
catcodes
—

“Generic” Switching of Category Codes
Uwe Lück∗

November 7, 2012

Abstract
The catcodes bundle provides small packages for switching category
codes, usable both with LATEX and without. (i) stacklet.sty main-
tains stacks for “private letters,” needed for plainpkg.tex’s minimal frame-
work for “generic” packages. (ii) actcodes.sty deals with “active charac-
ters,” switching their category codes and assigning meanings to “active-
character tokens.” (iii) catchdq.sty uses the “ASCII double quote” as an
active character for simplified access to typographical double quotes.—
These packages are “generic” in the sense that they should be usable at
least both with LATEX and Plain TEX, based on plainpkg.tex.
Required Packages: plainpkg, stacklet
Related Packages: catoptions, pcatcode from amsrefs, texapi, csquotes.
Keywords: Macro programming, category codes, private letters, active
characters, double quotes

Contents
1 Overview 2

2 Shared Features of Usage 2

3 actcodes.sty—Active Characters 3
3.1 Introduction . 3
3.2 Package File Header—plainpkg and Legalese 3
3.3 Purpose and Usage . 3

3.3.1 Installing and Calling . 3
3.3.2 Commands and Syntax 4

3.4 The Code . 4
3.4.1 Our Private Letters . 4

∗http://contact-ednotes.sty.de.vu

1

http://ctan.org/pkg/plainpkg
http://ctan.org/pkg/catoptions
http://ctan.org/pkg/amsrefs
http://ctan.org/pkg/texapi
http://ctan.org/pkg/csquotes
http://contact-ednotes.sty.de.vu

1 OVERVIEW 2

3.4.2 The Core . 4
3.4.3 \def and \let . 4
3.4.4 Switching Back . 5
3.4.5 Leaving and Version History 6

4 catchdq.sty—Typographical Double Quotes 6
4.1 Introduction . 6
4.2 Package File Header—plainpkg and Legalese 7
4.3 Purpose and Usage . 7

4.3.1 Installing and Calling . 7
4.3.2 Commands and Syntax 8

4.4 The Code . 8
4.4.1 Required . 8
4.4.2 The Core: \catchdq . 8
4.4.3 What Double Quotes Actually Are 8
4.4.4 Switching . 9
4.4.5 Leaving and Version History 9

5 stacklet.sty—Private Letters 10
5.1 Introduction . 10
5.2 Package File Header—plainpkg and Legalese 10
5.3 Usage . 10

5.3.1 Installing and Calling . 10
5.3.2 Commands and Syntax 11

5.4 The Code . 11
5.4.1 Name Space . 11
5.4.2 Pushing . 11
5.4.3 Popping . 12
5.4.4 No @ Stack with LATEX . 12
5.4.5 Leaving the Package File 12
5.4.6 VERSION HISTORY . 13

1 Overview
Sorry, . . . , the abstract and the table of contents must suffice for today (2012-
11-07) TODO

2 Shared Features of Usage
All the packages of the bundle are “plainpkg packages” in the sense of the
plainpkg1 documentation that exhibits details of what is summarized here.
Therefore:

1ctan.org/pkg/plainpkg

http://ctan.org/pkg/plainpkg
http://ctan.org/pkg/plainpkg

3 ACTCODES.STY—ACTIVE CHARACTERS 3

• All of them require that TEX finds plainpkg.tex as well as stackrel.sty.

• In order to load 〈catcodes〉.sty (where 〈catcodes〉 is stacklet, actcodes,
or catchdq), type \usepackage{〈catcodes〉} within a LATEX document
preamble, \RequirePackage{〈catcodes〉} in a “plainpkg package”, or
\input␣〈catcodes〉.sty . . . or perhaps \input{〈catcodes〉.sty}?

3 actcodes.sty—Active Characters
3.1 Introduction
Active characters can simplify syntax often, i.e., the code may be very pleasant
to type and read. But sometimes something may fail. See Section 3.3.2 for how
to cope with possibilities and difficulties.

