
apnum.tex

Arbitrary Precision Numbers

version 1.1 Jan 2015

Petr Oľsák

ftp://math.feld.cvut.cz/olsak/makra/

Table Of Contents

1 User’s Documentation . 2
1.1 Evaluation of Expressions . 2
\evaldef . . . 2, \apTOT . . . 2, \apFRAC . . . 2, \ABS . . . 3, \iDIV . . . 3, \iMOD . . . 3,
\iROUND . . . 3, \iFRAC . . .3, \FAC . . . 3

1.2 Basic Functions . 3
\PLUS . . . 3, \MINUS . . . 3, \MUL . . . 3, \DIV . . . 3, \POW . . . 3, \OUT . . . 3, \XOUT . . . 3,
\SIGN . . . 4, \ROUND . . . 4

1.3 Scientific Notation of Numbers . 4
\apE . . . 4, \addE . . . 4, \ROLL . . . 4, \NORM . . . 4

1.4 Experiments . 5
2 The Implementation . 5

\apnumversion . . . 5
2.1 Public Macros . 5
\apSIGN . . . 6

2.2 Evaluation of the Expression . 6
\apEVALa . . . 6, \apEVALb . . . 7, \apEVALc . . . 7, \apEVALd . . . 7, \apEVALe . . . 7,
\apEVALf . . . 7, \apEVALg . . . 7, \apEVALh . . . 7, \apEVALk . . . 7, \apEVALm . . . 7,
\apEVALn . . . 7, \apEVALo . . . 8, \apEVALp . . . 8, \apEPLUS . . . 8, \apEMINUS . . . 8,
\apEMUL . . . 8, \apEDIV . . . 8, \apEPOW . . . 8, \apEVALstack . . . 8, \apEVALpush . . . 8,
\apEVALdo . . . 9, \apEVALerror . . . 9, \apTESTdigit . . . 9

2.3 Preparation of the Parameter . 9
\apPPa . . . 9, \apPPb . . . 9, \apPPc . . . 9, \apPPd . . . 10, \apPPe . . . 10, \apPPf . . . 10,
\apPPg . . . 10, \apPPh . . . 10, \apPPi . . . 10, \apPPj . . . 10, \apPPk . . . 10, \apPPl . . . 10,
\apPPm . . . 10, \apPPn . . . 10, \apPPab . . . 11, \apPPs . . . 11, \apPPt . . . 11, \apPPu . . . 11,
\apEVALone . . . 11, \apNOminus . . . 11, \apEVALtwo . . . 11

2.4 Addition and Subtraction . 11
\apPLUSa . . . 12, \apPLUSxA . . . 12, \apPLUSxB . . . 12, \apPLUSb . . . 13, \apPLUSc . . . 13,
\apPLUSe . . . 13, \apPLUSh . . . 14, \apPLUSg . . . 14, \apPLUSd . . . 14, \apPLUSf . . . 14,
\apPLUSm . . . 14, \apPLUSp . . . 14, \apPLUSw . . . 15, \apPLUSy . . . 15, \apPLUSz . . . 15,
\apPLUSxE . . . 15

2.5 Multiplication . 15
\apMULa . . . 15, \apMULb . . . 17, \apMULc . . . 17, \apMULd . . . 17, \apMULe . . . 17,
\apMULf . . . 17, \apMULg . . . 18, \apMULh . . . 18, \apMULi . . . 18, \apMULj . . . 18,
\apMULo . . . 18, \apMULt . . . 18

2.6 Division . 18
\apDIVa . . . 20, \apDIVcomp . . . 21, \apDIVcompA . . . 21, \apDIVcompB . . . 21, \apDIVg . . . 22,
\apDIVh . . . 23, \apDIVi . . . 23, \nexti . . . 23, \apDIVj . . . 23, \apDIVp . . . 23,
\apDIVxA . . . 23, \apDIVxB . . . 23, \apDIVq . . . 23, \apDIVr . . . 24, \apDIVt . . . 24,
\apDIVu . . . 24, \apDIVv . . . 25, \apDIVw . . . 25

2.7 Power to the Integer . 25
\apPOWa . . . 25, \apPOWb . . . 26, \apPOWd . . . 26, \apPOWe . . . 27, \apPOWg . . . 27,
\apPOWh . . . 27, \apPOWn . . . 27, \apPOWna . . . 27, \apPOWnn . . . 27, \apPOWt . . . 27,
\apPOWu . . . 27, \apPOWv . . . 27

2.8 ROLL, ROUND and NORM Macros . 27
\apROLLa . . . 27, \apROLLc . . . 28, \apROLLd . . . 28, \apROLLe . . . 28, \apROLLf . . . 28,
\apROLLg . . . 28, \apROLLh . . . 28, \apROLLi . . . 28, \apROLLj . . . 28, \apROLLk . . . 29,

1

ftp://math.feld.cvut.cz/olsak/makra/

1 User’s Documentation Arbitrary Precision Numbers

\apROLLn . . . 29, \apROLLo . . . 29, \apROUNDa . . . 29, \apROUNDb . . . 29, \apROUNDc . . . 29,
\apROUNDd . . . 29, \apROUNDe . . . 29, \apNORMa . . . 30, \apNORMb . . . 30, \apNORMc . . . 30,
\apNORMd . . . 30

2.9 Function-like Macros . 30
\apABSa . . . 30, \apiDIVa . . .30, \apiMODa . . . 30, \apiROUNDa . . . 30, \apiFRACa . . . 30,
\apFACa . . . 30
2.10 Auxiliary Macros . 30
\apREV . . . 30, \apREVa . . . 30, \apDIG . . . 30, \apDIGa . . . 30, \apDIGb . . . 31,
\apDIGc . . . 31, \apDIGd . . . 31, \apDIGe . . . 31, \apDIGf . . . 31, \apIVread . . . 31,
\apIVreadA . . . 31, \apNL . . . 31, \apIVreadX . . . 31, \apIVwrite . . .31, \apIVtrans . . . 32,
\apIVbase . . . 32, \apIVmod . . . 32, \apIVdot . . . 32, \apIVdotA . . . 32, \apNUMdigits . . . 32,
\apNUMdigitsA . . . 32, \apADDzeros . . . 32, \apREMzerosR . . . 32, \apREMzerosRa . . . 32,
\apREMzerosRb . . . 32, \apREMdotR . . . 32, \apREMdotRa . . . 32, \apOUTx . . . 33, \apOUTn . . . 33,
\apOUTl . . . 33, \apOUTs . . . 33, \apOUTtmpb . . . 33
2.11 Conclusion . 33

3 Index . 33

1 User’s Documentation
This macro file apnum.tex implements addition, subtraction, multiplication, division and power

to an integer of numbers with arbitrary number of decimal digits. The numbers are in the form:

<sign><digits>.<digits>

where optional 〈sign〉 is the sequence of + and/or -. The nonzero number is treated as negative if and
only if there is odd number of - signs. The first part or second part of 〈digits〉 (but not both) can be
empty. The decimal point is optional if second part of 〈digits〉 is empty.

There can be unlimited number of digits in the operands. Only TEX main memory or your patience
during calculation with very large numbers are your limits. Note, that this implementation includes many
optimizations and it is above 100 times faster (on large numbers) than the implementation of the similar
task in the package fltpoint.sty. And the fp.sty doesn’t implements arbitrary number of digits. The
extensive technical documentation can serve as an inspiration how to do TEX macro programming.

1.1 Evaluation of Expressions
After \input apnum in your document you can use the macro \evaldef 〈sequence〉{〈expression〉}.

It gives the possibility for comfortable calculation. The 〈expression〉 can include numbers (in the form
described above) combined by +, -, *, / and ^ operators and by possible brackets () in an usual way.
The result is stored to the 〈sequence〉 as a literal macro. Examples:

\evaldef\A {2+4*(3+7)}
% ... the macro \A includes 42

\evaldef\B {\the\pageno * \A}
% ... the macro \B includes 84

\evaldef\C {123456789000123456789 * -123456789123456789123456789}
% ... \C includes -15241578765447341344197531849955953099750190521

\evaldef\D {1.23456789 + 12345678.9 - \A}
% ... the macro \D includes 12345596.13456789

\evaldef\X {1/3}
% ... the macro \X includes .3333333333333333333

The limit of the number of digits of the division result can be set by \apTOT and \apFRAC registers. First
one declares maximum calculated digits and second one declares maximum of digits after decimal point.
The result is limited by both those registers. If the \apTOT is negative, then its absolute value is treated
as a “soft limit”: all digits before decimal point are calculated even if this limit is exceeded. The digits
after decimal point are not calculated when this limit is reached. The special value \apTOT=0 means
that the calculation is limited only by \apFRAC. Default values are \apTOT=-30 \apFRAC=20.

\evaldef: 3–6, 8–9, 11 \apTOT: 2–3, 6, 21, 30 \apFRAC: 2–3, 6, 21, 30

2

1 User’s Documentation Arbitrary Precision Numbers

The operator ^ means the powering, i.e 2^8 is 256. The exponent have to be an integer (no
decimal point is allowed) and a relatively small integer is assumed.

The scanner of the \evaldef macro reads something like “operand binary-operator operand
binary-operator etc.” without expansion. The spaces are not significant. The operands are:

• numbers (in the format 〈sign〉〈digits〉.〈digits〉) or
• numbers in scientific notation (see the section 1.3) or
• sequences 〈sign〉\the〈token〉 or 〈sign〉\number〈token〉 or
• any other single 〈token〉 optionally preceded by 〈sign〉 and optionally followed by a sequence of

parameters enclosed in braces, for example \A or \B{〈text〉} or -\C{〈textA〉}{〈textB〉}.

It means that you can use numbers or macros without parameter or macros with one or more parameters
enclosed in braces as operands.

The apnum.tex macro file provides the following “function-like” macros which can be used as
an operand in the 〈expression〉: \ABS {〈value〉} for an absolute value, \iDIV {〈dividend〉}{〈divisor〉}
for an integer division, \iMOD {〈dividend〉}{〈divisor〉} for an integer remainder, \iROUND {〈value〉} for
rounding the number to the integer, \iFRAC {〈value〉} for fraction part of the \iROUND, \FAC {〈value〉}
for a factorial. The arguments of these functions can be a nested 〈expressions〉 with the syntax like in
the \evaldef macro. Example:

\def\A{20}
\evaldef\B{ 30*\ABS{ 100 - 1.12*\the\widowpenalty } / (4+\A) }

Note that the arguments of the “function-like” macros are enclosed by normal TEX braces {} but the
round brackets () are used for re-arranging of the common priority of the +, -, *, / and ^ operators.

The macro used as an operand in the 〈expression〉 can be a “literal-macro” directly expandable
to a number (like \A above) or it is a “function-like” macro with the following properties:

• It is protected by \relax as its first token after expansion.
• It calculates the result and saves it into the \OUT macro.

1.2 Basic Functions
The apnum.tex macro file provides the \PLUS, \MINUS, \MUL, \DIV and \POW macros (with two

parameters). They are internally used for evaluation of the 〈expression〉 mentioned above. The parame-
ters of these macros can be numbers or another \PLUS, \MINUS, \MUL, \DIV or \POW macro call or another
“literal macro” with the number or “function-like” macro as described above. The result of calculation
is stored in the macro \OUT. Examples:

\PLUS{123456789}{-123456789123456789}
% ... \OUT is -123456789000000000

\PLUS{2}{\MUL{4}{\PLUS{3}{7}}}
% ... \OUT is 42

\DIV{1}{3}
% ... \OUT is .33333333333333333333

The number of digits calculated by \DIV macro is limited by the \apTOT and \apFRAC registers
as described above. There is another result of \DIV calculation stored in the \XOUT macro. It is the
remainder of the division. Example:

\apTOT=0 \apFRAC=0 \DIV{12345678912345}{2} \ifnum\XOUT=0 even \else odd\fi

You cannot use \ifodd primitive here because the number is too big.
The macro \POW{〈base〉}{〈exponent〉} calculates the power to the integer exponent. A slight

optimization is implemented here so the usage of \POW is faster than repeated multiplication. The
decimal non-integer exponents are not allowed because the implementation of exp, ln, etc. functions
would be a future work.

\ABS: 6, 30 \iDIV: 6, 30 \iMOD: 6 \iROUND: 3, 6 \iFRAC: 6 \FAC: 6 \PLUS: 3–6, 8–9, 11
\MINUS: 3–5, 8–9 \MUL: 3–9, 11, 23, 30, 32 \DIV: 3–5, 8–9, 11, 32 \POW: 3–5, 8–9, 11, 32
\OUT: 3–4, 6, 9–11, 13–18, 20–21, 23–27, 30, 32–33 \XOUT: 4, 11, 20–25, 29–30

3

1 User’s Documentation Arbitrary Precision Numbers

The \SIGN is the TEX register with another output of the calculation of \evaldef, \PLUS, \MINUS,
\MUL and \DIV macros. It is equal to 1 if the result is positive, it is equal to −1, if the result is negative
and it is equal to 0, if the result is 0. You can implement the conditionals of the type

\TEST {123456789123456789} > {123456789123456788} \iftrue OK \else KO \fi

by the following definition:

\def\TEST#1#2#3#4{\MINUS{#1}{#3}\ifnum\SIGN #2 0 }

Note that the arguments of \PLUS, \MINUS, \MUL, \DIV and \POW macros accept their arguments
as one single operand, no 〈expressions〉 (like in \evaldef) are allowed. There is no sense to combine the
basic functions \PLUS, \MINUS etc. with binary operators +, -, *, / and ^.

The \ROUND 〈sequence〉{〈num〉} rounds the number, which is included in the macro 〈sequence〉
and redefines 〈sequence〉 as rounded number. The digits after decimal point at the position greater than
〈num〉 are ignored in the rounded number. The ignored part is saved to the \XOUT macro. Examples:

\def\A{12.3456}\ROUND\A{1} % \A is "12.3", \XOUT is "456"
\def\A{12.3456}\ROUND\A{9} % \A is "12.3456", \XOUT is empty
\def\A{12.3456}\ROUND\A{0} % \A is "12", \XOUT is "3456"
\def\A{12.0001}\ROUND\A{2} % \A is "12", \XOUT is "01"
\def\A{.000001}\ROUND\A{2} % \A is "0", \XOUT is "0001"
\def\A{-12.3456}\ROUND\A{2} % \A is "-12.34", \XOUT is "56"
\def\A{12.3456}\ROUND\A{-1} % \A is "10", \XOUT is "23456"
\def\A{12.3456}\ROUND\A{-4} % \A is "0", \XOUT is "00123456"

1.3 Scientific Notation of Numbers
The macros \evaldef \PLUS, \MINUS, \MUL, \DIV and \POW are able to operate with the numbers

written in the notation:

<sign><digits>.<digits>E<sign><digits>

For example 1.234E9 means 1.234 · 109, i.e. 1234000000 or the text 1.234E-3 means .001234. The
decimal exponent (after the E letter) have to be in the range ± 2 147 483 647 because we store this value
in normal TEX register.

The macros \evaldef \PLUS, \MINUS, \MUL, \DIV and \POW operate by “normal way” if there are
no arguments with E syntax. But if an argument is expressed in scientific form, the macros provide the
calculation with mantissa and exponent separately and the mantissa of the result is found in the \OUT
macro (or in the macro defined by \evaldef) and the exponent is in stored the \apE register. Note,
that \OUT is a macro but \apE is a register. You can define the macro which shows the result of the
calculation, for example:

\def\showE#1{\message{#1\ifnum\apE=0 \else*10^\the\apE\fi}}

No macros mentioned above store the result back in the scientific notation, only mantissa is stored.
You need to use \apE register to print the result similar as in the example above. Or you can use the
macro \addE 〈sequence〉 macro which redefines the 〈sequence〉 macro in order to add the E〈exponent〉 to
this macro. The 〈exponent〉 is read from the current value of the \apE register.

There are another usable functions for operations with scientific numbers.

• \ROLL 〈sequence〉{〈shift〉} . . . the 〈sequence〉 is assumed to be a macro with the number. The
decimal point of this number is shifted right by 〈shift〉 parameter, i.e. the result is multiplied by
10^〈shift〉. The 〈sequence〉 is redefined by this result. For example \ROLL\A{\apE} converts the
number of the form 〈mantissa〉*10^\apE to the normal number.
• \NORM 〈sequence〉{〈num〉} . . . the 〈sequence〉 is supposed to be a macro with 〈mantissa〉 and it

will be redefined. The number 〈mantissa〉*10^\apE (with current value of the \apE register) is
assumed. The new mantissa saved in the 〈sequence〉 is the “normalized mantissa” of the same num-
ber. The \apE register is corrected so the “normalized mantissa”*10^\apE gives the same number.

\SIGN: 6 \ROUND: 5–6, 11, 27 \apE: 4–13, 15–16, 20–21, 25–26, 30, 33 \addE: 5–6
\ROLL: 4–6, 11, 27 \NORM: 5–6, 11, 27

4

2 The Implementation Arbitrary Precision Numbers

The 〈num〉 parameter is the number of non-zero digits before the decimal point in the outputted
mantissa. If the parameter 〈num〉 starts by dot following by integer (for example {.2}), then the
outputted mantissa has 〈num〉 digits after decimal point. For example \def\A{1.234}\apE=0
\NORM\A{.0} defines \A as 1234 and \apE=-3. The macros \PLUS, \MUL etc. don’t use this macro,
they operate with the mantissa without correcting the position of decimal point and adequate
correcting of the exponent.

The following example saves the result of the \evaldef in scientific notation with the mantissa
with maximal three digits after decimal point and one digit before.

\evaldef\X{...}\NORM\X{1}\ROUND\X{3}\addE\X

The macros \ROUND, \addE, \ROLL and \NORM redefine the macro 〈sequence〉 given as their first
argument. The macro 〈sequence〉must be directly the number in the format 〈simple sign〉〈digits〉.〈digits〉
where 〈simple sign〉 is one minus or none and the rest of number has the format described in the first
paragraph of this documentation. The scientific notation isn’t allowed here. This format of numbers is
in accordance with the output of the macros \evaldef, \PLUS, \MINUS etc.

