit possible et #2>0 (hence #2<2*#1). % (#1-.5)^2=#1^2-#1+.25=N+#2-#1+.25. Si 0<#2<#1, <= N-0.75#1 % si #2>=#1, (#1-.5)^2>=N+.25>N, donc rounded->#1-1.| % \begin{macrocode} \def\XINT_sqrtr_post #1#2{\xintiiifLt {#2}{#1}% Lt <-> a\xint_c_iii \ifnum #1>\xint_c_viii \ifnum #1>15 \ifnum #1>24 \ifnum #1>35 \ifnum #1>48 \ifnum #1>63 \ifnum #1>80 10\else 9\fi \else 8\fi \else 7\fi \else 6\fi \else 5\fi \else 4\fi \else 3\fi \else 2\fi \relax }% }% \def\XINT_sqrt_small_d #1#2% {% \expandafter\XINT_sqrt_small_e\expandafter {\the\numexpr #1\ifcase \numexpr #2/\xint_c_ii-\xint_c_i\relax \or 0\or 00\or 000\or 0000\fi }% }% \def\XINT_sqrt_small_e #1#2% {% \expandafter\XINT_sqrt_small_f\expandafter {\the\numexpr #1*#1-#2}{#1}% }% \def\XINT_sqrt_small_f #1#2% {% \expandafter\XINT_sqrt_small_g\expandafter {\the\numexpr ((#1+#2)/(\xint_c_ii*#2))-\xint_c_i}{#1}{#2}% }% \def\XINT_sqrt_small_g #1% {% \ifnum #1>\xint_c_ \expandafter\XINT_sqrt_small_h \else \expandafter\XINT_sqrt_small_end \fi {#1}% }% \def\XINT_sqrt_small_h #1#2#3% {% \expandafter\XINT_sqrt_small_f\expandafter {\the\numexpr #2-\xint_c_ii*#1*#3+#1*#1\expandafter}\expandafter {\the\numexpr #3-#1}% }% \def\XINT_sqrt_small_end #1#2#3{ {#3}{#2}}% \def\XINT_sqrt_big_d #1#2% {% \ifodd #2 \expandafter\expandafter\expandafter\XINT_sqrt_big_eB \else \expandafter\expandafter\expandafter\XINT_sqrt_big_eA \fi \expandafter {\the\numexpr #2/\xint_c_ii }{#1}% }% \def\XINT_sqrt_big_eA #1#2#3% {% \XINT_sqrt_big_eA_a #3\Z {#2}{#1}{#3}% }% \def\XINT_sqrt_big_eA_a #1#2#3#4#5#6#7#8#9\Z {% \XINT_sqrt_big_eA_b {#1#2#3#4#5#6#7#8}% }% \def\XINT_sqrt_big_eA_b #1#2% {% \expandafter\XINT_sqrt_big_f \romannumeral0\XINT_sqrt_small_e {#2000}{#1}{#1}% }% \def\XINT_sqrt_big_eB #1#2#3% {% \XINT_sqrt_big_eB_a #3\Z {#2}{#1}{#3}% }% \def\XINT_sqrt_big_eB_a #1#2#3#4#5#6#7#8#9% {% \XINT_sqrt_big_eB_b {#1#2#3#4#5#6#7#8#9}% }% \def\XINT_sqrt_big_eB_b #1#2\Z #3% {% \expandafter\XINT_sqrt_big_f \romannumeral0\XINT_sqrt_small_e {#30000}{#1}{#1}% }% \def\XINT_sqrt_big_f #1#2#3#4% {% \expandafter\XINT_sqrt_big_f_a\expandafter {\the\numexpr #2+#3\expandafter}\expandafter {\romannumeral0\XINT_dsx_addzerosnofuss {\numexpr #4-\xint_c_iv\relax}{#1}}{#4}% }% \def\XINT_sqrt_big_f_a #1#2#3#4% {% \expandafter\XINT_sqrt_big_g\expandafter {\romannumeral0\xintiisub {\XINT_dsx_addzerosnofuss {\numexpr \xint_c_ii*#3-\xint_c_viii\relax}{#1}}{#4}}% {#2}{#3}% }% \def\XINT_sqrt_big_g #1#2% {% \expandafter\XINT_sqrt_big_j \romannumeral0\xintiidivision{#1}% {\romannumeral0\XINT_dbl_pos #2\R\R\R\R\R\R\R\Z \W\W\W\W\W\W\W }{#2}% }% \def\XINT_sqrt_big_j #1% {% \if0\XINT_Sgn #1\Z \expandafter \XINT_sqrt_big_end \else \expandafter \XINT_sqrt_big_k \fi {#1}% }% \def\XINT_sqrt_big_k #1#2#3% {% \expandafter\XINT_sqrt_big_l\expandafter {\romannumeral0\xintiisub {#3}{#1}}% {\romannumeral0\xintiiadd {#2}{\xintiiSqr {#1}}}% }% \def\XINT_sqrt_big_l #1#2% {% \expandafter\XINT_sqrt_big_g\expandafter {#2}{#1}% }% \def\XINT_sqrt_big_end #1#2#3#4{ {#3}{#2}}% % \end{macrocode} % \subsection{\csh{xintiiE}} % \lverb|Originally was used in \xintiiexpr. Transferred from xintfrac for 1.1.| % \begin{macrocode} \def\xintiiE {\romannumeral0\xintiie }% used in \xintMod. \def\xintiie #1#2% {\expandafter\XINT_iie\the\numexpr #2\expandafter.\expandafter{\romannumeral-`0#1}}% \def\XINT_iie #1.#2{\ifnum#1>\xint_c_ \xint_dothis{\xint_dsh {#2}{-#1}}\fi \xint_orthat{ #2}}% \XINT_restorecatcodes_endinput% % \end{macrocode} %\catcode`\<=0 \catcode`\>=11 \catcode`\*=11 \catcode`\/=11 %\let\relax %\def<*xintbinhex>{\catcode`\<=12 \catcode`\>=12 \catcode`\*=12 \catcode`\/=12 } % %<*xintbinhex> % % \StoreCodelineNo {xint} % % \section{Package \xintbinhexnameimp implementation} % \label{sec:binheximp} % % \localtableofcontents % % The commenting is currently (\xintdocdate) very sparse. % % \subsection{Catcodes, \protect\eTeX{} and reload detection} % % The code for reload detection was initially copied from \textsc{Heiko % Oberdiek}'s packages, then modified. % % The method for catcodes was also initially directly inspired by these % packages. % % \begin{macrocode} \begingroup\catcode61\catcode48\catcode32=10\relax% \catcode13=5 % ^^M \endlinechar=13 % \catcode123=1 % { \catcode125=2 % } \catcode64=11 % @ \catcode35=6 % # \catcode44=12 % , \catcode45=12 % - \catcode46=12 % . \catcode58=12 % : \let\z\endgroup \expandafter\let\expandafter\x\csname ver@xintbinhex.sty\endcsname \expandafter\let\expandafter\w\csname ver@xintcore.sty\endcsname \expandafter \ifx\csname PackageInfo\endcsname\relax \def\y#1#2{\immediate\write-1{Package #1 Info: #2.}}% \else \def\y#1#2{\PackageInfo{#1}{#2}}% \fi \expandafter \ifx\csname numexpr\endcsname\relax \y{xintbinhex}{\numexpr not available, aborting input}% \aftergroup\endinput \else \ifx\x\relax % plain-TeX, first loading of xintbinhex.sty \ifx\w\relax % but xintcore.sty not yet loaded. \def\z{\endgroup\input xintcore.sty\relax}% \fi \else \def\empty {}% \ifx\x\empty % LaTeX, first loading, % variable is initialized, but \ProvidesPackage not yet seen \ifx\w\relax % xintcore.sty not yet loaded. \def\z{\endgroup\RequirePackage{xintcore}}% \fi \else \aftergroup\endinput % xintbinhex already loaded. \fi \fi \fi \z% \XINTsetupcatcodes% defined in xintkernel.sty % \end{macrocode} % \subsection{Package identification} % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintbinhex}% [2014/11/07 v1.1a Expandable binary and hexadecimal conversions (jfB)]% % \end{macrocode} % \subsection{Constants, etc...} % \lverb!v1.08! % \begin{macrocode} \chardef\xint_c_xvi 16 % \chardef\xint_c_ii^v 32 % already in xint.sty % \chardef\xint_c_ii^vi 64 % already in xint.sty \chardef\xint_c_ii^vii 128 \mathchardef\xint_c_ii^viii 256 \mathchardef\xint_c_ii^xii 4096 \newcount\xint_c_ii^xv \xint_c_ii^xv 32768 \newcount\xint_c_ii^xvi \xint_c_ii^xvi 65536 \newcount\xint_c_x^v \xint_c_x^v 100000 \newcount\xint_c_x^ix \xint_c_x^ix 1000000000 \def\XINT_tmpa #1{\ifx\relax#1\else \expandafter\edef\csname XINT_sdth_#1\endcsname {\ifcase #1 0\or 1\or 2\or 3\or 4\or 5\or 6\or 7\or 8\or 9\or A\or B\or C\or D\or E\or F\fi}% \expandafter\XINT_tmpa\fi }% \XINT_tmpa {0}{1}{2}{3}{4}{5}{6}{7}{8}{9}{10}{11}{12}{13}{14}{15}\relax \def\XINT_tmpa #1{\ifx\relax#1\else \expandafter\edef\csname XINT_sdtb_#1\endcsname {\ifcase #1 0000\or 0001\or 0010\or 0011\or 0100\or 0101\or 0110\or 0111\or 1000\or 1001\or 1010\or 1011\or 1100\or 1101\or 1110\or 1111\fi}% \expandafter\XINT_tmpa\fi }% \XINT_tmpa {0}{1}{2}{3}{4}{5}{6}{7}{8}{9}{10}{11}{12}{13}{14}{15}\relax \let\XINT_tmpa\relax \expandafter\def\csname XINT_sbtd_0000\endcsname {0}% \expandafter\def\csname XINT_sbtd_0001\endcsname {1}% \expandafter\def\csname XINT_sbtd_0010\endcsname {2}% \expandafter\def\csname XINT_sbtd_0011\endcsname {3}% \expandafter\def\csname XINT_sbtd_0100\endcsname {4}% \expandafter\def\csname XINT_sbtd_0101\endcsname {5}% \expandafter\def\csname XINT_sbtd_0110\endcsname {6}% \expandafter\def\csname XINT_sbtd_0111\endcsname {7}% \expandafter\def\csname XINT_sbtd_1000\endcsname {8}% \expandafter\def\csname XINT_sbtd_1001\endcsname {9}% \expandafter\def\csname XINT_sbtd_1010\endcsname {10}% \expandafter\def\csname XINT_sbtd_1011\endcsname {11}% \expandafter\def\csname XINT_sbtd_1100\endcsname {12}% \expandafter\def\csname XINT_sbtd_1101\endcsname {13}% \expandafter\def\csname XINT_sbtd_1110\endcsname {14}% \expandafter\def\csname XINT_sbtd_1111\endcsname {15}% \expandafter\let\csname XINT_sbth_0000\expandafter\endcsname \csname XINT_sbtd_0000\endcsname \expandafter\let\csname XINT_sbth_0001\expandafter\endcsname \csname XINT_sbtd_0001\endcsname \expandafter\let\csname XINT_sbth_0010\expandafter\endcsname \csname XINT_sbtd_0010\endcsname \expandafter\let\csname XINT_sbth_0011\expandafter\endcsname \csname XINT_sbtd_0011\endcsname \expandafter\let\csname XINT_sbth_0100\expandafter\endcsname \csname XINT_sbtd_0100\endcsname \expandafter\let\csname XINT_sbth_0101\expandafter\endcsname \csname XINT_sbtd_0101\endcsname \expandafter\let\csname XINT_sbth_0110\expandafter\endcsname \csname XINT_sbtd_0110\endcsname \expandafter\let\csname XINT_sbth_0111\expandafter\endcsname \csname XINT_sbtd_0111\endcsname \expandafter\let\csname XINT_sbth_1000\expandafter\endcsname \csname XINT_sbtd_1000\endcsname \expandafter\let\csname XINT_sbth_1001\expandafter\endcsname \csname XINT_sbtd_1001\endcsname \expandafter\def\csname XINT_sbth_1010\endcsname {A}% \expandafter\def\csname XINT_sbth_1011\endcsname {B}% \expandafter\def\csname XINT_sbth_1100\endcsname {C}% \expandafter\def\csname XINT_sbth_1101\endcsname {D}% \expandafter\def\csname XINT_sbth_1110\endcsname {E}% \expandafter\def\csname XINT_sbth_1111\endcsname {F}% \expandafter\def\csname XINT_shtb_0\endcsname {0000}% \expandafter\def\csname XINT_shtb_1\endcsname {0001}% \expandafter\def\csname XINT_shtb_2\endcsname {0010}% \expandafter\def\csname XINT_shtb_3\endcsname {0011}% \expandafter\def\csname XINT_shtb_4\endcsname {0100}% \expandafter\def\csname XINT_shtb_5\endcsname {0101}% \expandafter\def\csname XINT_shtb_6\endcsname {0110}% \expandafter\def\csname XINT_shtb_7\endcsname {0111}% \expandafter\def\csname XINT_shtb_8\endcsname {1000}% \expandafter\def\csname XINT_shtb_9\endcsname {1001}% \def\XINT_shtb_A {1010}% \def\XINT_shtb_B {1011}% \def\XINT_shtb_C {1100}% \def\XINT_shtb_D {1101}% \def\XINT_shtb_E {1110}% \def\XINT_shtb_F {1111}% \def\XINT_shtb_G {}% \def\XINT_smallhex #1% {% \expandafter\XINT_smallhex_a\expandafter {\the\numexpr (#1+\xint_c_viii)/\xint_c_xvi-\xint_c_i}{#1}% }% \def\XINT_smallhex_a #1#2% {% \csname XINT_sdth_#1\expandafter\expandafter\expandafter\endcsname \csname XINT_sdth_\the\numexpr #2-\xint_c_xvi*#1\endcsname }% \def\XINT_smallbin #1% {% \expandafter\XINT_smallbin_a\expandafter {\the\numexpr (#1+\xint_c_viii)/\xint_c_xvi-\xint_c_i}{#1}% }% \def\XINT_smallbin_a #1#2% {% \csname XINT_sdtb_#1\expandafter\expandafter\expandafter\endcsname \csname XINT_sdtb_\the\numexpr #2-\xint_c_xvi*#1\endcsname }% % \end{macrocode} % \subsection{\csh{xintDecToHex}, \csh{xintDecToBin}} % \lverb!v1.08! % \begin{macrocode} \def\xintDecToHex {\romannumeral0\xintdectohex }% \def\xintdectohex #1% {\expandafter\XINT_dth_checkin\romannumeral-`0#1\W\W\W\W \T}% \def\XINT_dth_checkin #1% {% \xint_UDsignfork #1\XINT_dth_N -{\XINT_dth_P #1}% \krof }% \def\XINT_dth_N {\expandafter\xint_minus_thenstop\romannumeral0\XINT_dth_P }% \def\XINT_dth_P {\expandafter\XINT_dth_III\romannumeral-`0\XINT_dtbh_I {0.}}% \def\xintDecToBin {\romannumeral0\xintdectobin }% \def\xintdectobin #1% {\expandafter\XINT_dtb_checkin\romannumeral-`0#1\W\W\W\W \T }% \def\XINT_dtb_checkin #1% {% \xint_UDsignfork #1\XINT_dtb_N -{\XINT_dtb_P #1}% \krof }% \def\XINT_dtb_N {\expandafter\xint_minus_thenstop\romannumeral0\XINT_dtb_P }% \def\XINT_dtb_P {\expandafter\XINT_dtb_III\romannumeral-`0\XINT_dtbh_I {0.}}% \def\XINT_dtbh_I #1#2#3#4#5% {% \xint_gob_til_W #5\XINT_dtbh_II_a\W\XINT_dtbh_I_a {}{#2#3#4#5}#1\Z.% }% \def\XINT_dtbh_II_a\W\XINT_dtbh_I_a #1#2{\XINT_dtbh_II_b #2}% \def\XINT_dtbh_II_b #1#2#3#4% {% \xint_gob_til_W #1\XINT_dtbh_II_c #2\XINT_dtbh_II_ci #3\XINT_dtbh_II_cii \W\XINT_dtbh_II_ciii #1#2#3#4% }% \def\XINT_dtbh_II_c \W\XINT_dtbh_II_ci \W\XINT_dtbh_II_cii \W\XINT_dtbh_II_ciii \W\W\W\W {{}}% \def\XINT_dtbh_II_ci #1\XINT_dtbh_II_ciii #2\W\W\W {\XINT_dtbh_II_d {}{#2}{0}}% \def\XINT_dtbh_II_cii\W\XINT_dtbh_II_ciii #1#2\W\W {\XINT_dtbh_II_d {}{#1#2}{00}}% \def\XINT_dtbh_II_ciii #1#2#3\W {\XINT_dtbh_II_d {}{#1#2#3}{000}}% \def\XINT_dtbh_I_a #1#2#3.% {% \xint_gob_til_Z #3\XINT_dtbh_I_z\Z \expandafter\XINT_dtbh_I_b\the\numexpr #2+#30000.{#1}% }% \def\XINT_dtbh_I_b #1.% {% \expandafter\XINT_dtbh_I_c\the\numexpr (#1+\xint_c_ii^xv)/\xint_c_ii^xvi-\xint_c_i.#1.% }% \def\XINT_dtbh_I_c #1.#2.% {% \expandafter\XINT_dtbh_I_d\expandafter {\the\numexpr #2-\xint_c_ii^xvi*#1}{#1}% }% \def\XINT_dtbh_I_d #1#2#3{\XINT_dtbh_I_a {#3#1.}{#2}}% \def\XINT_dtbh_I_z\Z\expandafter\XINT_dtbh_I_b\the\numexpr #1+#2.% {% \ifnum #1=\xint_c_ \expandafter\XINT_dtbh_I_end_zb\fi \XINT_dtbh_I_end_za {#1}% }% \def\XINT_dtbh_I_end_za #1#2{\XINT_dtbh_I {#2#1.}}% \def\XINT_dtbh_I_end_zb\XINT_dtbh_I_end_za #1#2{\XINT_dtbh_I {#2}}% \def\XINT_dtbh_II_d #1#2#3#4.% {% \xint_gob_til_Z #4\XINT_dtbh_II_z\Z \expandafter\XINT_dtbh_II_e\the\numexpr #2+#4#3.{#1}{#3}% }% \def\XINT_dtbh_II_e #1.% {% \expandafter\XINT_dtbh_II_f\the\numexpr (#1+\xint_c_ii^xv)/\xint_c_ii^xvi-\xint_c_i.#1.% }% \def\XINT_dtbh_II_f #1.#2.% {% \expandafter\XINT_dtbh_II_g\expandafter {\the\numexpr #2-\xint_c_ii^xvi*#1}{#1}% }% \def\XINT_dtbh_II_g #1#2#3{\XINT_dtbh_II_d {#3#1.}{#2}}% \def\XINT_dtbh_II_z\Z\expandafter\XINT_dtbh_II_e\the\numexpr #1+#2.% {% \ifnum #1=\xint_c_ \expandafter\XINT_dtbh_II_end_zb\fi \XINT_dtbh_II_end_za {#1}% }% \def\XINT_dtbh_II_end_za #1#2#3{{}#2#1.\Z.}% \def\XINT_dtbh_II_end_zb\XINT_dtbh_II_end_za #1#2#3{{}#2\Z.}% \def\XINT_dth_III #1#2.% {% \xint_gob_til_Z #2\XINT_dth_end\Z \expandafter\XINT_dth_III\expandafter {\romannumeral-`0\XINT_dth_small #2.#1}% }% \def\XINT_dth_small #1.% {% \expandafter\XINT_smallhex\expandafter {\the\numexpr (#1+\xint_c_ii^vii)/\xint_c_ii^viii-\xint_c_i\expandafter}% \romannumeral-`0\expandafter\XINT_smallhex\expandafter {\the\numexpr #1-((#1+\xint_c_ii^vii)/\xint_c_ii^viii-\xint_c_i)*\xint_c_ii^viii}% }% \def\XINT_dth_end\Z\expandafter\XINT_dth_III\expandafter #1#2\T {% \XINT_dth_end_b #1% }% \def\XINT_dth_end_b #1.{\XINT_dth_end_c }% \def\XINT_dth_end_c #1{\xint_gob_til_zero #1\XINT_dth_end_d 0\space #1}% \def\XINT_dth_end_d 0\space 0#1% {% \xint_gob_til_zero #1\XINT_dth_end_e 0\space #1% }% \def\XINT_dth_end_e 0\space 0#1% {% \xint_gob_til_zero #1\XINT_dth_end_f 0\space #1% }% \def\XINT_dth_end_f 0\space 0{ }% \def\XINT_dtb_III #1#2.% {% \xint_gob_til_Z #2\XINT_dtb_end\Z \expandafter\XINT_dtb_III\expandafter {\romannumeral-`0\XINT_dtb_small #2.#1}% }% \def\XINT_dtb_small #1.% {% \expandafter\XINT_smallbin\expandafter {\the\numexpr (#1+\xint_c_ii^vii)/\xint_c_ii^viii-\xint_c_i\expandafter}% \romannumeral-`0\expandafter\XINT_smallbin\expandafter {\the\numexpr #1-((#1+\xint_c_ii^vii)/\xint_c_ii^viii-\xint_c_i)*\xint_c_ii^viii}% }% \def\XINT_dtb_end\Z\expandafter\XINT_dtb_III\expandafter #1#2\T {% \XINT_dtb_end_b #1% }% \def\XINT_dtb_end_b #1.{\XINT_dtb_end_c }% \def\XINT_dtb_end_c #1#2#3#4#5#6#7#8% {% \expandafter\XINT_dtb_end_d\the\numexpr #1#2#3#4#5#6#7#8\relax }% \edef\XINT_dtb_end_d #1#2#3#4#5#6#7#8#9% {% \noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4#5#6#7#8#9\relax }% % \end{macrocode} % \subsection{\csh{xintHexToDec}} % \lverb!v1.08! % \begin{macrocode} \def\xintHexToDec {\romannumeral0\xinthextodec }% \def\xinthextodec #1% {\expandafter\XINT_htd_checkin\romannumeral-`0#1\W\W\W\W \T }% \def\XINT_htd_checkin #1% {% \xint_UDsignfork #1\XINT_htd_neg -{\XINT_htd_I {0000}#1}% \krof }% \def\XINT_htd_neg {\expandafter\xint_minus_thenstop \romannumeral0\XINT_htd_I {0000}}% \def\XINT_htd_I #1#2#3#4#5% {% \xint_gob_til_W #5\XINT_htd_II_a\W \XINT_htd_I_a {}{"#2#3#4#5}#1\Z\Z\Z\Z }% \def\XINT_htd_II_a \W\XINT_htd_I_a #1#2{\XINT_htd_II_b #2}% \def\XINT_htd_II_b "#1#2#3#4% {% \xint_gob_til_W #1\XINT_htd_II_c #2\XINT_htd_II_ci #3\XINT_htd_II_cii \W\XINT_htd_II_ciii #1#2#3#4% }% \def\XINT_htd_II_c \W\XINT_htd_II_ci \W\XINT_htd_II_cii \W\XINT_htd_II_ciii \W\W\W\W #1\Z\Z\Z\Z\T {% \expandafter\xint_cleanupzeros_andstop \romannumeral0\XINT_rord_main {}#1% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax }% \def\XINT_htd_II_ci #1\XINT_htd_II_ciii #2\W\W\W {\XINT_htd_II_d {}{"#2}{\xint_c_xvi}}% \def\XINT_htd_II_cii\W\XINT_htd_II_ciii #1#2\W\W {\XINT_htd_II_d {}{"#1#2}{\xint_c_ii^viii}}% \def\XINT_htd_II_ciii #1#2#3\W {\XINT_htd_II_d {}{"#1#2#3}{\xint_c_ii^xii}}% \def\XINT_htd_I_a #1#2#3#4#5#6% {% \xint_gob_til_Z #3\XINT_htd_I_end_a\Z \expandafter\XINT_htd_I_b\the\numexpr #2+\xint_c_ii^xvi*#6#5#4#3+\xint_c_x^ix\relax {#1}% }% \def\XINT_htd_I_b 1#1#2#3#4#5#6#7#8#9{\XINT_htd_I_c {#1#2#3#4#5}{#9#8#7#6}}% \def\XINT_htd_I_c #1#2#3{\XINT_htd_I_a {#3#2}{#1}}% \def\XINT_htd_I_end_a\Z\expandafter\XINT_htd_I_b\the\numexpr #1+#2\relax {% \expandafter\XINT_htd_I_end_b\the\numexpr \xint_c_x^v+#1\relax }% \def\XINT_htd_I_end_b 1#1#2#3#4#5% {% \xint_gob_til_zero #1\XINT_htd_I_end_bz0% \XINT_htd_I_end_c #1#2#3#4#5% }% \def\XINT_htd_I_end_c #1#2#3#4#5#6{\XINT_htd_I {#6#5#4#3#2#1000}}% \def\XINT_htd_I_end_bz0\XINT_htd_I_end_c 0#1#2#3#4% {% \xint_gob_til_zeros_iv #1#2#3#4\XINT_htd_I_end_bzz 0000% \XINT_htd_I_end_D {#4#3#2#1}% }% \def\XINT_htd_I_end_D #1#2{\XINT_htd_I {#2#1}}% \def\XINT_htd_I_end_bzz 0000\XINT_htd_I_end_D #1{\XINT_htd_I }% \def\XINT_htd_II_d #1#2#3#4#5#6#7% {% \xint_gob_til_Z #4\XINT_htd_II_end_a\Z \expandafter\XINT_htd_II_e\the\numexpr #2+#3*#7#6#5#4+\xint_c_x^viii\relax {#1}{#3}% }% \def\XINT_htd_II_e 1#1#2#3#4#5#6#7#8{\XINT_htd_II_f {#1#2#3#4}{#5#6#7#8}}% \def\XINT_htd_II_f #1#2#3{\XINT_htd_II_d {#2#3}{#1}}% \def\XINT_htd_II_end_a\Z\expandafter\XINT_htd_II_e \the\numexpr #1+#2\relax #3#4\T {% \XINT_htd_II_end_b #1#3% }% \edef\XINT_htd_II_end_b #1#2#3#4#5#6#7#8% {% \noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4#5#6#7#8\relax }% % \end{macrocode} % \subsection{\csh{xintBinToDec}} % \lverb!v1.08! % \begin{macrocode} \def\xintBinToDec {\romannumeral0\xintbintodec }% \def\xintbintodec #1{\expandafter\XINT_btd_checkin \romannumeral-`0#1\W\W\W\W\W\W\W\W \T }% \def\XINT_btd_checkin #1% {% \xint_UDsignfork #1\XINT_btd_neg -{\XINT_btd_I {000000}#1}% \krof }% \def\XINT_btd_neg {\expandafter\xint_minus_thenstop \romannumeral0\XINT_btd_I {000000}}% \def\XINT_btd_I #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_W #9\XINT_btd_II_a {#2#3#4#5#6#7#8#9}\W \XINT_btd_I_a {}{\csname XINT_sbtd_#2#3#4#5\endcsname*\xint_c_xvi+% \csname XINT_sbtd_#6#7#8#9\endcsname}% #1\Z\Z\Z\Z\Z\Z }% \def\XINT_btd_II_a #1\W\XINT_btd_I_a #2#3{\XINT_btd_II_b #1}% \def\XINT_btd_II_b #1#2#3#4#5#6#7#8% {% \xint_gob_til_W #1\XINT_btd_II_c #2\XINT_btd_II_ci #3\XINT_btd_II_cii #4\XINT_btd_II_ciii #5\XINT_btd_II_civ #6\XINT_btd_II_cv #7\XINT_btd_II_cvi \W\XINT_btd_II_cvii #1#2#3#4#5#6#7#8% }% \def\XINT_btd_II_c #1\XINT_btd_II_cvii \W\W\W\W\W\W\W\W #2\Z\Z\Z\Z\Z\Z\T {% \expandafter\XINT_btd_II_c_end \romannumeral0\XINT_rord_main {}#2% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax }% \edef\XINT_btd_II_c_end #1#2#3#4#5#6% {% \noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4#5#6\relax }% \def\XINT_btd_II_ci #1\XINT_btd_II_cvii #2\W\W\W\W\W\W\W {\XINT_btd_II_d {}{#2}{\xint_c_ii }}% \def\XINT_btd_II_cii #1\XINT_btd_II_cvii #2\W\W\W\W\W\W {\XINT_btd_II_d {}{\csname XINT_sbtd_00#2\endcsname }{\xint_c_iv }}% \def\XINT_btd_II_ciii #1\XINT_btd_II_cvii #2\W\W\W\W\W {\XINT_btd_II_d {}{\csname XINT_sbtd_0#2\endcsname }{\xint_c_viii }}% \def\XINT_btd_II_civ #1\XINT_btd_II_cvii #2\W\W\W\W {\XINT_btd_II_d {}{\csname XINT_sbtd_#2\endcsname}{\xint_c_xvi }}% \def\XINT_btd_II_cv #1\XINT_btd_II_cvii #2#3#4#5#6\W\W\W {% \XINT_btd_II_d {}{\csname XINT_sbtd_#2#3#4#5\endcsname*\xint_c_ii+% #6}{\xint_c_ii^v }% }% \def\XINT_btd_II_cvi #1\XINT_btd_II_cvii #2#3#4#5#6#7\W\W {% \XINT_btd_II_d {}{\csname XINT_sbtd_#2#3#4#5\endcsname*\xint_c_iv+% \csname XINT_sbtd_00#6#7\endcsname}{\xint_c_ii^vi }% }% \def\XINT_btd_II_cvii #1#2#3#4#5#6#7\W {% \XINT_btd_II_d {}{\csname XINT_sbtd_#1#2#3#4\endcsname*\xint_c_viii+% \csname XINT_sbtd_0#5#6#7\endcsname}{\xint_c_ii^vii }% }% \def\XINT_btd_II_d #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_Z #4\XINT_btd_II_end_a\Z \expandafter\XINT_btd_II_e\the\numexpr #2+(\xint_c_x^ix+#3*#9#8#7#6#5#4)\relax {#1}{#3}% }% \def\XINT_btd_II_e 1#1#2#3#4#5#6#7#8#9{\XINT_btd_II_f {#1#2#3}{#4#5#6#7#8#9}}% \def\XINT_btd_II_f #1#2#3{\XINT_btd_II_d {#2#3}{#1}}% \def\XINT_btd_II_end_a\Z\expandafter\XINT_btd_II_e \the\numexpr #1+(#2\relax #3#4\T {% \XINT_btd_II_end_b #1#3% }% \edef\XINT_btd_II_end_b #1#2#3#4#5#6#7#8#9% {% \noexpand\expandafter\space\noexpand\the\numexpr #1#2#3#4#5#6#7#8#9\relax }% \def\XINT_btd_I_a #1#2#3#4#5#6#7#8% {% \xint_gob_til_Z #3\XINT_btd_I_end_a\Z \expandafter\XINT_btd_I_b\the\numexpr #2+\xint_c_ii^viii*#8#7#6#5#4#3+\xint_c_x^ix\relax {#1}% }% \def\XINT_btd_I_b 1#1#2#3#4#5#6#7#8#9{\XINT_btd_I_c {#1#2#3}{#9#8#7#6#5#4}}% \def\XINT_btd_I_c #1#2#3{\XINT_btd_I_a {#3#2}{#1}}% \def\XINT_btd_I_end_a\Z\expandafter\XINT_btd_I_b \the\numexpr #1+\xint_c_ii^viii #2\relax {% \expandafter\XINT_btd_I_end_b\the\numexpr 1000+#1\relax }% \def\XINT_btd_I_end_b 1#1#2#3% {% \xint_gob_til_zeros_iii #1#2#3\XINT_btd_I_end_bz 000% \XINT_btd_I_end_c #1#2#3% }% \def\XINT_btd_I_end_c #1#2#3#4{\XINT_btd_I {#4#3#2#1000}}% \def\XINT_btd_I_end_bz 000\XINT_btd_I_end_c 000{\XINT_btd_I }% % \end{macrocode} % \subsection{\csh{xintBinToHex}} % \lverb!v1.08! % \begin{macrocode} \def\xintBinToHex {\romannumeral0\xintbintohex }% \def\xintbintohex #1% {% \expandafter\XINT_bth_checkin \romannumeral0\expandafter\XINT_num_loop \romannumeral-`0#1\xint_relax\xint_relax \xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\Z \R\R\R\R\R\R\R\R\Z \W\W\W\W\W\W\W\W }% \def\XINT_bth_checkin #1% {% \xint_UDsignfork #1\XINT_bth_N -{\XINT_bth_P #1}% \krof }% \def\XINT_bth_N {\expandafter\xint_minus_thenstop\romannumeral0\XINT_bth_P }% \def\XINT_bth_P {\expandafter\XINT_bth_I\expandafter{\expandafter}% \romannumeral0\XINT_OQ {}}% \def\XINT_bth_I #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_W #9\XINT_bth_end_a\W \expandafter\expandafter\expandafter \XINT_bth_I \expandafter\expandafter\expandafter {\csname XINT_sbth_#9#8#7#6\expandafter\expandafter\expandafter\endcsname \csname XINT_sbth_#5#4#3#2\endcsname #1}% }% \def\XINT_bth_end_a\W \expandafter\expandafter\expandafter \XINT_bth_I \expandafter\expandafter\expandafter #1% {% \XINT_bth_end_b #1% }% \def\XINT_bth_end_b #1\endcsname #2\endcsname #3% {% \xint_gob_til_zero #3\XINT_bth_end_z 0\space #3% }% \def\XINT_bth_end_z0\space 0{ }% % \end{macrocode} % \subsection{\csh{xintHexToBin}} % \lverb!v1.08! % \begin{macrocode} \def\xintHexToBin {\romannumeral0\xinthextobin }% \def\xinthextobin #1% {% \expandafter\XINT_htb_checkin\romannumeral-`0#1GGGGGGGG\T }% \def\XINT_htb_checkin #1% {% \xint_UDsignfork #1\XINT_htb_N -{\XINT_htb_P #1}% \krof }% \def\XINT_htb_N {\expandafter\xint_minus_thenstop\romannumeral0\XINT_htb_P }% \def\XINT_htb_P {\XINT_htb_I_a {}}% \def\XINT_htb_I_a #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_G #9\XINT_htb_II_a G% \expandafter\expandafter\expandafter \XINT_htb_I_b \expandafter\expandafter\expandafter {\csname XINT_shtb_#2\expandafter\expandafter\expandafter\endcsname \csname XINT_shtb_#3\expandafter\expandafter\expandafter\endcsname \csname XINT_shtb_#4\expandafter\expandafter\expandafter\endcsname \csname XINT_shtb_#5\expandafter\expandafter\expandafter\endcsname \csname XINT_shtb_#6\expandafter\expandafter\expandafter\endcsname \csname XINT_shtb_#7\expandafter\expandafter\expandafter\endcsname \csname XINT_shtb_#8\expandafter\expandafter\expandafter\endcsname \csname XINT_shtb_#9\endcsname }{#1}% }% \def\XINT_htb_I_b #1#2{\XINT_htb_I_a {#2#1}}% \def\XINT_htb_II_a G\expandafter\expandafter\expandafter\XINT_htb_I_b {% \expandafter\expandafter\expandafter \XINT_htb_II_b }% \def\XINT_htb_II_b #1#2#3\T {% \XINT_num_loop #2#1% \xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\Z }% % \end{macrocode} % \subsection{\csh{xintCHexToBin}} % \lverb!v1.08! % \begin{macrocode} \def\xintCHexToBin {\romannumeral0\xintchextobin }% \def\xintchextobin #1% {% \expandafter\XINT_chtb_checkin\romannumeral-`0#1% \R\R\R\R\R\R\R\R\Z \W\W\W\W\W\W\W\W }% \def\XINT_chtb_checkin #1% {% \xint_UDsignfork #1\XINT_chtb_N -{\XINT_chtb_P #1}% \krof }% \def\XINT_chtb_N {\expandafter\xint_minus_thenstop\romannumeral0\XINT_chtb_P }% \def\XINT_chtb_P {\expandafter\XINT_chtb_I\expandafter{\expandafter}% \romannumeral0\XINT_OQ {}}% \def\XINT_chtb_I #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_W #9\XINT_chtb_end_a\W \expandafter\expandafter\expandafter \XINT_chtb_I \expandafter\expandafter\expandafter {\csname XINT_shtb_#9\expandafter\expandafter\expandafter\endcsname \csname XINT_shtb_#8\expandafter\expandafter\expandafter\endcsname \csname XINT_shtb_#7\expandafter\expandafter\expandafter\endcsname \csname XINT_shtb_#6\expandafter\expandafter\expandafter\endcsname \csname XINT_shtb_#5\expandafter\expandafter\expandafter\endcsname \csname XINT_shtb_#4\expandafter\expandafter\expandafter\endcsname \csname XINT_shtb_#3\expandafter\expandafter\expandafter\endcsname \csname XINT_shtb_#2\endcsname #1}% }% \def\XINT_chtb_end_a\W\expandafter\expandafter\expandafter \XINT_chtb_I\expandafter\expandafter\expandafter #1% {% \XINT_chtb_end_b #1% \xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\Z }% \def\XINT_chtb_end_b #1\W#2\W#3\W#4\W#5\W#6\W#7\W#8\W\endcsname {% \XINT_num_loop }% \XINT_restorecatcodes_endinput% % \end{macrocode} %\catcode`\<=0 \catcode`\>=11 \catcode`\*=11 \catcode`\/=11 %\let\relax %\def<*xintgcd>{\catcode`\<=12 \catcode`\>=12 \catcode`\*=12 \catcode`\/=12 } % %<*xintgcd> % % \StoreCodelineNo {xintbinhex} % % \section{Package \xintgcdnameimp implementation} % \label{sec:gcdimp} % % \localtableofcontents % % The commenting is currently (\xintdocdate) very sparse. Release |1.09h| has % modified a bit the |\xintTypesetEuclideAlgorithm| and % |\xintTypesetBezoutAlgorithm| layout with respect to line indentation in % particular. And they use the \xinttoolsnameimp |\xintloop| rather than the % Plain \TeX{} or \LaTeX{}'s |\loop|. % % \subsection{Catcodes, \protect\eTeX{} and reload detection} % % The code for reload detection was initially copied from \textsc{Heiko % Oberdiek}'s packages, then modified. % % The method for catcodes was also initially directly inspired by these % packages. % % \begin{macrocode} \begingroup\catcode61\catcode48\catcode32=10\relax% \catcode13=5 % ^^M \endlinechar=13 % \catcode123=1 % { \catcode125=2 % } \catcode64=11 % @ \catcode35=6 % # \catcode44=12 % , \catcode45=12 % - \catcode46=12 % . \catcode58=12 % : \let\z\endgroup \expandafter\let\expandafter\x\csname ver@xintgcd.sty\endcsname \expandafter\let\expandafter\w\csname ver@xintcore.sty\endcsname \expandafter \ifx\csname PackageInfo\endcsname\relax \def\y#1#2{\immediate\write-1{Package #1 Info: #2.}}% \else \def\y#1#2{\PackageInfo{#1}{#2}}% \fi \expandafter \ifx\csname numexpr\endcsname\relax \y{xintgcd}{\numexpr not available, aborting input}% \aftergroup\endinput \else \ifx\x\relax % plain-TeX, first loading of xintgcd.sty \ifx\w\relax % but xintcore.sty not yet loaded. \def\z{\endgroup\input xintcore.sty\relax}% \fi \else \def\empty {}% \ifx\x\empty % LaTeX, first loading, % variable is initialized, but \ProvidesPackage not yet seen \ifx\w\relax % xintcore.sty not yet loaded. \def\z{\endgroup\RequirePackage{xintcore}}% \fi \else \aftergroup\endinput % xintgcd already loaded. \fi \fi \fi \z% \XINTsetupcatcodes% defined in xintkernel.sty % \end{macrocode} % \subsection{Package identification} % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintgcd}% [2014/11/07 v1.1a Euclide algorithm with xint package (jfB)]% % \end{macrocode} % \subsection{\csh{xintGCD}, \csh{xintiiGCD}} % \lverb|The macros of 1.09a benefits from the \xintnum which has been inserted % inside \xintiabs in \xintnameimp; % this is a little overhead but is more convenient for the % user and also makes it easier to use into \xintexpr-essions. 1.1a adds % \xintiiGCD mainly for \xintiiexpr benefit. Perhaps one should always have % had ONLY ii versions from the beginning. And perhaps for sake of % consistency, \xintGCD should be named \xintiGCD? too late.| % \begin{macrocode} \def\xintGCD {\romannumeral0\xintgcd }% \def\xintgcd #1% {% \expandafter\XINT_gcd\expandafter{\romannumeral0\xintiabs {#1}}% }% \def\XINT_gcd #1#2% {% \expandafter\XINT_gcd_fork\romannumeral0\xintiabs {#2}\Z #1\Z }% \def\xintiiGCD {\romannumeral0\xintiigcd }% \def\xintiigcd #1% {% \expandafter\XINT_iigcd\expandafter{\romannumeral0\xintiiabs {#1}}% }% \def\XINT_iigcd #1#2% {% \expandafter\XINT_gcd_fork\romannumeral0\xintiiabs {#2}\Z #1\Z }% % \end{macrocode} % \lverb|& % Ici #3#4=A, #1#2=B| % \begin{macrocode} \def\XINT_gcd_fork #1#2\Z #3#4\Z {% \xint_UDzerofork #1\XINT_gcd_BisZero #3\XINT_gcd_AisZero 0\XINT_gcd_loop \krof {#1#2}{#3#4}% }% \def\XINT_gcd_AisZero #1#2{ #1}% \def\XINT_gcd_BisZero #1#2{ #2}% \def\XINT_gcd_CheckRem #1#2\Z {% \xint_gob_til_zero #1\xint_gcd_end0\XINT_gcd_loop {#1#2}% }% \def\xint_gcd_end0\XINT_gcd_loop #1#2{ #2}% % \end{macrocode} % \lverb|#1=B, #2=A| % \begin{macrocode} \def\XINT_gcd_loop #1#2% {% \expandafter\expandafter\expandafter \XINT_gcd_CheckRem \expandafter\xint_secondoftwo \romannumeral0\XINT_div_prepare {#1}{#2}\Z {#1}% }% % \end{macrocode} % \subsection{\csh{xintLCM}, \csh{xintiiLCM}} % \lverb|New with 1.09a. Inadvertent use of \xintiQuo which was promoted at the % same time to add the \xintnum overhead. So with 1.09f \xintiiQuo without the % overhead. However \xintiabs has the \xintnum thing. The advantage is that we % can thus use lcm in \xintexpr. The disadvantage is that this has overhead in % \xintiiexpr. Thus 1.1a has \xintiiLCM.| % \begin{macrocode} \def\xintLCM {\romannumeral0\xintlcm}% \def\xintlcm #1% {% \expandafter\XINT_lcm\expandafter{\romannumeral0\xintiabs {#1}}% }% \def\XINT_lcm #1#2% {% \expandafter\XINT_lcm_fork\romannumeral0\xintiabs {#2}\Z #1\Z }% \def\xintiiLCM {\romannumeral0\xintiilcm}% \def\xintiilcm #1% {% \expandafter\XINT_iilcm\expandafter{\romannumeral0\xintiiabs {#1}}% }% \def\XINT_iilcm #1#2% {% \expandafter\XINT_lcm_fork\romannumeral0\xintiiabs {#2}\Z #1\Z }% \def\XINT_lcm_fork #1#2\Z #3#4\Z {% \xint_UDzerofork #1\XINT_lcm_BisZero #3\XINT_lcm_AisZero 0\expandafter \krof \XINT_lcm_notzero\expandafter{\romannumeral0\XINT_gcd_loop {#1#2}{#3#4}}% {#1#2}{#3#4}% }% \def\XINT_lcm_AisZero #1#2#3#4#5{ 0}% \def\XINT_lcm_BisZero #1#2#3#4#5{ 0}% \def\XINT_lcm_notzero #1#2#3{\xintiimul {#2}{\xintiiQuo{#3}{#1}}}% % \end{macrocode} % \subsection{\csh{xintBezout}} % \lverb|1.09a inserts use of \xintnum| % \begin{macrocode} \def\xintBezout {\romannumeral0\xintbezout }% \def\xintbezout #1% {% \expandafter\xint_bezout\expandafter {\romannumeral0\xintnum{#1}}% }% \def\xint_bezout #1#2% {% \expandafter\XINT_bezout_fork \romannumeral0\xintnum{#2}\Z #1\Z }% % \end{macrocode} % \lverb|#3#4 = A, #1#2=B| % \begin{macrocode} \def\XINT_bezout_fork #1#2\Z #3#4\Z {% \xint_UDzerosfork #1#3\XINT_bezout_botharezero #10\XINT_bezout_secondiszero #30\XINT_bezout_firstiszero 00{\xint_UDsignsfork #1#3\XINT_bezout_minusminus % A < 0, B < 0 #1-\XINT_bezout_minusplus % A > 0, B < 0 #3-\XINT_bezout_plusminus % A < 0, B > 0 --\XINT_bezout_plusplus % A > 0, B > 0 \krof }% \krof {#2}{#4}#1#3{#3#4}{#1#2}% #1#2=B, #3#4=A }% \edef\XINT_bezout_botharezero #1#2#3#4#5#6% {% \noexpand\xintError:NoBezoutForZeros\space {0}{0}{0}{0}{0}% }% % \end{macrocode} % \lverb|& % attention première entrée doit être ici (-1)^n donc 1$\ % #4#2 = 0 = A, B = #3#1| % \begin{macrocode} \def\XINT_bezout_firstiszero #1#2#3#4#5#6% {% \xint_UDsignfork #3{ {0}{#3#1}{0}{1}{#1}}% -{ {0}{#3#1}{0}{-1}{#1}}% \krof }% % \end{macrocode} % \lverb|#4#2 = A, B = #3#1 = 0| % \begin{macrocode} \def\XINT_bezout_secondiszero #1#2#3#4#5#6% {% \xint_UDsignfork #4{ {#4#2}{0}{-1}{0}{#2}}% -{ {#4#2}{0}{1}{0}{#2}}% \krof }% % \end{macrocode} % \lverb|#4#2= A < 0, #3#1 = B < 0| % \begin{macrocode} \def\XINT_bezout_minusminus #1#2#3#4% {% \expandafter\XINT_bezout_mm_post \romannumeral0\XINT_bezout_loop_a 1{#1}{#2}1001% }% \def\XINT_bezout_mm_post #1#2% {% \expandafter\XINT_bezout_mm_postb\expandafter {\romannumeral0\xintiiopp{#2}}{\romannumeral0\xintiiopp{#1}}% }% \def\XINT_bezout_mm_postb #1#2% {% \expandafter\XINT_bezout_mm_postc\expandafter {#2}{#1}% }% \edef\XINT_bezout_mm_postc #1#2#3#4#5% {% \space {#4}{#5}{#1}{#2}{#3}% }% % \end{macrocode} % \lverb|minusplus #4#2= A > 0, B < 0| % \begin{macrocode} \def\XINT_bezout_minusplus #1#2#3#4% {% \expandafter\XINT_bezout_mp_post \romannumeral0\XINT_bezout_loop_a 1{#1}{#4#2}1001% }% \def\XINT_bezout_mp_post #1#2% {% \expandafter\XINT_bezout_mp_postb\expandafter {\romannumeral0\xintiiopp {#2}}{#1}% }% \edef\XINT_bezout_mp_postb #1#2#3#4#5% {% \space {#4}{#5}{#2}{#1}{#3}% }% % \end{macrocode} % \lverb|plusminus A < 0, B > 0| % \begin{macrocode} \def\XINT_bezout_plusminus #1#2#3#4% {% \expandafter\XINT_bezout_pm_post \romannumeral0\XINT_bezout_loop_a 1{#3#1}{#2}1001% }% \def\XINT_bezout_pm_post #1% {% \expandafter \XINT_bezout_pm_postb \expandafter {\romannumeral0\xintiiopp{#1}}% }% \edef\XINT_bezout_pm_postb #1#2#3#4#5% {% \space {#4}{#5}{#1}{#2}{#3}% }% % \end{macrocode} % \lverb|plusplus| % \begin{macrocode} \def\XINT_bezout_plusplus #1#2#3#4% {% \expandafter\XINT_bezout_pp_post \romannumeral0\XINT_bezout_loop_a 1{#3#1}{#4#2}1001% }% % \end{macrocode} % \lverb|la parité (-1)^N est en #1, et on la jette ici.| % \begin{macrocode} \edef\XINT_bezout_pp_post #1#2#3#4#5% {% \space {#4}{#5}{#1}{#2}{#3}% }% % \end{macrocode} % \lverb|& % n = 0: 1BAalpha(0)beta(0)alpha(-1)beta(-1)$\ % n général: % {(-1)^n}{r(n-1)}{r(n-2)}{alpha(n-1)}{beta(n-1)}{alpha(n-2)}{beta(n-2)}$\ % #2 = B, #3 = A| % \begin{macrocode} \def\XINT_bezout_loop_a #1#2#3% {% \expandafter\XINT_bezout_loop_b \expandafter{\the\numexpr -#1\expandafter }% \romannumeral0\XINT_div_prepare {#2}{#3}{#2}% }% % \end{macrocode} % \lverb|& % Le q(n) a ici une existence éphémère, dans le version Bezout Algorithm % il faudra le conserver. On voudra à la fin % {{q(n)}{r(n)}{alpha(n)}{beta(n)}}. % De plus ce n'est plus (-1)^n que l'on veut mais n. (ou dans un autre ordre)$\ % {-(-1)^n}{q(n)}{r(n)}{r(n-1)}{alpha(n-1)}{beta(n-1)}{alpha(n-2)}{beta(n-2)}| % \begin{macrocode} \def\XINT_bezout_loop_b #1#2#3#4#5#6#7#8% {% \expandafter \XINT_bezout_loop_c \expandafter {\romannumeral0\xintiiadd{\XINT_Mul{#5}{#2}}{#7}}% {\romannumeral0\xintiiadd{\XINT_Mul{#6}{#2}}{#8}}% {#1}{#3}{#4}{#5}{#6}% }% % \end{macrocode} % \lverb|{alpha(n)}{->beta(n)}{-(-1)^n}{r(n)}{r(n-1)}{alpha(n-1)}{beta(n-1)}| % \begin{macrocode} \def\XINT_bezout_loop_c #1#2% {% \expandafter \XINT_bezout_loop_d \expandafter {#2}{#1}% }% % \end{macrocode} % \lverb|{beta(n)}{alpha(n)}{(-1)^(n+1)}{r(n)}{r(n-1)}{alpha(n-1)}{beta(n-1)}| % \begin{macrocode} \def\XINT_bezout_loop_d #1#2#3#4#5% {% \XINT_bezout_loop_e #4\Z {#3}{#5}{#2}{#1}% }% % \end{macrocode} % \lverb|r(n)\Z {(-1)^(n+1)}{r(n-1)}{alpha(n)}{beta(n)}{alpha(n-1)}{beta(n-1)}| % \begin{macrocode} \def\XINT_bezout_loop_e #1#2\Z {% \xint_gob_til_zero #1\xint_bezout_loop_exit0\XINT_bezout_loop_f {#1#2}% }% % \end{macrocode} % \lverb|{r(n)}{(-1)^(n+1)}{r(n-1)}{alpha(n)}{beta(n)}{alpha(n-1)}{beta(n-1)}| % \begin{macrocode} \def\XINT_bezout_loop_f #1#2% {% \XINT_bezout_loop_a {#2}{#1}% }% % \end{macrocode} % \lverb|{(-1)^(n+1)}{r(n)}{r(n-1)}{alpha(n)}{beta(n)}{alpha(n-1)}{beta(n-1)} % et itération| % \begin{macrocode} \def\xint_bezout_loop_exit0\XINT_bezout_loop_f #1#2% {% \ifcase #2 \or \expandafter\XINT_bezout_exiteven \else\expandafter\XINT_bezout_exitodd \fi }% \edef\XINT_bezout_exiteven #1#2#3#4#5% {% \space {#5}{#4}{#1}% }% \edef\XINT_bezout_exitodd #1#2#3#4#5% {% \space {-#5}{-#4}{#1}% }% % \end{macrocode} % \subsection{\csh{xintEuclideAlgorithm}} % \lverb|& % Pour Euclide: % {N}{A}{D=r(n)}{B}{q1}{r1}{q2}{r2}{q3}{r3}....{qN}{rN=0}$\ % u<2n> = u<2n+3>u<2n+2> + u<2n+4> à la n ième étape| % \begin{macrocode} \def\xintEuclideAlgorithm {\romannumeral0\xinteuclidealgorithm }% \def\xinteuclidealgorithm #1% {% \expandafter \XINT_euc \expandafter{\romannumeral0\xintiabs {#1}}% }% \def\XINT_euc #1#2% {% \expandafter\XINT_euc_fork \romannumeral0\xintiabs {#2}\Z #1\Z }% % \end{macrocode} % \lverb|Ici #3#4=A, #1#2=B| % \begin{macrocode} \def\XINT_euc_fork #1#2\Z #3#4\Z {% \xint_UDzerofork #1\XINT_euc_BisZero #3\XINT_euc_AisZero 0\XINT_euc_a \krof {0}{#1#2}{#3#4}{{#3#4}{#1#2}}{}\Z }% % \end{macrocode} % \lverb|& % Le {} pour protéger {{A}{B}} si on s'arrête après une étape (B divise % A). % On va renvoyer:$\ % {N}{A}{D=r(n)}{B}{q1}{r1}{q2}{r2}{q3}{r3}....{qN}{rN=0}| % \begin{macrocode} \def\XINT_euc_AisZero #1#2#3#4#5#6{ {1}{0}{#2}{#2}{0}{0}}% \def\XINT_euc_BisZero #1#2#3#4#5#6{ {1}{0}{#3}{#3}{0}{0}}% % \end{macrocode} % \lverb|& % {n}{rn}{an}{{qn}{rn}}...{{A}{B}}{}\Z$\ % a(n) = r(n-1). Pour n=0 on a juste {0}{B}{A}{{A}{B}}{}\Z$\ % \XINT_div_prepare {u}{v} divise v par u| % \begin{macrocode} \def\XINT_euc_a #1#2#3% {% \expandafter\XINT_euc_b \expandafter {\the\numexpr #1+1\expandafter }% \romannumeral0\XINT_div_prepare {#2}{#3}{#2}% }% % \end{macrocode} % \lverb|{n+1}{q(n+1)}{r(n+1)}{rn}{{qn}{rn}}...| % \begin{macrocode} \def\XINT_euc_b #1#2#3#4% {% \XINT_euc_c #3\Z {#1}{#3}{#4}{{#2}{#3}}% }% % \end{macrocode} % \lverb|r(n+1)\Z {n+1}{r(n+1)}{r(n)}{{q(n+1)}{r(n+1)}}{{qn}{rn}}...$\ % Test si r(n+1) est nul.| % \begin{macrocode} \def\XINT_euc_c #1#2\Z {% \xint_gob_til_zero #1\xint_euc_end0\XINT_euc_a }% % \end{macrocode} % \lverb|& % {n+1}{r(n+1)}{r(n)}{{q(n+1)}{r(n+1)}}...{}\Z % Ici r(n+1) = 0. On arrête on se prépare à inverser % {n+1}{0}{r(n)}{{q(n+1)}{r(n+1)}}.....{{q1}{r1}}{{A}{B}}{}\Z$\ % On veut renvoyer: {N=n+1}{A}{D=r(n)}{B}{q1}{r1}{q2}{r2}{q3}{r3}....{qN}{rN=0}| % \begin{macrocode} \def\xint_euc_end0\XINT_euc_a #1#2#3#4\Z% {% \expandafter\xint_euc_end_ \romannumeral0% \XINT_rord_main {}#4{{#1}{#3}}% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax }% \edef\xint_euc_end_ #1#2#3% {% \space {#1}{#3}{#2}% }% % \end{macrocode} % \subsection{\csh{xintBezoutAlgorithm}} % \lverb|& % Pour Bezout: objectif, renvoyer$\ % {N}{A}{0}{1}{D=r(n)}{B}{1}{0}{q1}{r1}{alpha1=q1}{beta1=1}$\ % {q2}{r2}{alpha2}{beta2}....{qN}{rN=0}{alphaN=A/D}{betaN=B/D}$\ % alpha0=1, beta0=0, alpha(-1)=0, beta(-1)=1| % \begin{macrocode} \def\xintBezoutAlgorithm {\romannumeral0\xintbezoutalgorithm }% \def\xintbezoutalgorithm #1% {% \expandafter \XINT_bezalg \expandafter{\romannumeral0\xintiabs {#1}}% }% \def\XINT_bezalg #1#2% {% \expandafter\XINT_bezalg_fork \romannumeral0\xintiabs {#2}\Z #1\Z }% % \end{macrocode} % \lverb|Ici #3#4=A, #1#2=B| % \begin{macrocode} \def\XINT_bezalg_fork #1#2\Z #3#4\Z {% \xint_UDzerofork #1\XINT_bezalg_BisZero #3\XINT_bezalg_AisZero 0\XINT_bezalg_a \krof 0{#1#2}{#3#4}1001{{#3#4}{#1#2}}{}\Z }% \def\XINT_bezalg_AisZero #1#2#3\Z{ {1}{0}{0}{1}{#2}{#2}{1}{0}{0}{0}{0}{1}}% \def\XINT_bezalg_BisZero #1#2#3#4\Z{ {1}{0}{0}{1}{#3}{#3}{1}{0}{0}{0}{0}{1}}% % \end{macrocode} % \lverb|& % pour préparer l'étape n+1 il faut % {n}{r(n)}{r(n-1)}{alpha(n)}{beta(n)}{alpha(n-1)}{beta(n-1)}& % {{q(n)}{r(n)}{alpha(n)}{beta(n)}}... % division de #3 par #2| % \begin{macrocode} \def\XINT_bezalg_a #1#2#3% {% \expandafter\XINT_bezalg_b \expandafter {\the\numexpr #1+1\expandafter }% \romannumeral0\XINT_div_prepare {#2}{#3}{#2}% }% % \end{macrocode} % \lverb|& % {n+1}{q(n+1)}{r(n+1)}{r(n)}{alpha(n)}{beta(n)}{alpha(n-1)}{beta(n-1)}...