3.2 Package File Header—plainpkg and Legalese
1 \input plainpkg
2 \ProvidesPackage{actcodes}[2012/11/07 v0.2a active characters (UL)]
3 %%
4 %% Copyright (C) 2012 Uwe Lueck,
5 %% http://www.contact-ednotes.sty.de.vu
6 %% -- author-maintained in the sense of LPPL below --
7 %%
8 %% This file can be redistributed and/or modified under
9 %% the terms of the LaTeX Project Public License; either

10 %% version 1.3c of the License, or any later version.
11 %% The latest version of this license is in
12 %% http://www.latex-project.org/lppl.txt
13 %% There is NO WARRANTY (actually somewhat experimental).
14 %%
15 %% Please report bugs, problems, and suggestions via
16 %%
17 %% http://www.contact-ednotes.sty.de.vu
18 %%

3.3 Purpose and Usage
The package derives from switching category codes in the nicetext and morehype
bundles and should improve them.

3.3.1 Installing and Calling

The file actcodes.sty is provided ready, installation only requires putting it
somewhere where TEX finds it (which may need updating the filename data
base).2 However, the files plainpkg.tex and stacklet.sty must be installed
likewise.

2http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

3 ACTCODES.STY—ACTIVE CHARACTERS 4

With LATEX, the file should be loaded by \RequirePackage{actcodes} or
\usepackage{actcodes}.

Without LATEX, load it by \input␣actcodes.sty.
As explained in plainpgk-doc.pdf, however, “generic” packages based on

plainpkg should load actcodes by \RequirePackage{actcodes}.

3.3.2 Commands and Syntax

actcodes.sty provides \MakeActive , \MakeActiveAss , \MakeActiveDef ,
\MakeActiveLet , \MakeOther , \MakeActiveOther with rather obvious
syntax—you find more detailed descriptions mixed with implementation below
. . . TODO —Without LATEX, the latter’s internal \@gobble〈arg〉 is provided as
well.

3.4 The Code
3.4.1 Our Private Letters

19 \PushCatMakeLetterAt

3.4.2 The Core

\MakeActiveAss〈ass-fun〉\〈char〉〈ass-args〉 “activates” 〈char〉 and then applies
assignment function 〈ass-fun〉 with arguments 〈ass-args〉 to it. The code derives
from LATEX’s \@sverb and \do@noligs and was also discussed on the LATEX-
L mailing list September 2010 (Will Robertson; Heiko Oberdiek). The present
definition generalizes \MakeActiveDef and \MakeActiveLet of my earlier pack-
ages.

20 \gdef\MakeActiveAss#1#2{%
21 \MakeActive#2%
22 \begingroup \lccode‘\˜‘#2\relax \lowercase{\endgroup #1˜}}

I was reluctant to provide \MakeActive\〈char〉 , but with catchdq.sty, it would
be better . . .

23 \gdef\MakeActive#1{\catcode‘#1\active}

. . . it just “revives” the meaning that the corresponding active-character token
last time . . .

3.4.3 \def and \let

\MakeActiveDef\〈char〉〈parameters〉{〈replace〉} has been employed in fifinddo
and blog (which is based on fifinddo) so far.

24 \gdef\MakeActiveDef{\MakeActiveAss\def}

3 ACTCODES.STY—ACTIVE CHARACTERS 5

W.r.t. the definition of this \MakeActiveDef, Heiko Oberdiek remarked that it
allows macro parameters, as opposed to my earlier definition in fifinddo. Without
parameters, this kind of macro has been used for conversion of text encodings
(atari.fdf, and I thought this was the idea of stringenc . . .).

\MakeActiveLet\〈char〉〈cmd〉 has been provided in niceverb so far. The
present package has been made in order to have \MakeActiveLet with blog.sty
as well, it was too annoying to use \MakeActiveDef there so often.

25 \gdef\MakeActiveLet{\MakeActiveAss\let}

3.4.4 Switching Back . . .

Sometimes, the “active” behaviour of 〈char〉 is too difficult, and you may want
to switch bach to its “simple” way . . . This may work by \MakeOther\〈char〉
. . . with LATEX, \MakeOther just is \@makeother . . .