1.4 Experiments
The following table shows the time needed for calculation of randomly selected examples. The

comparison with the package fltpoint.sty is shown. The symbol∞ means that it is out of my patience.

input # of digits in the result time spent by apnum.tex time spent by fltpoint.sty

200! 375 0.33 sec 173 sec
1000! 2568 29 sec ∞
517

2
203 0.1 sec 81 sec

517
3

3435 2.1 sec ∞
1/17 1000 0.13 sec 113 sec
1/17 100000 142 sec ∞

2 The Implementation
First, the greeting. The \apnumversion includes the version of this software.

apnum.tex
7: \def\apnumversion{1.1 <Jan. 2015>}

8: \message{The Arbitrary Precision Numbers, \apnumversion}

We declare auxiliary counters and one boolean variable.
apnum.tex

12: \newcount\apnumA \newcount\apnumB \newcount\apnumC \newcount\apnumD

13: \newcount\apnumE \newcount\apnumF \newcount\apnumG \newcount\apnumH

14: \newcount\apnumO \newcount\apnumL

15: \newcount\apnumX \newcount\apnumY \newcount\apnumZ

16: \newcount\apSIGNa \newcount\apSIGNb \newcount\apEa \newcount\apEb

17: \newif\ifapX

Somebody sometimes sets the @ character to the special catcode. But we need to be sure that
there is normal catcode of the @ character.

apnum.tex
19: \apnumZ=\catcode‘\@ \catcode‘\@=12

2.1 Public Macros
The definitions of the public macros follow. They are based on internal macros described below.

apnum.tex
23: \def\evaldef{\relax \apEVALa}

24: \def\PLUS{\relax \apPPab\apPLUSa}

25: \def\MINUS#1#2{\relax \apPPab\apPLUSa{#1}{-#2}}

26: \def\MUL{\relax \apPPab\apMULa}

27: \def\DIV{\relax \apPPab\apDIVa}

28: \def\POW{\relax \apPPab\apPOWa}

\apnumversion: 5

5

2 The Implementation Arbitrary Precision Numbers

29: \def\ABS{\relax \apEVALone\apABSa}

30: \def\iDIV{\relax \apEVALtwo\apiDIVa}

31: \def\iMOD{\relax \apEVALtwo\apiMODa}

32: \def\iROUND#1{\relax \evaldef\OUT{#1}\apiROUNDa}

33: \def\iFRAC{\relax \apEVALone\apiFRACa}

34: \def\FAC{\relax \apEVALone\apFACa}

35: \def\ROUND{\apPPs\apROUNDa}

36: \def\ROLL{\apPPs\apROLLa}

37: \def\NORM{\apPPs\apNORMa}

38: \def\addE#1{\edef#1{#1\ifnum\apE=0 \else E\ifnum\apE>0+\fi\the\apE\fi}}

The \apSIGN is an internal representation of the public \SIGN register. Another public registers
\apE, \apTOT and \apFRAC are used directly.

apnum.tex
40: \newcount\apSIGN \let\SIGN=\apSIGN

41: \newcount\apE

42: \newcount\apTOT \apTOT=-30

43: \newcount\apFRAC \apFRAC=20

2.2 Evaluation of the Expression
Suppose the following expression \A+\B*(\C+\D)+\E as an example.
The main task of the \evaldef\x{\A+\B*(\C+\D)+\E} is to prepare the macro \tmpb with

the content (in this example) \PLUS{\PLUS{\A}{\MUL{\B}{\PLUS{\C}{\D}}}}{\E} and to execute the
\tmpb macro.

The expression scanner adds the \end at the end of the expression and reads from left to right
the couples “operand, operator”. For our example: \A+, \B*, \C+, \D+ and \E\end. The \end operator
has the priority 0, plus, minus have priority 1, * and / have priority 2 and ^ has priority 3. The brackets
are ignored, but each occurrence of the opening bracket (increases priority by 4 and each occurrence of
closing bracket) decreases priority by 4. The scanner puts each couple including its current priority to
the stack and does a test at the top of the stack. The top of the stack is executed if the priority of the
top operator is less or equal the previous operator priority. For our example the stack is only pushed
without execution until \D+ occurs. Our example in the stack looks like:

\D + 1 1<=5 exec:
\C + 5 {\C+\D} + 1 1<=2 exec:
\B * 2 \B * 2 {\B*{\C+\D}} + 1 1<=1 exec:
\A + 1 \A + 1 \A + 1 {\A+{\B*{\C+\D}}} + 1

bottom 0 bottom 0 bottom 0 bottom 0

Now, the priority on the top is greater, then scanner pushes next couple and does the test on the top of
the stack again.

\E \end 0 0<=1 exec:
{\A+{\B*{\C+\D}}} + 1 {{\A+{\B*{\C+\D}}}+\E} \end 0 0<=0 exec:

bottom 0 bottom 0 RESULT

Let pt, pp are the priority on the top and the previous priority in the stack. Let vt, vp are operands on
the top and in the previous line in the stack, and the same notation is used for operators ot and op. If
pt ≤ pp then: pop the stack twice, create composed operand vn = vp op vt and push vn, ot, pt. Else push
new couple “operand, operator” from the expression scanner. In both cases try to execute the top of the
stack again. If the bottom of the stack is reached then the last operand is the result.

The macro \apEVALa 〈sequence〉{〈expression〉} runs the evaluation of the expression in the group.
The base priority is initialized by \apnumA=0, then \apEVALb〈expression〉\end scans the expression and
saves the result in the form \PLUS{\A}{\MUL{\B}{\C}} (etc.) into the \tmpb macro. This macro is
expanded after group and the content in \tmpb is executed. The new result of such execution is stored
to the \OUT macro, which is finally set to the desired 〈sequence〉.

apnum.tex
47: \def\apEVALa#1#2{{\apnumA=0 \apnumE=1 \apEVALb#2\end\expandafter}\tmpb \let#1=\OUT}

\apSIGN: 5–6, 9–13, 15–16, 20–21, 26, 30, 33 \apEVALa: 5–6, 9

6

2 The Implementation Arbitrary Precision Numbers

The scanner is in one of the two states: reading operand or reading operator. The first state is
initialized by \apEVALb which follows to the \apEVALc. The \apEVALc reads one token and switches by
its value. If the value is a + or - sign, it is assumed to be the part of the operand prefix. Plus sign is
ignored (and \apEVALc is run again), minus signs are accumulated into \tmpa.

The auxiliary macro \apEVALd runs the following tokens to the \fi, but first it closes the condi-
tional and skips the rest of the macro \apEVALc.

apnum.tex
48: \def\apEVALb{\def\tmpa{}\apEVALc}

49: \def\apEVALc#1{%

50: \ifx+#1\apEVALd \apEVALc \fi

51: \ifx-#1\edef\tmpa{\tmpa-}\apEVALd\apEVALc \fi

52: \ifx(#1\apEVALd \apEVALe \fi

53: \ifx\the#1\apEVALd \apEVALf\the\fi

54: \ifx\number#1\apEVALd \apEVALf\number\fi

55: \apTESTdigit#1\iftrue

56: \ifx E#1\let\tmpb=\tmpa \expandafter\apEVALd\expandafter\apEVALk

57: \else \edef\tmpb{\tmpa#1}\expandafter\apEVALd\expandafter\apEVALn\fi\fi

58: \edef\tmpb{\tmpa\noexpand#1}\futurelet\apNext\apEVALg

59: }

60: \def\apEVALd#1\fi#2\apNext\apEVALg{\fi#1}

If the next token is opening bracket, then the global priority is increased by 4 using the macro
\apEVALe. Moreover, if the sign before bracket generates the negative result, then the new multiplication
(by −1) is added using \apEVALp to the operand stack.

apnum.tex
61: \def\apEVALe{%

62: \ifx\tmpa\empty \else \ifnum\tmpa1<0 \def\tmpb{-1}\apEVALp \MUL 4\fi\fi

63: \advance\apnumA by4

64: \apEVALb

65: }

If the next token is \the or \number primitives (see lines 53 and 54), then one following token is
assumed as TEX register and these two tokens are interpreted as an operand. This is done by \apEVALf.
The operand is packed to the \tmpb macro.

apnum.tex
66: \def\apEVALf#1#2{\expandafter\def\expandafter\tmpb\expandafter{\tmpa#1#2}\apEVALo}

If the next token is not a number (the \apTESTdigit#1\iftrue results like \iffalse at line 55)
then we save the sign plus this token to the \tmpb at line 58 and we do check of the following token by
\futurelet. The \apEVALg is processed after that. The test is performed here if the following token
is open brace (a macro with parameter). If this is true then this parameter is appended to \tmpb by
\apEVALh and the test about the existence of second parameter in braces is repeated by next \futurelet.
The result of this loop is stored into \tmpb macro which includes 〈sign〉 followed by 〈token〉 followed by
all parameters in braces. This is considered as an operand.

apnum.tex
67: \def\apEVALg{\ifx\apNext \bgroup \expandafter\apEVALh \else \expandafter\apEVALo \fi}

68: \def\apEVALh#1{\expandafter\def\expandafter\tmpb\expandafter{\tmpb{#1}}\futurelet\apNext\apEVALg}

If the next token after the sign is a digit or a dot (tested in \apEVALc by \apTESTdigit at
line 55), then there are two cases. The number includes the E symbol as a first symbol (this is allowed
in scientific notation, mantissa is assumed to equal to one). The \apEVALk is executed in such case. Else
the \apEVALn starts the reading the number.

The first case with E letter in the number is solved by macros \apEVALk and \apEVALm. The
number after E is read by \apE= and this number is appended to the \tmpb and the expression scanner
skips to \apEVALo.

apnum.tex
69: \def\apEVALk{\afterassignment\apEVALm\apE=}

70: \def\apEVALm{\edef\tmpb{\tmpb E\the\apE}\apEVALo}

The second case (there is normal number) is processed by the macro \apEVALn. This macro reads
digits (token per token) and saves them to the \tmpb. If the next token isn’t digit nor dot then the

\apEVALb: 6–8 \apEVALc: 7 \apEVALd: 7 \apEVALe: 7 \apEVALf: 7 \apEVALg: 7
\apEVALh: 7 \apEVALk: 7 \apEVALm: 7–8 \apEVALn: 7–8

7

2 The Implementation Arbitrary Precision Numbers

second state of the scanner (reading an operator) is invoked by running \apEVALo. If the E is found then
the exponent is read to \apE and it is processed by \apEVALm.

apnum.tex
71: \def\apEVALn#1{\apTESTdigit#1%

72: \iftrue \ifx E#1\afterassignment\apEVALm\expandafter\expandafter\expandafter\apE

73: \else\edef\tmpb{\tmpb#1}\expandafter\expandafter\expandafter\apEVALn\fi

74: \else \expandafter\apEVALo\expandafter#1\fi

75: }

The reading an operator is done by the \apEVALo macro. This is more simple because the operator
is only one token. Depending on this token the macro \apEVALp 〈operator〉〈priority〉 pushes to the stack
(by the macro \apEVALpush) the value from \tmpb, the 〈operator〉 and the priority increased by \apnumA
(level of brackets).

If there is a problem (level of brackets less than zero, level of brackets not equal to zero at the
end of the expression, unknown operator) we print an error using \apEVALerror macro.

The \apNext is set to \apEVALb, i.e. scanner returns back to the state of reading the operand.
But exceptions exist: if the) is found then priority is decreased and the macro \apEVALo is executed
again. If the end of the 〈expression〉 is found then the loop is ended by \let\apNext=\relax.

apnum.tex
76: \def\apEVALo#1{\let\apNext=\apEVALb

77: \ifx+#1\apEVALp \apEPLUS 1\fi

78: \ifx-#1\apEVALp \apEMINUS 1\fi

79: \ifx*#1\apEVALp \apEMUL 2\fi

80: \ifx/#1\apEVALp \apEDIV 2\fi

81: \ifx^#1\apEVALp \apEPOW 3\fi

82: \ifx)#1\advance\apnumA by-4 \let\apNext=\apEVALo \let\tmpa=\relax

83: \ifnum\apnumA<0 \apEVALerror{many brackets ")"}\fi

84: \fi

85: \ifx\end#1%

86: \ifnum\apnumA>0 \apEVALerror{missing bracket ")"}%

87: \else \apEVALp\END 0\fi

88: \let\apNext=\relax

89: \fi

90: \ifx\tmpa\relax \else \apEVALerror{unknown operator "\string#1"}\fi

91: \apnumE=0 \apNext

92: }

93: \def\apEVALp#1#2{%

94: \apnumB=#2 \advance\apnumB by\apnumA

95: \toks0=\expandafter{\expandafter{\tmpb}{#1}}%

96: \expandafter\apEVALpush\the\toks0\expandafter{\the\apnumB}% {value}{op}{priority}

97: \let\tmpa=\relax

98: }

The public values of \PLUS, \MINUS etc. macros are saved to the \apEPLUS, \apEMINUS, \apEMUL,
\apEDIV, \apEPOW and these sequences are used in \evaldef. The reason is that the public macros can
be changed later by the user but we need be sure of usage the right macros.

apnum.tex
99: \let\apEPLUS=\PLUS \let\apEMINUS=\MINUS \let\apEMUL=\MUL \let\apEDIV=\DIV \let\apEPOW=\POW

The \apEVALstack macro includes the stack, three items {〈operand〉}{〈operator〉}{〈priority〉}
per level. Left part of the macro contents is the top of the stack. The stack is initialized with empty
operand and operator and with priority zero. The dot here is only the “total bottom” of the stack.

apnum.tex
100: \def\apEVALstack{{}{}{0}.}

The macro \apEVALpush {〈operand〉}{〈operator〉}{〈priority〉} pushes its parameters to the stack
and runs \apEVALdo〈whole stack〉@ to do the desired work on the top of the stack.

apnum.tex
101: \def\apEVALpush#1#2#3{% value, operator, priority

102: \toks0={{#1}{#2}{#3}}%

103: \expandafter\def\expandafter\apEVALstack\expandafter{\the\toks0\apEVALstack}%

104: \expandafter\apEVALdo\apEVALstack@%

105: }

\apEVALo: 7–8 \apEVALp: 7–8 \apEPLUS: 8–9 \apEMINUS: 8 \apEMUL: 8 \apEDIV: 8
\apEPOW: 8 \apEVALstack: 8–9 \apEVALpush: 8–9

8

2 The Implementation Arbitrary Precision Numbers

Finally, the macro \apEVALdo {〈vt〉}{〈ot〉}{〈pt〉}{〈vp〉}{〈op〉}{〈pp〉}〈rest of the stack〉@ per-
forms the execution described at the beginning of this section. The new operand 〈vn〉 is created as
〈op〉{vp}{vt}, this means \apEPLUS{〈vp〉}{〈vt〉} for example. The operand is not executed now, only
the result is composed by the normal TEX notation. If the bottom of the stack is reached then the result
is saved to the \tmpb macro. This macro is executed after group by the \apEVALa macro.

apnum.tex
106: \def\apEVALdo#1#2#3#4#5#6#7@{%

107: \apnumB=#3 \ifx#2\POW \advance\apnumB by1 \fi

108: \ifnum\apnumB>#6\else

109: \ifnum#6=0 \def\tmpb{#1}%\toks0={#1}\message{RESULT: \the\toks0}

110: \ifnum\apnumE=1 \def\tmpb{\apPPn{#1}}\fi

111: \else \def\apEVALstack{#7}\apEVALpush{#5{#4}{#1}}{#2}{#3}%

112: \fi\fi

113: }

The macro \apEVALerror 〈string〉 prints an error message. We decide to be better to print only
\message, no \errmessage. The \tmpb is prepared to create \OUT as ?? and the \apNext macro is set
in order to skip the rest of the scanned 〈expression〉.

apnum.tex
114: \def\apEVALerror#1{\message{\noexpand\evaldef ERROR: #1.}%

115: \def\tmpb{\def\OUT{??}}\def\apNext##1\end{}%

116: }

The auxiliary macro \apTESTdigit 〈token〉\iftrue tests, if the given token is digit, dot or E
letter.

apnum.tex
117: \def\apTESTdigit#1#2{%

118: \ifx E#1\apXtrue \else

119: \ifcat.\noexpand#1%

120: \ifx.#1\apXtrue \else

121: \ifnum‘#1<‘0 \apXfalse\else

122: \ifnum‘#1>‘9 \apXfalse\else \apXtrue\fi

123: \fi\fi

124: \else \apXfalse

125: \fi\fi

126: \ifapX

127: }

2.3 Preparation of the Parameter
All operands of \PLUS, \MINUS, \MUL, \DIV and \POW macros are preprocessed by \apPPa macro.

This macro solves (roughly speaking) the following tasks:

• It partially expands (by \expandafter) the parameter while 〈sign〉 is read.
• The 〈sign〉 is removed from parameter and the appropriate \apSIGN value is set.
• If the next token after 〈sign〉 is \relax then the rest of the parameter is executed in the group

and the results \OUT, \apSIGN and \apE are used.
• Else the number is read and saved to the parameter.
• If the read number has the scientific notation 〈mantissa〉E〈exponent〉 then only 〈mantissa〉 is saved

to the parameter and \apE is set as 〈exponent〉. Else \apE is zero.

The macro \apPPa 〈sequence〉〈parameter〉 calls \apPPb 〈parameter〉@〈sequence〉 and starts reading
the 〈parameter〉. The result will be stored to the 〈sequence〉.

Each token from 〈sign〉 is processed by three \expandafters (because there could be
\csname...\endcsname). It means that the parameter is partially expanded when 〈sign〉 is read.
The \apPPb macro sets the initial value of \tmpc and \apSIGN and executes the macro \apPPc
〈parameter〉@〈sequence〉.

apnum.tex
131: \def\apPPa#1#2{\expandafter\apPPb#2@#1}

132: \def\apPPb{\def\tmpc{}\apSIGN=1 \apE=0 \apXfalse \expandafter\expandafter\expandafter\apPPc}

133: \def\apPPc#1{%

134: \ifx+#1\apPPd \fi

\apEVALdo: 8–9 \apEVALerror: 8–9 \apTESTdigit: 7–9 \apPPa: 9–10 \apPPb: 9–11
\apPPc: 9–10

9

2 The Implementation Arbitrary Precision Numbers

135: \ifx-#1\apSIGN=-\apSIGN \apPPd \fi

136: \ifx\relax#1\apPPe \fi

137: \apPPg#1%

138: }

139: \def\apPPd#1\apPPg#2{\fi\expandafter\expandafter\expandafter\apPPc}

The \apPPc reads one token from 〈sign〉 and it is called recursively while there are + or - signs.
If the read token is + or - then the \apPPd closes conditionals and executes \apPPc again.

