Arbitrary Precision Numbers

Petr Olšák
ftp://math.feld.cvut.cz/olsak/makra/

Table Of Contents

1 User's Documentation 2
1.1 Evaluation of Expressions 2\evaldef... 2, \apTOT . . 2, \apFRAC... 2, \ABS . . 3, \iDIV . . 3, \iMOD . . 3,\iRound... 3, \ifrac ...3, \FAC... 3
1.2 Basic Functions 3
\Plus ...3, \minus ... 3, \Mul ...3, \Div... 3, \POW ...3, \out... 3, \xout ... 3,\SIGN ... 4, \ROUND ... 4
1.3 Scientific Notation of Numbers 4
\ape ... 4, \adde... 4, \Roll... 4, \norm ... 4
1.4 Experiments. 5
2 The Implementation 5
\apnumversion ... 52.1 Public Macros5
\apSIGn... 6
2.2 Evaluation of the Expression 6
\apevala...6, \apEvalb...7, \apEvalc... 7, \apEvald...7, \apevale... 7,\apevalf... 7, \apEvalg ...7, \apEvalh... 7, \apEvalk...7, \apEvalm... 7,\backslash \apevaln... 7 , \apevalo ...8, \apevalp...8, \backslash apeplus ...8, \backslash apeminus ... 8 ,\apEMUL... 8, \apEDIV ...8, \apEPOW... 8, \apEVALstack ...8, \apEVALpush ...8,\apEVALdo...9, \apEVALerror... 9, \apTESTdigit... 9
2.3 Preparation of the Parameter 9\backslash apPPa ...9, \apPPb...9, \apPPc... 9, \apPPd ...10, \apPPe... 10, \apPPf... 10,\apPPg ...10, \apPPh ...10, \apPPi... 10, \apPPj... 10, \apPPk... 10, \apPPı... 10,\backslash apPPm ...10, \apPPn ...10, \apPPab ...11, \apPPs ...11, \apPPt ... 11, \apPPu ... 11,\apevalone... 11, \apNOminus... 11, \apEVALtwo ... 11
2.4 Addition and Subtraction11\apPLUSa... 12, \apPLUSxA... 12, \apPLUSxB... 12, \apPLUSb... 13, \apPLUSc... 13,\apPLUSe... 13, \apPLUSh... 14, \apPLUSg ...14, \apPLUSd...14, \apPLUSf... 14,\apPLUSm... 14, \apPLUSp... 14, \apPLUSw ...15, \apPLUSy ... 15, \apPLUSz ... 15,\apPLUSxE . . . 15
2.5 Multiplication15\apMULa... 15, \apMULb... 17, \apMULc ...17, \apMULd... 17, \apMULe... 17,\apMULf... 17, \apMULg... 18, \apMULh ...18, \apMULi... 18, \apMULj... 18,\apMULo... 18, \apMULt... 182.6 Division18\apDIVa... 20, \apDIVcomp ...21, \apDIVcompA... 21, \apDIVcompB ...21, \apDIVg ...22,\apDIVh... 23, \apDIVi... 23, \nexti ... 23, \apDIVj ...23, \apDIVp... 23,\backslash apDIVxA...23, \apDIVxB ...23, \apDIVq...23, \apDIVr ...24, \apDIVt... 24,\apDIVu... 24, \apDIVv... 25, \apDIVw... 252.7 Power to the Integer25\apPOWa... 25, \apPOWb...26, \apPOWd ...26, \apPOWe... 27, \apPOWg ... 27,\apPOWh... 27, \apPOWn ...27, \apPOWna...27, \apPOWnn ...27, \apPOWt...27,\apPOWu... 27, \apPOWv... 27
2.8 ROLL, ROUND and NORM Macros 27
\apRoLLa... 27, \apRoLLc... 28, \apRoLld ...28, \apRoLLe ...28, \apRoLLf ... 28,\apRoLlg... 28, \apRoLLh... 28, \apRoLLi ...28, \apRoLLj ...28, \apRoLLk... 29,
\apRoLln...29, \apROLLo...29, \apRounda...29, \apRoundb... 29, \apRoundc... 29,
\apRoundd...29, \apRounde ...29, \apNORMa ...30, \apNORMb...30, \apNorMc...30,
\apNORMd ... 30
2.9 Function-like Macros30
\apABSa... 30, \apiDIVa ...30, \apiMODa ...30, \apiRounDa... 30, \apiFRACa... 30,
\apFACa... 30
2.10 Auxiliary Macros30
\apREV ...30, \apREVa...30, \apDIG...30, \apDIGa ...30, \apDIGb ...31,
\apDIGc... 31, \apDIGd...31, \apDIGe...31, \apDIGf...31, \apIVread...31,
\apIVreadA ...31, \apNL... 31, \apIVreadX ...31, \apIVwrite ...31, \apIVtrans... 32,
\apIVbase...32, \apIVmod...32, \apIVdot ...32, \apIVdotA... 32, \apNUMdigits ...32,
\apNUMdigitsA ...32, \apADDzeros... 32, \apREMzerosR...32, \apREMzerosRa... 32,
\apREMzerosRb ...32, \apREMdotR ...32, \apREMdotRa ...32, \apOUTx ...33, \apOUTn ...33,
\apOUT1... 33, \apOUTs... 33, \ap0UTtmpb ... 33
2.11 Conclusion
33
3 Index . 33

1 User's Documentation

This macro file apnum.tex implements addition, subtraction, multiplication, division and power to an integer of numbers with arbitrary number of decimal digits. The numbers are in the form:

```
<sign><digits>.<digits>
```

where optional $\langle\operatorname{sign}\rangle$ is the sequence of + and/or - . The nonzero number is treated as negative if and only if there is odd number of - signs. The first part or second part of 〈digits \rangle (but not both) can be empty. The decimal point is optional if second part of \langle digits \rangle is empty.

There can be unlimited number of digits in the operands. Only $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ main memory or your patience during calculation with very large numbers are your limits. Note, that this implementation includes many optimizations and it is above 100 times faster (on large numbers) than the implementation of the similar task in the package fltpoint.sty. And the fp.sty doesn't implements arbitrary number of digits. The extensive technical documentation can serve as an inspiration how to do $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ macro programming.

Evaluation of Expressions

After \input ${ }_{\llcorner }$apnum in your document you can use the macro \evaldef \langlesequence $\rangle\{\langle$expression \rangle\}. It gives the possibility for comfortable calculation. The \langle expression \rangle can include numbers (in the form
 The result is stored to the \langle sequence \rangle as a literal macro. Examples:

```
\evaldef\A {2+4*(3+7)}
    % ... the macro \A includes 42
\evaldef\B {\the\pageno * \A}
    % ... the macro \B includes }8
\evaldef\C {123456789000123456789*-123456789123456789123456789}
    % ... \C includes -15241578765447341344197531849955953099750190521
\evaldef\D {1.23456789 + 12345678.9 - \A}
    % ... the macro \D includes 12345596.13456789
\evaldef\X {1/3}
    % ... the macro \X includes . }333333333333333333
```

The limit of the number of digits of the division result can be set by \apTOT and \apFRAC registers. First one declares maximum calculated digits and second one declares maximum of digits after decimal point. The result is limited by both those registers. If the \apTOT is negative, then its absolute value is treated as a "soft limit": all digits before decimal point are calculated even if this limit is exceeded. The digits after decimal point are not calculated when this limit is reached. The special value \backslash apTOT $=0$ means that the calculation is limited only by $\backslash a p F R A C$. Default values are $\backslash a p T O T=-30 \backslash a p F R A C=20$.

[^0]The operator ^ means the powering, i.e $2^{\wedge} 8$ is 256 . The exponent have to be an integer (no decimal point is allowed) and a relatively small integer is assumed.

The scanner of the \evaldef macro reads something like "operand binary-operator operand binary-operator etc." without expansion. The spaces are not significant. The operands are:

- numbers (in the format $\langle s i g n\rangle\langle$ digits $\rangle .\langle$ digits \rangle) or
- numbers in scientific notation (see the section 1.3) or
- sequences $\langle s i g n\rangle \backslash$ the \langle token \rangle or $\langle s i g n\rangle \backslash$ number \langle token \rangle or
- any other single \langle token \rangle optionally preceded by $\langle s i g n\rangle$ and optionally followed by a sequence of parameters enclosed in braces, for example $\backslash \mathrm{A}$ or $\backslash \mathrm{B}\{\langle$ text $\rangle\}$ or $-\backslash \mathrm{C}\{\langle$ text $A\rangle\}\{\langle$ text $B\rangle\}$.
It means that you can use numbers or macros without parameter or macros with one or more parameters enclosed in braces as operands.

The apnum.tex macro file provides the following "function-like" macros which can be used as an operand in the \langle expression $\rangle: \backslash$ ABS $\{\langle$ value $\rangle\}$ for an absolute value, \backslash iDIV $\{\langle$ dividend $\rangle\}\{\langle$ divisor $\rangle\}$ for an integer division, $\backslash i M O D ~\{\langle$ dividend $\rangle\}\{\langle$ divisor $\rangle\}$ for an integer remainder, $\backslash i \operatorname{ROUND}\{\langle$ value $\rangle\}$ for rounding the number to the integer, \iFRAC $\{\langle$ value $\rangle\}$ for fraction part of the \iROUND, $\backslash \mathrm{FAC}\{\langle$ value $\rangle\}$ for a factorial. The arguments of these functions can be a nested \langle expressions \rangle with the syntax like in the \evaldef macro. Example:

```
\def\A{20}
\evaldef\B{ 30*\ABS{ 100 - 1.12*\the\widowpenalty } / (4+\A) }
```

Note that the arguments of the "function-like" macros are enclosed by normal $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ braces \{\} but the round brackets () are used for re-arranging of the common priority of the $+,-, *, /$ and ^ operators.

The macro used as an operand in the 〈expression〉 can be a "literal-macro" directly expandable to a number (like $\backslash \mathrm{A}$ above) or it is a "function-like" macro with the following properties:

- It is protected by \relax as its first token after expansion.
- It calculates the result and saves it into the \OUT macro.

1.2 Basic Functions

 parameters). They are internally used for evaluation of the \langle expression \rangle mentioned above. The parameters of these macros can be numbers or another \PLUS, $\backslash M I N U S, ~ \backslash M U L, ~ \ D I V ~ o r ~ \ P O W ~ m a c r o ~ c a l l ~ o r ~ a n o t h e r ~$ "literal macro" with the number or "function-like" macro as described above. The result of calculation is stored in the macro \OUT. Examples:

```
\PLUS{123456789}{-123456789123456789}
    % ... \OUT is -123456789000000000
\PLUS{2}{\MUL{4}{\PLUS{3}{7}}}
    % ... \OUT is 42
\DIV{1}{3}
    % ... \OUT is . }3333333333333333333
```

The number of digits calculated by \DIV macro is limited by the \apTOT and \apFRAC registers as described above. There is another result of \DIV calculation stored in the \XOUT macro. It is the remainder of the division. Example:

```
\apTOT=O \apFRAC=0 \DIV{12345678912345}{2} \ifnum\XOUT=O even \else odd\fi
```

You cannot use \ifodd primitive here because the number is too big.
The macro $\backslash \operatorname{POW}\{\langle$ base $\rangle\}\{\langle$ exponent $\rangle\}$ calculates the power to the integer exponent. A slight optimization is implemented here so the usage of $\backslash P O W$ is faster than repeated multiplication. The decimal non-integer exponents are not allowed because the implementation of exp, ln, etc. functions would be a future work.

```
\ABS: 6, 30 \iDIV: 6, 30 \iMOD: 6 \iROUND: 3,6 \iFRAC: 6 \FAC: 6 \PLUS: 3-6, 8-9,11
\MINUS: 3-5, 8-9 \MUL: 3-9, 11, 23, 30,32 \DIV: 3-5, 8-9, 11, 32 \POW: 3-5, 8-9, 11, 32
\OUT: 3-4, 6, 9-11, 13-18, 20-21, 23-27, 30, 32-33 \XOUT: 4, 11, 20-25, 29-30
```

The \backslash SIGN is the $T_{E} X$ register with another output of the calculation of $\backslash e v a l d e f, ~ \backslash P L U S, ~ \backslash M I N U S, ~$ \backslash MUL and \backslash DIV macros. It is equal to 1 if the result is positive, it is equal to -1 , if the result is negative and it is equal to 0 , if the result is 0 . You can implement the conditionals of the type
\TEST \{123456789123456789\} > \{123456789123456788\} \iftrue OK \else KO \fi
by the following definition:
\def\TEST\#1\#2\#3\#4\{\MINUS\{\#1\}\{\#3\}\ifnum\SIGN \#2 0 \}
 as one single operand, no 〈expressions (like in \evaldef) are allowed. There is no sense to combine the basic functions \PLUS, \MINUS etc. with binary operators $+,-, *, /$ and ${ }^{\text {^. }}$

The \backslash ROUND \langle sequence $\rangle\{\langle n u m\rangle\}$ rounds the number, which is included in the macro \langle sequence \rangle and redefines \langle sequence \rangle as rounded number. The digits after decimal point at the position greater than $\langle n u m\rangle$ are ignored in the rounded number. The ignored part is saved to the \XOUT macro. Examples:

```
\def\A{12.3456}\ROUND\A{1} % \A is "12.3", \XOUT is "456"
\def\A{12.3456}\ROUND\A{9} % \A is "12.3456", \XOUT is empty
\def\A{12.3456}\ROUND\A{0} % \A is "12", \XOUT is "3456"
\def\A{12.0001}\ROUND\A{2} % \A is "12", \XOUT is "01"
\def\A{.000001}\ROUND\A{2} % \A is "0", \XOUT is "0001"
\def\A{-12.3456}\ROUND\A{2} % \A is "-12.34", \XOUT is "56"
\def\A{12.3456}\ROUND\A{-1} % \A is "10", \XOUT is "23456"
\def\A{12.3456}\ROUND\A{-4} % \A is "0", \XOUT is "00123456"
```


1.3

Scientific Notation of Numbers

The macros \evaldef \backslash PLUS, \backslash MINUS, \backslash MUL, \backslash DIV and \backslash POW are able to operate with the numbers written in the notation:

```
<sign><digits>.<digits>E<sign><digits>
```

For example 1.234 E 9 means $1.234 \cdot 10^{9}$, i.e. 1234000000 or the text $1.234 \mathrm{E}-3$ means .001234 . The decimal exponent (after the E letter) have to be in the range ± 2147483647 because we store this value in normal $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ register.

The macros \evaldef \PLUS, \MINUS, \MUL, \DIV and \POW operate by "normal way" if there are no arguments with E syntax. But if an argument is expressed in scientific form, the macros provide the calculation with mantissa and exponent separately and the mantissa of the result is found in the \OUT macro (or in the macro defined by \evaldef) and the exponent is in stored the \apE register. Note, that \OUT is a macro but \apE is a register. You can define the macro which shows the result of the calculation, for example:
\def \showE\#1\{\message\{\#1\ifnum \apE=0 \else*10^\the\apE\fi\}\}
No macros mentioned above store the result back in the scientific notation, only mantissa is stored. You need to use \apE register to print the result similar as in the example above. Or you can use the macro \addE \langle sequence \rangle macro which redefines the \langle sequence \rangle macro in order to add the $\mathrm{E}\langle$ exponent \rangle to this macro. The \langle exponent \rangle is read from the current value of the \backslash apE register.

There are another usable functions for operations with scientific numbers.

- \backslash ROLL \langle sequence $\rangle\{\langle$ shift $\rangle\} \ldots$...the \langle sequence \rangle is assumed to be a macro with the number. The decimal point of this number is shifted right by $\langle s h i f t\rangle$ parameter, i.e. the result is multiplied by $10^{\wedge}\langle$ shift \rangle. The \langle sequence \rangle is redefined by this result. For example \backslash ROLL $\backslash \mathrm{A}\{\backslash \mathrm{apE}\}$ converts the number of the form \langle mantissa $\rangle * 10^{\wedge} \backslash$ apE to the normal number.
- \backslash NORM \langle sequence $\rangle\{\langle n u m\rangle\} \ldots$ the \langle sequence \rangle is supposed to be a macro with \langle mantissa \rangle and it will be redefined. The number \langle mantissa $\rangle * 10^{\wedge} \backslash \mathrm{apE}$ (with current value of the \backslash apE register) is assumed. The new mantissa saved in the \langle sequence \rangle is the "normalized mantissa" of the same number. The \apE register is corrected so the "normalized mantissa" $* 10^{\wedge} \backslash \mathrm{apE}$ gives the same number.

```
\SIGN: 6 \ROUND: 5-6, 11, 27 \apE: 4-13, 15-16, 20-21, 25-26, 30,33 \addE: 5-6
\ROLL: 4-6, 11, 27 \NORM: 5-6, 11, 27
```

The $\langle n u m\rangle$ parameter is the number of non-zero digits before the decimal point in the outputted mantissa. If the parameter $\langle n u m\rangle$ starts by dot following by integer (for example \{.2\}), then the outputted mantissa has $\langle n u m\rangle$ digits after decimal point. For example \def $\backslash \mathrm{A}\{1.234\} \backslash$ apE=0 $\backslash N O R M \backslash A\{.0\}$ defines $\backslash A$ as 1234 and $\backslash a p E=-3$. The macros $\backslash P L U S, \backslash M U L$ etc. don't use this macro, they operate with the mantissa without correcting the position of decimal point and adequate correcting of the exponent.

The following example saves the result of the \evaldef in scientific notation with the mantissa with maximal three digits after decimal point and one digit before.

\evaldef $\backslash X\{. ..\} \backslash N O R M \backslash X\{1\} \backslash R O U N D \backslash X\{3\} \backslash$ addE $\backslash X$

The macros \ROUND, \addE, \ROLL and \NORM redefine the macro 〈sequence〉 given as their first argument. The macro \langle sequence \rangle must be directly the number in the format \langle simple-sign $\rangle\langle$ digits \rangle. \langle digits \rangle where \langle simple-sign \rangle is one minus or none and the rest of number has the format described in the first paragraph of this documentation. The scientific notation isn't allowed here. This format of numbers is in accordance with the output of the macros \evaldef, \PLUS, \MINUS etc.