26 \ifltx \global\let\MakeOther\@makeother
27 \else \gdef\MakeOther#1{\catcode‘#112\relax}
28 \fi

But within a macro (or other) argument, you can’t change the \catcode. (I lost
some time by not realizing that it was within a large argument where I tried
to switch the \catcode.) Anyway or in certain cases, it may be better to keep
a character “active” throughout a document and just to change the expansion
of the “active-character token.” This can be done with \MakeActiveLet and
\MakeActiveDef in certain cases already. E.g., when the “blank space” has been
“activated” by \obeylines, \MakeActiveLet\␣\space “undoes” this half-way,
while it does not restore “argument skipping” and “compressing blank spaces.”

When character 〈char〉 should be “active” for some time, but for certain
moments you prefer that it behaves like an “other character”, you can switch
to its “other” expansion by \MakeActiveOther\〈char〉 :

29 \gdef\MakeActiveOther#1{%
30 \MakeActiveAss\edef#1{\expandafter\@gobble\string#1}}

\MakeActiveOther uses LATEX’s \@gobble〈arg〉 , without LATEX, actcodes pro-
vides it:

31 \ifltx\else \long\gdef\@gobble#1{} \fi
32 % \show_ \MakeActiveOther_ \show_ \expandafter\show_

I am not providing a version without the \catcode change, although the latter
is superfluous here TODO . . .

niceverb also provides \MakeNormal\〈char〉 , it may migrate to here in
the future, and there may be \MakeActiveNormal\〈char〉 extending the above
\MakeActiveOther TODO . . .

Also, a stack might be used as in stacklet, even to switch meanings of active-
character tokens . . . not sure TODO . . .

babel does similar things, but I never have . . . TODO

http://ctan.org/pkg/stringenc
http://ctan.org/pkg/babel

4 CATCHDQ.STY—TYPOGRAPHICAL DOUBLE QUOTES 6

3.4.5 Leaving and Version History

33 \PopLetterCatAt
34 \endinput

VERSION HISTORY

35 v0.1 2012/08/26 started, almost completed
36 2012/08/27 completed; realizing \Push...At ..., bug fixes
37 v0.2 2012/08/28 \global\let, \def -> \gdef
38 2012/09/16 \MakeActive
39 2012/09/19 doc.: stacklet
40 v0.2a 2012/11/07 doc.: |...| on \MakeNormal
41

4 catchdq.sty—Typographical Double Quotes
4.1 Introduction
The catchdq package allows getting typographical double quotes by just using
the “ASCII double quote” " . A more precise overview:

1. Typically, “typographical” quotation marks mean distinguishing between
“opening” and “closing” quotation marks. Usually, you must enter differ-
ent characters or commands for the distinction, such as ‘‘ for “opening”
and ’’ for closing—in English with TEX. For English with Plain TEX,
even " suffices for “closing.”

2. There are much different conventions especially for German and French.
They require different characters or TEX commands than for English. The
packages german, ngerman, and babel have dealt with such conventions.

3. Understanding the ideas mentioned before has been difficult for a long
time, probably because typewriter and computer keyboards never have of-
fered the appropriate keys. Rather, they only offered the “ASCII double
quote” that produced an approximation (“neutral quotation marks”) not
making the difference. Many users and readers have not realized the dif-
ference, they have not realized how their screen or printer output differed
from double quotes in books and newspapers. Cf. the Wikipedia article3

4. The idea of the catchdq package is that the user indeed should not worry
about that difference and just type “ASCII double quotes”, and they should
be “converted” into the appropriate typographical quotation marks auto-
matically. This should work by “toggling,” i.e., the first “ASCII double
quote” is interpreted as “opening,” the second as “closing,” the next one
as “opening” . . . —Word processors have provided this feature (as an op-
tion) as well.

3en.wikipedia.org/wiki/Quotation mark

http://ctan.org/pkg/german
http://ctan.org/pkg/ngerman
http://ctan.org/pkg/babel
http://en.wikipedia.org/wiki/Quotation mark
http://en.wikipedia.org/wiki/Quotation mark

4 CATCHDQ.STY—TYPOGRAPHICAL DOUBLE QUOTES 7

5. Language-dependency of the feature currently is managed through the
langcode package.

6. The feature may cause problems sometimes. Therefore, explicit switching
the feature “on” and “off” is required.

7. The csquotes package addresses the issue in a more comprehensive and
perhaps more stable way.

See Section 4.3.2 for additional details.