If \relax is found then the rest of parameter is executed by the \apPPe. The macro ends by
\apPPf 〈result〉@ and this macro reverses the sign if the result is negative and removes the minus sign
from the front of the parameter.

apnum.tex
140: \def\apPPe#1\apPPg#2#3@{\fi\apXtrue{#3% execution of the parameter in the group

141: \edef\tmpc{\apE=\the\apE\relax\noexpand\apPPf\OUT@}\expandafter}\tmpc

142: }

143: \def\apPPf#1{\ifx-#1\apSIGN=-\apSIGN \expandafter\apPPg\else\expandafter\apPPg\expandafter#1\fi}

The \apPPg 〈parameter〉@ macro is called when the 〈sign〉 was processed and removed from the
input stream. The main reason of this macro is to remove trailing zeros from the left and to check,
if there is the zero value written for example in the form 0000.000. When this macro is started then
\tmpc is empty. This is a flag for removing trailing zeros. They are simply ignored before decimal point.
The \apPPg is called again by \apPPh macro which removes the rest of \apPPg macro and closes the
conditional. If the decimal point is found then next zeros are accumulated to the \tmpc. If the end of
the parameter @ is found and we are in the “removing zeros state” then the whole value is assumed to be
zero and this is processed by \apPPi @. If another digit is found (say 2) then there are two situations:
if the \tmpc is non-empty, then the digit is appended to the \tmpc and the \apPPi〈expanded tmp〉 is
processed (say \apPPi .002) followed by the rest of the parameter. Else the digit itself is stored to the
\tmpc and it is returned back to the input stream (say \apPPi 2) followed by the rest of the parameter.

apnum.tex
144: \def\apPPg#1{%

145: \ifx.#1\def\tmpc{.}\apPPh\fi

146: \ifx\tmpc\empty\else\edef\tmpc{\tmpc#1}\fi

147: \ifx0#1\apPPh\fi

148: \ifx\tmpc\empty\edef\tmpc{#1}\fi

149: \ifx@#1\def\tmpc{@}\fi

150: \expandafter\apPPi\tmpc

151: }

152: \def\apPPh#1\apPPi\tmpc{\fi\apPPg}

The macro \apPPi 〈parameter without trailing zeros〉@〈sequence〉 switches to two cases: if the
execution of the parameter was processed then the \OUT doesn’t include E notation and we can simply
define 〈sequence〉 as the 〈parameter〉 by the \apPPj macro. This saves the copying of the (possible) long
result to the input stream again.

If the executing of the parameter was not performed, then we need to test the existence of the E
notation of the number by the \apPPk macro. We need to put the 〈parameter〉 to the input stream and
to use \apPPl to test these cases. We need to remove unwanted E letter by the \apPPm macro.

apnum.tex
153: \def\apPPi{\ifapX \expandafter\apPPj \else \expandafter\apPPk \fi}

154: \def\apPPj#1@#2{\def#2{#1}}

155: \def\apPPk#1@#2{\ifx@#1@\apSIGN=0 \def#2{0}\else \apPPl#1E@#2\fi}

156: \def\apPPl#1E#2@#3{%

157: \ifx@#1@\def#3{1}\else\def#3{#1}\fi

158: \ifx@#2@\else \afterassignment\apPPm \apE=#2\fi

159: }

160: \def\apPPm E{}

The \apPPn 〈param〉 macro does the same as \apPPa\OUT{〈param〉}, but the minus sign is re-
turned back to the \OUT macro if the result is negative.

apnum.tex
161: \def\apPPn#1{\expandafter\apPPb#1@\OUT \edef\OUT{\ifnum\apSIGN<0-\fi\OUT}}

\apPPd: 9–10 \apPPe: 10 \apPPf: 10 \apPPg: 10 \apPPh: 10 \apPPi: 10 \apPPj: 10
\apPPk: 10 \apPPl: 10 \apPPm: 10 \apPPn: 9–10

10

2 The Implementation Arbitrary Precision Numbers

The \apPPab 〈macro〉{〈paramA〉}{〈paramB〉} is used for parameters of all macros \PLUS, \MUL
etc. It prepares the 〈paramA〉 to \tmpa, 〈paramB〉 to \tmpb, the sign and 〈decimal exponent〉 of 〈paramA〉
to the \apSIGNa and \apEa, the same of 〈paramB〉 to the \apSIGNa and \apEa. Finally, it executes the
〈macro〉.

apnum.tex
162: \def\apPPab#1#2#3{%

163: \expandafter\apPPb#2@\tmpa \apSIGNa=\apSIGN \apEa=\apE

164: \expandafter\apPPb#3@\tmpb \apSIGNb=\apSIGN \apEb=\apE

165: #1%

166: }

The \apPPs 〈macro〉〈sequence〉{〈param〉} prepares parameters for \ROLL, \ROUND and \NORM
macros. It saves the 〈param〉 to the \tmpc macro, expands the 〈sequence〉 and runs the macro
\apPPt 〈macro〉〈expanded sequence〉.@〈sequence〉. The macro \apPPt reads first token from the
〈expanded sequence〉 to #2. If #2 is minus sign, then \apnumG=-1. Else \apnumG=1. Finally the
〈macro〉〈expanded sequence〉.@〈sequence〉 is executed (but without the minus sign in the input stream).
If #2 is zero then \apPPu 〈macro〉〈rest〉.@〈sequence〉 is executed. If the 〈rest〉 is empty, (i.e. the
parameter is simply zero) then 〈macro〉 isn’t executed because there in nothing to do with zero number
as a parameter of \ROLL, \ROUND or \NORM macros.

apnum.tex
167: \def\apPPs#1#2#3{\def\tmpc{#3}\expandafter\apPPt\expandafter#1#2.@#2}

168: \def\apPPt#1#2{%

169: \ifx-#2\apnumG=-1 \def\apNext{#1}%

170: \else \ifx0#2\apnumG=0 \def\apNext{\apPPu#1}\else \apnumG=1 \def\apNext{#1#2}\fi\fi

171: \apNext

172: }

173: \def\apPPu#1#2.@#3{\ifx@#2@\apnumG=0 \ifx#1\apROUNDa\def\XOUT{}\fi

174: \else\def\apNext{\apPPt#1#2.@#3}\expandafter\apNext\fi

175: }

The macro \apEVALone 〈macro〉〈parameter〉 prepares one parameter for the function-like 〈macro〉.
This parameter could be an 〈expression〉. The 〈macro〉 is executed after the parameter is evaluated and
saved to the \OUT macro. The sign is removed from the parameter by the \apNOminus macro.

The macro \apEVALtwo 〈macro〉〈paramA〉〈paramB〉 evaluates the 〈paramA〉 and 〈paramB〉. They
could be 〈expressions〉. They are saved to the \tmpa and \tmpb macros, the signs are saved to \apSIGNa
and \apSIGNb, the exponents (if scientific notation were used) are saved to \apEa and \apEb registers.
Finally the the function-like 〈macro〉 is executed.

apnum.tex
176: \def\apEVALone#1#2{\evaldef\OUT{#2}\ifnum\apSIGN<0 \expandafter\apNOminus\OUT@\OUT\fi #1}

177: \def\apEVALtwo#1#2#3{%

178: {\evaldef\OUT{#2}\apOUTtmpb}\tmpb \let\tmpa=\OUT \apSIGNa=\apSIGN \apEa=\apE

179: \ifnum\apSIGNa<0 \expandafter\apNOminus\tmpa@\tmpa\fi

180: {\evaldef\OUT{#3}\apOUTtmpb}\tmpb \let\tmpb=\OUT \apSIGNb=\apSIGN \apEb=\apE

181: \ifnum\apSIGNb<0 \expandafter\apNOminus\tmpb@\tmpb\fi

182: #1%

183: }

184: \def\apNOminus-#1@#2{\def#2{#1}}

2.4 Addition and Subtraction
The significant part of the optimization in \PLUS, \MUL, \DIV and \POW macros is the fact, that

we don’t treat with single decimal digits but with their quartets. This means that we are using the
numeral system with the base 10000 and we calculate four decimal digits in one elementary operation.
The base was chosen 104 because the multiplication of such numbers gives results less than 108 and the
maximal number in the TEX register is about 2 · 109. We’ll use the word “Digit” (with capitalized D)
in this documentation if this means the digit in the numeral system with base 10000, i.e. one Digit is
four digits. Note that for addition we can use the numeral system with the base 108 but we don’t do it,
because the auxiliary macros \apIV* for numeral system of the base 104 are already prepared.

Suppose the following example (the spaces between Digits are here only for more clarity).

\apPPab: 5, 11–12, 15, 25–26, 30 \apPPs: 6, 11, 15, 27, 29 \apPPt: 11 \apPPu: 11
\apEVALone: 6, 11 \apNOminus: 11 \apEVALtwo: 6, 11

11

2 The Implementation Arbitrary Precision Numbers

123 4567 8901 9999 \apnumA=12 \apnumE=3 \apnumD=16
+ 22.423 \apnumB=0 \apnumF=2 \apnumC=12

sum in reversed order and without transmissions:

{4230}{10021}{8901}{4567}{123} \apnumD=-4
sum in normal order including transmissions:
123 4567 8902 0021.423

In the first pass, we put the number with more or equal Digits before decimal point above the
second number. There are three Digits more in the example. The \apnumC register saves this information
(multiplied by 4). The first pass creates the sum in reversed order without transmissions between Digits.
It simply copies the \apnumC/4 Digits from the first number to the result in reversed order. Then it does
the sums of Digits without transmissions. The \apnumD is a relative position of the decimal point to the
edge of the calculated number.

The second pass reads the result of the first pass, calculates transmissions and saves the result in
normal order.

The first Digit of the operands cannot include four digits. The number of digits in the first Digit
is saved in \apnumE (for first operand) and in \apnumF (for second one). The rule is to have the decimal
point between Digits in all circumstances.

The macro \apPLUSa does the following work:

• It gets the operands in \tmpa and \tmpb macros using the \apPPab.
• If the scientific notation is used and the decimal exponents \apEa and \apEb are not equal then

the decimal point of one operand have to be shifted (by the macro \apPLUSxE at line 189).
• The digits before decimal point are calculated for both operands by the \apDIG macro. The first

result is saved to \apnumA and the second result is saved to \apnumB. The \apDIG macro removes
decimal point (if exists) from the parameters (lines 190 and 191).
• The number of digits in the first Digit is calculated by \apIVmod for both operands. This number

is saved to \apnumE and \apnumF. This number is subtracted from \apnumA and \apnumB, so these
registers now includes multiply of four (lines 192 and 193).
• The \apnumC includes the difference of Digits before the decimal point (multiplied by four) of

given operands (line 194).
• If the first operand is negative then the minus sign is inserted to the \apPLUSxA macro else this

macro is empty. The same for the second operand and for the macro \apPLUSxB is done (lines 195
and 196).
• If both operands are positive, then the sign of the result \apSIGN is set to one. If both operands

are negative, then the sign is set to −1. But in both cases mentioned above we will do (internally)
addition, so the macros \apPLUSxA and \apPLUSxB are set to empty. If one operand is negative
and second positive then we will do subtraction. The \apSIGN register is set to zero and it will
set to the right value later (lines 197 to 199).
• The macro \apPLUSb〈first op〉〈first dig〉〈second op〉〈second dig〉〈first Dig〉 does the calculation

of the first pass. The 〈first op〉 has to have more or equal Digits before decimal point than
〈second op〉. This is reason why this macro is called in two variants dependent on the value
\apnumC. The macros \apPLUSxA and \apPLUSxB (with the sign of the operands) are exchanged
(by the \apPLUSg) if the operands are exchanged (lines 200 to 201).
• The \apnumG is set by the macro \apPLUSb to the sign of the first nonzero Digit. It is equal to

zero if there are only zero Digits after first pass. The result is zero in such case and we do nothing
more (line 203).
• The transmission calculation is different for addition and subtraction. If the subtraction is pro-

cessed then the sign of the result is set (using the value \apnumG) and the \apPLUSm for trans-
missions is prepared. Else the \apPLUSp for transmissions is prepared as the \apNext macro
(line 204)
• The result of the first pass is expanded in the input stream and the \apNext (i.e. transmissions

calculation) is activated at line 205.

\apPLUSa: 5, 13 \apPLUSxA: 12–14 \apPLUSxB: 12–14

12

2 The Implementation Arbitrary Precision Numbers

• if the result is in the form .000123, then the decimal point and the trailing zeros have to be
inserted. Else the trailing zeros from the left side of the result have to be removed by \apPLUSy.
This macro adds the sign of the result too (lines 206 to 212)

apnum.tex
188: \def\apPLUSa{%

189: \ifnum\apEa=\apEb \apE=\apEa \else \apPLUSxE \fi

190: \apDIG\tmpa\relax \apnumA=\apnumD % digits before decimal point

191: \apDIG\tmpb\relax \apnumB=\apnumD

192: \apIVmod \apnumA \apnumE \advance\apnumA by-\apnumE % digits in the first Digit

193: \apIVmod \apnumB \apnumF \advance\apnumB by-\apnumF

194: \apnumC=\apnumB \advance\apnumC by-\apnumA % difference between Digits

195: \ifnum\apSIGNa<0 \def\apPLUSxA{-}\else \def\apPLUSxA{}\fi

196: \ifnum\apSIGNb<0 \def\apPLUSxB{-}\else \def\apPLUSxB{}\fi

197: \apSIGN=0 % \apSIGN=0 means that we are doing subtraction

198: \ifx\apPLUSxA\empty \ifx\apPLUSxB\empty \apSIGN=1 \fi\fi

199: \if\apPLUSxA-\relax \if\apPLUSxB-\relax \apSIGN=-1 \def\apPLUSxA{}\def\apPLUSxB{}\fi\fi

200: \ifnum\apnumC>0 \apPLUSg \apPLUSb \tmpb\apnumF \tmpa\apnumE \apnumB % first pass

201: \else \apnumC=-\apnumC \apPLUSb \tmpa\apnumE \tmpb\apnumF \apnumA

202: \fi

203: \ifnum\apnumG=0 \def\OUT{0}\apSIGN=0 \apE=0 \else

204: \ifnum\apSIGN=0 \apSIGN=\apnumG \let\apNext=\apPLUSm \else \let\apNext=\apPLUSp \fi

205: \apnumX=0 \edef\OUT{\expandafter}\expandafter \apNext \OUT@% second pass

206: \ifnum\apnumD<1 % result in the form .000123

207: \apnumZ=-\apnumD

208: \def\tmpa{.}%

209: \ifnum\apnumZ>0 \apADDzeros\tmpa \fi % adding dot and left zeros

210: \edef\OUT{\ifnum\apSIGN<0-\fi\tmpa\OUT}%

211: \else

212: \edef\OUT{\expandafter}\expandafter\apPLUSy \OUT@% removing left zeros

213: \fi\fi

214: }

The macro \apPLUSb 〈first op〉〈first dig〉〈second op〉〈second dig〉〈first Dig〉 starts the first pass.
The 〈first op〉 is the first operand (which have more or equal Digits before decimal point). The 〈first dig〉
is the number of digits in the first Digit in the first operand. The 〈second op〉 is the second operand and
the 〈second dig〉 is the number of digits in the first Digit of the second operand. The 〈first Dig〉 is the
number of Digits before decimal point of the first operand, but without the first Digit and multiplied
by 4.

The macro\apPLUSb saves the second operand to \tmpd and appends the 4− 〈second dig〉 empty
parameters before this operand in order to read desired number of digits to the first Digit of this oparand.
The macro \apPLUSb saves the first operand to the input queue after \apPLUSc macro. It inserts the
appropriate number of empty parameters (in \tmpc) before this operand in order to read the right number
of digits in the first attempt. It appends the \apNL marks to the end in order to recognize the end of the
input stream. These macros expands simply to zero but we can test the end of input stream by \ifx.

The macro \apPLUSb calculates the number of digits before decimal point (rounded up to multiply
by 4) in \apnumD by advancing 〈first DIG〉 by 4. It initializes \apnumZ to zero. If the first nonzero Digit
will be found then \apnumZ will be set to this Digit in the \apPLUSc macro.

apnum.tex
215: \def\apPLUSb#1#2#3#4#5{%

216: \edef\tmpd{\ifcase#4\or{}{}{}\or{}{}\or{}\fi#3}%

217: \edef\tmpc{\ifcase#2\or{}{}{}\or{}{}\or{}\fi}%

218: \let\apNext=\apPLUSc \apnumD=#5\advance\apnumD by4 \apnumG=0 \apnumZ=0 \def\OUT{}%

219: \expandafter\expandafter\expandafter\apPLUSc\expandafter\tmpc#1\apNL\apNL\apNL\apNL@%

220: }

The macro \apPLUSc is called repeatedly. It reads one Digit from input stream and saves it to
the \apnumY. Then it calls the \apPLUSe, which reads (if it is allowed, i.e. if \apnumC<=0) one digit from
second operand \tmpd by the \apIVread macro. Then it does the addition of these digits and saves the
result into the \OUT macro in reverse order.

Note, that the sign \apPLUSxA is used when \apnumY is read and the sign \apPLUSxB is used when
advancing is performed. This means that we are doing addition or subtraction here.

\apPLUSb: 12–13 \apPLUSc: 13–14 \apPLUSe: 14

13

2 The Implementation Arbitrary Precision Numbers

If the first nonzero Digit is reached, then the macro \apPLUSh sets the sign of the result to the
\apnumG and (maybe) exchanges the \apPLUSxA and \apPLUSxB macros (by the \apPLUSg macro) in
order to the internal result of the subtraction will be always non-negative.