Experiments

The following table shows the time needed for calculation of randomly selected examples. The comparison with the package fltpoint.sty is shown. The symbol ∞ means that it is out of my patience.

input	\# of digits in the result	time spent by apnum.tex	time spent by fltpoint.sty
$200!$	375	0.33 sec	173 sec
$1000!$	2568	29 sec	∞
$5^{17^{2}}$	203	0.1 sec	81 sec
$5^{17^{3}}$	3435	2.1 sec	∞
$1 / 17$	1000	0.13 sec	113 sec
$1 / 17$	100000	142 sec	∞

2 The Implementation

First, the greeting. The \apnumversion includes the version of this software.

```
\def\apnumversion{1.1 <Jan. 2015>}
```

\message\{The Arbitrary Precision Numbers, \apnumversion\}
We declare auxiliary counters and one boolean variable.

```
\newcount\apnumA \newcount\apnumB \newcount\apnumC \newcount\apnumD
\newcount\apnumE \newcount\apnumF \newcount\apnumG \newcount\apnumH
\newcount \apnum0 \newcount\apnumL
\newcount\apnumX \newcount\apnumY \newcount\apnumZ
\newcount\apSIGNa \newcount\apSIGNb \newcount\apEa \newcount\apEb
\newif\ifapX
```

Somebody sometimes sets the @ character to the special catcode. But we need to be sure that there is normal catcode of the @ character.

9: \apnumZ=\catcode'\@ \catcode" \@=12

2.1
 Public Macros

The definitions of the public macros follow. They are based on internal macros described below.

```
\def\evaldef{\relax \apEVALa}
\def\PLUS{\relax \apPPab\apPLUSa}
\def\MINUS#1#2{\relax \apPPab\apPLUSa{#1}{-#2}}
\def\MUL{\relax \apPPab\apMULa}
\def\DIV{\relax \apPPab\apDIVa}
\def\POW{\relax \apPPab\apPOWa}
```

[^1]```
29: \def\ABS{\relax \apEVALone\apABSa}
\def\iDIV{\relax \apEVALtwo\apiDIVa}
\def\iMOD{\relax \apEVALtwo\apiMODa}
\def\iROUND#1{\relax \evaldef\OUT{#1}\apiROUNDa}
\def\iFRAC{\relax \apEVALone\apiFRACa}
\def\FAC{\relax \apEVALone\apFACa}
\def\ROUND{\apPPs\apROUNDa}
\def\ROLL{\apPPs\apROLLa}
\def \NORM{\apPPs\apNORMa}
\def\addE#1{\edef#1{#1\ifnum\apE=0 \else E\ifnum\apE>0+\fi\the\apE\fi}}
```

The \apSIGN is an internal representation of the public \SIGN register. Another public registers $\backslash a p E, \$ apTOT and $\backslash a p F R A C$ are used directly.

```
40: \newcount\apSIGN \let\SIGN=\apSIGN
41: \newcount\apE
42: \newcount\apTOT \арTOT=-30
43: \newcount\apFRAC \apFRAC=20
```


### 2.2 Evaluation of the Expression

Suppose the following expression $\backslash A+\backslash B *(\backslash C+\backslash D)+\backslash E$ as an example.
The main task of the $\backslash e v a l d e f \backslash x\{\backslash A+\backslash B *(\backslash C+\backslash D)+\backslash E\}$ is to prepare the macro $\backslash$ tmpb with the content (in this example) $\backslash \operatorname{PLUS}\{\backslash \operatorname{PLUS}\{\backslash A\}\{\backslash \operatorname{MUL}\{\backslash B\}\{\backslash \operatorname{PLUS}\{\backslash C\}\{\backslash D\}\}\}\}\{\backslash E\}$ and to execute the \tmpb macro.

The expression scanner adds the \end at the end of the expression and reads from left to right the couples "operand, operator". For our example: $\backslash A+, \backslash B *, \backslash C+, \backslash D+$ and $\backslash E \backslash e n d$. The $\backslash e n d$ operator has the priority 0 , plus, minus have priority $1, *$ and / have priority 2 and ^ has priority 3 . The brackets are ignored, but each occurrence of the opening bracket (increases priority by 4 and each occurrence of closing bracket ) decreases priority by 4 . The scanner puts each couple including its current priority to the stack and does a test at the top of the stack. The top of the stack is executed if the priority of the top operator is less or equal the previous operator priority. For our example the stack is only pushed without execution until $\backslash D+$ occurs. Our example in the stack looks like:

```
\(\begin{array}{rrrr}\backslash D+1 & 1<=5 \text { exec: } & & \\ \backslash C+5 & \{\backslash C+\backslash D\}+1 & 1<=2 \text { exec: } \\ \backslash B * 2 & \backslash B+2 & \{\backslash B *\{\backslash C+\backslash D\}\}+1 & 1<=1 \text { exec: } \\ \backslash A+1 & \backslash A+1 & \backslash A+1 & \{\backslash A+\{\backslash B *\{\backslash C+\backslash D\}\}\}+1 \\ \text { bottom } 0 & \text { bottom } 0 & \text { bottom } & 0\end{array}\)
```

Now, the priority on the top is greater, then scanner pushes next couple and does the test on the top of the stack again.

```
\E \end 0 0<=1 exec:
{\A+{\B*{\C+\D}}} + 1 % { { \\\A+{\B*{\C+\D}}}+\E} \end 0 0 0<=0 exec:
```

Let $p_{t}, p_{p}$ are the priority on the top and the previous priority in the stack. Let $v_{t}, v_{p}$ are operands on the top and in the previous line in the stack, and the same notation is used for operators $o_{t}$ and $o_{p}$. If $p_{t} \leq p_{p}$ then: pop the stack twice, create composed operand $v_{n}=v_{p} o_{p} v_{t}$ and push $v_{n}, o_{t}, p_{t}$. Else push new couple "operand, operator" from the expression scanner. In both cases try to execute the top of the stack again. If the bottom of the stack is reached then the last operand is the result.

The macro \apEVALa $\langle$ sequence $\rangle\{\langle$ expression $\rangle\}$ runs the evaluation of the expression in the group. The base priority is initialized by $\backslash$ apnumA $=0$, then $\backslash$ apEVALb $\langle$ expression $\rangle$ \end scans the expression and saves the result in the form $\backslash \operatorname{PLUS}\{\backslash A\}\{\backslash M U L\{\backslash B\}\{\backslash C\}\}$ (etc.) into the $\backslash$ tmpb macro. This macro is expanded after group and the content in $\backslash t m p b$ is executed. The new result of such execution is stored to the \OUT macro, which is finally set to the desired $\langle$ sequence $\rangle$.

[^2][^3]The scanner is in one of the two states: reading operand or reading operator. The first state is initialized by $\backslash a p E V A L b$ which follows to the $\backslash a p E V A L c$. The $\backslash a p E V A L c$ reads one token and switches by its value. If the value is a + or - sign, it is assumed to be the part of the operand prefix. Plus sign is ignored (and \apEVALc is run again), minus signs are accumulated into \tmpa.

The auxiliary macro \apEVALd runs the following tokens to the $\backslash f i$, but first it closes the conditional and skips the rest of the macro \apEVALc.

```
\def\apEVALb{\def\tmpa{}\apEVALc}
\def\apEVALc#1{%
 \ifx+#1\apEVALd \apEVALc \fi
 \ifx-#1\edef\tmpa{\tmpa-}\apEVALd\apEVALc \fi
 \ifx(#1\apEVALd \apEVALe \fi
 \ifx\the#1\apEVALd \apEVALf\the\fi
 \ifx\number#1\apEVALd \apEVALf\number\fi
 \apTESTdigit#1\iftrue
 \ifx E#1\let\tmpb=\tmpa \expandafter\apEVALd\expandafter\apEVALk
 \else \edef\tmpb{\tmpa#1}\expandafter\apEVALd\expandafter\apEVALn\fi\fi
 \edef\tmpb{\tmpa\noexpand#1}\futurelet\apNext\apEVALg
}
\def\apEVALd#1\fi#2\apNext\apEVALg{\fi#1}
```

If the next token is opening bracket, then the global priority is increased by 4 using the macro \apEVALe. Moreover, if the sign before bracket generates the negative result, then the new multiplication (by -1 ) is added using $\backslash$ apEVALp to the operand stack.

```
\def\apEVALe{%
 \ifx\tmpa\empty \else \ifnum\tmpa1<0 \def\tmpb{-1}\apEVALp \MUL 4\fi\fi
 \advance\apnumA by4
 \apEVALb
}
```

If the next token is \the or \number primitives (see lines 53 and 54), then one following token is assumed as $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ register and these two tokens are interpreted as an operand. This is done by $\backslash$ apEVALf. The operand is packed to the $\backslash$ tmpb macro.
apnum.tex

```
66: \def\apEVALf#1#2{\expandafter\def \expandafter\tmpb\expandafter{\tmpa#1#2}\apEVALo}
```

If the next token is not a number (the \apTESTdigit\#1 \iftrue results like \iffalse at line 55) then we save the sign plus this token to the $\backslash$ tmpb at line 58 and we do check of the following token by \futurelet. The \apEVALg is processed after that. The test is performed here if the following token is open brace (a macro with parameter). If this is true then this parameter is appended to $\backslash$ tmpb by $\backslash$ apEVALh and the test about the existence of second parameter in braces is repeated by next $\backslash$ futurelet. The result of this loop is stored into \tmpb macro which includes $\langle\operatorname{sig} n\rangle$ followed by $\langle$ token $\rangle$ followed by all parameters in braces. This is considered as an operand.

```
67: \def\apEVALg{\ifx\apNext \bgroup \expandafter\apEVALh \else \expandafter\apEVALo \fi}
68: \def\apEVALh#1{\expandafter\def\expandafter\tmpb\expandafter{\tmpb{#1}}\futurelet\apNext\apEVALg}
```

If the next token after the sign is a digit or a dot (tested in \apEVALc by \apTESTdigit at line 55), then there are two cases. The number includes the E symbol as a first symbol (this is allowed in scientific notation, mantissa is assumed to equal to one). The $\backslash$ apEVALk is executed in such case. Else the $\backslash a p E V A L n$ starts the reading the number.

The first case with E letter in the number is solved by macros \apEVALk and \apEVALm. The number after $E$ is read by $\backslash \mathrm{apE}=$ and this number is appended to the $\backslash \mathrm{tmpb}$ and the expression scanner skips to \apEVALo.
apnum.tex
69: \def \apEVALk\{ \afterassignment\apEVALm\apE=\}
70: \def \apEVALm\{\edef $\backslash$ tmpb $\{\backslash$ tmpb $E \backslash$ the $\backslash a p E\} \backslash a p E V A L o\} ~$
The second case (there is normal number) is processed by the macro \apEVALn. This macro reads digits (token per token) and saves them to the \tmpb. If the next token isn't digit nor dot then the

```
\apEVALb: 6-8 \apEVALc: 7 \apEVALd: 7 \apEVALe: 7 \apEVALf: 7 \apEVALg: 7
\apEVALh: 7 \apEVALk: 7 \apEVALm: 7-8 \apEVALn: 7-8
```

second state of the scanner (reading an operator) is invoked by running \apEVALo. If the $E$ is found then the exponent is read to $\backslash \mathrm{apE}$ and it is processed by $\backslash a p E V A L m$.

```
\def\apEVALn#1{\apTESTdigit#1%
 \iftrue \ifx E#1\afterassignment\apEVALm\expandafter\expandafter\expandafter\apE
 \else\edef\tmpb{\tmpb#1}\expandafter\expandafter\expandafter\apEVALn\fi
 \else \expandafter\apEVALo\expandafter#1\fi
}
```

The reading an operator is done by the $\backslash$ apEVALo macro. This is more simple because the operator is only one token. Depending on this token the macro \apEVALp $\langle$ operator $\rangle\langle$ priority $\rangle$ pushes to the stack (by the macro \apEVALpush) the value from $\backslash$ tmpb, the $\langle$ operator $\rangle$ and the priority increased by \apnumA (level of brackets).

If there is a problem (level of brackets less than zero, level of brackets not equal to zero at the end of the expression, unknown operator) we print an error using \apEVALerror macro.

The \apNext is set to \apEVALb, i.e. scanner returns back to the state of reading the operand. But exceptions exist: if the ) is found then priority is decreased and the macro \apEVALo is executed again. If the end of the $\langle$ expression $\rangle$ is found then the loop is ended by $\backslash$ let $\backslash$ apNext= $=$ relax.

```
\def\apEVALo#1{\let\apNext=\apEVALb
 \ifx+#1\apEVALp \apEPLUS 1\fi
 \ifx-#1\apEVALp \apEMINUS 1\fi
 \ifx*#1\apEVALp \apEMUL 2\fi
 \ifx/#1\apEVALp \apEDIV 2\fi
 \ifx^#1\apEVALp \apEPOW 3\fi
 \ifx)#1\advance\apnumA by-4 \let\apNext=\apEVALo \let\tmpa=\relax
 \ifnum\apnumA<O \apEVALerror{many brackets ")"}\fi
 \fi
 \ifx\end#1%
 \ifnum\apnumA>0 \apEVALerror{missing bracket ")"}%
 \else \apEVALp\END O\fi
 \let\apNext=\relax
 \fi
 \ifx\tmpa\relax \else \apEVALerror{unknown operator "\string#1"}\fi
 \apnumE=0 \apNext
: }
\def\apEVALp#1#2{%
 \apnumB=#2 \advance\apnumB by\apnumA
 \toks0=\expandafter{\expandafter{\tmpb}{#1}}%
 \expandafter\apEVALpush\the\toks0\expandafter{\the\apnumB}% {value}{op}{priority}
 \let\tmpa=\relax
}
```

The public values of \PLUS, \MINUS etc. macros are saved to the \apEPLUS, \apEMINUS, \apEMUL, $\backslash a p E D I V, \ a p E P O W$ and these sequences are used in \evaldef. The reason is that the public macros can be changed later by the user but we need be sure of usage the right macros.

```
99: \let\apEPLUS=\PLUS \let\apEMINUS=\MINUS \let\apEMUL=\MUL \let\apEDIV=\DIV \let\apEPOW=\POW
```

The \apEVALstack macro includes the stack, three items $\{\langle$ operand $\rangle\}\{\langle\langle$ operator $\rangle\}\{\langle$ priority $\rangle\}$ per level. Left part of the macro contents is the top of the stack. The stack is initialized with empty operand and operator and with priority zero. The dot here is only the "total bottom" of the stack.

```
100: \def \apEVALstack{{}{}{0}.}
```

The macro $\backslash$ apEVALpush $\{\langle$ operand $\rangle\}\{\langle$ operator $\rangle\}\{\langle$ priority $\rangle\}$ pushes its parameters to the stack and runs \apEVALdo〈whole-stack $\rangle @$ to do the desired work on the top of the stack.

```
\def\apEVALpush#1#2#3{% value, operator, priority
 \toks0={{#1}{#2}{#3}}%
 \expandafter\def\expandafter\apEVALstack\expandafter{\the\toks0\apEVALstack}%
 \expandafter\apEVALdo\apEVALstack@%
}
```

| \apEVALo: 7-8 | \apEVALp: 7-8 | \apEPLUS: 8-9 | \apEMINUS: 8 | \apEMUL: 8 | \apEDIV: 8 |
| :--- | ---: | :--- | :--- | :--- | :--- |
| \apEPOW: 8 | \apEVALstack: 8-9 | \apEVALpush: 8-9 |  |  |  |

Finally, the macro \apEVALdo $\{\langle v t\rangle\}\{\langle o t\rangle\}\{\langle p t\rangle\}\{\langle v p\rangle\}\{\langle o p\rangle\}\{\langle p p\rangle\}\langle$ rest-ofthe-stack $\rangle$ @ performs the execution described at the beginning of this section. The new operand $\langle v n\rangle$ is created as $\langle o p\rangle\{v p\}\{v t\}$, this means $\backslash a p E P L U S\{\langle v p\rangle\}\{\langle v t\rangle\}$ for example. The operand is not executed now, only the result is composed by the normal $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ notation. If the bottom of the stack is reached then the result is saved to the $\backslash \mathrm{tmpb}$ macro. This macro is executed after group by the \apEVALa macro.

```
\def\apEVALdo#1#2#3#4#5#6#7@{%
 \apnumB=#3 \ifx#2\POW \advance\apnumB by1 \fi
 \ifnum\apnumB>#6\else
 \ifnum#6=0 \def\tmpb{#1}%\toks0={#1}\message{RESULT: \the\toks0}
 \ifnum\apnumE=1 \def\tmpb{\apPPn{#1}}\fi
 \else \def\apEVALstack{#7}\apEVALpush{#5{#4}{#1}}{#2}{#3}%
 \i\fi
}
```

The macro \apEVALerror $\langle$ string $\rangle$ prints an error message. We decide to be better to print only $\backslash$ message, no \errmessage. The \tmpb is prepared to create \OUT as ?? and the \apNext macro is set in order to skip the rest of the scanned $\langle$ expression $\rangle$.

```
\def\apEVALerror#1{\message{\noexpand\evaldef ERROR: #1.}%
 \def\tmpb{\def\OUT{??}}\def\apNext##1\end{}%
}
```

The auxiliary macro \apTESTdigit 〈token〉\iftrue tests, if the given token is digit, dot or E letter.

```
117: \def\apTESTdigit#1#2{%
 \ifx E#1\apXtrue \else
 \ifcat.\noexpand#1%
 \ifx.#1\apXtrue \else
 \ifnum'#1<'0 \apXfalse\else
 \ifnum'#1>'9 \apXfalse\else \apXtrue\fi
 \fi\fi
 \else \apXfalse
 \fi\fi
 \ifapX
}
```


## Preparation of the Parameter

All operands of $\backslash$ PLUS, $\backslash$ MINUS, $\backslash$ MUL, \DIV and $\backslash$ POW macros are preprocessed by $\backslash$ apPPa macro. This macro solves (roughly speaking) the following tasks:

- It partially expands (by \expandafter) the parameter while $\langle\operatorname{sign}\rangle$ is read.
- The $\langle\operatorname{sign}\rangle$ is removed from parameter and the appropriate \apSIGN value is set.
- If the next token after $\langle s i g n\rangle$ is $\backslash$ relax then the rest of the parameter is executed in the group and the results \OUT, \apSIGN and \apE are used.
- Else the number is read and saved to the parameter.
- If the read number has the scientific notation $\langle$ mantissa $\rangle \mathrm{E}\langle$ exponent $\rangle$ then only $\langle$ mantissa $\rangle$ is saved to the parameter and $\backslash \mathrm{apE}$ is set as $\langle$ exponent $\rangle$. Else \apE is zero.

The macro \apPPa $\langle$ sequence $\rangle\langle$ parameter $\rangle$ calls $\backslash \operatorname{apPPb}\langle$ parameter $\rangle @\langle$ sequence $\rangle$ and starts reading the $\langle$ parameter $\rangle$. The result will be stored to the $\langle$ sequence $\rangle$.

Each token from $\langle s i g n\rangle$ is processed by three \expandafters (because there could be \csname...\endcsname). It means that the parameter is partially expanded when $\langle s i g n\rangle$ is read. The $\backslash a p P P b$ macro sets the initial value of $\backslash t m p c$ and $\backslash a p S I G N$ and executes the macro $\backslash$ apPPc $\langle$ parameter $\rangle @\langle$ sequence $\rangle$.