4.2 Package File Header—plainpkg and Legalese
42 \input plainpkg
43 \ProvidesPackage{catchdq}[2012/09/20 v0.2 simple typographic dqs (UL)]
44 %%
45 %% Copyright (C) 2012 Uwe Lueck,
46 %% http://www.contact-ednotes.sty.de.vu
47 %% -- author-maintained in the sense of LPPL below --
48 %%
49 %% This file can be redistributed and/or modified under
50 %% the terms of the LaTeX Project Public License; either
51 %% version 1.3c of the License, or any later version.
52 %% The latest version of this license is in
53 %% http://www.latex-project.org/lppl.txt
54 %% There is NO WARRANTY (actually somewhat experimental).
55 %%
56 %% Please report bugs, problems, and suggestions via
57 %%
58 %% http://www.contact-ednotes.sty.de.vu
59 %%

4.3 Purpose and Usage
4.3.1 Installing and Calling

The file catchdq.sty is provided ready, installation only requires putting it
somewhere where TEX finds it (which may need updating the filename data
base).4 However, the files plainpkg.tex and stacklet.sty must be installed
likewise.

With LATEX, the file should be loaded by \RequirePackage{catchdq} or
\usepackage{catchdq}.

Without LATEX, load it by \input␣catchdq.sty.
As explained in plainpgk-doc.pdf, however, “generic” packages based on

plainpkg should load catchdq by \RequirePackage{catchdq}.
4http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

http://ctan.org/pkg/langcode
http://ctan.org/pkg/csquotes
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

4 CATCHDQ.STY—TYPOGRAPHICAL DOUBLE QUOTES 8

4.3.2 Commands and Syntax

catchdq.sty (indirectly) allows using "〈no-dqs〉" for surrounding 〈no-dqs〉 with
typographical quotation marks, using that double quote " as an active charac-
ter. As rendering that " active during defining macros can corrupt the latter,
the user (or package writer) must activate that " explicitly by \catchdqs .

Further difficulties may arise after \catchdqs, various ways to get around
them are described in the remaing sections.

4.4 The Code
4.4.1 Required

The package is an application (of ideas of) actcodes.sty:
60 \RequirePackage{actcodes}

4.4.2 The Core: \catchdq

\catchdq〈no-dqs〉" will expand to \dqtd{〈no-dqs〉} , provided the ASCII dou-
ble quote is an active character:

61 {\MakeActive\"\gdef\catchdq#1"{\dqtd{#1}}}

4.4.3 What Double Quotes Actually Are

\dqtd in turn is a kind of “variable.” blog.sty offered \endqtd for English
typographical double quotes, \dedqtd for German ones, and \asciidqtd for
“non-typographical” double quotes (as needed for XML attributes). \asciidq
accesses a single ASCII double quote, \enldq a single English typographical
left one, \enrdq a single English typographical right one. (It may be useful
to access them indepentently of each other, in certain complex situations . . .)
blog.sty, dealing with HTML, of course has different ideas about them TODO.

62 \gdef\asciidq{"}
63 \gdef\asciidqtd#1{"#1"}

We allow loading catchdq after another package (such as blog.sty) has chosen
meanings for \endqtd and the like (difficult TODO)

64 \ifx\enldq \undefined \gdef\enldq{‘‘} \fi
65 \ifx\enrdq \undefined \global\let\enrdq\asciidq \fi
66 \ifx\endqtd\undefined \gdef\endqtd#1{\enldq#1\enrdq} \fi

Typographical alternatives to \endqtd may be obtained from ngerman.sty or so,
if you are smart . . . (see Section 4.4.4 for how it works):

67 \ifx\dedqtd\undefined \gdef\dedqtd#1{\glqq#1\grqq} \fi

blog.sty, dealing with HTML, had a different idea about \endqtd of course. It
has also used the mechanism of the langcode package that allows using \dqtd
and other language-depended constructs with an “implicit” choice according to
the “current language code,” which should appear soon.

http://ctan.org/pkg/ngerman
http://ctan.org/pkg/langcode

4 CATCHDQ.STY—TYPOGRAPHICAL DOUBLE QUOTES 9

4.4.4 Switching

blog.sty usually does a single switch which gets a new name now: \catchdqs .