| % \begin{macrocode} \def\XINT_bezalg_b #1#2#3#4#5#6#7#8% {% \expandafter\XINT_bezalg_c\expandafter {\romannumeral0\xintiiadd {\xintiiMul {#6}{#2}}{#8}}% {\romannumeral0\xintiiadd {\xintiiMul {#5}{#2}}{#7}}% {#1}{#2}{#3}{#4}{#5}{#6}% }% % \end{macrocode} % \lverb|& % {beta(n+1)}{alpha(n+1)}{n+1}{q(n+1)}{r(n+1)}{r(n)}{alpha(n)}{beta(n}}| % \begin{macrocode} \def\XINT_bezalg_c #1#2#3#4#5#6% {% \expandafter\XINT_bezalg_d\expandafter {#2}{#3}{#4}{#5}{#6}{#1}% }% % \end{macrocode} % \lverb|{alpha(n+1)}{n+1}{q(n+1)}{r(n+1)}{r(n)}{beta(n+1)}| % \begin{macrocode} \def\XINT_bezalg_d #1#2#3#4#5#6#7#8% {% \XINT_bezalg_e #4\Z {#2}{#4}{#5}{#1}{#6}{#7}{#8}{{#3}{#4}{#1}{#6}}% }% % \end{macrocode} % \lverb|r(n+1)\Z {n+1}{r(n+1)}{r(n)}{alpha(n+1)}{beta(n+1)}$\ % {alpha(n)}{beta(n)}{q,r,alpha,beta(n+1)}$\ % Test si r(n+1) est nul.| % \begin{macrocode} \def\XINT_bezalg_e #1#2\Z {% \xint_gob_til_zero #1\xint_bezalg_end0\XINT_bezalg_a }% % \end{macrocode} % \lverb|& % Ici r(n+1) = 0. On arrête on se prépare à inverser.$\ % {n+1}{r(n+1)}{r(n)}{alpha(n+1)}{beta(n+1)}{alpha(n)}{beta(n)}$\ % {q,r,alpha,beta(n+1)}...{{A}{B}}{}\Z$\ % On veut renvoyer$\ % {N}{A}{0}{1}{D=r(n)}{B}{1}{0}{q1}{r1}{alpha1=q1}{beta1=1}$\ % {q2}{r2}{alpha2}{beta2}....{qN}{rN=0}{alphaN=A/D}{betaN=B/D}| % \begin{macrocode} \def\xint_bezalg_end0\XINT_bezalg_a #1#2#3#4#5#6#7#8\Z {% \expandafter\xint_bezalg_end_ \romannumeral0% \XINT_rord_main {}#8{{#1}{#3}}% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax }% % \end{macrocode} % \lverb|& % {N}{D}{A}{B}{q1}{r1}{alpha1=q1}{beta1=1}{q2}{r2}{alpha2}{beta2}$\ % ....{qN}{rN=0}{alphaN=A/D}{betaN=B/D}$\ % On veut renvoyer$\ % {N}{A}{0}{1}{D=r(n)}{B}{1}{0}{q1}{r1}{alpha1=q1}{beta1=1}$\ % {q2}{r2}{alpha2}{beta2}....{qN}{rN=0}{alphaN=A/D}{betaN=B/D}| % \begin{macrocode} \edef\xint_bezalg_end_ #1#2#3#4% {% \space {#1}{#3}{0}{1}{#2}{#4}{1}{0}% }% % \end{macrocode} % \subsection{\csh{xintGCDof}} % \lverb|New with 1.09a. I also tried an optimization (not working two by two) % which I thought was clever but % it seemed to be less efficient ...| % \begin{macrocode} \def\xintGCDof {\romannumeral0\xintgcdof }% \def\xintgcdof #1{\expandafter\XINT_gcdof_a\romannumeral-`0#1\relax }% \def\XINT_gcdof_a #1{\expandafter\XINT_gcdof_b\romannumeral-`0#1\Z }% \def\XINT_gcdof_b #1\Z #2{\expandafter\XINT_gcdof_c\romannumeral-`0#2\Z {#1}\Z}% \def\XINT_gcdof_c #1{\xint_gob_til_relax #1\XINT_gcdof_e\relax\XINT_gcdof_d #1}% \def\XINT_gcdof_d #1\Z {\expandafter\XINT_gcdof_b\romannumeral0\xintgcd {#1}}% \def\XINT_gcdof_e #1\Z #2\Z { #2}% % \end{macrocode} % \subsection{\csh{xintLCMof}} % \lverb|New with 1.09a| % \begin{macrocode} \def\xintLCMof {\romannumeral0\xintlcmof }% \def\xintlcmof #1{\expandafter\XINT_lcmof_a\romannumeral-`0#1\relax }% \def\XINT_lcmof_a #1{\expandafter\XINT_lcmof_b\romannumeral-`0#1\Z }% \def\XINT_lcmof_b #1\Z #2{\expandafter\XINT_lcmof_c\romannumeral-`0#2\Z {#1}\Z}% \def\XINT_lcmof_c #1{\xint_gob_til_relax #1\XINT_lcmof_e\relax\XINT_lcmof_d #1}% \def\XINT_lcmof_d #1\Z {\expandafter\XINT_lcmof_b\romannumeral0\xintlcm {#1}}% \def\XINT_lcmof_e #1\Z #2\Z { #2}% % \end{macrocode} % \subsection{\csh{xintTypesetEuclideAlgorithm}} % \lverb|& % TYPESETTING % % Organisation: % % {N}{A}{D}{B}{q1}{r1}{q2}{r2}{q3}{r3}....{qN}{rN=0}$\ % \U1 = N = nombre d'étapes, \U3 = PGCD, \U2 = A, \U4=B % q1 = \U5, q2 = \U7 --> qn = \U<2n+3>, rn = \U<2n+4> % bn = rn. B = r0. A=r(-1) % % r(n-2) = q(n)r(n-1)+r(n) (n e étape) % % \U{2n} = \U{2n+3} \times \U{2n+2} + \U{2n+4}, n e étape. % (avec n entre 1 et N) % % 1.09h uses \xintloop, and \par rather than \endgraf; and \par rather than % \hfill\break| % \begin{macrocode} \def\xintTypesetEuclideAlgorithm {% \unless\ifdefined\xintAssignArray \errmessage {xintgcd: package xinttools is required for \string\xintTypesetEuclideAlgorithm}% \expandafter\xint_gobble_iii \fi \XINT_TypesetEuclideAlgorithm }% \def\XINT_TypesetEuclideAlgorithm #1#2% {% l'algo remplace #1 et #2 par |#1| et |#2| \par \begingroup \xintAssignArray\xintEuclideAlgorithm {#1}{#2}\to\U \edef\A{\U2}\edef\B{\U4}\edef\N{\U1}% \setbox 0 \vbox{\halign {$##$\cr \A\cr \B \cr}}% \count 255 1 \xintloop \indent\hbox to \wd 0 {\hfil$\U{\numexpr 2*\count255\relax}$}% ${} = \U{\numexpr 2*\count255 + 3\relax} \times \U{\numexpr 2*\count255 + 2\relax} + \U{\numexpr 2*\count255 + 4\relax}$% \ifnum \count255 < \N \par \advance \count255 1 \repeat \endgroup }% % \end{macrocode} % \subsection{\csh{xintTypesetBezoutAlgorithm}} % \lverb|& % Pour Bezout on a: % {N}{A}{0}{1}{D=r(n)}{B}{1}{0}{q1}{r1}{alpha1=q1}{beta1=1}$\ % {q2}{r2}{alpha2}{beta2}....{qN}{rN=0}{alphaN=A/D}{betaN=B/D}% % Donc 4N+8 termes: % U1 = N, U2= A, U5=D, U6=B, q1 = U9, qn = U{4n+5}, n au moins 1$\ % rn = U{4n+6}, n au moins -1$\ % alpha(n) = U{4n+7}, n au moins -1$\ % beta(n) = U{4n+8}, n au moins -1 % % 1.09h uses \xintloop, and \par rather than \endgraf; and no more \parindent0pt % | % \begin{macrocode} \def\xintTypesetBezoutAlgorithm {% \unless\ifdefined\xintAssignArray \errmessage {xintgcd: package xinttools is required for \string\xintTypesetBezoutAlgorithm}% \expandafter\xint_gobble_iii \fi \XINT_TypesetBezoutAlgorithm }% \def\XINT_TypesetBezoutAlgorithm #1#2% {% \par \begingroup \xintAssignArray\xintBezoutAlgorithm {#1}{#2}\to\BEZ \edef\A{\BEZ2}\edef\B{\BEZ6}\edef\N{\BEZ1}% A = |#1|, B = |#2| \setbox 0 \vbox{\halign {$##$\cr \A\cr \B \cr}}% \count255 1 \xintloop \indent\hbox to \wd 0 {\hfil$\BEZ{4*\count255 - 2}$}% ${} = \BEZ{4*\count255 + 5} \times \BEZ{4*\count255 + 2} + \BEZ{4*\count255 + 6}$\hfill\break \hbox to \wd 0 {\hfil$\BEZ{4*\count255 +7}$}% ${} = \BEZ{4*\count255 + 5} \times \BEZ{4*\count255 + 3} + \BEZ{4*\count255 - 1}$\hfill\break \hbox to \wd 0 {\hfil$\BEZ{4*\count255 +8}$}% ${} = \BEZ{4*\count255 + 5} \times \BEZ{4*\count255 + 4} + \BEZ{4*\count255 }$ \par \ifnum \count255 < \N \advance \count255 1 \repeat \edef\U{\BEZ{4*\N + 4}}% \edef\V{\BEZ{4*\N + 3}}% \edef\D{\BEZ5}% \ifodd\N $\U\times\A - \V\times \B = -\D$% \else $\U\times\A - \V\times\B = \D$% \fi \par \endgroup }% \XINT_restorecatcodes_endinput% % \end{macrocode} %\catcode`\<=0 \catcode`\>=11 \catcode`\*=11 \catcode`\/=11 %\let\relax %\def<*xintfrac>{\catcode`\<=12 \catcode`\>=12 \catcode`\*=12 \catcode`\/=12 } % %<*xintfrac> % % \StoreCodelineNo {xintgcd} % % \section{Package \xintfracnameimp implementation} % \label{sec:fracimp} % % \localtableofcontents % % The commenting is currently (\xintdocdate) very sparse. % % \subsection{Catcodes, \protect\eTeX{} and reload detection} % % The code for reload detection was initially copied from \textsc{Heiko % Oberdiek}'s packages, then modified. % % The method for catcodes was also initially directly inspired by these % packages. % % \begin{macrocode} \begingroup\catcode61\catcode48\catcode32=10\relax% \catcode13=5 % ^^M \endlinechar=13 % \catcode123=1 % { \catcode125=2 % } \catcode64=11 % @ \catcode35=6 % # \catcode44=12 % , \catcode45=12 % - \catcode46=12 % . \catcode58=12 % : \let\z\endgroup \expandafter\let\expandafter\x\csname ver@xintfrac.sty\endcsname \expandafter\let\expandafter\w\csname ver@xint.sty\endcsname \expandafter \ifx\csname PackageInfo\endcsname\relax \def\y#1#2{\immediate\write-1{Package #1 Info: #2.}}% \else \def\y#1#2{\PackageInfo{#1}{#2}}% \fi \expandafter \ifx\csname numexpr\endcsname\relax \y{xintfrac}{\numexpr not available, aborting input}% \aftergroup\endinput \else \ifx\x\relax % plain-TeX, first loading of xintfrac.sty \ifx\w\relax % but xint.sty not yet loaded. \def\z{\endgroup\input xint.sty\relax}% \fi \else \def\empty {}% \ifx\x\empty % LaTeX, first loading, % variable is initialized, but \ProvidesPackage not yet seen \ifx\w\relax % xint.sty not yet loaded. \def\z{\endgroup\RequirePackage{xint}}% \fi \else \aftergroup\endinput % xintfrac already loaded. \fi \fi \fi \z% \XINTsetupcatcodes% defined in xintkernel.sty % \end{macrocode} % \subsection{Package identification} % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintfrac}% [2014/11/07 v1.1a Expandable operations on fractions (jfB)]% \chardef\xint_c_xviii 18 % \end{macrocode} % \subsection{\csh{XINT_cntSgnFork}} % \lverb|1.09i. Used internally, #1 must expand to \m@ne, \z@, or \@ne or % equivalent. Does not insert a space token to stop a romannumeral0 expansion.| % \begin{macrocode} \def\XINT_cntSgnFork #1% {% \ifcase #1\expandafter\xint_secondofthree \or\expandafter\xint_thirdofthree \else\expandafter\xint_firstofthree \fi }% % \end{macrocode} % \subsection{\csh{xintLen}} % \begin{macrocode} \def\xintLen {\romannumeral0\xintlen }% \def\xintlen #1% {% \expandafter\XINT_flen\romannumeral0\XINT_infrac {#1}% }% \def\XINT_flen #1#2#3% {% \expandafter\space \the\numexpr -1+\XINT_Abs {#1}+\XINT_Len {#2}+\XINT_Len {#3}\relax }% % \end{macrocode} % \subsection{\csh{XINT_lenrord_loop}} % \begin{macrocode} \def\XINT_lenrord_loop #1#2#3#4#5#6#7#8#9% {% faire \romannumeral-`0\XINT_lenrord_loop 0{}#1\Z\W\W\W\W\W\W\W\Z \xint_gob_til_W #9\XINT_lenrord_W\W \expandafter\XINT_lenrord_loop\expandafter {\the\numexpr #1+7}{#9#8#7#6#5#4#3#2}% }% \def\XINT_lenrord_W\W\expandafter\XINT_lenrord_loop\expandafter #1#2#3\Z {% \expandafter\XINT_lenrord_X\expandafter {#1}#2\Z }% \def\XINT_lenrord_X #1#2\Z {% \XINT_lenrord_Y #2\R\R\R\R\R\R\T {#1}% }% \def\XINT_lenrord_Y #1#2#3#4#5#6#7#8\T {% \xint_gob_til_W #7\XINT_lenrord_Z \xint_c_viii #6\XINT_lenrord_Z \xint_c_vii #5\XINT_lenrord_Z \xint_c_vi #4\XINT_lenrord_Z \xint_c_v #3\XINT_lenrord_Z \xint_c_iv #2\XINT_lenrord_Z \xint_c_iii \W\XINT_lenrord_Z \xint_c_ii \Z }% \def\XINT_lenrord_Z #1#2\Z #3% retourne: {longueur}renverse\Z {% \expandafter{\the\numexpr #3-#1\relax}% }% % \end{macrocode} % \subsection{\csh{XINT_outfrac}} % \lverb|& % 1.06a version now outputs 0/1[0] and not 0[0] in case of zero. More generally % all macros have been checked in xintfrac, xintseries, xintcfrac, to make sure % the output format for fractions was always A/B[n]. (except \xintIrr, % \xintJrr, \xintRawWithZeros) % % The problem with statements like those in the previous paragraph is that it is % hard to maintain consistencies across relases. % % Months later (2014/10/22): perhaps I should document what this macro does % before I forget? from {e}{N}{D} it outputs N/D[e], checking in passing if % D=0 or if N=0. It also makes sure D is not < 0. I am not sure but I don't % think there is any place in the code which could call \XINT_outfrac with a D % < 0, but I should check.| % \begin{macrocode} \def\XINT_outfrac #1#2#3% {% \ifcase\XINT_cntSgn #3\Z \expandafter \XINT_outfrac_divisionbyzero \or \expandafter \XINT_outfrac_P \else \expandafter \XINT_outfrac_N \fi {#2}{#3}[#1]% }% \def\XINT_outfrac_divisionbyzero #1#2{\xintError:DivisionByZero\space #1/0}% \edef\XINT_outfrac_P #1#2% {% \noexpand\if0\noexpand\XINT_Sgn #1\noexpand\Z \noexpand\expandafter\noexpand\XINT_outfrac_Zero \noexpand\fi \space #1/#2% }% \def\XINT_outfrac_Zero #1[#2]{ 0/1[0]}% \def\XINT_outfrac_N #1#2% {% \expandafter\XINT_outfrac_N_a\expandafter {\romannumeral0\XINT_opp #2}{\romannumeral0\XINT_opp #1}% }% \def\XINT_outfrac_N_a #1#2% {% \expandafter\XINT_outfrac_P\expandafter {#2}{#1}% }% % \end{macrocode} % \subsection{\csh{XINT_inFrac}} % \lverb|Extended in 1.07 to accept scientific notation on input. With lowercase % e only. The \xintexpr parser does accept uppercase E also. Ah, by the way, % perhaps I should at least say what this macro does? (belated addition % 2014/10/22...), before I forget! It prepares the fraction in the internal % format {exponent}{Numerator}{Denominator} where Denominator is at least 1.| % \begin{macrocode} \def\XINT_inFrac {\romannumeral0\XINT_infrac }% \def\XINT_infrac #1% {% \expandafter\XINT_infrac_ \romannumeral-`0#1[\W]\Z\T }% \def\XINT_infrac_ #1[#2#3]#4\Z {% \xint_UDwfork #2\XINT_infrac_A \W\XINT_infrac_B \krof #1[#2#3]#4% }% \def\XINT_infrac_A #1[\W]\T {% \XINT_frac #1/\W\Z }% \def\XINT_infrac_B #1% {% \xint_gob_til_zero #1\XINT_infrac_Zero0\XINT_infrac_BB #1% }% \def\XINT_infrac_BB #1[\W]\T {\XINT_infrac_BC #1/\W\Z }% \def\XINT_infrac_BC #1/#2#3\Z {% \xint_UDwfork #2\XINT_infrac_BCa \W{\expandafter\XINT_infrac_BCb \romannumeral-`0#2}% \krof #3\Z #1\Z }% \def\XINT_infrac_BCa \Z #1[#2]#3\Z { {#2}{#1}{1}}% \def\XINT_infrac_BCb #1[#2]/\W\Z #3\Z { {#2}{#3}{#1}}% \def\XINT_infrac_Zero #1\T { {0}{0}{1}}% % \end{macrocode} % \subsection{\csh{XINT_frac}} % \lverb|Extended in 1.07 to recognize and accept scientific notation both at % the numerator and (possible) denominator. Only a lowercase e will do here, but % uppercase E is possible within an \xintexpr..\relax | % \begin{macrocode} \def\XINT_frac #1/#2#3\Z {% \xint_UDwfork #2\XINT_frac_A \W{\expandafter\XINT_frac_U \romannumeral-`0#2}% \krof #3e\W\Z #1e\W\Z }% \def\XINT_frac_U #1e#2#3\Z {% \xint_UDwfork #2\XINT_frac_Ua \W{\XINT_frac_Ub #2}% \krof #3\Z #1\Z }% \def\XINT_frac_Ua \Z #1/\W\Z {\XINT_frac_B #1.\W\Z {0}}% \def\XINT_frac_Ub #1/\W e\W\Z #2\Z {\XINT_frac_B #2.\W\Z {#1}}% \def\XINT_frac_B #1.#2#3\Z {% \xint_UDwfork #2\XINT_frac_Ba \W{\XINT_frac_Bb #2}% \krof #3\Z #1\Z }% \def\XINT_frac_Ba \Z #1\Z {\XINT_frac_T {0}{#1}}% \def\XINT_frac_Bb #1.\W\Z #2\Z {% \expandafter \XINT_frac_T \expandafter {\romannumeral0\xintlength {#1}}{#2#1}% }% \def\XINT_frac_A e\W\Z {\XINT_frac_T {0}{1}{0}}% \def\XINT_frac_T #1#2#3#4e#5#6\Z {% \xint_UDwfork #5\XINT_frac_Ta \W{\XINT_frac_Tb #5}% \krof #6\Z #4\Z {#1}{#2}{#3}% }% \def\XINT_frac_Ta \Z #1\Z {\XINT_frac_C #1.\W\Z {0}}% \def\XINT_frac_Tb #1e\W\Z #2\Z {\XINT_frac_C #2.\W\Z {#1}}% \def\XINT_frac_C #1.#2#3\Z {% \xint_UDwfork #2\XINT_frac_Ca \W{\XINT_frac_Cb #2}% \krof #3\Z #1\Z }% \def\XINT_frac_Ca \Z #1\Z {\XINT_frac_D {0}{#1}}% \def\XINT_frac_Cb #1.\W\Z #2\Z {% \expandafter\XINT_frac_D\expandafter {\romannumeral0\xintlength {#1}}{#2#1}% }% \def\XINT_frac_D #1#2#3#4#5#6% {% \expandafter \XINT_frac_E \expandafter {\the\numexpr -#1+#3+#4-#6\expandafter}\expandafter {\romannumeral0\XINT_num_loop #2% \xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\Z }% {\romannumeral0\XINT_num_loop #5% \xint_relax\xint_relax\xint_relax\xint_relax \xint_relax\xint_relax\xint_relax\xint_relax\Z }% }% \def\XINT_frac_E #1#2#3% {% \expandafter \XINT_frac_F #3\Z {#2}{#1}% }% \def\XINT_frac_F #1% {% \xint_UDzerominusfork #1-\XINT_frac_Gdivisionbyzero 0#1\XINT_frac_Gneg 0-{\XINT_frac_Gpos #1}% \krof }% \edef\XINT_frac_Gdivisionbyzero #1\Z #2#3% {% \noexpand\xintError:DivisionByZero\space {0}{#2}{0}% }% \def\XINT_frac_Gneg #1\Z #2#3% {% \expandafter\XINT_frac_H \expandafter{\romannumeral0\XINT_opp #2}{#3}{#1}% }% \def\XINT_frac_H #1#2{ {#2}{#1}}% \def\XINT_frac_Gpos #1\Z #2#3{ {#3}{#2}{#1}}% % \end{macrocode} % \subsection{\csh{XINT_factortens}, \csh{XINT_cuz_cnt}} % \begin{macrocode} \def\XINT_factortens #1% {% \expandafter\XINT_cuz_cnt_loop\expandafter {\expandafter}\romannumeral0\XINT_rord_main {}#1% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax \R\R\R\R\R\R\R\R\Z }% \def\XINT_cuz_cnt #1% {% \XINT_cuz_cnt_loop {}#1\R\R\R\R\R\R\R\R\Z }% \def\XINT_cuz_cnt_loop #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_R #9\XINT_cuz_cnt_toofara \R \expandafter\XINT_cuz_cnt_checka\expandafter {\the\numexpr #1+8\relax}{#2#3#4#5#6#7#8#9}% }% \def\XINT_cuz_cnt_toofara\R \expandafter\XINT_cuz_cnt_checka\expandafter #1#2% {% \XINT_cuz_cnt_toofarb {#1}#2% }% \def\XINT_cuz_cnt_toofarb #1#2\Z {\XINT_cuz_cnt_toofarc #2\Z {#1}}% \def\XINT_cuz_cnt_toofarc #1#2#3#4#5#6#7#8% {% \xint_gob_til_R #2\XINT_cuz_cnt_toofard 7% #3\XINT_cuz_cnt_toofard 6% #4\XINT_cuz_cnt_toofard 5% #5\XINT_cuz_cnt_toofard 4% #6\XINT_cuz_cnt_toofard 3% #7\XINT_cuz_cnt_toofard 2% #8\XINT_cuz_cnt_toofard 1% \Z #1#2#3#4#5#6#7#8% }% \def\XINT_cuz_cnt_toofard #1#2\Z #3\R #4\Z #5% {% \expandafter\XINT_cuz_cnt_toofare \the\numexpr #3\relax \R\R\R\R\R\R\R\R\Z {\the\numexpr #5-#1\relax}\R\Z }% \def\XINT_cuz_cnt_toofare #1#2#3#4#5#6#7#8% {% \xint_gob_til_R #2\XINT_cuz_cnt_stopc 1% #3\XINT_cuz_cnt_stopc 2% #4\XINT_cuz_cnt_stopc 3% #5\XINT_cuz_cnt_stopc 4% #6\XINT_cuz_cnt_stopc 5% #7\XINT_cuz_cnt_stopc 6% #8\XINT_cuz_cnt_stopc 7% \Z #1#2#3#4#5#6#7#8% }% \def\XINT_cuz_cnt_checka #1#2% {% \expandafter\XINT_cuz_cnt_checkb\the\numexpr #2\relax \Z {#1}% }% \def\XINT_cuz_cnt_checkb #1% {% \xint_gob_til_zero #1\expandafter\XINT_cuz_cnt_loop\xint_gob_til_Z 0\XINT_cuz_cnt_stopa #1% }% \def\XINT_cuz_cnt_stopa #1\Z {% \XINT_cuz_cnt_stopb #1\R\R\R\R\R\R\R\R\Z % }% \def\XINT_cuz_cnt_stopb #1#2#3#4#5#6#7#8#9% {% \xint_gob_til_R #2\XINT_cuz_cnt_stopc 1% #3\XINT_cuz_cnt_stopc 2% #4\XINT_cuz_cnt_stopc 3% #5\XINT_cuz_cnt_stopc 4% #6\XINT_cuz_cnt_stopc 5% #7\XINT_cuz_cnt_stopc 6% #8\XINT_cuz_cnt_stopc 7% #9\XINT_cuz_cnt_stopc 8% \Z #1#2#3#4#5#6#7#8#9% }% \def\XINT_cuz_cnt_stopc #1#2\Z #3\R #4\Z #5% {% \expandafter\XINT_cuz_cnt_stopd\expandafter {\the\numexpr #5-#1}#3% }% \def\XINT_cuz_cnt_stopd #1#2\R #3\Z {% \expandafter\space\expandafter {\romannumeral0\XINT_rord_main {}#2% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax }{#1}% }% % \end{macrocode} % \subsection{\csh{xintRaw}} % \lverb|& % 1.07: this macro simply prints in a user readable form the fraction after its % initial scanning. Useful when put inside braces in an \xintexpr, when the % input is not yet in the A/B[n] form.| % \begin{macrocode} \def\xintRaw {\romannumeral0\xintraw }% \def\xintraw {% \expandafter\XINT_raw\romannumeral0\XINT_infrac }% \def\XINT_raw #1#2#3{ #2/#3[#1]}% % \end{macrocode} % \subsection{\csh{xintPRaw}} % \lverb|1.09b| % \begin{macrocode} \def\xintPRaw {\romannumeral0\xintpraw }% \def\xintpraw {% \expandafter\XINT_praw\romannumeral0\XINT_infrac }% \def\XINT_praw #1% {% \ifnum #1=\xint_c_ \expandafter\XINT_praw_a\fi \XINT_praw_A {#1}% }% \def\XINT_praw_A #1#2#3% {% \if\XINT_isOne{#3}1\expandafter\xint_firstoftwo \else\expandafter\xint_secondoftwo \fi { #2[#1]}{ #2/#3[#1]}% }% \def\XINT_praw_a\XINT_praw_A #1#2#3% {% \if\XINT_isOne{#3}1\expandafter\xint_firstoftwo \else\expandafter\xint_secondoftwo \fi { #2}{ #2/#3}% }% % \end{macrocode} % \subsection{\csh{xintRawWithZeros}} % \lverb|& % This was called \xintRaw in versions earlier than 1.07| % \begin{macrocode} \def\xintRawWithZeros {\romannumeral0\xintrawwithzeros }% \def\xintrawwithzeros {% \expandafter\XINT_rawz\romannumeral0\XINT_infrac }% \def\XINT_rawz #1% {% \ifcase\XINT_cntSgn #1\Z \expandafter\XINT_rawz_Ba \or \expandafter\XINT_rawz_A \else \expandafter\XINT_rawz_Ba \fi {#1}% }% \def\XINT_rawz_A #1#2#3{\xint_dsh {#2}{-#1}/#3}% \def\XINT_rawz_Ba #1#2#3{\expandafter\XINT_rawz_Bb \expandafter{\romannumeral0\xint_dsh {#3}{#1}}{#2}}% \def\XINT_rawz_Bb #1#2{ #2/#1}% % \end{macrocode} % \subsection{\csh{xintFloor}, \csh{xintiFloor}} % \lverb|1.09a, 1.1 for \xintiFloor/\xintFloor. Not efficient if big negative % decimal exponent. Also sub-efficient if big positive decimal exponent.| % \begin{macrocode} \def\xintFloor {\romannumeral0\xintfloor }% \def\xintfloor #1% devrais-je faire \xintREZ? {\expandafter\XINT_ifloor \romannumeral0\xintrawwithzeros {#1}./1[0]}% \def\xintiFloor {\romannumeral0\xintifloor }% \def\xintifloor #1% {\expandafter\XINT_ifloor \romannumeral0\xintrawwithzeros {#1}.}% \def\XINT_ifloor #1/#2.{\xintiiquo {#1}{#2}}% % \end{macrocode} % \subsection{\csh{xintCeil}, \csh{xintiCeil}} % \lverb|1.09a| % \begin{macrocode} \def\xintCeil {\romannumeral0\xintceil }% \def\xintceil #1{\xintiiopp {\xintFloor {\xintOpp{#1}}}}% \def\xintiCeil {\romannumeral0\xinticeil }% \def\xinticeil #1{\xintiiopp {\xintiFloor {\xintOpp{#1}}}}% % \end{macrocode} % \subsection{\csh{xintNumerator}} % \begin{macrocode} \def\xintNumerator {\romannumeral0\xintnumerator }% \def\xintnumerator {% \expandafter\XINT_numer\romannumeral0\XINT_infrac }% \def\XINT_numer #1% {% \ifcase\XINT_cntSgn #1\Z \expandafter\XINT_numer_B \or \expandafter\XINT_numer_A \else \expandafter\XINT_numer_B \fi {#1}% }% \def\XINT_numer_A #1#2#3{\xint_dsh {#2}{-#1}}% \def\XINT_numer_B #1#2#3{ #2}% % \end{macrocode} % \subsection{\csh{xintDenominator}} % \begin{macrocode} \def\xintDenominator {\romannumeral0\xintdenominator }% \def\xintdenominator {% \expandafter\XINT_denom\romannumeral0\XINT_infrac }% \def\XINT_denom #1% {% \ifcase\XINT_cntSgn #1\Z \expandafter\XINT_denom_B \or \expandafter\XINT_denom_A \else \expandafter\XINT_denom_B \fi {#1}% }% \def\XINT_denom_A #1#2#3{ #3}% \def\XINT_denom_B #1#2#3{\xint_dsh {#3}{#1}}% % \end{macrocode} % \subsection{\csh{xintFrac}} % \begin{macrocode} \def\xintFrac {\romannumeral0\xintfrac }% \def\xintfrac #1% {% \expandafter\XINT_fracfrac_A\romannumeral0\XINT_infrac {#1}% }% \def\XINT_fracfrac_A #1{\XINT_fracfrac_B #1\Z }% \catcode`^=7 \def\XINT_fracfrac_B #1#2\Z {% \xint_gob_til_zero #1\XINT_fracfrac_C 0\XINT_fracfrac_D {10^{#1#2}}% }% \def\XINT_fracfrac_C 0\XINT_fracfrac_D #1#2#3% {% \if1\XINT_isOne {#3}% \xint_afterfi {\expandafter\xint_firstoftwo_thenstop\xint_gobble_ii }% \fi \space \frac {#2}{#3}% }% \def\XINT_fracfrac_D #1#2#3% {% \if1\XINT_isOne {#3}\XINT_fracfrac_E\fi \space \frac {#2}{#3}#1% }% \def\XINT_fracfrac_E \fi\space\frac #1#2{\fi \space #1\cdot }% % \end{macrocode} % \subsection{\csh{xintSignedFrac}} % \begin{macrocode} \def\xintSignedFrac {\romannumeral0\xintsignedfrac }% \def\xintsignedfrac #1% {% \expandafter\XINT_sgnfrac_a\romannumeral0\XINT_infrac {#1}% }% \def\XINT_sgnfrac_a #1#2% {% \XINT_sgnfrac_b #2\Z {#1}% }% \def\XINT_sgnfrac_b #1% {% \xint_UDsignfork #1\XINT_sgnfrac_N -{\XINT_sgnfrac_P #1}% \krof }% \def\XINT_sgnfrac_P #1\Z #2% {% \XINT_fracfrac_A {#2}{#1}% }% \def\XINT_sgnfrac_N {% \expandafter\xint_minus_thenstop\romannumeral0\XINT_sgnfrac_P }% % \end{macrocode} % \subsection{\csh{xintFwOver}} % \begin{macrocode} \def\xintFwOver {\romannumeral0\xintfwover }% \def\xintfwover #1% {% \expandafter\XINT_fwover_A\romannumeral0\XINT_infrac {#1}% }% \def\XINT_fwover_A #1{\XINT_fwover_B #1\Z }% \def\XINT_fwover_B #1#2\Z {% \xint_gob_til_zero #1\XINT_fwover_C 0\XINT_fwover_D {10^{#1#2}}% }% \catcode`^=11 \def\XINT_fwover_C #1#2#3#4#5% {% \if0\XINT_isOne {#5}\xint_afterfi { {#4\over #5}}% \else\xint_afterfi { #4}% \fi }% \def\XINT_fwover_D #1#2#3% {% \if0\XINT_isOne {#3}\xint_afterfi { {#2\over #3}}% \else\xint_afterfi { #2\cdot }% \fi #1% }% % \end{macrocode} % \subsection{\csh{xintSignedFwOver}} % \begin{macrocode} \def\xintSignedFwOver {\romannumeral0\xintsignedfwover }% \def\xintsignedfwover #1% {% \expandafter\XINT_sgnfwover_a\romannumeral0\XINT_infrac {#1}% }% \def\XINT_sgnfwover_a #1#2% {% \XINT_sgnfwover_b #2\Z {#1}% }% \def\XINT_sgnfwover_b #1% {% \xint_UDsignfork #1\XINT_sgnfwover_N -{\XINT_sgnfwover_P #1}% \krof }% \def\XINT_sgnfwover_P #1\Z #2% {% \XINT_fwover_A {#2}{#1}% }% \def\XINT_sgnfwover_N {% \expandafter\xint_minus_thenstop\romannumeral0\XINT_sgnfwover_P }% % \end{macrocode} % \subsection{\csh{xintREZ}} % \begin{macrocode} \def\xintREZ {\romannumeral0\xintrez }% \def\xintrez {% \expandafter\XINT_rez_A\romannumeral0\XINT_infrac }% \def\XINT_rez_A #1#2% {% \XINT_rez_AB #2\Z {#1}% }% \def\XINT_rez_AB #1% {% \xint_UDzerominusfork #1-\XINT_rez_zero 0#1\XINT_rez_neg 0-{\XINT_rez_B #1}% \krof }% \def\XINT_rez_zero #1\Z #2#3{ 0/1[0]}% \def\XINT_rez_neg {\expandafter\xint_minus_thenstop\romannumeral0\XINT_rez_B }% \def\XINT_rez_B #1\Z {% \expandafter\XINT_rez_C\romannumeral0\XINT_factortens {#1}% }% \def\XINT_rez_C #1#2#3#4% {% \expandafter\XINT_rez_D\romannumeral0\XINT_factortens {#4}{#3}{#2}{#1}% }% \def\XINT_rez_D #1#2#3#4#5% {% \expandafter\XINT_rez_E\expandafter {\the\numexpr #3+#4-#2}{#1}{#5}% }% \def\XINT_rez_E #1#2#3{ #3/#2[#1]}% % \end{macrocode} % \subsection{\csh{xintE}, \csh{xintFloatE}, \csh{XINTinFloatE}} % \lverb|1.07: The fraction is the first argument contrarily to \xintTrunc and % \xintRound. % % \xintfE (1.07) and \xintiE (1.09i) are for \xintexpr and cousins. It is quite % annoying that \numexpr does not know how to deal correctly with a minus sign - % as prefix: \numexpr -(1)\relax is illegal! (one can do \numexpr 0-(1)\relax). % % the 1.07 \xintE puts directly its second argument in a \numexpr. The \xintfE % first uses \xintNum on it, this is necessary for use in \xintexpr. (but % one cannot use directly infix notation in the second argument of \xintfE) % % 1.09i also adds \xintFloatE and modifies \XINTinFloatfE, although currently % the latter is only used from \xintfloatexpr hence always with \XINTdigits, it % comes equipped with its first argument within brackets as the other % \XINTinFloat... macros. % % 1.09m ceases here and elsewhere, also in \xintcfracname, to use \Z as % delimiter in the code for the optional argument, as this is unsafe (it % makes impossible to the user to employ \Z as argument to the macro). % Replaced by \xint_relax. 1.09e had already done that in \xintSeq, but % this should have been systematic. % % 1.1 modifies and moves \xintiiE to xint.sty, and cleans up some unneeded % stuff, now that expressions implement scientific notation directly at the % number parsing level.| % \begin{macrocode} \def\xintE {\romannumeral0\xinte }% \def\xinte #1% {% \expandafter\XINT_e \romannumeral0\XINT_infrac {#1}% }% \def\XINT_e #1#2#3#4% {% \expandafter\XINT_e_end\expandafter{\the\numexpr #1+#4}{#2}{#3}% }% \def\XINT_e_end #1#2#3{ #2/#3[#1]}% \def\xintFloatE {\romannumeral0\xintfloate }% \def\xintfloate #1{\XINT_floate_chkopt #1\xint_relax }% \def\XINT_floate_chkopt #1% {% \ifx [#1\expandafter\XINT_floate_opt \else\expandafter\XINT_floate_noopt \fi #1% }% \def\XINT_floate_noopt #1\xint_relax {% \expandafter\XINT_floate_a\expandafter\XINTdigits \romannumeral0\XINT_infrac {#1}% }% \def\XINT_floate_opt [\xint_relax #1]#2% {% \expandafter\XINT_floate_a\expandafter {\the\numexpr #1\expandafter}\romannumeral0\XINT_infrac {#2}% }% \def\XINT_floate_a #1#2#3#4#5% {% \expandafter\expandafter\expandafter\XINT_float_a \expandafter\xint_exchangetwo_keepbraces\expandafter {\the\numexpr #2+#5}{#1}{#3}{#4}\XINT_float_Q }% \def\XINTinFloatE {\romannumeral0\XINTinfloate }% \def\XINTinfloate {\expandafter\XINT_infloate\romannumeral0\XINTinfloat [\XINTdigits]}% \def\XINT_infloate #1[#2]#3% {\expandafter\XINT_infloate_end\expandafter {\the\numexpr #3+#2}{#1}}% \def\XINT_infloate_end #1#2{ #2[#1]}% % \end{macrocode} % \subsection{\csh{xintIrr}} % \lverb|& % 1.04 fixes a buggy \xintIrr {0}. % 1.05 modifies the initial parsing and post-processing to use \xintrawwithzeros % and to % more quickly deal with an input denominator equal to 1. 1.08 version does % not remove a /1 denominator.| % \begin{macrocode} \def\xintIrr {\romannumeral0\xintirr }% \def\xintirr #1% {% \expandafter\XINT_irr_start\romannumeral0\xintrawwithzeros {#1}\Z }% \def\XINT_irr_start #1#2/#3\Z {% \if0\XINT_isOne {#3}% \xint_afterfi {\xint_UDsignfork #1\XINT_irr_negative -{\XINT_irr_nonneg #1}% \krof}% \else \xint_afterfi{\XINT_irr_denomisone #1}% \fi #2\Z {#3}% }% \def\XINT_irr_denomisone #1\Z #2{ #1/1}% changed in 1.08 \def\XINT_irr_negative #1\Z #2{\XINT_irr_D #1\Z #2\Z \xint_minus_thenstop}% \def\XINT_irr_nonneg #1\Z #2{\XINT_irr_D #1\Z #2\Z \space}% \def\XINT_irr_D #1#2\Z #3#4\Z {% \xint_UDzerosfork #3#1\XINT_irr_indeterminate #30\XINT_irr_divisionbyzero #10\XINT_irr_zero 00\XINT_irr_loop_a \krof {#3#4}{#1#2}{#3#4}{#1#2}% }% \def\XINT_irr_indeterminate #1#2#3#4#5{\xintError:NaN\space 0/0}% \def\XINT_irr_divisionbyzero #1#2#3#4#5{\xintError:DivisionByZero #5#2/0}% \def\XINT_irr_zero #1#2#3#4#5{ 0/1}% changed in 1.08 \def\XINT_irr_loop_a #1#2% {% \expandafter\XINT_irr_loop_d \romannumeral0\XINT_div_prepare {#1}{#2}{#1}% }% \def\XINT_irr_loop_d #1#2% {% \XINT_irr_loop_e #2\Z }% \def\XINT_irr_loop_e #1#2\Z {% \xint_gob_til_zero #1\xint_irr_loop_exit0\XINT_irr_loop_a {#1#2}% }% \def\xint_irr_loop_exit0\XINT_irr_loop_a #1#2#3#4% {% \expandafter\XINT_irr_loop_exitb\expandafter {\romannumeral0\xintiiquo {#3}{#2}}% {\romannumeral0\xintiiquo {#4}{#2}}% }% \def\XINT_irr_loop_exitb #1#2% {% \expandafter\XINT_irr_finish\expandafter {#2}{#1}% }% \def\XINT_irr_finish #1#2#3{#3#1/#2}% changed in 1.08 % \end{macrocode} % \subsection{\csh{xintifInt}} % \lverb|1.09e. xintfrac.sty only. Fixed in 1.1 to not use \xintIrr anymore % as it was really stupid overhead.| % \begin{macrocode} \def\xintifInt {\romannumeral0\xintifint }% \def\xintifint #1{\expandafter\XINT_ifint\romannumeral0\xintrawwithzeros {#1}.}% \def\XINT_ifint #1/#2.% {% \if 0\xintiiRem {#1}{#2}% \expandafter\xint_firstoftwo_thenstop \else \expandafter\xint_secondoftwo_thenstop \fi }% % \end{macrocode} % \subsection{\csh{xintJrr}} % \lverb|& % Modified similarly as \xintIrr in release 1.05. 1.08 version does % not remove a /1 denominator.| % \begin{macrocode} \def\xintJrr {\romannumeral0\xintjrr }% \def\xintjrr #1% {% \expandafter\XINT_jrr_start\romannumeral0\xintrawwithzeros {#1}\Z }% \def\XINT_jrr_start #1#2/#3\Z {% \if0\XINT_isOne {#3}\xint_afterfi {\xint_UDsignfork #1\XINT_jrr_negative -{\XINT_jrr_nonneg #1}% \krof}% \else \xint_afterfi{\XINT_jrr_denomisone #1}% \fi #2\Z {#3}% }% \def\XINT_jrr_denomisone #1\Z #2{ #1/1}% changed in 1.08 \def\XINT_jrr_negative #1\Z #2{\XINT_jrr_D #1\Z #2\Z \xint_minus_thenstop }% \def\XINT_jrr_nonneg #1\Z #2{\XINT_jrr_D #1\Z #2\Z \space}% \def\XINT_jrr_D #1#2\Z #3#4\Z {% \xint_UDzerosfork #3#1\XINT_jrr_indeterminate #30\XINT_jrr_divisionbyzero #10\XINT_jrr_zero 00\XINT_jrr_loop_a \krof {#3#4}{#1#2}1001% }% \def\XINT_jrr_indeterminate #1#2#3#4#5#6#7{\xintError:NaN\space 0/0}% \def\XINT_jrr_divisionbyzero #1#2#3#4#5#6#7{\xintError:DivisionByZero #7#2/0}% \def\XINT_jrr_zero #1#2#3#4#5#6#7{ 0/1}% changed in 1.08 \def\XINT_jrr_loop_a #1#2% {% \expandafter\XINT_jrr_loop_b \romannumeral0\XINT_div_prepare {#1}{#2}{#1}% }% \def\XINT_jrr_loop_b #1#2#3#4#5#6#7% {% \expandafter \XINT_jrr_loop_c \expandafter {\romannumeral0\xintiiadd{\XINT_Mul{#4}{#1}}{#6}}% {\romannumeral0\xintiiadd{\XINT_Mul{#5}{#1}}{#7}}% {#2}{#3}{#4}{#5}% }% \def\XINT_jrr_loop_c #1#2% {% \expandafter \XINT_jrr_loop_d \expandafter{#2}{#1}% }% \def\XINT_jrr_loop_d #1#2#3#4% {% \XINT_jrr_loop_e #3\Z {#4}{#2}{#1}% }% \def\XINT_jrr_loop_e #1#2\Z {% \xint_gob_til_zero #1\xint_jrr_loop_exit0\XINT_jrr_loop_a {#1#2}% }% \def\xint_jrr_loop_exit0\XINT_jrr_loop_a #1#2#3#4#5#6% {% \XINT_irr_finish {#3}{#4}% }% % \end{macrocode} % \subsection{\csh{xintTFrac}} % \lverb|1.09i, for frac in \xintexpr. And \xintFrac is already assigned. T for % truncation. However, potentially not very efficient with numbers in scientific % notations, with big exponents. Will have to think it again some day. I % hesitated how to call the macro. Same convention as in maple, but some people % reserve fractional part to x - floor(x). Also, not clear if I had to make it % negative (or zero) if x < 0, or rather always positive. There should be in % fact such a thing for each rounding function, trunc, round, floor, ceil. | % \begin{macrocode} \def\xintTFrac {\romannumeral0\xinttfrac }% \def\xinttfrac #1{\expandafter\XINT_tfrac_fork\romannumeral0\xintrawwithzeros {#1}\Z }% \def\XINT_tfrac_fork #1% {% \xint_UDzerominusfork #1-\XINT_tfrac_zero 0#1{\xintiiopp\XINT_tfrac_P }% 0-{\XINT_tfrac_P #1}% \krof }% \def\XINT_tfrac_zero #1\Z { 0/1[0]}% \def\XINT_tfrac_P #1/#2\Z {\expandafter\XINT_rez_AB \romannumeral0\xintiirem{#1}{#2}\Z {0}{#2}}% % \end{macrocode} % \subsection{\csh{XINTinFloatFracdigits}} % \lverb|1.09i, for frac in \xintfloatexpr. This version computes % exactly from the input the fractional part and then only converts it % into a float with the asked-for number of digits. I will have to think % it again some day, certainly. % % 1.1 removes optional argument for which there was anyhow no interface, for % technical reasons having to do with \xintNewExpr. % % 1.1a renames the macro as \XINTinFloatFracdigits (from \XINTinFloatFrac) to % be synchronous with the \XINTinFloatSqrt and \XINTinFloat habits related to % \xintNewExpr problems. % % Note to myself: I still have to rethink the whole thing about what is the best % to do, the initial way of going through \xinttfrac was just a first % implementation.| % \begin{macrocode} \def\XINTinFloatFracdigits {\romannumeral0\XINTinfloatfracdigits }% \def\XINTinfloatfracdigits #1% {% \expandafter\XINT_infloatfracdg_a\expandafter {\romannumeral0\xinttfrac{#1}}% }% \def\XINT_infloatfracdg_a {\XINTinfloat [\XINTdigits]}% % \end{macrocode} % \subsection{\csh{xintTrunc}, \csh{xintiTrunc}} % \lverb|& % Modified in 1.06 to give the first argument to a \numexpr. % % 1.09f fixes the overhead added in 1.09a to some inner routines when \xintiquo % was redefined to use \xintnum. Now uses \xintiiquo, rather. % % 1.09j: minor improvements, \XINT_trunc_E was very strange and defined two % never occuring branches; also, optimizes the call to the division routine, and % the zero loops. % % 1.1 adds \xintTTrunc as a shortcut to what \xintiTrunc 0 does, and maps \xintNum to it.| % \begin{macrocode} \def\xintTrunc {\romannumeral0\xinttrunc }% \def\xintiTrunc {\romannumeral0\xintitrunc }% \def\xinttrunc #1% {% \expandafter\XINT_trunc\expandafter {\the\numexpr #1}% }% \def\XINT_trunc #1#2% {% \expandafter\XINT_trunc_G \romannumeral0\expandafter\XINT_trunc_A \romannumeral0\XINT_infrac {#2}{#1}{#1}% }% \def\xintitrunc #1% {% \expandafter\XINT_itrunc\expandafter {\the\numexpr #1}% }% \def\XINT_itrunc #1#2% {% \expandafter\XINT_itrunc_G \romannumeral0\expandafter\XINT_trunc_A \romannumeral0\XINT_infrac {#2}{#1}{#1}% }% \def\XINT_trunc_A #1#2#3#4% {% \expandafter\XINT_trunc_checkifzero \expandafter{\the\numexpr #1+#4}#2\Z {#3}% }% \def\XINT_trunc_checkifzero #1#2#3\Z {% \xint_gob_til_zero #2\XINT_trunc_iszero0\XINT_trunc_B {#1}{#2#3}% }% \def\XINT_trunc_iszero0\XINT_trunc_B #1#2#3{ 0\Z 0}% \def\XINT_trunc_B #1% {% \ifcase\XINT_cntSgn #1\Z \expandafter\XINT_trunc_D \or \expandafter\XINT_trunc_D \else \expandafter\XINT_trunc_C \fi {#1}% }% \def\XINT_trunc_C #1#2#3% {% \expandafter\XINT_trunc_CE\expandafter {\romannumeral0\XINT_dsx_zeroloop {-#1}{}\Z {#3}}{#2}% }% \def\XINT_trunc_CE #1#2{\XINT_trunc_E #2.{#1}}% \def\XINT_trunc_D #1#2% {% \expandafter\XINT_trunc_E \romannumeral0\XINT_dsx_zeroloop {#1}{}\Z {#2}.% }% \def\XINT_trunc_E #1% {% \xint_UDsignfork #1\XINT_trunc_Fneg -{\XINT_trunc_Fpos #1}% \krof }% \def\XINT_trunc_Fneg #1.#2{\expandafter\xint_firstoftwo_thenstop \romannumeral0\XINT_div_prepare {#2}{#1}\Z \xint_minus_thenstop}% \def\XINT_trunc_Fpos #1.#2{\expandafter\xint_firstoftwo_thenstop \romannumeral0\XINT_div_prepare {#2}{#1}\Z \space }% \def\XINT_itrunc_G #1#2\Z #3#4% {% \xint_gob_til_zero #1\XINT_trunc_zero 0#3#1#2% }% \def\XINT_trunc_zero 0#1#20{ 0}% \def\XINT_trunc_G #1\Z #2#3% {% \xint_gob_til_zero #2\XINT_trunc_zero 0% \expandafter\XINT_trunc_H\expandafter {\the\numexpr\romannumeral0\xintlength {#1}-#3}{#3}{#1}#2% }% \def\XINT_trunc_H #1#2% {% \ifnum #1 > \xint_c_ \xint_afterfi {\XINT_trunc_Ha {#2}}% \else \xint_afterfi {\XINT_trunc_Hb {-#1}}% -0,--1,--2, .... \fi }% \def\XINT_trunc_Ha {% \expandafter\XINT_trunc_Haa\romannumeral0\xintdecsplit }% \def\XINT_trunc_Haa #1#2#3% {% #3#1.#2% }% \def\XINT_trunc_Hb #1#2#3% {% \expandafter #3\expandafter0\expandafter.% \romannumeral0\XINT_dsx_zeroloop {#1}{}\Z {}#2% #1=-0 autoris\'e ! }% % \end{macrocode} % \subsection{\csh{xintTTrunc}} % \lverb|1.1, a tiny bit more efficient than doing \xintiTrunc0. I map \xintNum % to it, and I use it in \xintexpr for various things. Faster I guess than the \xintiFloor.| % \begin{macrocode} \def\xintTTrunc {\romannumeral0\xintttrunc }% \def\xintttrunc #1% {% \expandafter\XINT_itrunc_G \romannumeral0\expandafter\XINT_ttrunc_A \romannumeral0\XINT_infrac {#1}0% this last 0 to let \XINT_itrunc_G be happy }% \def\XINT_ttrunc_A #1#2#3{\XINT_trunc_checkifzero {#1}#2\Z {#3}}% % \end{macrocode} % \subsection{\csh{xintNum}} % \lverb|This extension of the xint original xintNum is added in 1.05, as a % synonym to \xintIrr, but raising an error when the input does not evaluate to % an integer. Usable with not too much overhead on integer input as \xintIrr % checks quickly for a denominator equal to 1 (which will be put there by the % \XINT_infrac called by \xintrawwithzeros). This way, macros such as \xintQuo % can be modified with minimal overhead to accept fractional input as long as % it evaluates to an integer. % % 22 june 2014 (dev 1.1) I just don't understand what was the point of going through % \xintIrr if to raise an arror afterwards... and raising errors is silly, so % let's do it sanely at last. In between I added \xintiFloor, thus, let's just % let it to it. % % 24 october 2014 (final 1.1) (I left it taking dust since % June...), I did \xintTTrunc, and will thus map \xintNum to it| % \begin{macrocode} \let\xintNum \xintTTrunc \let\xintnum \xintttrunc % \end{macrocode} % \subsection{\csh{xintRound}, \csh{xintiRound}} % \lverb|Modified in 1.06 to give the first argument to a \numexpr.