```
131: \def\apPPa#1#2{\expandafter\apPPb#2@#1}
\def \apPPb{\def\tmpc{}\apSIGN=1 \apE=0 \apXfalse \expandafter\expandafter\expandafter\apPPc}
\def\apPPc#1{%
 \ifx+#1\apPPd \fi
```

\apEVALdo: 8-9 \apEVALerror: 8-9 \apTESTdigit: 7-9 \apPPa: 9-10 \apPPb: 9-11
\apPPc: 9-10

```
 \ifx-#1\apSIGN=-\apSIGN \apPPd \fi
 \ifx\relax#1\apPPe \fi
 \apPPg#1%
}
\def\apPPd#1\apPPg#2{\fi\expandafter\expandafter\expandafter\apPPc}
```

The $\backslash$ apPPc reads one token from $\langle s i g n\rangle$ and it is called recursively while there are + or - signs. If the read token is + or - then the $\backslash$ apPPd closes conditionals and executes \apPPc again.

If $\backslash r e l a x$ is found then the rest of parameter is executed by the $\backslash a p P P e$. The macro ends by $\backslash$ apPPf $\langle$ result $\rangle$ @ and this macro reverses the sign if the result is negative and removes the minus sign from the front of the parameter.

```
140: \def\apPPe#1\apPPg#2#3@{\fi\apXtrue{#3%
\al\apPPe#1\apPPg#2#3@{\fi\apXtrue{#3% execution of the parameter in the group
141:
142: }
143: \def\apPPf#1{\ifx-#1\apSIGN=-\apSIGN \expandafter\apPPg\else\expandafter\apPPg\expandafter#1\fi}
```

The $\backslash$ apPPg $\langle$ parameter $\rangle @$ macro is called when the $\langle\operatorname{sign}\rangle$ was processed and removed from the input stream. The main reason of this macro is to remove trailing zeros from the left and to check, if there is the zero value written for example in the form 0000.000 . When this macro is started then \tmpc is empty. This is a flag for removing trailing zeros. They are simply ignored before decimal point. The $\backslash$ apPPg is called again by $\backslash$ apPPh macro which removes the rest of $\backslash$ apPPg macro and closes the conditional. If the decimal point is found then next zeros are accumulated to the $\backslash \mathrm{tmpc}$. If the end of the parameter © is found and we are in the "removing zeros state" then the whole value is assumed to be zero and this is processed by $\backslash a p P i_{\sqcup} @$. If another digit is found (say 2 ) then there are two situations: if the $\backslash$ tmpc is non-empty, then the digit is appended to the $\backslash$ tmpc and the $\backslash$ apPPi $\langle$ expanded $t m p\rangle$ is processed (say $\backslash \mathrm{apPPi}_{\sqcup} .002$ ) followed by the rest of the parameter. Else the digit itself is stored to the $\backslash t m p c$ and it is returned back to the input stream (say $\backslash$ apPPi 2) followed by the rest of the parameter.

```
\def\apPPg#1{%
 \ifx.#1\def\tmpc{.}\apPPh\fi
 \ifx\tmpc\empty\else\edef\tmpc{\tmpc#1}\fi
 \ifx0#1\apPPh\fi
 \ifx\tmpc\empty\edef\tmpc{#1}\fi
 \ifx@#1\def\tmpc{@}\fi
 \expandafter\apPPi\tmpc
}
\def \apPPh#1\apPPi\tmpc{\fi\apPPg}
```

The macro \apPPi <parameter-without-trailing-zeros $\rangle @\langle$ sequence $\rangle$ switches to two cases: if the execution of the parameter was processed then the \OUT doesn't include E notation and we can simply define $\langle$ sequence $\rangle$ as the $\langle$ parameter $\rangle$ by the $\backslash$ apPPj macro. This saves the copying of the (possible) long result to the input stream again.

If the executing of the parameter was not performed, then we need to test the existence of the E notation of the number by the $\backslash$ apPPk macro. We need to put the $\langle$ parameter $\rangle$ to the input stream and to use $\backslash$ apPPI to test these cases. We need to remove unwanted E letter by the $\backslash a p P P m$ macro.

```
153: \def\apPPi{\ifapX \expandafter\apPPj \else \expandafter\apPPk \fi}
154: \def\apPPj#1@#2{\def#2{#1}}
155: \def\apPPk#1@#2{\ifx@#1@\apSIGN=0 \def#2{0}\else \apPPl#1E@#2\fi}
156: \def\apPPI#1E#2@#3{%
157: \ifx@#1@\def#3{1}\else\def#3{#1}\fi
158: \ifx@#2@\else \afterassignment\apPPm \apE=#2\fi
159: }
160:\def\apPPm E{}
```

The $\backslash$ apPPn $\langle$ param $\rangle$ macro does the same as $\backslash a p P P a \backslash O U T\{\langle$ param $\rangle\}$, but the minus sign is returned back to the \OUT macro if the result is negative.

161: \def \apPPn\#1\{\expandafter $\backslash$ apPPb\#1@\OUT \edef $\backslash$ OUT $\{\backslash$ ifnum $\backslash a p S I G N<0-\backslash f i \backslash O U T\}\}$

| \apPPd: $9-10$ | \apPPe: 10 | \apPPf: 10 | \apPPg: 10 | \apPPh: 10 | \apPPi: 10 | \apPPj: 10 |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| \apPPk: 10 | \apPPl: 10 | \apPPm: 10 | \apPPn: 9-10 |  |  |  |

The $\backslash$ apPPab $\langle$ macro $\rangle\{\langle\operatorname{param} A\rangle\}\{\langle\operatorname{paramB} B\rangle\}$ is used for parameters of all macros $\backslash$ PLUS，$\backslash$ MUL etc．It prepares the $\langle\operatorname{param} A\rangle$ to $\backslash \mathrm{tmpa},\langle$ param $B\rangle$ to $\backslash \mathrm{tmpb}$ ，the sign and $\langle$ decimal－exponent $\rangle$ of $\langle$ param $A\rangle$ to the $\backslash a p$ SIGNa and $\backslash$ apEa，the same of $\langle\operatorname{paramB}\rangle$ to the $\backslash a p S I G N a$ and $\backslash a p E a$ ．Finally，it executes the $\langle$ macro $\rangle$ ．

```
\def\apPPab#1#2#3{%
 \expandafter\apPPb#2@\tmpa \apSIGNa=\apSIGN \apEa=\apE
 \expandafter\apPPb#3@\tmpb \apSIGNb=\apSIGN \apEb=\apE
 #1%
}
```

The $\backslash$ apPPs $\langle$ macro $\rangle\langle$ sequence $\rangle\{\langle$ param $\rangle\}$ prepares parameters for $\backslash$ ROLL，$\backslash$ ROUND and $\backslash$ NORM macros．It saves the $\langle$ param $\rangle$ to the $\backslash$ tmpc macro，expands the $\langle$ sequence〉 and runs the macro \apPPt $\langle$ macro $\rangle\langle$ expanded－sequence $\rangle$ ．＠$\langle$ sequence $\rangle$ ．The macro $\backslash$ apPPt reads first token from the〈expanded－sequence〉 to \＃2．If \＃2 is minus sign，then \apnumG＝－1．Else \apnumG＝1．Finally the $\langle$ macro $\rangle\langle$ expanded－sequence $\rangle$ ．＠$\langle$ sequence $\rangle$ is executed（but without the minus sign in the input stream）． If \＃2 is zero then $\backslash \mathrm{apPPu}\langle$ macro $\rangle\langle r e s t\rangle$ ．＠$\langle$ sequence $\rangle$ is executed．If the $\langle r e s t\rangle$ is empty，（i．e．the parameter is simply zero）then $\langle$ macro $\rangle$ isn＇t executed because there in nothing to do with zero number as a parameter of $\backslash$ ROLL，$\backslash$ ROUND or $\backslash$ NORM macros．

```
\def\apPPs#1#2#3{\def\tmpc{#3}\expandafter\apPPt\expandafter#1#2.@#2}
\def\apPPt#1#2{%
 \ifx-#2\apnumG=-1 \def\apNext{#1}%
 \else \ifx0#2\apnumG=0 \def\apNext{\apPPu#1}\else \apnumG=1 \def\apNext{#1#2}\fi\fi
 \apNext
}
\def\apPPu#1#2.@#3{\ifx@#2@\apnumG=0 \ifx#1\apROUNDa\def\XOUT{}\fi
 \else\def\apNext{\apPPt#1#2.@#3}\expandafter\apNext\fi
```

175: \}

The macro \apEVALone $\langle$ macro $\rangle\langle$ parameter $\rangle$ prepares one parameter for the function－like $\langle$ macro $\rangle$ ． This parameter could be an $\langle$ expression $\rangle$ ．The $\langle$ macro $\rangle$ is executed after the parameter is evaluated and saved to the \OUT macro．The sign is removed from the parameter by the \apNOminus macro．

The macro \apEVALtwo $\langle$ macro $\rangle\langle$ param $A\rangle\langle$ paramB $\rangle$ evaluates the $\langle$ param $A\rangle$ and $\langle$ param $B\rangle$ ．They could be $\langle$ expressions $\rangle$ ．They are saved to the \tmpa and $\backslash$ tmpb macros，the signs are saved to \apSIGNa and $\backslash a p S I G N b$ ，the exponents（if scientific notation were used）are saved to $\backslash a p E a$ and $\backslash a p E b$ registers． Finally the the function－like $\langle$ macro $\rangle$ is executed．

```
176: \def\apEVALone#1#2{\evaldef\OUT{#2}\ifnum\apSIGN<O \expandafter\apNOminus\OUT@\OUT\fi #1}
177: \def\apEVALtwo#1#2#3{%
 {\evaldef\OUT{#2}\apOUTtmpb}\tmpb \let\tmpa=\OUT \apSIGNa=\apSIGN \apEa=\apE
 \ifnum\apSIGNa<0 \expandafter\apNOminus\tmpa@\tmpa\fi
 {\evaldef\OUT{#3}\apOUTtmpb}\tmpb \let\tmpb=\OUT \apSIGNb=\apSIGN \apEb=\apE
 \ifnum\apSIGNb<0 \expandafter\apNOminus\tmpb@\tmpb\fi
 #1%
 }
184: \def\apNOminus-#1@#2{\def#2{#1}}
```


## 2.4 <br> Addition and Subtraction

The significant part of the optimization in $\backslash$ PLUS，$\backslash$ MUL，$\backslash$ DIV and $\backslash$ POW macros is the fact，that we don＇t treat with single decimal digits but with their quartets．This means that we are using the numeral system with the base 10000 and we calculate four decimal digits in one elementary operation． The base was chosen $10^{4}$ because the multiplication of such numbers gives results less than $10^{8}$ and the maximal number in the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ register is about $2 \cdot 10^{9}$ ．We＇ll use the word＂Digit＂（with capitalized D） in this documentation if this means the digit in the numeral system with base 10000，i．e．one Digit is four digits．Note that for addition we can use the numeral system with the base $10^{8}$ but we don＇t do it， because the auxiliary macros \apIV＊for numeral system of the base $10^{4}$ are already prepared．

Suppose the following example（the spaces between Digits are here only for more clarity）．

```
\apPPab: 5, 11-12, 15, 25-26, 30 \apPPs: 6, 11, 15, 27, 29 \apPPt: 11 \apPPu: 11
\apEVALone: 6,11 \apNOminus: 11 \apEVALtwo: 6, 11
```

```
 1234567 8901 9999 \apnumA=12 \apnumE=3 \apnumD=16
+ 22.423 \apnumB=0 \apnumF=2 \apnumC=12

sum in reversed order and without transmissions:
 {4230}{10021}{8901}{4567}{123} \apnumD=-4
sum in normal order including transmissions:
 1234567 8902 0021.423
```

In the first pass, we put the number with more or equal Digits before decimal point above the second number. There are three Digits more in the example. The \apnumC register saves this information (multiplied by 4). The first pass creates the sum in reversed order without transmissions between Digits. It simply copies the \apnumC/4 Digits from the first number to the result in reversed order. Then it does the sums of Digits without transmissions. The \apnumD is a relative position of the decimal point to the edge of the calculated number.

The second pass reads the result of the first pass, calculates transmissions and saves the result in normal order.

The first Digit of the operands cannot include four digits. The number of digits in the first Digit is saved in \apnumE (for first operand) and in \apnumF (for second one). The rule is to have the decimal point between Digits in all circumstances.

The macro \apPLUSa does the following work:

- It gets the operands in \tmpa and \tmpb macros using the \apPPab.
- If the scientific notation is used and the decimal exponents $\backslash a p E a$ and $\backslash a p E b$ are not equal then the decimal point of one operand have to be shifted (by the macro \apPLUSxE at line 189).
- The digits before decimal point are calculated for both operands by the \apDIG macro. The first result is saved to \apnumA and the second result is saved to \apnumB. The \apDIG macro removes decimal point (if exists) from the parameters (lines 190 and 191).
- The number of digits in the first Digit is calculated by \apIVmod for both operands. This number is saved to \apnumE and \apnumF. This number is subtracted from \apnumA and \apnumB, so these registers now includes multiply of four (lines 192 and 193).
- The \apnumC includes the difference of Digits before the decimal point (multiplied by four) of given operands (line 194).
- If the first operand is negative then the minus sign is inserted to the \apPLUSxA macro else this macro is empty. The same for the second operand and for the macro \apPLUSxB is done (lines 195 and 196).
- If both operands are positive, then the sign of the result \apSIGN is set to one. If both operands are negative, then the sign is set to -1 . But in both cases mentioned above we will do (internally) addition, so the macros \apPLUSxA and \apPLUSxB are set to empty. If one operand is negative and second positive then we will do subtraction. The \apSIGN register is set to zero and it will set to the right value later (lines 197 to 199).
- The macro \apPLUSb〈first-op $\rangle\langle$ first-dig $\rangle\langle$ second-op $\rangle\langle$ second-dig $\rangle\langle$ first-Dig $\rangle$ does the calculation of the first pass. The $\langle$ first-op $\rangle$ has to have more or equal Digits before decimal point than $\langle s e c o n d-o p\rangle$. This is reason why this macro is called in two variants dependent on the value \apnumC. The macros \apPLUSxA and \apPLUSxB (with the sign of the operands) are exchanged (by the \apPLUSg) if the operands are exchanged (lines 200 to 201).
- The $\backslash a p n u m G$ is set by the macro $\backslash a p P L U S b$ to the sign of the first nonzero Digit. It is equal to zero if there are only zero Digits after first pass. The result is zero in such case and we do nothing more (line 203).
- The transmission calculation is different for addition and subtraction. If the subtraction is processed then the sign of the result is set (using the value \apnumG) and the \apPLUSm for transmissions is prepared. Else the \apPLUSp for transmissions is prepared as the \apNext macro (line 204)
- The result of the first pass is expanded in the input stream and the \apNext (i.e. transmissions calculation) is activated at line 205.

[^4]- if the result is in the form .000123 , then the decimal point and the trailing zeros have to be inserted. Else the trailing zeros from the left side of the result have to be removed by \apPLUSy. This macro adds the sign of the result too (lines 206 to 212)

```
\def\apPLUSa{%
 \ifnum\apEa=\apEb \apE=\apEa \else \apPLUSxE \fi
 \apDIG\tmpa\relax \apnumA=\apnumD % digits before decimal point
 \apDIG\tmpb\relax \apnumB=\apnumD
 \apIVmod \apnumA \apnumE \advance\apnumA by-\apnumE % digits in the first Digit
 \apIVmod \apnumB \apnumF \advance\apnumB by-\apnumF
 \apnumC=\apnumB \advance\apnumC by-\apnumA % difference between Digits
 \ifnum\apSIGNa<0 \def\apPLUSxA{-}\else \def\apPLUSxA{}\fi
 \ifnum\apSIGNb<0 \def\apPLUSxB{-}\else \def\apPLUSxB{}\fi
 \apSIGN=0 % \apSIGN=0 means that we are doing subtraction
 \ifx\apPLUSxA\empty \ifx\apPLUSxB\empty \apSIGN=1 \fi\fi
 \if \apPLUSxA-\relax \if \apPLUSxB-\relax \apSIGN=-1 \def\apPLUSxA{}\def\apPLUSxB{}\fi\fi
 \ifnum\apnumC>O \apPLUSg \apPLUSb \tmpb\apnumF \tmpa\apnumE \apnumB % first pass
 \else \apnumC=-\apnumC \apPLUSb \tmpa\apnumE \tmpb\apnumF \apnumA
 \i
 \ifnum\apnumG=0 \def\OUT{0}\apSIGN=0 \apE=0 \else
 \ifnum\apSIGN=0 \apSIGN=\apnumG \let\apNext=\apPLUSm \else \let\apNext=\apPLUSp \fi
 \apnumX=0 \edef\OUT{\expandafter}\expandafter \apNext \OUT@% second pass
 \ifnum\apnumD<1 % result in the form . }00012
 \apnumZ=-\apnumD
 \def\tmpa{.}%
 \ifnum\apnumZ>0 \apADDzeros\tmpa \fi % adding dot and left zeros
 \edef\OUT{\ifnum\apSIGN<0-\fi\tmpa\OUT}%
 \else
 \edef\OUT{\expandafter}\expandafter\apPLUSy \OUT@% removing left zeros
 \i\fi
```

4: \}

The macro $\backslash$ apPLUSb $\langle$ first-op $\rangle\langle$ first-dig $\rangle\langle$ second-op $\rangle\langle$ second-dig $\rangle\langle$ first-Dig $\rangle$ starts the first pass. The $\langle$ first-op $\rangle$ is the first operand (which have more or equal Digits before decimal point). The $\langle$ first-dig $\rangle$ is the number of digits in the first Digit in the first operand. The $\langle$ second-op $\rangle$ is the second operand and the $\langle$ second-dig $\rangle$ is the number of digits in the first Digit of the second operand. The $\langle$ first-Dig $\rangle$ is the number of Digits before decimal point of the first operand, but without the first Digit and multiplied by 4 .

The macro $\backslash$ apPLUSb saves the second operand to $\backslash$ tmpd and appends the $4-\langle$ second-dig $\rangle$ empty parameters before this operand in order to read desired number of digits to the first Digit of this oparand. The macro \apPLUSb saves the first operand to the input queue after \apPLUSc macro. It inserts the appropriate number of empty parameters (in $\backslash \mathrm{tmpc}$ ) before this operand in order to read the right number of digits in the first attempt. It appends the \apNL marks to the end in order to recognize the end of the input stream. These macros expands simply to zero but we can test the end of input stream by $\backslash i f x$.

The macro $\backslash$ apPLUSb calculates the number of digits before decimal point (rounded up to multiply by 4) in \apnumD by advancing $\langle$ first-DIG $\rangle$ by 4. It initializes \apnumZ to zero. If the first nonzero Digit will be found then \apnumZ will be set to this Digit in the \apPLUSc macro.