If the end of input stream is reached, then \apNext (used at line 233) is reset from its original
value \apPLUSc to the \apPLUSd where the \apnumY is simply set to zero. The reading from input stream
is finished. This occurs when there are more Digits after decimal point in the second operand than in
the first one. If the end of input stream is reached and the \tmpd macro is empty (all data from second
operand was read too) then the \apPLUSf macro removes the rest of input stream and the first pass of
the calculation is done.

apnum.tex
221: \def\apPLUSc#1#2#3#4{\apnumY=\apPLUSxA#1#2#3#4\relax

222: \ifx\apNL#4\let\apNext=\apPLUSd\fi

223: \ifx\apNL#1\relax \ifx\tmpd\empty \expandafter\expandafter\expandafter\apPLUSf \fi\fi

224: \apPLUSe

225: }

226: \def\apPLUSd{\apnumY=0 \ifx\tmpd\empty \expandafter\apPLUSf \else\expandafter \apPLUSe\fi}

227: \def\apPLUSe{%

228: \ifnum\apnumC>0 \advance\apnumC by-4

229: \else \apIVread\tmpd \advance\apnumY by\apPLUSxB\apnumX \fi

230: \ifnum\apnumZ=0 \apPLUSh \fi

231: \edef\OUT{{\the\apnumY}\OUT}%

232: \advance\apnumD by-4

233: \apNext

234: }

235: \def\apPLUSf#1@{}

236: \def\apPLUSg{\let\tmpc=\apPLUSxA \let\apPLUSxA=\apPLUSxB \let\apPLUSxB=\tmpc}

237: \def\apPLUSh{\apnumZ=\apnumY

Why there is a complication about reading one parameter from input stream but second one from
the macro \tmpd? This is more faster than to save both parameters to the macros and using \apIVread
for both because the \apIVread must redefine its parameter. You can examine that this parameter is
very long.

The \apPLUSm 〈data〉@ macro does transmissions calculation when subtracting. The 〈data〉 from
first pass is expanded in the input stream. The \apPLUSm macro reads repeatedly one Digit from the
〈data〉 until the stop mark is reached. The Digits are in the range −9999 to 9999. If the Digit is negative
then we need to add 10000 and set the transmission value \apnumX to one, else \apnumX is zero. When
the next Digit is processed then the calculated transmission value is subtracted. The macro \apPLUSw
writes the result for each Digit \apnumA in the normal (human readable) order.

apnum.tex
240: \def\apPLUSm#1{%

241: \ifx@#1\else

242: \apnumA=#1 \advance\apnumA by-\apnumX

243: \ifnum\apnumA<0 \advance\apnumA by\apIVbase \apnumX=1 \else \apnumX=0 \fi

244: \apPLUSw

245: \expandafter\apPLUSm

246: \fi

247: }

The \apPLUSp 〈data〉@ macro does transmissions calculation when addition is processed. It is very
similar to\apPLUSm, but Digits are in the range 0 to 19998. If the Digit value is greater then 9999 then
we need to subtract 10000 and set the transmission value \apnumX to one, else \apnumX is zero.

apnum.tex
248: \def\apPLUSp#1{%

249: \ifx@#1\ifnum\apnumX>0 \edef\OUT{1\OUT}\fi

250: \else

251: \apnumA=\apnumX \advance\apnumA by#1

252: \ifnum\apnumA<\apIVbase \apnumX=0 \else \apnumX=1 \advance\apnumA by-\apIVbase \fi

253: \apPLUSw

254: \expandafter\apPLUSp

255: \fi

256: }

\apPLUSh: 14 \apPLUSg: 12–14 \apPLUSd: 14 \apPLUSf: 14 \apPLUSm: 12–14
\apPLUSp: 12–14

14

2 The Implementation Arbitrary Precision Numbers

The \apPLUSw writes the result with one Digit (saved in \apnumA) to the \OUT macro. The \OUT
is initialized as empty. If it is empty (it means we are after decimal point), then we need to write all four
digits by \apIVwrite macro (including left zeros) but we need to remove right zeros by \apREMzerosR.
If the decimal point is reached, then it is saved to the \OUT. But if the previous \OUT is empty (it means
there are no digits after decimal point or all such digits are zero) then \def\OUT{\empty} ensures that
the \OUT is non-empty and the ignoring of right zeros are disabled from now.

apnum.tex
257: \def\apPLUSw{%

258: \ifnum\apnumD=0 \ifx\OUT\empty \def\OUT{\empty}\else \edef\OUT{.\OUT}\fi \fi

259: \advance\apnumD by4

260: \ifx\OUT\empty \edef\tmpa{\apIVwrite\apnumA}\edef\OUT{\apREMzerosR\tmpa}%

261: \else \edef\OUT{\apIVwrite\apnumA\OUT}\fi

262: }

The macro \apPLUSy 〈expanded OUT 〉@ removes left trailing zeros from the \OUT macro and saves
the possible minus sign by the \apPLUSz macro.

apnum.tex
263: \def\apPLUSy#1{\ifx0#1\expandafter\apPLUSy\else \expandafter\apPLUSz\expandafter#1\fi}

264: \def\apPLUSz#1@{\edef\OUT{\ifnum\apSIGN<0-\fi#1}}

The macro \apPLUSxE uses the \apROLLa in order to shift the decimal point of the operand.
We need to set the same decimal exponent in scientific notation before the addition or subtraction is
processed.

apnum.tex
265: \def\apPLUSxE{%

266: \apnumE=\apEa \advance\apnumE by-\apEb

267: \ifnum\apEa>\apEb \apPPs\apROLLa\tmpb{-\apnumE}\apE=\apEa

268: \else \apPPs\apROLLa\tmpa{\apnumE}\apE=\apEb \fi

269: }

2.5 Multiplication
Suppose the following multiplication example: 1234*567=699678.

Normal format: | Mirrored format:
1 2 3 4 * | 4 3 2 1 *

5 6 7	7 6 5

*7: 7 14 21 28 | *7: 28 21 14 7
*6: 6 12 18 24 | *6: 24 18 12 6
*5: 5 10 15 20 | *5: 20 15 10 5

---------------- | -----------------
6 9 9 6 7 8 | 8 7 6 9 9 6

This example is in numeral system of base 10 only for simplification, the macros work really with
base 10000. Because we have to do the transmissions between Digit positions from right to left in the
normal format and because it is more natural for TEX to put the data into the input stream and read it
sequentially from left to right, we use the mirrored format in our macros.

The macro \apMULa does the following:

• It gets the parameters in \tmpa and \tmpb preprocessed using the \apPPab macro.
• It evaluates the exponent of ten \apE which is usable when the scientific notation of numbers is

used (line 274).
• It calculates \apSIGN of the result (line 275).
• If \apSIGN=0 then the result is zero and we will do nothing more (line 276).
• The decimal point is removed from the parameters by \apDIG〈param〉〈register〉. The \apnumD

includes the number of digits before decimal point (after the \apDIG is used) and the 〈register〉
includes the number of digits in the rest. The \apnumA or \apnumB includes total number of digits
in the parameters \tmpa or \tmpb respectively. The \apnumD is re-calculated: it saves the number
of digits after decimal point in the result (lines 277 to 279).

\apPLUSw: 14–15 \apPLUSy: 13, 15 \apPLUSz: 15 \apPLUSxE: 12–13, 15 \apMULa: 5, 16, 25

15

2 The Implementation Arbitrary Precision Numbers

• Let A is the number of total digits in the 〈param〉 and let F = A mod 4, but if F = 0 then reassign
it to F = 4. Then F means the number of digits in the first Digit. This calculation is done by
\apIVmod〈A〉〈F 〉 macro. All another Digits will have four digits. The \apMULb〈param〉@@@@ is able
to read four digits, next four digits etc. We need to insert appropriate number of empty parameters
before the 〈param〉. For example \apMULb{}{}{}〈param〉@@@@ reads first only one digit from
〈param〉, next four digits etc. The appropriate number of empty parameters are prepared in the
\tmpc macro (lines 280 to 281).
• The \apMULb reads the 〈paramA〉 (all Digits) and prepares the \OUT macro in the special inter-

leaved format (described below). The format is finished by *. in the line 283.
• Analogical work is done with the second parameter 〈paramB〉. But this parameter is processed

by \apMULc, which reads Digits of the parameter and inserts them to the \tmpa in the reversed
order (lines 284 to 286).
• The main calculation is done by \apMULd〈paramB〉@, which reads Digits from 〈paramB〉 (in

reversed order) and does multiplication of the 〈paramA〉 (saved in the \OUT) by these Digits
(line 287).
• The \apMULg macro converts the result \OUT to the human readable form (line 288).
• The possible minus sign and the trailing zeros of results of the type .00123 is prepared by
\apADDzeros\tmpa to the \tmpa macro. This macro is appended to the result in the \OUT macro
(lines 289 to 291).

apnum.tex
273: \def\apMULa{%

274: \apE=\apEa \advance\apE by\apEb

275: \apSIGN=\apSIGNa \multiply\apSIGN by\apSIGNb

276: \ifnum\apSIGN=0 \def\OUT{0}\apE=0 \else

277: \apDIG\tmpa\apnumA \apnumX=\apnumA \advance\apnumA by\apnumD

278: \apDIG\tmpb\apnumB \advance\apnumX by\apnumB \advance\apnumB by\apnumD

279: \apnumD=\apnumX % \apnumD = the number of digits after decimal point in the result

280: \apIVmod \apnumA \apnumF % \apnumF = digits in the first Digit of \tmpa

281: \edef\tmpc{\ifcase\apnumF\or{}{}{}\or{}{}\or{}\fi}\def\OUT{}%

282: \expandafter\expandafter\expandafter \apMULb \expandafter \tmpc \tmpa @@@@%

283: \edef\OUT{*.\OUT}%

284: \apIVmod \apnumB \apnumF % \apnumF = digits in the first Digit of \tmpb

285: \edef\tmpc{\ifcase\apnumF\or{}{}{}\or{}{}\or{}\fi}\def\tmpa{}%

286: \expandafter\expandafter\expandafter \apMULc \expandafter \tmpc \tmpb @@@@%

287: \expandafter\apMULd \tmpa@%

288: \expandafter\apMULg \OUT

289: \edef\tmpa{\ifnum\apSIGN<0-\fi}%

290: \ifnum\apnumD>0 \apnumZ=\apnumD \edef\tmpa{\tmpa.}\apADDzeros\tmpa \fi

291: \ifx\tmpa\empty \else \edef\OUT{\tmpa\OUT}\fi

292: \fi

293: }

We need to read the two data streams when the multiplication of the 〈paramA〉 by one Digit from
〈paramB〉 is performed and the partial sum is actualized. First: the digits of the 〈paramA〉 and second:
the partial sum. We can save these streams to two macros and read one piece of information from such
macros at each step, but this si not effective because the whole stream have to be read and redefined
at each step. For TEX is more natural to put one data stream to the input queue and to read pieces of
infromation thereof. Thus we interleave both data streams into one \OUT in such a way that one element
of data from first stream is followed by one element from second stream and it is followed by second
element from first stream etc. Suppose that we are at the end of i− th line of the multiplication scheme
where we have the partial sums sn, sn−1, . . . , s0 and the Digits of 〈paramA〉 are dk, dk−1, . . . , d0. The
zero index belongs to the most right position in the mirrored format. The data will be prepared in the
form:

. {s_n} {s_(n-1)}...{s_(k+1)} * {s_k} {d_(k-1)}...{s_1} {d_1} {s_0} {d_0} *

For our example (there is a simplification: numeral system of base 10 is used and no transmissions are
processed), after second line (multiplication by 6 and calculation of partial sums) we have in \OUT:

. {28} * {45} {4} {32} {3} {19} {2} {6} {1} *

and we need to create the following line during calculation of next line of multiplication scheme:

16

2 The Implementation Arbitrary Precision Numbers

. {28} {45} * {5*4+32} {4} {5*3+19} {3} {5*2+6} {2} {5*1} {1} *

This special format of data includes two parts. After the starting dot, there is a sequence of sums which
are definitely calculated. This sequence is ended by first * mark. The last definitely calculated sum
follows this mark. Then the partial sums with the Digits of 〈paramA〉 are interleaved and the data are
finalized by second *. If the calculation processes the the second part of the data then the general task
is to read two data elements (partial sum and the Digit) and to write two data elements (the new partial
sum and the previous Digit). The line calculation starts by copying of the first part of data until the
first * and appending the first data element after *. Then the * is written and the middle processing
described above is started.

The macro \apMULb 〈paramA〉@@@@ prepares the special format of the macro \OUT described above
where the partial sums are zero. It means:

* . {d_k} 0 {d_(k-1)} 0 ... 0 {d_0} *

where di are Digits of 〈paramA〉 in reversed order.
The first “sum” is only dot. It will be moved before * during the first line processing. Why there

is such special “pseudo-sum”? The \apMULe with the parameter delimited by the first * is used in the
context \apMULe.{〈sum〉}* during the third line processing and the dot here protects from removing the
braces around the first real sum.

apnum.tex
294: \def\apMULb#1#2#3#4{\ifx@#4\else

295: \ifx\OUT\empty \edef\OUT{{#1#2#3#4}*}\else\edef\OUT{{#1#2#3#4}0\OUT}\fi

296: \expandafter\apMULb\fi

297: }

The macro \apMULc 〈paramB〉@@@@ reads Digits from 〈paramB〉 and saves them in reversed order
into \tmpa. Each Digit is enclosed by TEX braces {}.

apnum.tex
298: \def\apMULc#1#2#3#4{\ifx@#4\else \edef\tmpa{{#1#2#3#4}\tmpa}\expandafter\apMULc\fi}

The macro \apMULd 〈paramB〉@ reads the Digits from 〈paramB〉 (in reversed order), uses them as
a coefficient for multiplication stored in \tmpnumA and processes the \apMULe 〈special data format〉 for
each such coefficient. This corresponds with one line in the multiplication scheme.

apnum.tex
299: \def\apMULd#1{\ifx@#1\else

300: \apnumA=#1 \expandafter\apMULe \OUT

301: \expandafter\apMULd

302: \fi

303: }

The macro \apMULe 〈special data format〉 copies the first part of data format to the \OUT, copies
the next element after first *, appends * and does the calculation by \apMULf. The \apMULf is recursively
called. It reads the Digit to #1 and the partial sum to the #2 and writes {\appnumA*#1+#2}{#1} to the
\OUT (lines 315 to 319). If we are at the end of data, then #2 is * and we write the {\apnumA*#1}{#1}
followed by ending * to the \OUT (lines 308 to 310).

apnum.tex
304: \def\apMULe#1*#2{\apnumX=0 \def\OUT{#1{#2}*}\def\apOUTl{}\apnumO=1 \apnumL=0 \apMULf}

305: \def\apMULf#1#2{%

306: \advance\apnumO by-1 \ifnum\apnumO=0 \apOUTx \fi

307: \apnumB=#1 \multiply\apnumB by\apnumA \advance\apnumB by\apnumX

308: \ifx*#2%

309: \ifnum\apnumB<\apIVbase

310: \edef\OUT{\OUT\expandafter\apOUTs\apOUTl.,\ifnum\the\apnumB#1=0 \else{\the\apnumB}{#1}\fi*}%

311: \else \apIVtrans

312: \expandafter \edef\csname apOUT:\apOUTn\endcsname

313: {\csname apOUT:\apOUTn\endcsname{\the\apnumB}{#1}}%

314: \apMULf0*\fi

315: \else \advance\apnumB by#2

\apMULb: 16–17, 25–26 \apMULc: 16–17 \apMULd: 16–17, 26 \apMULe: 17–18, 27
\apMULf: 17–18, 27

17

2 The Implementation Arbitrary Precision Numbers

316: \ifnum\apnumB<\apIVbase \apnumX=0 \else \apIVtrans \fi

317: \expandafter

318: \edef\csname apOUT:\apOUTn\endcsname{\csname apOUT:\apOUTn\endcsname{\the\apnumB}{#1}}%

319: \expandafter\apMULf \fi

320: }

There are several complications in the algorithm described above.

• The result isn’t saved directly to the \OUT macro, but partially into the macros \apOUT:〈num〉,
as described in the section about auxiliary macros where the \apOUTx macro is defined.
• The transmissions between Digit positions are calculated. First, the transmission value \apnumX

is set to zero in the \apMULe. Then this value is subtracted from the calculated value \apnumB
and the new transmission is calculated using the \apIVtrans macro if \apnumB ≥ 10000. This
macro modifies \apnumB in order it is right Digit in our numeral system.
• If the last digit has nonzero transmission, then the calculation isn’t finished, but the new pair
{〈transmission〉}{0} is added to the \OUT. This is done by recursively call of \apMULf at line 314.
• The another situation can be occurred: the last pair has both values zeros. Then we needn’t to

write this zero to the output. This is solved by the test \ifnum\the\apnumB#1=0 at line 310.

