%&plain %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% %% This is the file testmatp.mk, part of the MathKit package %% (version 0.7, January , 1998) for math font %% generation. (Author: Alan Hoenig, ajhjj@cunyvm.cuny.edu) %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \font\TTT=cmr7 \newcount\cno \def\TT{\T\setbox0=\hbox{\char\cno}\ifdim\wd0>0pt \box0\lower4pt\hbox{\TTT\the\cno}\else \ifdim\ht0>0pt \box0\lower4pt\hbox{\TTT\the\cno}\fi\fi \global\advance\cno by1 } \def\showfont#1{\font\T=#1 at 10pt\global\cno=0 \tabskip1pt plus2pt minus1pt\halign to\hsize{&\hss\TT ##\hss\cr \multispan{16}\hfil \tt Font #1\hfil\cr\noalign{\smallskip} &&&&&&&&&&&&&&&\cr &&&&&&&&&&&&&&&\cr &&&&&&&&&&&&&&&\cr &&&&&&&&&&&&&&&\cr &&&&&&&&&&&&&&&\cr &&&&&&&&&&&&&&&\cr &&&&&&&&&&&&&&&\cr &&&&&&&&&&&&&&&\cr &&&&&&&&&&&&&&&\cr &&&&&&&&&&&&&&&\cr &&&&&&&&&&&&&&&\cr &&&&&&&&&&&&&&&\cr &&&&&&&&&&&&&&&\cr &&&&&&&&&&&&&&&\cr &&&&&&&&&&&&&&&\cr }} %% This is a `plain tex-ified' version of Alan Jeffrey's %% testmath.tex. \input z \advance\hsize by -4pc \centerline{\bf A Plain Math Test Document}\medskip \centerline{for fonts installed by MathKit}\bigskip \centerline{\it } \raggedbottom \def\framebox[#1]#2{% \setbox0=\hbox{#2}\dimen0=\wd0 \vbox{\hrule\hbox to#1\dimen0{\vrule\vrule width0pt height8pt depth2pt #2\vrule}\hrule}} \def\testsize#1{ {\tt\string#1}: $a_{c_e}, b_{d_f}, C_{E_G}, 0_{1_2}, X^{X^X}_{X_X}, a_{0_a}, 0_{a_0}, E=mc^2, X_{E=mc^2}, X_{X_{E=mc^2}}, \sum_{i=0}^\infty$ } \def\testdelims#1#2#3{\sqrt{ #1|#1\|#1\uparrow #1\downarrow#1\updownarrow#1\Uparrow#1\Downarrow #1\Updownarrow#1\lfloor#1\lceil #1(#1\{#1[#1\langle #3 #2\rangle#2]#2\}#2) #2\rceil#2\rfloor#2\Updownarrow#2\Downarrow #2\Uparrow#2\updownarrow#2\downarrow#2\uparrow #2\|#2| }\cr} \def\testglyphs#1{ \endgraf \bgroup\narrower\noindent #1a#1b#1c#1d#1e#1f#1g#1h#1i#1j#1k#1l#1m #1n#1o#1p#1q#1r#1s#1t#1u#1v#1w#1x#1y#1z #1A#1B#1C#1D#1E#1F#1G#1H#1I#1J#1K#1L#1M #1N#1O#1P#1Q#1R#1S#1T#1U#1V#1W#1X#1Y#1Z #10#11#12#13#14#15#16#17#18#19 #1\Gamma#1\Delta#1\Theta#1\Lambda#1\Xi #1\Pi#1\Sigma#1\Upsilon#1\Phi#1\Psi#1\Omega #1\alpha#1\beta#1\gamma#1\delta#1\epsilon #1\varepsilon#1\zeta#1\eta#1\theta#1\vartheta #1\iota#1\kappa#1\lambda#1\mu#1\nu#1\xi#1\omicron #1\pi#1\varpi#1\rho#1\varrho #1\sigma#1\varsigma#1\tau#1\upsilon#1\phi #1\varphi#1\chi#1\psi#1\omega #1\partial#1\ell#1\imath#1\jmath#1\wp \endgraf \egroup } \def\sidebearings#1{ $|#1|$ } \def\subscripts#1{ $#1_\circ$ } \def\supscripts#1{ $#1^\circ$ } \def\scripts#1{ $#1^\circ_\circ$ } \def\vecaccents#1{ $\vec#1$ } \def\tildeaccents#1{ $\tilde#1$ } \ifx\omicron\undefined \let\omicron=o \fi \beginsection Introduction This document (based on a similar document created by Alan Jeffrey) tests the math capabilities of a math package for plain \TeX. The math package combines the {\tt } math fonts with the {\tt } text fonts. \showfont{r7t} \smallskip \showfont{r7m} \smallskip \showfont{sy10} \smallskip \showfont{ex10} \beginsection Fonts Math italic: $$ ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz $$ Text italic: $$ {\it ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz} $$ Roman: $$ {\rm ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz} $$ [tt]Typewriter: [tt]$$ [tt] {\tt