```
\def\apPLUSb#1#2#3#4#5{%
 \edef\tmpd{\ifcase#4\or{}{}{}\or{}{}\or{}\fi##3%%
 \edef\tmpc{\ifcase#2\or{}{}{}\or{}{}\or{}\fi}%
 \let\apNext=\apPLUSc \apnumD=#5\advance\apnumD by4 \apnumG=0 \apnumZ=0 \def\OUT{}%
 \expandafter\expandafter\expandafter\apPLUSc\expandafter\tmpc#1\apNL\apNL\apNL\apNL@%
}
```

The macro \apPLUSc is called repeatedly. It reads one Digit from input stream and saves it to the $\backslash$ apnumY. Then it calls the $\backslash$ apPLUSe, which reads (if it is allowed, i.e. if $\backslash$ apnumC<=0) one digit from second operand $\backslash$ tmpd by the $\backslash$ apIVread macro. Then it does the addition of these digits and saves the result into the \OUT macro in reverse order.

Note, that the sign \apPLUSxA is used when \apnumY is read and the sign \apPLUSxB is used when advancing is performed. This means that we are doing addition or subtraction here.

[^5]If the first nonzero Digit is reached, then the macro \apPLUSh sets the sign of the result to the \apnumG and (maybe) exchanges the $\backslash a p P L U S x A$ and $\backslash a p P L U S x B$ macros (by the $\backslash a p P L U S g$ macro) in order to the internal result of the subtraction will be always non-negative.

If the end of input stream is reached, then \apNext (used at line 233) is reset from its original value \apPLUSc to the $\backslash$ apPLUSd where the $\backslash$ apnumY is simply set to zero. The reading from input stream is finished. This occurs when there are more Digits after decimal point in the second operand than in the first one. If the end of input stream is reached and the \tmpd macro is empty (all data from second operand was read too) then the \apPLUSf macro removes the rest of input stream and the first pass of the calculation is done.

```
221: \def\apPLUSc#1#2#3#4{\apnumY=\apPLUSxA#1#2#3#4\relax
 \ifx\apNL#4\let\apNext=\apPLUSd\fi
 \ifx\apNL#1\relax \ifx\tmpd\empty \expandafter\expandafter\expandafter\apPLUSf \fi\fi
 \apPLUSe
}
\def\apPLUSd{\apnumY=0 \ifx\tmpd\empty \expandafter\apPLUSf \else\expandafter \apPLUSe\fi}
\def\apPLUSe{%
 \ifnum\apnumC>0 \advance\apnumC by-4
 \else \apIVread\tmpd \advance\apnumY by\apPLUSxB\apnumX \fi
 \ifnum\apnumZ=0 \apPLUSh \fi
 \edef\OUT{{\the\apnumY}\OUT}%
 \advance\apnumD by-4
 \apNext
}
\def\apPLUSf#1@{}
\def\apPLUSg{\let\tmpc=\apPLUSxA \let\apPLUSxA=\apPLUSxB \let\apPLUSxB=\tmpc}
\def \apPLUSh{\apnumZ=\apnumY
```

Why there is a complication about reading one parameter from input stream but second one from the macro \tmpd? This is more faster than to save both parameters to the macros and using \apIVread for both because the \apIVread must redefine its parameter. You can examine that this parameter is very long.

The $\backslash$ apPLUSm $\langle d a t a\rangle @$ macro does transmissions calculation when subtracting. The $\langle$ data $\rangle$ from first pass is expanded in the input stream. The \apPLUSm macro reads repeatedly one Digit from the $\langle d a t a\rangle$ until the stop mark is reached. The Digits are in the range -9999 to 9999. If the Digit is negative then we need to add 10000 and set the transmission value \apnumX to one, else \apnumX is zero. When the next Digit is processed then the calculated transmission value is subtracted. The macro \apPLUSw writes the result for each Digit \apnumA in the normal (human readable) order.

```
240:\def\apPLUSm#1{%
 \ifx@#1\else
 \apnumA=#1 \advance\apnumA by-\apnumX
 \ifnum\apnumA<0 \advance\apnumA by\apIVbase \apnumX=1 \else \apnumX=0 \fi
 \apPLUSw
 \expandafter\apPLUSm
 \fi
}
```

The $\backslash$ apPLUSp $\langle d a t a\rangle @$ macro does transmissions calculation when addition is processed. It is very similar to \apPLUSm, but Digits are in the range 0 to 19998. If the Digit value is greater then 9999 then we need to subtract 10000 and set the transmission value \apnumX to one, else \apnumX is zero.

```
\def\apPLUSp#1{%
 \ifx@#1\ifnum\apnumX>0 \edef\OUT{1\OUT}\fi
 \else
 \apnumA=\apnumX \advance\apnumA by#1
 \ifnum\apnumA<\apIVbase \apnumX=0 \else \apnumX=1 \advance\apnumA by-\apIVbase \fi
 \apPLUSw
 \expandafter\apPLUSp
 \fi
}
```

\apPLUSh: 14 \apPLUSg: 12-14 \apPLUSd: 14 \apPLUSf: 14 \apPLUSm: 12-14
\apPLUSp: 12-14

The $\backslash$ apPLUSw writes the result with one Digit（saved in \apnumA）to the \OUT macro．The \OUT is initialized as empty．If it is empty（it means we are after decimal point），then we need to write all four digits by \apIVwrite macro（including left zeros）but we need to remove right zeros by \apREMzerosR． If the decimal point is reached，then it is saved to the \OUT．But if the previous \OUT is empty（it means there are no digits after decimal point or all such digits are zero）then \def $\backslash 0 U T\{\backslash$ empty\} ensures that the \OUT is non－empty and the ignoring of right zeros are disabled from now．

```
257: \def\apPLUSw{%
 \ifnum\apnumD=0 \ifx\OUT\empty \def\OUT{\empty}\else \edef\OUT{.\OUT}\fi \fi
 \advance\apnumD by4
 \ifx\OUT\empty \edef\tmpa{\apIVwrite\apnumA}\edef\OUT{\apREMzerosR\tmpa}%
 \else \edef\OUT{\apIVwrite\apnumA\OUT}\fi
}
```

The macro \apPLUSy $\langle$ expanded－OUT〉＠removes left trailing zeros from the \OUT macro and saves the possible minus sign by the \apPLUSz macro．

```
263: \def\apPLUSy#1{\ifx0#1\expandafter\apPLUSy\else \expandafter\apPLUSz\expandafter#1\fi}
264:\def\apPLUSz#1@{\edef\OUT{\ifnum\apSIGN<0-\fi#1}}
```

The macro \apPLUSxE uses the \apROLLa in order to shift the decimal point of the operand． We need to set the same decimal exponent in scientific notation before the addition or subtraction is processed．

```
\def\apPLUSxE{%
 \apnumE=\apEa \advance\apnumE by-\apEb
 \ifnum\apEa>\apEb \apPPs\apROLLa\tmpb{-\apnumE}\apE=\apEa
 \else \apPPs\apROLLa\tmpa{\apnumE}\apE=\apEb \fi
}
```

2.5

Multiplication
Suppose the following multiplication example： $1234 * 567=699678$ ．


This example is in numeral system of base 10 only for simplification，the macros work really with base 10000．Because we have to do the transmissions between Digit positions from right to left in the normal format and because it is more natural for $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ to put the data into the input stream and read it sequentially from left to right，we use the mirrored format in our macros．

The macro \apMULa does the following：
－It gets the parameters in \tmpa and \tmpb preprocessed using the \apPPab macro．
－It evaluates the exponent of ten $\backslash \mathrm{apE}$ which is usable when the scientific notation of numbers is used（line 274）．
－It calculates \apSIGN of the result（line 275）．
－If $\backslash a p S I G N=0$ then the result is zero and we will do nothing more（line 276）．
－The decimal point is removed from the parameters by \apDIG〈param〉〈register〉．The \apnumD includes the number of digits before decimal point（after the \apDIG is used）and the 〈register〉 includes the number of digits in the rest．The \apnumA or \apnumB includes total number of digits in the parameters \tmpa or $\backslash t m p b$ respectively．The $\backslash a p n u m D$ is re－calculated：it saves the number of digits after decimal point in the result（lines 277 to 279）．

[^6]- Let $A$ is the number of total digits in the $\langle$ param $\rangle$ and let $F=A \bmod 4$, but if $F=0$ then reassign it to $F=4$. Then $F$ means the number of digits in the first Digit. This calculation is done by $\backslash$ apIVmod $\langle A\rangle\langle F\rangle$ macro. All another Digits will have four digits. The $\backslash \operatorname{apMULb}\langle p a r a m\rangle @ @ @ @$ is able to read four digits, next four digits etc. We need to insert appropriate number of empty parameters
 $\langle\operatorname{param}\rangle$, next four digits etc. The appropriate number of empty parameters are prepared in the \tmpc macro (lines 280 to 281).
- The $\backslash$ apMULb reads the $\langle$ param $A\rangle$ (all Digits) and prepares the \OUT macro in the special interleaved format (described below). The format is finished by $*$. in the line 283.
- Analogical work is done with the second parameter $\langle\operatorname{paramB} B$. But this parameter is processed by \apMULc, which reads Digits of the parameter and inserts them to the \tmpa in the reversed order (lines 284 to 286).
- The main calculation is done by $\backslash$ apMULd $\langle\operatorname{param} B\rangle @$, which reads Digits from $\langle$ param $B\rangle$ (in reversed order) and does multiplication of the $\langle\operatorname{param} A\rangle$ (saved in the \OUT) by these Digits (line 287).
- The \apMULg macro converts the result \OUT to the human readable form (line 288).
- The possible minus sign and the trailing zeros of results of the type .00123 is prepared by $\backslash$ apADDzeros $\backslash$ tmpa to the $\backslash$ tmpa macro. This macro is appended to the result in the \OUT macro (lines 289 to 291).

```
\def\apMULa{%
 \apE=\apEa \advance\apE by\apEb
 \apSIGN=\apSIGNa \multiply\apSIGN by\apSIGNb
 \ifnum\apSIGN=0 \def\OUT{0}\apE=0 \else
 \apDIG\tmpa\apnumA \apnumX=\apnumA \advance\apnumA by\apnumD
 \apDIG\tmpb\apnumB \advance\apnumX by\apnumB \advance\apnumB by\apnumD
 \apnumD=\apnumX % \apnumD = the number of digits after decimal point in the result
 \apIVmod \apnumA \apnumF % \apnumF = digits in the first Digit of \tmpa
 \edef\tmpc{\ifcase\apnumF\or{}{}{}\or{}{}\or{}\fi}\def\OUT{}%
 \expandafter\expandafter\expandafter \apMULb \expandafter \tmpc \tmpa @@@@%
 \edef\OUT{*.\OUT}%
 \apIVmod \apnumB \apnumF % \apnumF = digits in the first Digit of \tmpb
 \edef\tmpc{\ifcase\apnumF\or{}{}{}\or{}{}\or{}\fi}\def\tmpa{}%
 \expandafter\expandafter\expandafter \apMULc \expandafter \tmpc \tmpb @@@@%
 \expandafter\apMULd \tmpa@%
 \expandafter\apMULg \OUT
 \edef\tmpa{\ifnum\apSIGN<0-\fi}%
 \ifnum\apnumD>0 \apnumZ=\apnumD \edef\tmpa{\tmpa.}\apADDzeros\tmpa \fi
 \ifx\tmpa\empty \else \edef\OUT{\tmpa\OUT}\fi
 \fi
 }
```

We need to read the two data streams when the multiplication of the $\langle\operatorname{param} A\rangle$ by one Digit from $\langle\operatorname{param} B\rangle$ is performed and the partial sum is actualized. First: the digits of the $\langle$ param $A\rangle$ and second: the partial sum. We can save these streams to two macros and read one piece of information from such macros at each step, but this si not effective because the whole stream have to be read and redefined at each step. For $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is more natural to put one data stream to the input queue and to read pieces of infromation thereof. Thus we interleave both data streams into one \OUT in such a way that one element of data from first stream is followed by one element from second stream and it is followed by second element from first stream etc. Suppose that we are at the end of $i-t h$ line of the multiplication scheme where we have the partial sums $s_{n}, s_{n-1}, \ldots, s_{0}$ and the Digits of $\langle$ param $A\rangle$ are $d_{k}, d_{k-1}, \ldots, d_{0}$. The zero index belongs to the most right position in the mirrored format. The data will be prepared in the form:

```
. {s_n} {s_(n-1)}...{s_(k+1)} * {s_k} {d_(k-1)}...{s_1} {d_1} {s_0} {d_0} *
```

For our example (there is a simplification: numeral system of base 10 is used and no transmissions are processed), after second line (multiplication by 6 and calculation of partial sums) we have in \OUT:

```
. {28} * {45} {4} {32} {3} {19} {2} {6} {1} *
```

and we need to create the following line during calculation of next line of multiplication scheme:

```
. {28} {45} * {5*4+32} {4} {5*3+19} {3} {5*2+6} {2} {5*1} {1} *
```

This special format of data includes two parts. After the starting dot, there is a sequence of sums which are definitely calculated. This sequence is ended by first $*$ mark. The last definitely calculated sum follows this mark. Then the partial sums with the Digits of $\langle\operatorname{param} A\rangle$ are interleaved and the data are finalized by second $*$. If the calculation processes the the second part of the data then the general task is to read two data elements (partial sum and the Digit) and to write two data elements (the new partial sum and the previous Digit). The line calculation starts by copying of the first part of data until the first $*$ and appending the first data element after $*$. Then the $*$ is written and the middle processing described above is started.

The macro \apMULb $\langle$ param $A\rangle$ @@@@ prepares the special format of the macro \OUT described above where the partial sums are zero. It means:

```
* . {d_k} 0 {d_(k-1)} 0 ... 0 {d_0} *
```

where $d_{i}$ are Digits of $\langle\operatorname{param} A\rangle$ in reversed order.
The first "sum" is only dot. It will be moved before * during the first line processing. Why there is such special "pseudo-sum"? The \apMULe with the parameter delimited by the first $*$ is used in the context \apMULe. $\{\langle$ sum $\rangle\} *$ during the third line processing and the dot here protects from removing the braces around the first real sum.

```
\def \apMULb#1#2#3#4{\ifx@#4\else
 \ifx\OUT\empty \edef\OUT{{#1#2#3#4}*}\else\edef\OUT{{#1#2#3#4}0\OUT}\fi
 \expandafter\apMULb\fi
}
```

The macro \apMULc $\langle$ paramB $\rangle$ @@@@ reads Digits from $\langle\operatorname{paramB} B$ and saves them in reversed order into \tmpa. Each Digit is enclosed by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ braces $\}$.

## 298: \def \apMULc\#1\#2\#3\#4\{\ifx@\#4\else \edef\tmpa\{\{\#1\#2\#3\#4\}\tmpa\}\expandafter\apMULc\fi\}

The macro \apMULd $\langle p a r a m B\rangle @$ reads the Digits from $\langle\operatorname{paramB} B$ (in reversed order), uses them as a coefficient for multiplication stored in \tmpnumA and processes the \apMULee $\langle$ special-data-format $\rangle$ for each such coefficient. This corresponds with one line in the multiplication scheme.

```
def\apMULd#1{\ifx@#1\else
 \apnumA=#1 \expandafter\apMULe \OUT
 \expandafter\apMULd
 \fi
}
```

The macro \apMULe $\langle$ special-data-format〉 copies the first part of data format to the \OUT, copies the next element after first $*$, appends * and does the calculation by $\backslash$ apMULf. The $\backslash a p M U L f$ is recursively called. It reads the Digit to \#1 and the partial sum to the \#2 and writes \{\appnumA*\#1+\#2\}\{\#1\} to the \OUT (lines 315 to 319 ). If we are at the end of data, then \#2 is $*$ and we write the $\{\backslash$ apnumA*\#1\}\{\#1\} followed by ending * to the \OUT (lines 308 to 310).

```
\def \apMULe#1*#2{\apnumX=0 \def\OUT{#1{#2}*}\def\apOUTl{}\apnumO=1 \apnumL=0 \apMULf}
\def\apMULf#1#2{%
 \advance\apnum0 by-1 \ifnum\apnum0=0 \apOUTx \fi
 \apnumB=#1 \multiply\apnumB by\apnumA \advance\apnumB by\apnumX
 \ifx*#2%
 \ifnum\apnumB<\apIVbase
 \edef\OUT{\OUT\expandafter\apOUTs\apOUTl.,\ifnum\the\apnumB#1=0 \else{\the\apnumB}{#1}\fi*}%
 \else \apIVtrans
 \expandafter \edef\csname apOUT:\apOUTn\endcsname
 {\csname apOUT:\apOUTn\endcsname{\the\apnumB}{#1}}%
 \apMULf0*\fi
 \else \advance\apnumB by#2
```

\apMULb: 16-17, 25-26 \apMULc: 16-17 \apMULd: 16-17, 26 \apMULe: 17-18, 27
\apMULf: 17-18, 27

```
316: \ifnum\apnumB<\apIVbase \apnumX=0 \else \apIVtrans \fi
317: \expandafter
 \edef\csname apOUT:\apOUTn\endcsname{\csname apOUT:\apOUTn\endcsname{\the\apnumB}{#1}}%
319: \expandafter\apMULf \fi
320: }
```

There are several complications in the algorithm described above.

- The result isn't saved directly to the \OUT macro, but partially into the macros \apOUT: $\langle n u m\rangle$, as described in the section about auxiliary macros where the \apOUTx macro is defined.
- The transmissions between Digit positions are calculated. First, the transmission value \apnumX is set to zero in the \apMULe. Then this value is subtracted from the calculated value \apnumB and the new transmission is calculated using the $\backslash$ apIVtrans macro if $\backslash$ apnumB $\geq 10000$. This macro modifies \apnumB in order it is right Digit in our numeral system.
- If the last digit has nonzero transmission, then the calculation isn't finished, but the new pair $\{\langle$ transmission $\rangle\}\{0\}$ is added to the \OUT. This is done by recursively call of $\backslash$ apMULf at line 314 .
- The another situation can be occurred: the last pair has both values zeros. Then we needn't to write this zero to the output. This is solved by the test \ifnum $\backslash$ the $\backslash a p n u m B \# 1=0$ at line 310.
The macro \apMULg 〈special-data-format〉@ removes the first dot (it is the \#1 parameter) and prepares the \OUT to writing the result in reverse order, i.e. in human readable form. The next work is done by $\backslash$ apMULh and $\backslash$ apMULi macros. The $\backslash$ apMULh repeatedly reads the first part of the special data format (Digits of the result are here) until the first $*$ is found. The output is stored by $\backslash$ apMULo $\langle$ digits $\rangle\{\langle$ data $\rangle\}$ macro. If the first $*$ is found then the $\backslash$ apMULi macro repeatedly reads the triple $\{\langle$ Digit-of-result $\rangle\}\{\langle$ Digit-of-A $\rangle\}\{\langle$ next-Digit-of-result $\rangle\}$ and saves the first element in full (four-digits) form by the \apIVwrite if the third element isn't the stop-mark *. Else the last Digit (first Digit in the human readable form) is saved by \the, because we needn't the trailing zeros here. The third element is put back to the input stream but it is ignored by $\backslash$ apMULj macro when the process is finished.