68 \gdef\catchdqs{\MakeActiveLet\"\catchdq}

After this, "〈no-dqs〉" will expand to \dqtd{#1}. The default expansion for
\dqtd will be \endqtd :

69 \ifx\dqtd\undefined \global\let\dqtd\endqtd \fi

Might be done by \endqs —when there are alternatives, but blog.sty and lang-
code.sty do this in a different way . . . TODO

70 % \gdef\endqs{\let\dqtd\endqtd}
71 % \ifx\dqtd\undefined \global\endqs \fi

Actually, here is a little “Tessst” . . . and here with ”doytshe doppleta anf. . .“
. . . This has been achieved by

\usepackage{ngerman}␣\originalTeX

\MakeOther\" may switch off catching mode (—done just before, as
niceverb at present doesn’t render it verbatim). actcodes suggests a dif-
ferent way to return from the \catchdqs state: Let the character ac-
tive and change its meaning only, let it expand to its “other” version—by
\activeasciidqs ? \MakeActiveOther\" and \let"\asciidq (it works!)
or \MakeActiveLet\"\asciidq (abbreviate as \activeasciidqs?) . . . In
blog.sty, there never was a need for switching back. We must rework interaction
with niceverb and can perhaps simplify the latter, . . . TODO

4.4.5 Leaving and Version History

72 \endinput

VERSION HISTORY

73 v0.1 2010/11/13 in texblog.fdf
74 v0.2 2012/09/17 own file, new ideas ...
75 2012/09/19 doc: stacklet
76 2012/09/20 \dedqtd conditionally; reworked doc.,
77 tested ngerman.sty
78

http://ctan.org/pkg/niceverb

5 STACKLET.STY—PRIVATE LETTERS 10

5 stacklet.sty—Private Letters
5.1 Introduction
“Private letters” here are meant to be characters that belong to the “letter”
category only within packages. A package typically provides user commands
as well as internal commands, and the latter are characterized by containing
funny letters in commands such as \@gobble. This is to avoid conflicts. See
Section 5.3.2 for the commands provided.

5.2 Package File Header—plainpkg and Legalese
79 \input plainpkg
80 \ProvidesPackage{stacklet}[2012/11/07 v0.3a private letters (UL)]
81 %%
82 %% Copyright (C) 2012 Uwe Lueck,
83 %% http://www.contact-ednotes.sty.de.vu
84 %% -- author-maintained in the sense of LPPL below --
85 %%
86 %% This file can be redistributed and/or modified under
87 %% the terms of the LaTeX Project Public License; either
88 %% version 1.3c of the License, or any later version.
89 %% The latest version of this license is in
90 %% http://www.latex-project.org/lppl.txt
91 %% There is NO WARRANTY (actually somewhat experimental).
92 %%
93 %% Please report bugs, problems, and suggestions via
94 %%
95 %% http://www.contact-ednotes.sty.de.vu
96 %%

5.3 Usage
5.3.1 Installing and Calling

The file stacklet.sty is provided ready, installation only requires putting it
somewhere where TEX finds it (which may need updating the filename data
base).5 However, the file plainpkg.tex must be installed likewise.

With LATEX, the file should be loaded by \RequirePackage{stacklet} or
\usepackage{stacklet}.

Without LATEX, both \input␣stacklet.sty and \input␣plainpkg load
stacklet.sty.

5http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=inst-wlcf

5 STACKLET.STY—PRIVATE LETTERS 11

5.3.2 Commands and Syntax

stacklet.sty provides

\PushCatMakeLetter\〈char〉 and \PopLetterCat\〈char〉

for getting “private letters” and giving them back their previous category code
in package files with or without LATEX. As LATEX has its own stack for @, there
are also

\PushCatMakeLetterAt and \PopLetterCatAt

that care for @’s category code without LATEX only.

5.4 The Code
5.4.1 Name Space

Each “private letter” 〈char〉 gets its own stack, in some name space, determined
by \cat_stack (\withcsname is from plainpkg.tex):

97 \withcsname\xdef cat_stack\endcsname{%
98 \noexpand\string \withcsname\noexpand cat_stack\endcsname
99 \noexpand\string}

I.e., ?cat_stack will expand to

?string ?cat_stack ?string

in the notation of the dowith package documentation.