| % \begin{macrocode} \def\xintRound {\romannumeral0\xintround }% \def\xintiRound {\romannumeral0\xintiround }% \def\xintround #1% {% \expandafter\XINT_round\expandafter {\the\numexpr #1}% }% \def\XINT_round {% \expandafter\XINT_trunc_G\romannumeral0\XINT_round_A }% \def\xintiround #1% {% \expandafter\XINT_iround\expandafter {\the\numexpr #1}% }% \def\XINT_iround {% \expandafter\XINT_itrunc_G\romannumeral0\XINT_round_A }% \def\XINT_round_A #1#2% {% \expandafter\XINT_round_B \romannumeral0\expandafter\XINT_trunc_A \romannumeral0\XINT_infrac {#2}{\the\numexpr #1+1\relax}{#1}% }% \def\XINT_round_B #1\Z {% \expandafter\XINT_round_C \romannumeral0\XINT_rord_main {}#1% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax \Z }% \def\XINT_round_C #1% {% \ifnum #1<5 \expandafter\XINT_round_Daa \else \expandafter\XINT_round_Dba \fi }% \def\XINT_round_Daa #1% {% \xint_gob_til_Z #1\XINT_round_Daz\Z \XINT_round_Da #1% }% \def\XINT_round_Daz\Z \XINT_round_Da \Z { 0\Z }% \def\XINT_round_Da #1\Z {% \XINT_rord_main {}#1% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax \Z }% \def\XINT_round_Dba #1% {% \xint_gob_til_Z #1\XINT_round_Dbz\Z \XINT_round_Db #1% }% \def\XINT_round_Dbz\Z \XINT_round_Db \Z { 1\Z }% \def\XINT_round_Db #1\Z {% \XINT_addm_A 0{}1000\W\X\Y\Z #1000\W\X\Y\Z \Z }% % \end{macrocode} % \subsection{\csh{xintXTrunc}} % \lverb@1.09j [2014/01/06] This is completely expandable but not f-expandable. % Designed be used inside an \edef or a \write, if one is interested in getting % tens of thousands of digits from the decimal expansion of some fraction... it % is not worth using it rather than \xintTrunc if for less than *hundreds* of % digits. For efficiency it clones part of the preparatory division macros, as % the same denominator will be used again and again. The D parameter which says % how many digits to keep after decimal mark must be at least 1 (and it is % forcefully set to such a value if found negative or zero, to avoid an eternal % loop). % % For reasons of efficiency I try to use the shortest possible denominator, so % if the fraction is A/B[N], I want to use B. For N at least zero, just % immediately replace A by A.10^N. The first division then may be a little % longish but the next ones will be fast (if B is not too big). For N<0, this is % a bit more complicated. I thought somewhat about this, and I would need a % rather complicated approach going through a long division algorithm, forcing % me to essentially clone the actual division with some differences; a side % thing is that as this would use blocks of four digits I would have a hard time % allowing a non-multiple of four number of post decimal mark digits. % % Thus, for N<0, another method is followed. First the euclidean division % A/B=Q+R/B is done. The number of digits of Q is M. If |N|\leq D, we launch % inside a \csname the routine for obtaining D-|N| next digits (this may impact % TeX's memory if D is very big), call them T. We then need to position the % decimal mark D slots from the right of QT, which has length M+D-|N|, hence |N| % slots from the right of Q. We thus avoid having to work will the T, as D may % be very very big (\xintXTrunc's only goal is to make it possible to learn by % hearts decimal expansions with thousands of digits). We can use the % \xintDecSplit for that on Q . Computing the length M of Q was a more or less % unavoidable step. If |N|>D, the \csname step is skipped we need to remove the % D-|N| last digits from Q, etc.. we compare D-|N| with the length M of Q etc... % (well in this last, very uncommon, branch, I stopped trying to optimize things % and I even do an \xintnum to ensure a 0 if something comes out empty from % \xintDecSplit).@ % \begin{macrocode} \def\xintXTrunc #1#2% {% \expandafter\XINT_xtrunc_a\expandafter {\the\numexpr #1\expandafter}\romannumeral0\xintraw {#2}% }% \def\XINT_xtrunc_a #1% {% \expandafter\XINT_xtrunc_b\expandafter {\the\numexpr\ifnum#1<\xint_c_i \xint_c_i-\fi #1}% }% \def\XINT_xtrunc_b #1% {% \expandafter\XINT_xtrunc_c\expandafter {\the\numexpr (#1+\xint_c_ii^v)/\xint_c_ii^vi-\xint_c_i}{#1}% }% \def\XINT_xtrunc_c #1#2% {% \expandafter\XINT_xtrunc_d\expandafter {\the\numexpr #2-\xint_c_ii^vi*#1}{#1}{#2}% }% \def\XINT_xtrunc_d #1#2#3#4/#5[#6]% {% \XINT_xtrunc_e #4.{#6}{#5}{#3}{#2}{#1}% }% % #1=numerator.#2=N,#3=B,#4=D,#5=Blocs,#6=extra \def\XINT_xtrunc_e #1% {% \xint_UDzerominusfork #1-\XINT_xtrunc_zero 0#1\XINT_xtrunc_N 0-{\XINT_xtrunc_P #1}% \krof }% \def\XINT_xtrunc_zero .#1#2#3#4#5% {% 0.\romannumeral0\expandafter\XINT_dsx_zeroloop\expandafter {\the\numexpr #5}{}\Z {}% \xintiloop [#4+-1] \ifnum \xintiloopindex>\xint_c_ 0000000000000000000000000000000000000000000000000000000000000000% \repeat }% \def\XINT_xtrunc_N {-\XINT_xtrunc_P }% \def\XINT_xtrunc_P #1.#2% {% \ifnum #2<\xint_c_ \expandafter\XINT_xtrunc_negN_Q \else \expandafter\XINT_xtrunc_Q \fi {#2}{#1}.% }% \def\XINT_xtrunc_negN_Q #1#2.#3#4#5#6% {% \expandafter\XINT_xtrunc_negN_R \romannumeral0\XINT_div_prepare {#3}{#2}{#3}{#1}{#4}% }% % #1=Q, #2=R, #3=B, #4=N<0, #5=D \def\XINT_xtrunc_negN_R #1#2#3#4#5% {% \expandafter\XINT_xtrunc_negN_S\expandafter {\the\numexpr -#4}{#5}{#2}{#3}{#1}% }% \def\XINT_xtrunc_negN_S #1#2% {% \expandafter\XINT_xtrunc_negN_T\expandafter {\the\numexpr #2-#1}{#1}{#2}% }% \def\XINT_xtrunc_negN_T #1% {% \ifnum \xint_c_<#1 \expandafter\XINT_xtrunc_negNA \else \expandafter\XINT_xtrunc_negNW \fi {#1}% }% % #1=D-|N|>0, #2=|N|, #3=D, #4=R, #5=B, #6=Q \def\XINT_xtrunc_unlock #10.{ }% \def\XINT_xtrunc_negNA #1#2#3#4#5#6% {% \expandafter\XINT_xtrunc_negNB\expandafter {\romannumeral0\expandafter\expandafter\expandafter \XINT_xtrunc_unlock\expandafter\string \csname\XINT_xtrunc_b {#1}#4/#5[0]\expandafter\endcsname \expandafter}\expandafter {\the\numexpr\xintLength{#6}-#2}{#6}% }% \def\XINT_xtrunc_negNB #1#2#3{\XINT_xtrunc_negNC {#2}{#3}#1}% \def\XINT_xtrunc_negNC #1% {% \ifnum \xint_c_ < #1 \expandafter\XINT_xtrunc_negNDa \else \expandafter\XINT_xtrunc_negNE \fi {#1}% }% \def\XINT_xtrunc_negNDa #1#2% {% \expandafter\XINT_xtrunc_negNDb% \romannumeral0\XINT_split_fromleft_loop {#1}{}#2\W\W\W\W\W\W\W\W\Z }% \def\XINT_xtrunc_negNDb #1#2{#1.#2}% \def\XINT_xtrunc_negNE #1#2% {% 0.\romannumeral0\XINT_dsx_zeroloop {-#1}{}\Z {}#2% }% % #1=D-|N|<=0, #2=|N|, #3=D, #4=R, #5=B, #6=Q \def\XINT_xtrunc_negNW #1#2#3#4#5#6% {% \expandafter\XINT_xtrunc_negNX\expandafter {\romannumeral0\xintnum{\xintDecSplitL {-#1}{#6}}}{#3}% }% \def\XINT_xtrunc_negNX #1#2% {% \expandafter\XINT_xtrunc_negNC\expandafter {\the\numexpr\xintLength {#1}-#2}{#1}% }% \def\XINT_xtrunc_Q #1% {% \expandafter\XINT_xtrunc_prepare_I \romannumeral0\XINT_dsx_zeroloop {#1}{}\Z }% \def\XINT_xtrunc_prepare_I #1.#2#3% {% \expandafter\XINT_xtrunc_prepareB_aa\expandafter {\romannumeral0\xintlength {#2}}{#2}{#1}% }% \def\XINT_xtrunc_prepareB_aa #1% {% \ifnum #1=\xint_c_i \expandafter\XINT_xtrunc_prepareB_onedigit \else \expandafter\XINT_xtrunc_prepareB_PaBa \fi {#1}% }% \def\XINT_xtrunc_prepareB_onedigit #1#2% {% \ifcase#2 \or\expandafter\XINT_xtrunc_BisOne \or\expandafter\XINT_xtrunc_BisTwo \else\expandafter\XINT_xtrunc_prepareB_PaBe \fi {000}{0}{4}{#2}% }% \def\XINT_xtrunc_BisOne #1#2#3#4#5#6#7% {% #5.\romannumeral0\expandafter\XINT_dsx_zeroloop\expandafter {\the\numexpr #7}{}\Z {}% \xintiloop [#6+-1] \ifnum \xintiloopindex>\xint_c_ 0000000000000000000000000000000000000000000000000000000000000000% \repeat }% \def\XINT_xtrunc_BisTwo #1#2#3#4#5#6#7% {% \xintHalf {#5}.\ifodd\xintiiLDg{#5} 5\else 0\fi \romannumeral0\expandafter\XINT_dsx_zeroloop\expandafter {\the\numexpr #7-\xint_c_i}{}\Z {}% \xintiloop [#6+-1] \ifnum \xintiloopindex>\xint_c_ 0000000000000000000000000000000000000000000000000000000000000000% \repeat }% \def\XINT_xtrunc_prepareB_PaBa #1#2% {% \expandafter\XINT_xtrunc_Pa\expandafter {\romannumeral0\XINT_xtrunc_prepareB_a {#1}{#2}}% }% \def\XINT_xtrunc_prepareB_a #1% {% \expandafter\XINT_xtrunc_prepareB_c\expandafter {\the\numexpr \xint_c_iv*((#1+\xint_c_i)/\xint_c_iv)}{#1}% }% \def\XINT_xtrunc_prepareB_c #1#2% {% \csname XINT_xtrunc_prepareB_d\romannumeral\numexpr#1-#2\endcsname {#1}% }% \def\XINT_xtrunc_prepareB_d {\XINT_xtrunc_prepareB_e {}{0000}}% \def\XINT_xtrunc_prepareB_di {\XINT_xtrunc_prepareB_e {0}{000}}% \def\XINT_xtrunc_prepareB_dii {\XINT_xtrunc_prepareB_e {00}{00}}% \def\XINT_xtrunc_prepareB_diii {\XINT_xtrunc_prepareB_e {000}{0}}% \def\XINT_xtrunc_prepareB_PaBe #1#2#3#4% {% \expandafter\XINT_xtrunc_Pa\expandafter {\romannumeral0\XINT_xtrunc_prepareB_e {#1}{#2}{#3}{#4}}% }% \def\XINT_xtrunc_prepareB_e #1#2#3#4% {% \ifnum#3=\xint_c_iv\expandafter\XINT_xtrunc_prepareLittleB_f \else\expandafter\XINT_xtrunc_prepareB_f \fi #4#1{#3}{#2}{#1}% }% \def\XINT_xtrunc_prepareB_f #1#2#3#4#5#{% \expandafter\space \expandafter\XINT_div_prepareB_g \the\numexpr #1#2#3#4+\xint_c_i\expandafter .\the\numexpr (#1#2#3#4+\xint_c_i)/\xint_c_ii\expandafter .\romannumeral0\xintreverseorder {#1#2#3#4#5}.{#1#2#3#4}% }% \def\XINT_xtrunc_prepareLittleB_f #1#{% \expandafter\space\expandafter \XINT_div_prepareB_g \the\numexpr #1/\xint_c_ii.{}.{}.{#1}% }% \def\XINT_xtrunc_Pa #1#2% {% \expandafter\XINT_xtrunc_Pb\romannumeral0#1{#2}{#1}% }% \def\XINT_xtrunc_Pb #1#2#3#4{#1.\XINT_xtrunc_A {#4}{#2}{#3}}% \def\XINT_xtrunc_A #1% {% \unless\ifnum #1>\xint_c_ \XINT_xtrunc_transition\fi \expandafter\XINT_xtrunc_B\expandafter{\the\numexpr #1-\xint_c_i}% }% \def\XINT_xtrunc_B #1#2#3% {% \expandafter\XINT_xtrunc_D\romannumeral0#3% {#20000000000000000000000000000000000000000000000000000000000000000}% {#1}{#3}% }% \def\XINT_xtrunc_D #1#2#3% {% \romannumeral0\expandafter\XINT_dsx_zeroloop\expandafter {\the\numexpr \xint_c_ii^vi-\xintLength{#1}}{}\Z {}#1% \XINT_xtrunc_A {#3}{#2}% }% \def\XINT_xtrunc_transition\fi \expandafter\XINT_xtrunc_B\expandafter #1#2#3#4% {% \fi \ifnum #4=\xint_c_ \XINT_xtrunc_abort\fi \expandafter\XINT_xtrunc_x\expandafter {\romannumeral0\XINT_dsx_zeroloop {#4}{}\Z {#2}}{#3}{#4}% }% \def\XINT_xtrunc_x #1#2% {% \expandafter\XINT_xtrunc_y\romannumeral0#2{#1}% }% \def\XINT_xtrunc_y #1#2#3% {% \romannumeral0\expandafter\XINT_dsx_zeroloop\expandafter {\the\numexpr #3-\xintLength{#1}}{}\Z {}#1% }% \def\XINT_xtrunc_abort\fi\expandafter\XINT_xtrunc_x\expandafter #1#2#3{\fi}% % \end{macrocode} % \subsection{\csh{xintDigits}} % \lverb|The mathchardef used to be called \XINT_digits, but for reasons originating in % \xintNewExpr (and now obsolete), release 1.09a uses \XINTdigits without underscore.| % \begin{macrocode} \mathchardef\XINTdigits 16 \def\xintDigits #1#2% {\afterassignment \xint_gobble_i \mathchardef\XINTdigits=}% \def\xinttheDigits {\number\XINTdigits }% % \end{macrocode} % \subsection{\csh{xintFloat}} % \lverb|1.07. Completely re-written in 1.08a, with spectacular speed % gains. The earlier version was seriously silly when dealing with % inputs having a big power of ten. Again some modifications in 1.08b % for a better treatment of cases with long explicit numerators or % denominators. % % Here again some inner macros used the \xintiquo with extra \xintnum overhead % in 1.09a, 1.09f reinstalled use of \xintiiquo without this overhead.| % \begin{macrocode} \def\xintFloat {\romannumeral0\xintfloat }% \def\xintfloat #1{\XINT_float_chkopt #1\xint_relax }% \def\XINT_float_chkopt #1% {% \ifx [#1\expandafter\XINT_float_opt \else\expandafter\XINT_float_noopt \fi #1% }% \def\XINT_float_noopt #1\xint_relax {% \expandafter\XINT_float_a\expandafter\XINTdigits \romannumeral0\XINT_infrac {#1}\XINT_float_Q }% \def\XINT_float_opt [\xint_relax #1]#2% {% \expandafter\XINT_float_a\expandafter {\the\numexpr #1\expandafter}% \romannumeral0\XINT_infrac {#2}\XINT_float_Q }% \def\XINT_float_a #1#2#3% #1=P, #2=n, #3=A, #4=B {% \XINT_float_fork #3\Z {#1}{#2}% #1 = precision, #2=n }% \def\XINT_float_fork #1% {% \xint_UDzerominusfork #1-\XINT_float_zero 0#1\XINT_float_J 0-{\XINT_float_K #1}% \krof }% \def\XINT_float_zero #1\Z #2#3#4#5{ 0.e0}% \def\XINT_float_J {\expandafter\xint_minus_thenstop\romannumeral0\XINT_float_K }% \def\XINT_float_K #1\Z #2% #1=A, #2=P, #3=n, #4=B {% \expandafter\XINT_float_L\expandafter {\the\numexpr\xintLength{#1}\expandafter}\expandafter {\the\numexpr #2+\xint_c_ii}{#1}{#2}% }% \def\XINT_float_L #1#2% {% \ifnum #1>#2 \expandafter\XINT_float_Ma \else \expandafter\XINT_float_Mc \fi {#1}{#2}% }% \def\XINT_float_Ma #1#2#3% {% \expandafter\XINT_float_Mb\expandafter {\the\numexpr #1-#2\expandafter\expandafter\expandafter}% \expandafter\expandafter\expandafter {\expandafter\xint_firstoftwo \romannumeral0\XINT_split_fromleft_loop {#2}{}#3\W\W\W\W\W\W\W\W\Z }{#2}% }% \def\XINT_float_Mb #1#2#3#4#5#6% #2=A', #3=P+2, #4=P, #5=n, #6=B {% \expandafter\XINT_float_N\expandafter {\the\numexpr\xintLength{#6}\expandafter}\expandafter {\the\numexpr #3\expandafter}\expandafter {\the\numexpr #1+#5}% {#6}{#3}{#2}{#4}% }% long de B, P+2, n', B, |A'|=P+2, A', P \def\XINT_float_Mc #1#2#3#4#5#6% {% \expandafter\XINT_float_N\expandafter {\romannumeral0\xintlength{#6}}{#2}{#5}{#6}{#1}{#3}{#4}% }% long de B, P+2, n, B, |A|, A, P \def\XINT_float_N #1#2% {% \ifnum #1>#2 \expandafter\XINT_float_O \else \expandafter\XINT_float_P \fi {#1}{#2}% }% \def\XINT_float_O #1#2#3#4% {% \expandafter\XINT_float_P\expandafter {\the\numexpr #2\expandafter}\expandafter {\the\numexpr #2\expandafter}\expandafter {\the\numexpr #3-#1+#2\expandafter\expandafter\expandafter}% \expandafter\expandafter\expandafter {\expandafter\xint_firstoftwo \romannumeral0\XINT_split_fromleft_loop {#2}{}#4\W\W\W\W\W\W\W\W\Z }% }% |B|,P+2,n,B,|A|,A,P \def\XINT_float_P #1#2#3#4#5#6#7#8% {% \expandafter #8\expandafter {\the\numexpr #1-#5+#2-\xint_c_i}% {#6}{#4}{#7}{#3}% }% |B|-|A|+P+1,A,B,P,n \def\XINT_float_Q #1% {% \ifnum #1<\xint_c_ \expandafter\XINT_float_Ri \else \expandafter\XINT_float_Rii \fi {#1}% }% \def\XINT_float_Ri #1#2#3% {% \expandafter\XINT_float_Sa \romannumeral0\xintiiquo {#2}% {\XINT_dsx_addzerosnofuss {-#1}{#3}}\Z {#1}% }% \def\XINT_float_Rii #1#2#3% {% \expandafter\XINT_float_Sa \romannumeral0\xintiiquo {\XINT_dsx_addzerosnofuss {#1}{#2}}{#3}\Z {#1}% }% \def\XINT_float_Sa #1% {% \if #19% \xint_afterfi {\XINT_float_Sb\XINT_float_Wb }% \else \xint_afterfi {\XINT_float_Sb\XINT_float_Wa }% \fi #1% }% \def\XINT_float_Sb #1#2\Z #3#4% {% \expandafter\XINT_float_T\expandafter {\the\numexpr #4+\xint_c_i\expandafter}% \romannumeral-`0\XINT_lenrord_loop 0{}#2\Z\W\W\W\W\W\W\W\Z #1{#3}{#4}% }% \def\XINT_float_T #1#2#3% {% \ifnum #2>#1 \xint_afterfi{\XINT_float_U\XINT_float_Xb}% \else \xint_afterfi{\XINT_float_U\XINT_float_Xa #3}% \fi }% \def\XINT_float_U #1#2% {% \ifnum #2<\xint_c_v \expandafter\XINT_float_Va \else \expandafter\XINT_float_Vb \fi #1% }% \def\XINT_float_Va #1#2\Z #3% {% \expandafter#1% \romannumeral0\expandafter\XINT_float_Wa \romannumeral0\XINT_rord_main {}#2% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax \Z }% \def\XINT_float_Vb #1#2\Z #3% {% \expandafter #1% \romannumeral0\expandafter #3% \romannumeral0\XINT_addm_A 0{}1000\W\X\Y\Z #2000\W\X\Y\Z \Z }% \def\XINT_float_Wa #1{ #1.}% \def\XINT_float_Wb #1#2% {\if #11\xint_afterfi{ 10.}\else\xint_afterfi{ #1.#2}\fi }% \def\XINT_float_Xa #1\Z #2#3#4% {% \expandafter\XINT_float_Y\expandafter {\the\numexpr #3+#4-#2}{#1}% }% \def\XINT_float_Xb #1\Z #2#3#4% {% \expandafter\XINT_float_Y\expandafter {\the\numexpr #3+#4+\xint_c_i-#2}{#1}% }% \def\XINT_float_Y #1#2{ #2e#1}% % \end{macrocode} % \subsection{\csh{xintPFloat}} % \lverb|1.1| % \begin{macrocode} \def\xintPFloat {\romannumeral0\xintpfloat }% \def\xintpfloat #1{\XINT_pfloat_chkopt #1\xint_relax }% \def\XINT_pfloat_chkopt #1% {% \ifx [#1\expandafter\XINT_pfloat_opt \else\expandafter\XINT_pfloat_noopt \fi #1% }% \def\XINT_pfloat_noopt #1\xint_relax {% \expandafter\XINT_pfloat_a\expandafter\XINTdigits \romannumeral0\XINTinfloat [\XINTdigits]{#1}% }% \def\XINT_pfloat_opt [\xint_relax #1]%#2% {% \expandafter\XINT_pfloat_a\expandafter {\the\numexpr #1\expandafter}% \romannumeral0\XINTinfloat [\numexpr #1\relax]%{#2}% }% \def\XINT_pfloat_a #1#2% {% \xint_UDzerominusfork #2-\XINT_pfloat_zero 0#2\XINT_pfloat_neg 0-{\XINT_pfloat_pos #2}% \krof {#1}% }% \def\XINT_pfloat_zero #1[#2]{ 0}% \def\XINT_pfloat_neg {\expandafter\xint_minus_thenstop\romannumeral0\XINT_pfloat_pos {}}% \def\XINT_pfloat_pos #1#2#3[#4]% {% \ifnum#4>0 \xint_dothis\XINT_pfloat_no\fi \ifnum#4>\numexpr-#2\relax \xint_dothis\XINT_pfloat_b\fi \ifnum#4>\numexpr-#2-\xint_c_v\relax \xint_dothis\XINT_pfloat_B\fi \xint_orthat\XINT_pfloat_no {#2}{#4}{#1#3}% }% \def\XINT_pfloat_no #1#2% {% \expandafter\XINT_pfloat_no_b\expandafter{\the\numexpr #2+#1-\xint_c_i\relax}% }% \def\XINT_pfloat_no_b #1#2{\XINT_pfloat_no_c #2e#1}% \def\XINT_pfloat_no_c #1{ #1.}% \def\XINT_pfloat_b #1#2#3% {\expandafter\XINT_pfloat_c \romannumeral0\expandafter\XINT_split_fromleft_loop \expandafter {\the\numexpr #1+#2-\xint_c_i}#3\W\W\W\W\W\W\W\W\Z }% \def\XINT_pfloat_c #1#2{ #1.#2}% #2 peut \^etre vide \def\XINT_pfloat_B #1#2#3% {\expandafter\XINT_pfloat_C \romannumeral0\XINT_dsx_zeroloop {\numexpr -#1-#2}{}\Z {}#3}% \def\XINT_pfloat_C { 0.}% % \end{macrocode} % \subsection{\csh{XINTinFloat}} % \lverb|1.07. Completely rewritten in 1.08a for immensely greater efficiency % when the power of ten is big: previous version had some very serious % bottlenecks arising from the creation of long strings of zeros, which made % things such as 2^999999 completely impossible, but now even 2^999999999 with % 24 significant digits is no problem! Again (slightly) improved in 1.08b. % % I decide in 1.09a not to use anymore \romannumeral`-0 mais \romannumeral0 also % in the float routines, for consistency of style. % % Here again some inner macros used the \xintiquo with extra \xintnum overhead % in 1.09a, 1.09f fixed that to use \xintiiquo for example. % % 1.09i added a stupid bug to \XINT_infloat_zero when it changed 0[0] to a silly % 0/1[0], breaking in particular \xintFloatAdd when one of the argument is zero % :((( % % 1.09j fixes this. Besides, for notational coherence \XINT_inFloat and % \XINT_infloat have been renamed respectively \XINTinFloat and \XINTinfloat in % release 1.09j.| % \begin{macrocode} \def\XINTinFloat {\romannumeral0\XINTinfloat }% \def\XINTinfloat [#1]#2% {% \expandafter\XINT_infloat_a\expandafter {\the\numexpr #1\expandafter}% \romannumeral0\XINT_infrac {#2}\XINT_infloat_Q }% \def\XINT_infloat_a #1#2#3% #1=P, #2=n, #3=A, #4=B {% \XINT_infloat_fork #3\Z {#1}{#2}% #1 = precision, #2=n }% \def\XINT_infloat_fork #1% {% \xint_UDzerominusfork #1-\XINT_infloat_zero 0#1\XINT_infloat_J 0-{\XINT_float_K #1}% \krof }% \def\XINT_infloat_zero #1\Z #2#3#4#5{ 0[0]}% % the 0[0] was stupidly changed to 0/1[0] in 1.09i, with the result that the % Float addition would crash when an operand was zero \def\XINT_infloat_J {\expandafter-\romannumeral0\XINT_float_K }% \def\XINT_infloat_Q #1% {% \ifnum #1<\xint_c_ \expandafter\XINT_infloat_Ri \else \expandafter\XINT_infloat_Rii \fi {#1}% }% \def\XINT_infloat_Ri #1#2#3% {% \expandafter\XINT_infloat_S\expandafter {\romannumeral0\xintiiquo {#2}% {\XINT_dsx_addzerosnofuss {-#1}{#3}}}{#1}% }% \def\XINT_infloat_Rii #1#2#3% {% \expandafter\XINT_infloat_S\expandafter {\romannumeral0\xintiiquo {\XINT_dsx_addzerosnofuss {#1}{#2}}{#3}}{#1}% }% \def\XINT_infloat_S #1#2#3% {% \expandafter\XINT_infloat_T\expandafter {\the\numexpr #3+\xint_c_i\expandafter}% \romannumeral-`0\XINT_lenrord_loop 0{}#1\Z\W\W\W\W\W\W\W\Z {#2}% }% \def\XINT_infloat_T #1#2#3% {% \ifnum #2>#1 \xint_afterfi{\XINT_infloat_U\XINT_infloat_Wb}% \else \xint_afterfi{\XINT_infloat_U\XINT_infloat_Wa #3}% \fi }% \def\XINT_infloat_U #1#2% {% \ifnum #2<\xint_c_v \expandafter\XINT_infloat_Va \else \expandafter\XINT_infloat_Vb \fi #1% }% \def\XINT_infloat_Va #1#2\Z {% \expandafter#1% \romannumeral0\XINT_rord_main {}#2% \xint_relax \xint_bye\xint_bye\xint_bye\xint_bye \xint_bye\xint_bye\xint_bye\xint_bye \xint_relax \Z }% \def\XINT_infloat_Vb #1#2\Z {% \expandafter #1% \romannumeral0\XINT_addm_A 0{}1000\W\X\Y\Z #2000\W\X\Y\Z \Z }% \def\XINT_infloat_Wa #1\Z #2#3% {% \expandafter\XINT_infloat_X\expandafter {\the\numexpr #3+\xint_c_i-#2}{#1}% }% \def\XINT_infloat_Wb #1\Z #2#3% {% \expandafter\XINT_infloat_X\expandafter {\the\numexpr #3+\xint_c_ii-#2}{#1}% }% \def\XINT_infloat_X #1#2{ #2[#1]}% % \end{macrocode} % \subsection{\csh{xintAdd}} % \lverb|modified in v1.1. Et aussi 25 juin pour intercepter summand nul.| % \begin{macrocode} \def\xintAdd {\romannumeral0\xintadd }% \def\xintadd #1{\expandafter\xint_fadd\romannumeral0\xintraw {#1}}% \def\xint_fadd #1{\xint_gob_til_zero #1\XINT_fadd_Azero 0\XINT_fadd_a #1}% \def\XINT_fadd_Azero #1]{\xintraw }% \def\XINT_fadd_a #1/#2[#3]#4% {\expandafter\XINT_fadd_b\romannumeral0\xintraw {#4}{#3}{#1}{#2}}% \def\XINT_fadd_b #1{\xint_gob_til_zero #1\XINT_fadd_Bzero 0\XINT_fadd_c #1}% \def\XINT_fadd_Bzero #1]#2#3#4{ #3/#4[#2]}% \def\XINT_fadd_c #1/#2[#3]#4% {% \expandafter\XINT_fadd_Aa\expandafter{\the\numexpr #4-#3}{#3}{#4}{#1}{#2}% }% \def\XINT_fadd_Aa #1% {% \ifcase\XINT_cntSgn #1\Z \expandafter\XINT_fadd_B \or \expandafter \XINT_fadd_Ba \else \expandafter \XINT_fadd_Bb \fi {#1}% }% \def\XINT_fadd_B #1#2#3#4#5#6#7{\XINT_fadd_C {#4}{#5}{#7}{#6}[#3]}% \def\XINT_fadd_Ba #1#2#3#4#5#6#7% {% \expandafter\XINT_fadd_C\expandafter {\romannumeral0\XINT_dsx_zeroloop {#1}{}\Z {#6}}% {#7}{#5}{#4}[#2]% }% \def\XINT_fadd_Bb #1#2#3#4#5#6#7% {% \expandafter\XINT_fadd_C\expandafter {\romannumeral0\XINT_dsx_zeroloop {-#1}{}\Z {#4}}% {#5}{#7}{#6}[#3]% }% \def\XINT_fadd_C #1#2#3% {% \ifcase\romannumeral0\XINT_cmp_pre {#2}{#3} %<- intentional space here. \expandafter\XINT_fadd_eq \or\expandafter\XINT_fadd_D \else\expandafter\XINT_fadd_Da \fi {#2}{#3}{#1}% }% \def\XINT_fadd_eq #1#2#3#4%#5% {% \expandafter\XINT_fadd_G \romannumeral0\xintiiadd {#3}{#4}/#1%[#5]% }% \def\XINT_fadd_D #1#2% {% \expandafter\XINT_fadd_E\romannumeral0\XINT_div_prepare {#2}{#1}{#1}{#2}% }% \def\XINT_fadd_E #1#2% {% \if0\XINT_Sgn #2\Z \expandafter\XINT_fadd_F \else\expandafter\XINT_fadd_K \fi {#1}% }% \def\XINT_fadd_F #1#2#3#4#5%#6% {% \expandafter\XINT_fadd_G \romannumeral0\xintiiadd {\xintiiMul {#5}{#1}}{#4}/#2%[#6]% }% \def\XINT_fadd_Da #1#2% {% \expandafter\XINT_fadd_Ea\romannumeral0\XINT_div_prepare {#1}{#2}{#1}{#2}% }% \def\XINT_fadd_Ea #1#2% {% \if0\XINT_Sgn #2\Z \expandafter\XINT_fadd_Fa \else\expandafter\XINT_fadd_K \fi {#1}% }% \def\XINT_fadd_Fa #1#2#3#4#5%#6% {% \expandafter\XINT_fadd_G \romannumeral0\xintiiadd {\xintiiMul {#4}{#1}}{#5}/#3%[#6]% }% \def\XINT_fadd_G #1{\if0#1\XINT_fadd_iszero\fi\space #1}% \def\XINT_fadd_K #1#2#3#4#5% {% \expandafter\XINT_fadd_L \romannumeral0\xintiiadd {\xintiiMul {#2}{#5}}{\xintiiMul {#3}{#4}}.% {{#2}{#3}}% }% \def\XINT_fadd_L #1{\if0#1\XINT_fadd_iszero\fi \XINT_fadd_M #1}% \def\XINT_fadd_M #1.#2{\expandafter\XINT_fadd_N \expandafter {\romannumeral0\xintiimul #2}{#1}}% \def\XINT_fadd_N #1#2{ #2/#1}% \edef\XINT_fadd_iszero\fi #1[#2]{\noexpand\fi\space 0/1[0]}% ou [#2] originel? % \end{macrocode} % \subsection{\csh{xintSub}} % \lverb|refait dans 1.1 pour vérifier si summands nuls.| % \begin{macrocode} \def\xintSub {\romannumeral0\xintsub }% \def\xintsub #1{\expandafter\xint_fsub\romannumeral0\xintraw {#1}}% \def\xint_fsub #1{\xint_gob_til_zero #1\XINT_fsub_Azero 0\XINT_fsub_a #1}% \def\XINT_fsub_Azero #1]{\xintopp }% \def\XINT_fsub_a #1/#2[#3]#4% {\expandafter\XINT_fsub_b\romannumeral0\xintraw {#4}{#3}{#1}{#2}}% \def\XINT_fsub_b #1{\xint_UDzerominusfork #1-\XINT_fadd_Bzero 0#1\XINT_fadd_c 0-{\XINT_fadd_c -#1}% \krof }% % \end{macrocode} % \subsection{\csh{xintSum}} % \begin{macrocode} \def\xintSum {\romannumeral0\xintsum }% \def\xintsum #1{\xintsumexpr #1\relax }% \def\xintSumExpr {\romannumeral0\xintsumexpr }% \def\xintsumexpr {\expandafter\XINT_fsumexpr\romannumeral-`0}% \def\XINT_fsumexpr {\XINT_fsum_loop_a {0/1[0]}}% \def\XINT_fsum_loop_a #1#2% {% \expandafter\XINT_fsum_loop_b \romannumeral-`0#2\Z {#1}% }% \def\XINT_fsum_loop_b #1% {% \xint_gob_til_relax #1\XINT_fsum_finished\relax \XINT_fsum_loop_c #1% }% \def\XINT_fsum_loop_c #1\Z #2% {% \expandafter\XINT_fsum_loop_a\expandafter{\romannumeral0\xintadd {#2}{#1}}% }% \def\XINT_fsum_finished #1\Z #2{ #2}% % \end{macrocode} % \subsection{\csh{xintMul}} % \lverb|modif 1.1 25-juin-14 pour vérifier plus tôt si nul| % \begin{macrocode} \def\xintMul {\romannumeral0\xintmul }% \def\xintmul #1{\expandafter\xint_fmul\romannumeral0\xintraw {#1}.}% \def\xint_fmul #1{\xint_gob_til_zero #1\XINT_fmul_zero 0\XINT_fmul_a #1}% \def\XINT_fmul_a #1[#2].#3% {\expandafter\XINT_fmul_b\romannumeral0\xintraw {#3}#1[#2.]}% \def\XINT_fmul_b #1{\xint_gob_til_zero #1\XINT_fmul_zero 0\XINT_fmul_c #1}% \def\XINT_fmul_c #1/#2[#3]#4/#5[#6.]% {% \expandafter\XINT_fmul_d \expandafter{\the\numexpr #3+#6\expandafter}% \expandafter{\romannumeral0\xintiimul {#5}{#2}}% {\romannumeral0\xintiimul {#4}{#1}}% }% \def\XINT_fmul_d #1#2#3% {% \expandafter \XINT_fmul_e \expandafter{#3}{#1}{#2}% }% \def\XINT_fmul_e #1#2{\XINT_outfrac {#2}{#1}}% \def\XINT_fmul_zero #1.#2{ 0/1[0]}% % \end{macrocode} % \subsection{\csh{xintSqr}} % \lverb|1.1 modifs comme xintMul| % \begin{macrocode} \def\xintSqr {\romannumeral0\xintsqr }% \def\xintsqr #1{\expandafter\xint_fsqr\romannumeral0\xintraw {#1}}% \def\xint_fsqr #1{\xint_gob_til_zero #1\XINT_fsqr_zero 0\XINT_fsqr_a #1}% \def\xint_fsqr_a #1/#2[#3]% {% \expandafter\XINT_fsqr_b \expandafter{\the\numexpr #3+#3\expandafter}% \expandafter{\romannumeral0\xintiisqr {#2}}% {\romannumeral0\xintiisqr {#1}}% }% \def\XINT_fsqr_b #1#2#3{\expandafter \XINT_fmul_e \expandafter{#3}{#1}{#2}}% \def\XINT_fsqr_zero #1]{ 0/1[0]}% % \end{macrocode} % \subsection{\csh{xintPow}} % \lverb|& % Modified in 1.06 to give the exponent to a \numexpr. % % With 1.07 and for use within the \xintexpr parser, we must allow % fractions (which are integers in disguise) as input to the exponent, so we % must have a variant which uses \xintNum and not only \numexpr % for normalizing the input. Hence the \xintfPow here. % % 1.08b: well actually I % think that with xintfrac.sty loaded the exponent should always be allowed to % be a fraction giving an integer. So I do as for \xintFac, and remove here the % duplicated. Then \xintexpr can use the \xintPow as defined here.| % \begin{macrocode} \def\xintPow {\romannumeral0\xintpow }% \def\xintpow #1% {% \expandafter\xint_fpow\expandafter {\romannumeral0\XINT_infrac {#1}}% }% \def\xint_fpow #1#2% {% \expandafter\XINT_fpow_fork\the\numexpr \xintNum{#2}\relax\Z #1% }% \def\XINT_fpow_fork #1#2\Z {% \xint_UDzerominusfork #1-\XINT_fpow_zero 0#1\XINT_fpow_neg 0-{\XINT_fpow_pos #1}% \krof {#2}% }% \def\XINT_fpow_zero #1#2#3#4{ 1/1[0]}% \def\XINT_fpow_pos #1#2#3#4#5% {% \expandafter\XINT_fpow_pos_A\expandafter {\the\numexpr #1#2*#3\expandafter}\expandafter {\romannumeral0\xintiipow {#5}{#1#2}}% {\romannumeral0\xintiipow {#4}{#1#2}}% }% \def\XINT_fpow_neg #1#2#3#4% {% \expandafter\XINT_fpow_pos_A\expandafter {\the\numexpr -#1*#2\expandafter}\expandafter {\romannumeral0\xintiipow {#3}{#1}}% {\romannumeral0\xintiipow {#4}{#1}}% }% \def\XINT_fpow_pos_A #1#2#3% {% \expandafter\XINT_fpow_pos_B\expandafter {#3}{#1}{#2}% }% \def\XINT_fpow_pos_B #1#2{\XINT_outfrac {#2}{#1}}% % \end{macrocode} % \subsection{\csh{xintFac}} % \lverb|1.07: to be used by the \xintexpr scanner which needs to be able to % apply \xintFac % to a fraction which is an integer in disguise; so we use \xintNum and not only % \numexpr. Je modifie cela dans 1.08b, au lieu d'avoir un \xintfFac % spécialement pour \xintexpr, tout simplement j'étends \xintFac comme les % autres macros, pour qu'elle utilise \xintNum. | % \begin{macrocode} \def\xintFac {\romannumeral0\xintfac }% \def\xintfac #1% {% \expandafter\XINT_fac_fork\expandafter{\the\numexpr \xintNum{#1}}% }% % \end{macrocode} % \subsection{\csh{xintPrd}} % \begin{macrocode} \def\xintPrd {\romannumeral0\xintprd }% \def\xintprd #1{\xintprdexpr #1\relax }% \def\xintPrdExpr {\romannumeral0\xintprdexpr }% \def\xintprdexpr {\expandafter\XINT_fprdexpr \romannumeral-`0}% \def\XINT_fprdexpr {\XINT_fprod_loop_a {1/1[0]}}% \def\XINT_fprod_loop_a #1#2% {% \expandafter\XINT_fprod_loop_b \romannumeral-`0#2\Z {#1}% }% \def\XINT_fprod_loop_b #1% {% \xint_gob_til_relax #1\XINT_fprod_finished\relax \XINT_fprod_loop_c #1% }% \def\XINT_fprod_loop_c #1\Z #2% {% \expandafter\XINT_fprod_loop_a\expandafter{\romannumeral0\xintmul {#1}{#2}}% }% \def\XINT_fprod_finished #1\Z #2{ #2}% % \end{macrocode} % \subsection{\csh{xintDiv}} % \begin{macrocode} \def\xintDiv {\romannumeral0\xintdiv }% \def\xintdiv #1% {% \expandafter\xint_fdiv\expandafter {\romannumeral0\XINT_infrac {#1}}% }% \def\xint_fdiv #1#2% {\expandafter\XINT_fdiv_A\romannumeral0\XINT_infrac {#2}#1}% \def\XINT_fdiv_A #1#2#3#4#5#6% {% \expandafter\XINT_fdiv_B \expandafter{\the\numexpr #4-#1\expandafter}% \expandafter{\romannumeral0\xintiimul {#2}{#6}}% {\romannumeral0\xintiimul {#3}{#5}}% }% \def\XINT_fdiv_B #1#2#3% {% \expandafter\XINT_fdiv_C \expandafter{#3}{#1}{#2}% }% \def\XINT_fdiv_C #1#2{\XINT_outfrac {#2}{#1}}% % \end{macrocode} % \subsection{\csh{xintDivFloor}} % \lverb|1.1| % \begin{macrocode} \def\xintDivFloor {\romannumeral0\xintdivfloor }% \def\xintdivfloor #1#2{\xintfloor{\xintDiv {#1}{#2}}}% % \end{macrocode} % \subsection{\csh{xintDivTrunc}} % \lverb|1.1. \xintttrunc rather than \xintitrunc0 in 1.1a| % \begin{macrocode} \def\xintDivTrunc {\romannumeral0\xintdivtrunc }% \def\xintdivtrunc #1#2{\xintttrunc {\xintDiv {#1}{#2}}}% % \end{macrocode} % \subsection{\csh{xintDivRound}} % \lverb|1.1| % \begin{macrocode} \def\xintDivRound {\romannumeral0\xintdivround }% \def\xintdivround #1#2{\xintiround 0{\xintDiv {#1}{#2}}}% % \end{macrocode} % \subsection{\csh{xintMod}} % \lverb|1.1. \xintMod {q1}{q2} computes q2*t(q1/q2) with t(q1/q2) equal to % the truncated division of two arbitrary fractions q1 and q2. We put some % efforts into minimizing the amount of computations.| % \begin{macrocode} \def\xintMod {\romannumeral0\xintmod }% \def\xintmod #1{\expandafter\XINT_mod_a\romannumeral0\xintraw{#1}.}% \def\XINT_mod_a #1#2.#3% {\expandafter\XINT_mod_b\expandafter #1\romannumeral0\xintraw{#3}#2.}% \def\XINT_mod_b #1#2% #1 de A, #2 de B. {% \if0#2\xint_dothis\XINT_mod_divbyzero\fi \if0#1\xint_dothis\XINT_mod_aiszero\fi \if-#2\xint_dothis{\XINT_mod_bneg #1}\fi \xint_orthat{\XINT_mod_bpos #1#2}% }% \def\XINT_mod_bpos #1% {% \xint_UDsignfork #1{\xintiiopp\XINT_mod_pos {}}% -{\XINT_mod_pos #1}% \krof }% \def\XINT_mod_bneg #1% {% \xint_UDsignfork #1{\xintiiopp\XINT_mod_pos {}}% -{\XINT_mod_pos #1}% \krof }% \def\XINT_mod_divbyzero #1.{\xintError:DivisionByZero\space 0/1[0]}% \def\XINT_mod_aiszero #1.{ 0/1[0]}% \def\XINT_mod_pos #1#2/#3[#4]#5/#6[#7].% {% \expandafter\XINT_mod_pos_a \the\numexpr\ifnum#7>#4 #4\else #7\fi\expandafter.\expandafter {\romannumeral0\xintiimul {#6}{#3}}% n fois u {\xintiiE{\xintiiMul {#1#5}{#3}}{#7-#4}}% m fois u {\xintiiE{\xintiiMul {#2}{#6}}{#4-#7}}% t fois n }% \def\XINT_mod_pos_a #1.#2#3#4{\xintiirem {#3}{#4}/#2[#1]}% % \end{macrocode} % \subsection{\csh{XINTinFloatMod}} % \lverb|Pour emploi dans xintexpr 1.1| % \begin{macrocode} \def\XINTinFloatMod {\romannumeral0\XINTinfloatmod [\XINTdigits]}% \def\XINTinfloatmod [#1]#2#3{\expandafter\XINT_infloatmod\expandafter {\romannumeral0\XINTinfloat[#1]{#2}}% {\romannumeral0\XINTinfloat[#1]{#3}}{#1}}% \def\XINT_infloatmod #1#2{\expandafter\XINT_infloatmod_a\expandafter {#2}{#1}}% \def\XINT_infloatmod_a #1#2#3{\XINTinfloat [#3]{\xintMod {#2}{#1}}}% % \end{macrocode} % \subsection{\csh{xintIsOne}} % \lverb|& % New with 1.09a. Could be more efficient. For fractions with big powers of % tens, it is better to use \xintCmp{f}{1}. Restyled in 1.09i.| % \begin{macrocode} \def\xintIsOne {\romannumeral0\xintisone }% \def\xintisone #1{\expandafter\XINT_fracisone \romannumeral0\xintrawwithzeros{#1}\Z }% \def\XINT_fracisone #1/#2\Z {\if0\XINT_Cmp {#1}{#2}\xint_afterfi{ 1}\else\xint_afterfi{ 0}\fi}% % \end{macrocode} % \subsection{\csh{xintGeq}} % \lverb|& % Rewritten completely in 1.08a to be less dumb when comparing fractions having % big powers of tens.| % \begin{macrocode} \def\xintGeq {\romannumeral0\xintgeq }% \def\xintgeq #1% {% \expandafter\xint_fgeq\expandafter {\romannumeral0\xintabs {#1}}% }% \def\xint_fgeq #1#2% {% \expandafter\XINT_fgeq_A \romannumeral0\xintabs {#2}#1% }% \def\XINT_fgeq_A #1% {% \xint_gob_til_zero #1\XINT_fgeq_Zii 0% \XINT_fgeq_B #1% }% \def\XINT_fgeq_Zii 0\XINT_fgeq_B #1[#2]#3[#4]{ 1}% \def\XINT_fgeq_B #1/#2[#3]#4#5/#6[#7]% {% \xint_gob_til_zero #4\XINT_fgeq_Zi 0% \expandafter\XINT_fgeq_C\expandafter {\the\numexpr #7-#3\expandafter}\expandafter {\romannumeral0\xintiimul {#4#5}{#2}}% {\romannumeral0\xintiimul {#6}{#1}}% }% \def\XINT_fgeq_Zi 0#1#2#3#4#5#6#7{ 0}% \def\XINT_fgeq_C #1#2#3% {% \expandafter\XINT_fgeq_D\expandafter {#3}{#1}{#2}% }% \def\XINT_fgeq_D #1#2#3% {% \expandafter\XINT_cntSgnFork\romannumeral-`0\expandafter\XINT_cntSgn \the\numexpr #2+\xintLength{#3}-\xintLength{#1}\relax\Z { 0}{\XINT_fgeq_E #2\Z {#3}{#1}}{ 1}% }% \def\XINT_fgeq_E #1% {% \xint_UDsignfork #1\XINT_fgeq_Fd -{\XINT_fgeq_Fn #1}% \krof }% \def\XINT_fgeq_Fd #1\Z #2#3% {% \expandafter\XINT_fgeq_Fe\expandafter {\romannumeral0\XINT_dsx_addzerosnofuss {#1}{#3}}{#2}% }% \def\XINT_fgeq_Fe #1#2{\XINT_geq_pre {#2}{#1}}% \def\XINT_fgeq_Fn #1\Z #2#3% {% \expandafter\XINT_geq_pre\expandafter {\romannumeral0\XINT_dsx_addzerosnofuss {#1}{#2}}{#3}% }% % \end{macrocode} % \subsection{\csh{xintMax}} % \lverb|& % Rewritten completely in 1.08a.| % \begin{macrocode} \def\xintMax {\romannumeral0\xintmax }% \def\xintmax #1% {% \expandafter\xint_fmax\expandafter {\romannumeral0\xintraw {#1}}% }% \def\xint_fmax #1#2% {% \expandafter\XINT_fmax_A\romannumeral0\xintraw {#2}#1% }% \def\XINT_fmax_A #1#2/#3[#4]#5#6/#7[#8]% {% \xint_UDsignsfork #1#5\XINT_fmax_minusminus -#5\XINT_fmax_firstneg #1-\XINT_fmax_secondneg --\XINT_fmax_nonneg_a \krof #1#5{#2/#3[#4]}{#6/#7[#8]}% }% \def\XINT_fmax_minusminus --% {\expandafter\xint_minus_thenstop\romannumeral0\XINT_fmin_nonneg_b }% \def\XINT_fmax_firstneg #1-#2#3{ #1#2}% \def\XINT_fmax_secondneg -#1#2#3{ #1#3}% \def\XINT_fmax_nonneg_a #1#2#3#4% {% \XINT_fmax_nonneg_b {#1#3}{#2#4}% }% \def\XINT_fmax_nonneg_b #1#2% {% \if0\romannumeral0\XINT_fgeq_A #1#2% \xint_afterfi{ #1}% \else \xint_afterfi{ #2}% \fi }% % \end{macrocode} % \subsection{\csh{xintMaxof}} % \begin{macrocode} \def\xintMaxof {\romannumeral0\xintmaxof }% \def\xintmaxof #1{\expandafter\XINT_maxof_a\romannumeral-`0#1\relax }% \def\XINT_maxof_a #1{\expandafter\XINT_maxof_b\romannumeral0\xintraw{#1}\Z }% \def\XINT_maxof_b #1\Z #2% {\expandafter\XINT_maxof_c\romannumeral-`0#2\Z {#1}\Z}% \def\XINT_maxof_c #1% {\xint_gob_til_relax #1\XINT_maxof_e\relax\XINT_maxof_d #1}% \def\XINT_maxof_d #1\Z {\expandafter\XINT_maxof_b\romannumeral0\xintmax {#1}}% \def\XINT_maxof_e #1\Z #2\Z { #2}% % \end{macrocode} % \subsection{\csh{xintMin}} % \lverb|& % Rewritten completely in 1.08a.| % \begin{macrocode} \def\xintMin {\romannumeral0\xintmin }% \def\xintmin #1% {% \expandafter\xint_fmin\expandafter {\romannumeral0\xintraw {#1}}% }% \def\xint_fmin #1#2% {% \expandafter\XINT_fmin_A\romannumeral0\xintraw {#2}#1% }% \def\XINT_fmin_A #1#2/#3[#4]#5#6/#7[#8]% {% \xint_UDsignsfork #1#5\XINT_fmin_minusminus -#5\XINT_fmin_firstneg #1-\XINT_fmin_secondneg --\XINT_fmin_nonneg_a \krof #1#5{#2/#3[#4]}{#6/#7[#8]}% }% \def\XINT_fmin_minusminus --% {\expandafter\xint_minus_thenstop\romannumeral0\XINT_fmax_nonneg_b }% \def\XINT_fmin_firstneg #1-#2#3{ -#3}% \def\XINT_fmin_secondneg -#1#2#3{ -#2}% \def\XINT_fmin_nonneg_a #1#2#3#4% {% \XINT_fmin_nonneg_b {#1#3}{#2#4}% }% \def\XINT_fmin_nonneg_b #1#2% {% \if0\romannumeral0\XINT_fgeq_A #1#2% \xint_afterfi{ #2}% \else \xint_afterfi{ #1}% \fi }% % \end{macrocode} % \subsection{\csh{xintMinof}} % \begin{macrocode} \def\xintMinof {\romannumeral0\xintminof }% \def\xintminof #1{\expandafter\XINT_minof_a\romannumeral-`0#1\relax }% \def\XINT_minof_a #1{\expandafter\XINT_minof_b\romannumeral0\xintraw{#1}\Z }% \def\XINT_minof_b #1\Z #2% {\expandafter\XINT_minof_c\romannumeral-`0#2\Z {#1}\Z}% \def\XINT_minof_c #1% {\xint_gob_til_relax #1\XINT_minof_e\relax\XINT_minof_d #1}% \def\XINT_minof_d #1\Z {\expandafter\XINT_minof_b\romannumeral0\xintmin {#1}}% \def\XINT_minof_e #1\Z #2\Z { #2}% % \end{macrocode} % \subsection{\csh{xintCmp}} % \lverb|Rewritten completely in 1.08a to be less dumb when comparing fractions having % big powers of tens.| % \begin{macrocode} %\def\xintCmp {\romannumeral0\xintcmp }% \def\xintcmp #1% {% \expandafter\xint_fcmp\expandafter {\romannumeral0\xintraw {#1}}% }% \def\xint_fcmp #1#2% {% \expandafter\XINT_fcmp_A\romannumeral0\xintraw {#2}#1% }% \def\XINT_fcmp_A #1#2/#3[#4]#5#6/#7[#8]% {% \xint_UDsignsfork #1#5\XINT_fcmp_minusminus -#5\XINT_fcmp_firstneg #1-\XINT_fcmp_secondneg --\XINT_fcmp_nonneg_a \krof #1#5{#2/#3[#4]}{#6/#7[#8]}% }% \def\XINT_fcmp_minusminus --#1#2{\XINT_fcmp_B #2#1}% \def\XINT_fcmp_firstneg #1-#2#3{ -1}% \def\XINT_fcmp_secondneg -#1#2#3{ 1}% \def\XINT_fcmp_nonneg_a #1#2% {% \xint_UDzerosfork #1#2\XINT_fcmp_zerozero 0#2\XINT_fcmp_firstzero #10\XINT_fcmp_secondzero 00\XINT_fcmp_pos \krof #1#2% }% \def\XINT_fcmp_zerozero #1#2#3#4{ 0}% 1.08b had some [ and ] here!!! \def\XINT_fcmp_firstzero #1#2#3#4{ -1}% incredibly I never saw that until \def\XINT_fcmp_secondzero #1#2#3#4{ 1}% preparing 1.09a. \def\XINT_fcmp_pos #1#2#3#4% {% \XINT_fcmp_B #1#3#2#4% }% \def\XINT_fcmp_B #1/#2[#3]#4/#5[#6]% {% \expandafter\XINT_fcmp_C\expandafter {\the\numexpr #6-#3\expandafter}\expandafter {\romannumeral0\xintiimul {#4}{#2}}% {\romannumeral0\xintiimul {#5}{#1}}% }% \def\XINT_fcmp_C #1#2#3% {% \expandafter\XINT_fcmp_D\expandafter {#3}{#1}{#2}% }% \def\XINT_fcmp_D #1#2#3% {% \expandafter\XINT_cntSgnFork\romannumeral-`0\expandafter\XINT_cntSgn \the\numexpr #2+\xintLength{#3}-\xintLength{#1}\relax\Z { -1}{\XINT_fcmp_E #2\Z {#3}{#1}}{ 1}% }% \def\XINT_fcmp_E #1% {% \xint_UDsignfork #1\XINT_fcmp_Fd -{\XINT_fcmp_Fn #1}% \krof }% \def\XINT_fcmp_Fd #1\Z #2#3% {% \expandafter\XINT_fcmp_Fe\expandafter {\romannumeral0\XINT_dsx_addzerosnofuss {#1}{#3}}{#2}% }% \def\XINT_fcmp_Fe #1#2{\XINT_cmp_pre {#2}{#1}}% \def\XINT_fcmp_Fn #1\Z #2#3% {% \expandafter\XINT_cmp_pre\expandafter {\romannumeral0\XINT_dsx_addzerosnofuss {#1}{#2}}{#3}% }% % \end{macrocode} % \subsection{\csh{xintAbs}} % \lverb|Simplified in 1.09i. (original macro had been written before \xintRaw)| % \begin{macrocode} \def\xintAbs {\romannumeral0\xintabs }% \def\xintabs #1{\expandafter\XINT_abs\romannumeral0\xintraw {#1}}% % \end{macrocode} % \subsection{\csh{xintOpp}} % \lverb|caution that -#1 would not be ok if #1 has [n] % stuff. Simplified in 1.09i. (original macro had been written before \xintRaw)| % \begin{macrocode} \def\xintOpp {\romannumeral0\xintopp }% \def\xintopp #1{\expandafter\XINT_opp\romannumeral0\xintraw {#1}}% % \end{macrocode} % \subsection{\csh{xintSgn}} % \lverb|Simplified in 1.09i. (original macro had been written before \xintRaw)| % \begin{macrocode} \def\xintSgn {\romannumeral0\xintsgn }% \def\xintsgn #1{\expandafter\XINT_sgn\romannumeral0\xintraw {#1}\Z }% % \end{macrocode} % \subsection{\csh{xintFloatAdd}, \csh{XINTinFloatAdd}} % \lverb|1.07; 1.09ka improves a bit the efficieny of the coding of % \XINT_FL_Add_d.