
L e c t u r e r
Author: Paul Isambert

zappathustra@free.fr

Date: 07/23/2010
Version: 1.0

Lecturer creates presentations mainly based on PDF features. It doesn't manipulate TEX's
typesetting process in a complex way to give the impression that slides are being layered,
but use PDF's so-called optional content to produce exactly this: layers. It was originally
meant to work with plain TEX, but since writing for plain is one step away from writing for
any format, it is format-independent, though the heavy hand it lays on the output routine
might make it conflict with other code. In plain TEX, things are innocuous; in LaTEX, though
not thoroughly tested, Lecturer works good, provided it is not in conflict with other packages;
since it is pretty self-contained for what it's designed, things should work nicely. Finally,
Lecturer seems to be usable with ConTEXt MkII, but not MkIV (except perhaps to make a
handout). I welcome comments on use of Lecturer in those formats, so I can improve it.

As for engines, Lecturer currently works with pdfTEX and LuaTEX only, because the code
is dependent on pdfTEX's primitives. My apologies to XeTEX users. I welcome drivers.

The main drawback in using Lecturer is it requires a `conforming reader,' as they say at
Adobe, to work properly, that is a reader that understands advanced PDF code and a little bit
of JavaScript. Which basically means Adobe's reader, available mostly everywhere, and free,
but `as in free beer,' to make a quote.

The main advantage is that typesetting (TEX) and presentation flow (PDF) are neatly
divided: each slide is a page typeset by TEX and manipulated on the screen by PDF code. Beside
the intellectual satisfaction, there are more direct benefits: for instance, the handout is
already in the slide, even if it's not directly prepared as such. Better still, there's no need to
prepare the manuscript in any way to adapt to the requirements of a presentation. A list or a
table, for instance, can be displayed stepwise without changing the usual way you type them
in: interspersed \step commands will do.

If you don't feel like
reading 30 pages of
documentation, switch to
the demonstrations
distributed with Lecturer.
For an overview, go to the
the Demonstrations
section.

And the best feature in Lecturer, as far as I'm concerned, is that you can put anything
anywhere with a few commands.

Basic things

Loading
Lecturer should be loaded as is customary in the format at work, i.e. in plain TeX:

\input lecturer

in LaTEX:

\usepackage{lecturer}

and in ConTEXt:

\usemodule[lecturer]

First things first
In Lecturer, the content of a document is organized in slides, with steps tomake things appear
progressively on the screen when you're in fullscreen mode. A (default) slide is anything that
appears between the following two commands:

\slide [<attributes>]

\endslide In LaTEX you can use \begin{slide} and \end{slide}, and in ConTEXt \startslide and
\stopslide. The \slide/\endslide pair can be used in all formats, though, which is why I'll
use \slide and \endslide for the examples in this documentation.

\step [<attributes>]

To make the content of a slide appear progressively on the screen, this command is used To advance in the
presentation, use either a
left click or a right arrow
key; to move backward, use
a right click or a left arrow;
and you can also use
\nextstep and \prevstep
with buttons.

where necessary. By default, it does nothing else, i.e. it doesn't disturb typesetting and
simply creates the flow of the presentation with PDF code. Here's an example:

\slide

Something visible.

\step My first proposition.

\step And then... \step this.

\endslide

which on the screen produces a paragraph with `Something visible. My first proposition.' and
another one with `And then... this.' as is usual with TEX. Except these paragraphs don't appear
at once.

A \stepmeans you'll have to click to move on, and what follows it will appear on screen,
whereas it is otherwise invisible (by default at least). In the example, `Something visible' is

2

already on the screen, since it is not in the scope of a \step command, but the rest appears
piecewise, and it takes three clicks to reach the end of the slide. Conversely, when moving
backward, either with a right click or a left arrow key, steps disappear.

The \step command affects the content of what follows only, up to the next \step or to
the slide's end. Something between the beginning of the slide and the first step is always
visible.

Everything between \slide and \endslide is only one page. Steps appear gradually
because they are instructed to do so, but they are on the same page, as physically as is possible
for a collection of bytes (which can be printed, though).

\slideno

\slidenumber The first of those is a count register holding the slide's number (i.e. \count0). The second is a
macro that returns its value.

Now you know the best part of how things work. The rest, i.e. the optional <attributes>

and a bunch of other things, is only decoration, although it might be of interest too to enliven
your slides.

Presentation and handout
Lecturer allows you to easily produce a presentation for screen and a handout out of the same
file. The output depends on the value of the mode attribute in the job parameter. If it is set to See Attributes for the job
presentation, then steps behave as defined above. If it is set to handout, then only those
steps that have the value true for the handout parameter appear on the page. Other steps
are still present, but hidden; they can be turned on in the reader's layers panel, though. By
default, all steps are visible in a handout. The following three commands take a more radical
way.

\presentationonly <material>

In presentationmode, <material> is simply typeset. In handoutmode, however, it is gobbled.
Thus, it takes no space on the page, and can't be retrieved.

\handoutonly <material>

The same thing the other way around.

\presentationorhandout <presentation><handout>

In presentationmode, the first argument is executed, and the second one in handoutmode.
Note the difference between

\step A\step[handout=false] B\step C

and

\step A\presentationonly{\step B}\step C

3

In presentation mode, both will produce `ABC'. In handout mode, though, the first example
will produce `A C', with `B' still retrievable from the layers panel, and the second example In Adobe Reader, the

layers panel is in the
navigation panel on the
left, represented by two
squares overlapping,
usually below thumbnails
and bookmarks.

will produce `AC', with no `B' anywhere.
Both \presentationonly and \handoutonly ignore any space following their argument

when they gobble it.

Settings things globally and locally

Slides and steps can have attributes that modify their behavior. These attributes can be set
locally or globally, meaning they either affect the current slide/step or all slides/steps or all
slides/steps belonging to a certain type defined with \setslide/\setstep.

The way attributes are used is a matter of inheritance. At the top of the hierarchy,
there are the slide and step parameters. Attributes to those parameters aplly to all slides
and steps, unless they are given other values lower in the hierarchy. At the bottom of the
hierarchy, each individual slide or step can be followed by attribute settings between brackets.
The values given there override all inherited values, but they hold for the current slide or step
only. In between, new types of slides and steps can be defined; they inherit attributes from
the corresponding parameters, and transmit their own attributes to slides and steps of their
kind.

Global settings

\setparameter <parameter>:
This is used to set the values to attributes for <parameter>. The syntax for the attributes, There are only three

parameters in Lecturer:
job, slide, and step.
They're sufficient to build a
presentation, and don't
need to be created
beforehand. Nonetheless,
YaX's parameter syntax is
used everywhere.

which is used in many other places in Lecturer, is as follows:

\setparameter parameter:

 attribute1 = valueA

 attribute2 attribute3 = valueB

 ...

\par

You might find this syntax somewhat bizarre, but it is handy. It is the YaX syntax, and if
you want to know more about it, see the YaX documentation. Here's how it works: after
\setparameter you type either slide or step (or job, as we'll see later). Then a colon, which
might be preceded by a space. Then you type the name of an attribute, or the names of several
attributes separated by a space, and then a `=' sign. Finally you give your value, which is
ended by the following space. If a value must contain a space, or if it's empty, you must give
it between braces or double quotes, as in:

4

\setparameter step:

 attribute1 = "my value"

 attribute2 = {}

 ...

Or, if a value begins or ends with a control sequence, it should be enclosed between braces or If you have any doubt, you
can always rely on braces
and quotes.

double quotes again, unless it is made of a single control sequence. Thus:

\setparameter step:

 attribute3 = "\command{argument}"

 attribute4 = \controlsequence

 ...

Finally, and most importantly, a \setparameter declaration is ended by \par which, and
that's the cool thing, can be a blank line, since TEX inserts a \par at each blank line.