```
\def\apMULg#1{\def \OUT{}\apMULh}
\def\apMULh#1{\ifx*#1\expandafter\apMULi
 \else \apnumA=#1 \apMULo4{\apIVwrite\apnumA}%
 \expandafter\apMULh
 \i
}
\def \apMULi#1#2#3{\apnumA=#1
 \ifx*#3\apMULo{\apNUMdigits\tmpa}{\the\apnumA}\expandafter\apMULj
 \else \apMULo4{\apIVwrite\apnumA}\expandafter\apMULi
 \fi{#3}%
}
\def\apMULj#1{}
```

The $\backslash$ apMULo $\langle$ digits $\rangle\{\langle$ data $\rangle\}$ appends $\langle$ data $\rangle$ to the \OUT macro. The number of digits after decimal point \apnumD is decreased by the number of actually printed digits $\langle$ digits $\rangle$. If the decimal point is to be printed into $\langle$ data $\rangle$ then it is performed by the $\backslash$ apMULt macro.

```
\def\apMULo#1#2{\edef\tmpa{#2}%
 \advance\apnumD by-#1
 \ifnum\apnumD<1 \ifnum\apnumD>-4 \apMULt\fi\fi
 \edef\OUT{\tmpa\OUT}%
}
\def\apMULt{\edef\tmpa{\apIVdot{-\apnumD}\tmpa}\edef\tmpa{\tmpa}}
```


## Division

Suppose the following example:

| <paramA> : <paramB> | <output> |  |
| :---: | :--- | :--- |
| $12345: 678=[12: 6=2]$ | $2 \quad(2->1)$ |  |
| $2 * 678-1356$ |  |  |
| $-1215<0$ correction! | 1 |  |

\apMULg: 16, 18 \apMULh: 18 \apMULi: 18 \apMULj: 18 \apMULo: 18
\apMULt: 18

```
 12345
1*678 -678
 5565 [55:6=8] 9 (9->8)
9*678 -6102
 -537<0 correction! 8
 5565
8*678 -5424
 1410 [14:6=2] 2
2*678 -1356
 0 5 4 0
 [05:6=0]
0*678 -0
 5400 [54:6=8]
 12345:678 = 182079...
```

We implement the division similar like pupils do it in the school (only the numeral system with base 10000 instead 10 is actually used, but we keep with base 10 in our illustrations). At each step of the operation, we get first two Digits from the dividend or remainder (called partial dividend or remainder) and do divide it by the first nonzero Digit of the divisor (called partial divisor). Unfortunately, the resulted Digit cannot be the definitive value of the result. We are able to find out this after the whole divisor is multiplied by resulted Digit and compared with the whole remainder. We cannot do this test immediately but only after a lot of following operations (imagine that the remainder and divisor have a huge number of Digits).

We need to subtract the remainder by the multiple of the divisor at each step. This means that we need to calculate the transmissions from the Digit position to the next Digit position from right to left (in the scheme illustrated above). Thus we need to reverse the order of Digits in the remainder and divisor. We do this reversion only once at the preparation state of the division and we interleave the data from the divisor and the dividend (the dividend will be replaced by the remainder, next by next remainder etc.).

The number of Digits of the dividend can be much greater than the number of Digits of the divisor. We need to calculate only with the first part of dividend/remainder in such case. We need to get only one new Digit from the rest of dividend at each calculation step. The illustration follows:

```
...used dividend.. | ... rest of dividend ... | divisor
1234567890123456789 7890123456789012345678901234 : 1231231231231231231
 xxxxxxxxxxxxyxyxxx 7 <- calculated remainder
 xxxxxxxxxxxxxxxxx x8 <- new calculated remainder
 xxxxyxyxxxxxxxxxx xx9 <- new calculated remainder etc.
```

We'll interleave only the "used dividend" part with the divisor at the preparation state. We'll put the "rest of dividend" to the input stream in the normal order. The macros do the iteration over calculation steps and they can read only one new Digit from this input stream if they need it. This approach needs no manipulation with the (potentially long) "rest of the dividend" at each step. If the divisor has only one Digit (or comparable small Digits) then the algorithm has only linear complexity with respect to the number of Digits in the dividend.

The numeral system with the base 10000 brings a little problem: we are simply able to calculate the number of digits which are multiple of four. But user typically wishes another number of calculated decimal digits. We cannot simply strip the trailing digits after calculation because the user needs to read the right remainder. This is a reason why we calculate the number of digits for the first Digit of the result. All another calculated Digits will have four digits. We need to prepare the first "partial dividend" in order to the $F$ digits will be calculated first. How to do it? Suppose the following illustration of the first two Digits in the "partial remainder" and "partial divisor":

```
0000 7777 : 1111 = 7 .. one digit in the result
0007 7778 : 1111 = 70 .. two digits in the result
0077 7788 : 1111 = 700 .. three digits in the result
0777 7888 : 1111 = 7000 .. four digits in the result
7777 8888 : 1111 = ???? .. not possible in the numeral system of base 10000
```

We need to read $F-1$ digits to the first Digit and four digits to the second Digit of the "partial dividend". But this is true only if the dividend is "comparably greater or equal to" divisor. The word "comparably greater" means that we ignore signs and the decimal point in compared numbers and we assume the decimal points in the front of both numbers just before the first nonzero digit. It is obvious that if the dividend is "comparably less" than divisor then we need to read $F$ digits to the first Digit.

The $\backslash$ apDIVa macro uses the $\backslash$ tmpa (dividend) and $\backslash$ tmpb (divisor) macros and does the following work:

- If the divisor \tmpb is equal to zero, print error and do nothing more (line 343).
- The \apSIGN of the result is calculated (line 344).
- If the dividend \tmpa is equal to zero, then \OUT and \XOUT are zeros and do nothing more (line 345).
- Calculate the exponent of ten $\backslash$ apE when scientific notation is used (Line 345).
- The number of digits before point are counted by \apDIG macro for both parameters. The difference is saved to $\backslash$ apnumD and this is the number of digits before decimal point in the result (the exception is mentioned later). The \apDIG macro removes the decimal point and (possible) left zeros from its parameter and saves the result to the \apnumD register (lines 347 to 349).
- The macro $\backslash a p D I V c o m p\langle\operatorname{param} A\rangle\langle\operatorname{paramB} B\rangle$ determines if the $\langle\operatorname{param} A\rangle$ is "comparably greater or equal" to $\langle\operatorname{param} B\rangle$. The result is stored in the boolean value $a p X$. We can ask to this by the

- If the dividend is "comparably greater or equal" to the divisor, then the position of decimal point in the result \apnumD has to be shifted by one to the right. The same is completed with $\backslash$ apnumH where the position of decimal point of the remainder will be stored (line 351).
- The number of desired digits in the result \apnumC is calculated (lines 352 to 358).
- If the number of desired digits is zero or less than zero then do nothing more (line 358).
- Finish the calculation of the position of decimal point in the remainder \apnumH (line 351).
- Calculate the number of digits in the first Digit \apnumF (line 362).
- Read first four digits of the divisor by the macro \apIVread〈sequence $\rangle$. Note that this macro puts trailing zeros to the right if the data stream $\langle$ param $\rangle$ is shorter than four digits. If it is empty then the macro returns zero. The returned value is saved in \apnumX and the $\langle$ sequence $\rangle$ is redefined by new value of the $\langle$ param $\rangle$ where the read digits are removed (line 363).
- We need to read only $\backslash$ apnumF (or $\backslash$ apnumF - 1) digits from the $\backslash$ tmpa. This is done by the \apIVreadX macro at line 365. The second Digit of the "partial dividend" includes four digits and it is read by \apIVread macro at line 367.
- The "partial dividend" is saved to the \apDIVxA macro and the "partial divisor" is stored to the $\backslash a p D I V x B$ macro. Note, that the second Digit of the "partial dividend" isn't expanded by simply \the, because when $\backslash$ apnum $X=11$ and $\backslash$ apnumA $=2222$ (for example), then we need to save 22220011. These trailing zeros from left are written by the \apIVwrite macro (lines 368 to 369).
- The \XOUT macro for the currently computed remainder is initialized. The special interleaved data format of the remainder \XOUT is described below (line 370).
- The \OUT macro is initialized. The \OUT is generated as literal macro. First possible $\langle s i g n\rangle$, then digits. If the number of effective digits before decimal point \apnumD is negative, the result will be in the form .000123 and we need to add the zeros by the \apADDzeros macro (lines 371 to 372 ).
- The registers for main loop are initialized. The \apnumE signalizes that the remainder of the partial step is zero and we can stop the calculation. The \apnumZ will include the Digit from the input stream where the "rest of dividend" will be stored (line 372).
- The main calculation loop is processed by the $\backslash a p D I V g$ macro (line 374).
- If the division process stops before the position of the decimal point in the result (because there is zero remainder, for example) then we need to add the rest of zeros by \apADDzeros macro. This is actual for the results of the type 1230000 (line 375).
- If the remainder isn't equal to zero, we need to extract the digits of the remainder from the special data formal to the human readable form. This is done by the $\backslash a p D I V v$ macro. The decimal point is inserted to the remainder by the \apROLLa macro (lines 377 to 378 ).

[^7]```
\def\apDIVa{%
    \ifnum\apSIGNb=0 \errmessage{Dividing by zero}\else
        \apSIGN=\apSIGNa \multiply\apSIGN by\apSIGNb
            \ifnum\apSIGNa=0 \def\OUT{0}\def\XOUT{0}\apE=0 \apSIGN=0 \else
            \apE=\apEa \advance\apE by-\apEb
            \apDIG\tmpb\relax \apnumB=\apnumD
            \apDIG\tmpa\relax \apnumH=\apnumD
            \advance\apnumD by-\apnumB % \apnumD = num. of digits before decimal point in the result
            \apDIVcomp\tmpa\tmpb % apXtrue <=> A>=B, i.e 1 digit from A/B
            \ifapX \advance\apnumD by1 \advance\apnumH by1 \fi
            \apnumC=\apTOT
            \ifnum\apTOT<0 \apnumC=-\apnumC
                    \ifnum\apnumD>\apnumC \apnumC=\apnumD \fi
            \fi
            \ifnum\apTOT=0 \apnumC=\apFRAC \advance\apnumC by\apnumD
            \else \apnumX=\apFRAC \advance\apnumX by\apnumD
                    \ifnum\apnumC>\apnumX \apnumC=\apnumX \fi
            \fi
            \ifnum\apnumC>0 % \apnumC = the number of digits in the result
                    \advance\apnumH by-\apnumC % \apnumH = the position of decimal point in the remainder
                    \apIVmod \apnumC \apnumF % \apnumF = the number of digits in the first Digit
                    \apIVread\tmpb \apnumB=\apnumX % \apnumB = partial divisor
                    \apnumX=\apnumF \ifapX \advance\apnumX by-1 \fi
                    \apIVreadX\apnumX\tmpa
                    \apnumA=\apnumX % \apnumA = first Digit of the partial dividend
                    \apIVread\tmpa % \apnumX = second Digit of the partial dividend
                    \edef\apDIVxA{\the\apnumA\apIVwrite\apnumX}% first partial dividend
                    \edef\apDIVxB{\the\apnumB}% partial divisor
                    \edef\XOUT{{\apDIVxB}{\the\apnumX}@{\the\apnumA}}% the \XOUT is initialized
                    \edef\OUT{\ifnum\apSIGN<0-\fi}%
                    \ifnum\apnumD<0 \edef\OUT{\OUT.}\apnumZ=-\apnumD \apADDzeros\OUT \fi
                    \apnumE=1 \apnumZ=0
                    \let\apNext=\apDIVg \apNext % <--- the main calculation loop is here
                    \ifnum\apnumD>0 \apnumZ=\apnumD \apADDzeros\OUT \fi
                    \ifnum\apnumE=0 \def\XOUT{0}\else % extracting remainder from \XOUT
                    \edef\XOUT{\expandafter}\expandafter\apDIVv\XOUT
                    \def\tmpc{\apnumH}\apnumG=\apSIGNa \expandafter\apROLLa\XOUT.@\XOUT
                \fi
            \else \def\OUT{0}\def\XOUT{0}\apE=0 \apSIGN=0
        \i\fi\fi
}
```

The macro $\backslash a p D I V c o m p ~\langle p a r a m A\rangle\langle\operatorname{paramB} B$ provides the test if the $\langle\operatorname{param} A\rangle$ is "comparably greater or equal" to $\langle\operatorname{param} B\rangle$. Imagine the following examples:

```
123456789 : 123456789 = 1
123456788 : 123456789 = .99999999189999992628
```

The example shows that the last digit in the operands can be important for the first digit in the result. This means that we need to compare whole operands but we can stop the comparison when the first difference in the digits is found. This is lexicographic ordering. Because we don't assume the existence of e $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ (or another extensions), we need to do this comparison by macros. We set the \langle param $A\rangle$ and $\langle\operatorname{param} B\rangle$ to the \backslash tmpc and \backslash tmpd respectively. The trailing \backslash apNLs are appended. The macro \backslash apDIVcompA reads first 8 digits from first parameter and the macros \apDIVcompB reads first 8 digits from second parameter and does the comparison. If the numbers are equal then the loop is processed again.
apnum.tex

```
383: \def\apDIVcomp#1#2{%
384: \expandafter\def\expandafter\tmpc\expandafter{#1\apNL\apNL\apNL\apNL\apNL\apNL\apNL\apNL@}%
385: \expandafter\def\expandafter\tmpd\expandafter{#2\apNL\apNL\apNL\apNL\apNL\apNL\apNL\apNL@}%
386: \def\apNext{\expandafter\expandafter\expandafter\apDIVcompA\expandafter\tmpc\tmpd}%
387: \apXtrue \apNext
388: }
389: \def\apDIVcompA#1#2#3#4#5#6#7#8#9@{%
```

\apDIVcomp: 20-21 \apDIVcompA: 21 \apDIVcompB: 22

```
390:\ifx#8\apNL \def\tmpc{0000000\apNL@}\else\def\tmpc{#9@}\fi
391: \apnumX=#1#2#3#4#5#6#7#8\relax
    \apDIVcompB
}
\def \apDIVcompB#1#2#3#4#5#6#7#8#9@{%
    \ifnum\apnumX<#1#2#3#4#5#6#7#8 \let\apNext=\relax \apXfalse \else
    \ifnum\apnumX>#1#2#3#4#5#6#7#8 \let\apNext=\relax \apXtrue
    \fi\fi
    \ifx\apNext\relax\else
        \ifx#8\apNL \def\tmpd{0000000\apNL@}\ifx\tmpc\tmpd\let\apNext=\relax\fi
        \else\def\tmpd{#9@}\fi
        \fi
        \apNext
}
```

The format of interleaved data with divisor and remainder is described here. Suppose this partial step of the division process:

The R_{k} are Digits of the remainder, d_{k} are Digits of the divisor. The A is calculated Digit in this step. The calculation of the Digits of the new remainder is hinted here. We need to do this from right to left because of the transmissions. This implies, that the interleaved format of \backslash XOUT is in the reverse order and looks like
dn Rn ... $\begin{array}{lllllllll}\text { d3 } & \text { R3 } & \text { d2 } & \text { R2 } & \text { d1 } & \text { R1 } & \text { @ } & \text { R0 }\end{array}$
for example for $\langle\operatorname{param} A\rangle=1234567893$, \langle param $B\rangle=454502$ (in the human readable form) the \backslash XOUT should be $\{200\}\{9300\}\{4545\}\{5678\} @\{1234\}$ (in the special format). The Digits are separated by $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ braces \{\}. The resulted digit for this step is $A=12345678 / 1415=2716$.

The calculation of the new remainder takes d_{k}, R_{k}, d_{k-1} for each k from n to 0 and creates the Digit of the new remainder $N_{k-1}=R_{k}-A \cdot d_{k}$ (roughly speaking, actually it calculates transmissions too) and adds the new couple $d_{k-1} N_{k-1}$ to the new version of \XOUT macro. The zero for N_{-1} should be reached. If it is not completed then a correction of the type $A:=A-1$ have to be done and the calculation of this step is processed again.