ABCDEFGHIJKLMNOPQRSTUVWXYZ [tt] abcdefghijklmnopqrstuvwxyz} [tt]$$ Bold: $$ {\bf ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz} $$ [b]{\boldface [b]$$ [b] \Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega [b]$$ [b]} Calligraphic: $$ A{\cal ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z $$ Sans: $$ A{\sf ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z\ a{\sf abcdefghijklmnopqrstuvwxyz}z $$ [fr]Fraktur: [fr]$$ [fr] A{\frak ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z\ a{\frak abcdefghijklmnopqrstuvwxyz}z [fr]$$ [bb]Blackboard Bold: [bb]$$ [bb] A{\bb ABCDEFGHIJKLMNOPQRSTUVWXYZ}Z [bb]$$ Greek: $$ \Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega \alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta \iota\kappa\lambda\mu\nu\xi\omicron\pi\varpi\rho\varrho \sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega $$ Do these line up appropriately? $$ \forall {\cal B} \Gamma {\bf D} \exists [tt]{\tt F} G {\cal H} \Im {\bf J} {\sf K} \Lambda M \aleph \emptyset \Pi {\it Q} \Re \Sigma [tt]{\tt T} \Upsilon {\cal V} {\bf W} \Xi {\sf Y} Z \quad a {\bf c} \epsilon [tt]{\tt i} \kappa {\bf m} \nu o \varpi {\sf r} s \tau {\it u} v {\sf w} z \quad [tt]{\tt g} j {\sf q} \chi y \quad b \delta {\bf f} [tt]{\tt h} k {\sf l} \phi $$ \beginsection Glyph dimensions These glyphs should be optically centered: \testglyphs\sidebearings \noindent These subscripts should be correctly placed: \testglyphs\subscripts \noindent These superscripts should be correctly placed: \testglyphs\supscripts \noindent These subscripts and superscripts should be correctly placed: \testglyphs\scripts \noindent These accents should be centered: \testglyphs\vecaccents \noindent As should these: \testglyphs\tildeaccents \noindent And here are accents in general: \'o \`o \^o \"o \~o \=o \.o \u o \v o \H o \t oo \c o \d o \b o \quad $\hat o \check o \tilde o \acute o \grave o \dot o \ddot o \breve o \bar o \vec o \vec h \hbar$ \beginsection Symbols These arrows should join up properly: $$ a \hookrightarrow b \hookleftarrow c \longrightarrow d \longleftarrow e \Longrightarrow f \Longleftarrow g \longleftrightarrow h \Longleftrightarrow i \mapsto j $$ These symbols should of similar weights: $$ \pm + - \mp = / \backslash ( \langle [ \{ \} ] \rangle ) < \leq > \geq $$ Are these the same size? $$\textstyle \oint \int \quad \bigodot \bigoplus \bigotimes \sum \prod \bigcup \bigcap \biguplus \bigwedge \bigvee \coprod $$ Are these? $$ \oint \int \quad \bigodot \bigoplus \bigotimes \sum \prod \bigcup \bigcap \biguplus \bigwedge \bigvee \coprod $$ \beginsection Sizing $$ abcde + x^{abcde} + 2^{x^{abcde}} $$ The subscripts should be appropriately sized: {\narrower\noindent\bodyfonts \testsize\bodyfonts \endgraf } \beginsection Delimiters Each row should be a different size, but within each row the delimiters should be the same size. First with {\tt\string\big}, etc: $$\vbox{\halign{\hfil$#$\hfil\cr \testdelims\relax\relax{a} \testdelims\bigl\bigr{a} \testdelims\Bigl\Bigr{a} \testdelims\biggl\biggr{a} \testdelims\Biggl\Biggr{a} }}$$ Then with {\tt\string\left} and {\tt\string\right}: $$\vbox{\halign{\hfil$#$\hfil\cr \testdelims\left\right{\vcenter{{\halign{\hss$#$\hss\cr a \cr}}}} \testdelims\left\right{\vcenter{{\halign{\hss$#$\hss\cr