| % \begin{macrocode} \def\xintFloatAdd {\romannumeral0\xintfloatadd }% \def\xintfloatadd #1{\XINT_fladd_chkopt \xintfloat #1\xint_relax }% \def\XINTinFloatAdd {\romannumeral0\XINTinfloatadd }% \def\XINTinfloatadd #1{\XINT_fladd_chkopt \XINTinfloat #1\xint_relax }% \def\XINT_fladd_chkopt #1#2% {% \ifx [#2\expandafter\XINT_fladd_opt \else\expandafter\XINT_fladd_noopt \fi #1#2% }% \def\XINT_fladd_noopt #1#2\xint_relax #3% {% #1[\XINTdigits]{\XINT_FL_Add {\XINTdigits+\xint_c_ii}{#2}{#3}}% }% \def\XINT_fladd_opt #1[\xint_relax #2]#3#4% {% #1[#2]{\XINT_FL_Add {#2+\xint_c_ii}{#3}{#4}}% }% \def\XINT_FL_Add #1#2% {% \expandafter\XINT_FL_Add_a\expandafter{\the\numexpr #1\expandafter}% \expandafter{\romannumeral0\XINTinfloat [#1]{#2}}% }% \def\XINT_FL_Add_a #1#2#3% {% \expandafter\XINT_FL_Add_b\romannumeral0\XINTinfloat [#1]{#3}#2{#1}% }% \def\XINT_FL_Add_b #1% {% \xint_gob_til_zero #1\XINT_FL_Add_zero 0\XINT_FL_Add_c #1% }% \def\XINT_FL_Add_c #1[#2]#3% {% \xint_gob_til_zero #3\XINT_FL_Add_zerobis 0\XINT_FL_Add_d #1[#2]#3% }% \def\XINT_FL_Add_d #1[#2]#3[#4]#5% {% \ifnum \numexpr #2-#4-#5>\xint_c_i \expandafter \xint_secondofthree_thenstop \else \ifnum \numexpr #4-#2-#5>\xint_c_i \expandafter\expandafter\expandafter\xint_thirdofthree_thenstop \fi \fi \xintadd {#1[#2]}{#3[#4]}% }% \def\XINT_FL_Add_zero 0\XINT_FL_Add_c 0[0]#1[#2]#3{#1[#2]}% \def\XINT_FL_Add_zerobis 0\XINT_FL_Add_d #1[#2]0[0]#3{#1[#2]}% % \end{macrocode} % \subsection{\csh{xintFloatSub}, \csh{XINTinFloatSub}} % \lverb|1.07| % \begin{macrocode} \def\xintFloatSub {\romannumeral0\xintfloatsub }% \def\xintfloatsub #1{\XINT_flsub_chkopt \xintfloat #1\xint_relax }% \def\XINTinFloatSub {\romannumeral0\XINTinfloatsub }% \def\XINTinfloatsub #1{\XINT_flsub_chkopt \XINTinfloat #1\xint_relax }% \def\XINT_flsub_chkopt #1#2% {% \ifx [#2\expandafter\XINT_flsub_opt \else\expandafter\XINT_flsub_noopt \fi #1#2% }% \def\XINT_flsub_noopt #1#2\xint_relax #3% {% #1[\XINTdigits]{\XINT_FL_Add {\XINTdigits+\xint_c_ii}{#2}{\xintOpp{#3}}}% }% \def\XINT_flsub_opt #1[\xint_relax #2]#3#4% {% #1[#2]{\XINT_FL_Add {#2+\xint_c_ii}{#3}{\xintOpp{#4}}}% }% % \end{macrocode} % \subsection{\csh{xintFloatMul}, \csh{XINTinFloatMul}} % \lverb|1.07| % \begin{macrocode} \def\xintFloatMul {\romannumeral0\xintfloatmul}% \def\xintfloatmul #1{\XINT_flmul_chkopt \xintfloat #1\xint_relax }% \def\XINTinFloatMul {\romannumeral0\XINTinfloatmul }% \def\XINTinfloatmul #1{\XINT_flmul_chkopt \XINTinfloat #1\xint_relax }% \def\XINT_flmul_chkopt #1#2% {% \ifx [#2\expandafter\XINT_flmul_opt \else\expandafter\XINT_flmul_noopt \fi #1#2% }% \def\XINT_flmul_noopt #1#2\xint_relax #3% {% #1[\XINTdigits]{\XINT_FL_Mul {\XINTdigits+\xint_c_ii}{#2}{#3}}% }% \def\XINT_flmul_opt #1[\xint_relax #2]#3#4% {% #1[#2]{\XINT_FL_Mul {#2+\xint_c_ii}{#3}{#4}}% }% \def\XINT_FL_Mul #1#2% {% \expandafter\XINT_FL_Mul_a\expandafter{\the\numexpr #1\expandafter}% \expandafter{\romannumeral0\XINTinfloat [#1]{#2}}% }% \def\XINT_FL_Mul_a #1#2#3% {% \expandafter\XINT_FL_Mul_b\romannumeral0\XINTinfloat [#1]{#3}#2% }% \def\XINT_FL_Mul_b #1[#2]#3[#4]{\xintE{\xintiiMul {#1}{#3}}{#2+#4}}% % \end{macrocode} % \subsection{\csh{xintFloatDiv}, \csh{XINTinFloatDiv}} % \lverb|1.07| % \begin{macrocode} \def\xintFloatDiv {\romannumeral0\xintfloatdiv}% \def\xintfloatdiv #1{\XINT_fldiv_chkopt \xintfloat #1\xint_relax }% \def\XINTinFloatDiv {\romannumeral0\XINTinfloatdiv }% \def\XINTinfloatdiv #1{\XINT_fldiv_chkopt \XINTinfloat #1\xint_relax }% \def\XINT_fldiv_chkopt #1#2% {% \ifx [#2\expandafter\XINT_fldiv_opt \else\expandafter\XINT_fldiv_noopt \fi #1#2% }% \def\XINT_fldiv_noopt #1#2\xint_relax #3% {% #1[\XINTdigits]{\XINT_FL_Div {\XINTdigits+\xint_c_ii}{#2}{#3}}% }% \def\XINT_fldiv_opt #1[\xint_relax #2]#3#4% {% #1[#2]{\XINT_FL_Div {#2+\xint_c_ii}{#3}{#4}}% }% \def\XINT_FL_Div #1#2% {% \expandafter\XINT_FL_Div_a\expandafter{\the\numexpr #1\expandafter}% \expandafter{\romannumeral0\XINTinfloat [#1]{#2}}% }% \def\XINT_FL_Div_a #1#2#3% {% \expandafter\XINT_FL_Div_b\romannumeral0\XINTinfloat [#1]{#3}#2% }% \def\XINT_FL_Div_b #1[#2]#3[#4]{\xintE{#3/#1}{#4-#2}}% % \end{macrocode} % \subsection{\csh{xintFloatPow}, \csh{XINTinFloatPow}} % \lverb|1.07. Release 1.09j has re-organized the core loop, and % \XINT_flpow_prd sub-routine has been removed.| % \begin{macrocode} \def\xintFloatPow {\romannumeral0\xintfloatpow}% \def\xintfloatpow #1{\XINT_flpow_chkopt \xintfloat #1\xint_relax }% \def\XINTinFloatPow {\romannumeral0\XINTinfloatpow }% \def\XINTinfloatpow #1{\XINT_flpow_chkopt \XINTinfloat #1\xint_relax }% \def\XINT_flpow_chkopt #1#2% {% \ifx [#2\expandafter\XINT_flpow_opt \else\expandafter\XINT_flpow_noopt \fi #1#2% }% \def\XINT_flpow_noopt #1#2\xint_relax #3% {% \expandafter\XINT_flpow_checkB_start\expandafter {\the\numexpr #3\expandafter}\expandafter {\the\numexpr \XINTdigits}{#2}{#1[\XINTdigits]}% }% \def\XINT_flpow_opt #1[\xint_relax #2]#3#4% {% \expandafter\XINT_flpow_checkB_start\expandafter {\the\numexpr #4\expandafter}\expandafter {\the\numexpr #2}{#3}{#1[#2]}% }% \def\XINT_flpow_checkB_start #1{\XINT_flpow_checkB_a #1\Z }% \def\XINT_flpow_checkB_a #1% {% \xint_UDzerominusfork #1-\XINT_flpow_BisZero 0#1{\XINT_flpow_checkB_b 1}% 0-{\XINT_flpow_checkB_b 0#1}% \krof }% \def\XINT_flpow_BisZero \Z #1#2#3{#3{1/1[0]}}% \def\XINT_flpow_checkB_b #1#2\Z #3% {% \expandafter\XINT_flpow_checkB_c \expandafter {\romannumeral0\xintlength{#2}}{#3}{#2}#1% }% \def\XINT_flpow_checkB_c #1#2% {% \expandafter\XINT_flpow_checkB_d \expandafter {\the\numexpr \expandafter\xintLength\expandafter {\the\numexpr #1*20/\xint_c_iii }+#1+#2+\xint_c_i }% }% \def\XINT_flpow_checkB_d #1#2#3#4% {% \expandafter \XINT_flpow_a \romannumeral0\XINTinfloat [#1]{#4}{#1}{#2}#3% }% \def\XINT_flpow_a #1% {% \xint_UDzerominusfork #1-\XINT_flpow_zero 0#1{\XINT_flpow_b 1}% 0-{\XINT_flpow_b 0#1}% \krof }% \def\XINT_flpow_b #1#2[#3]#4#5% {% \XINT_flpow_loopI {#5}{#2[#3]}{\romannumeral0\XINTinfloatmul [#4]}% {#1*\ifodd #5 1\else 0\fi}% }% \def\XINT_flpow_zero [#1]#2#3#4#5% % xint is not equipped to signal infinity, the 2^31 will provoke % deliberately a number too big and arithmetic overflow in \XINT_float_Xb {% \if #41\xint_afterfi {\xintError:DivisionByZero #5{1[2147483648]}}% \else \xint_afterfi {#5{0[0]}}\fi }% \def\XINT_flpow_loopI #1% {% \ifnum #1=\xint_c_i\XINT_flpow_ItoIII\fi \ifodd #1 \expandafter\XINT_flpow_loopI_odd \else \expandafter\XINT_flpow_loopI_even \fi {#1}% }% \def\XINT_flpow_ItoIII\fi #1\fi #2#3#4#5% {% \fi\expandafter\XINT_flpow_III\the\numexpr #5\relax #3% }% \def\XINT_flpow_loopI_even #1#2#3% {% \expandafter\XINT_flpow_loopI\expandafter {\the\numexpr #1/\xint_c_ii\expandafter}\expandafter {#3{#2}{#2}}{#3}% }% \def\XINT_flpow_loopI_odd #1#2#3% {% \expandafter\XINT_flpow_loopII\expandafter {\the\numexpr #1/\xint_c_ii-\xint_c_i\expandafter}\expandafter {#3{#2}{#2}}{#3}{#2}% }% \def\XINT_flpow_loopII #1% {% \ifnum #1 = \xint_c_i\XINT_flpow_IItoIII\fi \ifodd #1 \expandafter\XINT_flpow_loopII_odd \else \expandafter\XINT_flpow_loopII_even \fi {#1}% }% \def\XINT_flpow_loopII_even #1#2#3% {% \expandafter\XINT_flpow_loopII\expandafter {\the\numexpr #1/\xint_c_ii\expandafter}\expandafter {#3{#2}{#2}}{#3}% }% \def\XINT_flpow_loopII_odd #1#2#3#4% {% \expandafter\XINT_flpow_loopII_odda\expandafter {#3{#2}{#4}}{#1}{#2}{#3}% }% \def\XINT_flpow_loopII_odda #1#2#3#4% {% \expandafter\XINT_flpow_loopII\expandafter {\the\numexpr #2/\xint_c_ii-\xint_c_i\expandafter}\expandafter {#4{#3}{#3}}{#4}{#1}% }% \def\XINT_flpow_IItoIII\fi #1\fi #2#3#4#5#6% {% \fi\expandafter\XINT_flpow_III\the\numexpr #6\expandafter\relax #4{#3}{#5}% }% \def\XINT_flpow_III #1#2[#3]#4% {% \expandafter\XINT_flpow_IIIend\expandafter {\the\numexpr\if #41-\fi#3\expandafter}% \xint_UDzerofork #4{{#2}}% 0{{1/#2}}% \krof #1% }% \def\XINT_flpow_IIIend #1#2#3#4% {% \xint_UDzerofork #3{#4{#2[#1]}}% 0{#4{-#2[#1]}}% \krof }% % \end{macrocode} % \subsection{\csh{xintFloatPower}, \csh{XINTinFloatPower}} % \lverb|1.07. The core loop has been re-organized in 1.09j for some slight % efficiency gain. | % \begin{macrocode} \def\xintFloatPower {\romannumeral0\xintfloatpower}% \def\xintfloatpower #1{\XINT_flpower_chkopt \xintfloat #1\xint_relax }% \def\XINTinFloatPower {\romannumeral0\XINTinfloatpower}% \def\XINTinfloatpower #1{\XINT_flpower_chkopt \XINTinfloat #1\xint_relax }% \def\XINT_flpower_chkopt #1#2% {% \ifx [#2\expandafter\XINT_flpower_opt \else\expandafter\XINT_flpower_noopt \fi #1#2% }% \def\XINT_flpower_noopt #1#2\xint_relax #3% {% \expandafter\XINT_flpower_checkB_start\expandafter {\the\numexpr \XINTdigits\expandafter}\expandafter {\romannumeral0\xintnum{#3}}{#2}{#1[\XINTdigits]}% }% \def\XINT_flpower_opt #1[\xint_relax #2]#3#4% {% \expandafter\XINT_flpower_checkB_start\expandafter {\the\numexpr #2\expandafter}\expandafter {\romannumeral0\xintnum{#4}}{#3}{#1[#2]}% }% \def\XINT_flpower_checkB_start #1#2{\XINT_flpower_checkB_a #2\Z {#1}}% \def\XINT_flpower_checkB_a #1% {% \xint_UDzerominusfork #1-\XINT_flpower_BisZero 0#1{\XINT_flpower_checkB_b 1}% 0-{\XINT_flpower_checkB_b 0#1}% \krof }% \def\XINT_flpower_BisZero \Z #1#2#3{#3{1/1[0]}}% \def\XINT_flpower_checkB_b #1#2\Z #3% {% \expandafter\XINT_flpower_checkB_c \expandafter {\romannumeral0\xintlength{#2}}{#3}{#2}#1% }% \def\XINT_flpower_checkB_c #1#2% {% \expandafter\XINT_flpower_checkB_d \expandafter {\the\numexpr \expandafter\xintLength\expandafter {\the\numexpr #1*20/\xint_c_iii }+#1+#2+\xint_c_i }% }% \def\XINT_flpower_checkB_d #1#2#3#4% {% \expandafter \XINT_flpower_a \romannumeral0\XINTinfloat [#1]{#4}{#1}{#2}#3% }% \def\XINT_flpower_a #1% {% \xint_UDzerominusfork #1-\XINT_flpow_zero 0#1{\XINT_flpower_b 1}% 0-{\XINT_flpower_b 0#1}% \krof }% \def\XINT_flpower_b #1#2[#3]#4#5% {% \XINT_flpower_loopI {#5}{#2[#3]}{\romannumeral0\XINTinfloatmul [#4]}% {#1*\xintiiOdd {#5}}% }% \def\XINT_flpower_loopI #1% {% \if1\XINT_isOne {#1}\XINT_flpower_ItoIII\fi \if1\xintiiOdd{#1}% \expandafter\expandafter\expandafter\XINT_flpower_loopI_odd \else \expandafter\expandafter\expandafter\XINT_flpower_loopI_even \fi \expandafter {\romannumeral0\xinthalf{#1}}% }% \def\XINT_flpower_ItoIII\fi #1\fi\expandafter #2#3#4#5% {% \fi\expandafter\XINT_flpow_III \the\numexpr #5\relax #3% }% \def\XINT_flpower_loopI_even #1#2#3% {% \expandafter\XINT_flpower_toI\expandafter {#3{#2}{#2}}{#1}{#3}% }% \def\XINT_flpower_loopI_odd #1#2#3% {% \expandafter\XINT_flpower_toII\expandafter {#3{#2}{#2}}{#1}{#3}{#2}% }% \def\XINT_flpower_toI #1#2{\XINT_flpower_loopI {#2}{#1}}% \def\XINT_flpower_toII #1#2{\XINT_flpower_loopII {#2}{#1}}% \def\XINT_flpower_loopII #1% {% \if1\XINT_isOne {#1}\XINT_flpower_IItoIII\fi \if1\xintiiOdd{#1}% \expandafter\expandafter\expandafter\XINT_flpower_loopII_odd \else \expandafter\expandafter\expandafter\XINT_flpower_loopII_even \fi \expandafter {\romannumeral0\xinthalf{#1}}% }% \def\XINT_flpower_loopII_even #1#2#3% {% \expandafter\XINT_flpower_toII\expandafter {#3{#2}{#2}}{#1}{#3}% }% \def\XINT_flpower_loopII_odd #1#2#3#4% {% \expandafter\XINT_flpower_loopII_odda\expandafter {#3{#2}{#4}}{#2}{#3}{#1}% }% \def\XINT_flpower_loopII_odda #1#2#3#4% {% \expandafter\XINT_flpower_toII\expandafter {#3{#2}{#2}}{#4}{#3}{#1}% }% \def\XINT_flpower_IItoIII\fi #1\fi\expandafter #2#3#4#5#6% {% \fi\expandafter\XINT_flpow_III\the\numexpr #6\expandafter\relax #4{#3}{#5}% }% % \end{macrocode} % \subsection{\csh{xintFloatSqrt}, \csh{XINTinFloatSqrt}} % \lverb|1.08| % \begin{macrocode} \def\xintFloatSqrt {\romannumeral0\xintfloatsqrt }% \def\xintfloatsqrt #1{\XINT_flsqrt_chkopt \xintfloat #1\xint_relax }% \def\XINTinFloatSqrt {\romannumeral0\XINTinfloatsqrt }% \def\XINTinfloatsqrt #1{\XINT_flsqrt_chkopt \XINTinfloat #1\xint_relax }% \def\XINT_flsqrt_chkopt #1#2% {% \ifx [#2\expandafter\XINT_flsqrt_opt \else\expandafter\XINT_flsqrt_noopt \fi #1#2% }% \def\XINT_flsqrt_noopt #1#2\xint_relax {% #1[\XINTdigits]{\XINT_FL_sqrt \XINTdigits {#2}}% }% \def\XINT_flsqrt_opt #1[\xint_relax #2]#3% {% #1[#2]{\XINT_FL_sqrt {#2}{#3}}% }% \def\XINT_FL_sqrt #1% {% \ifnum\numexpr #1<\xint_c_xviii \xint_afterfi {\XINT_FL_sqrt_a\xint_c_xviii}% \else \xint_afterfi {\XINT_FL_sqrt_a {#1+\xint_c_i}}% \fi }% \def\XINT_FL_sqrt_a #1#2% {% \expandafter\XINT_FL_sqrt_checkifzeroorneg \romannumeral0\XINTinfloat [#1]{#2}% }% \def\XINT_FL_sqrt_checkifzeroorneg #1% {% \xint_UDzerominusfork #1-\XINT_FL_sqrt_iszero 0#1\XINT_FL_sqrt_isneg 0-{\XINT_FL_sqrt_b #1}% \krof }% \def\XINT_FL_sqrt_iszero #1[#2]{0[0]}% \def\XINT_FL_sqrt_isneg #1[#2]{\xintError:RootOfNegative 0[0]}% \def\XINT_FL_sqrt_b #1[#2]% {% \ifodd #2 \xint_afterfi{\XINT_FL_sqrt_c 01}% \else \xint_afterfi{\XINT_FL_sqrt_c {}0}% \fi {#1}{#2}% }% \def\XINT_FL_sqrt_c #1#2#3#4% {% \expandafter\XINT_flsqrt\expandafter {\the\numexpr #4-#2}{#3#1}% }% \def\XINT_flsqrt #1#2% {% \expandafter\XINT_sqrt_a \expandafter{\romannumeral0\xintlength {#2}}\XINT_flsqrt_big_d {#2}{#1}% }% \def\XINT_flsqrt_big_d #1#2% {% \ifodd #2 \expandafter\expandafter\expandafter\XINT_flsqrt_big_eB \else \expandafter\expandafter\expandafter\XINT_flsqrt_big_eA \fi \expandafter {\the\numexpr (#2-\xint_c_i)/\xint_c_ii }{#1}% }% \def\XINT_flsqrt_big_eA #1#2#3% {% \XINT_flsqrt_big_eA_a #3\Z {#2}{#1}{#3}% }% \def\XINT_flsqrt_big_eA_a #1#2#3#4#5#6#7#8#9\Z {% \XINT_flsqrt_big_eA_b {#1#2#3#4#5#6#7#8}% }% \def\XINT_flsqrt_big_eA_b #1#2% {% \expandafter\XINT_flsqrt_big_f \romannumeral0\XINT_flsqrt_small_e {#2001}{#1}% }% \def\XINT_flsqrt_big_eB #1#2#3% {% \XINT_flsqrt_big_eB_a #3\Z {#2}{#1}{#3}% }% \def\XINT_flsqrt_big_eB_a #1#2#3#4#5#6#7#8#9% {% \XINT_flsqrt_big_eB_b {#1#2#3#4#5#6#7#8#9}% }% \def\XINT_flsqrt_big_eB_b #1#2\Z #3% {% \expandafter\XINT_flsqrt_big_f \romannumeral0\XINT_flsqrt_small_e {#30001}{#1}% }% \def\XINT_flsqrt_small_e #1#2% {% \expandafter\XINT_flsqrt_small_f\expandafter {\the\numexpr #1*#1-#2-\xint_c_i}{#1}% }% \def\XINT_flsqrt_small_f #1#2% {% \expandafter\XINT_flsqrt_small_g\expandafter {\the\numexpr (#1+#2)/(2*#2)-\xint_c_i }{#1}{#2}% }% \def\XINT_flsqrt_small_g #1% {% \ifnum #1>\xint_c_ \expandafter\XINT_flsqrt_small_h \else \expandafter\XINT_flsqrt_small_end \fi {#1}% }% \def\XINT_flsqrt_small_h #1#2#3% {% \expandafter\XINT_flsqrt_small_f\expandafter {\the\numexpr #2-\xint_c_ii*#1*#3+#1*#1\expandafter}\expandafter {\the\numexpr #3-#1}% }% \def\XINT_flsqrt_small_end #1#2#3% {% \expandafter\space\expandafter {\the\numexpr \xint_c_i+#3*\xint_c_x^iv- (#2*\xint_c_x^iv+#3)/(\xint_c_ii*#3)}% }% \def\XINT_flsqrt_big_f #1% {% \expandafter\XINT_flsqrt_big_fa\expandafter {\romannumeral0\xintiisqr {#1}}{#1}% }% \def\XINT_flsqrt_big_fa #1#2#3#4% {% \expandafter\XINT_flsqrt_big_fb\expandafter {\romannumeral0\XINT_dsx_addzerosnofuss {\numexpr #3-\xint_c_viii\relax}{#2}}% {\romannumeral0\xintiisub {\XINT_dsx_addzerosnofuss {\numexpr \xint_c_ii*(#3-\xint_c_viii)\relax}{#1}}{#4}}% {#3}% }% \def\XINT_flsqrt_big_fb #1#2% {% \expandafter\XINT_flsqrt_big_g\expandafter {#2}{#1}% }% \def\XINT_flsqrt_big_g #1#2% {% \expandafter\XINT_flsqrt_big_j \romannumeral0\xintiidivision {#1}{\romannumeral0\XINT_dbl_pos #2\R\R\R\R\R\R\R\Z \W\W\W\W\W\W\W }{#2}% }% \def\XINT_flsqrt_big_j #1% {% \if0\XINT_Sgn #1\Z \expandafter \XINT_flsqrt_big_end_a \else \expandafter \XINT_flsqrt_big_k \fi {#1}% }% \def\XINT_flsqrt_big_k #1#2#3% {% \expandafter\XINT_flsqrt_big_l\expandafter {\romannumeral0\XINT_sub_pre {#3}{#1}}% {\romannumeral0\xintiiadd {#2}{\romannumeral0\XINT_sqr {#1}}}% }% \def\XINT_flsqrt_big_l #1#2% {% \expandafter\XINT_flsqrt_big_g\expandafter {#2}{#1}% }% \def\XINT_flsqrt_big_end_a #1#2#3#4#5% {% \expandafter\XINT_flsqrt_big_end_b\expandafter {\the\numexpr -#4+#5/\xint_c_ii\expandafter}\expandafter {\romannumeral0\xintiisub {\XINT_dsx_addzerosnofuss {#4}{#3}}% {\xintHalf{\xintiiQuo{\XINT_dsx_addzerosnofuss {#4}{#2}}{#3}}}}% }% \def\XINT_flsqrt_big_end_b #1#2{#2[#1]}% \XINT_restorecatcodes_endinput% % \end{macrocode} %\catcode`\<=0 \catcode`\>=11 \catcode`\*=11 \catcode`\/=11 %\let\relax %\def<*xintseries>{\catcode`\<=12 \catcode`\>=12 \catcode`\*=12 \catcode`\/=12 } % %<*xintseries> % % \StoreCodelineNo {xintfrac} % % \section{Package \xintseriesnameimp implementation} % \label{sec:seriesimp} % % \localtableofcontents % % The commenting is currently (\xintdocdate) very sparse. % % \subsection{Catcodes, \protect\eTeX{} and reload detection} % % The code for reload detection was initially copied from \textsc{Heiko % Oberdiek}'s packages, then modified. % % The method for catcodes was also initially directly inspired by these % packages. % % \begin{macrocode} \begingroup\catcode61\catcode48\catcode32=10\relax% \catcode13=5 % ^^M \endlinechar=13 % \catcode123=1 % { \catcode125=2 % } \catcode64=11 % @ \catcode35=6 % # \catcode44=12 % , \catcode45=12 % - \catcode46=12 % . \catcode58=12 % : \let\z\endgroup \expandafter\let\expandafter\x\csname ver@xintseries.sty\endcsname \expandafter\let\expandafter\w\csname ver@xintfrac.sty\endcsname \expandafter \ifx\csname PackageInfo\endcsname\relax \def\y#1#2{\immediate\write-1{Package #1 Info: #2.}}% \else \def\y#1#2{\PackageInfo{#1}{#2}}% \fi \expandafter \ifx\csname numexpr\endcsname\relax \y{xintseries}{\numexpr not available, aborting input}% \aftergroup\endinput \else \ifx\x\relax % plain-TeX, first loading of xintseries.sty \ifx\w\relax % but xintfrac.sty not yet loaded. \def\z{\endgroup\input xintfrac.sty\relax}% \fi \else \def\empty {}% \ifx\x\empty % LaTeX, first loading, % variable is initialized, but \ProvidesPackage not yet seen \ifx\w\relax % xintfrac.sty not yet loaded. \def\z{\endgroup\RequirePackage{xintfrac}}% \fi \else \aftergroup\endinput % xintseries already loaded. \fi \fi \fi \z% \XINTsetupcatcodes% defined in xintkernel.sty % \end{macrocode} % \subsection{Package identification} % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintseries}% [2014/11/07 v1.1a Expandable partial sums with xint package (jfB)]% % \end{macrocode} % \subsection{\csh{xintSeries}} % \lverb|& % Modified in 1.06 to give the indices first to a \numexpr rather than expanding % twice. I just use \the\numexpr and maintain the previous code after that. % 1.08a adds the forgotten optimization following that previous change.| % \begin{macrocode} \def\xintSeries {\romannumeral0\xintseries }% \def\xintseries #1#2% {% \expandafter\XINT_series\expandafter {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2}% }% \def\XINT_series #1#2#3% {% \ifnum #2<#1 \xint_afterfi { 0/1[0]}% \else \xint_afterfi {\XINT_series_loop {#1}{0}{#2}{#3}}% \fi }% \def\XINT_series_loop #1#2#3#4% {% \ifnum #3>#1 \else \XINT_series_exit \fi \expandafter\XINT_series_loop\expandafter {\the\numexpr #1+1\expandafter }\expandafter {\romannumeral0\xintadd {#2}{#4{#1}}}% {#3}{#4}% }% \def\XINT_series_exit \fi #1#2#3#4#5#6#7#8% {% \fi\xint_gobble_ii #6% }% % \end{macrocode} % \subsection{\csh{xintiSeries}} % \lverb|& % Modified in 1.06 to give the indices first to a \numexpr rather than expanding % twice. I just use \the\numexpr and maintain the previous code after that. % 1.08a adds the forgotten optimization following that previous change.| % \begin{macrocode} \def\xintiSeries {\romannumeral0\xintiseries }% \def\xintiseries #1#2% {% \expandafter\XINT_iseries\expandafter {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2}% }% \def\XINT_iseries #1#2#3% {% \ifnum #2<#1 \xint_afterfi { 0}% \else \xint_afterfi {\XINT_iseries_loop {#1}{0}{#2}{#3}}% \fi }% \def\XINT_iseries_loop #1#2#3#4% {% \ifnum #3>#1 \else \XINT_iseries_exit \fi \expandafter\XINT_iseries_loop\expandafter {\the\numexpr #1+1\expandafter }\expandafter {\romannumeral0\xintiiadd {#2}{#4{#1}}}% {#3}{#4}% }% \def\XINT_iseries_exit \fi #1#2#3#4#5#6#7#8% {% \fi\xint_gobble_ii #6% }% % \end{macrocode} % \subsection{\csh{xintPowerSeries}} % \lverb|& % The 1.03 version was very lame and created a build-up of denominators. % (this was at a time \xintAdd always multiplied denominators, by the way) % The Horner scheme for polynomial evaluation is used in 1.04, this % cures the denominator problem and drastically improves the efficiency % of the macro. % Modified in 1.06 to give the indices first to a \numexpr rather than expanding % twice. I just use \the\numexpr and maintain the previous code after that. % 1.08a adds the forgotten optimization following that previous change.| % \begin{macrocode} \def\xintPowerSeries {\romannumeral0\xintpowerseries }% \def\xintpowerseries #1#2% {% \expandafter\XINT_powseries\expandafter {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2}% }% \def\XINT_powseries #1#2#3#4% {% \ifnum #2<#1 \xint_afterfi { 0/1[0]}% \else \xint_afterfi {\XINT_powseries_loop_i {#3{#2}}{#1}{#2}{#3}{#4}}% \fi }% \def\XINT_powseries_loop_i #1#2#3#4#5% {% \ifnum #3>#2 \else\XINT_powseries_exit_i\fi \expandafter\XINT_powseries_loop_ii\expandafter {\the\numexpr #3-1\expandafter}\expandafter {\romannumeral0\xintmul {#1}{#5}}{#2}{#4}{#5}% }% \def\XINT_powseries_loop_ii #1#2#3#4% {% \expandafter\XINT_powseries_loop_i\expandafter {\romannumeral0\xintadd {#4{#1}}{#2}}{#3}{#1}{#4}% }% \def\XINT_powseries_exit_i\fi #1#2#3#4#5#6#7#8#9% {% \fi \XINT_powseries_exit_ii #6{#7}% }% \def\XINT_powseries_exit_ii #1#2#3#4#5#6% {% \xintmul{\xintPow {#5}{#6}}{#4}% }% % \end{macrocode} % \subsection{\csh{xintPowerSeriesX}} % \lverb|& % Same as \xintPowerSeries except for the initial expansion of the x parameter. % Modified in 1.06 to give the indices first to a \numexpr rather than expanding % twice. I just use \the\numexpr and maintain the previous code after that. % 1.08a adds the forgotten optimization following that previous change.| % \begin{macrocode} \def\xintPowerSeriesX {\romannumeral0\xintpowerseriesx }% \def\xintpowerseriesx #1#2% {% \expandafter\XINT_powseriesx\expandafter {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2}% }% \def\XINT_powseriesx #1#2#3#4% {% \ifnum #2<#1 \xint_afterfi { 0/1[0]}% \else \xint_afterfi {\expandafter\XINT_powseriesx_pre\expandafter {\romannumeral-`0#4}{#1}{#2}{#3}% }% \fi }% \def\XINT_powseriesx_pre #1#2#3#4% {% \XINT_powseries_loop_i {#4{#3}}{#2}{#3}{#4}{#1}% }% % \end{macrocode} % \subsection{\csh{xintRationalSeries}} % \lverb|& % This computes F(a)+...+F(b) on the basis of the value of F(a) and the % ratios F(n)/F(n-1). As in \xintPowerSeries we use an iterative scheme which % has the great advantage to avoid denominator build-up. This makes exact % computations possible with exponential type series, which would be completely % inaccessible to \xintSeries. % #1=a, #2=b, #3=F(a), #4=ratio function % Modified in 1.06 to give the indices first to a \numexpr rather than expanding % twice. I just use \the\numexpr and maintain the previous code after that. % 1.08a adds the forgotten optimization following that previous change.| % \begin{macrocode} \def\xintRationalSeries {\romannumeral0\xintratseries }% \def\xintratseries #1#2% {% \expandafter\XINT_ratseries\expandafter {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2}% }% \def\XINT_ratseries #1#2#3#4% {% \ifnum #2<#1 \xint_afterfi { 0/1[0]}% \else \xint_afterfi {\XINT_ratseries_loop {#2}{1}{#1}{#4}{#3}}% \fi }% \def\XINT_ratseries_loop #1#2#3#4% {% \ifnum #1>#3 \else\XINT_ratseries_exit_i\fi \expandafter\XINT_ratseries_loop\expandafter {\the\numexpr #1-1\expandafter}\expandafter {\romannumeral0\xintadd {1}{\xintMul {#2}{#4{#1}}}}{#3}{#4}% }% \def\XINT_ratseries_exit_i\fi #1#2#3#4#5#6#7#8% {% \fi \XINT_ratseries_exit_ii #6% }% \def\XINT_ratseries_exit_ii #1#2#3#4#5% {% \XINT_ratseries_exit_iii #5% }% \def\XINT_ratseries_exit_iii #1#2#3#4% {% \xintmul{#2}{#4}% }% % \end{macrocode} % \subsection{\csh{xintRationalSeriesX}} % \lverb|& % a,b,initial,ratiofunction,x$\ % This computes F(a,x)+...+F(b,x) on the basis of the value of F(a,x) and the % ratios F(n,x)/F(n-1,x). The argument x is first expanded and it is the value % resulting from this which is used then throughout. The initial term F(a,x) % must be defined as one-parameter macro which will be given x. % Modified in 1.06 to give the indices first to a \numexpr rather than expanding % twice. I just use \the\numexpr and maintain the previous code after that. % 1.08a adds the forgotten optimization following that previous change.| % \begin{macrocode} \def\xintRationalSeriesX {\romannumeral0\xintratseriesx }% \def\xintratseriesx #1#2% {% \expandafter\XINT_ratseriesx\expandafter {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2}% }% \def\XINT_ratseriesx #1#2#3#4#5% {% \ifnum #2<#1 \xint_afterfi { 0/1[0]}% \else \xint_afterfi {\expandafter\XINT_ratseriesx_pre\expandafter {\romannumeral-`0#5}{#2}{#1}{#4}{#3}% }% \fi }% \def\XINT_ratseriesx_pre #1#2#3#4#5% {% \XINT_ratseries_loop {#2}{1}{#3}{#4{#1}}{#5{#1}}% }% % \end{macrocode} % \subsection{\csh{xintFxPtPowerSeries}} % \lverb|& % I am not two happy with this piece of code. Will make it more economical % another day. % Modified in 1.06 to give the indices first to a \numexpr rather than expanding % twice. I just use \the\numexpr and maintain the previous code after that. % 1.08a: forgot last time some optimization from the change to \numexpr.| % \begin{macrocode} \def\xintFxPtPowerSeries {\romannumeral0\xintfxptpowerseries }% \def\xintfxptpowerseries #1#2% {% \expandafter\XINT_fppowseries\expandafter {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2}% }% \def\XINT_fppowseries #1#2#3#4#5% {% \ifnum #2<#1 \xint_afterfi { 0}% \else \xint_afterfi {\expandafter\XINT_fppowseries_loop_pre\expandafter {\romannumeral0\xinttrunc {#5}{\xintPow {#4}{#1}}}% {#1}{#4}{#2}{#3}{#5}% }% \fi }% \def\XINT_fppowseries_loop_pre #1#2#3#4#5#6% {% \ifnum #4>#2 \else\XINT_fppowseries_dont_i \fi \expandafter\XINT_fppowseries_loop_i\expandafter {\the\numexpr #2+\xint_c_i\expandafter}\expandafter {\romannumeral0\xintitrunc {#6}{\xintMul {#5{#2}}{#1}}}% {#1}{#3}{#4}{#5}{#6}% }% \def\XINT_fppowseries_dont_i \fi\expandafter\XINT_fppowseries_loop_i {\fi \expandafter\XINT_fppowseries_dont_ii }% \def\XINT_fppowseries_dont_ii #1#2#3#4#5#6#7{\xinttrunc {#7}{#2[-#7]}}% \def\XINT_fppowseries_loop_i #1#2#3#4#5#6#7% {% \ifnum #5>#1 \else \XINT_fppowseries_exit_i \fi \expandafter\XINT_fppowseries_loop_ii\expandafter {\romannumeral0\xinttrunc {#7}{\xintMul {#3}{#4}}}% {#1}{#4}{#2}{#5}{#6}{#7}% }% \def\XINT_fppowseries_loop_ii #1#2#3#4#5#6#7% {% \expandafter\XINT_fppowseries_loop_i\expandafter {\the\numexpr #2+\xint_c_i\expandafter}\expandafter {\romannumeral0\xintiiadd {#4}{\xintiTrunc {#7}{\xintMul {#6{#2}}{#1}}}}% {#1}{#3}{#5}{#6}{#7}% }% \def\XINT_fppowseries_exit_i\fi\expandafter\XINT_fppowseries_loop_ii {\fi \expandafter\XINT_fppowseries_exit_ii }% \def\XINT_fppowseries_exit_ii #1#2#3#4#5#6#7% {% \xinttrunc {#7} {\xintiiadd {#4}{\xintiTrunc {#7}{\xintMul {#6{#2}}{#1}}}[-#7]}% }% % \end{macrocode} % \subsection{\csh{xintFxPtPowerSeriesX}} % \lverb|& % a,b,coeff,x,D$\ % Modified in 1.06 to give the indices first to a \numexpr rather than expanding % twice. I just use \the\numexpr and maintain the previous code after that. % 1.08a adds the forgotten optimization following that previous change.| % \begin{macrocode} \def\xintFxPtPowerSeriesX {\romannumeral0\xintfxptpowerseriesx }% \def\xintfxptpowerseriesx #1#2% {% \expandafter\XINT_fppowseriesx\expandafter {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2}% }% \def\XINT_fppowseriesx #1#2#3#4#5% {% \ifnum #2<#1 \xint_afterfi { 0}% \else \xint_afterfi {\expandafter \XINT_fppowseriesx_pre \expandafter {\romannumeral-`0#4}{#1}{#2}{#3}{#5}% }% \fi }% \def\XINT_fppowseriesx_pre #1#2#3#4#5% {% \expandafter\XINT_fppowseries_loop_pre\expandafter {\romannumeral0\xinttrunc {#5}{\xintPow {#1}{#2}}}% {#2}{#1}{#3}{#4}{#5}% }% % \end{macrocode} % \subsection{\csh{xintFloatPowerSeries}} % \lverb|1.08a. I still have to re-visit \xintFxPtPowerSeries; temporarily I % just adapted the code to the case of floats.| % \begin{macrocode} \def\xintFloatPowerSeries {\romannumeral0\xintfloatpowerseries }% \def\xintfloatpowerseries #1{\XINT_flpowseries_chkopt #1\xint_relax }% \def\XINT_flpowseries_chkopt #1% {% \ifx [#1\expandafter\XINT_flpowseries_opt \else\expandafter\XINT_flpowseries_noopt \fi #1% }% \def\XINT_flpowseries_noopt #1\xint_relax #2% {% \expandafter\XINT_flpowseries\expandafter {\the\numexpr #1\expandafter}\expandafter {\the\numexpr #2}\XINTdigits }% \def\XINT_flpowseries_opt [\xint_relax #1]#2#3% {% \expandafter\XINT_flpowseries\expandafter {\the\numexpr #2\expandafter}\expandafter {\the\numexpr #3\expandafter}{\the\numexpr #1}% }% \def\XINT_flpowseries #1#2#3#4#5% {% \ifnum #2<#1 \xint_afterfi { 0.e0}% \else \xint_afterfi {\expandafter\XINT_flpowseries_loop_pre\expandafter {\romannumeral0\XINTinfloatpow [#3]{#5}{#1}}% {#1}{#5}{#2}{#4}{#3}% }% \fi }% \def\XINT_flpowseries_loop_pre #1#2#3#4#5#6% {% \ifnum #4>#2 \else\XINT_flpowseries_dont_i \fi \expandafter\XINT_flpowseries_loop_i\expandafter {\the\numexpr #2+\xint_c_i\expandafter}\expandafter {\romannumeral0\XINTinfloatmul [#6]{#5{#2}}{#1}}% {#1}{#3}{#4}{#5}{#6}% }% \def\XINT_flpowseries_dont_i \fi\expandafter\XINT_flpowseries_loop_i {\fi \expandafter\XINT_flpowseries_dont_ii }% \def\XINT_flpowseries_dont_ii #1#2#3#4#5#6#7{\xintfloat [#7]{#2}}% \def\XINT_flpowseries_loop_i #1#2#3#4#5#6#7% {% \ifnum #5>#1 \else \XINT_flpowseries_exit_i \fi \expandafter\XINT_flpowseries_loop_ii\expandafter {\romannumeral0\XINTinfloatmul [#7]{#3}{#4}}% {#1}{#4}{#2}{#5}{#6}{#7}% }% \def\XINT_flpowseries_loop_ii #1#2#3#4#5#6#7% {% \expandafter\XINT_flpowseries_loop_i\expandafter {\the\numexpr #2+\xint_c_i\expandafter}\expandafter {\romannumeral0\XINTinfloatadd [#7]{#4}% {\XINTinfloatmul [#7]{#6{#2}}{#1}}}% {#1}{#3}{#5}{#6}{#7}% }% \def\XINT_flpowseries_exit_i\fi\expandafter\XINT_flpowseries_loop_ii {\fi \expandafter\XINT_flpowseries_exit_ii }% \def\XINT_flpowseries_exit_ii #1#2#3#4#5#6#7% {% \xintfloatadd [#7]{#4}{\XINTinfloatmul [#7]{#6{#2}}{#1}}% }% % \end{macrocode} % \subsection{\csh{xintFloatPowerSeriesX}} % \lverb|1.08a| % \begin{macrocode} \def\xintFloatPowerSeriesX {\romannumeral0\xintfloatpowerseriesx }% \def\xintfloatpowerseriesx #1{\XINT_flpowseriesx_chkopt #1\xint_relax }% \def\XINT_flpowseriesx_chkopt #1% {% \ifx [#1\expandafter\XINT_flpowseriesx_opt \else\expandafter\XINT_flpowseriesx_noopt \fi #1% }% \def\XINT_flpowseriesx_noopt #1\xint_relax #2% {% \expandafter\XINT_flpowseriesx\expandafter {\the\numexpr #1\expandafter}\expandafter {\the\numexpr #2}\XINTdigits }% \def\XINT_flpowseriesx_opt [\xint_relax #1]#2#3% {% \expandafter\XINT_flpowseriesx\expandafter {\the\numexpr #2\expandafter}\expandafter {\the\numexpr #3\expandafter}{\the\numexpr #1}% }% \def\XINT_flpowseriesx #1#2#3#4#5% {% \ifnum #2<#1 \xint_afterfi { 0.e0}% \else \xint_afterfi {\expandafter \XINT_flpowseriesx_pre \expandafter {\romannumeral-`0#5}{#1}{#2}{#4}{#3}% }% \fi }% \def\XINT_flpowseriesx_pre #1#2#3#4#5% {% \expandafter\XINT_flpowseries_loop_pre\expandafter {\romannumeral0\XINTinfloatpow [#5]{#1}{#2}}% {#2}{#1}{#3}{#4}{#5}% }% \XINT_restorecatcodes_endinput% % \end{macrocode} %\catcode`\<=0 \catcode`\>=11 \catcode`\*=11 \catcode`\/=11 %\let\relax %\def<*xintcfrac>{\catcode`\<=12 \catcode`\>=12 \catcode`\*=12 \catcode`\/=12 } % %<*xintcfrac> % % \StoreCodelineNo {xintseries} % % \section{Package \xintcfracnameimp implementation} % \label{sec:cfracimp} % % \localtableofcontents % % The commenting is currently (\xintdocdate) very sparse. Release |1.09m| % (|2014/02/26|) has modified a few things: |\xintFtoCs| and % |\xintCntoCs| insert spaces after the commas, |\xintCstoF| and % |\xintCstoCv| authorize spaces in the input also before the commas, % |\xintCntoCs| does not brace the produced coefficients, new macros % |\xintFtoC|, |\xintCtoF|, |\xintCtoCv|, |\xintFGtoC|, and % |\xintGGCFrac|. % % \subsection{Catcodes, \protect\eTeX{} and reload detection} % % The code for reload detection was initially copied from \textsc{Heiko % Oberdiek}'s packages, then modified. % % The method for catcodes was also initially directly inspired by these % packages. % % \begin{macrocode} \begingroup\catcode61\catcode48\catcode32=10\relax% \catcode13=5 % ^^M \endlinechar=13 % \catcode123=1 % { \catcode125=2 % } \catcode64=11 % @ \catcode35=6 % # \catcode44=12 % , \catcode45=12 % - \catcode46=12 % . \catcode58=12 % : \let\z\endgroup \expandafter\let\expandafter\x\csname ver@xintcfrac.sty\endcsname \expandafter\let\expandafter\w\csname ver@xintfrac.sty\endcsname \expandafter \ifx\csname PackageInfo\endcsname\relax \def\y#1#2{\immediate\write-1{Package #1 Info: #2.}}% \else \def\y#1#2{\PackageInfo{#1}{#2}}% \fi \expandafter \ifx\csname numexpr\endcsname\relax \y{xintcfrac}{\numexpr not available, aborting input}% \aftergroup\endinput \else \ifx\x\relax % plain-TeX, first loading of xintcfrac.sty \ifx\w\relax % but xintfrac.sty not yet loaded. \def\z{\endgroup\input xintfrac.sty\relax}% \fi \else \def\empty {}% \ifx\x\empty % LaTeX, first loading, % variable is initialized, but \ProvidesPackage not yet seen \ifx\w\relax % xintfrac.sty not yet loaded. \def\z{\endgroup\RequirePackage{xintfrac}}% \fi \else \aftergroup\endinput % xintcfrac already loaded. \fi \fi \fi \z% \XINTsetupcatcodes% defined in xintkernel.sty % \end{macrocode} % \subsection{Package identification} % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintcfrac}% [2014/11/07 v1.1a Expandable continued fractions with xint package (jfB)]% % \end{macrocode} % \subsection{\csh{xintCFrac}} % \begin{macrocode} \def\xintCFrac {\romannumeral0\xintcfrac }% \def\xintcfrac #1% {% \XINT_cfrac_opt_a #1\xint_relax }% \def\XINT_cfrac_opt_a #1% {% \ifx[#1\XINT_cfrac_opt_b\fi \XINT_cfrac_noopt #1% }% \def\XINT_cfrac_noopt #1\xint_relax {% \expandafter\XINT_cfrac_A\romannumeral0\xintrawwithzeros {#1}\Z \relax\relax }% \def\XINT_cfrac_opt_b\fi\XINT_cfrac_noopt [\xint_relax #1]% {% \fi\csname XINT_cfrac_opt#1\endcsname }% \def\XINT_cfrac_optl #1% {% \expandafter\XINT_cfrac_A\romannumeral0\xintrawwithzeros {#1}\Z \relax\hfill }% \def\XINT_cfrac_optc #1% {% \expandafter\XINT_cfrac_A\romannumeral0\xintrawwithzeros {#1}\Z \relax\relax }% \def\XINT_cfrac_optr #1% {% \expandafter\XINT_cfrac_A\romannumeral0\xintrawwithzeros {#1}\Z \hfill\relax }% \def\XINT_cfrac_A #1/#2\Z {% \expandafter\XINT_cfrac_B\romannumeral0\xintiidivision {#1}{#2}{#2}% }% \def\XINT_cfrac_B #1#2% {% \XINT_cfrac_C #2\Z {#1}% }% \def\XINT_cfrac_C #1% {% \xint_gob_til_zero #1\XINT_cfrac_integer 0\XINT_cfrac_D #1% }% \def\XINT_cfrac_integer 0\XINT_cfrac_D 0#1\Z #2#3#4#5{ #2}% \def\XINT_cfrac_D #1\Z #2#3{\XINT_cfrac_loop_a {#1}{#3}{#1}{{#2}}}% \def\XINT_cfrac_loop_a {% \expandafter\XINT_cfrac_loop_d\romannumeral0\XINT_div_prepare }% \def\XINT_cfrac_loop_d #1#2% {% \XINT_cfrac_loop_e #2.{#1}% }% \def\XINT_cfrac_loop_e #1% {% \xint_gob_til_zero #1\xint_cfrac_loop_exit0\XINT_cfrac_loop_f #1% }% \def\XINT_cfrac_loop_f #1.#2#3#4% {% \XINT_cfrac_loop_a {#1}{#3}{#1}{{#2}#4}% }% \def\xint_cfrac_loop_exit0\XINT_cfrac_loop_f #1.#2#3#4#5#6% {\XINT_cfrac_T #5#6{#2}#4\Z }% \def\XINT_cfrac_T #1#2#3#4% {% \xint_gob_til_Z #4\XINT_cfrac_end\Z\XINT_cfrac_T #1#2{#4+\cfrac{#11#2}{#3}}% }% \def\XINT_cfrac_end\Z\XINT_cfrac_T #1#2#3% {% \XINT_cfrac_end_b #3% }% \def\XINT_cfrac_end_b \Z+\cfrac#1#2{ #2}% % \end{macrocode} % \subsection{\csh{xintGCFrac}} % \begin{macrocode} \def\xintGCFrac {\romannumeral0\xintgcfrac }% \def\xintgcfrac #1{\XINT_gcfrac_opt_a #1\xint_relax }% \def\XINT_gcfrac_opt_a #1% {% \ifx[#1\XINT_gcfrac_opt_b\fi \XINT_gcfrac_noopt #1% }% \def\XINT_gcfrac_noopt #1\xint_relax {% \XINT_gcfrac #1+\xint_relax/\relax\relax }% \def\XINT_gcfrac_opt_b\fi\XINT_gcfrac_noopt [\xint_relax #1]% {% \fi\csname XINT_gcfrac_opt#1\endcsname }% \def\XINT_gcfrac_optl #1% {% \XINT_gcfrac #1+\xint_relax/\relax\hfill }% \def\XINT_gcfrac_optc #1% {% \XINT_gcfrac #1+\xint_relax/\relax\relax }% \def\XINT_gcfrac_optr #1% {% \XINT_gcfrac #1+\xint_relax/\hfill\relax }% \def\XINT_gcfrac {% \expandafter\XINT_gcfrac_enter\romannumeral-`0% }% \def\XINT_gcfrac_enter {\XINT_gcfrac_loop {}}% \def\XINT_gcfrac_loop #1#2+#3/% {% \xint_gob_til_xint_relax #3\XINT_gcfrac_endloop\xint_relax \XINT_gcfrac_loop {{#3}{#2}#1}% }% \def\XINT_gcfrac_endloop\xint_relax\XINT_gcfrac_loop #1#2#3% {% \XINT_gcfrac_T #2#3#1\xint_relax\xint_relax }% \def\XINT_gcfrac_T #1#2#3#4{\XINT_gcfrac_U #1#2{\xintFrac{#4}}}% \def\XINT_gcfrac_U #1#2#3#4#5% {% \xint_gob_til_xint_relax #5\XINT_gcfrac_end\xint_relax\XINT_gcfrac_U #1#2{\xintFrac{#5}% \ifcase\xintSgn{#4} +\or+\else-\fi \cfrac{#1\xintFrac{\xintAbs{#4}}#2}{#3}}% }% \def\XINT_gcfrac_end\xint_relax\XINT_gcfrac_U #1#2#3% {% \XINT_gcfrac_end_b #3% }% \def\XINT_gcfrac_end_b #1\cfrac#2#3{ #3}% % \end{macrocode} % \subsection{\csh{xintGGCFrac}} % \lverb|New with 1.09m| % \begin{macrocode} \def\xintGGCFrac {\romannumeral0\xintggcfrac }% \def\xintggcfrac #1{\XINT_ggcfrac_opt_a #1\xint_relax }% \def\XINT_ggcfrac_opt_a #1% {% \ifx[#1\XINT_ggcfrac_opt_b\fi \XINT_ggcfrac_noopt #1% }% \def\XINT_ggcfrac_noopt #1\xint_relax {% \XINT_ggcfrac #1+\xint_relax/\relax\relax }% \def\XINT_ggcfrac_opt_b\fi\XINT_ggcfrac_noopt [\xint_relax #1]% {% \fi\csname XINT_ggcfrac_opt#1\endcsname }% \def\XINT_ggcfrac_optl #1% {% \XINT_ggcfrac #1+\xint_relax/\relax\hfill }% \def\XINT_ggcfrac_optc #1% {% \XINT_ggcfrac #1+\xint_relax/\relax\relax }% \def\XINT_ggcfrac_optr #1% {% \XINT_ggcfrac #1+\xint_relax/\hfill\relax }% \def\XINT_ggcfrac {% \expandafter\XINT_ggcfrac_enter\romannumeral-`0% }% \def\XINT_ggcfrac_enter {\XINT_ggcfrac_loop {}}% \def\XINT_ggcfrac_loop #1#2+#3/% {% \xint_gob_til_xint_relax #3\XINT_ggcfrac_endloop\xint_relax \XINT_ggcfrac_loop {{#3}{#2}#1}% }% \def\XINT_ggcfrac_endloop\xint_relax\XINT_ggcfrac_loop #1#2#3% {% \XINT_ggcfrac_T #2#3#1\xint_relax\xint_relax }% \def\XINT_ggcfrac_T #1#2#3#4{\XINT_ggcfrac_U #1#2{#4}}% \def\XINT_ggcfrac_U #1#2#3#4#5% {% \xint_gob_til_xint_relax #5\XINT_ggcfrac_end\xint_relax\XINT_ggcfrac_U #1#2{#5+\cfrac{#1#4#2}{#3}}% }% \def\XINT_ggcfrac_end\xint_relax\XINT_ggcfrac_U #1#2#3% {% \XINT_ggcfrac_end_b #3% }% \def\XINT_ggcfrac_end_b #1\cfrac#2#3{ #3}% % \end{macrocode} % \subsection{\csh{xintGCtoGCx}} % \begin{macrocode} \def\xintGCtoGCx {\romannumeral0\xintgctogcx }% \def\xintgctogcx #1#2#3% {% \expandafter\XINT_gctgcx_start\expandafter {\romannumeral-`0#3}{#1}{#2}% }% \def\XINT_gctgcx_start #1#2#3{\XINT_gctgcx_loop_a {}{#2}{#3}#1+\xint_relax/}% \def\XINT_gctgcx_loop_a #1#2#3#4+#5/% {% \xint_gob_til_xint_relax #5\XINT_gctgcx_end\xint_relax \XINT_gctgcx_loop_b {#1{#4}}{#2{#5}#3}{#2}{#3}% }% \def\XINT_gctgcx_loop_b #1#2% {% \XINT_gctgcx_loop_a {#1#2}% }% \def\XINT_gctgcx_end\xint_relax\XINT_gctgcx_loop_b #1#2#3#4{ #1}% % \end{macrocode} % \subsection{\csh{xintFtoCs}} % \lverb|Modified in 1.09m: a space is added after the inserted commas.| % \begin{macrocode} \def\xintFtoCs {\romannumeral0\xintftocs }% \def\xintftocs #1% {% \expandafter\XINT_ftc_A\romannumeral0\xintrawwithzeros {#1}\Z }% \def\XINT_ftc_A #1/#2\Z {% \expandafter\XINT_ftc_B\romannumeral0\xintiidivision {#1}{#2}{#2}% }% \def\XINT_ftc_B #1#2% {% \XINT_ftc_C #2.{#1}% }% \def\XINT_ftc_C #1% {% \xint_gob_til_zero #1\XINT_ftc_integer 0\XINT_ftc_D #1% }% \def\XINT_ftc_integer 0\XINT_ftc_D 0#1.#2#3{ #2}% \def\XINT_ftc_D #1.#2#3{\XINT_ftc_loop_a {#1}{#3}{#1}{#2, }}% 1.09m adds a space \def\XINT_ftc_loop_a {% \expandafter\XINT_ftc_loop_d\romannumeral0\XINT_div_prepare }% \def\XINT_ftc_loop_d #1#2% {% \XINT_ftc_loop_e #2.{#1}% }% \def\XINT_ftc_loop_e #1% {% \xint_gob_til_zero #1\xint_ftc_loop_exit0\XINT_ftc_loop_f #1% }% \def\XINT_ftc_loop_f #1.