The result in the new \XOUT should be (after one step is done):

$$
\begin{array}{lllllllllll}
\text { dn } & \text { Nn } & \ldots & \text { d3 } & \text { N3 } & \text { d2 } & \text { N2 } & \text { d1 } & \text { N1 } & \text { © }
\end{array}
$$

where N_{n} is taken from the "rest of the dividend" from the input stream.
The initialization for the main loop is done by \backslash apDIVg macro. It reads the Digits from \backslash tmpa (dividend) and \tmpb macros (using \apIVread) and appends them to the \XOUT in described data format. This initialization is finished when the $\backslash t m p b$ is empty. If the $\backslash t m p a$ is not empty in such case,
 expands zero digit) followed by stop-mark. The \apDIVh reads one Digit from input stream. Else we put only the stop-mark to the input stream and run the \apDIVi. The \apNexti is set to the \apDIVi, so the macro \apDIVh will be skipped forever and no new Digit is read from input stream.

```
404: \def \apDIVg{%
    \ifx\tmpb\empty
        \ifx\tmpa\empty \def\apNext{\apDIVi!}\let\apNexti=\apDIVi
        \else \def\apNext{\expandafter\apDIVh\tmpa\apNL\apNL\apNL\apNL!}\let\apNexti=\apDIVh
    \i\fi
    \ifx\apNext\apDIVg
        \apIVread\tmpa \apnumA=\apnumX
        \apIVread\tmpb
        \edef\XOUT{{\the\apnumX}{\the\apnumA}\XOUT}%
    \fi
    \apNext
5: }
```

The macro \apDIVh reads one Digit from data stream (from the rest of the dividend) and saves it to the $\backslash a p n u m Z$ register. If the stop-mark is reached (this is recognized that the last digit is the $\backslash a p N L$), then \backslash apNexti is set to $\backslash a p D I V i$, so the $\backslash a p D I V h$ is never processed again.

```
416: \def\apDIVh#1#2#3#4{\apnumZ=#1#2#3#4
417: \ifx\apNL#4\let\apNexti=\apDIVi\fi
418: \apDIVi
419: }
```

The macro \apDIVi contains the main loop for division calculation. The core of this loop is the macro call $\backslash \operatorname{apDIVp}\langle d a t a\rangle$ which adds next digit to the \OUT and recalculates the remainder.

The macro \apDIVp decreases the \apnumC register (the desired digits in the output) by four, because four digits will be calculated in the next step. The loop is processed while \apnumC is positive. The \apnumZ (new Digit from the input stream) is initialized as zero and the \nexti runs the next step of this loop. This step starts from \apDIVh (reading one digit from input stream) or directly the \backslash apDIVi is repeated. If the remainder from the previous step is calculated as zero (\backslash apnumE=0), then we stop prematurely. The $\backslash a p D I V j$ macro is called at the end of the loop because we need to remove the "rest of the dividend" from the input stream.

```
\def\apDIVi{%
    \ifnum\apnumE=0 \apnumC=0 \fi
    \ifnum\apnumC>0
        \expandafter\apDIVp\XOUT
        \advance\apnumC by-4
        \apnumZ=0
        \expandafter\apNexti
    \else
        \expandafter\apDIVj
    \fi
}
431: \def\apDIVj#1!{}
```

The macro \apDIVp 〈interleaved-data〉@ does the basic setting before the calculation through the expanded \backslash XOUT is processed. The \backslash apDIVxA includes the "partial dividend" and the \backslash apDIVxB includes the "partial divisor". We need to do \apDIVxA over \apDIVxB in order to obtain the next digit in the output. This digit is stored in \apnumA. The \apnumX is the transmission value, the \apnumB, \apnumY will be the memory of the last two calculated Digits in the remainder. The \apnumE will include the maximum of all digits of the new remainder. If it is equal to zero, we can finish the calculation.

The new interleaved data will be stored to the \apOUT: $\langle n u m\rangle$ macros in similar way as in the \backslash MUL macro. This increases the speed of the calculation. The data \apnum0, \apnumL and \apOUT1 for this purpose are initialized.

The $\backslash a p D I V q$ is started and the tokens $0 \backslash a p n u m Z$ are appended to the input stream (i.e to the expanded \XOUT. This zero will be ignored and the \backslash apnumZ will be used as a new N_{n}, i.e. the Digit from the "rest of the dividend".

```
\def\apDIVp{%
    \apnumA=\apDIVxA \divide\apnumA by\apDIVxB
    \def\apOUTl{}\apnumO=1 \apnumL=0
    \apnumX=0 \apnumB=0 \apnumE=0
    \let\apNext=\apDIVq \apNext 0\apnumZ
}
```

The macro \backslash apDIVq $\left\langle d_{k}\right\rangle\left\langle R_{k}\right\rangle\left\langle d_{k-1}\right\rangle$ calculates the Digit of the new remainder N_{k-1} by the formula $N_{k-1}=-A \cdot d_{k}+R_{k}-X$ where X is the transmission from the previous Digit. If the result is negative, we need to add minimal number of the form $X \cdot 10000$ in order the result is non-negative. Then the X is new transmission value. The digit N_{k} is stored in the \apnumB register and then it is added to \apOUT: $\langle n u m\rangle$ in the order $d_{k-1} N_{k-1}$. The \backslash apnumY remembers the value of the previous \backslash apnumb. The d_{k-1} is put to the input stream back in order it would be read by the next \backslash apDIVq call.

If $d_{k-1}=@$ then we are at the end of the remainder calculation and the $\backslash a p D I V r$ is invoked.

```
\apDIVh: 22-24 \apDIVi: 22-23 \nexti \apDIVj:23 \apDIVp: 23 \apDIVxA: 20-21, 23-24
\apDIVxB: 20-21, 23 \apDIVq: 23-24
```

```
\def\apDIVq#1#2#3{% B A B
    \advance\apnum0 by-1 \ifnum\apnum0=0 \apOUTx \fi
    \apnumY=\apnumB
    \apnumB=#1\multiply\apnumB by-\apnumA
    \advance\apnumB by#2\advance\apnumB by-\apnumX
    \ifnum\apnumB<0 \apnumX=\apnumB \advance\apnumX by1
            \divide\apnumX by-\apIVbase \advance\apnumX by1
            \advance\apnumB by\the\apnumX 0000
        \else \apnumX=0 \fi
        \expandafter
            \edef\csname apOUT:\apOUTn\endcsname{\csname apOUT:\apOUTn\endcsname{#3}{\the\apnumB}}%
        \ifnum\apnumE<\apnumB \apnumE=\apnumB \fi
        \ifx@#3\let\apNext=\apDIVr \fi
        \apNext{#3}%
    }
```

The \backslash apDIVr macro does the final work after the calculation of new remainder is done. It tests if the remainder is OK , i.e. the transmission from the R_{1} calculation is equal to R_{0}. If it is true then new Digit \apnumA is added to the \OUT macro else the \apnumA is decreased (the correction) and the calculation of the remainder is run again.

If the calculated Digit and the remainder are OK, then we do following:

- The new \XOUT is created from \apOUT: $\langle n u m\rangle$ macros using \apOUTs macro.
- The \backslash apnumA is saved to the \OUT. This is done with care. If the \apnumD (where the decimal point is measured from the actual point in the $\backslash O U T)$ is in the interval $[0,4)$ then the decimal point have to be inserted between digits into the next Digit. This is done by \apDIVt macro. If the remainder is zero (\backslash apnum $E=0$), then the right trailing zeros are removed from the Digit by the $\backslash a p D I V u$ and the shift of the \backslash apnumD register is calculated from the actual digits. All this calculation is done in \tmpa macro. The last step is adding the contents of \tmpa to the \OUT.
- The \backslash apnumD is increased by the number of added digits.
- The new "partial dividend" is created from \apnumB and \apnumY.

```
\def\apDIVr#1#2{%
    \ifnum\apnumX=#2 % the calculated Digit is OK, we save it
        \edef\XOUT{\expandafter\apOUTs\apOUT1.,}%
        \edef\tmpa{\ifnum\apnumF=4 \expandafter\apIVwrite\else \expandafter\the\fi\apnumA}%
        \ifnum\apnumD<\apnumF \ifnum\apnumD>-1 \apDIVt \fi\fi %adding dot
            \ifx\apNexti\apDIVh \apnumE=1 \fi
            \ifnum\apnumE=0 \apDIVu % removing zeros
                        \advance\apnumD by-\apNUMdigits\tmpa \relax
            \else \advance\apnumD by-\apnumF \apnumF=4 \fi
            \edef\OUT{\OUT\tmpa}% save the Digit
            \edef\apDIVxA{\the\apnumB\apIVwrite\apnumY}% next partial dvividend
        \else % we need do correction and run the remainder calculation again
            \advance\apnumA by-1 \apnumX=0 \apnumB=0 \apnumE=0
            \def\apOUTl{}\apnum0=1 \apnumL=0
            \def\apNext{\let\apNext=\apDIVq
            \expandafter\apNext\expandafterO\expandafter\apnumZ\XOUT}%
            \expandafter\apNext
        \i
            }
```

The \apDIVt macro inserts the dot into digits quartet (less than four digits are allowed too) by the \backslash apnumD value. This value is assumed in the interval $[0,4)$. The expandable macro \backslash apIVdot \langle shift $\rangle\langle d a t a\rangle$ is used for this purpose. The result from this macro has to be expanded twice.

```
472: \def\apDIVt{\edef\tmpa{\apIVdot\apnumD\tmpa}\edef\tmpa{\tmpa}}
```

The \apDIVu macro removes trailing zeros from the right and removes the dot, if it is the last token of the \tmpa after removing zeros. It uses expandable macros $\backslash a p R E M z e r o s R\langle d a t a\rangle$ and \apREMdotR $\langle d a t a\rangle$.

[^8]```
473: \def\apDIVu{\edef\tmpa{\apREMzerosR\tmpa}\edef\tmpa{\apREMdotR\tmpa}}
```

The rest of the code concerned with the division does an extraction of the last remainder from the data and this value is saved to the \XOUT macro in human readable form. The \apDIVv macro is called repeatedly on the special format of the \XOUT macro and the new \XOUT is created. The trailing zeros from right are ignored by the \apDIVw.

```
\def\apDIVv#1#2{\apnumX=#2
 \ifx@#1\apDIVw{.\apIVwrite\apnumX}\else\apDIVw{\apIVwrite\apnumX}\expandafter\apDIVv\fi
}
\def \apDIVw#1{%
 \ifx\XOUT\empty \ifnum\apnumX=0
 \else \edef\tmpa{#1}\edef\XOUT{\apREMzerosR\tmpa\XOUT}%
 \fi
 \else \edef\XOUT{#1\XOUT}\fi
```

2: \}

### 2.7 Power to the Integer

The power to the decimal number (non integer) is not implemented yet because the implementation of exp, ln, etc. is a future work.

We can implement the power to the integer as repeated multiplications. This is simple but slow. The goal of this section is to present the power to the integer with some optimizations.

Let $a$ is the base of the powering computation and $d_{1}, d_{2}, d_{3}, \ldots, d_{n}$ are binary digits of the exponent (in reverse order). Then

$$
p=a^{1 d_{1}+2 d_{2}+2^{2} d_{3}+\cdots+2^{n-1} d_{n}}=\left(a^{1}\right)^{d_{1}} \cdot\left(a^{2}\right)^{d_{2}} \cdot\left(a^{2^{2}}\right)^{d_{3}} \cdot\left(a^{2^{n-1}}\right)^{d_{n}} .
$$

If $d_{i}=0$ then $z^{d_{i}}$ is one and this can be omitted from the queue of multiplications. If $d_{i}=1$ then we keep $z^{d_{i}}$ as $z$ in the queue. We can see from this that the $p$ can be computed by the following algorithm:

```
(* "a" is initialized as the base, "e" as the exponent *)
p := 1;
while (e>0) {
 if (e%2) p := p*a;
 e := e/2;
 if (e>0) a := a*a;
}
(* "p" includes the result *)
```

The macro \apPOWa does the following work.

- After using \apPPab the base parameter is saved in \tmpa and the exponent is saved in $\backslash$ tmpb.
- In trivial cases, the result is set without any computing (lines 487 and 488).
- If the exponent is non-integer or it is too big then the error message is printed and the rest of the macro is skipped by the \apPOWe macro (lines 490 to 493).
- The \apE is calculated from \apEa (line 494).
- The sign of the result is negative only if the $\backslash t \mathrm{mpb}$ is odd and base is negative (line 496).
- The number of digits after decimal point for the result is calculated and saved to \apnumD. The total number of digits of the base is saved to \apnumC. (line 497).
- The first Digit of the base needn't to include all four digits, but other Digits do it. The similar trick as in \apMULa is used here (lines 499 to 500).
- The base is saved in interleaved reversed format (like in \apMULa) into the \OUT macro by the $\backslash$ apMULb macro. Let it be the $a$ value from our algorithm described above (lines 501 and 502).
- The initial value of $p=1$ from our algorithm is set in interleaved format into \tmpc macro (line 503).
- The main loop described above is processed by \apPOWb macro. (line 504).

[^9]- The result in \tmpc is converted into human readable form by the $\backslash$ apPOWg macro and it is stored into the \OUT macro (line 505).
- If the result is negative or decimal point is needed to print then use simple conversion of the \OUT macro (adding minus sign) or using \apROLLa macro (lines 506 and 507).
- If the exponent is negative then do the $1 / r$ calculation, where $r$ is previous result (line 508).

```
486. \def \apPOWa{% apnum.tex
486: \def\apPOWa{%
 \ifnum\apSIGNa=0 \def\OUT{O}\apSIGN=0 \apE=0 \else
 \ifnum\apSIGNb=0 \def\OUT{1}\apSIGN=1 \apE=0 \else
 \apDIG\tmpb\apnumB
 \ifnum\apnumB>0 \errmessage{POW: non-integer exponent is not implemented yet}\apPOWe\fi
 \ifnum\apEb=0 \else \errmessage{POW: the E notation of exponent isn't allowed}\apPOWe\fi
 \ifnum\apnumD>8 \errmessage{POW: too big exponent.
 Do you really need about 10^\the\apnumD\space digits in output?}\apPOWe\fi
 \apE=\apEa \multiply\apE by\tmpb\relax
 \apSIGN=\apSIGNa
 \ifodd\tmpb \else \apSIGN=1 \fi
 \apDIG\tmpa\apnumA \apnumC=\apnumA \advance\apnumC by\apnumD
 \apnumD=\apnumA \multiply\apnumD by\tmpb
 \apIVmod \apnumC \apnumA
 \edef\tmpc{\ifcase\apnumA\or{}{}{}\or{}{}\or{}\fi}\def\OUT{}%
 \expandafter\expandafter\expandafter \apMULb \expandafter \tmpc \tmpa @@@@%
 \edef\OUT{*.\OUT}% \OUT := \tmpa in interleaved format
 \def\tmpc{*.1*}%
 \apnumE=\tmpb\relax \apPOWb
 \expandafter\apPOWg \tmpc % \OUT := \tmpc in human raedable form
 \ifnum\apnumD=0 \ifnum \apSIGN<0 \edef\OUT{-\OUT}\fi
 \else \def\tmpc{-\apnumD}\apnumG=\apSIGN \expandafter\apROLLa\OUT.@\OUT\fi
 \ifnum\apSIGNb<0 \apPPab\apDIVa 1\OUT \fi
 \relax
 \fi\fi
 }
```

The macro \apPOWb is the body of the loop in the algorithm described above. The code part after $\backslash i f o d d \backslash a p n u m E$ does $p_{\sqcup}:=\sqcup p * a$. In order to do this, we need to convert $\backslash O U T$ (where a is stored) into normal format using \apPOWd. The result is saved in \tmpb. Then the multiplication is done by $\backslash$ apMULd and the result is normalized by the $\backslash$ apPOWn macro. Because $\backslash$ apMULd works with \OUT macro, we temporary set $\backslash$ tmpc to \OUT.

The code part after \ifnum \apnumE<0 does $a_{\sqcup}:=\sqcup а * а$ using the \apPOWt macro. The result is normalized by the \apPOWn macro.

```
\def\apPOWb{%
 \ifodd\apnumE \def\tmpb{}\expandafter\apPOWd\OUT
 \let\tmpd=\OUT \let\OUT=\tmpc
 \expandafter\apMULd \tmpb@\expandafter\apPOWn\OUT@%
 \let\tmpc=\OUT \let\OUT=\tmpd
 \fi
 \divide\apnumE by2
 \ifnum\apnumE>0 \expandafter\apPOWt\OUT \expandafter\apPOWn\OUT@%
 \expandafter\apPOWb
 \fi
}
```

The macro \apPOWd 〈initialized-interleaved-reversed-format〉 extracts the Digits from its argument and saves them to the $\backslash$ tmpb macro.

```
 ef \apPOWd#1#2{% \apPOWd <spec format> => \tmpb (in simple reverse format)
 \ifx*#1\expandafter\apPOWd \else
 \edef\tmpb{\tmpb{#1}}%
 \ifx*#2\else \expandafter\expandafter\expandafter\apPOWd\fi
 \fi
}
```

\apPOWb: 25-26 \apPOWd: 26

The \apPOWe macro skips the rest of the body of the \apPOWa macro to the \relax．It is used when \errmessage is printed．
apnum．tex

## 529：\def\apPOWe\＃1\relax\｛\fi\}

The $\backslash$ apPOWg macro provides the conversion from interleaved reversed format to the human read－ able form and save the result to the \OUT macro．It ignores the first two elements from the format and runs \apPOWh．

```
530: \def\apPOWg#1#2{\def\OUT{}\apPOWh} % conversion to the human readable form
531: \def\apPOWh#1#2{\apnumA=#1
532:\\ifx*#2\edef\OUT{\the\apnumA\OUT}\else \edef\OUT{\apIVwrite\apnumA\OUT}\expandafter\apPOWh\fi
533: }
```

The normalization to the initialized interleaved format of the \OUT is done by the \apPOWn 〈data〉＠ macro．The \apPOWna reads the first part of the $\langle d a t a\rangle$（to the first＊，where the Digits are non－interleaved． The \apPOWnn reads the second part of $\langle d a t a\rangle$ where the Digits of the result are interleaved with the digits of the old coefficients．We need to set the result as a new coefficients and prepare zeros between them for the new calculation．The dot after the first $*$ is not printed（the zero is printed instead it）but it does not matter because this token is simply ignored during the calculation．

```
534: \def\apPOWn#1{\def\OUT{*}\apPOWna}
535: \def\apPOWna#1{\ifx*#1\expandafter\apPOWnn\else \edef\OUT{\OUTO{#1}}\expandafter\apPOWna\fi}
536: \def\apPOWnn#1#2{\ifx*#1\edef\OUT{\OUT*}\else\edef\OUT{\OUTO{#1}}\expandafter\apPOWnn\fi}
```

The powering to two（\OUT：＝\OUT＾2）is provided by the \apPOWt $\langle$ data $\rangle$ macro．The macro $\backslash$ apPOWu is called repeatedly for each $\backslash$ apnumA＝Digit from the $\langle$ data $\rangle$ ．One line of the multiplication scheme is processed by the $\backslash$ apPOWv $\langle d a t a\rangle$ macro．We can call the \apMULe macro here but we don＇t do it because a slight optimization is used here．You can try to multiply the number with digits abcd by itself in the mirrored multiplication scheme．You＇ll see that first line includes $a^{\wedge} 22_{\sqcup} 2 a_{\sqcup}{ }^{\circ} 2 a_{\sqcup} \leq 2 a d$ ，second line is intended by two columns and includes $\mathrm{b}^{\wedge} 2 \sqcup 2 \mathrm{~b} \mathrm{c}_{\sqcup} 2 \mathrm{bd}$ ，next line is indented by next two columns and includes $c^{\wedge} 2 \sqcup 2 c d$ and the last line is intended by next two columns and includes only $d^{\wedge} 2$ ．Such calculation is slightly shorter than normal multiplication and it is implemented in the \apPOWv macro．