The \setparameter declaration can be used as often as you wish; there's no need to
respecify each attribute on each declaration: they retain their last declared value, which
Lecturer uses when it needs it.

Local settings
Attributes are set locally when they are given between brackets after the \slide or \step
commands. They will be used for this particular \slide or \step. The syntax is the custom Quotes and braces are

removed anyway. So you
can use them too, although
they're completely useless:
the delimitator is the
comma.

key=value fashion: first the attribute, then the value, then a comma. Here you can forget
what's just been said about values: no need for quotes or braces. On the other hand, you
can't set several attributes at once, each one must take its own value.

Thus the following step

\step[myatt = myval] And now something terrific...

will have the value myval for the attribute myatt (note how unwanted space is ignored),
instead of the value given in the \setparameter declaration... or in its type, which we turn to
right now (and then I promise we'll see what those attributes are). Any space after the right
bracket is ignored, so that you don't have to put % signs here and there.

Type settings
You can create new types of slides or steps and set their parameters with the \setslide and
\setstep commands respectively. Note that there is no difference between creating and
setting the attributes of a new slide/step, and simply setting the attributes to an already
created slide/step : the same commands are used in both cases.

\setslide <list of slides>

The \setslide command sets parameters for all slides in the space-separated <list of

slides> (and creates them if they don't exist yet), as in:

5

\setslide{myslide myotherslide}

 attribute1 = valueA

 attribute2 = valueB

 ...

\par

To use the slide myslide, in plain TEX you call \myslide and \endmyslide, in LaTEX you do
\begin{myslide} and \end{myslide}, and in ConTEXt you use \startmyslide and \stop-
myslide. Actually \myslide and \endmyslide work in all three formats, but they're not
customary.

Slides thus created inherit values from the slide parameter, except when new values
are specified. In our example, \myslide and \myotherslide will have valueA and valueB for
attribute1 and attribute2 respectively, instead of the values defined for those attributes
in the \setparameter declaration. Both commands can still be followed by local settings
between brackets, and they'll override the ones given here. So in

\myslide[attribute2=myval]

...

\endmyslide

\myslide will have the values myval for attribute2, valueA for attribute1, and the values
defined in the \setparameter declaration for all the other attributes.

\setstep <list of steps>

This takes a list of commands, i.e. control sequences, as its first argument, and then attributes
and values as in \setparameter. The commands are just concatenated, with nothing to
separate them. Thus

\setstep{\mystep \myotherstep}

 attribute1 = valueA

 attribute2 = valueB

 ...

\par

creates or modifies \mystep and \myotherstep, which in a slide will create a step with valueA

and valueB for attribute1 and attribute2 respectively, overriding the value of the step

parameter. The commands can still take values between brackets to set attributes locally.

6

Attributes for slides

The attributes that follow are to be used in the \setparameter declaration for the slide

parameter, in the \setslide declaration, and as optional arguments to the \slide command
and equivalent commands created with \setslide, for which I'll use \slide generically.

PDF and navigation
First of all, if a \slide command takes anything between brackets, and if among it there
is something that doesn't contain a `=' sign, i.e. something that is obviously no attribute
setting, then this thing, let's call it a string, becomes the slide's title, and it is recorded in a
macro called \slidetitle, which you can use in the slide itself. It is also used in bookmarks
(if the slide is to be bookmarked), which leads us to our first attribute.

pdftitle <string> (Default: slide's title)
Suppose you want a slide with title Something about \TeX. Then if that string is used in a
bookmark, the bookmark won't look very good, because of the TEX operations contained in
the \TeX command, which bookmarks don't understand, since bookmarks are pretty limited.
This attribute sets the title of the slide for use in bookmarks (and in the layers panel too). It Layers, i.e. steps, are

grouped in the layers panel
under the heading of the
slide where they belong.

doesn't make much sense except as a local attribute, unless you define it with a command
whose definition changes from slide to slide, involving for instance a counter.

I a slide has no title, pdf or not, `Page n' is used in bookmarks and layers, but the
\slidetitle command remains empty (not undefined).

bookmark <true|false> (Default: true)
If this is set to true, a bookmark is created with the slide's title.

bookmarklevel <number> (Default: 1)
The level of the slide's bookmark. The higher the number, the lower the slide in the hierarchy. See Creating bookmarks
The number needs not be an integer.

bookmarkstyle <bookmark options> (Default: none)
The style of the bookmark, i.e. the optional argument in the \createbookmark command.

anchor <name> (Default: none)
An anchor to navigate to the slide with a \goto command. This the optional <anchor> in You can actually specify the

anchor for several slides at
once, provided the value is
a command that holds a
variable changing with
slides.

\createbookmark. Since two anchors can't have the same name, this attribute can be used
with \slide only, not in the \setparameter and \setslide declarations.

Dimensions

width <dimension> (Default: 15cm)
The width of the slide.

7

height <dimension> (Default: 12cm)
The height of the slide.

hsize <dimension> (Default: slide's width minus twice its left)
The width of lines.

left <dimension> (Default: 2cm)
The left margin, i.e. the distance between the slide's left border and the textblock.

right <dimension> (Default: unspecified)
The rightmargin, i.e. the distance between the textblock and the slide's left border. If present,
this parameter is always obeyed, in the following way: if neither left nor hsize is specified,
left is set to the value of right and hsize is computed accordingly; if one is specified but Thus, to center the

textblock on the slide,
specify the right attribute
only. The same holds for
bottom to center
vertically, and for areas it
is also true of right,
bottom, hshift* and
vshift*.

not the other, the unspecified one is computed according to the specified one and right; and
if both are present, hsize is ignored and the previous rule applies.

What is inherited from global to type to local settings is the result of this calculation, i.e.
values for left and hsize. If these are changed rightwon't be taken into account. Conversely,
if right is specified, then left and hsize aren't inherited. If things were otherwise, left
would always be specified (since inherited) and it'd be impossible to compute it according
to right and hsize, since it always wins against the latter. Thus, assuming a slide width of
10cm, with the following:

\setparameter slide:

 left = 2cm

 right = 1cm

\setslide{slideA}

 left = 1cm

\setslide{slideB}

 right = 2cm

 hsize = 5cm

we have a default slide with a left margin 2cm wide, right margin 1cm, and a line length
of 7cm. For slideA nothing is recomputed, thus the left margin is 1cm but the line length
is still 7cm, which gives a right margin of 2cm. And slideB has a right attribute, which
triggers a computation; left isn't inherited, thus only hsize is specified and left is computed
accordingly (to 3cm, as you might imagine).

vsize <dimension> (Default: slide's height minus twice its top)
The height of the textblock. This isn't important for page breaks, since no page break occurs
in Lecturer, but for the vpos attribute, and the scaling of the page if any.

8

top <dimension> (Default: 1cm)
The upper margin, i.e. the distance between the slide's top border and the textblock.

bottom <dimension> (Default: unspecified)
The bottom margin, i.e. the distance between the textblock and the slide's bottom border.
Works exactly as right in the vertical dimension, i.e. it is al ways obeyed, but not inherited,
etc.

Note that in full screen mode, readers set the page so that its smallest dimension goes
from one side of the screen to the other. Thus, with

\setparameter slide:

 height = 12cm

\par

\setlide{myslide}

 height = 14cm

\par

\slide and \myslidewill actually look like they have the same height but not the same width.
And the type will appear smaller in \myslide. By the way, the dimensions 12cm and 15cm
are default simply because they make TEX's default 10pt Computer Modern look readable.

baselineskip <dimension or glue> (Default: 12pt)
The baseline distance for the slide. Glue means something like 2pt plus 1fill, which can
be useful (see the vpos attribue below).

topskip <dimension or glue> (Default: 12pt)
The distance between the first line's baseline and the top of the textblock.

parskip <dimension or glue> (Default: 0pt)
The distance between paragraphs.

parindent <dimension> (Default: 0pt)
The width of the paragraph's indentation for this slide.