#2#3#4% {% \XINT_ftc_loop_a {#1}{#3}{#1}{#4#2, }% 1.09m has an added space here }% \def\xint_ftc_loop_exit0\XINT_ftc_loop_f #1.#2#3#4{ #4#2}% % \end{macrocode} % \subsection{\csh{xintFtoCx}} % \begin{macrocode} \def\xintFtoCx {\romannumeral0\xintftocx }% \def\xintftocx #1#2% {% \expandafter\XINT_ftcx_A\romannumeral0\xintrawwithzeros {#2}\Z {#1}% }% \def\XINT_ftcx_A #1/#2\Z {% \expandafter\XINT_ftcx_B\romannumeral0\xintiidivision {#1}{#2}{#2}% }% \def\XINT_ftcx_B #1#2% {% \XINT_ftcx_C #2.{#1}% }% \def\XINT_ftcx_C #1% {% \xint_gob_til_zero #1\XINT_ftcx_integer 0\XINT_ftcx_D #1% }% \def\XINT_ftcx_integer 0\XINT_ftcx_D 0#1.#2#3#4{ #2}% \def\XINT_ftcx_D #1.#2#3#4{\XINT_ftcx_loop_a {#1}{#3}{#1}{{#2}#4}{#4}}% \def\XINT_ftcx_loop_a {% \expandafter\XINT_ftcx_loop_d\romannumeral0\XINT_div_prepare }% \def\XINT_ftcx_loop_d #1#2% {% \XINT_ftcx_loop_e #2.{#1}% }% \def\XINT_ftcx_loop_e #1% {% \xint_gob_til_zero #1\xint_ftcx_loop_exit0\XINT_ftcx_loop_f #1% }% \def\XINT_ftcx_loop_f #1.#2#3#4#5% {% \XINT_ftcx_loop_a {#1}{#3}{#1}{#4{#2}#5}{#5}% }% \def\xint_ftcx_loop_exit0\XINT_ftcx_loop_f #1.#2#3#4#5{ #4{#2}}% % \end{macrocode} % \subsection{\csh{xintFtoC}} % \lverb|New in 1.09m: this is the same as \xintFtoCx with empty separator. I % had temporarily during preparation of 1.09m removed braces from \xintFtoCx, % but I recalled later why that was useful (see doc), thus let's just here do % \xintFtoCx {}| % \begin{macrocode} \def\xintFtoC {\romannumeral0\xintftoc }% \def\xintftoc {\xintftocx {}}% % \end{macrocode} % \subsection{\csh{xintFtoGC}} % \begin{macrocode} \def\xintFtoGC {\romannumeral0\xintftogc }% \def\xintftogc {\xintftocx {+1/}}% % \end{macrocode} % \subsection{\csh{xintFGtoC}} % \lverb|New with 1.09m of 2014/02/26. Computes the common initial coefficients % for the two fractions f and g, and outputs them as a sequence of braced % items.| % \begin{macrocode} \def\xintFGtoC {\romannumeral0\xintfgtoc}% \def\xintfgtoc#1% {% \expandafter\XINT_fgtc_a\romannumeral0\xintrawwithzeros {#1}\Z }% \def\XINT_fgtc_a #1/#2\Z #3% {% \expandafter\XINT_fgtc_b\romannumeral0\xintrawwithzeros {#3}\Z #1/#2\Z { }% }% \def\XINT_fgtc_b #1/#2\Z {% \expandafter\XINT_fgtc_c\romannumeral0\xintiidivision {#1}{#2}{#2}% }% \def\XINT_fgtc_c #1#2#3#4/#5\Z {% \expandafter\XINT_fgtc_d\romannumeral0\xintiidivision {#4}{#5}{#5}{#1}{#2}{#3}% }% \def\XINT_fgtc_d #1#2#3#4%#5#6#7% {% \xintifEq {#1}{#4}{\XINT_fgtc_da {#1}{#2}{#3}{#4}}% {\xint_thirdofthree}% }% \def\XINT_fgtc_da #1#2#3#4#5#6#7% {% \XINT_fgtc_e {#2}{#5}{#3}{#6}{#7{#1}}% }% \def\XINT_fgtc_e #1% {% \xintifZero {#1}{\expandafter\xint_firstofone\xint_gobble_iii}% {\XINT_fgtc_f {#1}}% }% \def\XINT_fgtc_f #1#2% {% \xintifZero {#2}{\xint_thirdofthree}{\XINT_fgtc_g {#1}{#2}}% }% \def\XINT_fgtc_g #1#2#3% {% \expandafter\XINT_fgtc_h\romannumeral0\XINT_div_prepare {#1}{#3}{#1}{#2}% }% \def\XINT_fgtc_h #1#2#3#4#5% {% \expandafter\XINT_fgtc_d\romannumeral0\XINT_div_prepare {#4}{#5}{#4}{#1}{#2}{#3}% }% % \end{macrocode} % \subsection{\csh{xintFtoCC}} % \begin{macrocode} \def\xintFtoCC {\romannumeral0\xintftocc }% \def\xintftocc #1% {% \expandafter\XINT_ftcc_A\expandafter {\romannumeral0\xintrawwithzeros {#1}}% }% \def\XINT_ftcc_A #1% {% \expandafter\XINT_ftcc_B \romannumeral0\xintrawwithzeros {\xintAdd {1/2[0]}{#1[0]}}\Z {#1[0]}% }% \def\XINT_ftcc_B #1/#2\Z {% \expandafter\XINT_ftcc_C\expandafter {\romannumeral0\xintiiquo {#1}{#2}}% }% \def\XINT_ftcc_C #1#2% {% \expandafter\XINT_ftcc_D\romannumeral0\xintsub {#2}{#1}\Z {#1}% }% \def\XINT_ftcc_D #1% {% \xint_UDzerominusfork #1-\XINT_ftcc_integer 0#1\XINT_ftcc_En 0-{\XINT_ftcc_Ep #1}% \krof }% \def\XINT_ftcc_Ep #1\Z #2% {% \expandafter\XINT_ftcc_loop_a\expandafter {\romannumeral0\xintdiv {1[0]}{#1}}{#2+1/}% }% \def\XINT_ftcc_En #1\Z #2% {% \expandafter\XINT_ftcc_loop_a\expandafter {\romannumeral0\xintdiv {1[0]}{#1}}{#2+-1/}% }% \def\XINT_ftcc_integer #1\Z #2{ #2}% \def\XINT_ftcc_loop_a #1% {% \expandafter\XINT_ftcc_loop_b \romannumeral0\xintrawwithzeros {\xintAdd {1/2[0]}{#1}}\Z {#1}% }% \def\XINT_ftcc_loop_b #1/#2\Z {% \expandafter\XINT_ftcc_loop_c\expandafter {\romannumeral0\xintiiquo {#1}{#2}}% }% \def\XINT_ftcc_loop_c #1#2% {% \expandafter\XINT_ftcc_loop_d \romannumeral0\xintsub {#2}{#1[0]}\Z {#1}% }% \def\XINT_ftcc_loop_d #1% {% \xint_UDzerominusfork #1-\XINT_ftcc_end 0#1\XINT_ftcc_loop_N 0-{\XINT_ftcc_loop_P #1}% \krof }% \def\XINT_ftcc_end #1\Z #2#3{ #3#2}% \def\XINT_ftcc_loop_P #1\Z #2#3% {% \expandafter\XINT_ftcc_loop_a\expandafter {\romannumeral0\xintdiv {1[0]}{#1}}{#3#2+1/}% }% \def\XINT_ftcc_loop_N #1\Z #2#3% {% \expandafter\XINT_ftcc_loop_a\expandafter {\romannumeral0\xintdiv {1[0]}{#1}}{#3#2+-1/}% }% % \end{macrocode} % \subsection{\csh{xintCtoF}, \csh{xintCstoF}} % \lverb|1.09m uses \xintCSVtoList on the argument of \xintCstoF to allow % spaces also before the commas. And the original \xintCstoF code became the % one of the new \xintCtoF dealing with a braced rather than comma separated % list.| % \begin{macrocode} \def\xintCstoF {\romannumeral0\xintcstof }% \def\xintcstof #1% {% \expandafter\XINT_ctf_prep \romannumeral0\xintcsvtolist{#1}\xint_relax }% \def\xintCtoF {\romannumeral0\xintctof }% \def\xintctof #1% {% \expandafter\XINT_ctf_prep \romannumeral-`0#1\xint_relax }% \def\XINT_ctf_prep {% \XINT_ctf_loop_a 1001% }% \def\XINT_ctf_loop_a #1#2#3#4#5% {% \xint_gob_til_xint_relax #5\XINT_ctf_end\xint_relax \expandafter\XINT_ctf_loop_b \romannumeral0\xintrawwithzeros {#5}.{#1}{#2}{#3}{#4}% }% \def\XINT_ctf_loop_b #1/#2.#3#4#5#6% {% \expandafter\XINT_ctf_loop_c\expandafter {\romannumeral0\XINT_mul_fork #2\Z #4\Z }% {\romannumeral0\XINT_mul_fork #2\Z #3\Z }% {\romannumeral0\xintiiadd {\XINT_Mul {#2}{#6}}{\XINT_Mul {#1}{#4}}}% {\romannumeral0\xintiiadd {\XINT_Mul {#2}{#5}}{\XINT_Mul {#1}{#3}}}% }% \def\XINT_ctf_loop_c #1#2% {% \expandafter\XINT_ctf_loop_d\expandafter {\expandafter{#2}{#1}}% }% \def\XINT_ctf_loop_d #1#2% {% \expandafter\XINT_ctf_loop_e\expandafter {\expandafter{#2}#1}% }% \def\XINT_ctf_loop_e #1#2% {% \expandafter\XINT_ctf_loop_a\expandafter{#2}#1% }% \def\XINT_ctf_end #1.#2#3#4#5{\xintrawwithzeros {#2/#3}}% 1.09b removes [0] % \end{macrocode} % \subsection{\csh{xintiCstoF}} % \begin{macrocode} \def\xintiCstoF {\romannumeral0\xinticstof }% \def\xinticstof #1% {% \expandafter\XINT_icstf_prep \romannumeral-`0#1,\xint_relax,% }% \def\XINT_icstf_prep {% \XINT_icstf_loop_a 1001% }% \def\XINT_icstf_loop_a #1#2#3#4#5,% {% \xint_gob_til_xint_relax #5\XINT_icstf_end\xint_relax \expandafter \XINT_icstf_loop_b \romannumeral-`0#5.{#1}{#2}{#3}{#4}% }% \def\XINT_icstf_loop_b #1.#2#3#4#5% {% \expandafter\XINT_icstf_loop_c\expandafter {\romannumeral0\xintiiadd {#5}{\XINT_Mul {#1}{#3}}}% {\romannumeral0\xintiiadd {#4}{\XINT_Mul {#1}{#2}}}% {#2}{#3}% }% \def\XINT_icstf_loop_c #1#2% {% \expandafter\XINT_icstf_loop_a\expandafter {#2}{#1}% }% \def\XINT_icstf_end#1.#2#3#4#5{\xintrawwithzeros {#2/#3}}% 1.09b removes [0] % \end{macrocode} % \subsection{\csh{xintGCtoF}} % \begin{macrocode} \def\xintGCtoF {\romannumeral0\xintgctof }% \def\xintgctof #1% {% \expandafter\XINT_gctf_prep \romannumeral-`0#1+\xint_relax/% }% \def\XINT_gctf_prep {% \XINT_gctf_loop_a 1001% }% \def\XINT_gctf_loop_a #1#2#3#4#5+% {% \expandafter\XINT_gctf_loop_b \romannumeral0\xintrawwithzeros {#5}.{#1}{#2}{#3}{#4}% }% \def\XINT_gctf_loop_b #1/#2.#3#4#5#6% {% \expandafter\XINT_gctf_loop_c\expandafter {\romannumeral0\XINT_mul_fork #2\Z #4\Z }% {\romannumeral0\XINT_mul_fork #2\Z #3\Z }% {\romannumeral0\xintiiadd {\XINT_Mul {#2}{#6}}{\XINT_Mul {#1}{#4}}}% {\romannumeral0\xintiiadd {\XINT_Mul {#2}{#5}}{\XINT_Mul {#1}{#3}}}% }% \def\XINT_gctf_loop_c #1#2% {% \expandafter\XINT_gctf_loop_d\expandafter {\expandafter{#2}{#1}}% }% \def\XINT_gctf_loop_d #1#2% {% \expandafter\XINT_gctf_loop_e\expandafter {\expandafter{#2}#1}% }% \def\XINT_gctf_loop_e #1#2% {% \expandafter\XINT_gctf_loop_f\expandafter {\expandafter{#2}#1}% }% \def\XINT_gctf_loop_f #1#2/% {% \xint_gob_til_xint_relax #2\XINT_gctf_end\xint_relax \expandafter\XINT_gctf_loop_g \romannumeral0\xintrawwithzeros {#2}.#1% }% \def\XINT_gctf_loop_g #1/#2.#3#4#5#6% {% \expandafter\XINT_gctf_loop_h\expandafter {\romannumeral0\XINT_mul_fork #1\Z #6\Z }% {\romannumeral0\XINT_mul_fork #1\Z #5\Z }% {\romannumeral0\XINT_mul_fork #2\Z #4\Z }% {\romannumeral0\XINT_mul_fork #2\Z #3\Z }% }% \def\XINT_gctf_loop_h #1#2% {% \expandafter\XINT_gctf_loop_i\expandafter {\expandafter{#2}{#1}}% }% \def\XINT_gctf_loop_i #1#2% {% \expandafter\XINT_gctf_loop_j\expandafter {\expandafter{#2}#1}% }% \def\XINT_gctf_loop_j #1#2% {% \expandafter\XINT_gctf_loop_a\expandafter {#2}#1% }% \def\XINT_gctf_end #1.#2#3#4#5{\xintrawwithzeros {#2/#3}}% 1.09b removes [0] % \end{macrocode} % \subsection{\csh{xintiGCtoF}} % \begin{macrocode} \def\xintiGCtoF {\romannumeral0\xintigctof }% \def\xintigctof #1% {% \expandafter\XINT_igctf_prep \romannumeral-`0#1+\xint_relax/% }% \def\XINT_igctf_prep {% \XINT_igctf_loop_a 1001% }% \def\XINT_igctf_loop_a #1#2#3#4#5+% {% \expandafter\XINT_igctf_loop_b \romannumeral-`0#5.{#1}{#2}{#3}{#4}% }% \def\XINT_igctf_loop_b #1.#2#3#4#5% {% \expandafter\XINT_igctf_loop_c\expandafter {\romannumeral0\xintiiadd {#5}{\XINT_Mul {#1}{#3}}}% {\romannumeral0\xintiiadd {#4}{\XINT_Mul {#1}{#2}}}% {#2}{#3}% }% \def\XINT_igctf_loop_c #1#2% {% \expandafter\XINT_igctf_loop_f\expandafter {\expandafter{#2}{#1}}% }% \def\XINT_igctf_loop_f #1#2#3#4/% {% \xint_gob_til_xint_relax #4\XINT_igctf_end\xint_relax \expandafter\XINT_igctf_loop_g \romannumeral-`0#4.{#2}{#3}#1% }% \def\XINT_igctf_loop_g #1.#2#3% {% \expandafter\XINT_igctf_loop_h\expandafter {\romannumeral0\XINT_mul_fork #1\Z #3\Z }% {\romannumeral0\XINT_mul_fork #1\Z #2\Z }% }% \def\XINT_igctf_loop_h #1#2% {% \expandafter\XINT_igctf_loop_i\expandafter {#2}{#1}% }% \def\XINT_igctf_loop_i #1#2#3#4% {% \XINT_igctf_loop_a {#3}{#4}{#1}{#2}% }% \def\XINT_igctf_end #1.#2#3#4#5{\xintrawwithzeros {#4/#5}}% 1.09b removes [0] % \end{macrocode} % \subsection{\csh{xintCtoCv}, \csh{xintCstoCv}} % \lverb|1.09m uses \xintCSVtoList on the argument of \xintCstoCv to allow % spaces also before the commas. The original \xintCstoCv code became the % one of the new \xintCtoF dealing with a braced rather than comma separated % list.| % \begin{macrocode} \def\xintCstoCv {\romannumeral0\xintcstocv }% \def\xintcstocv #1% {% \expandafter\XINT_ctcv_prep\romannumeral0\xintcsvtolist{#1}\xint_relax }% \def\xintCtoCv {\romannumeral0\xintctocv }% \def\xintctocv #1% {% \expandafter\XINT_ctcv_prep\romannumeral-`0#1\xint_relax }% \def\XINT_ctcv_prep {% \XINT_ctcv_loop_a {}1001% }% \def\XINT_ctcv_loop_a #1#2#3#4#5#6% {% \xint_gob_til_xint_relax #6\XINT_ctcv_end\xint_relax \expandafter\XINT_ctcv_loop_b \romannumeral0\xintrawwithzeros {#6}.{#2}{#3}{#4}{#5}{#1}% }% \def\XINT_ctcv_loop_b #1/#2.#3#4#5#6% {% \expandafter\XINT_ctcv_loop_c\expandafter {\romannumeral0\XINT_mul_fork #2\Z #4\Z }% {\romannumeral0\XINT_mul_fork #2\Z #3\Z }% {\romannumeral0\xintiiadd {\XINT_Mul {#2}{#6}}{\XINT_Mul {#1}{#4}}}% {\romannumeral0\xintiiadd {\XINT_Mul {#2}{#5}}{\XINT_Mul {#1}{#3}}}% }% \def\XINT_ctcv_loop_c #1#2% {% \expandafter\XINT_ctcv_loop_d\expandafter {\expandafter{#2}{#1}}% }% \def\XINT_ctcv_loop_d #1#2% {% \expandafter\XINT_ctcv_loop_e\expandafter {\expandafter{#2}#1}% }% \def\XINT_ctcv_loop_e #1#2% {% \expandafter\XINT_ctcv_loop_f\expandafter{#2}#1% }% \def\XINT_ctcv_loop_f #1#2#3#4#5% {% \expandafter\XINT_ctcv_loop_g\expandafter {\romannumeral0\xintrawwithzeros {#1/#2}}{#5}{#1}{#2}{#3}{#4}% }% \def\XINT_ctcv_loop_g #1#2{\XINT_ctcv_loop_a {#2{#1}}}% 1.09b removes [0] \def\XINT_ctcv_end #1.#2#3#4#5#6{ #6}% % \end{macrocode} % \subsection{\csh{xintiCstoCv}} % \begin{macrocode} \def\xintiCstoCv {\romannumeral0\xinticstocv }% \def\xinticstocv #1% {% \expandafter\XINT_icstcv_prep \romannumeral-`0#1,\xint_relax,% }% \def\XINT_icstcv_prep {% \XINT_icstcv_loop_a {}1001% }% \def\XINT_icstcv_loop_a #1#2#3#4#5#6,% {% \xint_gob_til_xint_relax #6\XINT_icstcv_end\xint_relax \expandafter \XINT_icstcv_loop_b \romannumeral-`0#6.{#2}{#3}{#4}{#5}{#1}% }% \def\XINT_icstcv_loop_b #1.#2#3#4#5% {% \expandafter\XINT_icstcv_loop_c\expandafter {\romannumeral0\xintiiadd {#5}{\XINT_Mul {#1}{#3}}}% {\romannumeral0\xintiiadd {#4}{\XINT_Mul {#1}{#2}}}% {{#2}{#3}}% }% \def\XINT_icstcv_loop_c #1#2% {% \expandafter\XINT_icstcv_loop_d\expandafter {#2}{#1}% }% \def\XINT_icstcv_loop_d #1#2% {% \expandafter\XINT_icstcv_loop_e\expandafter {\romannumeral0\xintrawwithzeros {#1/#2}}{{#1}{#2}}% }% \def\XINT_icstcv_loop_e #1#2#3#4{\XINT_icstcv_loop_a {#4{#1}}#2#3}% \def\XINT_icstcv_end #1.#2#3#4#5#6{ #6}% 1.09b removes [0] % \end{macrocode} % \subsection{\csh{xintGCtoCv}} % \begin{macrocode} \def\xintGCtoCv {\romannumeral0\xintgctocv }% \def\xintgctocv #1% {% \expandafter\XINT_gctcv_prep \romannumeral-`0#1+\xint_relax/% }% \def\XINT_gctcv_prep {% \XINT_gctcv_loop_a {}1001% }% \def\XINT_gctcv_loop_a #1#2#3#4#5#6+% {% \expandafter\XINT_gctcv_loop_b \romannumeral0\xintrawwithzeros {#6}.{#2}{#3}{#4}{#5}{#1}% }% \def\XINT_gctcv_loop_b #1/#2.#3#4#5#6% {% \expandafter\XINT_gctcv_loop_c\expandafter {\romannumeral0\XINT_mul_fork #2\Z #4\Z }% {\romannumeral0\XINT_mul_fork #2\Z #3\Z }% {\romannumeral0\xintiiadd {\XINT_Mul {#2}{#6}}{\XINT_Mul {#1}{#4}}}% {\romannumeral0\xintiiadd {\XINT_Mul {#2}{#5}}{\XINT_Mul {#1}{#3}}}% }% \def\XINT_gctcv_loop_c #1#2% {% \expandafter\XINT_gctcv_loop_d\expandafter {\expandafter{#2}{#1}}% }% \def\XINT_gctcv_loop_d #1#2% {% \expandafter\XINT_gctcv_loop_e\expandafter {\expandafter{#2}{#1}}% }% \def\XINT_gctcv_loop_e #1#2% {% \expandafter\XINT_gctcv_loop_f\expandafter {#2}#1% }% \def\XINT_gctcv_loop_f #1#2% {% \expandafter\XINT_gctcv_loop_g\expandafter {\romannumeral0\xintrawwithzeros {#1/#2}}{{#1}{#2}}% }% \def\XINT_gctcv_loop_g #1#2#3#4% {% \XINT_gctcv_loop_h {#4{#1}}{#2#3}% 1.09b removes [0] }% \def\XINT_gctcv_loop_h #1#2#3/% {% \xint_gob_til_xint_relax #3\XINT_gctcv_end\xint_relax \expandafter\XINT_gctcv_loop_i \romannumeral0\xintrawwithzeros {#3}.#2{#1}% }% \def\XINT_gctcv_loop_i #1/#2.#3#4#5#6% {% \expandafter\XINT_gctcv_loop_j\expandafter {\romannumeral0\XINT_mul_fork #1\Z #6\Z }% {\romannumeral0\XINT_mul_fork #1\Z #5\Z }% {\romannumeral0\XINT_mul_fork #2\Z #4\Z }% {\romannumeral0\XINT_mul_fork #2\Z #3\Z }% }% \def\XINT_gctcv_loop_j #1#2% {% \expandafter\XINT_gctcv_loop_k\expandafter {\expandafter{#2}{#1}}% }% \def\XINT_gctcv_loop_k #1#2% {% \expandafter\XINT_gctcv_loop_l\expandafter {\expandafter{#2}#1}% }% \def\XINT_gctcv_loop_l #1#2% {% \expandafter\XINT_gctcv_loop_m\expandafter {\expandafter{#2}#1}% }% \def\XINT_gctcv_loop_m #1#2{\XINT_gctcv_loop_a {#2}#1}% \def\XINT_gctcv_end #1.#2#3#4#5#6{ #6}% % \end{macrocode} % \subsection{\csh{xintiGCtoCv}} % \begin{macrocode} \def\xintiGCtoCv {\romannumeral0\xintigctocv }% \def\xintigctocv #1% {% \expandafter\XINT_igctcv_prep \romannumeral-`0#1+\xint_relax/% }% \def\XINT_igctcv_prep {% \XINT_igctcv_loop_a {}1001% }% \def\XINT_igctcv_loop_a #1#2#3#4#5#6+% {% \expandafter\XINT_igctcv_loop_b \romannumeral-`0#6.{#2}{#3}{#4}{#5}{#1}% }% \def\XINT_igctcv_loop_b #1.#2#3#4#5% {% \expandafter\XINT_igctcv_loop_c\expandafter {\romannumeral0\xintiiadd {#5}{\XINT_Mul {#1}{#3}}}% {\romannumeral0\xintiiadd {#4}{\XINT_Mul {#1}{#2}}}% {{#2}{#3}}% }% \def\XINT_igctcv_loop_c #1#2% {% \expandafter\XINT_igctcv_loop_f\expandafter {\expandafter{#2}{#1}}% }% \def\XINT_igctcv_loop_f #1#2#3#4/% {% \xint_gob_til_xint_relax #4\XINT_igctcv_end_a\xint_relax \expandafter\XINT_igctcv_loop_g \romannumeral-`0#4.#1#2{#3}% }% \def\XINT_igctcv_loop_g #1.#2#3#4#5% {% \expandafter\XINT_igctcv_loop_h\expandafter {\romannumeral0\XINT_mul_fork #1\Z #5\Z }% {\romannumeral0\XINT_mul_fork #1\Z #4\Z }% {{#2}{#3}}% }% \def\XINT_igctcv_loop_h #1#2% {% \expandafter\XINT_igctcv_loop_i\expandafter {\expandafter{#2}{#1}}% }% \def\XINT_igctcv_loop_i #1#2{\XINT_igctcv_loop_k #2{#2#1}}% \def\XINT_igctcv_loop_k #1#2% {% \expandafter\XINT_igctcv_loop_l\expandafter {\romannumeral0\xintrawwithzeros {#1/#2}}% }% \def\XINT_igctcv_loop_l #1#2#3{\XINT_igctcv_loop_a {#3{#1}}#2}%1.09i removes [0] \def\XINT_igctcv_end_a #1.#2#3#4#5% {% \expandafter\XINT_igctcv_end_b\expandafter {\romannumeral0\xintrawwithzeros {#2/#3}}% }% \def\XINT_igctcv_end_b #1#2{ #2{#1}}% 1.09b removes [0] % \end{macrocode} % \subsection{\csh{xintFtoCv}} % \lverb|Still uses \xinticstocv \xintFtoCs rather than \xintctocv \xintFtoC.| % \begin{macrocode} \def\xintFtoCv {\romannumeral0\xintftocv }% \def\xintftocv #1% {% \xinticstocv {\xintFtoCs {#1}}% }% % \end{macrocode} % \subsection{\csh{xintFtoCCv}} % \begin{macrocode} \def\xintFtoCCv {\romannumeral0\xintftoccv }% \def\xintftoccv #1% {% \xintigctocv {\xintFtoCC {#1}}% }% % \end{macrocode} % \subsection{\csh{xintCntoF}} % \lverb|& % Modified in 1.06 to give the N first to a \numexpr rather than expanding % twice. I just use \the\numexpr and maintain the previous code after that.| % \begin{macrocode} \def\xintCntoF {\romannumeral0\xintcntof }% \def\xintcntof #1% {% \expandafter\XINT_cntf\expandafter {\the\numexpr #1}% }% \def\XINT_cntf #1#2% {% \ifnum #1>\xint_c_ \xint_afterfi {\expandafter\XINT_cntf_loop\expandafter {\the\numexpr #1-1\expandafter}\expandafter {\romannumeral-`0#2{#1}}{#2}}% \else \xint_afterfi {\ifnum #1=\xint_c_ \xint_afterfi {\expandafter\space \romannumeral-`0#2{0}}% \else \xint_afterfi { }% 1.09m now returns nothing. \fi}% \fi }% \def\XINT_cntf_loop #1#2#3% {% \ifnum #1>\xint_c_ \else \XINT_cntf_exit \fi \expandafter\XINT_cntf_loop\expandafter {\the\numexpr #1-1\expandafter }\expandafter {\romannumeral0\xintadd {\xintDiv {1[0]}{#2}}{#3{#1}}}% {#3}% }% \def\XINT_cntf_exit \fi \expandafter\XINT_cntf_loop\expandafter #1\expandafter #2#3% {% \fi\xint_gobble_ii #2% }% % \end{macrocode} % \subsection{\csh{xintGCntoF}} % \lverb|Modified in 1.06 to give the N argument first to a \numexpr rather % than expanding twice. I just use \the\numexpr and maintain the previous code % after that.| % \begin{macrocode} \def\xintGCntoF {\romannumeral0\xintgcntof }% \def\xintgcntof #1% {% \expandafter\XINT_gcntf\expandafter {\the\numexpr #1}% }% \def\XINT_gcntf #1#2#3% {% \ifnum #1>\xint_c_ \xint_afterfi {\expandafter\XINT_gcntf_loop\expandafter {\the\numexpr #1-1\expandafter}\expandafter {\romannumeral-`0#2{#1}}{#2}{#3}}% \else \xint_afterfi {\ifnum #1=\xint_c_ \xint_afterfi {\expandafter\space\romannumeral-`0#2{0}}% \else \xint_afterfi { }% 1.09m now returns nothing rather than 0/1[0] \fi}% \fi }% \def\XINT_gcntf_loop #1#2#3#4% {% \ifnum #1>\xint_c_ \else \XINT_gcntf_exit \fi \expandafter\XINT_gcntf_loop\expandafter {\the\numexpr #1-1\expandafter }\expandafter {\romannumeral0\xintadd {\xintDiv {#4{#1}}{#2}}{#3{#1}}}% {#3}{#4}% }% \def\XINT_gcntf_exit \fi \expandafter\XINT_gcntf_loop\expandafter #1\expandafter #2#3#4% {% \fi\xint_gobble_ii #2% }% % \end{macrocode} % \subsection{\csh{xintCntoCs}} % \lverb|Modified in 1.09m: added spaces after the commas in the produced list. % Moreover the coefficients are not braced anymore. A slight induced limitation % is that the macro argument should not contain some explicit comma (cf. % \XINT_cntcs_exit_b), hence \xintCntoCs {\macro,} with \def\macro,#1{} % would crash. Not a very serious limitation, I believe. | % \begin{macrocode} \def\xintCntoCs {\romannumeral0\xintcntocs }% \def\xintcntocs #1% {% \expandafter\XINT_cntcs\expandafter {\the\numexpr #1}% }% \def\XINT_cntcs #1#2% {% \ifnum #1<0 \xint_afterfi { }% 1.09i: a 0/1[0] was here, now the macro returns nothing \else \xint_afterfi {\expandafter\XINT_cntcs_loop\expandafter {\the\numexpr #1-\xint_c_i\expandafter}\expandafter {\romannumeral-`0#2{#1}}{#2}}% produced coeff not braced \fi }% \def\XINT_cntcs_loop #1#2#3% {% \ifnum #1>-\xint_c_i \else \XINT_cntcs_exit \fi \expandafter\XINT_cntcs_loop\expandafter {\the\numexpr #1-\xint_c_i\expandafter}\expandafter {\romannumeral-`0#3{#1}, #2}{#3}% space added, 1.09m }% \def\XINT_cntcs_exit \fi \expandafter\XINT_cntcs_loop\expandafter #1\expandafter #2#3% {% \fi\XINT_cntcs_exit_b #2% }% \def\XINT_cntcs_exit_b #1,{}% romannumeral stopping space already there % \end{macrocode} % \subsection{\csh{xintCntoGC}} % \lverb|& % Modified in 1.06 to give the N first to a \numexpr rather than expanding % twice. I just use \the\numexpr and maintain the previous code after that. % % 1.09m maintains the braces, as the coeff are allowed to be fraction and the % slash can not be naked in the GC format, contrarily to what happens in % \xintCntoCs. Also the separators given to \xintGCtoGCx may then fetch the % coefficients as argument, as they are braced.| % \begin{macrocode} \def\xintCntoGC {\romannumeral0\xintcntogc }% \def\xintcntogc #1% {% \expandafter\XINT_cntgc\expandafter {\the\numexpr #1}% }% \def\XINT_cntgc #1#2% {% \ifnum #1<0 \xint_afterfi { }% 1.09i there was as strange 0/1[0] here, removed \else \xint_afterfi {\expandafter\XINT_cntgc_loop\expandafter {\the\numexpr #1-\xint_c_i\expandafter}\expandafter {\expandafter{\romannumeral-`0#2{#1}}}{#2}}% \fi }% \def\XINT_cntgc_loop #1#2#3% {% \ifnum #1>-\xint_c_i \else \XINT_cntgc_exit \fi \expandafter\XINT_cntgc_loop\expandafter {\the\numexpr #1-\xint_c_i\expandafter }\expandafter {\expandafter{\romannumeral-`0#3{#1}}+1/#2}{#3}% }% \def\XINT_cntgc_exit \fi \expandafter\XINT_cntgc_loop\expandafter #1\expandafter #2#3% {% \fi\XINT_cntgc_exit_b #2% }% \def\XINT_cntgc_exit_b #1+1/{ }% % \end{macrocode} % \subsection{\csh{xintGCntoGC}} % \lverb|& % Modified in 1.06 to give the N first to a \numexpr rather than expanding % twice. I just use \the\numexpr and maintain the previous code after that.| % \begin{macrocode} \def\xintGCntoGC {\romannumeral0\xintgcntogc }% \def\xintgcntogc #1% {% \expandafter\XINT_gcntgc\expandafter {\the\numexpr #1}% }% \def\XINT_gcntgc #1#2#3% {% \ifnum #1<0 \xint_afterfi { }% 1.09i now returns nothing \else \xint_afterfi {\expandafter\XINT_gcntgc_loop\expandafter {\the\numexpr #1-\xint_c_i\expandafter}\expandafter {\expandafter{\romannumeral-`0#2{#1}}}{#2}{#3}}% \fi }% \def\XINT_gcntgc_loop #1#2#3#4% {% \ifnum #1>-\xint_c_i \else \XINT_gcntgc_exit \fi \expandafter\XINT_gcntgc_loop_b\expandafter {\expandafter{\romannumeral-`0#4{#1}}/#2}{#3{#1}}{#1}{#3}{#4}% }% \def\XINT_gcntgc_loop_b #1#2#3% {% \expandafter\XINT_gcntgc_loop\expandafter {\the\numexpr #3-\xint_c_i \expandafter}\expandafter {\expandafter{\romannumeral-`0#2}+#1}% }% \def\XINT_gcntgc_exit \fi \expandafter\XINT_gcntgc_loop_b\expandafter #1#2#3#4#5% {% \fi\XINT_gcntgc_exit_b #1% }% \def\XINT_gcntgc_exit_b #1/{ }% % \end{macrocode} % \subsection{\csh{xintCstoGC}} % \begin{macrocode} \def\xintCstoGC {\romannumeral0\xintcstogc }% \def\xintcstogc #1% {% \expandafter\XINT_cstc_prep \romannumeral-`0#1,\xint_relax,% }% \def\XINT_cstc_prep #1,{\XINT_cstc_loop_a {{#1}}}% \def\XINT_cstc_loop_a #1#2,% {% \xint_gob_til_xint_relax #2\XINT_cstc_end\xint_relax \XINT_cstc_loop_b {#1}{#2}% }% \def\XINT_cstc_loop_b #1#2{\XINT_cstc_loop_a {#1+1/{#2}}}% \def\XINT_cstc_end\xint_relax\XINT_cstc_loop_b #1#2{ #1}% % \end{macrocode} % \subsection{\csh{xintGCtoGC}} % \begin{macrocode} \def\xintGCtoGC {\romannumeral0\xintgctogc }% \def\xintgctogc #1% {% \expandafter\XINT_gctgc_start \romannumeral-`0#1+\xint_relax/% }% \def\XINT_gctgc_start {\XINT_gctgc_loop_a {}}% \def\XINT_gctgc_loop_a #1#2+#3/% {% \xint_gob_til_xint_relax #3\XINT_gctgc_end\xint_relax \expandafter\XINT_gctgc_loop_b\expandafter {\romannumeral-`0#2}{#3}{#1}% }% \def\XINT_gctgc_loop_b #1#2% {% \expandafter\XINT_gctgc_loop_c\expandafter {\romannumeral-`0#2}{#1}% }% \def\XINT_gctgc_loop_c #1#2#3% {% \XINT_gctgc_loop_a {#3{#2}+{#1}/}% }% \def\XINT_gctgc_end\xint_relax\expandafter\XINT_gctgc_loop_b {% \expandafter\XINT_gctgc_end_b }% \def\XINT_gctgc_end_b #1#2#3{ #3{#1}}% \XINT_restorecatcodes_endinput% % \end{macrocode} %\catcode`\<=0 \catcode`\>=11 \catcode`\*=11 \catcode`\/=11 %\let\relax %\def<*xintexpr>{\catcode`\<=12 \catcode`\>=12 \catcode`\*=12 \catcode`\/=12 } % %<*xintexpr> % % \StoreCodelineNo {xintcfrac} % % \section{Package \xintexprnameimp implementation} % \label{sec:exprimp} % % \etocstandarddisplaystyle % \etocstandardlines % \localtableofcontents % \etocmarkbothnouc {Package \xintexprnameimp implementation} % % The first version was released in June 2013. I was greatly helped in this task % of writing an expandable parser of infix operations by the comments provided % in |l3fp-parse.dtx| (in its version as available in April-May 2013). One will % recognize in particular the idea of the `until' macros; I have not looked into % the actual |l3fp| code beyond the very useful comments provided in its % documentation. % % A main worry was that my data has no a priori bound on its size; to keep the % code reasonably efficient, I experimented with a technique of storing and % retrieving data expandably as \emph{names} of control sequences. Intermediate % computation results are stored as control sequences |\.=a/b[n]|. % % Release |1.1| |[2014/10/28]| has made many extensions, some bug fixes, and % some breaking changes: % \begin{description} % \item[bug fixes] \begin{itemize} % \item |\xintiiexpr| did not strip leading zeroes, % \item |\xinttheexpr \xintiexpr 1.23\relax\relax| should have produced |1|, % but it produced |1.23| % \item the catcode of |;| was not set at package launching time. % \end{itemize} % \item[breaking changes] \begin{itemize} % \item in |\xintiiexpr|, |/| does \emph{rounded} division, rather than the % Euclidean division (for positive arguments, this is truncated division). % The new |//| operator does truncated division, % \item the |:| operator for three-way branching is gone, replaced with |??|, % \item |1e(3+5)| is now illegal. The number parser identifies |e| and |E| % in the same way it does for the decimal mark, earlier versions treated % |e| as |E| rather as postfix operators, % \item the |add| and |mul| have a new syntax, old syntax is with |`+`| and % |`*`| (quotes mandatory), |sum| and |prd| are gone, % \item no more special treatment for encountered brace pairs |{..}| by the % number scanner, |a/b[N]| notation can be used without use of braces (the % |N| will end up as is in a |\numexpr|, it is not parsed by the % |\xintexpr|-ession scanner). % \item although |&| and \verb+|+ are still available as Boolean % operators the use of |&&| and \verb+||+ is strongly recommended. % The single letter operators might be assigned some other meaning % in later releases (bitwise operations, perhaps). Do not use them. % \item place holders for |\xintNewExpr| could be denoted |#1|, |#2|, % ... or also, for special purposes |$1|, % |$2|, ... Only the first form is now accepted and the special cases % previously treated via the second form are now managed via a % |protect(...)| function. % \end{itemize} % \item[novelties] They are quite a few. \begin{itemize} % \item |\xintiexpr|, |\xinttheiexpr| admit an optional argument within brackets % |[d]|, they round the computation result (or results, if comma separated) % to |d| digits after decimal mark, (the whole computation is done exactly, % as in |xintexpr|), % % \item |\xintfloatexpr|, |\xintthefloatexpr| similarly admit an optional % argument which serves to keep only |d| digits of precision, getting rid % of cumulated uncertainties in the last digits (the whole computation is % done according to the precision set via |\xintDigits|), % % \item |\xinttheexpr| and |\xintthefloatexpr| ''pretty-print'' if possible, % the former removing unit denominator or |[0]| brackets, the latter % avoiding scientific notation if decimal notation is practical, % % \item the |//| does truncated division and |/:| is the associated modulo, % % \item multi-character operators |&&|, \verb+||+, |==|, |<=|, |>=|, |!=|, % |**|, % % \item multi-letter infix binary words |'and'|, |'or'|, |'xor'|, |'mod'| % (quotes mandatory), % % \item functions |even|, |odd|, % % \item |\xintdefvar A3:=3.1415;| for variable definitions (non expandable, % naturally), usable in subsequent expressions; variable names may contain % letters, digits, underscores. They should not start with a digit, the % |@| is reserved, and single lowercase and uppercase Latin letters are % predefined to work as dummy variables (see next), % % \item generation of comma separated lists |a..b|, |a..[d]..b|, % % \item Python syntax-like list extractors |[list][n:]|, |[list][:n]|, % |[list][a:b]| allowing negative indices, but no optional step argument, % and |[list][n]| (|n=0| for the number of items in the list), % % \item functions |first|, |last|, |reversed|, % % \item itemwise operations on comma separated lists |a*[list]|, etc.., possible % on both sides |a*[list]^b|, an obeying the same precedence rules as with % numbers, % % \item |add| and |mul| must use a dummy variable: |add(x(x+1)(x-1), x=-10..10)|, % % \item variable substitutions with |subs|: |subs(subs(add(x^2+y^2,x=1..y),y=t),t=20)|, % % \item sequence generation using |seq| with a dummy variable: |seq(x^3, x=-10..10)|, % % \item simple recursive lists with |rseq|, with |@| given the last value, % |rseq(1;2@+1,i=1..10)|, % % \item higher recursion with |rrseq|, |@1|, |@2|, |@3|, |@4|, and |@@(n)| % for earlier values, up to |n=K| where |K| is the number of terms of the % initial stretch |rrseq(0,1;@1+@2,i=2..100)|, % % \item iteration with |iter| which is like |rrseq| but outputs only the % last |K| terms, where |K| was the number of initial terms, % % \item inside |seq|, |rseq|, |rrseq|, |iter|, possibility to use |omit|, % |abort| and |break| to control termination, % % \item |n++| potentially infinite index generation for |seq|, |rseq|, % |rrseq|, and |iter|, it is advised to use |abort| or |break(..)| at % some point, % % \item the |add|, |mul|, |seq|, ... are nestable, % % \item |\xintthecoords| converts a comma separated list of an even number % of items to the format as expected by the |TikZ| |coordinates| syntax, % % \item completely rewritten |\xintNewExpr|, |protect| function to handle % external macros. However not all constructs are compatible with % |\xintNewExpr|. % % \end{itemize} % \end{description} % % Comments dating back to earlier releases: % % Roughly speaking, the parser mechanism is as follows: at any given time the % last found ``operator'' has its associated |until| macro awaiting some news % from the token flow; first |getnext| expands forward in the hope to construct % some number, which may come from a parenthesized sub-expression, from some % braced material, or from a digit by digit scan. After this number has been % formed the next operator is looked for by the |getop| macro. Once |getop| has % finished its job, |until| is presented with three tokens: the first one is the % precedence level of the new found operator (which may be an end of expression % marker), the second is the operator character token (earlier versions had here % already some macro name, but in order to keep as much common code to expr and % floatexpr common as possible, this was modified) of the new found operator, and % the third one is the newly found number (which was encountered just before the % new operator). % % The |until| macro of the earlier operator examines the precedence level of the % new found one, and either executes the earlier operator (in the case of a % binary operation, with the found number and a previously stored one) or it % delays execution, giving the hand to the |until| macro of the operator having % been found of higher precedence. % % A minus sign acting as prefix gets converted into a (unary) operator % inheriting the precedence level of the previous operator. % % Once the end of the expression is found (it has to be marked by a |\relax|) % the final result is output as four tokens (five tokens since |1.09j|) the % first one a catcode 11 exclamation mark, the second one an error generating % macro, the third one is a protection mechanism, the fourth one a printing % macro and the fifth is |\.=a/b[n]|. The prefix |\xintthe| makes the output % printable by killing the first three tokens. % % \begin{description} % \item[{|1.08b [2013/06/14]|}] corrected a problem originating in the attempt % to attribute a special rôle to braces: expansion could be stopped by space % tokens, as various macros tried to expand without grabbing what came next. % They now have a doubled |\romannumeral-`0|. % % \item[{|1.09a| |[2013/09/24]|}] has a better mechanism regarding |\xintthe|, % more commenting and better organization of the code, and most importantly it % implements functions, comparison operators, logic operators, conditionals. The % code was reorganized and expansion proceeds a bit differently in order to have % the |_getnext| and |_getop| codes entirely shared by |\xintexpr| and % |\xintfloatexpr|. |\xintNewExpr| was rewritten in order to work with the % standard macro parameter character |#|, to be catcode protected and to also % allow comma separated expressions. % % \item[{|1.09c| |[2013/10/09]|}] added the |bool| and |togl| operators, % |\xintboolexpr|, and |\xintNewNumExpr|, |\xintNewBoolExpr|. The code for % |\xintNewExpr| is shared with |float|, |num|, and |bool|-expressions. Also the % precedence level of the postfix operators |!|, |?| and |:| has been made lower % than the one of functions. % % \item[{|1.09i| |[2013/12/18]|}] unpacks count and dimen registers and control % squences, with tacit multiplication. It has also made small improvements. % (speed gains in macro expansions in quite a few places.) % % Also, |1.09i| implements |\xintiiexpr|, |\xinttheiiexpr|. New function |frac|. % And encapsulation in |\csname..\endcsname| is done with |.=| as first tokens, % so unpacking with |\string| can be done in a completely escape char agnostic % way. % % \item[{|1.09j| |[2014/01/09]|}] extends the tacit multiplication to the case of % a sub |\xintexpr|-essions. Also, it now |\xint_protect|s the result of the % |\xintexpr| full expansions, thus, an |\xintexpr| without |\xintthe| prefix % can be used not only as the first item within an ``|\fdef|'' as previously but % also now anywhere within an |\edef|. Five tokens are used to pack the % computation result rather than the possibly hundreds or thousands of digits of % an |\xintthe| unlocked result. I deliberately omit a second |\xint_protect| % which, however would be necessary if some macro |\.=digits/digits[digits]| had % acquired some expandable meaning elsewhere. But this seems not that probable, % and adding the protection would mean impacting everything only to allow some % crazy user which has loaded something else than xint to do an |\edef|... the % |\xintexpr| computations are otherwise in no way affected if such control % sequences have a meaning. % % \item[{|1.09k| |[2014/01/21]|}] does tacit multiplication also for an opening % parenthesis encountered during the scanning of a number, or at a time when the % parser expects an infix operator. % % And it adds to the syntax recognition of hexadecimal numbers starting with a % |"|, and having possibly a fractional part (except in |\xintiiexpr|, % naturally). % % \item[{|1.09kb| |[2014/02/13]|}] fixes the bug introduced in |\xintNewExpr| % in |1.09i| of December 2013: an |\endlinechar -1| was removed, but without % it there is a spurious trailing space token in the outputs of the created % macros, and nesting is then impossible. % % \end{description} % % This is release \expandafter|\xintbndlversion| of % \expandafter|\expandafter[\xintbndldate]|. % % \subsection{Catcodes, \protect\eTeX{} and reload detection} % % The code for reload detection was initially copied from \textsc{Heiko % Oberdiek}'s packages, then modified. % % The method for catcodes was also initially directly inspired by these % packages. % % \begin{macrocode} \begingroup\catcode61\catcode48\catcode32=10\relax% \catcode13=5 % ^^M \endlinechar=13 % \catcode123=1 % { \catcode125=2 % } \catcode64=11 % @ \catcode35=6 % # \catcode44=12 % , \catcode45=12 % - \catcode46=12 % . \catcode58=12 % : \def\z {\endgroup}% \expandafter\let\expandafter\x\csname ver@xintexpr.sty\endcsname \expandafter\let\expandafter\w\csname ver@xintfrac.sty\endcsname \expandafter\let\expandafter\t\csname ver@xinttools.sty\endcsname \expandafter \ifx\csname PackageInfo\endcsname\relax \def\y#1#2{\immediate\write-1{Package #1 Info: #2.}}% \else \def\y#1#2{\PackageInfo{#1}{#2}}% \fi \expandafter \ifx\csname numexpr\endcsname\relax \y{xintexpr}{\numexpr not available, aborting input}% \aftergroup\endinput \else \ifx\x\relax % plain-TeX, first loading of xintexpr.sty \ifx\w\relax % but xintfrac.sty not yet loaded. \expandafter\def\expandafter\z\expandafter {\z\input xintfrac.sty\relax}% \fi \ifx\t\relax % but xinttools.sty not yet loaded. \expandafter\def\expandafter\z\expandafter {\z\input xinttools.sty\relax}% \fi \else \def\empty {}% \ifx\x\empty % LaTeX, first loading, % variable is initialized, but \ProvidesPackage not yet seen \ifx\w\relax % xintfrac.sty not yet loaded. \expandafter\def\expandafter\z\expandafter {\z\RequirePackage{xintfrac}}% \fi \ifx\t\relax % xinttools.sty not yet loaded. \expandafter\def\expandafter\z\expandafter {\z\RequirePackage{xinttools}}% \fi \else \aftergroup\endinput % xintexpr already loaded. \fi \fi \fi \z% \XINTsetupcatcodes% % \end{macrocode} % \subsection{Package identification} % \begin{macrocode} \XINT_providespackage \ProvidesPackage{xintexpr}% [2014/11/07 v1.1a Expandable expression parser (jfB)]% % \end{macrocode} % \subsection{Locking and unlocking} % je dois réfléchir si je dois bloquer expansion après |unlock_a|, à % cause de nil. % \begin{macrocode} \def\xint_gob_til_! #1!{}% this ! has catcode 11 \edef\XINT_expr_lockscan#1!{\noexpand\expandafter\space\noexpand\csname .=#1\endcsname }% \edef\XINT_expr_lockit #1{\noexpand\expandafter\space\noexpand\csname .=#1\endcsname }% \def\XINT_expr_inintpart #1!{\XINT_num{#1}}% \def\XINT_expr_infracpart #1e#2!{#1![\the\numexpr#2-\xintLength{#1}]!}% \def\XINT_expr_inexppart e#1!{![\the\numexpr #1]!}% \def\XINT_expr_unlock {\expandafter\XINT_expr_unlock_a\string }% \def\XINT_expr_unlock_a #1.={}% \def\XINT_expr_unexpectedtoken {\xintError:ignored }% \let\XINT_expr_done\space % \end{macrocode} % \subsection{\csh{XINT_expr_wrap}, \csh{XINT_iiexpr_wrap}} % \begin{macrocode} \def\XINT_expr_wrap { !\XINT_expr_usethe\XINT_protectii\XINT_expr_print }% \def\XINT_iiexpr_wrap { !