```
\def\apPOWt#1#2{\apPOWu} % power to two
\def \apPOWu#1#2{\apnumA=#1
 \expandafter\apPOWv\OUT
 \ifx*#2\else \expandafter\apPOWu\fi
 }
 \def\apPOWv#1*#2#3#4{\def\apOUTl{}\apnum0=1 \apnumL=0
 \apnumB=\apnumA \multiply\apnumB by\apnumB \multiply\apnumA by2
 \ifx*#4\else\advance\apnumB by#4 \fi
 \ifx\apnumB<\apIVbase \apnumX=0 \else \apIVtrans \fi
 \edef\OUT{#1{#2}{\the\apnumB}*}%
 \ifx*#4\apMULfO*\else\expandafter\apMULf\fi
 }
```


## ROLL，ROUND and NORM Macros

The public macros $\backslash$ ROLL，$\backslash$ ROUND and $\backslash$ NORM are implemented by \apROLLa，\apROUNDa and \apNORMa macros with common format of the parameter text：〈expanded－sequence〉．＠〈sequence〉 where $\langle$ expanded－sequence〉 is the expansion of the macro $\langle$ sequence $\rangle$（given as first parameter of $\backslash$ ROLL，$\backslash$ ROUND and $\backslash$ NORM，but without optionally minus sign．If there was the minus sign then $\backslash a p n u m G=-1$ else $\backslash$ apnumG＝1．This preparation of the parameter $\langle$ sequence $\rangle$ is done by the \apPPs macro．The second parameter of the macros $\backslash$ ROLL，$\backslash$ ROUND and $\backslash$ NORM is saved to the $\backslash$ tmpc macro．
\apROLLa $\langle$ param $\rangle$ ．＠$\langle$ sequence $\rangle$ shifts the decimal point of the $\langle$ param $\rangle$ by $\backslash$ tmpc positions to the right（or to the left，if $\backslash$ tmpc is negative）and saves the result to the $\langle$ sequence $\rangle$ macro．The $\backslash$ tmpc value is saved to the \apnumA register and the \apROLLc is executed if we need to shift the decimal point to left．Else \apROLLg is executed．

| \apPOWe： $25-27$ | \apPOWg： $26-27$ | \apPOWh： 27 | \apPOWn： $26-27$ | \apPOWna： 27 | \apPOWnn： 27 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| lapPOWt： $26-27$ | \apPOWu： 27 | \apPOWv： 27 | \apROLLa：6，15，20－21，26－30 |  |  |

The \apROLLc $\langle$ param $\rangle$.@ $\langle$ sequence $\rangle$ shifts the decimal point to left by the -\apnumA decimal digits. It reads the tokens from the input stream until the dot is found using \apROLLd macro. The number of such tokens is set to the \apnumB register and tokens are saved to the \tmpc macro. If the dot is found then $\backslash$ apROLLe does the following: if the number of read tokens is greater then the absolute value of the $\langle s h i f t\rangle$, then the number of positions from the most left digit of the number to the desired place of the dot is set to the $\backslash$ apnumA register a the dot is saved to this place by $\backslash$ apROLLi $\langle$ parameter $\rangle$.@ $\langle$ sequence $\rangle$. Else the new number looks like . 000123 and the right number of zeros are saved to the $\langle$ sequence $\rangle$ using the $\backslash$ apADDzeros macro and the rest of the input stream (including expanded $\backslash$ tmpc returned back) is appended to the macro $\langle$ sequence $\rangle$ by the \apROLLf $\langle$ param $\rangle$. © macro.

```
\def\apROLLc{\edef\tmpc{}\edef\tmpd{\ifnum\apnumG<0-\fi}\apnumB=0 \apROLLd}
\def\apROLLd#1{%
 \ifx.#1\expandafter\apROLLe
 \else \edef\tmpc{\tmpc#1}%
 \advance\apnumB by1
 \expandafter\apROLLd
 \fi
}
\def\apROLLe#1{\ifx@#1\edef\tmpc{\tmpc.@}\else\edef\tmpc{\tmpc#1}\fi
 \advance\apnumB by\apnumA
 \ifnum\apnumB<0
 \apnumZ=-\apnumB \edef\tmpd{\tmpd.}\apADDzeros\tmpd
 \expandafter\expandafter\expandafter\apROLLf\expandafter\tmpc
 \else
 \apnumA=\apnumB
 \expandafter\expandafter\expandafter\apROLLi\expandafter\tmpc
 \fi
}
\def\apROLLf#1.@#2{\edef#2{\tmpd#1}}
```

The $\backslash$ apROLLg $\langle$ param $\rangle$.@ $\langle$ sequence $\rangle$ shifts the decimal point to the right by $\backslash$ apnumA digits starting from actual position of the input stream. It reads tokens from the input stream by the \apROLLh and saves them to the \tmpd macro where the result will be built. When dot is found the \apRoLLi is processed. It reads next tokens and decreases the \apnumA by one for each token. It ends (using $\backslash a p R O L L j \backslash a p R O L L k)$ when $\backslash$ apnumA is equal to zero. If the end of the input stream is reached (the © character) then the zero is inserted before this character (using \apROLLj $\backslash a p R O L L i 0 @)$. This solves the situations like $123,\langle$ shift $\rangle=2, \rightarrow 12300$.

```
\def\apROLLg#1{\edef\tmpd{\ifnum\apnumG<0-\fi}\ifx.#1\apnumB=0 \else\apnumB=1 \fi \apROLLh#1}
\def\apROLLh#1{\ifx.#1\expandafter\apROLLi\else \edef\tmpd{\tmpd#1}\expandafter\apROLLh\fi}
\def\apROLLi#1{\ifx.#1\expandafter\apROLLi\else
 \ifnum\apnumA>0 \else \apROLLj \apROLLk#1\fi
 \ifx@#1\apROLLj \apROLLiO@\fi
 \advance\apnumA by-1
 \ifx0#1\else \apnumB=1 \fi
 \ifnum\apnumB>0 \edef\tmpd{\tmpd#1}\fi
 \expandafter\apROLLi\fi
}
```

The $\backslash$ apROLLg macro initializes $\backslash$ apnumB=1 if the $\langle$ param $\rangle$ doesn't begin by dot. This is a flag that all digits read by \apROLLi have to be saved. If the dot begins, then the number can look like .000123 (before moving the dot to the right) and we need to ignore the trailing zeros. The $\backslash$ apnumB is equal to zero in such case and this is set to 1 if here is first non-zero digit.

The $\backslash a p R O L L j$ macro closes the conditionals and runs its parameter separated by $\backslash$ fi. It skips the rest of the \apROLLi macro too.

582: \def\apROLLj\#1\fi\#2\apROLLi\fi\{\fi\fi\#1\}

| \apROLLc: 27-28 | \apROLLd: 28 | \apROLLe: 28 | \apROLLf: 28 | \apROLLg: 27-28 | \apROLLh: 28 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \apROLLi: 28 | \apROLLj: 28 |  |  |  |  |

The macro \apROLLk puts the decimal point to the \tmpd at current position (using \apROLLn) if the input stream is not fully read. Else it ends the processing. The result is an integer without decimal digit in such case.
apnum.tex

```
\def\apROLLk#1{\ifx@#1\expandafter\apROLLo\expandafter@\else
 \def\tmpc{}\apnumB=0 \expandafter\apROLLn\expandafter#1\fi
}
```

584:

The macro \apRoLLn reads the input stream until the dot is found. Because we read now the digits after a new position of the decimal point we need to check situations of the type 123.000 which is needed to be written as 123 without decimal point. This is a reason of a little complication. We save all digits to the \tmpc macro and calculate the sum of such digits in \apnumB register. If this sum is equal to zero then we don't append the . $\backslash$ tmpc to the $\backslash$ tmpd. The macro $\backslash a p R O L L n$ is finished by the $\backslash$ apROLLo $@\langle$ sequence $\rangle$ macro, which removes the last token from the input stream and defines $\langle$ sequence $\rangle$ as $\backslash$ tmpd.

```
\def\apROLLn#1{%
 \ifx.#1\ifnum\apnumB>0 \edef\tmpd{\tmpd.\tmpc}\fi \expandafter\apROLLo
 \else \edef\tmpc{\tmpc#1}\advance\apnumB by#1 \expandafter\apROLLn
 \fi
}
591: \def\apROLLo@#1{\let#1=\tmpd}
```

The macro \apROUNDa $\langle$ param $\rangle$. © $\langle$ sequence $\rangle$ rounds the number given in the $\langle$ param $\rangle$. The number of digits after decimal point $\backslash t m p c$ is saved to $\backslash$ apnumD. If this number is negative then $\backslash$ apROUNDe is processed else the $\backslash$ apROUNDb reads the $\langle$ param $\rangle$ to the decimal point and saves this part to the $\backslash$ tmpc macro. The \tmpd macro (where the rest after decimal point of the number will be stored) is initialized to empty and the \apROUNDc is started. This macro reads one token from input stream repeatedly until the number of read tokens is equal to \apnumD or the stop mark @ is reached. All tokens are saved to $\backslash$ tmpd. Then the $\backslash$ apROUNDd macro reads the rest of the $\langle$ param $\rangle$, saves it to the \XOUT macro and defines $\langle$ sequence $\rangle$ (i.e. \#2) as the rounded number.

```
\def\apROUNDa{\apnumD=\tmpc\relax
 \ifnum\apnumD<0 \expandafter\apROUNDe
 \else \expandafter\apROUNDb
 \i
 }
\def\apROUNDb#1.{\edef\tmpc{#1}\apnumX=0 \def\tmpd{}\let\apNext=\apROUNDc \apNext}
\def\apROUNDc#1{\ifx@#1\def\apNext{\apROUNDd.@}%
 \else \advance\apnumD by-1
 \ifnum\apnumD<0 \def\apNext{\apROUNDd#1}%
 \else \ifx.#1\else \advance\apnumX by#1 \edef\tmpd{\tmpd#1}\fi
 \i
 \fi \apNext
 : }
\def \apROUNDd#1.@#2{\def\XOUT{#1}%
 \ifnum\apnumX=0 \def\tmpd{}\fi
 \ifx\tmpd\empty
 \ifx\tmpc\empty \def#2{0}%
 \else \edef#2{\ifnum\apnumG<0-\fi\tmpc}\fi
 \else\edef#2{\ifnum\apnumG<0-\fi\tmpc.\tmpd}\fi
}
```

The macro \apROUNDe solves the "less standard" problem when rounding to the negative digits after decimal point $\backslash$ apnumD, i.e. we need to set - \apnumD digits before decimal point to zero. The solution is to remove the rest of the input stream, use \apROLLa to shift the decimal point left by - \apnumD positions, use \apROUNDa to remove all digits after decimal point and shift the decimal point back to its previous place.

```
613: \def\apROUNDe#1.@#2{\apnumC=\apnumD
614: \apPPs\apROLLa#2{\apnumC}\apPPs\apROUNDa#2{0}\apPPs\apROLLa#2{-\apnumC}%
615: }
```

| \apROLLk: 28-29 | \apROLLn: 29 | \apROLLo: 29 | \apROUNDa: 6, 11, 27, 29-30 | \apROUNDb: 29 |
| :--- | :---: | :---: | :---: | :---: |
| \apROUNDc: 29 | \apROUNDd: 29 | \apROUNDe: 29 |  |  |

The macro \apNORMa redefines the $\langle$ sequence $\rangle$ in order to remove minus sign because the $\backslash$ apDIG macro uses its parameter without this sign．Then the \apNORMb $\langle$ sequence $\rangle\langle$ parameter $\rangle @$ is executed where the dot in the front of the parameter is tested．If the dot is here then the \apDIG macro measures the digits after decimal point too and the \apNORMc is executed（where the \apROLLa shifts the decimal point from the right edge of the number）．Else the \apDIG macro doesn＇t measure the digits after decimal point and the \apNORMd is executed（where the \apROLLa shifts the decimal point from the left edge of the number）．

```
616: \def\apNORMa#1.@#2{\ifnum\apnumG<0 \def#2{#1}\fi \expandafter\apNORMb\expandafter#2\tmpc@}
\def\apNORMb#1#2#3@{%
 \ifx.#2\apnumC=#3\relax \apDIG#1\apnumA \apNORMc#1%
 \else \apnumC=#2#3\relax \apDIG#1\relax \apNORMd#1%
 \i
 }
 \def\apNORMc#1{\advance\apE by-\apnumA \advance\apE by\apnumC
 \def\tmpc{-\apnumC}\expandafter\apROLLa#1.@#1%
 }
 \def\apNORMd#1{\advance\apE by\apnumD \advance\apE by-\apnumC
 \def\tmpc{\apnumC}\expandafter\apROLLa\expandafter.#1.@#1%
 }
```


## 2.9

## Function－like Macros

The internal implementation of function－like macros $\backslash A B S$ ，\iDIV etc．are simple．The \apFACa macro（factorial）doesn＇t use recursive call because the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ group is opened in such case and the number of levels of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ group is limited（to 255 at my computer）．But we want to calculate more factorial than only 255 ！．

```
631: \def\apABSa{\ifnum\apSIGN<0 \apSIGN=1 \fi}
632: \def \apiDIVa{{\apFRAC=0 \apTOT=0 \apDIVa \apOUTtmpb}\tmpb}
633: \def\apiMODa{{\apFRAC=0 \apTOT=0 \apDIVa \let\OUT=\XOUT \apOUTtmpb}\tmpb}
634: \def\apiROUNDa{\apROUNDa\OUT0}
635: \def\apiFRACa{\apROUNDa\OUTO\ifx\XOUT\empty\def\OUT{0}\else\edef\OUT{.\XOUT}\fi}
636: \def\apFACa{{\apnumC=\OUT\relax
637: \loop \ifnum \apnumC>2 \advance\apnumC by-1
 \MUL{\OUT}{\the\apnumC}\repeat
 \global\let\OUT=\OUT}%
 }
```


## Auxiliary Macros

The macro \apREV $\{\langle$ tokens $\rangle\}$ reverses the order of the $\langle$ tokens $\rangle$ ．For example \apREV\｛revers\} expands to srever．The macro uses \apREVa and works at expansion level only．

```
644: \def \apREV#1{\expandafter\apREVa#1@!}
645: \def\apREVa#1#2!{\ifx@#1\else\apREVa#2!#1\fi}
```

The macro \apDIG 〈sequence〉〈register－or－relax〉 reads the content of the macro 〈sequence〉 and counts the number of digits in this macro before decimal point and saves it to \apnumD register．If the macro $\langle$ sequence $\rangle$ includes decimal point then it is redefined with the same content but without decimal point．The numbers in the form .00123 are replaced by 123 without zeros，but $\backslash$ apnumD $=-2$ in this example．If the second parameter of the \apDIG macro is \relax then the number of digits after decimal point isn＇t counted．Else the number of these digits is stored to the given $\langle r e g i s t e r\rangle$ ．

The macro \apDIG is developed in order to do minimal operations over a potentially long param－ eters．It assumes that $\langle$ sequence $\rangle$ includes a number without $\langle$ sign $\rangle$ and without left trailing zeros．This is true after parameter preparation by the $\backslash a p P P a b$ macro．

The macro \apDIG prepares an incrementation in \tmpc if the second parameter 〈register〉 isn＇t \relax．It initializes \apnumD and $\langle$ register $\rangle$ ．It runs $\backslash \mathrm{apDIGa}\langle$ data $\rangle .. @\langle$ sequence $\rangle$ which increments

```
\apNORMa: 6, 27, 30 \apNORMb: 30 \apNORMc:30 \apNORMd:30 \apABSa: 6 \apiDIVa:6
\apiMODa: 6 \apiROUNDa: 6 \apiFRACa: 6 \apFACa: 6, 30 \apREV: 30 \apREVa: 30
\apDIG: 12-13, 15-16, 20-21, 26, 30-31 \apDIGa: 31
```

the $\backslash$ apnumD until the dot is found．Then the $\backslash a p D I G b$ is executed（if there are no digits before dot）or the $\backslash a p D I G c$ is called（if there is at least one digit before dot）．The $\backslash a p D I G b$ ignores zeros immediately after dot．The $\backslash a p D I G c$ reads the rest of the $\langle$ data $\rangle$ to the \＃1 and saves it to the $\backslash$ tmpd macro．It runs the counter over this $\langle d a t a\rangle \backslash a p D I G d\langle d a t a\rangle @$ only if it is desired（ $\backslash$ tmpc is non－empty）．Else the $\backslash$ apDIGe is executed．The \apDIGe 〈dot－or－nothing〉＠〈sequence〉 redefines 〈sequence〉 if it is needed．Note，that \＃1 is empty if and only if the $\langle d a t a\rangle$ include no dot（first dot was reached as the first dot from $\backslash$ apDIG， the second dot from $\backslash$ apDIG was a separator of \＃1 in $\backslash a p D I G c$ and there is nothing between the second dot and the＠mark．The 〈sequence〉 isn＇t redefined if it doesn＇t include a dot．Else the sequence is set to the \tmpd（the rest after dot）if there are no digits before dot．Else the sequence is redefined using expandable macro \apDIGf．

```
\def\apDIG#1#2{\ifx\relax#2\def\tmpc{}\else #2=0 \def\tmpc{\advance#2 by1 }\fi
 \apnumD=0 \expandafter\apDIGa#1..@#1%
 }
 \def\apDIGa#1{\ifx.#1\csname apDIG\ifnum\apnumD>0 c\else b\fi\expandafter\endcsname
 \else \advance\apnumD by1 \expandafter\apDIGa\fi}
\def\apDIGb#1{%
 \ifx0#1\advance\apnumD by-1 \tmpc \expandafter\apDIGb
 \else \expandafter\apDIGc \expandafter#1\fi
 }
\def\apDIGc#1.{\def\tmpd{#1}%
 \ifx\tmpc\empty \let\apNext=\apDIGe
 \else \def\apNext{\expandafter\apDIGd\tmpd@}%
 \fi \apNext
: }
\def\apDIGd#1{\ifx@#1\expandafter\apDIGe \else \tmpc \expandafter\apDIGd \fi}
\def\apDIGe#1@#2{%
 \ifx@#1@\else % #1=empty <=> the param has no dot, we need to do nothing
 \ifnum\apnumD>0 \edef#2{\expandafter\apDIGf#2@}% the dot plus digits before dot
 \else \let#2=\tmpd % there are only digits after dot, use \tmpd
 \fi\fi
}
\def\apDIGf#1.#2@{#1#2}
```

The macro \apIVread 〈sequence〉 reads four digits from the macro $\langle$ sequence $\rangle$ ，sets \apnumX as the Digit consisting from read digits and removes the read digits from $\langle$ sequence $\rangle$ ．It internally expands $\langle$ sequence ，adds the \apNL marks and runs \apIVreadA macro which sets the \apnumX and redefines $\langle$ sequence $\rangle$ ．

The usage of the $\backslash$ apNL as a stop－marks has the advantage：they act as simply zero digits in the comparison but we can ask by \ifx if this stop mark is reached．The \＃5 parameter of \apIVreadA is separated by first occurrence of $\backslash$ apNL，i．e．the rest of the macro $\langle$ sequence $\rangle$ is here．
apnum．tex