You might want the previous dimensions to be connected in some way. For instance, The slide's font, if any (see
the attribute
below), is called before
these dimensions are set,
so the em and ex
dimensions works properly.

by default, hsize is connected to the slide's width and left. This is because the latter two
attributes set the TEX dimensions that the hsize attribute refers to. So the order in which
those dimensions are set is important. Here are the dimensions and the attributes that set
them, in the order of the assignement:

\baselineskip = baselineskip

\topskip = topskip

\parskip = parskip

\pdfpagewidth = width

\pdfpageheight = height

9

\pdfhorigin = left

\pdfvorigin = top

\hsize = hsize

\parindent = parindent

vsize

Thus, the default value for the hsize attribute is width minus twice left for each slide,
because it is set as:

 hsize = "\pdfpagewidth-2\pdfhorigin"

Which leads to an important point: in Lecturer, a <dimension> can be an expression, since it
is then embedded in a \dimexpr primitive.

hpos <ff|fr|rf|rr> (Default: fr)
This controls the slide's horizontal justification. The values mean: ff is flushleft/flushright
(i.e. text justified on both sides), fr is flushleft/raggedright (commonly called raggedright),
rf is raggedleft/flushright (called raggedleft), and rr is raggedleft/raggedright (i.e. text
centered). Here second-order infinite glue is used.

vpos <top|center|bottom> (Default: center)
This sets how the lines are set in the textblock. Slides typically doesn't have the same number
of lines, so we can't simply treat them as usual pages in typesetting. This is how the text of a
slide is vertically positionned in the area defined by vsize. The top value means the text is
flushed at the top, the bottom value is the same thing at the bottom, and centermeans the
text will be centered in the area. This positioning is done with first-order infinite stretch, so
you can use some too, or higher-order stretch, in the slide's content, to achieve some effects.

scale <true|false> (Default: false)
If the main content of a slide is higher than vsize, it is scaled to the desired dimension if this
attribute is set to true. The bad news is it is also scaled horizontally, to keep proportions.

Content

everyslide <code> (Default: nothing)
Material inserted at the beginning of each slide (in vertical mode). For instance after See Adding material to

areas

\setslide{myslide}

 everyslide = "\position{title}{\slidetitle}"

the title's slide will be inserted in the title area for each slide called with the \myslide
command.

10

areas <list of areas> (Default: all)
This denotes the areas that may appear on a given slide. The keyword all, which is default,
means that all areas will be painted (provided they are visible or containmaterial). Otherwise,
list of areas enumerates allowed areas, separating themwith space. If an area isn't painted
on a slide but nonetheless contains material, this material is lost (and not even processed in
the first place).

areas* <list of areas> (Default: none)
The list of excluded areas, i.e. the reverse of the previous attribute. Areas belonging to that
list aren't painted on the slide. If an area appears in both areas and areas*, it is painted
unless is is simply implicitely present in areas with all.

Style

background <named color or shade or color expression> (Default: white)
The background color of the slide. See Colors, shades, and

images

foreground <named color or color expression> (Default: black)
The slide's foreground color.

image <image> (Default: none)
An image inserted in the slide's background, above the background color. The image is See Images
inserted at the slide's upper left corner, and has the width and height it was declared with.
Since this parameter is inherited, to cancel it give as <image> any name that is not a declared
image; Lecturer is in the middle of a shipout when it reads this attribute, so don't worry, you'll
get no error message.

font (Default: job's font)
The font used to typeset the slide. This is actually just a placeholder for font commands, e.g.
\it or \bfseries. If this attribute is used, it should be specified for all slide types, or the job

parameter should have a value to its own font attribute. Otherwise, if a slide with a font
information is followed by a slide without such information, the latter will use the font of
the former.

transition <named transition> (Default: none)
This is the way the PDF reader will display, animate, enliven, and perhaps discredit your See Transitions
presentation. A transition is a little animation conforming readers play when they go from
one slide to the next. They work in full screen only. A named transition should be recorded
beforehand with \newtransition unless you use the default values, in which case you can
use at once split, blinds, box, wipe, dissolve, glitter, fly (no less), push, cover, uncover
and fade.

11

Attributes for steps

The attributes that follow are to be used in the \setparameter declaration for the step

parameter, in the \setstep declaration, and as optional arguments to the \step command
and equivalent commands created with \setstep, for which I'll use \step generically.

PDF and navigation
As with slides, an entry without a `=' sign in the optional argument to the \step command
becomes the step's name (which should be unique on a given slide). This name is mainly
useful for referencing with the on and off attributes and the \showorhide command, but it
is also used as the step's name in the layers panel of the reader (if it has one). Hence:

pdftitle <string> (Default: step's default name)
Set the name used in the reader's layers panel. Thus you can have a nice title here and keep an
uninformative-but-less-painful-to-type name to refer to a step in the attributes that follow.
(If a step has no name, it is referred to in the layers panel with `step n' with n set back to zero
at each slide.)

on <list of steps> (Default: none)
This sets the steps that make the current step appear. If there is no on attribute, a step When moving backward,

just like the controlling
step will toggle its
visibitity, steps tied with
on and offwill too.

appears at its position in the source. If there's an on attribute, then it appears when the steps
referred to in the list are reached. If the list of steps contains the keyword here, then the
step also appear by itself. Steps in the list are separated by space.

off <list of steps> (Default: none)
This is the same thing as on in reverse: the step disappears when the steps in the list are
reached. The here keyword can't be used.

Note that a step with an on and/or off list doesn't follow the steps in those lists, i.e. This means there's no
transitivity in the on and
off attributes: if step A is
tied to step B and step B to
step C, this doesn't mean A
is tied to C (it can, too, of
course).

it doesn't appear/disappear when they do, but simply when they are reached in the linear
sequence of steps in the source (which coincide more often than not).

In the following example, the first step will appear by itself. Then the second step
appears, along with the fourth, and the first one disappears. Finally, when the third step
appears the first reappears. Since the fourth step has no autonomy, after the third step a
click will lead to the next slide (provided it's the end of the slide, of course).

\step[on=here B,off=A] First.

\step[A] Second.

\step[B] Third.

\step[on=A] Fourth.

handout <true|false> (Default: true)
Steps whose value is true for this attribute are visible on the page when the document is See Presentation and

handoutprocessed as a handout (i.e. handout is the value of the presentation attribute for the job

12

parameter), no matter how they appear during a presentation. Thus the document can be
printed without manipulating layers beforehand.

visible <true|false> (Default: false)
When this attribute is true, then the step is visible on the page when it is opened. For This kind of step of course

doesn't take a click during
the presentation. In the
example on the left, you
need only two clicks to
displayThree.

instance, in a slide with:

\step One.

\step[visible=true] Two.

\step[handout=true] Three.

the following happens: if we're in normal presentation mode, then the second step will be
visible on the slide when it is displayed, whereas the other two will appear when clicking. On
the other hand, in a handout, only the third step will be visible. With:

\setparameter step:

 visible handout = true

all steps will be visible by default, in both modes.

Content

left <dimension> (Default: 0pt)
The distance between the textblock's left border(defined by the slide's left attribute and the You can create list items

and sub-items by simply
creating steps with positive
left and/or right.

left) and the border of the step's text.

right <dimension> (Default: 0pt)
Same as left, on the right.

vskip <skip> (Default: 0pt)
The value of the vertical glue inserted each time a \step occurs in vertical mode. As with slides, the step's

font, if any (see below), is
called before those
dimensions are used, so the
em and ex dimensions
have the proper values.
Note that there's already
the parskip glue between
vertical steps.

everyvstep <code> (Default: nothing)
Material inserted when a \step occurs in vertical mode. The insertion takes place after vskip
(and doesn't switch to horizontal mode by itself).

hskip <skip> (Default: 0pt)
The value of the horizontal glue inserted each time a \step occurs in horizontal mode.

everyhstep <code> (Default: nothing)
Material inserted when a \step occurs in horizontal mode, after hskip

13

group <true|false> (Default: false)
If this is set to true, the content of the step (including the value of every(v/h)step) happens
inside a group.