The macro \apMULg 〈special data format〉@ removes the first dot (it is the #1 parameter) and
prepares the \OUT to writing the result in reverse order, i.e. in human readable form. The next
work is done by \apMULh and \apMULi macros. The \apMULh repeatedly reads the first part of the
special data format (Digits of the result are here) until the first * is found. The output is stored by
\apMULo〈digits〉{〈data〉} macro. If the first * is found then the \apMULi macro repeatedly reads the triple
{〈Digit of result〉}{〈Digit of A〉}{〈next Digit of result〉} and saves the first element in full (four-digits)
form by the \apIVwrite if the third element isn’t the stop-mark *. Else the last Digit (first Digit in the
human readable form) is saved by \the, because we needn’t the trailing zeros here. The third element
is put back to the input stream but it is ignored by \apMULj macro when the process is finished.

apnum.tex
321: \def\apMULg#1{\def\OUT{}\apMULh}

322: \def\apMULh#1{\ifx*#1\expandafter\apMULi

323: \else \apnumA=#1 \apMULo4{\apIVwrite\apnumA}%

324: \expandafter\apMULh

325: \fi

326: }

327: \def\apMULi#1#2#3{\apnumA=#1

328: \ifx*#3\apMULo{\apNUMdigits\tmpa}{\the\apnumA}\expandafter\apMULj

329: \else \apMULo4{\apIVwrite\apnumA}\expandafter\apMULi

330: \fi{#3}%

331: }

332: \def\apMULj#1{}

The \apMULo 〈digits〉{〈data〉} appends 〈data〉 to the \OUT macro. The number of digits after
decimal point \apnumD is decreased by the number of actually printed digits 〈digits〉. If the decimal
point is to be printed into 〈data〉 then it is performed by the \apMULt macro.

apnum.tex
333: \def\apMULo#1#2{\edef\tmpa{#2}%

334: \advance\apnumD by-#1

335: \ifnum\apnumD<1 \ifnum\apnumD>-4 \apMULt\fi\fi

336: \edef\OUT{\tmpa\OUT}%

337: }

338: \def\apMULt{\edef\tmpa{\apIVdot{-\apnumD}\tmpa}\edef\tmpa{\tmpa}}

2.6 Division
Suppose the following example:

<paramA> : <paramB> <output>
12345:678 = [12:6=2] 2 (2->1)

2*678 -1356
-1215 <0 correction! 1

\apMULg: 16, 18 \apMULh: 18 \apMULi: 18 \apMULj: 18 \apMULo: 18
\apMULt: 18

18

2 The Implementation Arbitrary Precision Numbers

12345
1*678 -678

5565 [55:6=8] 9 (9->8)
9*678 -6102

-537 <0 correction! 8
5565

8*678 -5424
1410 [14:6=2] 2

2*678 -1356
0540 [05:6=0] 0

0*678 -0
5400 [54:6=8] 9 (2x correction: 9->8, 8->7)
...

12345:678 = 182079...

We implement the division similar like pupils do it in the school (only the numeral system with
base 10000 instead 10 is actually used, but we keep with base 10 in our illustrations). At each step of the
operation, we get first two Digits from the dividend or remainder (called partial dividend or remainder)
and do divide it by the first nonzero Digit of the divisor (called partial divisor). Unfortunately, the
resulted Digit cannot be the definitive value of the result. We are able to find out this after the whole
divisor is multiplied by resulted Digit and compared with the whole remainder. We cannot do this test
immediately but only after a lot of following operations (imagine that the remainder and divisor have a
huge number of Digits).

We need to subtract the remainder by the multiple of the divisor at each step. This means that
we need to calculate the transmissions from the Digit position to the next Digit position from right to
left (in the scheme illustrated above). Thus we need to reverse the order of Digits in the remainder and
divisor. We do this reversion only once at the preparation state of the division and we interleave the
data from the divisor and the dividend (the dividend will be replaced by the remainder, next by next
remainder etc.).

The number of Digits of the dividend can be much greater than the number of Digits of the
divisor. We need to calculate only with the first part of dividend/remainder in such case. We need to
get only one new Digit from the rest of dividend at each calculation step. The illustration follows:

...used dividend.. | ... rest of dividend ... | divisor
1234567890123456789 7890123456789012345678901234 : 1231231231231231231
xxxxxxxxxxxxxxxxxx 7 <- calculated remainder
xxxxxxxxxxxxxxxxx x8 <- new calculated remainder
xxxxxxxxxxxxxxxx xx9 <- new calculated remainder etc.

We’ll interleave only the “used dividend” part with the divisor at the preparation state. We’ll
put the “rest of dividend” to the input stream in the normal order. The macros do the iteration over
calculation steps and they can read only one new Digit from this input stream if they need it. This
approach needs no manipulation with the (potentially long) “rest of the dividend” at each step. If the
divisor has only one Digit (or comparable small Digits) then the algorithm has only linear complexity
with respect to the number of Digits in the dividend.

The numeral system with the base 10000 brings a little problem: we are simply able to calculate
the number of digits which are multiple of four. But user typically wishes another number of calculated
decimal digits. We cannot simply strip the trailing digits after calculation because the user needs to read
the right remainder. This is a reason why we calculate the number of digits for the first Digit of the
result. All another calculated Digits will have four digits. We need to prepare the first “partial dividend”
in order to the F digits will be calculated first. How to do it? Suppose the following illustration of the
first two Digits in the “partial remainder” and “partial divisor”:

0000 7777 : 1111 = 7 .. one digit in the result
0007 7778 : 1111 = 70 .. two digits in the result
0077 7788 : 1111 = 700 .. three digits in the result
0777 7888 : 1111 = 7000 .. four digits in the result
7777 8888 : 1111 = ???? .. not possible in the numeral system of base 10000

19

2 The Implementation Arbitrary Precision Numbers

We need to read F−1 digits to the first Digit and four digits to the second Digit of the “partial dividend”.
But this is true only if the dividend is “comparably greater or equal to” divisor. The word “comparably
greater” means that we ignore signs and the decimal point in compared numbers and we assume the
decimal points in the front of both numbers just before the first nonzero digit. It is obvious that if the
dividend is “comparably less” than divisor then we need to read F digits to the first Digit.

The \apDIVa macro uses the \tmpa (dividend) and \tmpb (divisor) macros and does the following
work:

• If the divisor \tmpb is equal to zero, print error and do nothing more (line 343).
• The \apSIGN of the result is calculated (line 344).
• If the dividend \tmpa is equal to zero, then \OUT and \XOUT are zeros and do nothing more

(line 345).
• Calculate the exponent of ten \apE when scientific notation is used (Line 345).
• The number of digits before point are counted by \apDIG macro for both parameters. The

difference is saved to \apnumD and this is the number of digits before decimal point in the result
(the exception is mentioned later). The \apDIG macro removes the decimal point and (possible)
left zeros from its parameter and saves the result to the \apnumD register (lines 347 to 349).
• The macro \apDIVcomp〈paramA〉〈paramB〉 determines if the 〈paramA〉 is “comparably greater or

equal” to 〈paramB〉. The result is stored in the boolean value apX. We can ask to this by the
\ifapX〈true〉\else〈false〉\fi construction (line 350).
• If the dividend is “comparably greater or equal” to the divisor, then the position of decimal point

in the result \apnumD has to be shifted by one to the right. The same is completed with \apnumH
where the position of decimal point of the remainder will be stored (line 351).
• The number of desired digits in the result \apnumC is calculated (lines 352 to 358).
• If the number of desired digits is zero or less than zero then do nothing more (line 358).
• Finish the calculation of the position of decimal point in the remainder \apnumH (line 351).
• Calculate the number of digits in the first Digit \apnumF (line 362).
• Read first four digits of the divisor by the macro \apIVread〈sequence〉. Note that this macro puts

trailing zeros to the right if the data stream 〈param〉 is shorter than four digits. If it is empty then
the macro returns zero. The returned value is saved in \apnumX and the 〈sequence〉 is redefined
by new value of the 〈param〉 where the read digits are removed (line 363).
•We need to read only \apnumF (or \apnumF − 1) digits from the \tmpa. This is done by the
\apIVreadX macro at line 365. The second Digit of the “partial dividend” includes four digits
and it is read by \apIVread macro at line 367.
• The “partial dividend” is saved to the \apDIVxA macro and the “partial divisor” is stored to

the \apDIVxB macro. Note, that the second Digit of the “partial dividend” isn’t expanded by
simply \the, because when \apnumX=11 and \apnumA=2222 (for example), then we need to save
22220011. These trailing zeros from left are written by the \apIVwrite macro (lines 368 to 369).
• The \XOUT macro for the currently computed remainder is initialized. The special interleaved

data format of the remainder \XOUT is described below (line 370).
• The \OUT macro is initialized. The \OUT is generated as literal macro. First possible 〈sign〉, then

digits. If the number of effective digits before decimal point \apnumD is negative, the result will be
in the form .000123 and we need to add the zeros by the \apADDzeros macro (lines 371 to 372).
• The registers for main loop are initialized. The \apnumE signalizes that the remainder of the

partial step is zero and we can stop the calculation. The \apnumZ will include the Digit from the
input stream where the “rest of dividend” will be stored (line 372).
• The main calculation loop is processed by the \apDIVg macro (line 374).
• If the division process stops before the position of the decimal point in the result (because there is

zero remainder, for example) then we need to add the rest of zeros by \apADDzeros macro. This
is actual for the results of the type 1230000 (line 375).
• If the remainder isn’t equal to zero, we need to extract the digits of the remainder from the special

data formal to the human readable form. This is done by the \apDIVv macro. The decimal point
is inserted to the remainder by the \apROLLa macro (lines 377 to 378).

\apDIVa: 5, 21, 26, 30

20

2 The Implementation Arbitrary Precision Numbers

apnum.tex
342: \def\apDIVa{%

343: \ifnum\apSIGNb=0 \errmessage{Dividing by zero}\else

344: \apSIGN=\apSIGNa \multiply\apSIGN by\apSIGNb

345: \ifnum\apSIGNa=0 \def\OUT{0}\def\XOUT{0}\apE=0 \apSIGN=0 \else

346: \apE=\apEa \advance\apE by-\apEb

347: \apDIG\tmpb\relax \apnumB=\apnumD

348: \apDIG\tmpa\relax \apnumH=\apnumD

349: \advance\apnumD by-\apnumB % \apnumD = num. of digits before decimal point in the result

350: \apDIVcomp\tmpa\tmpb % apXtrue <=> A>=B, i.e 1 digit from A/B

351: \ifapX \advance\apnumD by1 \advance\apnumH by1 \fi

352: \apnumC=\apTOT

353: \ifnum\apTOT<0 \apnumC=-\apnumC

354: \ifnum\apnumD>\apnumC \apnumC=\apnumD \fi

355: \fi

356: \ifnum\apTOT=0 \apnumC=\apFRAC \advance\apnumC by\apnumD

357: \else \apnumX=\apFRAC \advance\apnumX by\apnumD

358: \ifnum\apnumC>\apnumX \apnumC=\apnumX \fi

359: \fi

360: \ifnum\apnumC>0 % \apnumC = the number of digits in the result

361: \advance\apnumH by-\apnumC % \apnumH = the position of decimal point in the remainder

362: \apIVmod \apnumC \apnumF % \apnumF = the number of digits in the first Digit

363: \apIVread\tmpb \apnumB=\apnumX % \apnumB = partial divisor

364: \apnumX=\apnumF \ifapX \advance\apnumX by-1 \fi

365: \apIVreadX\apnumX\tmpa

366: \apnumA=\apnumX % \apnumA = first Digit of the partial dividend

367: \apIVread\tmpa % \apnumX = second Digit of the partial dividend

368: \edef\apDIVxA{\the\apnumA\apIVwrite\apnumX}% first partial dividend

369: \edef\apDIVxB{\the\apnumB}% partial divisor

370: \edef\XOUT{{\apDIVxB}{\the\apnumX}@{\the\apnumA}}% the \XOUT is initialized

371: \edef\OUT{\ifnum\apSIGN<0-\fi}%

372: \ifnum\apnumD<0 \edef\OUT{\OUT.}\apnumZ=-\apnumD \apADDzeros\OUT \fi

373: \apnumE=1 \apnumZ=0

374: \let\apNext=\apDIVg \apNext % <--- the main calculation loop is here

375: \ifnum\apnumD>0 \apnumZ=\apnumD \apADDzeros\OUT \fi

376: \ifnum\apnumE=0 \def\XOUT{0}\else % extracting remainder from \XOUT

377: \edef\XOUT{\expandafter}\expandafter\apDIVv\XOUT

378: \def\tmpc{\apnumH}\apnumG=\apSIGNa \expandafter\apROLLa\XOUT.@\XOUT

379: \fi

380: \else \def\OUT{0}\def\XOUT{0}\apE=0 \apSIGN=0

381: \fi\fi\fi

382: }

The macro \apDIVcomp 〈paramA〉〈paramB〉 provides the test if the 〈paramA〉 is “comparably
greater or equal” to 〈paramB〉. Imagine the following examples:

123456789 : 123456789 = 1
123456788 : 123456789 = .99999999189999992628

The example shows that the last digit in the operands can be important for the first digit in the result.
This means that we need to compare whole operands but we can stop the comparison when the first
difference in the digits is found. This is lexicographic ordering. Because we don’t assume the existence
of eTEX (or another extensions), we need to do this comparison by macros. We set the 〈paramA〉
and 〈paramB〉 to the \tmpc and \tmpd respectively. The trailing \apNLs are appended. The macro
\apDIVcompA reads first 8 digits from first parameter and the macros \apDIVcompB reads first 8 digits
from second parameter and does the comparison. If the numbers are equal then the loop is processed
again.

apnum.tex
383: \def\apDIVcomp#1#2{%

384: \expandafter\def\expandafter\tmpc\expandafter{#1\apNL\apNL\apNL\apNL\apNL\apNL\apNL\apNL@}%

385: \expandafter\def\expandafter\tmpd\expandafter{#2\apNL\apNL\apNL\apNL\apNL\apNL\apNL\apNL@}%

386: \def\apNext{\expandafter\expandafter\expandafter\apDIVcompA\expandafter\tmpc\tmpd}%

387: \apXtrue \apNext

388: }

389: \def\apDIVcompA#1#2#3#4#5#6#7#8#9@{%

\apDIVcomp: 20–21 \apDIVcompA: 21 \apDIVcompB: 22

21

2 The Implementation Arbitrary Precision Numbers

390: \ifx#8\apNL \def\tmpc{0000000\apNL@}\else\def\tmpc{#9@}\fi

391: \apnumX=#1#2#3#4#5#6#7#8\relax

392: \apDIVcompB

393: }

394: \def\apDIVcompB#1#2#3#4#5#6#7#8#9@{%

395: \ifnum\apnumX<#1#2#3#4#5#6#7#8 \let\apNext=\relax \apXfalse \else

396: \ifnum\apnumX>#1#2#3#4#5#6#7#8 \let\apNext=\relax \apXtrue

397: \fi\fi

398: \ifx\apNext\relax\else

399: \ifx#8\apNL \def\tmpd{0000000\apNL@}\ifx\tmpc\tmpd\let\apNext=\relax\fi

400: \else\def\tmpd{#9@}\fi

401: \fi

402: \apNext

403: }

The format of interleaved data with divisor and remainder is described here. Suppose this partial
step of the division process:

R0 R1 R2 R3 ... Rn : d1 d2 d3 ... dn = ...A...
@ -A*d1 -A*d2 -A*d3 ... -A*dn [R0 R1 : d1 = A]
0 N0 N1 N2 ... N(n-1) Nn

The Rk are Digits of the remainder, dk are Digits of the divisor. The A is calculated Digit in this
step. The calculation of the Digits of the new remainder is hinted here. We need to do this from right
to left because of the transmissions. This implies, that the interleaved format of \XOUT is in the reverse
order and looks like

dn Rn ... d3 R3 d2 R2 d1 R1 @ R0

for example for 〈paramA〉=1234567893, 〈paramB〉=454502 (in the human readable form) the \XOUT
should be {200}{9300}{4545}{5678}@{1234} (in the special format). The Digits are separated by TEX
braces {}. The resulted digit for this step is A = 12345678/1415 = 2716.

The calculation of the new remainder takes dk, Rk, dk−1 for each k from n to 0 and creates the
Digit of the new remainder Nk−1 = Rk − A · dk (roughly speaking, actually it calculates transmissions
too) and adds the new couple dk−1 Nk−1 to the new version of \XOUT macro. The zero for N−1 should
be reached. If it is not completed then a correction of the type A := A − 1 have to be done and the
calculation of this step is processed again.

The result in the new \XOUT should be (after one step is done):

dn Nn ... d3 N3 d2 N2 d1 N1 @ N0

where Nn is taken from the “rest of the dividend” from the input stream.
The initialization for the main loop is done by \apDIVg macro. It reads the Digits from \tmpa

(dividend) and \tmpb macros (using \apIVread) and appends them to the \XOUT in described data
format. This initialization is finished when the \tmpb is empty. If the \tmpa is not empty in such case,
we put it to the input stream using \expandafter\apDIVh\tmpa followed by four \apNLs (which simply
expands zero digit) followed by stop-mark. The \apDIVh reads one Digit from input stream. Else we
put only the stop-mark to the input stream and run the \apDIVi. The \apNexti is set to the \apDIVi,
so the macro \apDIVh will be skipped forever and no new Digit is read from input stream.

apnum.tex
404: \def\apDIVg{%

405: \ifx\tmpb\empty

406: \ifx\tmpa\empty \def\apNext{\apDIVi!}\let\apNexti=\apDIVi

407: \else \def\apNext{\expandafter\apDIVh\tmpa\apNL\apNL\apNL\apNL!}\let\apNexti=\apDIVh

408: \fi\fi

409: \ifx\apNext\apDIVg

410: \apIVread\tmpa \apnumA=\apnumX

411: \apIVread\tmpb

412: \edef\XOUT{{\the\apnumX}{\the\apnumA}\XOUT}%

413: \fi

414: \apNext

415: }

\apDIVg: 20–22

22

2 The Implementation Arbitrary Precision Numbers

The macro \apDIVh reads one Digit from data stream (from the rest of the dividend) and saves it
to the \apnumZ register. If the stop-mark is reached (this is recognized that the last digit is the \apNL),
then \apNexti is set to \apDIVi, so the \apDIVh is never processed again.

apnum.tex
416: \def\apDIVh#1#2#3#4{\apnumZ=#1#2#3#4

417: \ifx\apNL#4\let\apNexti=\apDIVi\fi

418: \apDIVi

419: }

The macro \apDIVi contains the main loop for division calculation. The core of this loop is the
macro call \apDIVp〈data〉 which adds next digit to the \OUT and recalculates the remainder.