```
670: \def\apNL{0}
671:\def\apIVread#1{\expandafter\apIVreadA#1\apNL\apNL\apNL\apNL\apNL@#1}
672: \def\apIVreadA#1#2#3#4#5\apNL#6@#7{\apnumX=#1#2#3#4\relax \def#7{#5}}
```

The macro \apIVreadX $\langle n u m\rangle\langle$ sequence $\rangle$ acts similar as $\backslash$ apIVread $\langle$ sequence $\rangle$ ，but only $\langle n u m\rangle$ digits are read．The $\langle n u m\rangle$ is expected in the range 0 to 4 ．The macro prepares the appropriate number of empty parameters in \tmpc and runs \apIVreadA with these empty parameters inserted before the real body of the $\langle$ sequence $\rangle$ ．
apnum．tex

```
673: \def\apIVreadX#1#2{\edef\tmpc{\ifcase#1{}{}{}0\or{}{}}{}\or{}{}\or{}\fi}%
674:\expandafter\expandafter\expandafter\apIVreadA\expandafter\tmpc#2\apNL\apNL\apNL\apNL\apNL@#2%
675: }
```

The macro \apIVwrite $\langle n u m\rangle$ expands the digits from $\langle n u m\rangle$ register．The number of digits are four．If the $\langle n u m\rangle$ is less than 1000 then left zeros are added．

676：\def\apIVwrite\＃1\｛\ifnum\＃1＜1000 0\ifnum\＃1＜100 0\ifnum\＃1＜10 0\fi\fi\fi\the\＃1\}

| \apDIGb： 31 | \apDIGc： 31 | \apDIGd： 31 | \apDIGe： 31 | \apDIGf： 31 |
| :--- | ---: | :---: | :---: | :---: |$\quad$ \apIVread： $13-14,20-22,31$

The macro \apIVtrans calculates the transmission for the next Digit．The value（greater or equal 10000）is assumed to be in \apnumB．The new value less than 10000 is stored to \apnumB and the transmission value is stored in \apnumX．The constant \apIVbase is used instead of literal 10000 because it is quicker．

```
678: \mathchardef\apIVbase=10000
679: \def\apIVtrans{\apnumX=\apnumB \divide\apnumB by\apIVbase \multiply\apnumB by-\apIVbase
680: \advance\apnumB by\apnumX \divide\apnumX by\apIVbase
681: }
```

The macro \apIVmod 〈length $\rangle\langle$ register〉 sets $\langle$ register $\rangle$ to the number of digits to be read to the first Digit，if the number has 〈length〉 digits in total．We need to read all Digits with four digits，only first Digit can be shorter．

```
682: \def\apIVmod#1#2{#2=#1\divide#2by4 \multiply#2by-4 \advance#2by#1\relax
```

The macro \apIVdot $\langle n u m\rangle\langle$ param $\rangle$ adds the dot into $\langle$ param $\rangle$ ．Let $K=\langle n u m\rangle$ and $F$ is the number of digits in the $\langle$ param $\rangle$ ．The macro expects that $K \in[0,4)$ and $F \in(0,4]$ ．The macro inserts the dot after $K$－th digit if $K<F$ ．Else no dot is inserted．It is expandable macro，but two full expansions are needed．After first expansion the result looks like $\backslash a p I V d o t A\langle d o t s\rangle\langle p a r a m\rangle . \ldots$ © where $\langle d o t s\rangle$ are the appropriate number of dots．Then the \apIVdotA reads the four tokens（maybe the generated dots）， ignores the dots while printing and appends the dot after these four tokens，if the rest \＃5 is non－empty．

```
686: \def\apIVdot#1#2{\noexpand\apIVdotA\ifcase#1....\or...\or..\or.\fi #2....@}
687: \def\apIVdotA#1#2#3#4#5.#6@{\ifx.#1\else#1\fi
688: \ifx.#2\else#2\fi \ifx.#3\else#3\fi \ifx.#4\else#4\fi\ifx.#5.\else.#5\fi
689: }
```

The expandable macro \apNUMdigits $\{\langle$ param $\rangle\}$ expands（using the \apNUMdigitsA macro）to the number of digits in the $\langle\operatorname{param}\rangle$ ．We assume that maximal number of digits will be four．

```
690: \def\apNUMdigits#1{\expandafter\apNUMdigitsA#1@@@@!}
691: \def\apNUMdigitsA#1#2#3#4#5!{\ifx@#4\ifx@#3\ifx@#2\ifx@#10\else1\fi \else2\fi \else3\fi \else4\fi}
```

The macro \apADDzeros $\langle$ sequence $\rangle$ adds \apnumZ zeros to the macro $\langle$ sequence $\rangle$ ．

```
693: \def\apADDzeros#1{\edef#1{#10}\advance\apnumZ by-1
694: \ifnum\apnumZ>0 \expandafter\apADDzeros\expandafter#1\fi
695: }
```

The expandable macro \apREMzerosR \｛ $\langle$ param $\rangle\}$ removes right trailing zeros from the $\langle$ param $\rangle$ ． It expands to \apREMzerosRa〈param〉＠0＠！．The macro \apREMzerosRa reads all text terminated by 0＠ to \＃1．This termination zero can be the most right zero of the $\langle$ param $\rangle$（then \＃2 is non－empty）or $\langle$ param $\rangle$ hasn＇t such zero digit（then \＃2 is empty）．If \＃2 is non－empty then the \apREMzerosRa is expanded again in the recursion．Else \apREMzerosRb removes the stop－mark＠and the expansion is finished．

```
696: \def\apREMzerosR#1{\expandafter\apREMzerosRa#1@0@!}
697: \def\apREMzerosRa#10@#2!{\ifx!#2!\apREMzerosRb#1\else\apREMzerosRa#1@0@!\fi}
698: \def\apREMzerosRb#1@{#1}
```

The expandable macro \apREMdotR $\{\langle$ param $\rangle\}$ removes right trailing dot from the $\langle$ param $\rangle$ if exists．It expands to \apREMdotRa and works similarly as the \apREMzerosR macro．

```
699: \def \apREMdotR#1{\expandafter\apREMdotRa#1@.@!}
700: \def\apREMdotRa#1.@#2!{\ifx!#2!\apREMzerosRb#1\else#1\fi}
```

The writing to the \OUT in the \MUL，\DIV and \POW macros is optimized，which de－ creases the computation time with very large numbers ten times and more．We can do simply \edef $\backslash$ OUT $\{\backslash$ OUT $\langle$ something $\rangle$ \} instead of

```
\expandafter\edef\csname apOUT:\apOUTn\endcsname
 {\csname apOUT:\apOUTn\endcsname<something>}%
```

```
\apIVtrans: 17-18, 27, 32 \apIVbase: 14, 17-18, 24, 27, 32 \apIVmod: 12-13, 16, 21, 26, 32
\apIVdot: 18, 24, 32 \apIVdotA: 32 \apNUMdigits: 18, 24, 32 \apNUMdigitsA: 32
\apADDzeros: 13, 16, 20-21, 28, 32 \apREMzerosR: 15, 24-25, 32 \apREMzerosRa: 32
\apREMzerosRb: 32 \apREMdotR: 24-25,32 \apREMdotRa: 32
```

but \edef \OUT\{\OUT〈something〉\} is typically processed very often over possibly very long macro (many thousands of tokens). It is better to do \edef over more short macros \apOUT:0, \apOUT:1, etc. Each such macro includes only 7 Digits pairs of the whole \OUT. The macro \apOUTx is invoked each 7 digit (the \apnum0 register is decreased). It uses \apnumL value which is the $\langle n u m\rangle$ part of the next \apOUT: $\langle n u m\rangle$ control sequence. The \apOUTx defines this $\langle n u m\rangle$ as $\backslash$ apOUTn and initializes \apOUT: $\langle n u m\rangle$ as empty and adds the $\langle n u m\rangle$ to the list $\backslash$ apOUTl. When the creating of the next $\backslash$ OUT macro is definitely finished, the \OUT macro is assembled from the parts \apOUT:0, \apOUT:1 etc. by the macro \apOUTs $\langle$ list-of-numbers $\rangle\langle$ dot $\rangle\langle$ comma $\rangle$.

```
\def\apOUTx{\apnum0=7
 \edef\apOUTn{\the\apnumL}\edef \apOUTl{\apOUT1\apOUTn,}%
 \expandafter\def\csname apOUT:\apOUTn\endcsname{}%
 \advance\apnumL by1
 }
 \def\apOUTs#1,{\ifx.#1\else\csname apOUT:#1\expandafter\endcsname\expandafter\apOUTs\fi}
```

The macro \apOUTtmpb is used in the context \{. . . \apOUTtmpb\} ${ }^{\text {tmpb. It saves the results \OUT, }}$ $\backslash a p E$ and $\backslash a p S I G N$ calculated in the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ group in the $\backslash$ tmpb macro, expands the $\backslash t m p b$, ends the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ group and executes the $\backslash$ tmpb in order to make possible to use these results outside this group.
apnum.tex


### 2.11 Conclusion

Here is my little joke. Of course, this macro file works in LaTEX without problems because only $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ primitives (from classic $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ ) and the $\backslash$ newcount macro are used here. But I wish to print my opinion about LaTEX. I hope that this doesn't matter and $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ users can use my macro because a typical $\mathrm{LaT}_{\mathrm{E}} \mathrm{X}$ user doesn't read a terminal nor. $\log$ file.

```
713: \ifx\documentclass\undefined \else % please, don't remove this message
714: \message{SORRY, you are using LaTeX. I don't recommend this. Petr Olsak}\fi
715: \catcode`\@=\apnumZ
716: \endinput
```


## 3 Index

The bold number is the number of the page where the item is documented. Other numbers are pagenumbers of the occurrences of such item.

```
\ABS: 3, 6, 30
\addE: 4, 5-6
\apABSa: 30, 6
\apADDzeros: 32, 13, 16, 20-21, 28
\apDIG: 30, 12-13, 15-16, 20-21, 26, 31
\apDIGa: 30, 31
\apDIGb: 31
\apDIGc: 31
\apDIGd: 31
\apDIGe: 31
\apDIGf: 31
\apDIVa: 20, 5, 21, 26, 30
\apDIVcomp: 21, 20
\apDIVcompA: 21
\apDIVcompB: 21, 22
\apDIVg: 22, 20-21
\apDIVh: 23, 22, 24
\apDIVi: 23, 22
```

\apDIVj: 23
\apDIVp: 23
\apDIVq: 23, 24
\apDIVr: 24, 23
\apDIVt: 24
\apDIVu: 24, 25
\apDIVv: 25, 20-21
\apDIVw: 25
\apDIVxA: 23, 20-21, 24
\apDIVxB: 23, 20-21
\apE: 4, 5-13, 15-16, 20-21,
25-26, 30, 33
\apEDIV: 8
\apEMINUS: 8
\apEMUL: 8
\apEPLUS: 8, 9
\apEPOW: 8
\apEVALa: 6, 5, 9
\apOUTx: 17-18, 24, 33 \apOUTn: 17-18, 24, 33 \apOUT1: 17, 23-24, 27, 33 \apOUTs: 17, 24, 33
\apOUTtmpb: 11, 30, 33
\apEVALb: 7, 6, 8
\apEVALc: 7
\apEVALd: 7
\apEVALdo: 9, 8
\apEVALe: 7
\apEVALerror: 9, 8
\apEVALf: 7
\apEVALg: 7
\apEVALh: 7
\apEVALk: 7
\apEVALm: 7, 8
\apEVALn: 7, 8
\apEVALo: 8, 7
\apEVALone: 11, 6
\apEVALp: 8, 7
\apEVALpush: 8, 9
\apEVALstack: 8, 9
\apEVALtwo: 11, 6
\apFACa: 30, 6
\apFRAC: 2, 3, 6, 21, 30
\apiDIVa: 30, 6
\apiFRACa: 30, 6
\apiMODa: 30, 6
\apiROUNDa: 30, 6
\apIVbase: 32, 14, 17-18, 24, 27
\apIVdot: 32, 18, 24
\apIVdotA: 32
\apIVmod: 32, 12-13, 16, 21, 26
\apIVread: 31, 13-14, 20-22
\apIVreadA: 31
\apIVreadX: 31, 20-21
\apIVtrans: 32, 17-18, 27
\apIVwrite: 31, 15, 18, 20-21, 24-25, 27
\apMULa: 15, 5, 16, 25
\apMULb: 17, 16, 25-26
\apMULc: 17, 16
\apMULd: 17, 16, 26
\apMULe: 17, 18, 27
\apMULf: 17, 18, 27
\apMULg: 18, 16
\apMULh: 18
\apMULi: 18
\apMULj: 18
\apMULo: 18
\apMULt: 18
\apNL: 31, 13-14, 21-23
\apNOminus: 11
\apNORMa: 30, 6, 27
\apNORMb: 30
\apNORMc: 30
\apNORMd: 30
\apNUMdigits: 32, 18, 24
\apNUMdigitsA: 32
\apnumversion: 5
\apOUT1: 33, 17, 23-24, 27
\apOUTn: 33, 17-18, 24
\apOUTs: 33, 17, 24
\apOUTtmpb: 33, 11, 30
\apOUTx: 33, 17-18, 24
\apPLUSa: 12, 5, 13
\apPLUSb: 13, 12
\apPLUSc: 13, 14
\apPLUSd: 14
\apPLUSe: 13, 14
\apPLUSf: 14
\apPLUSg: 14, 12-13
\apPLUSh: 14
\apPLUSm: 14, 12-13
\apPLUSp: 14, 12-13
\apPLUSw: 15, 14
\apPLUSxA: 12, 13-14
\apPLUSxB: 12, 13-14
\apPLUSxE: 15, 12-13
\apPLUSy: 15, 13
\apPLUSz: 15
\apPOWa: 25, 5, 26-27
\apPOWb: 26, 25
\apPOWd: 26
\apPOWe: 27, 25-26
\apPOWg: 27, 26
\apPOWh: 27
\apPOWn: 27, 26
\apPOWna: 27
\apPOWnn: 27
\apPOWt: 27, 26
\apPOWu: 27
\apPOWv: 27
\apPPa: 9, 10
\apPPab: 11, 5, 12, 15, 25-26, 30
\apPPb: 9, 10-11
\apPPc: 9, 10
\apPPd: 10, 9
\apPPe: 10
\apPPf: 10
\apPPg: 10
\apPPh: 10
\apPPi: 10
\apPPj: 10
\apPPk: 10
\apPPI: 10
\apPPm: 10
\apPPn: 10, 9
\apPPs: 11, 6, 15, 27, 29
\apPPt: 11
\apPPu: 11
\apREMdotR: 32, 24-25
\apREMdotRa: 32
\apREMzerosR: 32, 15, 24-25
\apREMzerosRa: 32
\apREMzerosRb: 32
\apREV: 30
\apREVa: 30
\apROLLa: 27, 6, 15, 20-21, 26, 28-30
\apROLLc: 28, 27
\apROLLd: 28
\apROLLe: 28
\apROLLf: 28
\apROLLg: 28, ${ }^{77}$
\apROLLh: 28
\apROLLi: 28
\apROLLj: 28
\apROLLk: 29, 28
\apROLLn: 29
\apROLLo: 29
\apROUNDa: 29, 6, 11, 27, 30
\apROUNDb: 29
\apROUNDc: 29
\apROUNDd: 29
\apROUNDe: 29
\apSIGN: 6, 5, 9-13, 15-16, 20-21, 26, 30, 33
\apTESTdigit: 9, 7-8
\apTOT: 2, 3, 6, 21, 30
\DIV: 3, 4-5, 8-9, 11, 32
\evaldef: 2, 3-6, 8-9, 11
$\backslash$ FAC: 3, 6
\iDIV: 3, 6, 30
\iFRAC: 3, 6
\iMOD: 3, 6
\iROUND: 3, 6
\MINUS: 3, 4-5, 8-9
\MUL: 3, 4-9, 11, 23, 30, 32
\nexti: 23
\NORM: 4, 5-6, 11, 27
\OUT: 3, 4, 6, 9-11, 13-18, 20-21, 23-27, 30, 32-33
\PLUS: 3, 4-6, 8-9, 11
\POW: 3, 4-5, 8-9, 11, 32
\ROLL: 4, 5-6, 11, 27
\ROUND: 4, 5-6, 11, 27
\SIGN: 4, 6
\XOUT: 3, 4, 11, 20-25, 29-30


[^0]:    \evaldef: 3-6, 8-9, 11 \арTOT: 2-3, 6, 21, $30 \quad$ \apFRAC: $2-3,6,21,30$

[^1]:    \apnumversion: 5

[^2]:    47: \def \apEVALa\#1\#2\{\{\apnumA=0 \apnumE=1 \apEVALb\#2\end \expandafter\}\tmpb \let\#1=\0UT\}

[^3]:    \apSIGN: 5-6, 9-13, 15-16, 20-21, 26, 30, 33 \apEVALa: 5-6, 9

[^4]:    \apPLUSa: 5, 13 \apPLUSxA: 12-14 \apPLUSxB: 12-14

[^5]:    \apPLUSb: 12-13 \apPLUSc: 13-14 \apPLUSe: 14

[^6]:    \apPLUSw：14－15 \apPLUSy：13， 15 \apPLUSz： 15 \apPLUSxE：12－13， 15 \apMULa：5，16， 25

[^7]:    \apDIVa: 5, 21, 26, 30

[^8]:    \apDIVr: 23-24 \apDIVt: 24 \apDIVu: 24-25

[^9]:    \apDIVv: 20-21, 25 \apDIVw: 25 \apPOWa: 5, 26-27