Style

font (Default: slide's font)
The font used to typeset the step. This is actually just a placeholder for font commands, e.g.
\it or \bfseries. If this attribute is used, it should be specified for all step types, or the
slide or job should have its own font attribute, or the step should have group set to true.
Otherwise, font will bleed to the rest of the slide.

color <Named color or color expression> (Default: slide's foreground)
The color of the step, overriding the slide's foreground color. See Colors

transition <named transition> (Default: none)
The animation used to display the step, as with \slide. Note that the push, cover and See Transitions
uncover transitions make more sense with slides, since they affect the entire slide and not
the step only.

Attributes for the job

This section describes attributes pertaining to the entire document. They are set with the
\setparameter command with job as the parameter's name.

author <string> (Default: nothing)
The author's name. It is stored in a command called \Author, and used in the document's
properties, unless pdfauthor is defined.

pdfauthor <string> (Default: nothing)
This is used in the document's properties instead of author.

title <string> (Default: \jobname)
The document's title. It is stored in a command called \Title, and used in the document's
properties, unless pdftitle is defined.

pdftitle <string> (Default: nothing)
This is used in the document's properties instead of title.

14

date <string> (Default: <month>/<day>/<year>)
The document's date, recorded in the macro \Date.

background <named color or color expression> (Default: reader's default)
This sets the color of the reader's background (if the reader allows such a thing to be done). See Colors
You can set it to the color of the slide's background, so that slides appear to have the screen's
dimensions.

font (Default: nothing)
The default font for the job. This is actually just a placeholder for font commands, e.g. \it or
\bfseries. It is wise to give a value to this attribute, so that fonts can be safely used in slides
and steps.

mode <presentation|handout> (Default: presentation)
Selects how the document should be displayed. In handout, only those steps whose value for See Presentation and

handoutthe handout attribute is true are displayed. The other ones nonetheless take space on the slide
and can be turned on in the reader's layers panel. The \handoutonly, \presentationonly a,d
\presentationorhandout commands are more radical yet, since they gobble the discarded
material, which isn't typeset.

fullscreen <true|false> (Default: false)
If this is turned to true, the document is opened in full screen, which will probably make the
reader send a message for confirmation.

autofullscreen <true|false> (Default: false)
If this is turned to true, the document is displayed in full screen before navigating to a
destination (when a bookmark is clicked, for instance), so that the destination is properly
reached.

normal <none|outlines|thumbs|layers> (Default: outlines)
Selects what must be displayed in the reader's navigation panel when not in full screen:
outlines is, well, outlines (or bookmarks), thumbs is thumbnails, and layers shows the
layers panel, where the steps can be turned on and off; none folds the navigation panel.

menutext <text> (Default: ***)
The text to be displayed at the top of a submenu in the navigation pop-up menu, to represent See Creating bookmarks
the current bookmark

15

Areas

Material normally declared is typeset following TEX's usual rules, building paragraphs in the
slide's textblock. However, in Lecturer you can put material anywhere, thanks to areas. Areas
can also be used simply as decorations, since they're basically colored squares.

Using a grid

\showgrid [<left>,<top>]<increment>[<named color or color expression>][<line width>]

This displays a grid on top of the slides (following the command) to ease the creation of Grids can also be used as
decorations, with a little
imagination.

a display. Lines are drawn at a distance of <increment> from each other. The grid starts
from the upper left corner by default, but the optional <left> and <top> set horizontal and
vertical shifts respectively (<top> being a vertical distance à la TEX, i.e. going downward). If
no optional color is given, the grid is painted grey, and the default line width is .2pt. There
can be as many such declarations as wanted, each grid being painted on top of the previous
one. For instance:

\showgrid[2cm,2cm]{1mm}

\showgrid{1cm}[red][.4pt]

displays a grid in millimeters in grey, starting at 2cm from both the upper and left border,
and a grid in centimers on top of it in red, with a line width twice the previous one, starting
from the upper left corner. Note that there should be no space before the last two optional
arguments (if it was allowed there'd be risks of unwanted space gobbling).

\hidegrids Hides all grids on following slides, as if \showgrid had never been called.

Adding material to areas

\position <area>[<left>,<top>]<material>

This puts <material> inside <area>. However, things differ greatly whether the optional If <left> or <top> are 0pt,
they can be omitted. Not
the brackets and comma,
though.

argument is present or not. In case it isn't, <material> is put below previous material in
<area>, as if continuing a page. On the other hand, if the optional argument is present,
then <material> is typeset so that its left border is at a distance of <left> from the left
border of the <area>'s textblock and its baseline at a distance of (<top> + <area>'s topskip)
from its upper border. Thus, if both <left> and <top> are 0pt, then <material> is typeset

The calculation includes
<topskip> so the
connection between freely
positioned material and
normally position material
is preserved. When using
it, this formula proves far
more intuitive than it
seems.

normally. Material already in the area has no effect on this process, and <material> will
have no effect either on incoming material, which is why \position{area}{material} and
\position{area}[0pt,0pt]{material} aren't the same thing at all.

The \position obeys the flow of the presentation, and appears only when the \step
where it belongs appears. In this example:

16

\step \position{myarea}{One}

\step \position{myarea}{Two}

\step \position{myarea}{Three}

`One', `Two' and `Three' will appear one after the other, and one above the other. On the
other hand with:

\step[off=B] \position{myarea}[12pt,12pt]{One}

\step[B,off=C] \position{myarea}[12pt,12pt]{Two}

\step[C] \position{myarea}[12pt,12pt]{Three}

`One', `Two' and `Three' will admittedly appear one after the other, but also disappear when
one appears and take the place of the previous one, since they share the same position. All
areas are emptied at each new slide. Remember that to be painted on a given slide, an area
must be in the list of areas that is the value of the areas attribute for this slide, or shouldn't
appear in the slide's areas* attribute. By default, slides accept all areas.

\setarea <list of areas>

To create an area, or to modify an existing one, this command is used with <list of areas>

being area names separated by space; thus attributes similar for several areas can be declared
at once. The command then takes attributes and values like \setslide above. For instance
the following code creates or modifies two areas, verb"badidea" and ugly:

\setarea{badidea ugly}

 background = red

 foreground = green

 ...

\par

Dimensions

width <dimension> (Default: slide's width)
The area's width, i.e. the width of the painted zone. As far as dimensions are

concerned, areas are very
similar to slides. See the
Visual Doc for an
illustration of this claim.

hshift <dimension> (Default: 0pt)
The distance between the area's left border and the slide's left border.

hshift* <dimension> (Default: unspecified)
The distance between the area's right border and the slide's right border. The hshift*

attribute is always obeyed if present. If neither width nor hshift are specified, then hshift

is set to hshift* and width is computed accordingly, which is convenient to center an area
on a slide. If one of width or hshift is present but not the other, then the latter is computed
with the given value and hshift*. If both are present, width is ignored and the previous rule
applies.