100 % \withcsname\show cat_stack\endcsname

5.4.2 Pushing

\PushCatMakeLetter\〈char〉 . . .

101 \xdef\PushCatMakeLetter#1{%
102 \noexpand\withcsname
103 \withcsname\noexpand pushcat_makeletter\endcsname
104 \withcsname\noexpand cat_stack\endcsname#1\endcsname#1}
105 % \show\PushCatMakeLetter
106 \withcsname\gdef pushcat_makeletter\endcsname#1#2{%

#1 is the stack token, #2 is the “quoted” character. Pushing . . .

107 \xdef#1{\the\catcode‘#2\relax%

. . . the new entry. \relax separates entries, braces instead tend to get lost in
popping . . . If the stack has existed before, its previous content is appended:

108 \ifx#1\relax \else #1\fi}%

http://ctan.org/pkg/dowith

5 STACKLET.STY—PRIVATE LETTERS 12

I thought of storing \catcodes hexadecimally (without braces) using LATEX’s
\hexnumber, but the latter has so many tokens . . . Finally rendering 〈char〉 a
“letter”:

109 \catcode‘#211\relax}

Now we can use a “private letter stack” for our own package:

110 \PushCatMakeLetter_

5.4.3 Popping

\PopLetterCat\〈char〉 passes \〈char〉, the corresponding stack token, and the
latter’s expansion to \popcat_. \end serves as argument delimiter for the end
of the stack only:

111 \gdef\PopLetterCat#1{%
112 \expandafter\expandafter\expandafter
113 \popcat_\csname\cat_stack#1\expandafter\endcsname
114 \expandafter \end \csname\cat_stack#1\endcsname#1}

\popcat_ parses the expansion, assigns the old category code and and stores
the reduced stack:

115 \gdef\popcat_#1\relax#2\end#3#4{\catcode‘#4#1\gdef#3{#2}}

. . . check existence? TODO

5.4.4 No @ Stack with LATEX

\PushCatMakeLetterAt is like \PushCatMakeLetter\@ except that it has no
effect under LATEX:

116 \gdef\PushCatMakeLetterAt{\ifltx\else\PushCatMakeLetter\@\fi}

\PopLetterCatAt by analogy . . .

117 \gdef\PopLetterCatAt{\ifltx\else\PopLetterCat\@\fi}

5.4.5 Leaving the Package File

. . . in our new way:

118 \PopLetterCat_
119 \endinput

5 STACKLET.STY—PRIVATE LETTERS 13

5.4.6 VERSION HISTORY

120 v0.1 2012/08/24 started
121 2012/08/25 completed
122 2012/08/26 extending doc.; \def\withcsname removed
123 v0.2 2012/08/26 \with_catstack containing \endcsname and with
124 three popping macros replaced by \csname
125 content \cat_stack, cf. memory.tex;
126 restructured
127 2012/08/27 \PushCatMakeLetterAt fixed
128 v0.3 2012/08/27 def.s global
129 v0.3a 2012/11/06 doc.: "documentation"
130 2012/11/07 \filbreak
131

	Overview
	Shared Features of Usage
	'actcodes.sty'—Active Characters
	Introduction
	Package File Header—plainpkg and Legalese
	Purpose and Usage
	Installing and Calling
	Commands and Syntax

	The Code
	Our Private Letters
	The Core
	\def and \let
	Switching Back …
	Leaving and Version History

	'catchdq.sty'—Typographical Double Quotes
	Introduction
	Package File Header—plainpkg and Legalese
	Purpose and Usage
	Installing and Calling
	Commands and Syntax

	The Code
	Required
	The Core: \catchdq
	What Double Quotes Actually Are
	Switching
	Leaving and Version History

	'stacklet.sty'—Private Letters
	Introduction
	Package File Header—plainpkg and Legalese
	Usage
	Installing and Calling
	Commands and Syntax

	The Code
	Name Space
	Pushing
	Popping
	No `@' Stack with LaTeX
	Leaving the Package File
	VERSION HISTORY