a\cr a \cr}}}} \testdelims\left\right{\vcenter{{\halign{\hss$#$\hss\cr a\cr a\cr a \cr}}}} \testdelims\left\right{\vcenter{{\halign{\hss$#$\hss\cr a\cr a\cr a\cr a \cr}}}} }}$$ \beginsection Spacing This paragraph should appear to be a monotone grey texture. Suppose $f \in {\cal S}_n$ and $g(x) = (-1)^{|\alpha|}x^\alpha f(x)$. Then $g \in {\cal S}_n$; now ({\bf c}) implies that $\hat g = D_\alpha \hat f$ and $P \cdot D_\alpha\hat f = P \cdot \hat g = (P(D)g)\hat{}$, which is a bounded function, since $P(D)g \in L^1(R^n)$. This proves that $\hat f \in {\cal S}_n$. If $f_i \rightarrow f$ in ${\cal S}_n$, then $f_i \rightarrow f$ in $L^1(R^n)$. Therefore $\hat f_i(t) \rightarrow \hat f(t)$ for all $t \in R^n$. That $f \rightarrow \hat f$ is a {\it continuous\/} mapping of ${\cal S}_n$ into ${\cal S}_n$ follows now from the closed graph theorem. And thus for $x_1$ through $x_i$. {\bf Functional Analysis}, W.~Rudin, McGraw--Hill, 1973. [b]{\boldface [b]This paragraph should appear to be a monotone dark texture. [b]Suppose $f \in {\cal S}_n$ and $g(x) = (-1)^{|\alpha|}x^\alpha [b]f(x)$. Then $g \in {\cal S}_n$; now (c) implies that $\hat [b]g = D_\alpha \hat f$ and $P \cdot D_\alpha\hat f = P \cdot \hat g = [b](P(D)g)\hat{}$, which is a bounded function, since $P(D)g \in [b]L^1(R^n)$. This proves that $\hat f \in {\cal S}_n$. If $f_i [b]\rightarrow f$ in ${\cal S}_n$, then $f_i \rightarrow f$ in [b]$L^1(R^n)$. Therefore $\hat f_i(t) \rightarrow \hat f(t)$ for all $t [b]\in R^n$. That $f \rightarrow \hat f$ is a {\it continuous} mapping [b]of ${\cal S}_n$ into ${\cal S}_n$ follows now from the closed [b]graph theorem. And thus for $x_1$ through $x_i$. [b]{\it Functional Analysis}, W.~Rudin, McGraw--Hill, 1973. [b]} [b] {\it This paragraph should appear to be a monotone grey texture. Suppose $f \in {\cal S}_n$ and $g(x) = (-1)^{|\alpha|}x^\alpha f(x)$. Then $g \in {\cal S}_n$; now ({\bf c}) implies that $\hat g = D_\alpha \hat f$ and $P \cdot D_\alpha\hat f = P \cdot \hat g = (P(D)g)\hat{}$, which is a bounded function, since $P(D)g \in L^1(R^n)$. This proves that $\hat f \in {\cal S}_n$. If $f_i \rightarrow f$ in ${\cal S}_n$, then $f_i \rightarrow f$ in $L^1(R^n)$. Therefore $\hat f_i(t) \rightarrow \hat f(t)$ for all $t \in R^n$. That $f \rightarrow \hat f$ is a {\bi continuous} mapping of ${\cal S}_n$ into ${\cal S}_n$ follows now from the closed graph theorem. {\bi Functional Analysis}, W.~Rudin, McGraw--Hill, 1973.} The text in these boxes should spread out as much as the math does: $$\vbox{\halign{\hfil#\hfil\cr \framebox[.95]{For example $x+y = \min\{x,y\} + \max\{x,y\}$ is a formula.} \cr \framebox[.975]{For example $x+y = \min\{x,y\} + \max\{x,y\}$ is a formula.} \cr \framebox[1]{For example $x+y = \min\{x,y\} + \max\{x,y\}$ is a formula.} \cr \framebox[1.025]{For example $x+y = \min\{x,y\} + \max\{x,y\}$ is a formula.} \cr \framebox[1.05]{For example $x+y = \min\{x,y\} + \max\{x,y\}$ is a formula.} \cr \framebox[1.075]{For example $x+y = \min\{x,y\} + \max\{x,y\}$ is a formula.} \cr \framebox[1.1]{For example $x+y = \min\{x,y\} + \max\{x,y\}$ is a formula.} \cr \framebox[1.125]{For example $x+y = \min\{x,y\} + \max\{x,y\}$ is a formula.} \cr \cr}}$$ \bye