17

height <dimension> (Default: slide's height)
The area's height. This defines the vertical dimension of the painted zone.

vshift <dimension> (Default: 0pt)
The distance between the area's top and the slide's top.

vshift* <dimension> (Default: unspecified)
The distance between the area's bottom and the slide's bottom. It works like hshift* in the
vertical dimension, and is consequently always obeyed.

hsize <dimension> (Default: area's width)
The line's length in the area.

left <dimension> (Default: 0pt)
The area's left margin, i.e. the distance between its left border and the left border of its
textblock.

right <dimension> (Default: unspecified)
The area's right margin, i.e. the distance between its right border and the right border of
its textblock. Like the same attribute for slides, it is always obeyed, i.e. if specified hsize

and/or left are set accordingly. For the rule governing those values are computed, see the
discussion on the right attribute for slides, or on the hshift* attribute for areas just above,
which works similarly.

hpos <ff|fr|rf|rr> (Default: fr)
This controls the area's horizontal justification. The values mean: ff is flushleft/flushright
(i.e. text justified on both sides), fr is flushleft/raggedright (commonly called raggedright),
rf is raggedleft/flushright (called raggedleft), and rr is raggedleft/raggedright (i.e. text
centered).

vsize <dimension> (Default: area's height)
The height of the area's textblock, not for page breaks, obviously, but for the vpos attribute
below.

top <dimension> (Default: 0pt)
The area's top margin, i.e. the distance between its upper border and the top of its textblock.

bottom <dimension> (Default: unspecified)
The area bottom margin, i.e. the distance between its textblock's bottom and its bottom
border. It works like right in the vertical dimension.

vpos <top|center|bottom> (Default: top)
The vertical justification of the area's content in the textblock (defined as vsize).

Freely positioned material
is unfolded (including its
vertical displacement) at
the top of normally
positioned material.
Hence its vertical
justification might seem
somewhat unpredictable
unless <vpos> is set to top,
though it isn't by TEX's
standard. As a rule of
thumb, take the top of the
justified textblock as the
vertical reference, and
consider that freely
positioned material is
insensitive to vertical
justification.

18

baselineskip <dimension or glue> (Default: current \baselineskip)
The baseline distance for the area.

topskip <dimension or glue> (Default: current \topskip)
The distance between the baseline of the area's first box and the area's top. Unlike TEX's
\topskip, this distance is always respected, no matter the height of the box.

parskip <dimension or glue> (Default: 0pt)
The distance between paragraphs in the areas, including between two normal \position.

parindent <dimension> (Default: 0pt)
The width of the paragraph indent for the area.

Content

visible <true|false|step> (Default: true)
If this attribute is set to true, then the area is visible on the slide even if it contains no
material. With false, it is painted only on the slides where it is filled. In the latter case, using
stepmeans the area will follow the first step where the first \position command is issued.
Empty material freely positioned may be useful to control the area, for instance:

\step[on=start,off=stop]\position{mayarea}[0pt,0pt]{}

This will make the area appear with start, probably its first real content, and disappear with
stop, which probably also controls the disappearance of the last material in the area.

Two remarks: the first \positionmeans the first occurrence of the command in the
source, not necessarily the first to be shown on screen; thus, to work properly, the previous
example should be put at the very beginning of a slide. Second, in this example, it is important
that the material be freely positioned, i.e. with [0pt,0pt], so as to make the subsequent
\position think (?) the area is still empty.

everyposition <code> (Default: nothing)
Code to be added before <material> each time \position{<area>}{<material>} is called. All material is actually

added in vertical mode
with the \position
command.

This material is added in vertical mode.

everyfreeposition <code> (Default: nothing)
Same as before, except it is used when \position is called with the optional argument for
free position.

19

Style

background <named color or shade or color expression> (Default: none)
The color of the area's background. If none is given, the area is transparent. See Colors, shades, and

images

foreground <named color or color expression> (Default: black)
The area's foreground color.

image <image> (Default: none)
An image inserted in the area's background, above the background color. The image is inserted
at the area's upper left corner, and has the width and height it was declared with. Since this
parameter is inherited, to cancel it give as <image> any name that is not a declared image; no
error message will ensue.

font (Default: nothing)
The font used to typeset material in the area. This is actually just a placeholder for font
commands, e.g. \it or \bfseries.

frame <attribute-value pairs> (Default: none)
This sets the area's frame, if you want any. The value itself is a setting of attributes, each one
being accessible in the main declaration as frame_<attribute>. I.e.

 frame = "width = 1pt, color = blue"

and

 frame_width = 1pt

 frame_color = blue

are equivalent.

frame_width <dimension> (Default: 0pt)
The frame's width. If positive, the frame is painted around the area. If negative, it is painted
inside the area, with the the <dimension>'s absolute value as its width. An area with no frame
simply has a frame_width of 0pt.

frame_color <named color or shade or color expression> (Default: area's background)
The frame's color. See Colors, shades, and

images

frame_corner <miter|round|bevel> (Default: miter)
This is a miter corner: , this is a round one: , and this is a bevel one: .

frame_dash <numbers> (Default: none)
The frame's dash pattern, meaning the frame is on (visible) for n1 points, then off (invisible)
for n2 points, then on for n3 points, etc., where the n's are the numbers. This is cyclic, so that

20

it starts again when numbers are exhausted. For instance a value of 3 5 2makes the frame
visible for 3pt, then invisible for 5pt, then visible for 2pt, then invisible for 3pt, then...

Navigation

Lecturer is made for fullscreen mode and navigation is no exception. Thus, bookmarks (and
anchors in the next subsection) work properly in this mode only; when not in fullscreen,
using a link leads to the page where the target appears, but not to the step in which it is
embedded. Turning autofullscreen to true in the job parameters makes the reader go into
fullscreen when clicking a link and thus navigation hits its target.

Creating bookmarks
A presentation can be structured thanks to bookmarks (also called outlines), and these are
accessible in the reader's outlines panel, or in the presentation via a pop-up menu. To create
a bookmark, one uses the following command.

\createbookmark [<options>]<level>[<anchor>]<text>

This creates a bookmark with <text> as the text displayed in the outline panel and the pop-up
menu. Bookmark hierarchy is managed with <level>, according to the following principle:
bookmarks with larger <level> are children to bookmarks with smaller one. Thus, <level>

must be a number, but it need not be an integer nor a positive number. For instance: This means you don't need
to redefine all your sections
if you want to add
intermediate ones; just give
the latter any value in the
interval where you want
them to occur in the
hierarchy.

\createbookmark{0}{Part}

\createbookmark{.5}{Section}

\slide[Slide]

...

\createbookmark{1.5}{Step1}

...

\createbookmark{1.5}{Step2}

...

\endslide

will create bookmarks with the following hierarchy:

> Part

 > Section

 > Slide

 > Step1

 > Step2

21

because by default slides are bookmarked and have bookmark level 1. If sections of widest
scope are eventually needed in this example, one can create them using bookmarks with a
negative <level>.

The <options> are any combination of the following keywords, separated by commas:
bold, italic and bolditalic, which specify how the bookmark is to be typeset in the
outlines panel, and open and closed, which specify whether the bookmark displays its
children by default or not. Finally, nosubmenutext applies to the pop-up menu displayed
with \showbookmarks, as explained below.

Any other material in <options> is supposed to be a triplet of numbers ranging between
0 and 1, to denote the bookmark's color in an RGB model. For instance:

\createbookmark[italic,open,1 0 0]{0}{Bookmark}

creates a red bookmark in italic that displays its children when the document is opened in
the reader.

The <anchor> is a reference so that one can go to the bookmarked place with \goto, and
is equivalent to using \anchor (next subsection).

Note that <options> and <level> are specified for a slide (if it is bookmarked) the See PDF and navigation
for slidesbookmarkstyle and bookmarklevel attributes.

\showbookmarks [<optional style>]<text>

This creates an hbox containing <text> (which can be anything, like real text, or a symbol,
etc.); when clicked, a pop-up menu appears, which contains the bookmark hierarchy of the
document. The optional style is either flash or push, which sets the little animation used
when the link is clicked: it reverses its colors or seems to be pushed in the background. The
keyword none can also be used to denote no animation.