The macro \apDIVp decreases the \apnumC register (the desired digits in the output) by four,
because four digits will be calculated in the next step. The loop is processed while \apnumC is positive.
The \apnumZ (new Digit from the input stream) is initialized as zero and the \nexti runs the next step
of this loop. This step starts from \apDIVh (reading one digit from input stream) or directly the \apDIVi
is repeated. If the remainder from the previous step is calculated as zero (\apnumE=0), then we stop
prematurely. The \apDIVj macro is called at the end of the loop because we need to remove the “rest
of the dividend” from the input stream.

apnum.tex
420: \def\apDIVi{%

421: \ifnum\apnumE=0 \apnumC=0 \fi

422: \ifnum\apnumC>0

423: \expandafter\apDIVp\XOUT

424: \advance\apnumC by-4

425: \apnumZ=0

426: \expandafter\apNexti

427: \else

428: \expandafter\apDIVj

429: \fi

430: }

431: \def\apDIVj#1!{}

The macro \apDIVp 〈interleaved data〉@ does the basic setting before the calculation through the
expanded \XOUT is processed. The \apDIVxA includes the “partial dividend” and the \apDIVxB includes
the “partial divisor”. We need to do \apDIVxA over \apDIVxB in order to obtain the next digit in the
output. This digit is stored in \apnumA. The \apnumX is the transmission value, the \apnumB, \apnumY
will be the memory of the last two calculated Digits in the remainder. The \apnumE will include the
maximum of all digits of the new remainder. If it is equal to zero, we can finish the calculation.

The new interleaved data will be stored to the \apOUT:〈num〉 macros in similar way as in the
\MUL macro. This increases the speed of the calculation. The data \apnumO, \apnumL and \apOUTl for
this purpose are initialized.

The \apDIVq is started and the tokens 0\apnumZ are appended to the input stream (i.e to the
expanded \XOUT. This zero will be ignored and the \apnumZ will be used as a new Nn, i.e. the Digit
from the “rest of the dividend”.

apnum.tex
432: \def\apDIVp{%

433: \apnumA=\apDIVxA \divide\apnumA by\apDIVxB

434: \def\apOUTl{}\apnumO=1 \apnumL=0

435: \apnumX=0 \apnumB=0 \apnumE=0

436: \let\apNext=\apDIVq \apNext 0\apnumZ

437: }

The macro \apDIVq 〈dk〉 〈Rk〉 〈dk−1〉 calculates the Digit of the new remainder Nk−1 by the
formula Nk−1 = −A · dk + Rk −X where X is the transmission from the previous Digit. If the result is
negative, we need to add minimal number of the form X ·10000 in order the result is non-negative. Then
the X is new transmission value. The digit Nk is stored in the \apnumB register and then it is added
to \apOUT:〈num〉 in the order dk−1Nk−1. The \apnumY remembers the value of the previous \apnumB.
The dk−1 is put to the input stream back in order it would be read by the next \apDIVq call.

If dk−1 = @ then we are at the end of the remainder calculation and the \apDIVr is invoked.

\apDIVh: 22–24 \apDIVi: 22–23 \nexti \apDIVj: 23 \apDIVp: 23 \apDIVxA: 20–21, 23–24
\apDIVxB: 20–21, 23 \apDIVq: 23–24

23

2 The Implementation Arbitrary Precision Numbers

apnum.tex
438: \def\apDIVq#1#2#3{% B A B

439: \advance\apnumO by-1 \ifnum\apnumO=0 \apOUTx \fi

440: \apnumY=\apnumB

441: \apnumB=#1\multiply\apnumB by-\apnumA

442: \advance\apnumB by#2\advance\apnumB by-\apnumX

443: \ifnum\apnumB<0 \apnumX=\apnumB \advance\apnumX by1

444: \divide\apnumX by-\apIVbase \advance\apnumX by1

445: \advance\apnumB by\the\apnumX 0000

446: \else \apnumX=0 \fi

447: \expandafter

448: \edef\csname apOUT:\apOUTn\endcsname{\csname apOUT:\apOUTn\endcsname{#3}{\the\apnumB}}%

449: \ifnum\apnumE<\apnumB \apnumE=\apnumB \fi

450: \ifx@#3\let\apNext=\apDIVr \fi

451: \apNext{#3}%

452: }

The \apDIVr macro does the final work after the calculation of new remainder is done. It tests
if the remainder is OK, i.e. the transmission from the R1 calculation is equal to R0. If it is true then
new Digit \apnumA is added to the \OUT macro else the \apnumA is decreased (the correction) and the
calculation of the remainder is run again.

If the calculated Digit and the remainder are OK, then we do following:

• The new \XOUT is created from \apOUT:〈num〉 macros using \apOUTs macro.
• The \apnumA is saved to the \OUT. This is done with care. If the \apnumD (where the decimal

point is measured from the actual point in the \OUT) is in the interval [0, 4) then the decimal
point have to be inserted between digits into the next Digit. This is done by \apDIVt macro. If
the remainder is zero (\apnumE=0), then the right trailing zeros are removed from the Digit by
the \apDIVu and the shift of the \apnumD register is calculated from the actual digits. All this
calculation is done in \tmpa macro. The last step is adding the contents of \tmpa to the \OUT.
• The \apnumD is increased by the number of added digits.
• The new “partial dividend” is created from \apnumB and \apnumY.

apnum.tex
453: \def\apDIVr#1#2{%

454: \ifnum\apnumX=#2 % the calculated Digit is OK, we save it

455: \edef\XOUT{\expandafter\apOUTs\apOUTl.,}%

456: \edef\tmpa{\ifnum\apnumF=4 \expandafter\apIVwrite\else \expandafter\the\fi\apnumA}%

457: \ifnum\apnumD<\apnumF \ifnum\apnumD>-1 \apDIVt \fi\fi %adding dot

458: \ifx\apNexti\apDIVh \apnumE=1 \fi

459: \ifnum\apnumE=0 \apDIVu % removing zeros

460: \advance\apnumD by-\apNUMdigits\tmpa \relax

461: \else \advance\apnumD by-\apnumF \apnumF=4 \fi

462: \edef\OUT{\OUT\tmpa}% save the Digit

463: \edef\apDIVxA{\the\apnumB\apIVwrite\apnumY}% next partial dvividend

464: \else % we need do correction and run the remainder calculation again

465: \advance\apnumA by-1 \apnumX=0 \apnumB=0 \apnumE=0

466: \def\apOUTl{}\apnumO=1 \apnumL=0

467: \def\apNext{\let\apNext=\apDIVq

468: \expandafter\apNext\expandafter0\expandafter\apnumZ\XOUT}%

469: \expandafter\apNext

470: \fi

471: }

The \apDIVt macro inserts the dot into digits quartet (less than four digits are allowed too) by the
\apnumD value. This value is assumed in the interval [0, 4). The expandable macro \apIVdot〈shift〉〈data〉
is used for this purpose. The result from this macro has to be expanded twice.

apnum.tex
472: \def\apDIVt{\edef\tmpa{\apIVdot\apnumD\tmpa}\edef\tmpa{\tmpa}}

The \apDIVu macro removes trailing zeros from the right and removes the dot, if it is the
last token of the \tmpa after removing zeros. It uses expandable macros \apREMzerosR〈data〉 and
\apREMdotR〈data〉.

\apDIVr: 23–24 \apDIVt: 24 \apDIVu: 24–25

24

2 The Implementation Arbitrary Precision Numbers

apnum.tex
473: \def\apDIVu{\edef\tmpa{\apREMzerosR\tmpa}\edef\tmpa{\apREMdotR\tmpa}}

The rest of the code concerned with the division does an extraction of the last remainder from
the data and this value is saved to the \XOUT macro in human readable form. The \apDIVv macro is
called repeatedly on the special format of the \XOUT macro and the new \XOUT is created. The trailing
zeros from right are ignored by the \apDIVw.

apnum.tex
474: \def\apDIVv#1#2{\apnumX=#2

475: \ifx@#1\apDIVw{.\apIVwrite\apnumX}\else\apDIVw{\apIVwrite\apnumX}\expandafter\apDIVv\fi

476: }

477: \def\apDIVw#1{%

478: \ifx\XOUT\empty \ifnum\apnumX=0

479: \else \edef\tmpa{#1}\edef\XOUT{\apREMzerosR\tmpa\XOUT}%

480: \fi

481: \else \edef\XOUT{#1\XOUT}\fi

482: }

2.7 Power to the Integer
The power to the decimal number (non integer) is not implemented yet because the implementa-

tion of exp, ln, etc. is a future work.
We can implement the power to the integer as repeated multiplications. This is simple but slow.

The goal of this section is to present the power to the integer with some optimizations.
Let a is the base of the powering computation and d1, d2, d3, . . . , dn are binary digits of the

exponent (in reverse order). Then

p = a1 d1+2 d2+2
2 d3+···+2n−1 dn = (a1)d1 · (a2)d2 · (a2

2

)d3 · (a2
n−1

)dn .

If di = 0 then zdi is one and this can be omitted from the queue of multiplications. If di = 1 then we
keep zdi as z in the queue. We can see from this that the p can be computed by the following algorithm:

(* "a" is initialized as the base, "e" as the exponent *)
p := 1;
while (e>0) {

if (e%2) p := p*a;
e := e/2;
if (e>0) a := a*a;

}
(* "p" includes the result *)

The macro \apPOWa does the following work.

• After using \apPPab the base parameter is saved in \tmpa and the exponent is saved in \tmpb.
• In trivial cases, the result is set without any computing (lines 487 and 488).
• If the exponent is non-integer or it is too big then the error message is printed and the rest of the

macro is skipped by the \apPOWe macro (lines 490 to 493).
• The \apE is calculated from \apEa (line 494).
• The sign of the result is negative only if the \tmpb is odd and base is negative (line 496).
• The number of digits after decimal point for the result is calculated and saved to \apnumD. The

total number of digits of the base is saved to \apnumC. (line 497).
• The first Digit of the base needn’t to include all four digits, but other Digits do it. The similar

trick as in \apMULa is used here (lines 499 to 500).
• The base is saved in interleaved reversed format (like in \apMULa) into the \OUT macro by the
\apMULb macro. Let it be the a value from our algorithm described above (lines 501 and 502).
• The initial value of p = 1 from our algorithm is set in interleaved format into \tmpc macro

(line 503).
• The main loop described above is processed by \apPOWb macro. (line 504).

\apDIVv: 20–21, 25 \apDIVw: 25 \apPOWa: 5, 26–27

25

2 The Implementation Arbitrary Precision Numbers

• The result in \tmpc is converted into human readable form by the \apPOWg macro and it is stored
into the \OUT macro (line 505).
• If the result is negative or decimal point is needed to print then use simple conversion of the \OUT

macro (adding minus sign) or using \apROLLa macro (lines 506 and 507).
• If the exponent is negative then do the 1/r calculation, where r is previous result (line 508).

apnum.tex
486: \def\apPOWa{%

487: \ifnum\apSIGNa=0 \def\OUT{0}\apSIGN=0 \apE=0 \else

488: \ifnum\apSIGNb=0 \def\OUT{1}\apSIGN=1 \apE=0 \else

489: \apDIG\tmpb\apnumB

490: \ifnum\apnumB>0 \errmessage{POW: non-integer exponent is not implemented yet}\apPOWe\fi

491: \ifnum\apEb=0 \else \errmessage{POW: the E notation of exponent isn’t allowed}\apPOWe\fi

492: \ifnum\apnumD>8 \errmessage{POW: too big exponent.

493: Do you really need about 10^\the\apnumD\space digits in output?}\apPOWe\fi

494: \apE=\apEa \multiply\apE by\tmpb\relax

495: \apSIGN=\apSIGNa

496: \ifodd\tmpb \else \apSIGN=1 \fi

497: \apDIG\tmpa\apnumA \apnumC=\apnumA \advance\apnumC by\apnumD

498: \apnumD=\apnumA \multiply\apnumD by\tmpb

499: \apIVmod \apnumC \apnumA

500: \edef\tmpc{\ifcase\apnumA\or{}{}{}\or{}{}\or{}\fi}\def\OUT{}%

501: \expandafter\expandafter\expandafter \apMULb \expandafter \tmpc \tmpa @@@@%

502: \edef\OUT{*.\OUT}% \OUT := \tmpa in interleaved format

503: \def\tmpc{*.1*}%

504: \apnumE=\tmpb\relax \apPOWb

505: \expandafter\apPOWg \tmpc % \OUT := \tmpc in human raedable form

506: \ifnum\apnumD=0 \ifnum \apSIGN<0 \edef\OUT{-\OUT}\fi

507: \else \def\tmpc{-\apnumD}\apnumG=\apSIGN \expandafter\apROLLa\OUT.@\OUT\fi

508: \ifnum\apSIGNb<0 \apPPab\apDIVa 1\OUT \fi

509: \relax

510: \fi\fi

511: }

The macro \apPOWb is the body of the loop in the algorithm described above. The code part
after \ifodd\apnumE does p := p*a. In order to do this, we need to convert \OUT (where a is stored)
into normal format using \apPOWd. The result is saved in \tmpb. Then the multiplication is done by
\apMULd and the result is normalized by the \apPOWn macro. Because \apMULd works with \OUT macro,
we temporary set \tmpc to \OUT.

The code part after \ifnum\apnumE<0 does a := a*a using the \apPOWt macro. The result is
normalized by the \apPOWn macro.

apnum.tex
512: \def\apPOWb{%

513: \ifodd\apnumE \def\tmpb{}\expandafter\apPOWd\OUT

514: \let\tmpd=\OUT \let\OUT=\tmpc

515: \expandafter\apMULd \tmpb@\expandafter\apPOWn\OUT@%

516: \let\tmpc=\OUT \let\OUT=\tmpd

517: \fi

518: \divide\apnumE by2

519: \ifnum\apnumE>0 \expandafter\apPOWt\OUT \expandafter\apPOWn\OUT@%

520: \expandafter\apPOWb

521: \fi

522: }

The macro \apPOWd 〈initialized interleaved reversed format〉 extracts the Digits from its argument
and saves them to the \tmpb macro.

apnum.tex
523: \def\apPOWd#1#2{% \apPOWd <spec format> => \tmpb (in simple reverse format)

524: \ifx*#1\expandafter\apPOWd \else

525: \edef\tmpb{\tmpb{#1}}%

526: \ifx*#2\else \expandafter\expandafter\expandafter\apPOWd\fi

527: \fi

528: }

\apPOWb: 25–26 \apPOWd: 26

26

2 The Implementation Arbitrary Precision Numbers

The \apPOWe macro skips the rest of the body of the \apPOWa macro to the \relax. It is used
when \errmessage is printed.

apnum.tex
529: \def\apPOWe#1\relax{\fi}

The \apPOWg macro provides the conversion from interleaved reversed format to the human read-
able form and save the result to the \OUT macro. It ignores the first two elements from the format and
runs \apPOWh.

apnum.tex
530: \def\apPOWg#1#2{\def\OUT{}\apPOWh} % conversion to the human readable form

531: \def\apPOWh#1#2{\apnumA=#1

532: \ifx*#2\edef\OUT{\the\apnumA\OUT}\else \edef\OUT{\apIVwrite\apnumA\OUT}\expandafter\apPOWh\fi

533: }

The normalization to the initialized interleaved format of the \OUT is done by the \apPOWn 〈data〉@
macro. The \apPOWna reads the first part of the 〈data〉 (to the first *, where the Digits are non-interleaved.
The \apPOWnn reads the second part of 〈data〉 where the Digits of the result are interleaved with the
digits of the old coefficients. We need to set the result as a new coefficients and prepare zeros between
them for the new calculation. The dot after the first * is not printed (the zero is printed instead it) but
it does not matter because this token is simply ignored during the calculation.

apnum.tex
534: \def\apPOWn#1{\def\OUT{*}\apPOWna}

535: \def\apPOWna#1{\ifx*#1\expandafter\apPOWnn\else \edef\OUT{\OUT0{#1}}\expandafter\apPOWna\fi}

536: \def\apPOWnn#1#2{\ifx*#1\edef\OUT{\OUT*}\else\edef\OUT{\OUT0{#1}}\expandafter\apPOWnn\fi}

The powering to two (\OUT:=\OUT^2) is provided by the \apPOWt 〈data〉 macro. The macro
\apPOWu is called repeatedly for each \apnumA=Digit from the 〈data〉. One line of the multiplication
scheme is processed by the \apPOWv 〈data〉 macro. We can call the \apMULe macro here but we don’t do
it because a slight optimization is used here. You can try to multiply the number with digits abcd by
itself in the mirrored multiplication scheme. You’ll see that first line includes a^2 2ab 2ac 2ad, second
line is intended by two columns and includes b^2 2bc 2bd, next line is indented by next two columns
and includes c^2 2cd and the last line is intended by next two columns and includes only d^2. Such
calculation is slightly shorter than normal multiplication and it is implemented in the \apPOWv macro.

apnum.tex
537: \def\apPOWt#1#2{\apPOWu} % power to two

538: \def\apPOWu#1#2{\apnumA=#1

539: \expandafter\apPOWv\OUT

540: \ifx*#2\else \expandafter\apPOWu\fi

541: }

542: \def\apPOWv#1*#2#3#4{\def\apOUTl{}\apnumO=1 \apnumL=0

543: \apnumB=\apnumA \multiply\apnumB by\apnumB \multiply\apnumA by2

544: \ifx*#4\else\advance\apnumB by#4 \fi

545: \ifx\apnumB<\apIVbase \apnumX=0 \else \apIVtrans \fi

546: \edef\OUT{#1{#2}{\the\apnumB}*}%

547: \ifx*#4\apMULf0*\else\expandafter\apMULf\fi

548: }

2.8 ROLL, ROUND and NORM Macros
The public macros \ROLL, \ROUND and \NORM are implemented by \apROLLa, \apROUNDa and

\apNORMa macros with common format of the parameter text: 〈expanded sequence〉.@〈sequence〉 where
〈expanded sequence〉 is the expansion of the macro 〈sequence〉 (given as first parameter of \ROLL, \ROUND
and \NORM, but without optionally minus sign. If there was the minus sign then \apnumG=-1 else
\apnumG=1. This preparation of the parameter 〈sequence〉 is done by the \apPPs macro. The second
parameter of the macros \ROLL, \ROUND and \NORM is saved to the \tmpc macro.

\apROLLa 〈param〉.@〈sequence〉 shifts the decimal point of the 〈param〉 by \tmpc positions to the
right (or to the left, if \tmpc is negative) and saves the result to the 〈sequence〉 macro. The \tmpc value
is saved to the \apnumA register and the \apROLLc is executed if we need to shift the decimal point to
left. Else \apROLLg is executed.