\XINT_expr_usethe\XINT_protectii\XINT_iiexpr_print }% % \end{macrocode} % \subsection{\csh{XINT_protectii}, \csh{XINT_expr_usethe}} % \begin{macrocode} \def\XINT_protectii #1{\noexpand\XINT_protectii\noexpand #1\noexpand }% \protected\def\XINT_expr_usethe\XINT_protectii {\xintError:missing_xintthe!}% % \end{macrocode} % \subsection{\csh{XINT_expr_print}, \csh{XINT_iiexpr_print}, \csh{XINT_boolexpr_print}} % \lverb|See also the \XINT_flexpr_print which is special, below.| % \begin{macrocode} \def\XINT_expr_print #1{\xintSPRaw::csv {\XINT_expr_unlock #1}}% \def\XINT_iiexpr_print #1{\xintCSV::csv {\XINT_expr_unlock #1}}% \def\XINT_boolexpr_print #1{\xintIsTrue::csv {\XINT_expr_unlock #1}}% % \end{macrocode} % \subsection{\csh{xintexpr}, \csh{xintiexpr}, \csh{xintfloatexpr}, % \csh{xintiiexpr}, \csh{xinttheexpr}, etc\dots} % \begin{macrocode} \def\xintexpr {\romannumeral0\xinteval }% \def\xintiexpr {\romannumeral0\xintieval }% \def\xintfloatexpr {\romannumeral0\xintfloateval }% \def\xintiiexpr {\romannumeral0\xintiieval }% \def\xinttheexpr {\romannumeral-`0\expandafter\XINT_expr_print\romannumeral0\xintbareeval }% \def\xinttheiexpr {\romannumeral-`0\xintthe\xintiexpr }% \def\xintthefloatexpr {\romannumeral-`0\xintthe\xintfloatexpr }% \def\xinttheiiexpr {\romannumeral-`0\expandafter\XINT_iiexpr_print\romannumeral0\xintbareiieval }% % \let\xintnumexpr \xintiexpr % was deprecated, now obsolete with 1.1 % \let\xintthenumexpr\xinttheiexpr % was deprecated, now obsolete with 1.1 % \end{macrocode} % \subsection{\csh{xintthe}} % \begin{macrocode} \def\xintthe #1{\romannumeral-`0\expandafter\xint_gobble_iii\romannumeral-`0#1}% % \end{macrocode} % \subsection{\csh{xintthecoords}} % \lverb|1.1 Wraps up an even number of comma separated items into pairs of % TikZ coordinates; for use in the following way: % % coordinates {\xintthecoords\xintfloatexpr ... \relax} % % The crazyness with the \csname and unlock is due to TikZ somewhat STRANGE % control of the TOTAL number of expansions which should not exceed the very low % value of 100 !! As we implemented \XINT_thecoords_b in an "inline" style for % efficiency, we need to hide its expansions. % % Not to be used as \xintthecoords\xintthefloatexpr, only as % \xintthecoords\xintfloatexpr (or \xintiexpr etc...). Perhaps \xintthecoords % could make an extra check, but one should not accustome users to too loose % requirements!| % \begin{macrocode} \def\xintthecoords #1{\romannumeral-`0\expandafter\expandafter\expandafter \XINT_thecoords_a \expandafter\xint_gobble_iii\romannumeral0#1}% \def\XINT_thecoords_a #1#2% #1=print macro, indispensible for scientific notation {\expandafter\XINT_expr_unlock\csname.=\expandafter\XINT_thecoords_b \romannumeral-`0#1#2,!,!,^\endcsname }% \def\XINT_thecoords_b #1#2,#3#4,% {\xint_gob_til_! #3\XINT_thecoords_c ! (#1#2, #3#4)\XINT_thecoords_b }% \def\XINT_thecoords_c #1^{}% % \end{macrocode} % \subsection{\csh{xintbareeval}, \csh{xintbarefloateval}, \csh{xintbareiieval}} % \begin{macrocode} \def\xintbareeval {\expandafter\XINT_expr_until_end_a\romannumeral-`0\XINT_expr_getnext }% \def\xintbarefloateval {\expandafter\XINT_flexpr_until_end_a\romannumeral-`0\XINT_expr_getnext }% \def\xintbareiieval {\expandafter\XINT_iiexpr_until_end_a\romannumeral-`0\XINT_expr_getnext }% % \end{macrocode} % \subsection{\csh{xinteval}, \csh{xintiieval}} % \begin{macrocode} \def\xinteval {\expandafter\XINT_expr_wrap\romannumeral0\xintbareeval }% \def\xintiieval {\expandafter\XINT_iiexpr_wrap\romannumeral0\xintbareiieval }% % \end{macrocode} % \subsection{\csh{xintieval}, \csh{XINT_iexpr_wrap}} % \lverb|Optional argument since 1.1| % \begin{macrocode} \def\xintieval #1% {\ifx [#1\expandafter\XINT_iexpr_withopt\else\expandafter\XINT_iexpr_noopt \fi #1}% \def\XINT_iexpr_noopt {\expandafter\XINT_iexpr_wrap \expandafter 0\romannumeral0\xintbareeval }% \def\XINT_iexpr_withopt [#1]% {% \expandafter\XINT_iexpr_wrap\expandafter {\the\numexpr \xint_zapspaces #1 \xint_gobble_i\expandafter}% \romannumeral0\xintbareeval }% \def\XINT_iexpr_wrap #1#2% {% \expandafter\XINT_expr_wrap \csname .=\xintRound::csv {#1}{\XINT_expr_unlock #2}\endcsname }% % \end{macrocode} % \subsection{\csh{xintfloateval}, \csh{XINT_flexpr_wrap}, \csh{XINT_flexpr_print}} % \lverb|Optional argument since 1.1| % \begin{macrocode} \def\xintfloateval #1% {% \ifx [#1\expandafter\XINT_flexpr_withopt_a\else\expandafter\XINT_flexpr_noopt \fi #1% }% \def\XINT_flexpr_noopt {% \expandafter\XINT_flexpr_withopt_b\expandafter\xinttheDigits \romannumeral0\xintbarefloateval }% \def\XINT_flexpr_withopt_a [#1]% {% \expandafter\XINT_flexpr_withopt_b\expandafter {\the\numexpr\xint_zapspaces #1 \xint_gobble_i\expandafter}% \romannumeral0\xintbarefloateval }% \def\XINT_flexpr_withopt_b #1#2% {% \expandafter\XINT_flexpr_wrap\csname .;#1.=% ; and not : as before b'cause NewExpr \XINTinFloat::csv {#1}{\XINT_expr_unlock #2}\endcsname }% \def\XINT_flexpr_wrap { !\XINT_expr_usethe\XINT_protectii\XINT_flexpr_print }% \def\XINT_flexpr_print #1% {% \expandafter\xintPFloat::csv \romannumeral-`0\expandafter\XINT_expr_unlock_sp\string #1!% }% \catcode`: 12 \def\XINT_expr_unlock_sp #1.;#2.=#3!{{#2}{#3}}% \catcode`: 11 % \end{macrocode} % \subsection{\csh{xintboolexpr}, \csh{xinttheboolexpr}} % \begin{macrocode} \def\xintboolexpr {\romannumeral0\expandafter\expandafter\expandafter \XINT_boolexpr_done \expandafter\xint_gobble_iv\romannumeral0\xinteval }% \def\xinttheboolexpr {\romannumeral-`0\expandafter\expandafter\expandafter \XINT_boolexpr_print\expandafter\xint_gobble_iv\romannumeral0\xinteval }% \def\XINT_boolexpr_done { !\XINT_expr_usethe\XINT_protectii\XINT_boolexpr_print }% % \end{macrocode} % \subsection{\csh{xintifboolexpr}, \csh{xintifboolfloatexpr}, \csh{xintifbooliiexpr}} % \lverb|Do not work with comma separated expressions.| % \begin{macrocode} \def\xintifboolexpr #1{\romannumeral0\xintifnotzero {\xinttheexpr #1\relax}}% \def\xintifboolfloatexpr #1{\romannumeral0\xintifnotzero {\xintthefloatexpr #1\relax}}% \def\xintifbooliiexpr #1{\romannumeral0\xintifnotzero {\xinttheiiexpr #1\relax}}% % \end{macrocode} % \subsection{Macros handling csv lists on output (for \csh{XINT_expr_print} et % al. routines)} % \lverb|Changed completely for 1.1, which adds the optional arguments to % \xintiexpr and \xintfloatexpr.| % \subsubsection{\csh{XINT_::_end}} % \lverb|Le mécanisme est le suivant, #2 est dans des accolades et commence par % ,. Donc le gobble se débarrasse du, et le après brace stripping % arrête un \romannumeral0 ou \romannumeral-`0| % \begin{macrocode} \def\XINT_::_end #1,#2{\xint_gobble_i #2}% % \end{macrocode} % \subsubsection{\csh{xintCSV::csv}} % \lverb|pour \xinttheiiexpr. 1.1a adds the \romannumeral-`0 for each item, % which have no use for \xintiiexpr etc..., but are necessary for \xintNewExpr % to be able to handle comma separated inputs. I am not sure but I think I had % them just prior to releasing 1.1 but removed them foolishsly.| % \begin{macrocode} \def\xintCSV::csv #1{\expandafter\XINT_csv::_a\romannumeral-`0#1,^,}% \def\XINT_csv::_a {\XINT_csv::_b {}}% \def\XINT_csv::_b #1#2,{\expandafter\XINT_csv::_c \romannumeral-`0#2,{#1}}% \def\XINT_csv::_c #1{\if ^#1\expandafter\XINT_::_end\fi\XINT_csv::_d #1}% \def\XINT_csv::_d #1,#2{\XINT_csv::_b {#2, #1}}% possibly, item #1 is empty. % \end{macrocode} % \subsubsection{\csh{xintSPRaw}, \csh{xintSPRaw::csv}} % \lverb|Pour \xinttheexpr. % J'avais voulu optimiser en testant si présence ou non de [N], % cependant reduce() produit résultat sans, et du coup, le /1 peut ne pas % être retiré. Bon je rajoute un [0] dans reduce. 14/10/25 au moment de % boucler. % % Same added \romannumeral-`0 in 1.1a for \xintNewExpr purposes.| % \begin{macrocode} \def\xintSPRaw {\romannumeral0\xintspraw }% \def\xintspraw #1{\expandafter\XINT_spraw\romannumeral-`0#1[\W]}% \def\XINT_spraw #1[#2#3]{\xint_gob_til_W #2\XINT_spraw_a\W\XINT_spraw_p #1[#2#3]}% \def\XINT_spraw_a\W\XINT_spraw_p #1[\W]{ #1}% \def\XINT_spraw_p #1[\W]{\xintpraw {#1}}% \def\xintSPRaw::csv #1{\romannumeral0\expandafter\XINT_spraw::_a\romannumeral-`0#1,^,}% \def\XINT_spraw::_a {\XINT_spraw::_b {}}% \def\XINT_spraw::_b #1#2,{\expandafter\XINT_spraw::_c \romannumeral-`0#2,{#1}}% \def\XINT_spraw::_c #1{\if ,#1\xint_dothis\XINT_spraw::_e\fi \if ^#1\xint_dothis\XINT_::_end\fi \xint_orthat\XINT_spraw::_d #1}% \def\XINT_spraw::_d #1,{\expandafter\XINT_spraw::_e\romannumeral0\XINT_spraw #1[\W],}% \def\XINT_spraw::_e #1,#2{\XINT_spraw::_b {#2, #1}}% % \end{macrocode} % \subsubsection{\csh{xintIsTrue::csv}} % \begin{macrocode} \def\xintIsTrue::csv #1{\romannumeral0\expandafter\XINT_istrue::_a\romannumeral-`0#1,^,}% \def\XINT_istrue::_a {\XINT_istrue::_b {}}% \def\XINT_istrue::_b #1#2,{\expandafter\XINT_istrue::_c \romannumeral-`0#2,{#1}}% \def\XINT_istrue::_c #1{\if ,#1\xint_dothis\XINT_istrue::_e\fi \if ^#1\xint_dothis\XINT_::_end\fi \xint_orthat\XINT_istrue::_d #1}% \def\XINT_istrue::_d #1,{\expandafter\XINT_istrue::_e\romannumeral0\xintisnotzero {#1},}% \def\XINT_istrue::_e #1,#2{\XINT_istrue::_b {#2, #1}}% % \end{macrocode} % \subsubsection{\csh{xintRound::csv}} % \lverb|Pour \xintiexpr avec argument optionnel (finalement, malgré un % certain overhead lors de l'exécution, pour économiser du code je ne % distingue plus les deux cas). Reason for annoying expansion bridge is % related to \xintNewExpr. Attention utilise \XINT_:::_end.| % \begin{macrocode} \def\XINT_:::_end #1,#2#3{\xint_gobble_i #3}% \def\xintRound::csv #1#2{\romannumeral0\expandafter\XINT_round::_b\expandafter {\the\numexpr#1\expandafter}\expandafter{\expandafter}\romannumeral-`0#2,^,}% \def\XINT_round::_b #1#2#3,{\expandafter\XINT_round::_c \romannumeral-`0#3,{#1}{#2}}% \def\XINT_round::_c #1{\if ,#1\xint_dothis\XINT_round::_e\fi \if ^#1\xint_dothis\XINT_:::_end\fi \xint_orthat\XINT_round::_d #1}% \def\XINT_round::_d #1,#2{% \expandafter\XINT_round::_e\romannumeral0\ifnum#2>\xint_c_ \expandafter\xintround\else\expandafter\xintiround\fi {#2}{#1},{#2}}% \def\XINT_round::_e #1,#2#3{\XINT_round::_b {#2}{#3, #1}}% % \end{macrocode} % \subsubsection{\csh{XINTinFloat::csv}} % \lverb|Pour \xintfloatexpr. Attention, prépare sous la forme digits[N] pour % traitement par les macros. Pas utilisé en sortie. Utilise \XINT_:::_end. % % 1.1a I believe this is not needed for \xintNewExpr, as it is removed by % re-defined by \XINT_flexpr_wrap code, hence no need to add the extra % \romannumeral-`0. Sub-expressions in \xintNewExpr are not supported. % % I didn't start and don't want now to think about it at all. %| % \begin{macrocode} \def\XINTinFloat::csv #1#2{\romannumeral0\expandafter\XINT_infloat::_b\expandafter {\the\numexpr #1\expandafter}\expandafter{\expandafter}\romannumeral-`0#2,^,}% \def\XINT_infloat::_b #1#2#3,{\XINT_infloat::_c #3,{#1}{#2}}% \def\XINT_infloat::_c #1{\if ,#1\xint_dothis\XINT_infloat::_e\fi \if ^#1\xint_dothis\XINT_:::_end\fi \xint_orthat\XINT_infloat::_d #1}% \def\XINT_infloat::_d #1,#2% {\expandafter\XINT_infloat::_e\romannumeral0\XINTinfloat [#2]{#1},{#2}}% \def\XINT_infloat::_e #1,#2#3{\XINT_infloat::_b {#2}{#3, #1}}% % \end{macrocode} % \subsubsection{\csh{xintPFloat::csv}} % \lverb|Expansion à cause de \xintNewExpr. Attention à l'ordre, pas le même que pour % \XINTinFloat::csv. Donc c'est cette routine qui imprime. Utilise \XINT_:::_end| % \begin{macrocode} \def\xintPFloat::csv #1#2{\romannumeral0\expandafter\XINT_pfloat::_b\expandafter {\the\numexpr #1\expandafter}\expandafter{\expandafter}\romannumeral-`0#2,^,}% \def\XINT_pfloat::_b #1#2#3,{\expandafter\XINT_pfloat::_c \romannumeral-`0#3,{#1}{#2}}% \def\XINT_pfloat::_c #1{\if ,#1\xint_dothis\XINT_pfloat::_e\fi \if ^#1\xint_dothis\XINT_:::_end\fi \xint_orthat\XINT_pfloat::_d #1}% \def\XINT_pfloat::_d #1,#2% {\expandafter\XINT_pfloat::_e\romannumeral0\XINT_pfloat_opt [\xint_relax #2]{#1},{#2}}% \def\XINT_pfloat::_e #1,#2#3{\XINT_pfloat::_b {#2}{#3, #1}}% % \end{macrocode} % \subsection{\csh{XINT_expr_getnext}: fetching some number then an operator} % \lverb|Big change in 1.1, no attempt to detect braced stuff anymore as the % [N] notation is implemented otherwise. Now, braces should not be used at % all; one level removed, then \romannumeral-`0 expansion.| % \begin{macrocode} \def\XINT_expr_getnext #1% {% \expandafter\XINT_expr_getnext_a\romannumeral-`0#1% }% \def\XINT_expr_getnext_a #1% {% screens out sub-expressions and \count or \dimen registers/variables \xint_gob_til_! #1\XINT_expr_subexpr !% recall this ! has catcode 11 \ifcat\relax#1% \count or \numexpr etc... token or count, dimen, skip cs \expandafter\XINT_expr_countetc \else \expandafter\expandafter\expandafter\XINT_expr_getnextfork\expandafter\string \fi #1% }% \def\XINT_expr_subexpr !#1\fi !{\expandafter\XINT_expr_getop\xint_gobble_iii }% \def\XINT_expr_countetc #1% {% \ifx\count#1\else\ifx#1\dimen\else\ifx#1\numexpr\else\ifx#1\dimexpr\else \ifx\skip#1\else\ifx\glueexpr#1\else\ifx\fontdimen#1\else \XINT_expr_unpackvar \fi\fi\fi\fi\fi\fi\fi \expandafter\XINT_expr_getnext\number #1% }% \def\XINT_expr_unpackvar\fi\fi\fi\fi\fi\fi\fi\expandafter\XINT_expr_getnext\number #1% {\fi\fi\fi\fi\fi\fi\fi\expandafter\XINT_expr_getop\csname .=\number#1\endcsname }% \begingroup \lccode`*=`# \lowercase{\endgroup \def\XINT_expr_getnextfork #1{% \if#1*\xint_dothis {\XINT_expr_scan_macropar *}\fi \if#1[\xint_dothis {\xint_c_xviii ({}}\fi \if#1+\xint_dothis \XINT_expr_getnext \fi \if#1.\xint_dothis {\XINT_expr_scandec_II\XINT_expr_infracpart}\fi \if#1-\xint_dothis -\fi \if#1(\xint_dothis {\xint_c_xviii ({}}\fi \xint_orthat {\XINT_expr_scan_nbr_or_func #1}% }}% \def\XINT_expr_scan_macropar #1#2{\expandafter\XINT_expr_getop\csname .=#1#2\endcsname }% % \end{macrocode} % \subsection{The integer or decimal number or hexa-decimal number or % function name or variable name or special hacky things big parser} % \begin{macrocode} \catcode96 11 % ` \def\XINT_expr_scan_nbr_or_func #1% this #1 has necessarily here catcode 12 {% \if "#1\xint_dothis \XINT_expr_scanhex_I\fi \if `#1\xint_dothis {\XINT_expr_onlitteral_`}\fi \ifnum \xint_c_ix<1#1 \xint_dothis \XINT_expr_scandec_I\fi \xint_orthat \XINT_expr_scanfunc #1% }% \catcode96 12 % ` \def\XINT_expr_scandec_I {% \expandafter\XINT_expr_getop\romannumeral-`0\expandafter \XINT_expr_lockscan\romannumeral0\expandafter\XINT_expr_inintpart \romannumeral-`0\XINT_expr_scanintpart_b }% \def\XINT_expr_scandec_II {% \expandafter\XINT_expr_getop\romannumeral-`0\expandafter \XINT_expr_lockscan\romannumeral0\expandafter\XINT_expr_inintpart \romannumeral-`0\XINT_expr_scanfracpart_b }% % \end{macrocode} % \subsubsection{Integral part} % \begin{macrocode} \def\XINT_expr_scanintpart_a #1% {% careful that ! has catcode letter here \ifcat \relax #1\xint_dothis{!!#1}\fi % stops the scan \if e#1\xint_dothis{\expandafter\XINT_expr_inexppart \romannumeral-`0\XINT_expr_scanexppart_a e}\fi \if E#1\xint_dothis{\expandafter\XINT_expr_inexppart \romannumeral-`0\XINT_expr_scanexppart_a e}\fi % \if @#1\xint_dothis{!*#1}\fi % tacit multiplication later % \if _#1\xint_dothis{!*#1}\fi % tacit multiplication for variables \ifcat a#1\xint_dothis{!!*#1}\fi % includes subexpressions (#1=! letter) \xint_orthat {\expandafter\XINT_expr_scanintpart_aa\string #1}% }% \def\XINT_expr_scanintpart_aa #1% {% \if .#1\xint_dothis\XINT_expr_scandec_transition\fi \ifnum \xint_c_ix<1#1 \xint_dothis\XINT_expr_scanintpart_b\fi \xint_orthat {!!}#1% }% \def\XINT_expr_scanintpart_b #1#2% {% \expandafter #1\romannumeral-`0\expandafter \XINT_expr_scanintpart_a\romannumeral-`0#2% }% \def\XINT_expr_scandec_transition .#1% {% \expandafter\XINT_expr_scandec_trans_a\romannumeral-`0#1% }% \def\XINT_expr_scandec_trans_a #1% {% \if .#1\xint_dothis{!!..}\fi \xint_orthat {\expandafter\XINT_expr_infracpart \romannumeral-`0\XINT_expr_scanfracpart_a #1}% }% % \end{macrocode} % \subsubsection{Fractional part} % \begin{macrocode} \def\XINT_expr_scanfracpart_a #1% {% \ifcat \relax #1\xint_dothis{e!#1}\fi % stops the scan \if e#1\xint_dothis{\XINT_expr_scanexppart_a e}\fi \if E#1\xint_dothis{\XINT_expr_scanexppart_a e}\fi \ifcat a#1\xint_dothis{e!*#1}\fi % and also the case of subexpressions (!) \xint_orthat {\expandafter\XINT_expr_scanfracpart_aa\string #1}% }% \def\XINT_expr_scanfracpart_aa #1% {% \ifnum \xint_c_ix<1#1 \expandafter\XINT_expr_scanfracpart_b \else \xint_afterfi {e!}% \fi #1% }% \def\XINT_expr_scanfracpart_b #1#2% {% \expandafter #1\romannumeral-`0\expandafter \XINT_expr_scanfracpart_a\romannumeral-`0#2% }% % \end{macrocode} % \subsubsection{Scientific notation} % \begin{macrocode} \def\XINT_expr_scanexppart_a #1#2% {% \expandafter #1\romannumeral-`0\expandafter \XINT_expr_scanexppart_b\romannumeral-`0#2% }% \def\XINT_expr_scanexppart_b #1% {% \ifcat \relax #1\xint_dothis{0!#1}\fi % stops the scan (incorrect syntax) \ifcat a#1\xint_dothis{0!*#1}\fi % idem \if +#1\xint_dothis {\XINT_expr_scanexppart_a +}\fi \if -#1\xint_dothis {\XINT_expr_scanexppart_a -}\fi \xint_orthat {\expandafter\XINT_expr_scanexppart_c\string #1}% }% \def\XINT_expr_scanexppart_c #1% {% \ifnum \xint_c_ix<1#1 \expandafter\XINT_expr_scanexppart_d \else \expandafter !% \fi #1% }% \def\XINT_expr_scanexppart_d #1#2% {% \expandafter #1\romannumeral-`0\expandafter \XINT_expr_scanexppart_e\romannumeral-`0#2% }% \def\XINT_expr_scanexppart_e #1% {% \ifcat \relax #1\xint_dothis{!#1}\fi % stops the scan \ifcat a#1\xint_dothis{!*#1}\fi % idem \xint_orthat {\expandafter\XINT_expr_scanexppart_f\string #1}% }% \def\XINT_expr_scanexppart_f #1% {% \ifnum \xint_c_ix<1#1 \expandafter\XINT_expr_scanexppart_d \else \expandafter !% \fi #1% }% % \end{macrocode} % \subsubsection{Hexadecimal numbers} % \begin{macrocode} \def\XINT_expr_scanhex_I #1% {% \expandafter\XINT_expr_getop\romannumeral-`0\expandafter \XINT_expr_lockscan\expandafter\XINT_expr_inhex \romannumeral-`0\XINT_expr_scanhexI_a }% \def\XINT_expr_inhex #1.#2#3;% expanded inside \csname..\endcsname {% \if#2I\xintHexToDec{#1}% \else \xintiiMul{\xintiiPow{625}{\xintLength{#3}}}{\xintHexToDec{#1#3}}% [\the\numexpr-4*\xintLength{#3}]% \fi }% \def\XINT_expr_scanhexI_a #1% {% \ifcat #1\relax\xint_dothis{.I;!#1}\fi \ifx !#1\xint_dothis{.I;!*!}\fi % tacit multiplication \xint_orthat {\expandafter\XINT_expr_scanhexI_aa\string #1}% }% \def\XINT_expr_scanhexI_aa #1% {% \if\ifnum`#1>`/ \ifnum`#1>`9 \ifnum`#1>`@ \ifnum`#1>`F 0\else1\fi\else0\fi\else1\fi\else0\fi 1% \expandafter\XINT_expr_scanhexI_b \else \if .#1% \expandafter\xint_firstoftwo \else % gather what we got so far, leave catcode 12 #1 in stream \expandafter\xint_secondoftwo \fi {\expandafter\XINT_expr_scanhex_transition}% {\xint_afterfi {.I;!}}% \fi #1% }% \def\XINT_expr_scanhexI_b #1#2% {% \expandafter #1\romannumeral-`0\expandafter \XINT_expr_scanhexI_a\romannumeral-`0#2% }% \def\XINT_expr_scanhex_transition .#1% {% \expandafter.\expandafter.\romannumeral-`0\expandafter \XINT_expr_scanhexII_a\romannumeral-`0#1% }% \def\XINT_expr_scanhexII_a #1% {% \ifcat #1\relax\xint_dothis{;!#1}\fi \ifx !#1\xint_dothis{;!*!}\fi % tacit multiplication \xint_orthat {\expandafter\XINT_expr_scanhexII_aa\string #1}% }% \def\XINT_expr_scanhexII_aa #1% {% \if\ifnum`#1>`/ \ifnum`#1>`9 \ifnum`#1>`@ \ifnum`#1>`F 0\else1\fi\else0\fi\else1\fi\else0\fi 1% \expandafter\XINT_expr_scanhexII_b \else \xint_afterfi {;!}% \fi #1% }% \def\XINT_expr_scanhexII_b #1#2% {% \expandafter #1\romannumeral-`0\expandafter \XINT_expr_scanhexII_a\romannumeral-`0#2% }% % \end{macrocode} % \subsubsection{Function and variable names} % \begin{macrocode} \def\XINT_expr_scanfunc {% \expandafter\XINT_expr_func\romannumeral-`0\XINT_expr_scanfunc_a }% \def\XINT_expr_scanfunc_a #1#2% {% \expandafter #1\romannumeral-`0\expandafter\XINT_expr_scanfunc_b\romannumeral-`0#2% }% \def\XINT_expr_scanfunc_b #1% {% \ifx !#1\xint_dothis{\xint_firstoftwo{(_*!}}\fi \ifcat \relax#1\xint_dothis{(_}\fi \if (#1\xint_dothis{\xint_firstoftwo{(`}}\fi \if _#1\xint_dothis \XINT_expr_scanfunc_a \fi \if @#1\xint_dothis \XINT_expr_scanfunc_a \fi \ifnum \xint_c_ix<1\string#1 \xint_dothis \XINT_expr_scanfunc_a \fi \ifcat a#1\xint_dothis \XINT_expr_scanfunc_a \fi \xint_orthat {(_}% #1% }% \def\XINT_expr_func #1(#2% {% #2=` pour une fonction, #2=_ pour une variable \if #2`\ifcsname XINT_expr_var_#1\endcsname \expandafter\expandafter\expandafter\xint_thirdofthree \fi\fi \xint_firstoftwo {\xint_c_xviii #2{#1}}{\xint_c_xviii _{#1}*(}% }% % \end{macrocode} % \subsection{\csh{XINT_expr_getop}: finding the next operator or closing % parenthesis or end of expression} % \lverb|Release 1.1 implements multi-character operators.| % \begin{macrocode} \def\XINT_expr_getop #1#2% this #1 is the current locked computed value {% \expandafter\XINT_expr_getop_a\expandafter #1\romannumeral-`0#2% }% \catcode`* 11 \def\XINT_expr_getop_a #1#2% {% \ifx \relax #2\xint_dothis\xint_firstofthree\fi \ifcat \relax #2\xint_dothis\xint_secondofthree\fi \if _#2\xint_dothis \xint_secondofthree\fi \if @#2\xint_dothis \xint_secondofthree\fi \if (#2\xint_dothis \xint_secondofthree\fi \ifx !#2\xint_dothis \xint_secondofthree\fi \xint_orthat \xint_thirdofthree {\XINT_expr_foundend #1}% {\XINT_expr_precedence_* *#1#2}% tacit multiplication {\XINT_expr_getop_b #2#1}% }% \catcode`* 12 \def\XINT_expr_foundend {\xint_c_ \relax }% \relax is a place holder here. \def\XINT_expr_getop_b #1% {% ? and : a special syntax in \xintexpr as they are % followed by braced arguments, and thus we must intercept them here. % I wanted to change this but now I don't have time to think about it. % 1.1 removes : as logic operator. Replaced by ??. \if '#1\xint_dothis{\XINT_expr_binopwrd }\fi \if ?#1\xint_dothis{\XINT_expr_precedence_? ?}\fi \xint_orthat {\XINT_expr_scanop_a #1}% }% \def\XINT_expr_binopwrd #1#2'{\expandafter\XINT_expr_foundop_a \csname XINT_expr_itself_\xint_zapspaces #2 \xint_gobble_i\endcsname #1}% \def\XINT_expr_scanop_a #1#2#3% {\expandafter\XINT_expr_scanop_b\expandafter #1\expandafter #2\romannumeral-`0#3}% \def\XINT_expr_scanop_b #1#2#3% {% \ifcat#3\relax\xint_dothis{\XINT_expr_foundop_a #1#2#3}\fi \ifcsname XINT_expr_itself_#1#3\endcsname \xint_dothis {\expandafter\XINT_expr_scanop_c\csname XINT_expr_itself_#1#3\endcsname #2}\fi \xint_orthat {\XINT_expr_foundop_a #1#2#3}% }% \def\XINT_expr_scanop_c #1#2#3% {% \expandafter\XINT_expr_scanop_d\expandafter #1\expandafter #2\romannumeral-`0#3% }% \def\XINT_expr_scanop_d #1#2#3% {% \ifcat#3\relax \xint_dothis{\XINT_expr_foundop #1#2#3}\fi \ifcsname XINT_expr_itself_#1#3\endcsname \xint_dothis {\expandafter\XINT_expr_scanop_c\csname XINT_expr_itself_#1#3\endcsname #2}\fi \xint_orthat {\csname XINT_expr_precedence_#1\endcsname #1#2#3}% }% \def\XINT_expr_foundop_a #1% {% \ifcsname XINT_expr_precedence_#1\endcsname \csname XINT_expr_precedence_#1\expandafter\endcsname \expandafter #1% \else \xint_afterfi{\XINT_expr_unknown_operator {#1}\XINT_expr_getop}% \fi }% \def\XINT_expr_unknown_operator #1{\xintError:removed \xint_gobble_i {#1}}% \def\XINT_expr_foundop #1{\csname XINT_expr_precedence_#1\endcsname #1}% % \end{macrocode} % \subsection{Opening and closing parentheses, square brackets for lists, the % \textasciicircum C for omit and abort within seq or rseq} % \begin{macrocode} \catcode`) 11 \def\XINT_tmpa #1#2#3#4% (avant #4#5) {% \def#1##1% {% \xint_UDsignfork ##1{\expandafter#1\romannumeral-`0#3}% -{#2##1}% \krof }% \def#2##1##2% {% \ifcase ##1\xint_afterfi {\ifx\XINT_expr_itself_^C ##2\xint_dothis {\expandafter#1\romannumeral-`0\expandafter\XINT_expr_getnext\xint_gobble_i}\fi \xint_orthat \XINT_expr_done }% \or\xint_afterfi{\XINT_expr_extra_) \expandafter #1\romannumeral-`0\XINT_expr_getop }% \else \xint_afterfi{\expandafter#1\romannumeral-`0\csname XINT_#4_op_##2\endcsname }% \fi }% }% \def\XINT_expr_extra_) {\xintError:removed }% \xintFor #1 in {expr,flexpr,iiexpr} \do {% \expandafter\XINT_tmpa \csname XINT_#1_until_end_a\expandafter\endcsname \csname XINT_#1_until_end_b\expandafter\endcsname \csname XINT_#1_op_-vi\endcsname {#1}% }% \def\XINT_tmpa #1#2#3#4#5#6% {% \def #1##1{\expandafter #3\romannumeral-`0\XINT_expr_getnext }% \def #2{\expandafter #3\romannumeral-`0\XINT_expr_getnext }% \def #3##1{\xint_UDsignfork ##1{\expandafter #3\romannumeral-`0#5}% -{#4##1}% \krof }% \def #4##1##2{\ifcase ##1% \xint_afterfi{\ifx\XINT_expr_itself_^C ##2\xint_dothis{\xint_c_ ##2}\fi \xint_orthat\XINT_expr_missing_) }% \or \csname XINT_#6_op_##2\expandafter\endcsname \else \xint_afterfi{\expandafter #3\romannumeral-`0\csname XINT_#6_op_##2\endcsname }% \fi }% }% \def\XINT_expr_missing_) {\xintError:inserted \xint_c_ \XINT_expr_done }% \catcode`) 12 \xintFor #1 in {expr,flexpr,iiexpr} \do {% \expandafter\XINT_tmpa \csname XINT_#1_op_(\expandafter\endcsname \csname XINT_#1_oparen\expandafter\endcsname \csname XINT_#1_until_)_a\expandafter\endcsname \csname XINT_#1_until_)_b\expandafter\endcsname \csname XINT_#1_op_-vi\endcsname {#1}% }% \expandafter\let\csname XINT_expr_precedence_)\endcsname\xint_c_i \expandafter\let\csname XINT_expr_precedence_]\endcsname\xint_c_i \expandafter\let\csname XINT_expr_precedence_;\endcsname\xint_c_i \let\XINT_expr_precedence_a \xint_c_xviii \expandafter\let\csname XINT_expr_precedence_^C\endcsname \xint_c_ \expandafter\let\csname XINT_expr_precedence_++)\endcsname \xint_c_i \catcode`. 11 \catcode`= 11 \catcode`+ 11 \xintFor #1 in {expr,flexpr,iiexpr} \do {% \expandafter\let\csname XINT_#1_op_)\endcsname \XINT_expr_getop \expandafter\let\csname XINT_#1_op_;\endcsname \space \expandafter\def\csname XINT_#1_op_]\endcsname ##1{\XINT_expr_getop ##1a}% \expandafter\let\csname XINT_#1_op_a\endcsname \XINT_expr_getop \expandafter\def\csname XINT_#1_op_++)\endcsname ##1##2\relax {\expandafter\XINT_expr_foundend \expandafter {\expandafter\.=+\xintiCeil{\XINT_expr_unlock ##1}}}% }% \catcode`. 12 \catcode`= 12 \catcode`+ 12 % \end{macrocode} % \subsection{\textbar, \textbar\textbar, \&, % \&\&, <, >, =, ==, <=, >=, !=, +, \textendash, \texorpdfstring{\protect\lowast}{*}, /, \textasciicircum, \texorpdfstring{\protect\lowast\protect\lowast}{**}, //, /:, .., ..[, ].., ][, ][:, :], \textasciicircum C, and ++ operators} % \begin{macrocode} \xintFor* #1 in {{==}{<=}{>=}{!=}{&&}{||}{**}{//}{/:}{..}{..[}{].}{]..}% {+[}{-[}{*[}{/[}{**[}{^[}{a+}{a-}{a*}{a/}{a**}{a^}% {][}{][:}{:]}{^C}{++}{++)}} \do {\expandafter\def\csname XINT_expr_itself_#1\endcsname {#1}}% % \end{macrocode} % \subsubsection{The \textbar, % \&, xor, <, >, =, <=, >=, !=, //, /:, .., ..[, and ].. operators} % \begin{macrocode} \def\XINT_tmpc #1#2#3#4#5#6#7#8% {% \def #1##1% \XINT_expr_op_ ou flexpr ou iiexpr {% keep value, get next number and operator, then do until \expandafter #2\expandafter ##1% \romannumeral-`0\expandafter\XINT_expr_getnext }% \def #2##1##2% \XINT_expr_until__a ou flexpr ou iiexpr {\xint_UDsignfork ##2{\expandafter #2\expandafter ##1\romannumeral-`0#4}% -{#3##1##2}% \krof }% \def #3##1##2##3##4% \XINT_expr_until__b ou flexpr ou iiexpr {% either execute next operation now, or first do next (possibly unary) \ifnum ##2>#5% \xint_afterfi {\expandafter #2\expandafter ##1\romannumeral-`0% \csname XINT_#8_op_##3\endcsname {##4}}% \else \xint_afterfi {\expandafter ##2\expandafter ##3% \csname .=#6{\XINT_expr_unlock ##1}{\XINT_expr_unlock ##4}\endcsname }% \fi }% \let #7#5% }% \def\XINT_tmpb #1#2#3#4#5#6% {% \expandafter\XINT_tmpc \csname XINT_#1_op_#3\expandafter\endcsname \csname XINT_#1_until_#3_a\expandafter\endcsname \csname XINT_#1_until_#3_b\expandafter\endcsname \csname XINT_#1_op_-#5\expandafter\endcsname \csname xint_c_#4\expandafter\endcsname \csname #2#6\expandafter\endcsname \csname XINT_expr_precedence_#3\endcsname {#1}% }% \xintFor #1 in {expr, flexpr} \do {% \def\XINT_tmpa ##1{\XINT_tmpb {#1}{xint}##1}% \xintApplyInline {\XINT_tmpa }{% {|{iii}{vi}{OR}}% {&{iv}{vi}{AND}}% {{xor}{iii}{vi}{XOR}}% {<{v}{vi}{Lt}}% {>{v}{vi}{Gt}}% {={v}{vi}{Eq}}% {{<=}{v}{vi}{LtorEq}}% {{>=}{v}{vi}{GtorEq}}% {{!=}{v}{vi}{Neq}}% {{..}{iii}{vi}{Seq::csv}}% {{//}{vii}{vii}{DivTrunc}}% {{/:}{vii}{vii}{Mod}}% }% }% \def\XINT_tmpa #1{\XINT_tmpb {expr}{xint}#1}% \xintApplyInline {\XINT_tmpa }{% {+{vi}{vi}{Add}}% {-{vi}{vi}{Sub}}% {*{vii}{vii}{Mul}}% {/{vii}{vii}{Div}}% {^{viii}{viii}{Pow}}% {{..[}{iii}{vi}{SeqA::csv}}% {{]..}{iii}{vi}{SeqB::csv}}% }% \def\XINT_tmpa #1{\XINT_tmpb {flexpr}{XINTinFloat}#1}% \xintApplyInline {\XINT_tmpa }{% {+{vi}{vi}{Add}}% {-{vi}{vi}{Sub}}% {*{vii}{vii}{Mul}}% {/{vii}{vii}{Div}}% {^{viii}{viii}{Power}}% {{..[}{iii}{vi}{SeqA::csv}}% {{]..}{iii}{vi}{SeqB::csv}}% }% \def\XINT_tmpa #1{\XINT_tmpb {iiexpr}{xint}#1}% \xintApplyInline {\XINT_tmpa }{% {|{iii}{vi}{OR}}% {&{iv}{vi}{AND}}% {{xor}{iii}{vi}{XOR}}% {<{v}{vi}{iiLt}}% {>{v}{vi}{iiGt}}% {={v}{vi}{iiEq}}% {{<=}{v}{vi}{iiLtorEq}}% {{>=}{v}{vi}{iiGtorEq}}% {{!=}{v}{vi}{iiNeq}}% {+{vi}{vi}{iiAdd}}% {-{vi}{vi}{iiSub}}% {*{vii}{vii}{iiMul}}% {/{vii}{vii}{iiDivRound}}% CHANGED IN 1.1! PREVIOUSLY DID EUCLIDEAN QUOTIENT {^{viii}{viii}{iiPow}}% {{..[}{iii}{vi}{iiSeqA::csv}}% {{]..}{iii}{vi}{iiSeqB::csv}}% {{..}{iii}{vi}{iiSeq::csv}}% {{//}{vii}{vii}{iiDivTrunc}}% {{/:}{vii}{vii}{iiMod}}% }% % \end{macrocode} % \subsubsection{The ]+, ]\textendash, ]\texorpdfstring{\protect\lowast}{*}, ]/, ]\textasciicircum, +[, \textendash[, \texorpdfstring{\protect\lowast}{*}[, /[, and \textasciicircum[ list % operators} % \paragraph{\csh{XINT_expr_binop_inline_b}}\par % \begin{macrocode} \def\XINT_expr_binop_inline_a {\expandafter\xint_gobble_i\romannumeral-`0\XINT_expr_binop_inline_b }% \def\XINT_expr_binop_inline_b #1#2,{\XINT_expr_binop_inline_c #2,{#1}}% \def\XINT_expr_binop_inline_c #1{% \if ,#1\xint_dothis\XINT_expr_binop_inline_e\fi \if ^#1\xint_dothis\XINT_expr_binop_inline_end\fi \xint_orthat\XINT_expr_binop_inline_d #1}% \def\XINT_expr_binop_inline_d #1,#2{,#2{#1}\XINT_expr_binop_inline_b {#2}}% \def\XINT_expr_binop_inline_e #1,#2{,\XINT_expr_binop_inline_b {#2}}% \def\XINT_expr_binop_inline_end #1,#2{}% \def\XINT_tmpc #1#2#3#4#5#6#7#8% {% \def #1##1% \XINT_expr_op_ ou flexpr ou iiexpr {% keep value, get next number and operator, then do until \expandafter #2\expandafter ##1% \romannumeral-`0\expandafter\XINT_expr_getnext }% \def #2##1##2% \XINT_expr_until__a ou flexpr ou iiexpr {\xint_UDsignfork ##2{\expandafter #2\expandafter ##1\romannumeral-`0#4}% -{#3##1##2}% \krof }% \def #3##1##2##3##4% \XINT_expr_until__b ou flexpr ou iiexpr {% either execute next operation now, or first do next (possibly unary) \ifnum ##2>#5% \xint_afterfi {\expandafter #2\expandafter ##1\romannumeral-`0% \csname XINT_#8_op_##3\endcsname {##4}}% \else \xint_afterfi {\expandafter ##2\expandafter ##3% \csname .=\expandafter\XINT_expr_binop_inline_a\expandafter {\expandafter\expandafter\expandafter#6\expandafter \xint_exchangetwo_keepbraces\expandafter {\expandafter\XINT_expr_unlock\expandafter ##4\expandafter}\expandafter}% \romannumeral-`0\XINT_expr_unlock ##1,^,\endcsname }% \fi }% \let #7#5% }% \def\XINT_tmpb #1#2#3#4% {% \expandafter\XINT_tmpc \csname XINT_#1_op_#2\expandafter\endcsname \csname XINT_#1_until_#2_a\expandafter\endcsname \csname XINT_#1_until_#2_b\expandafter\endcsname \csname XINT_#1_op_-#3\expandafter\endcsname \csname xint_c_#3\expandafter\endcsname \csname #4\expandafter\endcsname \csname XINT_expr_precedence_#2\endcsname {#1}% }% \xintApplyInline {\expandafter\XINT_tmpb \xint_firstofone}{% {{expr}{a+}{vi}{xintAdd}}% {{expr}{a-}{vi}{xintSub}}% {{expr}{a*}{vii}{xintMul}}% {{expr}{a/}{vii}{xintDiv}}% {{expr}{a^}{viii}{xintPow}}% {{iiexpr}{a+}{vi}{xintiiAdd}}% {{iiexpr}{a-}{vi}{xintiiSub}}% {{iiexpr}{a*}{vii}{xintiiMul}}% {{iiexpr}{a/}{vii}{xintiiDivRound}}% {{iiexpr}{a^}{viii}{xintiiPow}}% {{flexpr}{a+}{vi}{XINTinFloatAdd}}% {{flexpr}{a-}{vi}{XINTinFloatSub}}% {{flexpr}{a*}{vii}{XINTinFloatMul}}% {{flexpr}{a/}{vii}{XINTinFloatDiv}}% {{flexpr}{a^}{viii}{XINTinFloatPower}}% }% \def\XINT_tmpc #1#2#3#4#5#6#7% {% \def #1##1{\expandafter#2\expandafter##1\romannumeral-`0% \expandafter #3\romannumeral-`0\XINT_expr_getnext }% \def #2##1##2##3##4% {% either execute next operation now, or first do next (possibly unary) \ifnum ##2>#4% \xint_afterfi {\expandafter #2\expandafter ##1\romannumeral-`0% \csname XINT_#7_op_##3\endcsname {##4}}% \else \xint_afterfi {\expandafter ##2\expandafter ##3% \csname .=\expandafter\XINT_expr_binop_inline_a\expandafter {\expandafter#5\expandafter {\expandafter\XINT_expr_unlock\expandafter ##1\expandafter}\expandafter}% \romannumeral-`0\XINT_expr_unlock ##4,^,\endcsname }% \fi }% \let #6#4% }% \def\XINT_tmpb #1#2#3#4% {% \expandafter\XINT_tmpc \csname XINT_#1_op_#2\expandafter\endcsname \csname XINT_#1_until_#2\expandafter\endcsname \csname XINT_#1_until_)_a\expandafter\endcsname \csname xint_c_#3\expandafter\endcsname \csname #4\expandafter\endcsname \csname XINT_expr_precedence_#2\endcsname {#1}% }% \xintApplyInline {\expandafter\XINT_tmpb\xint_firstofone }{% {{expr}{+[}{vi}{xintAdd}}% {{expr}{-[}{vi}{xintSub}}% {{expr}{*[}{vii}{xintMul}}% {{expr}{/[}{vii}{xintDiv}}% {{expr}{^[}{viii}{xintPow}}% {{iiexpr}{+[}{vi}{xintiiAdd}}% {{iiexpr}{-[}{vi}{xintiiSub}}% {{iiexpr}{*[}{vii}{xintiiMul}}% {{iiexpr}{/[}{vii}{xintiiDivRound}}% {{iiexpr}{^[}{viii}{xintiiPow}}% {{flexpr}{+[}{vi}{XINTinFloatAdd}}% {{flexpr}{-[}{vi}{XINTinFloatSub}}% {{flexpr}{*[}{vii}{XINTinFloatMul}}% {{flexpr}{/[}{vii}{XINTinFloatDiv}}% {{flexpr}{^[}{viii}{XINTinFloatPower}}% }% % \end{macrocode} % \subsubsection{The \textquotesingle and\textquotesingle, \textquotesingle % or\textquotesingle, \textquotesingle xor\textquotesingle, and % \textquotesingle mod\textquotesingle\ as infix operator words} % \begin{macrocode} \xintFor #1 in {and,or,xor,mod} \do {% \expandafter\def\csname XINT_expr_itself_#1\endcsname {#1}}% \expandafter\let\csname XINT_expr_precedence_and\expandafter\endcsname \csname XINT_expr_precedence_&\endcsname \expandafter\let\csname XINT_expr_precedence_or\expandafter\endcsname \csname XINT_expr_precedence_|\endcsname \expandafter\let\csname XINT_expr_precedence_mod\expandafter\endcsname \csname XINT_expr_precedence_/:\endcsname \xintFor #1 in {expr, flexpr, iiexpr} \do {% \expandafter\let\csname XINT_#1_op_and\expandafter\endcsname \csname XINT_#1_op_&\endcsname \expandafter\let\csname XINT_#1_op_or\expandafter\endcsname \csname XINT_#1_op_|\endcsname \expandafter\let\csname XINT_#1_op_mod\expandafter\endcsname \csname XINT_#1_op_/:\endcsname }% % \end{macrocode} % \subsubsection{The \textbar\textbar, % \&\&, \texorpdfstring{\protect\lowast\protect\lowast, % \protect\lowast\protect\lowast[, ]\protect\lowast\protect\lowast}{**, **[, ]**}{} operators as synonyms} % \begin{macrocode} \expandafter\let\csname XINT_expr_precedence_==\expandafter\endcsname \csname XINT_expr_precedence_=\endcsname \expandafter\let\csname XINT_expr_precedence_&&\expandafter\endcsname \csname XINT_expr_precedence_&\endcsname \expandafter\let\csname XINT_expr_precedence_||\expandafter\endcsname \csname XINT_expr_precedence_|\endcsname \expandafter\let\csname XINT_expr_precedence_**\expandafter\endcsname \csname XINT_expr_precedence_^\endcsname \expandafter\let\csname XINT_expr_precedence_a**\expandafter\endcsname \csname XINT_expr_precedence_a^\endcsname \expandafter\let\csname XINT_expr_precedence_**[\expandafter\endcsname \csname XINT_expr_precedence_^[\endcsname \xintFor #1 in {expr, flexpr, iiexpr} \do {% \expandafter\let\csname XINT_#1_op_==\expandafter\endcsname \csname XINT_#1_op_=\endcsname \expandafter\let\csname XINT_#1_op_&&\expandafter\endcsname \csname XINT_#1_op_&\endcsname \expandafter\let\csname XINT_#1_op_||\expandafter\endcsname \csname XINT_#1_op_|\endcsname \expandafter\let\csname XINT_#1_op_**\expandafter\endcsname \csname XINT_#1_op_^\endcsname \expandafter\let\csname XINT_#1_op_a**\expandafter\endcsname \csname XINT_#1_op_a^\endcsname \expandafter\let\csname XINT_#1_op_**[\expandafter\endcsname \csname XINT_#1_op_^[\endcsname }% % \end{macrocode} % \subsubsection{List selectors: [list][N], [list][:b], [list][a:], [list][a:b]} % \lverb|1.1 (27 octobre 2014) I implement Python syntax, see % http://stackoverflow.com/a/13005464/4184837. Do not implement third % argument giving the step. Also, I gather that [5:2] selector returns empty % and not, as I could have been tempted to do, (list[5], list[4], list[3]). % Anyway, it is simpler not to go that way. For reversing I could implement % [::-1] but this would get confusing, better to do function "reversed". % % This gets the job done, but I would definitely need \xintTrim::csv, \xintKeep::csv, % \xintNthElt::csv for better efficiency. Not for 1.1.| % \begin{macrocode} \def\XINT_tmpa #1#2#3#4#5#6% {% \def #1##1% \XINT_expr_op_][ {% \expandafter #2\expandafter ##1\romannumeral-`0\XINT_expr_getnext }% \def #2##1##2% \XINT_expr_until_][_a {\xint_UDsignfork ##2{\expandafter #2\expandafter ##1\romannumeral-`0#4}% -{#3##1##2}% \krof }% \def #3##1##2##3##4% \XINT_expr_until_][_b {% \ifnum ##2>\xint_c_ii \xint_afterfi {\expandafter #2\expandafter ##1\romannumeral-`0% \csname XINT_#6_op_##3\endcsname {##4}}% \else \xint_afterfi {\expandafter ##2\expandafter ##3\csname .=\expandafter\xintListSel:csv \romannumeral-`0\XINT_expr_unlock ##4;% \XINT_expr_unlock ##1;\endcsname % unlock for \xintNewExpr }% \fi }% \let #5\xint_c_ii }% \xintFor #1 in {expr,flexpr,iiexpr} \do {% \expandafter\XINT_tmpa \csname XINT_#1_op_][\expandafter\endcsname \csname XINT_#1_until_][_a\expandafter\endcsname \csname XINT_#1_until_][_b\expandafter\endcsname \csname XINT_#1_op_-vi\expandafter\endcsname \csname XINT_expr_precedence_][\endcsname {#1}% }% \def\XINT_tmpa #1#2#3#4#5#6% {% \def #1##1% \XINT_expr_op_: {% \expandafter #2\expandafter ##1\romannumeral-`0\XINT_expr_getnext }% \def #2##1##2% \XINT_expr_until_:_a {\xint_UDsignfork ##2{\expandafter #2\expandafter ##1\romannumeral-`0#4}% -{#3##1##2}% \krof }% \def #3##1##2##3##4% \XINT_expr_until_:_b {% \ifnum ##2>\xint_c_iii \xint_afterfi {\expandafter #2\expandafter ##1\romannumeral-`0% \csname XINT_#6_op_##3\endcsname {##4}}% \else \xint_afterfi {\expandafter ##2\expandafter ##3\csname .=:\xintiiifSgn{\XINT_expr_unlock ##1}NPP.% : and dots for expansion \xintiiifSgn{\XINT_expr_unlock ##4}NPP.% in \xintNewExpr context % reason for \xintNum is a/1[x] format, but -0.5 will not work, seen <0, but 0 after \xintNum{\XINT_expr_unlock ##1};\xintNum{\XINT_expr_unlock ##4}\endcsname }% \fi }% \let #5\xint_c_iii }% \xintFor #1 in {expr,flexpr,iiexpr} \do {% \expandafter\XINT_tmpa \csname XINT_#1_op_:\expandafter\endcsname \csname XINT_#1_until_:_a\expandafter\endcsname \csname XINT_#1_until_:_b\expandafter\endcsname \csname XINT_#1_op_-vi\expandafter\endcsname \csname XINT_expr_precedence_:\endcsname {#1}% }% \catcode`[ 11 \catcode`] 11 \let\XINT_expr_precedence_:] \xint_c_iii \def\XINT_expr_op_:] #1{\expandafter\xint_c_i\expandafter )% \csname .