In the pop-up menu, the children of a bookmark are displayed as a sub-menu. Hence
this bookmark isn't clickable anymore, because its only function is to show the submenu.
That's why the first item of this sub-menu is clickable and refers to that parent bookmark.
The text used by this item is the value of the menutext attribute in the job parameter, unless
the bookmark has the nosubmenutext option.

Navigation commands

\anchor <name>

This creates an anchor called <name>, which is a destination for the \goto command.
In what follows, all commands create a clickable hbox containing <text>, with animation

specified by <optional style>, as in \showbookmarks above. That's why I will only describe
the action performed by the commands.

\goto [<optional style>]<name><text>

Go to the destination anchored by <name> (which can be the value of the anchor argument in
a bookmark).

22

\gotoA [<optional style>]<name><text>

This creates the first item of a bidirectional link called <name>. Clicking <text> goes where
\gotoB with <name> has been issued.

\gotoB [<optional style>]<name><text>

This creates the second item of a bidirectional link called <name>. Clicking <text> goes where
\gotoA with <name> has been issued. There's no need for \gotoA to appear before \gotoB.
Using these macros is just simpler than a pair of \anchor's with a pair of \goto's.

\firstslide [<optional style>]<text>

Go to the presentation's first slide.

\lastslide [<optional style>]<text>

Go to the presentation's last slide.

\prevslide [<optional style>]<text>

Go to the presentation's previous slide.

\nextslide [<optional style>]<text>

Go to the presentation's next slide.

\prevstep [<optional style>]<text>

Go backward once. Equivalent to a right click.

\nextstep [<optional style>]<text>

Go forward once. Equivalent to a left click.

\showorhide [<optional style>]<actions><text>

This shows or hides the steps referred to in <actions>, which is made of `<action>=<step

list>' pairs separated by commas, where <action> is on, off or toggle, and <step list> is
a list of step names separated by space. The action is to show, hide, or reverse the visibility of
a set of steps. For instance:

\showorhide{on=A B,off=C,toggle=D E F}{Button}

will, when clicked, make the steps named A and B visible, hide step C, and reverse the visibility
of D, E and F.

23

Colors, shades, and images

Some attributes above take values denoted by the phrases named color or shade or color
expression, or named color or color expression. Those are explained in this section.

Colors
A color can either be a named color or a color expression. The latter is the simpler. It is a <color

model> followed by as many <numbers> as required, ranging from 0 to 1. A color model is
one of the keywords grey (or gray), which takes one <number> (0 is black, 1 is white), rgb,
which takes three <numbers> (red, green and blue), and is additive, and cmyk, which takes
four numbers (cyan, magenta, yellow, black), and is substractive. Hence:

\setparameter slide:

 background = "rgb 1 0 0"

 foreground = "cmyk 1 0 1 0"

 ...

\par

sets the slide's background color to red, and its foreground color to green. Which is not
recommended.

Color expressions aren't very handy, since you have to type them as many times as you
need them. Which is why there exists the following command to declare a named color:

\newcolor <name><color model>[<opacity>]<values>

After this declaration you can use <name> to denote a color, which itself is somehow as a Unlike \newslide or
\newarea, \newcolor and
\newshade below take
only one <name> (instead
of a list).

color expression, i.e. it has a <color model> and as many <values> as required. The optional
<opacity> is a number between 0 and 1, 0 meaning fully transparent and 1 fully opaque. If
not present, it is set to 1. The following named colors are already defined (with full opacity):
black, white, red, green, blue, cyan, magenta, yellow. I suppose you can see where they
come from. So our example above could be more easily rewritten as:

\setparameter slide:

 background = red

 foreground = green

 ...

\par

Finally, colors can be used simply with:

\usecolor <Named color or color expression><text>

This typesets <text> with the specified color, overriding whatever is used as the current color

Beware, the operation of
the \usecolor command
isn't executed inside a
group, as may be the case
with colors in other
packages.wherever this command is issued (i.e. step, slide, area).

24

Shades
A shade is a transition from one color to another. It can be used for backgrounds and frames
only. It takes many parameters, so it is declared with the YaX syntax.

\newshade {<name>}

The <name> is what is used to refer to this shade where it can be used.

model <grey|gray|rgb|cmyk> (Default: grey)
The shade's model for its colors. You can't create a shade with colors from different models.

from <values> (Default: black)
The shade's starting color. There must be as many numbers as required by the model parame-
ter. If nothing is specified, black is supplied.

to <values> (Default: white)
The shade's ending color. Theremust be asmany numbers as required by the model parameter.
If nothing is specified, white is supplied. Neither from nor to can take named colors as
arguments.

angle <angle> (Default: 90)
The shade varies along an axis. This axis starts in the upper left corner of the area to be Shades' attributes may be

more easily understood
with the interactive
examples in the Visual
Doc.

painted and makes an angle of <angle> degrees with the area's upper border. The <angle>

must range between 0 and 90: 0 means that the shade progresses horizontally and 90 that it
moves verticaly. If <angle> is between 0 and -90, its absolute value is taken as its value but
the shade starts from the upper right corner.

The value of <angle> actually refers to a shade painted in a square; if the area to be
painted isn't a square, this imaginary square is scaled and the angle of the shade will follow
the scaling. For instance, an angle of 45 makes the shade progress from the top left corner to
the bottom right corner; if the area to be painted is a rectangle, the shade will still progress
between these two corners, and the angle will be skewed.

speed <number> (Default: 1)
The speed of the shade's progression: 1 means the shade takes its axis' full length to progress;
a value between 0 and 1 makes it take more than this length (and thus it won't be fully
painted in the area) whereas a value larger than 1 makes it take less than this length (for
instance with speed = 2 it'll take half the axis' length).

width <dimension> (Default: none)
A shade normally adapts to the area it paints. However, if width is given, the shade will take
the specified dimension; if width is larger than the area to be painted, the shade won't be
seen in its entirety; if it is smaller, part of the area will be painted with the shade's to color.

height <dimension> (Default: none)
Same as width in the vertical dimension.

25

fixed <true|false> (Default: false)
By default, a shade is painted from the area's upper left corner (or right corner if angle is
negative). If fixed is set to true, then it is painted from the slide's upper left (or right)
corner, although only the area displays it. Note that a fixed shade whose width and height
are unspecified doesn't make much sense.

To sum up: picture two areas painted with the same shade. If the shade has no width
nor height and isn't fixed, they will both display the entire shade, and if they don't have the
same dimensions the shade will have different shapes in them. If the shade has a width and a
height, both areas will display exactly the same shade, although what is revealed of it depends
on the areas' dimensions. Finally, if the shade is fixed, the areas will look like open windows
on the same underlying shade.

Images

\newimage <name>[<width>,<height>]<file>

This loads image file <file>, setting its dimensions to <width> and <height>; if none are If only one dimension is
used, the comma should
nonetheless remain, with
nothing left or right, in
order to indicate which
dimension is referred to.
Specifying a <height> only
is done for instance
with: [,5cm]. Note that
background images in
slides and areas (as values
to the image attribute)
aren't scaled to their
container's dimensions.

present, the image has its natural width; if only one dimension is given, the other ones is
scaled accordingly. If both are given, deformations might ensue. The image can be used in
the background of a slide or area by setting <name> as the value for the image attribute, and
anywhere else with the following command.

\useimage <name>

This returns an hbox containing the image <name>. The height and width of the box are the
height and width of the image as declared with the previous command.

Drawing symbols

Lecturer provides very basic but still useful drawing facilities aimed at creating symbols to
whatever end, e.g. a button for navigation or a bullet before each step.

\newsymbol <command>[<settings>]<drawing>

This creates a symbol that is called with <command> and designed with <drawing>; the symbol
is actually an hbox, and its reference point (i.e. the intersection of its left border with the
baseline) is the origin of the coordinate system for <drawing>; in turn, this hbox's width is
the largest x-coordinate in <drawing>, its height the largest y-coordinate, and its depth the
smallest negative y-coordinate. Any part of <drawing> on the left of the y-axis, i.e. with a
negative x-coordinate, is ignored in the box's width and will overlap material on the box's left.