\apPOWe: 25–27 \apPOWg: 26–27 \apPOWh: 27 \apPOWn: 26–27 \apPOWna: 27 \apPOWnn: 27
\apPOWt: 26–27 \apPOWu: 27 \apPOWv: 27 \apROLLa: 6, 15, 20–21, 26–30

27

2 The Implementation Arbitrary Precision Numbers

apnum.tex
552: \def\apROLLa{\apnumA=\tmpc\relax \ifnum\apnumA<0 \expandafter\apROLLc\else \expandafter\apROLLg\fi}

The \apROLLc 〈param〉.@〈sequence〉 shifts the decimal point to left by the -\apnumA decimal
digits. It reads the tokens from the input stream until the dot is found using \apROLLd macro. The
number of such tokens is set to the \apnumB register and tokens are saved to the \tmpc macro. If the dot is
found then \apROLLe does the following: if the number of read tokens is greater then the absolute value of
the 〈shift〉, then the number of positions from the most left digit of the number to the desired place of the
dot is set to the \apnumA register a the dot is saved to this place by \apROLLi〈parameter〉.@〈sequence〉.
Else the new number looks like .000123 and the right number of zeros are saved to the 〈sequence〉 using
the \apADDzeros macro and the rest of the input stream (including expanded \tmpc returned back) is
appended to the macro 〈sequence〉 by the \apROLLf 〈param〉.@ macro.

apnum.tex
553: \def\apROLLc{\edef\tmpc{}\edef\tmpd{\ifnum\apnumG<0-\fi}\apnumB=0 \apROLLd}

554: \def\apROLLd#1{%

555: \ifx.#1\expandafter\apROLLe

556: \else \edef\tmpc{\tmpc#1}%

557: \advance\apnumB by1

558: \expandafter\apROLLd

559: \fi

560: }

561: \def\apROLLe#1{\ifx@#1\edef\tmpc{\tmpc.@}\else\edef\tmpc{\tmpc#1}\fi

562: \advance\apnumB by\apnumA

563: \ifnum\apnumB<0

564: \apnumZ=-\apnumB \edef\tmpd{\tmpd.}\apADDzeros\tmpd

565: \expandafter\expandafter\expandafter\apROLLf\expandafter\tmpc

566: \else

567: \apnumA=\apnumB

568: \expandafter\expandafter\expandafter\apROLLi\expandafter\tmpc

569: \fi

570: }

571: \def\apROLLf#1.@#2{\edef#2{\tmpd#1}}

The \apROLLg 〈param〉.@〈sequence〉 shifts the decimal point to the right by \apnumA digits starting
from actual position of the input stream. It reads tokens from the input stream by the \apROLLh and
saves them to the \tmpd macro where the result will be built. When dot is found the \apROLLi is
processed. It reads next tokens and decreases the \apnumA by one for each token. It ends (using
\apROLLj\apROLLk) when \apnumA is equal to zero. If the end of the input stream is reached (the @
character) then the zero is inserted before this character (using \apROLLj\apROLLi0@). This solves the
situations like 123, 〈shift〉=2, → 12300.

apnum.tex
572: \def\apROLLg#1{\edef\tmpd{\ifnum\apnumG<0-\fi}\ifx.#1\apnumB=0 \else\apnumB=1 \fi \apROLLh#1}

573: \def\apROLLh#1{\ifx.#1\expandafter\apROLLi\else \edef\tmpd{\tmpd#1}\expandafter\apROLLh\fi}

574: \def\apROLLi#1{\ifx.#1\expandafter\apROLLi\else

575: \ifnum\apnumA>0 \else \apROLLj \apROLLk#1\fi

576: \ifx@#1\apROLLj \apROLLi0@\fi

577: \advance\apnumA by-1

578: \ifx0#1\else \apnumB=1 \fi

579: \ifnum\apnumB>0 \edef\tmpd{\tmpd#1}\fi

580: \expandafter\apROLLi\fi

581: }

The \apROLLg macro initializes \apnumB=1 if the 〈param〉 doesn’t begin by dot. This is a flag that
all digits read by \apROLLi have to be saved. If the dot begins, then the number can look like .000123
(before moving the dot to the right) and we need to ignore the trailing zeros. The \apnumB is equal to
zero in such case and this is set to 1 if here is first non-zero digit.

The \apROLLj macro closes the conditionals and runs its parameter separated by \fi. It skips
the rest of the \apROLLi macro too.

apnum.tex
582: \def\apROLLj#1\fi#2\apROLLi\fi{\fi\fi#1}

\apROLLc: 27–28 \apROLLd: 28 \apROLLe: 28 \apROLLf: 28 \apROLLg: 27–28 \apROLLh: 28
\apROLLi: 28 \apROLLj: 28

28

2 The Implementation Arbitrary Precision Numbers

The macro \apROLLk puts the decimal point to the \tmpd at current position (using \apROLLn) if
the input stream is not fully read. Else it ends the processing. The result is an integer without decimal
digit in such case.

apnum.tex
583: \def\apROLLk#1{\ifx@#1\expandafter\apROLLo\expandafter@\else

584: \def\tmpc{}\apnumB=0 \expandafter\apROLLn\expandafter#1\fi

585: }

The macro \apROLLn reads the input stream until the dot is found. Because we read now the
digits after a new position of the decimal point we need to check situations of the type 123.000 which is
needed to be written as 123 without decimal point. This is a reason of a little complication. We save all
digits to the \tmpc macro and calculate the sum of such digits in \apnumB register. If this sum is equal
to zero then we don’t append the .\tmpc to the \tmpd. The macro \apROLLn is finished by the \apROLLo
@〈sequence〉 macro, which removes the last token from the input stream and defines 〈sequence〉 as \tmpd.

apnum.tex
586: \def\apROLLn#1{%

587: \ifx.#1\ifnum\apnumB>0 \edef\tmpd{\tmpd.\tmpc}\fi \expandafter\apROLLo

588: \else \edef\tmpc{\tmpc#1}\advance\apnumB by#1 \expandafter\apROLLn

589: \fi

590: }

591: \def\apROLLo@#1{\let#1=\tmpd}

The macro \apROUNDa 〈param〉.@〈sequence〉 rounds the number given in the 〈param〉. The number
of digits after decimal point \tmpc is saved to \apnumD. If this number is negative then \apROUNDe is
processed else the \apROUNDb reads the 〈param〉 to the decimal point and saves this part to the \tmpc
macro. The \tmpd macro (where the rest after decimal point of the number will be stored) is initialized
to empty and the \apROUNDc is started. This macro reads one token from input stream repeatedly until
the number of read tokens is equal to \apnumD or the stop mark @ is reached. All tokens are saved to
\tmpd. Then the \apROUNDd macro reads the rest of the 〈param〉, saves it to the \XOUT macro and defines
〈sequence〉 (i.e. #2) as the rounded number.

apnum.tex
593: \def\apROUNDa{\apnumD=\tmpc\relax

594: \ifnum\apnumD<0 \expandafter\apROUNDe

595: \else \expandafter\apROUNDb

596: \fi

597: }

598: \def\apROUNDb#1.{\edef\tmpc{#1}\apnumX=0 \def\tmpd{}\let\apNext=\apROUNDc \apNext}

599: \def\apROUNDc#1{\ifx@#1\def\apNext{\apROUNDd.@}%

600: \else \advance\apnumD by-1

601: \ifnum\apnumD<0 \def\apNext{\apROUNDd#1}%

602: \else \ifx.#1\else \advance\apnumX by#1 \edef\tmpd{\tmpd#1}\fi

603: \fi

604: \fi \apNext

605: }

606: \def\apROUNDd#1.@#2{\def\XOUT{#1}%

607: \ifnum\apnumX=0 \def\tmpd{}\fi

608: \ifx\tmpd\empty

609: \ifx\tmpc\empty \def#2{0}%

610: \else \edef#2{\ifnum\apnumG<0-\fi\tmpc}\fi

611: \else\edef#2{\ifnum\apnumG<0-\fi\tmpc.\tmpd}\fi

612: }

The macro \apROUNDe solves the “less standard” problem when rounding to the negative digits
after decimal point \apnumD, i.e. we need to set -\apnumD digits before decimal point to zero. The
solution is to remove the rest of the input stream, use \apROLLa to shift the decimal point left by
-\apnumD positions, use \apROUNDa to remove all digits after decimal point and shift the decimal point
back to its previous place.

apnum.tex
613: \def\apROUNDe#1.@#2{\apnumC=\apnumD

614: \apPPs\apROLLa#2{\apnumC}\apPPs\apROUNDa#2{0}\apPPs\apROLLa#2{-\apnumC}%

615: }

\apROLLk: 28–29 \apROLLn: 29 \apROLLo: 29 \apROUNDa: 6, 11, 27, 29–30 \apROUNDb: 29
\apROUNDc: 29 \apROUNDd: 29 \apROUNDe: 29

29

2 The Implementation Arbitrary Precision Numbers

The macro \apNORMa redefines the 〈sequence〉 in order to remove minus sign because the \apDIG
macro uses its parameter without this sign. Then the \apNORMb 〈sequence〉〈parameter〉@ is executed
where the dot in the front of the parameter is tested. If the dot is here then the \apDIG macro measures
the digits after decimal point too and the \apNORMc is executed (where the \apROLLa shifts the decimal
point from the right edge of the number). Else the \apDIG macro doesn’t measure the digits after decimal
point and the \apNORMd is executed (where the \apROLLa shifts the decimal point from the left edge of
the number).

apnum.tex
616: \def\apNORMa#1.@#2{\ifnum\apnumG<0 \def#2{#1}\fi \expandafter\apNORMb\expandafter#2\tmpc@}

617: \def\apNORMb#1#2#3@{%

618: \ifx.#2\apnumC=#3\relax \apDIG#1\apnumA \apNORMc#1%

619: \else \apnumC=#2#3\relax \apDIG#1\relax \apNORMd#1%

620: \fi

621: }

622: \def\apNORMc#1{\advance\apE by-\apnumA \advance\apE by\apnumC

623: \def\tmpc{-\apnumC}\expandafter\apROLLa#1.@#1%

624: }

625: \def\apNORMd#1{\advance\apE by\apnumD \advance\apE by-\apnumC

626: \def\tmpc{\apnumC}\expandafter\apROLLa\expandafter.#1.@#1%

627: }

2.9 Function-like Macros
The internal implementation of function-like macros \ABS, \iDIV etc. are simple. The \apFACa

macro (factorial) doesn’t use recursive call because the TEX group is opened in such case and the number
of levels of TEX group is limited (to 255 at my computer). But we want to calculate more factorial than
only 255!.

apnum.tex
631: \def\apABSa{\ifnum\apSIGN<0 \apSIGN=1 \fi}

632: \def\apiDIVa{{\apFRAC=0 \apTOT=0 \apDIVa \apOUTtmpb}\tmpb}

633: \def\apiMODa{{\apFRAC=0 \apTOT=0 \apDIVa \let\OUT=\XOUT \apOUTtmpb}\tmpb}

634: \def\apiROUNDa{\apROUNDa\OUT0}

635: \def\apiFRACa{\apROUNDa\OUT0\ifx\XOUT\empty\def\OUT{0}\else\edef\OUT{.\XOUT}\fi}

636: \def\apFACa{{\apnumC=\OUT\relax

637: \loop \ifnum \apnumC>2 \advance\apnumC by-1

638: \MUL{\OUT}{\the\apnumC}\repeat

639: \global\let\OUT=\OUT}%

640: }

2.10 Auxiliary Macros
The macro \apREV {〈tokens〉} reverses the order of the 〈tokens〉. For example \apREV{revers}

expands to srever. The macro uses \apREVa and works at expansion level only.
apnum.tex

644: \def\apREV#1{\expandafter\apREVa#1@!}

645: \def\apREVa#1#2!{\ifx@#1\else\apREVa#2!#1\fi}

The macro \apDIG 〈sequence〉〈register or relax 〉 reads the content of the macro 〈sequence〉 and
counts the number of digits in this macro before decimal point and saves it to \apnumD register. If the
macro 〈sequence〉 includes decimal point then it is redefined with the same content but without decimal
point. The numbers in the form .00123 are replaced by 123 without zeros, but \apnumD=-2 in this
example. If the second parameter of the \apDIG macro is \relax then the number of digits after decimal
point isn’t counted. Else the number of these digits is stored to the given 〈register〉.

The macro \apDIG is developed in order to do minimal operations over a potentially long param-
eters. It assumes that 〈sequence〉 includes a number without 〈sign〉 and without left trailing zeros. This
is true after parameter preparation by the \apPPab macro.

The macro \apDIG prepares an incrementation in \tmpc if the second parameter 〈register〉 isn’t
\relax. It initializes \apnumD and 〈register〉. It runs \apDIGa 〈data〉..@〈sequence〉 which increments

\apNORMa: 6, 27, 30 \apNORMb: 30 \apNORMc: 30 \apNORMd: 30 \apABSa: 6 \apiDIVa: 6
\apiMODa: 6 \apiROUNDa: 6 \apiFRACa: 6 \apFACa: 6, 30 \apREV: 30 \apREVa: 30
\apDIG: 12–13, 15–16, 20–21, 26, 30–31 \apDIGa: 31

30

2 The Implementation Arbitrary Precision Numbers

the \apnumD until the dot is found. Then the \apDIGb is executed (if there are no digits before dot) or
the \apDIGc is called (if there is at least one digit before dot). The \apDIGb ignores zeros immediately
after dot. The \apDIGc reads the rest of the 〈data〉 to the #1 and saves it to the \tmpd macro. It runs
the counter over this 〈data〉 \apDIGd 〈data〉@ only if it is desired (\tmpc is non-empty). Else the \apDIGe
is executed. The \apDIGe 〈dot or nothing〉@〈sequence〉 redefines 〈sequence〉 if it is needed. Note, that
#1 is empty if and only if the 〈data〉 include no dot (first dot was reached as the first dot from \apDIG,
the second dot from \apDIG was a separator of #1 in \apDIGc and there is nothing between the second
dot and the @ mark. The 〈sequence〉 isn’t redefined if it doesn’t include a dot. Else the sequence is set
to the \tmpd (the rest after dot) if there are no digits before dot. Else the sequence is redefined using
expandable macro \apDIGf.

apnum.tex
647: \def\apDIG#1#2{\ifx\relax#2\def\tmpc{}\else #2=0 \def\tmpc{\advance#2 by1 }\fi

648: \apnumD=0 \expandafter\apDIGa#1..@#1%

649: }

650: \def\apDIGa#1{\ifx.#1\csname apDIG\ifnum\apnumD>0 c\else b\fi\expandafter\endcsname

651: \else \advance\apnumD by1 \expandafter\apDIGa\fi}

652: \def\apDIGb#1{%

653: \ifx0#1\advance\apnumD by-1 \tmpc \expandafter\apDIGb

654: \else \expandafter\apDIGc \expandafter#1\fi

655: }

656: \def\apDIGc#1.{\def\tmpd{#1}%

657: \ifx\tmpc\empty \let\apNext=\apDIGe

658: \else \def\apNext{\expandafter\apDIGd\tmpd@}%

659: \fi \apNext

660: }

661: \def\apDIGd#1{\ifx@#1\expandafter\apDIGe \else \tmpc \expandafter\apDIGd \fi}

662: \def\apDIGe#1@#2{%

663: \ifx@#1@\else % #1=empty <=> the param has no dot, we need to do nothing

664: \ifnum\apnumD>0 \edef#2{\expandafter\apDIGf#2@}% the dot plus digits before dot

665: \else \let#2=\tmpd % there are only digits after dot, use \tmpd

666: \fi\fi

667: }

668: \def\apDIGf#1.#2@{#1#2}

The macro \apIVread 〈sequence〉 reads four digits from the macro 〈sequence〉, sets \apnumX as
the Digit consisting from read digits and removes the read digits from 〈sequence〉. It internally expands
〈sequence〉, adds the \apNL marks and runs \apIVreadA macro which sets the \apnumX and redefines
〈sequence〉.