=]\xintiiifSgn{\XINT_expr_unlock #1}npp\XINT_expr_unlock #1\endcsname }% \let\XINT_flexpr_op_:] \XINT_expr_op_:] \let\XINT_iiexpr_op_:] \XINT_expr_op_:] \let\XINT_expr_precedence_][: \xint_c_iii \edef\XINT_expr_op_][: #1{\xint_c_ii \expandafter\noexpand \csname XINT_expr_itself_][\endcsname #10\string :}% % : must be catcode 12, else will be mistaken for start of variable by expression parser \let\XINT_flexpr_op_][: \XINT_expr_op_][: \let\XINT_iiexpr_op_][: \XINT_expr_op_][: \catcode`[ 12 \catcode`] 12 \def\xintListSel:csv #1{% these complications are due to \xintNewExpr matters \if ]\noexpand#1\xint_dothis{\expandafter\XINT_listsel:_s\romannumeral-`0}\fi \if :\noexpand#1\xint_dothis{\XINT_listsel:_:}\fi \xint_orthat {\XINT_listsel:_nth #1}% }% \def\XINT_listsel:_s #1{\if p#1\expandafter\XINT_listsel:_trim\else \expandafter\XINT_listsel:_keep\fi }% \def\XINT_listsel:_: #1.#2.{\csname XINT_listsel:_#1#2\endcsname }% \def\XINT_listsel:_trim #1;#2;% {\xintListWithSep,{\xintTrim {\xintNum{#1}}{\xintCSVtoListNonStripped{#2}}}}% \def\XINT_listsel:_keep #1;#2;% {\xintListWithSep,{\xintKeep {\xintNum{#1}}{\xintCSVtoListNonStripped{#2}}}}% \def\XINT_listsel:_nth#1;#2;% {\xintNthElt {\xintNum{#1}}{\xintCSVtoListNonStripped{#2}}}% \def\XINT_listsel:_PP #1;#2;#3;% {\xintListWithSep,% {\xintTrim {\xintNum{#1}}% {\xintKeep {\xintNum{#2}}% {\xintCSVtoListNonStripped{#3}}% }% }% }% \def\XINT_listsel:_NN #1;#2;#3;% {\xintListWithSep,% {\xintTrim {\xintNum{#2}}% {\xintKeep {\xintNum{#1}}% {\xintCSVtoListNonStripped{#3}}% }% }% }% \def\XINT_listsel:_NP #1;#2;#3;% {\expandafter\XINT_listsel:_NP_a \the\numexpr #1+% \xintNthElt{0}{\xintCSVtoListNonStripped{#3}};#2;#3;}% \def\XINT_listsel:_NP_a #1#2;{\if -#1\expandafter\XINT_listsel:_OP\fi \XINT_listsel:_PP #1#2;}% \def\XINT_listsel:_OP\XINT_listsel:_PP #1;{\XINT_listsel:_PP 0;}% \def\XINT_listsel:_PN #1;#2;#3;% {\expandafter\XINT_listsel:_PN_a \the\numexpr #2+% \xintNthElt{0}{\xintCSVtoListNonStripped{#3}};#1;#3;}% \def\XINT_listsel:_PN_a #1#2;#3;{\if -#1\expandafter\XINT_listsel:_PO\fi \XINT_listsel:_PP #3;#1#2;}% \def\XINT_listsel:_PO\XINT_listsel:_PP #1;#2;{\XINT_listsel:_PP #1;0;}% % \end{macrocode} %\subsection{Macros for a..b list generation} %\lverb|Attention, ne produit que des listes de petits entiers!| %\subsubsection{\csh{xintSeq::csv}} %\lverb|Commence par remplacer a par ceil(a) et b par floor(b) et renvoie % ensuite les entiers entre les deux, possiblement en décroissant, et % extrémités comprises. Si a=b est non entier en obtient donc ceil(a) et % floor(a). Ne renvoie jamais une liste vide.| % \begin{macrocode} \def\xintSeq::csv {\romannumeral0\xintseq::csv }% \def\xintseq::csv #1#2% {% \expandafter\XINT_seq::csv\expandafter {\the\numexpr \xintiCeil{#1}\expandafter}\expandafter {\the\numexpr \xintiFloor{#2}}% }% \def\XINT_seq::csv #1#2% {% \ifcase\ifnum #1=#2 0\else\ifnum #2>#1 1\else -1\fi\fi\space \expandafter\XINT_seq::csv_z \or \expandafter\XINT_seq::csv_p \else \expandafter\XINT_seq::csv_n \fi {#2}{#1}% }% \def\XINT_seq::csv_z #1#2{ #1/1[0]}% \def\XINT_seq::csv_p #1#2% {% \ifnum #1>#2 \expandafter\expandafter\expandafter\XINT_seq::csv_p \else \expandafter\XINT_seq::csv_e \fi \expandafter{\the\numexpr #1-\xint_c_i}{#2},#1/1[0]% }% \def\XINT_seq::csv_n #1#2% {% \ifnum #1<#2 \expandafter\expandafter\expandafter\XINT_seq::csv_n \else \expandafter\XINT_seq::csv_e \fi \expandafter{\the\numexpr #1+\xint_c_i}{#2},#1/1[0]% }% \def\XINT_seq::csv_e #1,{ }% % \end{macrocode} %\subsubsection{\csh{xintiiSeq::csv}} % \begin{macrocode} \def\xintiiSeq::csv {\romannumeral0\xintiiseq::csv }% \def\xintiiseq::csv #1#2% {% \expandafter\XINT_iiseq::csv\expandafter {\the\numexpr #1\expandafter}\expandafter{\the\numexpr #2}% }% \def\XINT_iiseq::csv #1#2% {% \ifcase\ifnum #1=#2 0\else\ifnum #2>#1 1\else -1\fi\fi\space \expandafter\XINT_iiseq::csv_z \or \expandafter\XINT_iiseq::csv_p \else \expandafter\XINT_iiseq::csv_n \fi {#2}{#1}% }% \def\XINT_iiseq::csv_z #1#2{ #1}% \def\XINT_iiseq::csv_p #1#2% {% \ifnum #1>#2 \expandafter\expandafter\expandafter\XINT_iiseq::csv_p \else \expandafter\XINT_seq::csv_e \fi \expandafter{\the\numexpr #1-\xint_c_i}{#2},#1% }% \def\XINT_iiseq::csv_n #1#2% {% \ifnum #1<#2 \expandafter\expandafter\expandafter\XINT_iiseq::csv_n \else \expandafter\XINT_seq::csv_e \fi \expandafter{\the\numexpr #1+\xint_c_i}{#2},#1% }% \def\XINT_seq::csv_e #1,{ }% % \end{macrocode} %\subsection{Macros for a..[d]..b list generation} %\lverb|Contrarily to a..b which is limited to small integers, this works with a, b, and d %(big) fractions. It will produce a «nil» list, if a>b and d<0 or a0.| %\subsubsection{\csh{xintSeqA::csv}, \csh{xintiiSeqA::csv}, \csh{XINTinFloatSeqA::csv}} % \begin{macrocode} \def\xintSeqA::csv #1% {\expandafter\XINT_seqa::csv\expandafter{\romannumeral0\xintraw {#1}}}% \def\XINT_seqa::csv #1#2{\expandafter\XINT_seqa::csv_a \romannumeral0\xintraw {#2};#1;}% \def\xintiiSeqA::csv #1#2{\XINT_iiseqa::csv #1#2}% \def\XINT_iiseqa::csv #1#2#3#4{\expandafter\XINT_seqa::csv_a \romannumeral-`0\expandafter \XINT_expr_unlock\expandafter#4% \expandafter;\romannumeral-`0\XINT_expr_unlock #2;}% \def\XINTinFloatSeqA::csv #1{\expandafter\XINT_flseqa::csv\expandafter {\romannumeral0\XINTinfloat [\XINTdigits]{#1}}}% \def\XINT_flseqa::csv #1#2% {\expandafter\XINT_seqa::csv_a\romannumeral0\XINTinfloat [\XINTdigits]{#2};#1;}% \def\XINT_seqa::csv_a #1{\xint_UDzerominusfork #1-{z}% 0#1{n}% 0-{p}% \krof #1}% % \end{macrocode} %\subsubsection{\csh{xintSeqB::csv}} % \begin{macrocode} \def\xintSeqB::csv #1#2% {\expandafter\XINT_seqb::csv \expandafter{\romannumeral0\xintraw{#2}}{#1}}% \def\XINT_seqb::csv #1#2{\expandafter\XINT_seqb::csv_a\romannumeral-`0#2#1!}% \def\XINT_seqb::csv_a #1#2;#3;#4!{\expandafter\XINT_expr_seq_empty? \romannumeral0\csname XINT_seqb::csv_#1\endcsname {#3}{#4}{#2}}% \def\XINT_seqb::csv_p #1#2#3% {% \xintifCmp {#1}{#2}{,#1\expandafter\XINT_seqb::csv_p\expandafter}% {,#1\xint_gobble_iii}{\xint_gobble_iii}% % \romannumeral0 stopped by \endcsname, XINT_expr_seq_empty? constructs "nil". {\romannumeral0\xintadd {#3}{#1}}{#2}{#3}% }% \def\XINT_seqb::csv_n #1#2#3% {% \xintifCmp {#1}{#2}{\xint_gobble_iii}{,#1\xint_gobble_iii}% {,#1\expandafter\XINT_seqb::csv_n\expandafter}% {\romannumeral0\xintadd {#3}{#1}}{#2}{#3}% }% \def\XINT_seqb::csv_z #1#2#3{,#1}% % \end{macrocode} %\subsubsection{\csh{xintiiSeqB::csv}} % \begin{macrocode} \def\xintiiSeqB::csv #1#2{\XINT_iiseqb::csv #1#2}% \def\XINT_iiseqb::csv #1#2#3#4% {\expandafter\XINT_iiseqb::csv_a \romannumeral-`0\expandafter \XINT_expr_unlock\expandafter#2% \romannumeral-`0\XINT_expr_unlock #4!}% \def\XINT_iiseqb::csv_a #1#2;#3;#4!{\expandafter\XINT_expr_seq_empty? \romannumeral-`0\csname XINT_iiseqb::csv_#1\endcsname {#3}{#4}{#2}}% \def\XINT_iiseqb::csv_p #1#2#3% {% \xintSgnFork{\XINT_Cmp {#1}{#2}}{,#1\expandafter\XINT_iiseqb::csv_p\expandafter}% {,#1\xint_gobble_iii}{\xint_gobble_iii}% {\romannumeral0\xintiiadd {#3}{#1}}{#2}{#3}% }% \def\XINT_iiseqb::csv_n #1#2#3% {% \xintSgnFork{\XINT_Cmp {#1}{#2}}{\xint_gobble_iii}{,#1\xint_gobble_iii}% {,#1\expandafter\XINT_iiseqb::csv_n\expandafter}% {\romannumeral0\xintiiadd {#3}{#1}}{#2}{#3}% }% \def\XINT_iiseqb::csv_z #1#2#3{,#1}% % \end{macrocode} %\subsubsection{\csh{XINTinFloatSeqB::csv}} % \begin{macrocode} \def\XINTinFloatSeqB::csv #1#2{\expandafter\XINT_flseqb::csv \expandafter {\romannumeral0\XINTinfloat [\XINTdigits]{#2}}{#1}}% \def\XINT_flseqb::csv #1#2{\expandafter\XINT_flseqb::csv_a\romannumeral-`0#2#1!}% \def\XINT_flseqb::csv_a #1#2;#3;#4!{\expandafter\XINT_expr_seq_empty? \romannumeral-`0\csname XINT_flseqb::csv_#1\endcsname {#3}{#4}{#2}}% \def\XINT_flseqb::csv_p #1#2#3% {% \xintifCmp {#1}{#2}{,#1\expandafter\XINT_flseqb::csv_p\expandafter}% {,#1\xint_gobble_iii}{\xint_gobble_iii}% {\romannumeral0\XINTinfloatadd {#3}{#1}}{#2}{#3}% }% \def\XINT_flseqb::csv_n #1#2#3% {% \xintifCmp {#1}{#2}{\xint_gobble_iii}{,#1\xint_gobble_iii}% {,#1\expandafter\XINT_flseqb::csv_n\expandafter}% {\romannumeral0\XINTinfloatadd {#3}{#1}}{#2}{#3}% }% \def\XINT_flseqb::csv_z #1#2#3{,#1}% % \end{macrocode} % \subsection{The comma as binary operator} % \lverb|New with 1.09a.| % \begin{macrocode} \def\XINT_tmpa #1#2#3#4#5#6% {% \def #1##1% \XINT_expr_op_, {% \expandafter #2\expandafter ##1\romannumeral-`0\XINT_expr_getnext }% \def #2##1##2% \XINT_expr_until_,_a {\xint_UDsignfork ##2{\expandafter #2\expandafter ##1\romannumeral-`0#4}% -{#3##1##2}% \krof }% \def #3##1##2##3##4% \XINT_expr_until_,_b {% \ifnum ##2>\xint_c_ii \xint_afterfi {\expandafter #2\expandafter ##1\romannumeral-`0% \csname XINT_#6_op_##3\endcsname {##4}}% \else \xint_afterfi {\expandafter ##2\expandafter ##3% \csname .=\XINT_expr_unlock ##1,\XINT_expr_unlock ##4\endcsname }% \fi }% \let #5\xint_c_ii }% \xintFor #1 in {expr,flexpr,iiexpr} \do {% \expandafter\XINT_tmpa \csname XINT_#1_op_,\expandafter\endcsname \csname XINT_#1_until_,_a\expandafter\endcsname \csname XINT_#1_until_,_b\expandafter\endcsname \csname XINT_#1_op_-vi\expandafter\endcsname \csname XINT_expr_precedence_,\endcsname {#1}% }% % \end{macrocode} % \subsection{The minus as prefix operator of variable precedence level} % \begin{macrocode} \def\XINT_tmpa #1#2#3% {% \expandafter\XINT_tmpb \csname XINT_#1_op_-#3\expandafter\endcsname \csname XINT_#1_until_-#3_a\expandafter\endcsname \csname XINT_#1_until_-#3_b\expandafter\endcsname \csname xint_c_#3\endcsname {#1}#2% }% \def\XINT_tmpb #1#2#3#4#5#6% {% \def #1% \XINT_expr_op_- {% get next number+operator then switch to _until macro \expandafter #2\romannumeral-`0\XINT_expr_getnext }% \def #2##1% \XINT_expr_until_-_a {\xint_UDsignfork ##1{\expandafter #2\romannumeral-`0#1}% -{#3##1}% \krof }% \def #3##1##2##3% \XINT_expr_until_-_b {% _until tests precedence level with next op, executes now or postpones \ifnum ##1>#4% \xint_afterfi {\expandafter #2\romannumeral-`0% \csname XINT_#5_op_##2\endcsname {##3}}% \else \xint_afterfi {\expandafter ##1\expandafter ##2% \csname .=#6{\XINT_expr_unlock ##3}\endcsname }% \fi }% }% \xintApplyInline{\XINT_tmpa {expr}\xintOpp}{{vi}{vii}{viii}{ix}}% \xintApplyInline{\XINT_tmpa {flexpr}\xintOpp}{{vi}{vii}{viii}{ix}}% \xintApplyInline{\XINT_tmpa {iiexpr}\xintiiOpp}{{vi}{vii}{viii}{ix}}% % \end{macrocode} % \subsection{? as two-way and ?? as three-way conditionals with braced branches} % \lverb|In 1.1, I overload ? with ??, as : will be used for list extraction, % problem with (stuff)?{?(1)}{0} for example, one should put a space (stuff)?{ % ?(1)}{0} will work. Small idiosyncrasy. ?{yes}{no} and ??{<0}{=0}{>0}| % \begin{macrocode} \let\XINT_expr_precedence_? \xint_c_x \def\XINT_expr_op_? #1#2{\if ?#2\expandafter \XINT_expr_op_??\fi \XINT_expr_op_?a #1{#2}}% \def\XINT_expr_op_?a #1#2#3% {% \xintiiifNotZero{\XINT_expr_unlock #1}{\XINT_expr_getnext #2}{\XINT_expr_getnext #3}% }% \let\XINT_flexpr_op_?\XINT_expr_op_? \let\XINT_iiexpr_op_?\XINT_expr_op_? \def\XINT_expr_op_?? #1#2#3#4#5#6% {% \xintiiifSgn {\XINT_expr_unlock #2}{\XINT_expr_getnext #4}{\XINT_expr_getnext #5}% {\XINT_expr_getnext #6}% }% % \end{macrocode} % \subsection{! as postfix factorial operator} % \lverb|As of 2014/11/07, not yet a float version of factorial. I must do it!| % \begin{macrocode} \let\XINT_expr_precedence_! \xint_c_x \def\XINT_expr_op_! #1{\expandafter\XINT_expr_getop \csname .=\xintFac{\XINT_expr_unlock #1}\endcsname }% \let\XINT_flexpr_op_!\XINT_expr_op_! \def\XINT_iiexpr_op_! #1{\expandafter\XINT_expr_getop \csname .=\xintiFac{\XINT_expr_unlock #1}\endcsname }% % \end{macrocode} % \subsection{The A/B[N] mechanism} % \lverb|Releases earlier than 1.1 required the use of braces around A/B[N] % input. The [N] is now implemented directly. *BUT* uses a delimited macro! % thus N is not allowed to be itself an expression (I could add it...). % \xintE, \xintiiE, and \XINTinFloatE all put #2 in a \numexpr. BUT ATTENTION % TO CRAZYNESS OF NUMEXPR: \the\numexpr 3 + 7 9 \relax !! Hence we have to do % the job ourselves.| % \begin{macrocode} \catcode`[ 11 \catcode`* 11 \let\XINT_expr_precedence_[ \xint_c_vii \def\XINT_expr_op_[ #1#2]{\expandafter\XINT_expr_getop \csname .=\xintE{\XINT_expr_unlock #1}% {\xint_zapspaces #2 \xint_gobble_i}\endcsname}% \def\XINT_iiexpr_op_[ #1#2]{\expandafter\XINT_expr_getop \csname .=\xintiiE{\XINT_expr_unlock #1}% {\xint_zapspaces #2 \xint_gobble_i}\endcsname}% \def\XINT_flexpr_op_[ #1#2]{\expandafter\XINT_expr_getop \csname .=\XINTinFloatE{\XINT_expr_unlock #1}% {\xint_zapspaces #2 \xint_gobble_i}\endcsname}% \catcode`[ 12 \catcode`* 12 % \end{macrocode} % \subsection{For variables} % \begin{macrocode} \def\XINT_expr_op__ #1% op__ with two _'s {% \ifcsname XINT_expr_var_#1\endcsname \expandafter\xint_firstoftwo \else \expandafter\xint_secondoftwo \fi {\expandafter\expandafter\expandafter\expandafter \expandafter\expandafter\expandafter \XINT_expr_getop\csname XINT_expr_var_#1\endcsname}% {\XINT_expr_unknown_variable {#1}% \expandafter\XINT_expr_getop\csname .=0\endcsname}% }% \def\XINT_expr_unknown_variable #1{\xintError:removed \xint_gobble_i {#1}}% \let\XINT_flexpr_op__ \XINT_expr_op__ \let\XINT_iiexpr_op__ \XINT_expr_op__ % \end{macrocode} % \subsubsection{Defining variables} % \lverb|1.1 An active : character will be a pain and I almot decided not to % use := but rather = as affectation operator, but this is the same problem % inside expressions with the modulo operator /:, or with babel+frenchb with % all high punctuation ?, !, :, ;. % % It is not recommended to overwrite single Latin letters which are % pre-defined to serve as dummy variables. Variable names may contains % letters, digits, underscores, and must not start with a digit.| % \begin{macrocode} \catcode`: 12 \def\xintdefvar #1:=#2;{\expandafter\odef \csname XINT_expr_var_\xint_zapspaces #1 \xint_gobble_i\endcsname {\expandafter\empty\romannumeral0\xintbareeval #2\relax }}% \def\xintdefiivar #1:=#2;{\expandafter\odef \csname XINT_expr_var_\xint_zapspaces #1 \xint_gobble_i\endcsname {\expandafter\empty\romannumeral0\xintbareiieval #2\relax }% }% \def\xintdeffloatvar #1:=#2;{\expandafter\odef \csname XINT_expr_var_\xint_zapspaces #1 \xint_gobble_i\endcsname {\expandafter\empty\romannumeral0\xintbarefloateval #2\relax }% }% \catcode`: 11 % \end{macrocode} % \subsubsection{Letters as dummy variables; the nil list} % \begin{macrocode} \def\XINT_tmpa #1% {% \expandafter\def\csname XINT_expr_var_#1\endcsname ##1\relax !#1##2% {\romannumeral0\XINT_expr_lockscan ##2!##1\relax !#1{##2}}% }% \xintApplyUnbraced \XINT_tmpa {abcdefghijklmnopqrstuvwxyz}% \xintApplyUnbraced \XINT_tmpa {ABCDEFGHIJKLMNOPQRSTUVWXYZ}% \expandafter\def\expandafter\XINT_expr_var_nil\expandafter {\expandafter\empty\csname .= \endcsname}% % \end{macrocode} % \subsubsection{The omit and abort constructs} % \begin{macrocode} \catcode`. 11 \catcode`= 11 \def\XINT_expr_var_omit #1\relax !{1^C!{}{}{}\.=!\relax !}% 24 juin \def\XINT_expr_var_abort #1\relax !{1^C!{}{}{}\.=^\relax !}% 25 juin \catcode`. 12 \catcode`= 12 % \end{macrocode} % \subsubsection{The @, @1, @2, @3, @4, @@, @@(1), \dots, @@@, @@@(1), \dots % for recursion} % \lverb|I had completely forgotten what the @@@ etc... stuff were supposed to % do: this is for nesting recursions! (I was mad back in June 2014). @@(N) % gives the Nth back, @@@(N) gives the Nth back of the higher recursion!| % \begin{macrocode} \catcode`? 3 \def\XINT_expr_var_@ #1~#2{ #2#1~#2}% \expandafter\let\csname XINT_expr_var_@1\endcsname \XINT_expr_var_@ \expandafter\def\csname XINT_expr_var_@2\endcsname #1~#2#3{ #3#1~#2#3}% \expandafter\def\csname XINT_expr_var_@3\endcsname #1~#2#3#4{ #4#1~#2#3#4}% \expandafter\def\csname XINT_expr_var_@4\endcsname #1~#2#3#4#5{ #5#1~#2#3#4#5}% \def\XINT_expr_func_@@ #1#2#3#4~#5?% {% \expandafter#1\expandafter#2\romannumeral0\xintntheltnoexpand {\xintNum{\XINT_expr_unlock#3}}{#5}#4~#5?% }% \def\XINT_expr_func_@@@ #1#2#3#4~#5~#6?% {% \expandafter#1\expandafter#2\romannumeral0\xintntheltnoexpand {\xintNum{\XINT_expr_unlock#3}}{#6}#4~#5~#6?% }% \def\XINT_expr_func_@@@@ #1#2#3#4~#5~#6~#7?% {% \expandafter#1\expandafter#2\romannumeral0\xintntheltnoexpand {\xintNum{\XINT_expr_unlock#3}}{#7}#4~#5~#6~#7?% }% \let\XINT_flexpr_func_@@\XINT_expr_func_@@ \let\XINT_flexpr_func_@@@\XINT_expr_func_@@@ \let\XINT_flexpr_func_@@@@\XINT_expr_func_@@@@ \def\XINT_iiexpr_func_@@ #1#2#3#4~#5?% {% \expandafter#1\expandafter#2\romannumeral0\xintntheltnoexpand {\XINT_expr_unlock#3}{#5}#4~#5?% }% \def\XINT_iiexpr_func_@@@ #1#2#3#4~#5~#6?% {% \expandafter#1\expandafter#2\romannumeral0\xintntheltnoexpand {\XINT_expr_unlock#3}{#6}#4~#5~#6?% }% \def\XINT_iiexpr_func_@@@@ #1#2#3#4~#5~#6~#7?% {% \expandafter#1\expandafter#2\romannumeral0\xintntheltnoexpand {\XINT_expr_unlock#3}{#7}#4~#5~#6~#7?% }% \catcode`? 11 % \end{macrocode} % \subsection{For functions} % \begin{macrocode} \def\XINT_tmpa #1#2#3{% \def #1##1% \XINT_expr_op_`, #2=\XINT_expr_oparen {% \ifcsname XINT_expr_onlitteral_##1\endcsname \xint_dothis{\csname XINT_expr_onlitteral_##1\endcsname}\fi \ifcsname XINT_#3_func_##1\endcsname \xint_dothis{\expandafter\expandafter \csname XINT_#3_func_##1\endcsname\romannumeral-`0#2}\fi \xint_orthat{\XINT_expr_unknown_function {##1}% \expandafter\XINT_expr_func_unknown\romannumeral-`0#2}% }% }% \def\XINT_expr_unknown_function #1{\xintError:removed \xint_gobble_i {#1}}% \xintFor #1 in {expr,flexpr,iiexpr} \do {% \expandafter\XINT_tmpa \csname XINT_#1_op_`\expandafter\endcsname \csname XINT_#1_oparen\endcsname {#1}% }% \expandafter\def\csname XINT_expr_onlitteral_`\endcsname #1#2#3({\xint_c_xviii `{#2}}% % \end{macrocode} % \subsection{The bool, togl, protect, unknown, and break "functions"} % \lverb|bool, togl and protect use delimited macros. Only unknown and break % are true functions with a more flexible parsing of the opening and closing % parentheses, which may possibly arise from expansion itself.| % \begin{macrocode} \def\XINT_expr_onlitteral_bool #1)% {\expandafter\XINT_expr_getop\csname .=\xintBool{#1}\endcsname }% \def\XINT_expr_onlitteral_togl #1)% {\expandafter\XINT_expr_getop\csname .=\xintToggle{#1}\endcsname }% \def\XINT_expr_onlitteral_protect #1)% {\expandafter\XINT_expr_getop\csname .=\detokenize{#1}\endcsname }% \def\XINT_expr_func_unknown #1#2#3{\expandafter #1\expandafter #2\csname .=0\endcsname }% \def\XINT_expr_func_break #1#2#3% {\expandafter #1\expandafter #2\csname.=?\romannumeral-`0\XINT_expr_unlock #3\endcsname }% \let\XINT_flexpr_func_break \XINT_expr_func_break \let\XINT_iiexpr_func_break \XINT_expr_func_break % \end{macrocode} % \subsection{seq and the implementation of dummy variables} % \lverb|All of seq, add, mul, rseq, etc... (actually all of the extensive % changes from xintexpr 1.09n to 1.1) was done around June 15-25th 2014, but the % problem is that I did not document the code enough, and I had a hard time % understanding in October what I had done in June. Despite the lesson, again % being short on time, I do not document enough my current understanding of the % innards of the beast... % % I added subs, and iter in October (also the [:n], [n:] list extractors), % proving I did at least understand a bit (or rather could imitate) my earlier % code (but don't ask me to explain \xintNewExpr !) % % The \XINT_expr_onlitteral_seq_a parses: "expression, variable=list)" (when it is called % the opening ( has been swallowed, and it looks for the ending one.) Both expression and % list may themselves contain parentheses and commas, we allow nesting. For example % "x^2,x=1..10)", at the end of seq_a we have {variable{expression}}{list}, in this % example {x{x^2}}{1..10}, or more complicated "seq(add(y,y=1..x),x=1..10)" will work % too. The variable is a single lowercase Latin letter. % % The complications with \xint_c_xviii in seq_f is for the recurrent thing that we don't % know in what type of expressions we are, hence we must move back up, with some loss of % efficiency (superfluous check for minus sign, etc...). But the code manages % simultaneously expr, flexpr and iiexpr.| % % \subsubsection{\csh{XINT_expr_onlitteral_seq}} % \begin{macrocode} \def\XINT_expr_onlitteral_seq {\expandafter\XINT_expr_onlitteral_seq_f\romannumeral-`0\XINT_expr_onlitteral_seq_a {}}% \def\XINT_expr_onlitteral_seq_f #1#2{\xint_c_xviii `{seqx}#2)\relax #1}% % \end{macrocode} % \subsubsection{\csh{XINT_expr_onlitteral_seq_a}} % \begin{macrocode} \def\XINT_expr_onlitteral_seq_a #1#2,% {% checks balancing of parentheses \ifcase\XINT_isbalanced_a \relax #1#2(\xint_bye)\xint_bye \expandafter\XINT_expr_onlitteral_seq_c \or\expandafter\XINT_expr_onlitteral_seq_b \else\expandafter\xintError:we_are_doomed \fi {#1#2},% }% \def\XINT_expr_onlitteral_seq_b #1,{\XINT_expr_onlitteral_seq_a {#1,}}% \def\XINT_expr_onlitteral_seq_c #1,#2#3% #3 pour absorber le = {% \XINT_expr_onlitteral_seq_d {#2{#1}}{}% }% \def\XINT_expr_onlitteral_seq_d #1#2#3)% {% \ifcase\XINT_isbalanced_a \relax #2#3(\xint_bye)\xint_bye \or\expandafter\XINT_expr_onlitteral_seq_e \else\expandafter\xintError:we_are_doomed \fi {#1}{#2#3}% }% \def\XINT_expr_onlitteral_seq_e #1#2{\XINT_expr_onlitteral_seq_d {#1}{#2)}}% % \end{macrocode} % \subsubsection{\csh{XINT_isbalanced_a} for \csh{XINT_expr_onlitteral_seq_a}} %\lverb|Expands to \m@ne in case a closing ) had no opening ( matching it, to % \@ne if opening ) had no closing ) matching it, to \z@ if expression was % balanced.| % \begin{macrocode} % use as \XINT_isbalanced_a \relax #1(\xint_bye)\xint_bye \def\XINT_isbalanced_a #1({\XINT_isbalanced_b #1)\xint_bye }% \def\XINT_isbalanced_b #1)#2% {\xint_bye #2\XINT_isbalanced_c\xint_bye\XINT_isbalanced_error }% % \end{macrocode} % \lverb|if #2 is not \xint_bye, a ) was found, but there was no (. Hence error -> -1| % \begin{macrocode} \def\XINT_isbalanced_error #1)\xint_bye {\m@ne}% % \end{macrocode} % \lverb|#2 was \xint_bye, was there a ) in original #1?| % \begin{macrocode} \def\XINT_isbalanced_c\xint_bye\XINT_isbalanced_error #1% {\xint_bye #1\XINT_isbalanced_yes\xint_bye\XINT_isbalanced_d #1}% % \end{macrocode} % \lverb|#1 is \xint_bye, there was never ( nor ) in original #1, hence OK.| % \begin{macrocode} \def\XINT_isbalanced_yes\xint_bye\XINT_isbalanced_d\xint_bye )\xint_bye {\xint_c_ }% % \end{macrocode} % \lverb|#1 is not \xint_bye, there was indeed a ( in original #1. We check if % we see a ). If we do, we then loop until no ( nor ) is to be found.| % \begin{macrocode} \def\XINT_isbalanced_d #1)#2% {\xint_bye #2\XINT_isbalanced_no\xint_bye\XINT_isbalanced_a #1#2}% % \end{macrocode} % \lverb|#2 was \xint_bye, we did not find a closing ) in original #1. Error.| % \begin{macrocode} \def\XINT_isbalanced_no\xint_bye #1\xint_bye\xint_bye {\xint_c_i }% % \end{macrocode} % \subsubsection{\csh{XINT_allexpr_func_seqx}, \csh{XINT_allexpr_func_subx}} % \begin{macrocode} \def\XINT_expr_func_seqx #1#2{\XINT_allexpr_seqx \xintbareeval }% \def\XINT_flexpr_func_seqx #1#2{\XINT_allexpr_seqx \xintbarefloateval}% \def\XINT_iiexpr_func_seqx #1#2{\XINT_allexpr_seqx \xintbareiieval }% \def\XINT_allexpr_seqx #1#2#3#4% #2 is the index list, fully evaluated and encapsulated {% #3 is the Latin letter serving as dummy variable, #4 is the expression to evaluate \expandafter \XINT_expr_getop \csname .=\expandafter\XINT_expr_seq:_aa \romannumeral-`0\XINT_expr_unlock #2!{#1#4\relax !#3},^,\endcsname }% \def\XINT_expr_seq:_aa #1{\if +#1\expandafter\XINT_expr_seq:_A\else \expandafter\XINT_expr_seq:_a\fi #1}% % \end{macrocode} % \subsubsection{break, abort, omit within seq} % \lverb|when evaluation is done in seq:_d, after the ! we find: the Latin % letter, the braced evaluated value to which it will be assigned, a saved copy of the % the \xintexpr stuff, the braced accumulated comma separated list of previous % computations, and the rest of the list of comma separated values to assign to % the dummy letter and at the very end there is ^ and the final comma.| % \begin{macrocode} \def\XINT_expr_seq:_a #1!#2{\expandafter\XINT_expr_seq_empty? \romannumeral0\XINT_expr_seq:_b {#2}#1}% \def\XINT_expr_seq:_b #1#2,{\XINT_expr_seq:_c #2,{#1}}% \def\XINT_expr_seq:_c #1{\if ,#1\xint_dothis\XINT_expr_seq:_noop\fi \if ^#1\xint_dothis\XINT_expr_seq:_end\fi \xint_orthat\XINT_expr_seq:_d #1}% \def\XINT_expr_seq:_d #1,#2{\expandafter\XINT_expr_seq:_e \romannumeral-`0\expandafter\XINT_expr_unlock\romannumeral0#2{#1}{#2}}% \def\XINT_expr_seq:_e #1{\if #1^\xint_dothis\XINT_expr_seq:_abort\fi \if #1?\xint_dothis\XINT_expr_seq:_break\fi \if #1!\xint_dothis\XINT_expr_seq:_omit\fi \xint_orthat{\XINT_expr_seq:_goon #1}}% \def\XINT_expr_seq:_goon #1!#2#3#4{,#1\XINT_expr_seq:_b {#4}}% \def\XINT_expr_seq:_omit #1!#2#3#4{\XINT_expr_seq:_b {#4}}% \def\XINT_expr_seq:_abort #1!#2#3#4#5^,{}% \def\XINT_expr_seq:_break #1!#2#3#4#5^,{,#1}% \def\XINT_expr_seq:_noop ,#1{\XINT_expr_seq:_b {#1}}% \def\XINT_expr_seq:_end ^,#1{}% if all is omit, _empty? constructs "nil" \def\XINT_expr_seq_empty? #1{% \def\XINT_expr_seq_empty? ##1{\if ,##1\expandafter\xint_gobble_i\fi #1\endcsname }}% \XINT_expr_seq_empty? { }% % \end{macrocode} % \subsubsection{\csh{XINT_expr_seq:_A}} % \lverb|This is for index lists generated by ++. The starting point will have % been replaced by its ceil. For efficiency I use \numexpr rather than % \xintInc, hence the indexing is limited to small integers.| % \begin{macrocode} \def\XINT_expr_seq:_A +#1!#2,^,% {\expandafter\XINT_expr_seq_empty?\romannumeral0\XINT_expr_seq:_D {#1}{#2}}% \def\XINT_expr_seq:_D #1#2{\expandafter\XINT_expr_seq:_E \romannumeral-`0\expandafter\XINT_expr_unlock\romannumeral0#2{#1}{#2}}% \def\XINT_expr_seq:_E #1{\if #1^\xint_dothis\XINT_expr_seq:_Abort\fi \if #1?\xint_dothis\XINT_expr_seq:_Break\fi \if #1!\xint_dothis\XINT_expr_seq:_Omit\fi \xint_orthat{\XINT_expr_seq:_Goon #1}}% \def\XINT_expr_seq:_Goon #1!#2#3#4% {,#1\expandafter\XINT_expr_seq:_D\expandafter{\the\numexpr #3+\xint_c_i}{#4}}% \def\XINT_expr_seq:_Omit #1!#2#3#4% {\expandafter\XINT_expr_seq:_D\expandafter{\the\numexpr #3+\xint_c_i}{#4}}% \def\XINT_expr_seq:_Abort #1!#2#3#4{}% \def\XINT_expr_seq:_Break #1!#2#3#4{,#1}% % \end{macrocode} % \subsubsection{add and mul, \csh{XINT_expr_onlitteral_add}, % \csh{XINT_expr_onlitteral_mul}} % \begin{macrocode} \def\XINT_expr_onlitteral_add {\expandafter\XINT_expr_onlitteral_add_f\romannumeral-`0\XINT_expr_onlitteral_seq_a {}}% \def\XINT_expr_onlitteral_add_f #1#2{\xint_c_xviii `{opx}#2)\relax #1+}% \def\XINT_expr_onlitteral_mul {\expandafter\XINT_expr_onlitteral_mul_f\romannumeral-`0\XINT_expr_onlitteral_seq_a {}}% \def\XINT_expr_onlitteral_mul_f #1#2{\xint_c_xviii `{opx}#2)\relax #1*}% % \end{macrocode} % \subsubsection{\csh{XINT_expr_func_opx}, \csh{XINT_flexpr_func_opx}, % \csh{XINT_iiexpr_func_opx}} % \begin{macrocode} \expandafter\edef\csname XINT_expr_op:_+\endcsname {\noexpand\xint_gobble_v {}{}{}\expandafter\noexpand\csname .=0\endcsname}% \expandafter\edef\csname XINT_expr_op:_*\endcsname {\noexpand\xint_gobble_v {}{}{}\expandafter\noexpand\csname .=1\endcsname}% \def\XINT_expr_func_opx #1#2{\XINT_allexpr_opx \xintexpr }% \def\XINT_flexpr_func_opx #1#2{\XINT_allexpr_opx \xintfloatexpr }% \def\XINT_iiexpr_func_opx #1#2{\XINT_allexpr_opx \xintiiexpr }% \def\XINT_allexpr_opx #1#2#3#4#5% {% au d\'epart on avait op(#4,#3=#2 (\'evalu\'e ici)) #3=la variable, #4=expression, #5=+ ou*. \expandafter\XINT_expr_getop\romannumeral0\expandafter\XINT_expr_op:_a \csname XINT_expr_op:_#5\expandafter\endcsname \romannumeral-`0\XINT_expr_unlock #2!#5#1#3{#4}% }% % \end{macrocode} % \subsubsection{\csh{XINT_expr_op:_a}, \dots} % \begin{macrocode} \def\XINT_expr_op:_a #1#2!#3#4#5#6{\XINT_expr_op:_b {#1#4#3{#6\relax\relax !#5}}#2,^,}% % #1=op_+ ou op_*, #2=liste, #3=+ou*,#4=\xintexpr, etc, #5=la var,#6=expression \def\XINT_expr_op:_b #1#2,{\XINT_expr_op:_c #2,#1}% \def\XINT_expr_op:_c #1{\if ,#1\xint_dothis\XINT_expr_op:_noop\fi \if ^#1\xint_dothis\XINT_expr_op:_end\fi \xint_orthat\XINT_expr_op:_d #1}% \def\XINT_expr_op:_noop #1,#2#3#4#5{\XINT_expr_op:_b {{#2}#3#4{#5}}}% \def\XINT_expr_op:_d #1,#2#3#4#5% % #1=valeur, #2=partiel, #3=\xintexpr #4=+ ou *, #5 = expression {\expandafter\expandafter\expandafter\XINT_expr_op:_e #3#2#4#3#5{#1}{#3#4{#5}}}% % #2=nom de la variable, #3=ancienne valeur variable, \def\XINT_expr_op:_e !#1!#2#3#4{\XINT_expr_op:_b {{!#1}#4}}% \def\XINT_expr_op:_end ^,#1#2#3#4{\expandafter\expandafter\expandafter\space \expandafter\xint_gobble_iv #1}% % \end{macrocode} % \subsubsection{subs, \csh{XINT_expr_onlitteral_subs}} % \begin{macrocode} \def\XINT_expr_onlitteral_subs {\expandafter\XINT_expr_onlitteral_subs_f\romannumeral-`0\XINT_expr_onlitteral_seq_a {}}% \def\XINT_expr_onlitteral_subs_f #1#2{\xint_c_xviii `{subx}#2)\relax #1}% \def\XINT_expr_func_subx #1#2{\XINT_allexpr_subx \xintbareeval }% \def\XINT_flexpr_func_subx #1#2{\XINT_allexpr_subx \xintbarefloateval}% \def\XINT_iiexpr_func_subx #1#2{\XINT_allexpr_subx \xintbareiieval }% \def\XINT_allexpr_subx #1#2#3#4% #2 is the value to assign to the dummy variable {% #3 is the dummy variable, #4 is the expression to evaluate \expandafter \XINT_expr_getop \csname .=\expandafter\XINT_expr_subx:_a \romannumeral-`0\XINT_expr_unlock #2!{#1#4\relax !#3}\endcsname }% \def\XINT_expr_subx:_a #1!#2% 10/25 that was a quick addition! {\expandafter\XINT_expr_subx:_end \romannumeral0#2{#1}}% % attention, if one day I add a space in unlock, will need \romannumeral-`0 \def\XINT_expr_subx:_end #1!#2#3{\XINT_expr_unlock #1}% % \end{macrocode} % \subsection{rseq} % \lverb|When func_rseq has its turn, initial segment has been scanned by oparen, the ; % mimicking the rôle of a closing parenthesis, and stopping further expansion.| % \begin{macrocode} \def\XINT_expr_func_rseq {\XINT_allexpr_rseq \xintbareeval }% \def\XINT_flexpr_func_rseq {\XINT_allexpr_rseq \xintbarefloateval }% \def\XINT_iiexpr_func_rseq {\XINT_allexpr_rseq \xintbareiieval }% \def\XINT_allexpr_rseq #1#2% {% \expandafter\XINT_expr_rseqx\expandafter #1\expandafter #2\romannumeral-`0\XINT_expr_onlitteral_seq_a {}% }% % \end{macrocode} % \subsubsection{\csh{XINT_expr_rseqx}} % \lverb|The (#4) is for ++ mechanism which must have its closing parenthesis.| % \begin{macrocode} \def\XINT_expr_rseqx #1#2#3#4% {% \expandafter\XINT_expr_rseqy\romannumeral0#1(#4)\relax #2#3#1% }% % \end{macrocode} % \subsubsection{\csh{XINT_expr_rseqy}} % \begin{macrocode} \def\XINT_expr_rseqy #1#2#3#4#5% #1=valeurs pour variable (locked), % #2=toutes les valeurs initiales (csv,locked), % #3=variable, #4=expr, % #5=\xintbareeval ou \xintbarefloateval ou \xintbareiieval {% \expandafter \XINT_expr_getop \csname .=\XINT_expr_unlock #2% \expandafter\XINT_expr_rseq:_aa \romannumeral-`0\XINT_expr_unlock #1!{#5#4\relax !#3}#2,^,\endcsname }% \def\XINT_expr_rseq:_aa #1{\if +#1\expandafter\XINT_expr_rseq:_A\else \expandafter\XINT_expr_rseq:_a\fi #1}% % \end{macrocode} % \subsubsection{\csh{XINT_expr_rseq:_a} etc\dots} % \begin{macrocode} \def\XINT_expr_rseq:_a #1!#2#3{\XINT_expr_rseq:_b #3{#2}#1}% \def\XINT_expr_rseq:_b #1#2#3,{\XINT_expr_rseq:_c #3,~#1{#2}}% \def\XINT_expr_rseq:_c #1{\if ,#1\xint_dothis\XINT_expr_rseq:_noop\fi \if ^#1\xint_dothis\XINT_expr_rseq:_end\fi \xint_orthat\XINT_expr_rseq:_d #1}% \def\XINT_expr_rseq:_d #1,~#2#3{\expandafter\XINT_expr_rseq:_e \romannumeral-`0\expandafter\XINT_expr_unlock\romannumeral0#3{#1}~#2{#3}}% \def\XINT_expr_rseq:_e #1{% \if ^#1\xint_dothis\XINT_expr_rseq:_abort\fi \if ?#1\xint_dothis\XINT_expr_rseq:_break\fi \if !#1\xint_dothis\XINT_expr_rseq:_omit\fi \xint_orthat{\XINT_expr_rseq:_goon #1}}% \def\XINT_expr_rseq:_goon #1!#2#3~#4#5{,#1\expandafter\XINT_expr_rseq:_b \romannumeral0\XINT_expr_lockit {#1}{#5}}% \def\XINT_expr_rseq:_omit #1!#2#3~{\XINT_expr_rseq:_b }% \def\XINT_expr_rseq:_abort #1!#2#3~#4#5#6^,{}% \def\XINT_expr_rseq:_break #1!#2#3~#4#5#6^,{,#1}% \def\XINT_expr_rseq:_noop ,~#1#2{\XINT_expr_rseq:_b #1{#2}}% \def\XINT_expr_rseq:_end ^,~#1#2{}% no nil for rseq % \end{macrocode} % \subsubsection{\csh{XINT_expr_rseq:_A} etc\dots} % \lverb |n++ for rseq| % \begin{macrocode} \def\XINT_expr_rseq:_A +#1!#2#3,^,{\XINT_expr_rseq:_D {#1}#3{#2}}% \def\XINT_expr_rseq:_D #1#2#3{\expandafter\XINT_expr_rseq:_E \romannumeral-`0\expandafter\XINT_expr_unlock\romannumeral0#3{#1}~#2{#3}}% \def\XINT_expr_rseq:_E #1{\if #1^\xint_dothis\XINT_expr_rseq:_Abort\fi \if #1?\xint_dothis\XINT_expr_rseq:_Break\fi \if #1!\xint_dothis\XINT_expr_rseq:_Omit\fi \xint_orthat{\XINT_expr_rseq:_Goon #1}}% \def\XINT_expr_rseq:_Goon #1!#2#3~#4#5% {,#1\expandafter\XINT_expr_rseq:_D\expandafter{\the\numexpr #3+\xint_c_i\expandafter}% \romannumeral0\XINT_expr_lockit{#1}{#5}}% \def\XINT_expr_rseq:_Omit #1!#2#3~%#4#5% {\expandafter\XINT_expr_rseq:_D\expandafter{\the\numexpr #3+\xint_c_i}}% \def\XINT_expr_rseq:_Abort #1!#2#3~#4#5{}% \def\XINT_expr_rseq:_Break #1!#2#3~#4#5{,#1}% % \end{macrocode} % \subsection{rrseq} % \lverb|When func_rrseq has its turn, initial segment has been scanned by oparen, the ; % mimicking the rôle of a closing parenthesis, and stopping further expansion.| % \begin{macrocode} \def\XINT_expr_func_rrseq {\XINT_allexpr_rrseq \xintbareeval }% \def\XINT_flexpr_func_rrseq {\XINT_allexpr_rrseq \xintbarefloateval }% \def\XINT_iiexpr_func_rrseq {\XINT_allexpr_rrseq \xintbareiieval }% \def\XINT_allexpr_rrseq #1#2% {% \expandafter\XINT_expr_rrseqx\expandafter #1\expandafter #2\romannumeral-`0\XINT_expr_onlitteral_seq_a {}% }% % \end{macrocode} % \subsubsection{\csh{XINT_expr_rrseqx}} % \lverb|The (#4) is for ++ mechanism which must have its closing parenthesis.| % \begin{macrocode} \def\XINT_expr_rrseqx #1#2#3#4% {% \expandafter\XINT_expr_rrseqy\romannumeral0#1(#4)\expandafter\relax \expandafter{\romannumeral0\xintapply \XINT_expr_lockit {\xintRevWithBraces{\xintCSVtoListNonStripped{\XINT_expr_unlock #2}}}}% #2#3#1% }% % \end{macrocode} % \subsubsection{\csh{XINT_expr_rrseqy}} % \begin{macrocode} \def\XINT_expr_rrseqy #1#2#3#4#5#6% #1=valeurs pour variable (locked), % #2=initial values (reversed, one (braced) token each) % #3=toutes les valeurs initiales (csv,locked), % #4=variable, #5=expr, % #6=\xintbareeval ou \xintbarefloateval ou \xintbareiieval {% \expandafter \XINT_expr_getop \csname .=\XINT_expr_unlock #3% \expandafter\XINT_expr_rrseq:_aa \romannumeral-`0\XINT_expr_unlock #1!{#6#5\relax !#4}{#2},^,\endcsname }% \def\XINT_expr_rrseq:_aa #1{\if +#1\expandafter\XINT_expr_rrseq:_A\else \expandafter\XINT_expr_rrseq:_a\fi #1}% % \end{macrocode} % \subsubsection{\csh{XINT_expr_rrseq:_a} etc\dots} % \begin{macrocode} \catcode`? 3 \def\XINT_expr_rrseq:_a #1!#2#3{\XINT_expr_rrseq:_b {#3}{#2}#1}% \def\XINT_expr_rrseq:_b #1#2#3,{\XINT_expr_rrseq:_c #3,~#1?{#2}}% \def\XINT_expr_rrseq:_c #1{\if ,#1\xint_dothis\XINT_expr_rrseq:_noop\fi \if ^#1\xint_dothis\XINT_expr_rrseq:_end\fi \xint_orthat\XINT_expr_rrseq:_d #1}% \def\XINT_expr_rrseq:_d #1,~#2?#3{\expandafter\XINT_expr_rrseq:_e \romannumeral-`0\expandafter\XINT_expr_unlock\romannumeral0#3{#1}~#2?{#3}}% \def\XINT_expr_rrseq:_goon #1!#2#3~#4?#5{,#1\expandafter\XINT_expr_rrseq:_b\expandafter {\romannumeral0\xinttrim{-1}{\XINT_expr_lockit{#1}#4}}{#5}}% \def\XINT_expr_rrseq:_omit #1!#2#3~{\XINT_expr_rrseq:_b }% \def\XINT_expr_rrseq:_abort #1!#2#3~#4?#5#6^,{}% \def\XINT_expr_rrseq:_break #1!#2#3~#4?#5#6^,{,#1}% \def\XINT_expr_rrseq:_noop ,~#1?#2{\XINT_expr_rrseq:_b {#1}{#2}}% \def\XINT_expr_rrseq:_end ^,~#1?#2{}% No nil for rrseq. \catcode`? 11 \def\XINT_expr_rrseq:_e #1{% \if ^#1\xint_dothis\XINT_expr_rrseq:_abort\fi \if ?#1\xint_dothis\XINT_expr_rrseq:_break\fi \if !#1\xint_dothis\XINT_expr_rrseq:_omit\fi \xint_orthat{\XINT_expr_rrseq:_goon #1}% }% % \end{macrocode} % \subsubsection{\csh{XINT_expr_rrseq:_A} etc\dots} % \lverb |n++ for rrseq| % \begin{macrocode} \catcode`? 3 \def\XINT_expr_rrseq:_A +#1!#2#3,^,{\XINT_expr_rrseq:_D {#1}{#3}{#2}}% \def\XINT_expr_rrseq:_D #1#2#3{\expandafter\XINT_expr_rrseq:_E \romannumeral-`0\expandafter\XINT_expr_unlock\romannumeral0#3{#1}~#2?{#3}}% \def\XINT_expr_rrseq:_Goon #1!#2#3~#4?#5% {,#1\expandafter\XINT_expr_rrseq:_D\expandafter{\the\numexpr #3+\xint_c_i\expandafter}% \expandafter{\romannumeral0\xinttrim{-1}{\XINT_expr_lockit{#1}#4}}{#5}}% \def\XINT_expr_rrseq:_Omit #1!#2#3~%#4?#5% {\expandafter\XINT_expr_rrseq:_D\expandafter{\the\numexpr #3+\xint_c_i}}% \def\XINT_expr_rrseq:_Abort #1!#2#3~#4?#5{}% \def\XINT_expr_rrseq:_Break #1!#2#3~#4?#5{,#1}% \catcode`? 11 \def\XINT_expr_rrseq:_E #1{\if #1^\xint_dothis\XINT_expr_rrseq:_Abort\fi \if #1?\xint_dothis\XINT_expr_rrseq:_Break\fi \if #1!\xint_dothis\XINT_expr_rrseq:_Omit\fi \xint_orthat{\XINT_expr_rrseq:_Goon #1}}% % \end{macrocode} % \subsection{iter} % \begin{macrocode} \def\XINT_expr_func_iter {\XINT_allexpr_iter \xintbareeval }% \def\XINT_flexpr_func_iter {\XINT_allexpr_iter \xintbarefloateval }% \def\XINT_iiexpr_func_iter {\XINT_allexpr_iter \xintbareiieval }% \def\XINT_allexpr_iter #1#2% {% \expandafter\XINT_expr_iterx\expandafter #1\expandafter #2\romannumeral-`0\XINT_expr_onlitteral_seq_a {}% }% % \end{macrocode} % \subsubsection{\csh{XINT_expr_iterx}} % \lverb|The (#4) is for ++ mechanism which must have its closing parenthesis.| % \begin{macrocode} \def\XINT_expr_iterx #1#2#3#4% {% \expandafter\XINT_expr_itery\romannumeral0#1(#4)\expandafter\relax \expandafter{\romannumeral0\xintapply \XINT_expr_lockit {\xintRevWithBraces{\xintCSVtoListNonStripped{\XINT_expr_unlock #2}}}}% #2#3#1% }% % \end{macrocode} % \subsubsection{\csh{XINT_expr_itery}} % \begin{macrocode} \def\XINT_expr_itery #1#2#3#4#5#6% #1=valeurs pour variable (locked), % #2=initial values (reversed, one (braced) token each) % #3=toutes les valeurs initiales (csv,locked), % #4=variable, #5=expr, % #6=\xintbareeval ou \xintbarefloateval ou \xintbareiieval {% \expandafter \XINT_expr_getop \csname .=% \expandafter\XINT_expr_iter:_aa \romannumeral-`0\XINT_expr_unlock #1!{#6#5\relax !#4}{#2},^,\endcsname }% \def\XINT_expr_iter:_aa #1{\if +#1\expandafter\XINT_expr_iter:_A\else \expandafter\XINT_expr_iter:_a\fi #1}% % \end{macrocode} % \subsubsection{\csh{XINT_expr_iter:_a} etc\dots} % \begin{macrocode} \catcode`? 3 \def\XINT_expr_iter:_a #1!#2#3{\XINT_expr_iter:_b {#3}{#2}#1}% \def\XINT_expr_iter:_b #1#2#3,{\XINT_expr_iter:_c #3,~#1?{#2}}% \def\XINT_expr_iter:_c #1{\if ,#1\xint_dothis\XINT_expr_iter:_noop\fi \if ^#1\xint_dothis\XINT_expr_iter:_end\fi \xint_orthat\XINT_expr_iter:_d #1}% \def\XINT_expr_iter:_d #1,~#2?