In <drawing> goes a set of simple statements separated by commas, a statement being
an operator sometimes followed by arguments (separated by space), which either define

26

paths or paint them. All coordinates are expressed in units, a unit being 1pt by default, which
can be changed in <settings>. At the beginning the current point is (0,0). Here are the
operators (in the first two, `[+]' means an optional + character, without the brackets):

move [+] x y

If + is not present, this moves to (x,y), which becomes the current point; if there is a +,
and the current point is (x',y'), then it moves to (x'+x,y'+y), which becomes the current
point. If there was a path being drawn, it is ended and stroked beforehand.

line [+] x y

If + is not present, this creates a line from the current point to (x,y), which becomes the
current point; if there is a +, and the current point is (x',y'), then it creates a line between
the current point and (x'+x,y'+y), which becomes the current point. Note that the line
operator is actually optional and any statement of the form `[+] x y' is understood as
`line [+] x y'.

circle <direction> <radius>

Despite its name, this actually creates a quarter-circle from the current point to a point
depending on <direction> and <radius>, with the latter being a number and the former one
of the keywords ul, ur, lu, ru, dl, dr, ld or rd, where each letter denotes left, right, up or down,
these in turn being the quarter-circle's tangents' directions at the starting (for the first letter)
and ending (for the second letter) points. For instance, `circle ur 7, circle rd 7' creates
a quarter-circle of radius 7 going up and then right, followed by a quarter-circle of the same
radius going right and then down, which figure mathematicians tend to call a semi-circle,
i.e. . The current point after a (quarter-)circle is its ending point, i.e. radius units away
left or right and below or above from the starting point.

close

This closes the path, i.e. appends a line from the current point to the path's starting point.

stroke

This strokes the current path. This operator is appended at the end of <drawing> if there
remains a path that hasn't been painted; thus it is useless as the very last command.

fill

This fills the current path, i.e. the path is closed and the area it delimits is colored. Differences between fill
and paint are visible when
the line width, set with
pen, is large.paint

This is similar to fill, except the path is also stroked.

pen <width>

This sets the width of the stroking pen to width.

27

color <named color or color expression>

This changes the current color to the specified value. If several such commands are issued, See Colors
the painting operators above use the color most recently issued when they are called. If no
color is specified, the symbol takes the foreground color of the place where it appears.

The optional <settings> to \newsymbol are comma-separated `attribute=value' pairs;
there can also be a single <dimension> among them expressing the value of a unit in the
coordinate system, which is 1pt by default. The attributes are left, right, top, bottom and
padding, and the values are <dimensions>. These attributes set the amount of padding on
the left, right, top and bottom borders respectively, with padding setting them all at once.
Padding is somteimes necessary because the drawing's box's (and clipping path's) dimensions
are defined according to the abstract paths the drawing is made of, not according to the paths
as they are painted, and a painted path has the width of the pen used to paint it. For instance,
the simple drawing `line 0 10' has no width, even though it might be painted with a 10-unit
wide pen. If there's no padding, the symbol won't show anything. By default, padding is set
to 1pt on all sides.

As an example, here's how the alien has been drawn in the demonstration file called
LecturerDemo-KitschScienceFiction.pdf:

 % Default unit.

\newsymbol\alien[1.7em]{%

 pen .05,

 color cmyk .2 1 .4 0,

% The alien's body

 1 0, circle ul .5, circle ld .5, fill,

% The left tentacle

 circle dl .2, circle lu .2,

% The right tentacle

 move 1 0, circle dr .2, circle ru .2,

% The legs

 move .16 0, + 0 -.3, % stroke is implicit in the next move

 move .49 0, + 0 -.3,

 move .82 0, + 0 -.3,stroke,

% The eyes

 color cmyk 0 0 1 0,

 move .2 .25, + .2 0,

 move + .2 0, + .2 0 % stroke is implicitly added at the end

 }

\symbolwidth <command>

\symbolheight <command>

\symboldepth <command>

When a symbol is defined, its dimensions can be queried with those macros, where <command>

is the symbol's command.

28

Transitions

Transitions are basic animations played when a step (dis)appears on the slide or when one
advances to the next slide. The transition attribute for slides and steps can take a <named

transition> as its value, and one declares a named transition with the following command:

\newtransition <name>

This command takes several attributes, which are:

type <split|blinds|box|wipe|dissolve|glitter|fly|push|cover|uncover|fade>
(Default: none)
(These values can also have an uppercase first letter.) This is the type of the animation being

The Visual Doc has a slide
illustrating those
transitions.

played. The predefined transitions already available in Lecturer are those animations with the
following parameters set to their default values.

motion <inward|outward> (Default: inward)
(Only for transitions of type split, box, and fly.) The direction of motion, either from or to
the center of the page.

direction <lr|bt|rl|tb|dx> (Default: lr)
(Only for moving transitions.) The direction of movement: left to right, bottom to top, right
to left, top to bottom, and diagonal (top-left to bottom-right).

dimension <horizontal|vertical> (Default: horizontal)
(Only for split and blinds.) Whether the splitting is horizontal or vertical.

scale <number> (Default: 1)
(Only for fly.) The scale at which elements affected by the transition are drawn at the
beginning of the transition (if its motion is inward) or at the end (if it is outward).

duration <number> (Default: 1)
The length of the transition, in seconds.

Inserting PDF code

Lecturer relies heavily on PDF code and unfortunately pdfTEX's management of some PDF
objects is far from optimal. Consequently, if you want to insert some PDF constructs things
might go wrong. Hence the following macros, where arguments are always expanded imme-
diately.

29

\addtopageobject <code>

This adds <code> to the Page object for the current page.

\addtoeachpageobject <code>

This adds <code> to the Page object for all pages. This command and the previous one fill
the \pdfpageattr token list, which after each shipout is emptied of material added with
\addtopageobject.

\addtopageresources <code>

This adds <code> to the Resources dictionary for all pages. This uses the \pdfpageresources
token list. For the Properties, Shading and ExtGState resources, the following command
should be used.

\addproperties <name><object number>

Maps <name> to <object number> in theProperties dictionary of the current page's Resources.
For instance,

\addproperties{foo}{3}

produces the following in the page's Resources:

...

/Properties << ... /foo 3 0 R ... >>

...

\addshading <name><object number>

Same as \addproperties, but for the Shading dictionary. And this is added to all pages'
Resources, not just the current one.

\addgstate <name><object number>

Same as \addshading, but for the ExtGState dictionary.

\addOCG <object number>

Adds the Optional Content Group <object number> to the document's catalog, with base
state off. It is also turned off when one arrives on the page where it's been added.

\addvisibleOCG <object number>

Same as \addOCG, except base state is on.

30

Demonstrations

The present documentation might appear as a dull list
of attributes. That's why it is distributed with a Visual
Documentation (LecturerDemo-VisualDoc.pdf), which
isn't really a demonstration, in the sense that it is not
supposed to be an imaginary presentation but a visual
display of many features of Lecturer. Thus commands
and attributes can make sense at once. One should nev-
ertheless keep in mind that this visual documentation
doesn't show everything in Lecturer, and that the ref-
erence documentation remains the present one. The
source isn't terribly user-friendly (and requires LuaTEX and non-free fonts to compile), but
still interesting constructions are used and can be copied, in particular with \showorhide.