The usage of the \apNL as a stop-marks has the advantage: they act as simply zero digits in the
comparison but we can ask by \ifx if this stop mark is reached. The #5 parameter of \apIVreadA is
separated by first occurrence of \apNL, i.e. the rest of the macro 〈sequence〉 is here.

apnum.tex
670: \def\apNL{0}

671: \def\apIVread#1{\expandafter\apIVreadA#1\apNL\apNL\apNL\apNL\apNL@#1}

672: \def\apIVreadA#1#2#3#4#5\apNL#6@#7{\apnumX=#1#2#3#4\relax \def#7{#5}}

The macro \apIVreadX 〈num〉〈sequence〉 acts similar as \apIVread〈sequence〉, but only 〈num〉
digits are read. The 〈num〉 is expected in the range 0 to 4. The macro prepares the appropriate number
of empty parameters in \tmpc and runs \apIVreadA with these empty parameters inserted before the
real body of the 〈sequence〉.

apnum.tex
673: \def\apIVreadX#1#2{\edef\tmpc{\ifcase#1{}{}{}0\or{}{}{}\or{}{}\or{}\fi}%

674: \expandafter\expandafter\expandafter\apIVreadA\expandafter\tmpc#2\apNL\apNL\apNL\apNL\apNL@#2%

675: }

The macro \apIVwrite 〈num〉 expands the digits from 〈num〉 register. The number of digits are
four. If the 〈num〉 is less than 1000 then left zeros are added.

apnum.tex
676: \def\apIVwrite#1{\ifnum#1<1000 0\ifnum#1<100 0\ifnum#1<10 0\fi\fi\fi\the#1}

\apDIGb: 31 \apDIGc: 31 \apDIGd: 31 \apDIGe: 31 \apDIGf: 31 \apIVread: 13–14, 20–22, 31
\apIVreadA: 31 \apNL: 13–14, 21–23, 31 \apIVreadX: 20–21, 31 \apIVwrite: 15, 18, 20–21,
24–25, 27, 31

31

2 The Implementation Arbitrary Precision Numbers

The macro \apIVtrans calculates the transmission for the next Digit. The value (greater or
equal 10000) is assumed to be in \apnumB. The new value less than 10000 is stored to \apnumB and the
transmission value is stored in \apnumX. The constant \apIVbase is used instead of literal 10000 because
it is quicker.

apnum.tex
678: \mathchardef\apIVbase=10000

679: \def\apIVtrans{\apnumX=\apnumB \divide\apnumB by\apIVbase \multiply\apnumB by-\apIVbase

680: \advance\apnumB by\apnumX \divide\apnumX by\apIVbase

681: }

The macro \apIVmod 〈length〉〈register〉 sets 〈register〉 to the number of digits to be read to the
first Digit, if the number has 〈length〉 digits in total. We need to read all Digits with four digits, only
first Digit can be shorter.

apnum.tex
682: \def\apIVmod#1#2{#2=#1\divide#2by4 \multiply#2by-4 \advance#2by#1\relax

The macro \apIVdot 〈num〉〈param〉 adds the dot into 〈param〉. Let K = 〈num〉 and F is the
number of digits in the 〈param〉. The macro expects that K ∈ [0, 4) and F ∈ (0, 4]. The macro inserts
the dot after K-th digit if K < F . Else no dot is inserted. It is expandable macro, but two full expansions
are needed. After first expansion the result looks like \apIVdotA〈dots〉〈param〉....@ where 〈dots〉 are
the appropriate number of dots. Then the \apIVdotA reads the four tokens (maybe the generated dots),
ignores the dots while printing and appends the dot after these four tokens, if the rest #5 is non-empty.

apnum.tex
686: \def\apIVdot#1#2{\noexpand\apIVdotA\ifcase#1....\or...\or..\or.\fi #2....@}

687: \def\apIVdotA#1#2#3#4#5.#6@{\ifx.#1\else#1\fi

688: \ifx.#2\else#2\fi \ifx.#3\else#3\fi \ifx.#4\else#4\fi\ifx.#5.\else.#5\fi

689: }

The expandable macro \apNUMdigits {〈param〉} expands (using the \apNUMdigitsA macro) to
the number of digits in the 〈param〉. We assume that maximal number of digits will be four.

apnum.tex
690: \def\apNUMdigits#1{\expandafter\apNUMdigitsA#1@@@@!}

691: \def\apNUMdigitsA#1#2#3#4#5!{\ifx@#4\ifx@#3\ifx@#2\ifx@#10\else1\fi \else2\fi \else3\fi \else4\fi}

The macro \apADDzeros 〈sequence〉 adds \apnumZ zeros to the macro 〈sequence〉.
apnum.tex

693: \def\apADDzeros#1{\edef#1{#10}\advance\apnumZ by-1

694: \ifnum\apnumZ>0 \expandafter\apADDzeros\expandafter#1\fi

695: }

The expandable macro \apREMzerosR {〈param〉} removes right trailing zeros from the 〈param〉.
It expands to \apREMzerosRa〈param〉@0@!. The macro \apREMzerosRa reads all text terminated by 0@
to #1. This termination zero can be the most right zero of the 〈param〉 (then #2 is non-empty) or 〈param〉
hasn’t such zero digit (then #2 is empty). If #2 is non-empty then the \apREMzerosRa is expanded again
in the recursion. Else \apREMzerosRb removes the stop-mark @ and the expansion is finished.

apnum.tex
696: \def\apREMzerosR#1{\expandafter\apREMzerosRa#1@0@!}

697: \def\apREMzerosRa#10@#2!{\ifx!#2!\apREMzerosRb#1\else\apREMzerosRa#1@0@!\fi}

698: \def\apREMzerosRb#1@{#1}

The expandable macro \apREMdotR {〈param〉} removes right trailing dot from the 〈param〉 if
exists. It expands to \apREMdotRa and works similarly as the \apREMzerosR macro.

apnum.tex
699: \def\apREMdotR#1{\expandafter\apREMdotRa#1@.@!}

700: \def\apREMdotRa#1.@#2!{\ifx!#2!\apREMzerosRb#1\else#1\fi}

The writing to the \OUT in the \MUL, \DIV and \POW macros is optimized, which de-
creases the computation time with very large numbers ten times and more. We can do simply
\edef\OUT{\OUT〈something〉} instead of

\expandafter\edef\csname apOUT:\apOUTn\endcsname
{\csname apOUT:\apOUTn\endcsname<something>}%

\apIVtrans: 17–18, 27, 32 \apIVbase: 14, 17–18, 24, 27, 32 \apIVmod: 12–13, 16, 21, 26, 32
\apIVdot: 18, 24, 32 \apIVdotA: 32 \apNUMdigits: 18, 24, 32 \apNUMdigitsA: 32
\apADDzeros: 13, 16, 20–21, 28, 32 \apREMzerosR: 15, 24–25, 32 \apREMzerosRa: 32
\apREMzerosRb: 32 \apREMdotR: 24–25, 32 \apREMdotRa: 32

32

3 Index Arbitrary Precision Numbers

but \edef\OUT{\OUT〈something〉} is typically processed very often over possibly very long macro (many
thousands of tokens). It is better to do \edef over more short macros \apOUT:0, \apOUT:1, etc.
Each such macro includes only 7 Digits pairs of the whole \OUT. The macro \apOUTx is invoked
each 7 digit (the \apnumO register is decreased). It uses \apnumL value which is the 〈num〉 part of
the next \apOUT:〈num〉 control sequence. The \apOUTx defines this 〈num〉 as \apOUTn and initializes
\apOUT:〈num〉 as empty and adds the 〈num〉 to the list \apOUTl. When the creating of the next \OUT
macro is definitely finished, the \OUT macro is assembled from the parts \apOUT:0, \apOUT:1 etc. by the
macro \apOUTs 〈list of numbers〉〈dot〉〈comma〉.

apnum.tex
702: \def\apOUTx{\apnumO=7

703: \edef\apOUTn{\the\apnumL}\edef\apOUTl{\apOUTl\apOUTn,}%

704: \expandafter\def\csname apOUT:\apOUTn\endcsname{}%

705: \advance\apnumL by1

706: }

707: \def\apOUTs#1,{\ifx.#1\else\csname apOUT:#1\expandafter\endcsname\expandafter\apOUTs\fi}

The macro \apOUTtmpb is used in the context {...\apOUTtmpb}\tmpb. It saves the results \OUT,
\apE and \apSIGN calculated in the TEX group in the \tmpb macro, expands the \tmpb, ends the TEX
group and executes the \tmpb in order to make possible to use these results outside this group.

apnum.tex
709: \def\apOUTtmpb{\edef\tmpb{\apSIGN=\the\apSIGN \apE=\the\apE \edef\noexpand\OUT{\OUT}}\expandafter}

2.11 Conclusion
Here is my little joke. Of course, this macro file works in LaTEX without problems because only

TEX primitives (from classic TEX) and the \newcount macro are used here. But I wish to print my
opinion about LaTEX. I hope that this doesn’t matter and LaTEX users can use my macro because a
typical LaTEX user doesn’t read a terminal nor .log file.

apnum.tex
713: \ifx\documentclass\undefined \else % please, don’t remove this message

714: \message{SORRY, you are using LaTeX. I don’t recommend this. Petr Olsak}\fi

715: \catcode‘\@=\apnumZ

716: \endinput

3 Index
The bold number is the number of the page where the item is documented. Other numbers are

pagenumbers of the occurrences of such item.

\ABS: 3, 6, 30
\addE: 4, 5–6
\apABSa: 30, 6
\apADDzeros: 32, 13, 16, 20–21, 28
\apDIG: 30, 12–13, 15–16, 20–21, 26, 31
\apDIGa: 30, 31
\apDIGb: 31
\apDIGc: 31
\apDIGd: 31
\apDIGe: 31
\apDIGf: 31
\apDIVa: 20, 5, 21, 26, 30
\apDIVcomp: 21, 20
\apDIVcompA: 21
\apDIVcompB: 21, 22
\apDIVg: 22, 20–21
\apDIVh: 23, 22, 24
\apDIVi: 23, 22

\apDIVj: 23
\apDIVp: 23
\apDIVq: 23, 24
\apDIVr: 24, 23
\apDIVt: 24
\apDIVu: 24, 25
\apDIVv: 25, 20–21
\apDIVw: 25
\apDIVxA: 23, 20–21, 24
\apDIVxB: 23, 20–21
\apE: 4, 5–13, 15–16, 20–21,

25–26, 30, 33
\apEDIV: 8
\apEMINUS: 8
\apEMUL: 8
\apEPLUS: 8, 9
\apEPOW: 8
\apEVALa: 6, 5, 9

\apOUTx: 17–18, 24, 33 \apOUTn: 17–18, 24, 33 \apOUTl: 17, 23–24, 27, 33 \apOUTs: 17, 24, 33
\apOUTtmpb: 11, 30, 33

33

3 Index Arbitrary Precision Numbers

\apEVALb: 7, 6, 8
\apEVALc: 7
\apEVALd: 7
\apEVALdo: 9, 8
\apEVALe: 7
\apEVALerror: 9, 8
\apEVALf: 7
\apEVALg: 7
\apEVALh: 7
\apEVALk: 7
\apEVALm: 7, 8
\apEVALn: 7, 8
\apEVALo: 8, 7
\apEVALone: 11, 6
\apEVALp: 8, 7
\apEVALpush: 8, 9
\apEVALstack: 8, 9
\apEVALtwo: 11, 6
\apFACa: 30, 6
\apFRAC: 2, 3, 6, 21, 30
\apiDIVa: 30, 6
\apiFRACa: 30, 6
\apiMODa: 30, 6
\apiROUNDa: 30, 6
\apIVbase: 32, 14, 17–18, 24, 27
\apIVdot: 32, 18, 24
\apIVdotA: 32
\apIVmod: 32, 12–13, 16, 21, 26
\apIVread: 31, 13–14, 20–22
\apIVreadA: 31
\apIVreadX: 31, 20–21
\apIVtrans: 32, 17–18, 27
\apIVwrite: 31, 15, 18, 20–21, 24–25, 27
\apMULa: 15, 5, 16, 25
\apMULb: 17, 16, 25–26
\apMULc: 17, 16
\apMULd: 17, 16, 26
\apMULe: 17, 18, 27
\apMULf: 17, 18, 27
\apMULg: 18, 16
\apMULh: 18
\apMULi: 18
\apMULj: 18
\apMULo: 18
\apMULt: 18
\apNL: 31, 13–14, 21–23
\apNOminus: 11
\apNORMa: 30, 6, 27
\apNORMb: 30
\apNORMc: 30
\apNORMd: 30
\apNUMdigits: 32, 18, 24
\apNUMdigitsA: 32
\apnumversion: 5
\apOUTl: 33, 17, 23–24, 27
\apOUTn: 33, 17–18, 24

\apOUTs: 33, 17, 24
\apOUTtmpb: 33, 11, 30
\apOUTx: 33, 17–18, 24
\apPLUSa: 12, 5, 13
\apPLUSb: 13, 12
\apPLUSc: 13, 14
\apPLUSd: 14
\apPLUSe: 13, 14
\apPLUSf: 14
\apPLUSg: 14, 12–13
\apPLUSh: 14
\apPLUSm: 14, 12–13
\apPLUSp: 14, 12–13
\apPLUSw: 15, 14
\apPLUSxA: 12, 13–14
\apPLUSxB: 12, 13–14
\apPLUSxE: 15, 12–13
\apPLUSy: 15, 13
\apPLUSz: 15
\apPOWa: 25, 5, 26–27
\apPOWb: 26, 25
\apPOWd: 26
\apPOWe: 27, 25–26
\apPOWg: 27, 26
\apPOWh: 27
\apPOWn: 27, 26
\apPOWna: 27
\apPOWnn: 27
\apPOWt: 27, 26
\apPOWu: 27
\apPOWv: 27
\apPPa: 9, 10
\apPPab: 11, 5, 12, 15, 25–26, 30
\apPPb: 9, 10–11
\apPPc: 9, 10
\apPPd: 10, 9
\apPPe: 10
\apPPf: 10
\apPPg: 10
\apPPh: 10
\apPPi: 10
\apPPj: 10
\apPPk: 10
\apPPl: 10
\apPPm: 10
\apPPn: 10, 9
\apPPs: 11, 6, 15, 27, 29
\apPPt: 11
\apPPu: 11
\apREMdotR: 32, 24–25
\apREMdotRa: 32
\apREMzerosR: 32, 15, 24–25
\apREMzerosRa: 32
\apREMzerosRb: 32
\apREV: 30
\apREVa: 30

34

3 Index Arbitrary Precision Numbers

\apROLLa: 27, 6, 15, 20–21, 26, 28–30
\apROLLc: 28, 27
\apROLLd: 28
\apROLLe: 28
\apROLLf: 28
\apROLLg: 28, 27
\apROLLh: 28
\apROLLi: 28
\apROLLj: 28
\apROLLk: 29, 28
\apROLLn: 29
\apROLLo: 29
\apROUNDa: 29, 6, 11, 27, 30
\apROUNDb: 29
\apROUNDc: 29
\apROUNDd: 29
\apROUNDe: 29
\apSIGN: 6, 5, 9–13, 15–16,

20–21, 26, 30, 33
\apTESTdigit: 9, 7–8

\apTOT: 2, 3, 6, 21, 30
\DIV: 3, 4–5, 8–9, 11, 32
\evaldef: 2, 3–6, 8–9, 11
\FAC: 3, 6
\iDIV: 3, 6, 30
\iFRAC: 3, 6
\iMOD: 3, 6
\iROUND: 3, 6
\MINUS: 3, 4–5, 8–9
\MUL: 3, 4–9, 11, 23, 30, 32
\nexti: 23
\NORM: 4, 5–6, 11, 27
\OUT: 3, 4, 6, 9–11, 13–18, 20–21,

23–27, 30, 32–33
\PLUS: 3, 4–6, 8–9, 11
\POW: 3, 4–5, 8–9, 11, 32
\ROLL: 4, 5–6, 11, 27
\ROUND: 4, 5–6, 11, 27
\SIGN: 4, 6
\XOUT: 3, 4, 11, 20–25, 29–30

35

	...Arbitrary Precision Numbers...
	user's documentation
	evaluation of expressions
	\evaldef
	\apTOT
	\apFRAC
	\ABS
	\iDIV
	\iMOD
	\iROUND
	\iFRAC
	\FAC

	basic functions
	\PLUS
	\MINUS
	\MUL
	\DIV
	\POW
	\OUT
	\XOUT
	\SIGN
	\ROUND

	scientific notation of numbers
	\apE
	\addE
	\ROLL
	\NORM

	experiments

	the implementation
	\apnumversion
	public macros
	\apSIGN

	evaluation of the expression
	\apEVALa
	\apEVALb
	\apEVALc
	\apEVALd
	\apEVALe
	\apEVALf
	\apEVALg
	\apEVALh
	\apEVALk
	\apEVALm
	\apEVALn
	\apEVALo
	\apEVALp
	\apEPLUS
	\apEMINUS
	\apEMUL
	\apEDIV
	\apEPOW
	\apEVALstack
	\apEVALpush
	\apEVALdo
	\apEVALerror
	\apTESTdigit

	preparation of the parameter
	\apPPa
	\apPPb
	\apPPc
	\apPPd
	\apPPe
	\apPPf
	\apPPg
	\apPPh
	\apPPi
	\apPPj
	\apPPk
	\apPPl
	\apPPm
	\apPPn
	\apPPab
	\apPPs
	\apPPt
	\apPPu
	\apEVALone
	\apNOminus
	\apEVALtwo

	addition and subtraction
	\apPLUSa
	\apPLUSxA
	\apPLUSxB
	\apPLUSb
	\apPLUSc
	\apPLUSe
	\apPLUSh
	\apPLUSg
	\apPLUSd
	\apPLUSf
	\apPLUSm
	\apPLUSp
	\apPLUSw
	\apPLUSy
	\apPLUSz
	\apPLUSxE

	multiplication
	\apMULa
	\apMULb
	\apMULc
	\apMULd
	\apMULe
	\apMULf
	\apMULg
	\apMULh
	\apMULi
	\apMULj
	\apMULo
	\apMULt

	division
	\apDIVa
	\apDIVcomp
	\apDIVcompA
	\apDIVcompB
	\apDIVg
	\apDIVh
	\apDIVi
	\nexti
	\apDIVj
	\apDIVp
	\apDIVxA
	\apDIVxB
	\apDIVq
	\apDIVr
	\apDIVt
	\apDIVu
	\apDIVv
	\apDIVw

	power to the integer
	\apPOWa
	\apPOWb
	\apPOWd
	\apPOWe
	\apPOWg
	\apPOWh
	\apPOWn
	\apPOWna
	\apPOWnn
	\apPOWt
	\apPOWu
	\apPOWv

	roll, round and norm macros
	\apROLLa
	\apROLLc
	\apROLLd
	\apROLLe
	\apROLLf
	\apROLLg
	\apROLLh
	\apROLLi
	\apROLLj
	\apROLLk
	\apROLLn
	\apROLLo
	\apROUNDa
	\apROUNDb
	\apROUNDc
	\apROUNDd
	\apROUNDe
	\apNORMa
	\apNORMb
	\apNORMc
	\apNORMd

	function-like macros
	\apABSa
	\apiDIVa
	\apiMODa
	\apiROUNDa
	\apiFRACa
	\apFACa

	auxiliary macros
	\apREV
	\apREVa
	\apDIG
	\apDIGa
	\apDIGb
	\apDIGc
	\apDIGd
	\apDIGe
	\apDIGf
	\apIVread
	\apIVreadA
	\apNL
	\apIVreadX
	\apIVwrite
	\apIVtrans
	\apIVbase
	\apIVmod
	\apIVdot
	\apIVdotA
	\apNUMdigits
	\apNUMdigitsA
	\apADDzeros
	\apREMzerosR
	\apREMzerosRa
	\apREMzerosRb
	\apREMdotR
	\apREMdotRa
	\apOUTx
	\apOUTn
	\apOUTl
	\apOUTs
	\apOUTtmpb

	conclusion

	index