#3{\expandafter\XINT_expr_iter:_e \romannumeral-`0\expandafter\XINT_expr_unlock\romannumeral0#3{#1}~#2?{#3}}% \def\XINT_expr_iter:_goon #1!#2#3~#4?#5{\expandafter\XINT_expr_iter:_b\expandafter {\romannumeral0\xinttrim{-1}{\XINT_expr_lockit{#1}#4}}{#5}}% \def\XINT_expr_iter:_omit #1!#2#3~{\XINT_expr_iter:_b }% \def\XINT_expr_iter:_abort #1!#2#3~#4?#5#6^,% {\expandafter\xint_gobble_i\romannumeral0\xintapplyunbraced {,\XINT_expr:_unlock}{\xintReverseOrder{#4\space}}}% \def\XINT_expr_iter:_break #1!#2#3~#4?#5#6^,% {\expandafter\xint_gobble_iv\romannumeral0\xintapplyunbraced {,\XINT_expr:_unlock}{\xintReverseOrder{#4\space}},#1}% \def\XINT_expr_iter:_noop ,~#1?#2{\XINT_expr_iter:_b {#1}{#2}}% \def\XINT_expr_iter:_end ^,~#1?#2% {\expandafter\xint_gobble_i\romannumeral0\xintapplyunbraced {,\XINT_expr:_unlock}{\xintReverseOrder{#1\space}}}% \catcode`? 11 \def\XINT_expr_iter:_e #1{% \if ^#1\xint_dothis\XINT_expr_iter:_abort\fi \if ?#1\xint_dothis\XINT_expr_iter:_break\fi \if !#1\xint_dothis\XINT_expr_iter:_omit\fi \xint_orthat{\XINT_expr_iter:_goon #1}% }% \def\XINT_expr:_unlock #1{\XINT_expr_unlock #1}% % \end{macrocode} % \subsubsection{\csh{XINT_expr_iter:_A} etc\dots} % \lverb |n++ for iter| % \begin{macrocode} \catcode`? 3 \def\XINT_expr_iter:_A +#1!#2#3,^,{\XINT_expr_iter:_D {#1}{#3}{#2}}% \def\XINT_expr_iter:_D #1#2#3{\expandafter\XINT_expr_iter:_E \romannumeral-`0\expandafter\XINT_expr_unlock\romannumeral0#3{#1}~#2?{#3}}% \def\XINT_expr_iter:_Goon #1!#2#3~#4?#5% {\expandafter\XINT_expr_iter:_D\expandafter{\the\numexpr #3+\xint_c_i\expandafter}% \expandafter{\romannumeral0\xinttrim{-1}{\XINT_expr_lockit{#1}#4}}{#5}}% \def\XINT_expr_iter:_Omit #1!#2#3~%#4?#5% {\expandafter\XINT_expr_iter:_D\expandafter{\the\numexpr #3+\xint_c_i}}% \def\XINT_expr_iter:_Abort #1!#2#3~#4?#5% {\expandafter\xint_gobble_i\romannumeral0\xintapplyunbraced {,\XINT_expr:_unlock}{\xintReverseOrder{#4\space}}}% \def\XINT_expr_iter:_Break #1!#2#3~#4?#5% {\expandafter\xint_gobble_iv\romannumeral0\xintapplyunbraced {,\XINT_expr:_unlock}{\xintReverseOrder{#4\space}},#1}% \catcode`? 11 \def\XINT_expr_iter:_E #1{\if #1^\xint_dothis\XINT_expr_iter:_Abort\fi \if #1?\xint_dothis\XINT_expr_iter:_Break\fi \if #1!\xint_dothis\XINT_expr_iter:_Omit\fi \xint_orthat{\XINT_expr_iter:_Goon #1}}% % \end{macrocode} % \subsection{Macros handling csv lists for functions with multiple comma % separated arguments in expressions} % \lverb|These 17 macros are used inside \csname...\endcsname. These things % are not initiated by a \romannumeral in general, but in some cases they are, % especially when involved in an \xintNewExpr. They will then be protected % against expansion and expand only later in contexts governed by an % initial \romannumeral-`0. There each new item may need to be expanded, which % would not be the case in the use for the _func_ things.| % \begin{macrocode} % \end{macrocode} % \subsubsection{\csh{xintANDof:csv}} % \lverb|1.09a. For use by \xintexpr inside \csname. 1.1, je remplace % ifTrueAelseB par iiNotZero pour des raisons d'optimisations.| % \begin{macrocode} \def\xintANDof:csv #1{\expandafter\XINT_andof:_a\romannumeral-`0#1,,^}% \def\XINT_andof:_a #1{\if ,#1\expandafter\XINT_andof:_e \else\expandafter\XINT_andof:_c\fi #1}% \def\XINT_andof:_c #1,{\xintiiifNotZero {#1}{\XINT_andof:_a}{\XINT_andof:_no}}% \def\XINT_andof:_no #1^{0}% \def\XINT_andof:_e #1^{1}% works with empty list % \end{macrocode} % \subsubsection{\csh{xintORof:csv}} % \lverb|1.09a. For use by \xintexpr.| % \begin{macrocode} \def\xintORof:csv #1{\expandafter\XINT_orof:_a\romannumeral-`0#1,,^}% \def\XINT_orof:_a #1{\if ,#1\expandafter\XINT_orof:_e \else\expandafter\XINT_orof:_c\fi #1}% \def\XINT_orof:_c #1,{\xintiiifNotZero{#1}{\XINT_orof:_yes}{\XINT_orof:_a}}% \def\XINT_orof:_yes #1^{1}% \def\XINT_orof:_e #1^{0}% works with empty list % \end{macrocode} % \subsubsection{\csh{xintXORof:csv}} % \lverb|1.09a. For use by \xintexpr (inside a \csname..\endcsname).| % \begin{macrocode} \def\xintXORof:csv #1{\expandafter\XINT_xorof:_a\expandafter 0\romannumeral-`0#1,,^}% \def\XINT_xorof:_a #1#2,{\XINT_xorof:_b #2,#1}% \def\XINT_xorof:_b #1{\if ,#1\expandafter\XINT_xorof:_e \else\expandafter\XINT_xorof:_c\fi #1}% \def\XINT_xorof:_c #1,#2% {\xintiiifNotZero {#1}{\if #20\xint_afterfi{\XINT_xorof:_a 1}% \else\xint_afterfi{\XINT_xorof:_a 0}\fi}% {\XINT_xorof:_a #2}% }% \def\XINT_xorof:_e ,#1#2^{#1}% allows empty list (then returns 0) % \end{macrocode} % \subsubsection{Generic csv routine} % \lverb|1.1. generic routine. up to the loss of some efficiency, especially % for Sum:csv and Prod:csv, where \XINTinFloat will be done twice for each % argument.| % \begin{macrocode} \def\XINT_oncsv:_empty #1,^,#2{#2}% \def\XINT_oncsv:_end ^,#1#2#3#4{#1}% \def\XINT_oncsv:_a #1#2#3% {\if ,#3\expandafter\XINT_oncsv:_empty\else\expandafter\XINT_oncsv:_b\fi #1#2#3}% \def\XINT_oncsv:_b #1#2#3,% {\expandafter\XINT_oncsv:_c \expandafter{\romannumeral-`0#2{#3}}#1#2}% \def\XINT_oncsv:_c #1#2#3#4,{\expandafter\XINT_oncsv:_d \romannumeral-`0#4,{#1}#2#3}% \def\XINT_oncsv:_d #1% {\if ^#1\expandafter\XINT_oncsv:_end\else\expandafter\XINT_oncsv:_e\fi #1}% \def\XINT_oncsv:_e #1,#2#3#4% {\expandafter\XINT_oncsv:_c\expandafter {\romannumeral-`0#3{#4{#1}}{#2}}#3#4}% % \end{macrocode} % \subsubsection{\csh{xintMaxof:csv}, \csh{xintiiMaxof:csv}} % \lverb|1.09i. Rewritten for 1.1. Compatible avec liste vide donnant valeur par % défaut. Pas compatible avec items manquants. % ah je m'aperçois au dernier moment que je n'ai pas en effet de \xintiiMax. % Je devrais le rajouter. En tout cas ici c'est uniquement pour xintiiexpr, % dans il faut bien sûr ne pas faire de xintNum, donc il faut un iimax.| % \begin{macrocode} \def\xintMaxof:csv #1{\expandafter\XINT_oncsv:_a\expandafter\xintmax \expandafter\xint_firstofone\romannumeral-`0#1,^,{0/1[0]}}% \def\xintiiMaxof:csv #1{\expandafter\XINT_oncsv:_a\expandafter\xintiimax \expandafter\xint_firstofone\romannumeral-`0#1,^,0}% % \end{macrocode} % \subsubsection{\csh{xintMinof:csv}, \csh{xintiiMinof:csv}} % \lverb|1.09i. Rewritten for 1.1. For use by \xintiiexpr.| % \begin{macrocode} \def\xintMinof:csv #1{\expandafter\XINT_oncsv:_a\expandafter\xintmin \expandafter\xint_firstofone\romannumeral-`0#1,^,{0/1[0]}}% \def\xintiiMinof:csv #1{\expandafter\XINT_oncsv:_a\expandafter\xintiimin \expandafter\xint_firstofone\romannumeral-`0#1,^,0}% % \end{macrocode} % \subsubsection{\csh{xintSum:csv}, \csh{xintiiSum:csv}} % \lverb|1.09a. Rewritten for 1.1. For use by \xintexpr.| % \begin{macrocode} \def\xintSum:csv #1{\expandafter\XINT_oncsv:_a\expandafter\xintadd \expandafter\xint_firstofone\romannumeral-`0#1,^,{0/1[0]}}% \def\xintiiSum:csv #1{\expandafter\XINT_oncsv:_a\expandafter\xintiiadd \expandafter\xint_firstofone\romannumeral-`0#1,^,0}% % \end{macrocode} % \subsubsection{\csh{xintPrd:csv}, \csh{xintiiPrd:csv}} % \lverb|1.09a. Rewritten for 1.1. For use by \xintexpr.| % \begin{macrocode} \def\xintPrd:csv #1{\expandafter\XINT_oncsv:_a\expandafter\xintmul \expandafter\xint_firstofone\romannumeral-`0#1,^,{1/1[0]}}% \def\xintiiPrd:csv #1{\expandafter\XINT_oncsv:_a\expandafter\xintiimul \expandafter\xint_firstofone\romannumeral-`0#1,^,1}% % \end{macrocode} % \subsubsection{\csh{xintGCDof:csv}, \csh{xintLCMof:csv}} % \lverb|1.09a. Rewritten for 1.1. For use by \xintexpr. Expansion réinstaurée % pour besoins de xintNewExpr de version 1.1| % \begin{macrocode} \def\xintGCDof:csv #1{\expandafter\XINT_oncsv:_a\expandafter\xintgcd \expandafter\xint_firstofone\romannumeral-`0#1,^,1}% \def\xintLCMof:csv #1{\expandafter\XINT_oncsv:_a\expandafter\xintlcm \expandafter\xint_firstofone\romannumeral-`0#1,^,0}% % \end{macrocode} % \subsubsection{\csh{xintiiGCDof:csv}, \csh{xintiiLCMof:csv}} % \lverb|1.1a pour \xintiiexpr. Ces histoires de ii sont pénibles à la fin.| % \begin{macrocode} \def\xintiiGCDof:csv #1{\expandafter\XINT_oncsv:_a\expandafter\xintiigcd \expandafter\xint_firstofone\romannumeral-`0#1,^,1}% \def\xintiiLCMof:csv #1{\expandafter\XINT_oncsv:_a\expandafter\xintiilcm \expandafter\xint_firstofone\romannumeral-`0#1,^,0}% % \end{macrocode} % \subsubsection{\csh{XINTinFloatdigits}, \csh{XINTinFloatSqrtdigits}} % \lverb|for \xintNewExpr matters, mainly.| % \begin{macrocode} \def\XINTinFloatdigits {\XINTinFloat [\XINTdigits]}% \def\XINTinFloatSqrtdigits {\XINTinFloatSqrt [\XINTdigits]}% % \end{macrocode} % \subsubsection{\csh{XINTinFloatMaxof:csv}, \csh{XINTinFloatMinof:csv}} % \lverb|1.09a. Rewritten for 1.1. For use by \xintfloatexpr. Name changed in 1.09h| % \begin{macrocode} \def\XINTinFloatMaxof:csv #1{\expandafter\XINT_oncsv:_a\expandafter\xintmax \expandafter\XINTinFloatdigits\romannumeral-`0#1,^,{0[0]}}% \def\XINTinFloatMinof:csv #1{\expandafter\XINT_oncsv:_a\expandafter\xintmin \expandafter\XINTinFloatdigits\romannumeral-`0#1,^,{0[0]}}% % \end{macrocode} % \subsubsection{\csh{XINTinFloatSum:csv}, \csh{XINTinFloatPrd:csv}} % \lverb|1.09a. Rewritten for 1.1. For use by \xintfloatexpr.| % \begin{macrocode} \def\XINTinFloatSum:csv #1{\expandafter\XINT_oncsv:_a\expandafter\XINTinfloatadd \expandafter\XINTinFloatdigits\romannumeral-`0#1,^,{0[0]}}% \def\XINTinFloatPrd:csv #1{\expandafter\XINT_oncsv:_a\expandafter\XINTinfloatmul \expandafter\XINTinFloatdigits\romannumeral-`0#1,^,{1[0]}}% % \end{macrocode} % \subsection{The num, reduce, abs, sgn, frac, floor, ceil, sqr, sqrt, sqrtr, float, % round, trunc, mod, quo, rem, gcd, lcm, max, min, \textasciigrave % +\textasciigrave, \textasciigrave % \texorpdfstring{\protect\lowast}{*}\textasciigrave, ?, !, not, all, any, % xor, if, ifsgn, first, last, even, odd, and reversed functions} % \begin{macrocode} \def\XINT_expr_twoargs #1,#2,{{#1}{#2}}% \def\XINT_expr_argandopt #1,#2,#3.#4#5% {% \if\relax#3\relax\expandafter\xint_firstoftwo\else \expandafter\xint_secondoftwo\fi {#4}{#5[\xintNum {#2}]}{#1}% }% \def\XINT_expr_oneortwo #1#2#3,#4,#5.% {% \if\relax#5\relax\expandafter\xint_firstoftwo\else \expandafter\xint_secondoftwo\fi {#1{0}}{#2{\xintNum {#4}}}{#3}% }% \def\XINT_iiexpr_oneortwo #1#2,#3,#4.% {% \if\relax#4\relax\expandafter\xint_firstoftwo\else \expandafter\xint_secondoftwo\fi {#1{0}}{#1{#3}}{#2}% }% \def\XINT_expr_func_num #1#2#3% {\expandafter #1\expandafter #2\csname.=\xintNum {\XINT_expr_unlock #3}\endcsname }% \let\XINT_flexpr_func_num\XINT_expr_func_num \let\XINT_iiexpr_func_num\XINT_expr_func_num % [0] added Oct 25. For interaction with SPRaw::csv \def\XINT_expr_func_reduce #1#2#3% {\expandafter #1\expandafter #2\csname.=\xintIrr {\XINT_expr_unlock #3}[0]\endcsname }% \let\XINT_flexpr_func_reduce\XINT_expr_func_reduce % no \XINT_iiexpr_func_reduce \def\XINT_expr_func_abs #1#2#3% {\expandafter #1\expandafter #2\csname.=\xintAbs {\XINT_expr_unlock #3}\endcsname }% \let\XINT_flexpr_func_abs\XINT_expr_func_abs \def\XINT_iiexpr_func_abs #1#2#3% {\expandafter #1\expandafter #2\csname.=\xintiiAbs {\XINT_expr_unlock #3}\endcsname }% \def\XINT_expr_func_sgn #1#2#3% {\expandafter #1\expandafter #2\csname.=\xintSgn {\XINT_expr_unlock #3}\endcsname }% \let\XINT_flexpr_func_sgn\XINT_expr_func_sgn \def\XINT_iiexpr_func_sgn #1#2#3% {\expandafter #1\expandafter #2\csname.=\xintiiSgn {\XINT_expr_unlock #3}\endcsname }% \def\XINT_expr_func_frac #1#2#3% {\expandafter #1\expandafter #2\csname.=\xintTFrac {\XINT_expr_unlock #3}\endcsname }% \def\XINT_flexpr_func_frac #1#2#3{\expandafter #1\expandafter #2\csname .=\XINTinFloatFracdigits {\XINT_expr_unlock #3}\endcsname }% % no \XINT_iiexpr_func_frac \def\XINT_expr_func_floor #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintFloor {\XINT_expr_unlock #3}\endcsname }% \let\XINT_flexpr_func_floor\XINT_expr_func_floor \def\XINT_iiexpr_func_floor #1#2#3% {% mais absurde si on ne peut pas avoir quotient comme input \expandafter #1\expandafter #2\csname.=\xintiFloor {\XINT_expr_unlock #3}\endcsname }% \def\XINT_expr_func_ceil #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintCeil {\XINT_expr_unlock #3}\endcsname }% \let\XINT_flexpr_func_ceil\XINT_expr_func_ceil \def\XINT_iiexpr_func_ceil #1#2#3% {% mais absurde si on ne peut pas avoir quotient comme input \expandafter #1\expandafter #2\csname.=\xintiCeil {\XINT_expr_unlock #3}\endcsname }% \def\XINT_expr_func_sqr #1#2#3% {\expandafter #1\expandafter #2\csname.=\xintSqr {\XINT_expr_unlock #3}\endcsname }% \def\XINT_flexpr_func_sqr #1#2#3% {% \expandafter #1\expandafter #2\csname .=\XINTinFloatMul % [\XINTdigits]% pour simplifier mes affaires avec \xintNewExpr {\XINT_expr_unlock #3}{\XINT_expr_unlock #3}\endcsname }% \def\XINT_iiexpr_func_sqr #1#2#3% {\expandafter #1\expandafter #2\csname.=\xintiiSqr {\XINT_expr_unlock #3}\endcsname }% \def\XINT_expr_func_sqrt #1#2#3% {% \expandafter #1\expandafter #2\csname .=% \expandafter\XINT_expr_argandopt \romannumeral-`0\XINT_expr_unlock#3,,.\XINTinFloatSqrtdigits\XINTinFloatSqrt \endcsname }% \let\XINT_flexpr_func_sqrt\XINT_expr_func_sqrt \def\XINT_iiexpr_func_sqrt #1#2#3% {\expandafter #1\expandafter #2\csname.=\xintiiSqrt {\XINT_expr_unlock #3}\endcsname }% \def\XINT_iiexpr_func_sqrtr #1#2#3% {\expandafter #1\expandafter #2\csname.=\xintiiSqrtR {\XINT_expr_unlock #3}\endcsname }% \def\XINT_expr_func_round #1#2#3% {% \expandafter #1\expandafter #2\csname .=% \expandafter\XINT_expr_oneortwo \expandafter\xintiRound\expandafter\xintRound \romannumeral-`0\XINT_expr_unlock #3,,.\endcsname }% \let\XINT_flexpr_func_round\XINT_expr_func_round \def\XINT_iiexpr_func_round #1#2#3% {% \expandafter #1\expandafter #2\csname .=% \expandafter\XINT_iiexpr_oneortwo\expandafter\xintiRound \romannumeral-`0\XINT_expr_unlock #3,,.\endcsname }% \def\XINT_expr_func_trunc #1#2#3% {% \expandafter #1\expandafter #2\csname .=% \expandafter\XINT_expr_oneortwo \expandafter\xintiTrunc\expandafter\xintTrunc \romannumeral-`0\XINT_expr_unlock #3,,.\endcsname }% \let\XINT_flexpr_func_trunc\XINT_expr_func_trunc \def\XINT_iiexpr_func_trunc #1#2#3% {% \expandafter #1\expandafter #2\csname .=% \expandafter\XINT_iiexpr_oneortwo\expandafter\xintiTrunc \romannumeral-`0\XINT_expr_unlock #3,,.\endcsname }% \def\XINT_expr_func_float #1#2#3% {% \expandafter #1\expandafter #2\csname .=% \expandafter\XINT_expr_argandopt \romannumeral-`0\XINT_expr_unlock #3,,.\XINTinFloatdigits\XINTinFloat \endcsname }% \let\XINT_flexpr_func_float\XINT_expr_func_float % \XINT_iiexpr_func_float not defined \def\XINT_expr_func_mod #1#2#3% {% \expandafter #1\expandafter #2\csname .=% \expandafter\expandafter\expandafter\xintMod \expandafter\XINT_expr_twoargs \romannumeral-`0\XINT_expr_unlock #3,\endcsname }% \def\XINT_flexpr_func_mod #1#2#3% {% \expandafter #1\expandafter #2\csname .=% \expandafter\XINTinFloatMod \romannumeral-`0\expandafter\XINT_expr_twoargs \romannumeral-`0\XINT_expr_unlock #3,\endcsname }% \def\XINT_iiexpr_func_mod #1#2#3% {% \expandafter #1\expandafter #2\csname .=% \expandafter\expandafter\expandafter\xintiiMod \expandafter\XINT_expr_twoargs \romannumeral-`0\XINT_expr_unlock #3,\endcsname }% \def\XINT_expr_func_quo #1#2#3% {% \expandafter #1\expandafter #2\csname .=% \expandafter\expandafter\expandafter\xintiQuo \expandafter\XINT_expr_twoargs \romannumeral-`0\XINT_expr_unlock #3,\endcsname }% \let\XINT_flexpr_func_quo\XINT_expr_func_quo \def\XINT_iiexpr_func_quo #1#2#3% {% \expandafter #1\expandafter #2\csname .=% \expandafter\expandafter\expandafter\xintiiQuo \expandafter\XINT_expr_twoargs \romannumeral-`0\XINT_expr_unlock #3,\endcsname }% \def\XINT_expr_func_rem #1#2#3% {% \expandafter #1\expandafter #2\csname .=% \expandafter\expandafter\expandafter\xintiRem \expandafter\XINT_expr_twoargs \romannumeral-`0\XINT_expr_unlock #3,\endcsname }% \let\XINT_flexpr_func_rem\XINT_expr_func_rem \def\XINT_iiexpr_func_rem #1#2#3% {% \expandafter #1\expandafter #2\csname .=% \expandafter\expandafter\expandafter\xintiiRem \expandafter\XINT_expr_twoargs \romannumeral-`0\XINT_expr_unlock #3,\endcsname }% \def\XINT_expr_func_gcd #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintGCDof:csv{\XINT_expr_unlock #3}\endcsname }% \let\XINT_flexpr_func_gcd\XINT_expr_func_gcd \def\XINT_iiexpr_func_gcd #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintiiGCDof:csv{\XINT_expr_unlock #3}\endcsname }% \def\XINT_expr_func_lcm #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintLCMof:csv{\XINT_expr_unlock #3}\endcsname }% \let\XINT_flexpr_func_lcm\XINT_expr_func_lcm \def\XINT_iiexpr_func_lcm #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintiiLCMof:csv{\XINT_expr_unlock #3}\endcsname }% \def\XINT_expr_func_max #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintMaxof:csv{\XINT_expr_unlock #3}\endcsname }% \def\XINT_iiexpr_func_max #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintiiMaxof:csv{\XINT_expr_unlock #3}\endcsname }% \def\XINT_flexpr_func_max #1#2#3% {\expandafter #1\expandafter #2\csname .=\XINTinFloatMaxof:csv{\XINT_expr_unlock #3}\endcsname }% \def\XINT_expr_func_min #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintMinof:csv{\XINT_expr_unlock #3}\endcsname }% \def\XINT_iiexpr_func_min #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintiiMinof:csv{\XINT_expr_unlock #3}\endcsname }% \def\XINT_flexpr_func_min #1#2#3% {\expandafter #1\expandafter #2\csname .=\XINTinFloatMinof:csv{\XINT_expr_unlock #3}\endcsname }% \expandafter\def\csname XINT_expr_func_+\endcsname #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintSum:csv{\XINT_expr_unlock #3}\endcsname }% \expandafter\def\csname XINT_flexpr_func_+\endcsname #1#2#3% {\expandafter #1\expandafter #2\csname .=\XINTinFloatSum:csv{\XINT_expr_unlock #3}\endcsname }% \expandafter\def\csname XINT_iiexpr_func_+\endcsname #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintiiSum:csv{\XINT_expr_unlock #3}\endcsname }% \expandafter\def\csname XINT_expr_func_*\endcsname #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintPrd:csv{\XINT_expr_unlock #3}\endcsname }% \expandafter\def\csname XINT_flexpr_func_*\endcsname #1#2#3% {\expandafter #1\expandafter #2\csname .=\XINTinFloatPrd:csv{\XINT_expr_unlock #3}\endcsname }% \expandafter\def\csname XINT_iiexpr_func_*\endcsname #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintiiPrd:csv{\XINT_expr_unlock #3}\endcsname }% \def\XINT_expr_func_? #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintiiIsNotZero {\XINT_expr_unlock #3}\endcsname }% \let\XINT_flexpr_func_? \XINT_expr_func_? \let\XINT_iiexpr_func_? \XINT_expr_func_? \def\XINT_expr_func_! #1#2#3% {\expandafter #1\expandafter #2\csname.=\xintiiIsZero {\XINT_expr_unlock #3}\endcsname }% \let\XINT_flexpr_func_! \XINT_expr_func_! \let\XINT_iiexpr_func_! \XINT_expr_func_! \def\XINT_expr_func_not #1#2#3% {\expandafter #1\expandafter #2\csname.=\xintiiIsZero {\XINT_expr_unlock #3}\endcsname }% \let\XINT_flexpr_func_not \XINT_expr_func_not \let\XINT_iiexpr_func_not \XINT_expr_func_not \def\XINT_expr_func_all #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintANDof:csv{\XINT_expr_unlock #3}\endcsname }% \let\XINT_flexpr_func_all\XINT_expr_func_all \let\XINT_iiexpr_func_all\XINT_expr_func_all \def\XINT_expr_func_any #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintORof:csv{\XINT_expr_unlock #3}\endcsname }% \let\XINT_flexpr_func_any\XINT_expr_func_any \let\XINT_iiexpr_func_any\XINT_expr_func_any \def\XINT_expr_func_xor #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintXORof:csv{\XINT_expr_unlock #3}\endcsname }% \let\XINT_flexpr_func_xor\XINT_expr_func_xor \let\XINT_iiexpr_func_xor\XINT_expr_func_xor \def\xintifNotZero: #1,#2,#3,{\xintiiifNotZero{#1}{#2}{#3}}% \def\XINT_expr_func_if #1#2#3% {\expandafter #1\expandafter #2\csname .=\expandafter\xintifNotZero:\romannumeral-`0\XINT_expr_unlock #3,\endcsname }% \let\XINT_flexpr_func_if\XINT_expr_func_if \let\XINT_iiexpr_func_if\XINT_expr_func_if \def\xintifSgn: #1,#2,#3,#4,{\xintiiifSgn{#1}{#2}{#3}{#4}}% \def\XINT_expr_func_ifsgn #1#2#3% {% \expandafter #1\expandafter #2\csname .=\expandafter\xintifSgn:\romannumeral-`0\XINT_expr_unlock #3,\endcsname }% \let\XINT_flexpr_func_ifsgn\XINT_expr_func_ifsgn \let\XINT_iiexpr_func_ifsgn\XINT_expr_func_ifsgn \def\XINT_expr_func_first #1#2#3% {\expandafter #1\expandafter #2\csname.=\expandafter\XINT_expr_func_firsta \romannumeral-`0\XINT_expr_unlock #3,^\endcsname }% \def\XINT_expr_func_firsta #1,#2^{#1}% \let\XINT_flexpr_func_first\XINT_expr_func_first \let\XINT_iiexpr_func_first\XINT_expr_func_first \def\XINT_expr_func_last #1#2#3% will not work in \xintNewExpr if macro param involved {\expandafter #1\expandafter #2\csname.=\expandafter\XINT_expr_func_lasta \romannumeral-`0\XINT_expr_unlock #3,^\endcsname }% \def\XINT_expr_func_lasta #1,#2% {\if ^#2 #1\expandafter\xint_gobble_ii\fi \XINT_expr_func_lasta #2}% \let\XINT_flexpr_func_last\XINT_expr_func_last \let\XINT_iiexpr_func_last\XINT_expr_func_last \def\XINT_expr_func_odd #1#2#3% {\expandafter #1\expandafter #2\csname.=\xintOdd{\XINT_expr_unlock #3}\endcsname}% \let\XINT_flexpr_func_odd\XINT_expr_func_odd \def\XINT_iiexpr_func_odd #1#2#3% {\expandafter #1\expandafter #2\csname.=\xintiiOdd{\XINT_expr_unlock #3}\endcsname}% \def\XINT_expr_func_even #1#2#3% {\expandafter #1\expandafter #2\csname.=\xintEven{\XINT_expr_unlock #3}\endcsname}% \let\XINT_flexpr_func_even\XINT_expr_func_even \def\XINT_iiexpr_func_even #1#2#3% {\expandafter #1\expandafter #2\csname.=\xintiiEven{\XINT_expr_unlock #3}\endcsname}% \def\XINT_expr_func_nuple #1#2#3% {\expandafter #1\expandafter #2\csname .=\XINT_expr_unlock #3\endcsname }% \let\XINT_flexpr_func_nuple\XINT_expr_func_nuple \let\XINT_iiexpr_func_nuple\XINT_expr_func_nuple \def\XINT_expr_func_reversed #1#2#3% {\expandafter #1\expandafter #2\csname .=\xintReversed::csv {\XINT_expr_unlock #3}\endcsname }% \let\XINT_flexpr_func_reversed\XINT_expr_func_reversed \let\XINT_iiexpr_func_reversed\XINT_expr_func_reversed \def\xintReversed::csv #1% should be done directly, of course {\xintListWithSep,{\xintRevWithBraces {\xintCSVtoListNonStripped{#1}}}}% % \end{macrocode} % % \subsection{f-expandable versions of the SeqB::csv routines, for % \csh{xintNewExpr}} % % \subsubsection{\csh{xintSeqB:f:csv}} % \lverb|Produces in f-expandable way. If the step is zero, gives empty result % except if start and end coincide.| % \begin{macrocode} \def\xintSeqB:f:csv #1#2% {\expandafter\XINT_seqb:f:csv \expandafter{\romannumeral0\xintraw{#2}}{#1}}% \def\XINT_seqb:f:csv #1#2{\expandafter\XINT_seqb:f:csv_a\romannumeral-`0#2#1!}% \def\XINT_seqb:f:csv_a #1#2;#3;#4!{% \expandafter\xint_gobble_i\romannumeral-`0% \xintifCmp {#3}{#4}\XINT_seqb:f:csv_bl\XINT_seqb:f:csv_be\XINT_seqb:f:csv_bg #1{#3}{#4}{}{#2}}% \def\XINT_seqb:f:csv_be #1#2#3#4#5{,#2}% \def\XINT_seqb:f:csv_bl #1{\if #1p\expandafter\XINT_seqb:f:csv_pa\else \xint_afterfi{\expandafter,\xint_gobble_iv}\fi }% \def\XINT_seqb:f:csv_pa #1#2#3#4{\expandafter\XINT_seqb:f:csv_p\expandafter {\romannumeral0\xintadd{#4}{#1}}{#2}{#3,#1}{#4}}% \def\XINT_seqb:f:csv_p #1#2% {% \xintifCmp {#1}{#2}\XINT_seqb:f:csv_pa\XINT_seqb:f:csv_pb\XINT_seqb:f:csv_pc {#1}{#2}% }% \def\XINT_seqb:f:csv_pb #1#2#3#4{#3,#1}% \def\XINT_seqb:f:csv_pc #1#2#3#4{#3}% \def\XINT_seqb:f:csv_bg #1{\if #1n\expandafter\XINT_seqb:f:csv_na\else \xint_afterfi{\expandafter,\xint_gobble_iv}\fi }% \def\XINT_seqb:f:csv_na #1#2#3#4{\expandafter\XINT_seqb:f:csv_n\expandafter {\romannumeral0\xintadd{#4}{#1}}{#2}{#3,#1}{#4}}% \def\XINT_seqb:f:csv_n #1#2% {% \xintifCmp {#1}{#2}\XINT_seqb:f:csv_nc\XINT_seqb:f:csv_nb\XINT_seqb:f:csv_na {#1}{#2}% }% \def\XINT_seqb:f:csv_nb #1#2#3#4{#3,#1}% \def\XINT_seqb:f:csv_nc #1#2#3#4{#3}% % \end{macrocode} %\subsubsection{\csh{xintiiSeqB:f:csv}} % \lverb|Produces in f-expandable way. If the step is zero, gives empty result % except if start and end coincide.| % \begin{macrocode} \def\xintiiSeqb:f:csv #1#2% {\expandafter\XINT_iiseqb:f:csv \expandafter{\romannumeral-`0#2}{#1}}% \def\XINT_iiseqb:f:csv #1#2{\expandafter\XINT_iiseqb:f:csv_a\romannumeral-`0#2#1!}% \def\XINT_iiseqb:f:csv_a #1#2;#3;#4!{% \expandafter\xint_gobble_i\romannumeral-`0% \xintSgnFork{\XINT_Cmp {#3}{#4}}% \XINT_iiseqb:f:csv_bl\XINT_seqb:f:csv_be\XINT_iiseqb:f:csv_bg #1{#3}{#4}{}{#2}}% \def\XINT_iiseqb:f:csv_bl #1{\if #1p\expandafter\XINT_iiseqb:f:csv_pa\else \xint_afterfi{\expandafter,\xint_gobble_iv}\fi }% \def\XINT_iiseqb:f:csv_pa #1#2#3#4{\expandafter\XINT_iiseqb:f:csv_p\expandafter {\romannumeral0\xintiiadd{#4}{#1}}{#2}{#3,#1}{#4}}% \def\XINT_iiseqb:f:csv_p #1#2% {% \xintSgnFork{\XINT_Cmp {#1}{#2}}% \XINT_iiseqb:f:csv_pa\XINT_iiseqb:f:csv_pb\XINT_iiseqb:f:csv_pc {#1}{#2}% }% \def\XINT_iiseqb:f:csv_pb #1#2#3#4{#3,#1}% \def\XINT_iiseqb:f:csv_pc #1#2#3#4{#3}% \def\XINT_iiseqb:f:csv_bg #1{\if #1n\expandafter\XINT_iiseqb:f:csv_na\else \xint_afterfi{\expandafter,\xint_gobble_iv}\fi }% \def\XINT_iiseqb:f:csv_na #1#2#3#4{\expandafter\XINT_iiseqb:f:csv_n\expandafter {\romannumeral0\xintiiadd{#4}{#1}}{#2}{#3,#1}{#4}}% \def\XINT_iiseqb:f:csv_n #1#2% {% \xintSgnFork{\XINT_Cmp {#1}{#2}}% \XINT_seqb:f:csv_nc\XINT_seqb:f:csv_nb\XINT_iiseqb:f:csv_na {#1}{#2}% }% % \end{macrocode} %\subsubsection{\csh{XINTinFloatSeqB:f:csv}} % \lverb|Produces in f-expandable way. If the step is zero, gives empty result % except if start and end coincide. This is all for \xintNewExpr.| % \begin{macrocode} \def\XINTinFloatSeqB:f:csv #1#2{\expandafter\XINT_flseqb:f:csv \expandafter {\romannumeral0\XINTinfloat [\XINTdigits]{#2}}{#1}}% \def\XINT_flseqb:f:csv #1#2{\expandafter\XINT_flseqb:f:csv_a\romannumeral-`0#2#1!}% \def\XINT_flseqb:f:csv_a #1#2;#3;#4!{% \expandafter\xint_gobble_i\romannumeral-`0% \xintifCmp {#3}{#4}\XINT_flseqb:f:csv_bl\XINT_seqb:f:csv_be\XINT_flseqb:f:csv_bg #1{#3}{#4}{}{#2}}% \def\XINT_flseqb:f:csv_bl #1{\if #1p\expandafter\XINT_flseqb:f:csv_pa\else \xint_afterfi{\expandafter,\xint_gobble_iv}\fi }% \def\XINT_flseqb:f:csv_pa #1#2#3#4{\expandafter\XINT_flseqb:f:csv_p\expandafter {\romannumeral0\XINTinfloatadd{#4}{#1}}{#2}{#3,#1}{#4}}% \def\XINT_flseqb:f:csv_p #1#2% {% \xintifCmp {#1}{#2}% \XINT_flseqb:f:csv_pa\XINT_flseqb:f:csv_pb\XINT_flseqb:f:csv_pc {#1}{#2}% }% \def\XINT_flseqb:f:csv_pb #1#2#3#4{#3,#1}% \def\XINT_flseqb:f:csv_pc #1#2#3#4{#3}% \def\XINT_flseqb:f:csv_bg #1{\if #1n\expandafter\XINT_flseqb:f:csv_na\else \xint_afterfi{\expandafter,\xint_gobble_iv}\fi }% \def\XINT_flseqb:f:csv_na #1#2#3#4{\expandafter\XINT_flseqb:f:csv_n\expandafter {\romannumeral0\XINTinfloatadd{#4}{#1}}{#2}{#3,#1}{#4}}% \def\XINT_flseqb:f:csv_n #1#2% {% \xintifCmp {#1}{#2}% \XINT_seqb:f:csv_nc\XINT_seqb:f:csv_nb\XINT_flseqb:f:csv_na {#1}{#2}% }% % \end{macrocode} % \subsection{\csh{xintNewExpr}, \csh{xintNewIExpr}, \csh{xintNewFloatExpr}, % \csh{xintNewIIExpr}} % \subsubsection{\csh{xintApply::csv}} % \lverb|Don't ask me what this if for. I wrote it in June, and we are now % late October.| % \begin{macrocode} \def\xintApply::csv #1#2% {\expandafter\XINT_applyon::_a\expandafter {\romannumeral-`0#2}{#1}}% \def\XINT_applyon::_a #1#2{\XINT_applyon::_b {#2}{}#1,,}% \def\XINT_applyon::_b #1#2#3,{\expandafter\XINT_applyon::_c \romannumeral-`0#3,{#1}{#2}}% \def\XINT_applyon::_c #1{\if #1,\expandafter\XINT_applyon::_end \else\expandafter\XINT_applyon::_d\fi #1}% \def\XINT_applyon::_d #1,#2{\expandafter\XINT_applyon::_e\romannumeral-`0#2{#1},{#2}}% \def\XINT_applyon::_e #1,#2#3{\XINT_applyon::_b {#2}{#3, #1}}% \def\XINT_applyon::_end #1,#2#3{\xint_secondoftwo #3}% % \end{macrocode} % \subsubsection{\csh{xintApply:::csv}} % \begin{macrocode} \def\xintApply:::csv #1#2#3% {\expandafter\XINT_applyon:::_a\expandafter{\romannumeral-`0#2}{#1}{#3}}% \def\XINT_applyon:::_a #1#2#3{\XINT_applyon:::_b {#2}{#3}{}#1,,}% \def\XINT_applyon:::_b #1#2#3#4,% {\expandafter\XINT_applyon:::_c \romannumeral-`0#4,{#1}{#2}{#3}}% \def\XINT_applyon:::_c #1{\if #1,\expandafter\XINT_applyon:::_end \else\expandafter\XINT_applyon:::_d\fi #1}% \def\XINT_applyon:::_d #1,#2#3% {\expandafter\XINT_applyon:::_e\expandafter {\romannumeral-`0\xintApply::csv {#2{#1}}{#3}},{#2}{#3}}% \def\XINT_applyon:::_e #1,#2#3#4{\XINT_applyon:::_b {#2}{#3}{#4, #1}}% \def\XINT_applyon:::_end #1,#2#3#4{\xint_secondoftwo #4}% % \end{macrocode} % \subsubsection{\csh{XINT_expr_RApply::csv}, \csh{XINT_expr_LApply::csv}, % \csh{XINT_expr_RLApply:::csv}} % \lverb|The #1 in _Rapply will start with a ~. No risk of glueing to previous % ~expandafter during the \scantokens.| % \begin{macrocode} \def\XINT_expr_RApply::csv #1#2#3#4% {~xintApply::csv{~expandafter#1~xint_exchangetwo_keepbraces{#4}}{#3}}% \def\XINT_expr_LApply::csv #1#2#3#4{~xintApply::csv{#1{#3}}{#4}}% \def\XINT_expr_RLApply:::csv #1#2{~xintApply:::csv{#1}}% % \end{macrocode} % \subsubsection{Mysterious stuff} % \lverb|actually I dimly remember that the whole point is to allow maximal % evaluation as long as macro parameters not encountered. Else it would be % easier. \xintNewIExpr \f [2]{[12] #1+#2+3*6*1} will correctly compute the 18. % % 1.1a re-establishes the trick with \toks0\expandafter{\the\toks0\expandafter % etc...} with *no* space after 0. I don't know why it was removed at some % point before releasing 1.1, but \XINT_expr_redefinemacros is even bigger % without the trick.| % \begin{macrocode} \catcode`~ 12 % by the way, catcode is set to 3 in \XINTsetupcatcodes \catcode`$ 12 % $ \def\XINT_xptwo_getab_b #1#2!#3% {\expandafter\XINT_xptwo_getab_c\romannumeral-`0#3!#1{#1#2}}% \def\XINT_xptwo_getab_c #1#2!#3#4#5#6{#1#3{#5}{#6}{#1#2}{#4}}% \def\xint_ddfork #1$$#2#3\krof {#2}% $$ \def\XINT_NEfork #1#2{\xint_ddfork #1#2\XINT_expr_RLApply:::csv #1$\XINT_expr_RApply::csv% $ $#2\XINT_expr_LApply::csv% $ $${\XINT_NEfork_nn #1#2}% $$ \krof }% \def\XINT_NEfork_nn #1#2#3#4{% \if #1##\xint_dothis{#3}\fi \if #1~\xint_dothis{#3}\fi \if #2##\xint_dothis{#3}\fi \if #2~\xint_dothis{#3}\fi \xint_orthat {\csname #4NE\endcsname }% }% \def\XINT_NEfork_one #1#2!#3#4#5#6{% \if ###1\xint_dothis {#3}\fi \if ~#1\xint_dothis {#3}\fi \if $#1\xint_dothis {~xintApply::csv{#3#5}}\fi %$ \xint_orthat {\csname #4NE\endcsname #6}{#1#2}% }% \toks0 {}% \xintFor #1 in {DivTrunc,iiDivTrunc,iiDivRound,Mod,iiMod,iRound,Round,iTrunc,Trunc,% Lt,Gt,Eq,LtorEq,GtorEq,Neq,AND,OR,XOR,iQuo,iRem,Add,Sub,Mul,Div,Pow,E,% iiAdd,iiSub,iiMul,iiPow,iiQuo,iiRem,iiE,SeqA::csv,iiSeqA::csv}\do {\toks0 \expandafter{\the\toks0% no space! (makes shorter macro in the end) \expandafter\let\csname xint#1NE\expandafter\endcsname\csname xint#1\expandafter \endcsname\expandafter\def\csname xint#1\endcsname ####1####2{% \expandafter\XINT_NEfork \romannumeral-`0\expandafter\XINT_xptwo_getab_b \romannumeral-`0####2!{####1}{~xint#1}{xint#1}}% }% }% \xintFor #1 in {Num,Irr,Abs,iiAbs,Sgn,iiSgn,TFrac,Floor,iFloor,Ceil,iCeil,% Sqr,iiSqr,iiSqrt,iiSqrtR,iiIsZero,iiIsNotZero,iiifNotZero,iiifSgn,% Odd,Even,iiOdd,iiEven,Opp,iiOpp,iiifZero,Fac,iFac,Bool,Toggle}\do {\toks0 \expandafter{\the\toks0% \expandafter\let\csname xint#1NE\expandafter\endcsname\csname xint#1\expandafter \endcsname\expandafter\def\csname xint#1\endcsname ####1{% \expandafter\XINT_NEfork_one\romannumeral-`0####1!{~xint#1}{xint#1}{}{}}% }% }% \xintFor #1 in {Add,Sub,Mul,Div,Power,E,Mod,SeqA::csv}\do {\toks0 \expandafter{\the\toks0% \expandafter\let\csname XINTinFloat#1NE\expandafter\endcsname \csname XINTinFloat#1\expandafter\endcsname \expandafter\def\csname XINTinFloat#1\endcsname ####1####2{% \expandafter\XINT_NEfork \romannumeral-`0\expandafter\XINT_xptwo_getab_b \romannumeral-`0####2!{####1}{~XINTinFloat#1}{XINTinFloat#1}}% }% }% \xintFor #1 in {XINTinFloatdigits,XINTinFloatFracdigits,XINTinFloatSqrtdigits}\do {\toks0 \expandafter{\the\toks0% \expandafter\let\csname #1NE\expandafter\endcsname\csname #1\expandafter \endcsname\expandafter\def\csname #1\endcsname ####1{\expandafter \XINT_NEfork_one\romannumeral-`0####1!{~#1}{#1}{}{}}% }% }% \xintFor #1 in {xintSeq::csv,xintiiSeq::csv,XINTinFloatSeq::csv}\do {\toks0 \expandafter{\the\toks0% no space \expandafter\let\csname #1NE\expandafter\endcsname\csname #1\expandafter \endcsname\expandafter\def\csname #1\endcsname ####1####2{% \expandafter\XINT_NEfork \romannumeral-`0\expandafter\XINT_xptwo_getab_b \romannumeral-`0####2!{####1}{$noexpand$#1}{#1}}% }% }% \xintFor #1 in {xintSeqB,xintiiSeqB,XINTinFloatSeqB}\do {\toks0 \expandafter{\the\toks0% no space \expandafter\let\csname #1::csvNE\expandafter\endcsname\csname #1::csv\expandafter \endcsname\expandafter\def\csname #1::csv\endcsname ####1####2{% \expandafter\XINT_NEfork \romannumeral-`0\expandafter\XINT_xptwo_getab_b \romannumeral-`0####2!{####1}{$noexpand$#1:f:csv}{#1::csv}}% }% }% \toks0 \expandafter{\the\toks0 \let\XINTinFloatNE\XINTinFloat \def\XINTinFloat [##1]##2{% not ultimately general, but got tired \expandafter\XINT_NEfork_one \romannumeral-`0##2!{~XINTinFloat[##1]}{XINTinFloat}{}{[##1]}}% \let\XINTinFloatSqrtNE\XINTinFloatSqrt \def\XINTinFloatSqrt [##1]##2{% \expandafter\XINT_NEfork_one \romannumeral-`0##2!{~XINTinFloatSqrt[##1]}{XINTinFloatSqrt}{}{[##1]}}% }% \xintFor #1 in {ANDof,ORof,XORof,iiMaxof,iiMinof,iiSum,iiPrd, GCDof,LCMof,Sum,Prd,Maxof,Minof}\do {\toks0 \expandafter{\the\toks0\expandafter\def\csname xint#1:csv\endcsname {~xint#1:csv}}% }% \xintFor #1 in {XINTinFloatMaxof,XINTinFloatMinof,XINTinFloatSum,XINTinFloatPrd}\do {\toks0 \expandafter{\the\toks0\expandafter\def\csname #1:csv\endcsname {~#1:csv}}% }% \expandafter\def\expandafter\XINT_expr_redefinemacros\expandafter {\the\toks0 \def\XINT_flexpr_noopt {\expandafter\XINT_flexpr_withopt_b\expandafter-% \romannumeral0\xintbarefloateval }% \def\XINT_flexpr_withopt_b ##1##2% {\expandafter\XINT_flexpr_wrap\csname .;##1.=\XINT_expr_unlock ##2\endcsname }% \def\XINT_expr_unlock_sp ##1.;##2##3.=##4!{\if -##2\expandafter\xint_firstoftwo \else\expandafter\xint_secondoftwo\fi \XINTdigits{{##2##3}}{##4}}% \def\XINT_expr_print ##1{\expandafter\xintSPRaw::csv\expandafter {\romannumeral-`0\XINT_expr_unlock ##1}}% \def\XINT_iiexpr_print ##1{\expandafter\xintCSV::csv\expandafter {\romannumeral-`0\XINT_expr_unlock ##1}}% \def\XINT_boolexpr_print ##1{\expandafter\xintIsTrue::csv\expandafter {\romannumeral-`0\XINT_expr_unlock ##1}}% \def\xintCSV::csv {~xintCSV::csv }% spaces to separate from possible catcode 11 \def\xintSPRaw::csv {~xintSPRaw::csv }% stuff after \def\xintPFloat::csv {~xintPFloat::csv }% \def\xintIsTrue::csv {~xintIsTrue::csv }% \def\xintRound::csv {~xintRound::csv }% % \def\XINTinFloat::csv {~XINTinFloat::csv }% should not be needed. \def\xintReversed::csv {~xintReversed::csv }% \def\xintListSel:csv {~xintListSel:csv }% }% \toks0 {}% \def\xintNewExpr {\xint_NewExpr\xinttheexpr }% \def\xintNewFloatExpr {\xint_NewExpr\xintthefloatexpr }% \def\xintNewIExpr {\xint_NewExpr\xinttheiexpr }% % \let\xintNewNumExpr\xintNewIExpr % made obsolete for 1.1 release \def\xintNewIIExpr {\xint_NewExpr\xinttheiiexpr }% \def\xintNewBoolExpr {\xint_NewExpr\xinttheboolexpr }% % \end{macrocode} % \begin{macrocode} \def\XINT_newexpr_finish #1>{\noexpand\romannumeral-`0}% \def\xint_NewExpr #1#2[#3]% {% \begingroup \ifcase #3\relax \toks0 {\xdef #2}% \or \toks0 {\xdef #2##1}% \or \toks0 {\xdef #2##1##2}% \or \toks0 {\xdef #2##1##2##3}% \or \toks0 {\xdef #2##1##2##3##4}% \or \toks0 {\xdef #2##1##2##3##4##5}% \or \toks0 {\xdef #2##1##2##3##4##5##6}% \or \toks0 {\xdef #2##1##2##3##4##5##6##7}% \or \toks0 {\xdef #2##1##2##3##4##5##6##7##8}% \or \toks0 {\xdef #2##1##2##3##4##5##6##7##8##9}% \fi \xintexprSafeCatcodes \XINT_NewExpr #1% }% \catcode`~ 13 \catcode`@ 14 \catcode`\% 6 \catcode`# 12 \catcode`$ 11 @ $ \def\XINT_NewExpr %1%2@ {@ \def\XINT_tmpa %%1%%2%%3%%4%%5%%6%%7%%8%%9{%2}@ \XINT_expr_redefinemacros \def~{$noexpand$}@ \catcode`: 11 \catcode`_ 11 \catcode`# 12 \catcode`~ 13 \escapechar 126 \endlinechar -1 \everyeof {\noexpand }@ \edef\XINT_tmpb {\scantokens\expandafter {\romannumeral-`0\expandafter%1\XINT_tmpa {#1}{#2}{#3}{#4}{#5}{#6}{#7}{#8}{#9}\relax}@ }@ \escapechar 92 \catcode`# 6 \catcode`$ 0 @ $ \the\toks0 {\scantokens\expandafter{\expandafter\XINT_newexpr_finish\meaning\XINT_tmpb}}@ \endgroup }@ \catcode`% 14 \let\xintexprRestoreCatcodes\empty \def\xintexprSafeCatcodes {% \edef\xintexprRestoreCatcodes {% \catcode59=\the\catcode59 % ; \catcode34=\the\catcode34 % " \catcode63=\the\catcode63 % ? \catcode124=\the\catcode124 % | \catcode38=\the\catcode38 % & \catcode33=\the\catcode33 % ! \catcode93=\the\catcode93 % ] \catcode91=\the\catcode91 % [ \catcode94=\the\catcode94 % ^ \catcode95=\the\catcode95 % _ \catcode47=\the\catcode47 % / \catcode41=\the\catcode41 % ) \catcode40=\the\catcode40 % ( \catcode42=\the\catcode42 % * \catcode43=\the\catcode43 % + \catcode62=\the\catcode62 % > \catcode60=\the\catcode60 % < \catcode58=\the\catcode58 % : \catcode46=\the\catcode46 % . \catcode45=\the\catcode45 % - \catcode44=\the\catcode44 % , \catcode61=\the\catcode61 % = \catcode32=\the\catcode32\relax % space }% \catcode59=12 % ; \catcode34=12 % " \catcode63=12 % ? \catcode124=12 % | \catcode38=4 % & \catcode33=12 % ! \catcode93=12 % ] \catcode91=12 % [ \catcode94=7 % ^ \catcode95=8 % _ \catcode47=12 % / \catcode41=12 % ) \catcode40=12 % ( \catcode42=12 % * \catcode43=12 % + \catcode62=12 % > \catcode60=12 % < \catcode58=12 % : \catcode46=12 % . \catcode45=12 % - \catcode44=12 % , \catcode61=12 % = \catcode32=10 % space }% \let\XINT_tmpa\relax \let\XINT_tmpb\relax \let\XINT_tmpc\relax \XINT_restorecatcodes_endinput% % \end{macrocode} % \DeleteShortVerb{\|} % \MakePercentComment % %<*dtx> \StoreCodelineNo {xintexpr} \def\mymacro #1{\mymacroaux #1} \def\mymacroaux #1#2{\strut \csname #1nameimp\endcsname:& \dtt{ #2.}\tabularnewline } \indent \begin{tabular}[t]{r@{}r} \xintApplyInline\mymacro\storedlinecounts \end{tabular} \def\mymacroaux #1#2{#2}% % \parbox[t]{10cm}{Total number of code lines: \dtt{\the\numexpr \xintListWithSep+{\xintApply\mymacro\storedlinecounts}\relax }. Each package starts with circa \dtt{50} lines dealing with catcodes, package identification and reloading management, also for Plain \TeX\strut. Version {\xintbndlversion} of {\xintbndldate}.\par} \CharacterTable {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z Digits \0\1\2\3\4\5\6\7\8\9 Exclamation \! Double quote \" Hash (number) \# Dollar \$ Percent \% Ampersand \& Acute accent \' Left paren \( Right paren \) Asterisk \* Plus \+ Comma \, Minus \- Point \. Solidus \/ Colon \: Semicolon \; Less than \< Equals \= Greater than \> Question mark \? Commercial at \@ Left bracket \[ Backslash \\ Right bracket \] Circumflex \^ Underscore \_ Grave accent \` Left brace \{ Vertical bar \| Right brace \} Tilde \~} \CheckSum {25558} \makeatletter\check@checksum\makeatother \Finale %% End of file xint.dtx