The visual documentation explains how to use Lecturer; the following demonstrations
show what it can do. Barring LecturerDemo-SquaresOfAs, they have been typeset with the
default Computer Modern fonts, so the sources can be modified and compiled again to see
how things work. To do so, one should use the plain TEX format with either pdfTEX or LuaTEX.

a
b

=
p

2a
b

=
p

2

LecturerDemo-Mondrian.pdf is a simple presentation based
on the work of one famous Dutch painter. It illustrates what
you can do with areas, setting the main text in one square
(although the text is not \position'ed but typed in as the
slide's content, see below), the maths (synced with the main
text) in another one, and footnotes, which are turned on
and off with the \showorhide command, in a third square.
The other squares are just decorations. The alignment of the
squares is made easy by grouped attribute declarations with
the \setarea command. For instance, the three squares on

the left are declared as:

\setarea{area1 area2 matharea}

 width = 3cm

and the first two, which have the same height and color, are specified further again with:

\setarea{area1 area2}

 height = 4.3cm

 background = white

after which area1 doesn't need anything; another declaration sets area2's vshift, and still
another one is used for matharea to display its content.

31

The slide's background is painted black so lines appear between the areas (which is
also why the white color must be specified as some areas' background, otherwise they'd be
transparent). The main text is set in the slide's textblock (i.e. not \position'ed), and a red
area is painted below, which gives the impression that the text is set in an area, whereas it is
simlpy asymmetrically shifted.

LecturerDemo-SquaresOfAs.pdf was inspired by some Con-
TEXt presentations, and uses only areas to typeset its material.
Barring the last slide, there's nothing in the main textblock.
On the first slide, the visible attribute of the areas is set
to step, so areas appear with their content. The background
of the reader is turned to white, so the slides seem to fill
the entire screen. The entire presentation is built on a sin-
gle length (\squarewidth) in which all dimensions are ex-
pressed, including font sizes (such cumbersome font sizes as
1.83\squarewidth are meant to make all letters appear at the
same height). Thus the presentation is totally scalable. Like in the Mondrian presentation,
attributes are declared mostly for all areas at once, so the design can be easily modified. The
frames of the areas have negative width, so they are painted inside the areas and they don't
have to be taken into account when computing positions. Actually, their contribution to the
design resides in their rounded corner only, since they have the same background color as
the areas.

The presentation itself is a wandering among several guises of the letter a, with several
non-free TrueType fonts (requiring LuaTEX), and thus you should change those to fonts you
own and can manage if you want to compile the source. (If you think it is inhuman to make
the part of the letters below the baseline disappear in the white background, just change the
latter. Jovica Veljović's Esprit will regain its spirit indeed.)

LecturerDemo-SimplePresentation.pdf uses a very
simple display, built on a millimetric grid, which can
be displayed by uncommenting the first lines of the
file. Some subtleties are included in the presentation's
flow; for instance, the triangles at the left of each
vertical step are already painted on the slide before
the steps appear. This is done by creating two steps,
one for the triangle with visible set to true,and one
for the step's content, a process which is automated
by a simple code:

\def\Step{%

 \step[visible=true]\quitvmode\llap{\stepsym\kern.2cm}%

 \step}

where \stepsym is the symbol's command. Note the necessary \quitvmode: those steps are
called in vertical mode and plain TEX's \llapmacro creates a box which should be inserted in

32

horizontal mode to get things right. The everyvstep attribute could also have been used,
but care should be taken to ensure that no loop occurs, by creating to kinds of step, the
everyvstep of one executing the other.

The horizontal and vertical lines are actually areas with no width but a frame indeed,
created with:

\string\setarea{vline hline}

 frame = "width = .15pt, color = black"

\setarea{vline}

 hshift = 3cm

 width = 0pt

\setarea{hline}

 vshift = 2cm

 height = 0pt

When clicked, the circle (a symbol) with the slide number in the bottom right corner
displays the bookmarks in a pop-up menu. And the maths in the blackboark are of course
inserted with free \position's. The next presentation is an elaboration on this one.

LecturerDemo-BeamerCambridgeUS.pdf is an imita-
tion (not terribly faithful) of the Beamer package's
CambridgeUS theme. It uses everyslide to typeset re-
current material, like the date or the slide's title. It also
mimicks Beamer's display of inactive steps in trans-
parent color. This is no feature in Lecturer, though,
and must be done by hand with overlapping elements;
which means it's basically undoable for the main text.
The presentation is also heavy on symbols designed
with \newsymbol used as buttons, and uses bookmarks
and anchors for navigation, including between the main text and appendices, thanks to
\gotoA and \gotoB. The last slide displays scaled content, and finally, if the mode attribute is
turned to handout, a handout is produced. (Which is true of all presentations, except in this
case care has been taken so that the handout isn't just a presentation on a sheet of paper,
although the differences are rather slight with the original presentation.)

33

LecturerDemo-ThePoodleLectures.pdf (don't ask) is
made of five slides eachdisplaying a different presenta-
tion style, sometimes verging on the PowerPoint-ish.
The point of this demonstration is that the code for
each slide remains minimal: you don't need to write
hundreds of lines of attribute specifications to set up
a presentation. Areas are used for decoration and the
slide's title, and no complex positioning is involved.
The same steps are reused (with silly text, don't ask
either) and illustrate the use of the left attribute for

steps as an easy way to create list items. Most of the effort, though, is spent on symbol
design, from simple square to music note to sea shell. (Note that this demonstration contains
such declarations as `hshift hshift* = 2cm' when hshift* is supposed to automatically set
hshift if the latter isn't specified; but since the same areas are reused for all slides, hshift is
specified after the first slide.)

LecturerDemo-KitschScienceFiction.pdf is
a pathetic attempt at creating a video game
with TEX. Obviously there are better ways to
do that. Nevertheless, the presentation illus-
trates many Lecturer's features, including the
use of \showorhide, free positions, transparent
colors, shades, and a background image. The
drawing of symbols is also used to an extent
it wasn't designed for in the first place. The
reader can pay a visit to the layers panel (which
is displayed by default when not in full screen) to see how elements are organized on the
screen. Once again an area (the green square) is painted below the slide's textblock, with
similar colors, to give the impression of a screen, even though as far as Lecturer is concerned
the textblock and the area are totally unrelated, i.e. the text isn't the content of the area. The
darker line that appears at the area's perimeter is produced by the area and its frame overlap-
ping, an unwanted side effect with transparent colors, unavoidable but not so bad-looking
here.

	Basic things
	Loading
	First things first
	Presentation and handout

	Settings things globally and locally
	Global settings
	Local settings
	Type settings

	Attributes for slides
	PDF and navigation
	pdftitle
	bookmark
	bookmarklevel
	bookmarkstyle
	anchor

	Dimensions
	width
	height
	hsize
	left
	right
	vsize
	top
	bottom
	baselineskip
	topskip
	parskip
	parindent
	hpos
	vpos
	scale

	Content
	everyslide
	areas
	areas*

	Style
	background
	foreground
	image
	font
	transition

	Attributes for steps
	PDF and navigation
	pdftitle
	on
	off
	handout
	visible

	Content
	left
	right
	vskip
	everyvstep
	hskip
	everyhstep
	group

	Style
	font
	color
	transition

	Attributes for the job
	author
	pdfauthor
	title
	pdftitle
	date
	background
	font
	mode
	fullscreen
	autofullscreen
	normal
	menutext

	Areas
	Using a grid
	Adding material to areas
	Dimensions
	width
	hshift
	hshift*
	height
	vshift
	vshift*
	hsize
	left
	right
	hpos
	vsize
	top
	bottom
	vpos
	baselineskip
	topskip
	parskip
	parindent

	Content
	visible
	everyposition
	everyfreeposition

	Style
	background
	foreground
	image
	font
	frame
	frame_width
	frame_color
	frame_corner
	frame_dash

	Navigation
	Creating bookmarks
	Navigation commands

	Colors, shades, and images
	Colors
	Shades
	model
	from
	to
	angle
	speed
	width
	height
	fixed

	Images

	Drawing symbols
	Transitions
	type
	motion
	direction
	dimension
	scale
	duration

	Inserting PDF code
	Demonstrations

