The Design, Implementation and Use of the
Ngram Statistics Package

Satanjeev Banerjee! and Ted Pedersen?®

! Carnegie Mellon University, Pittsburgh, PA 15213 USA
2 University of Minnesota, Duluth, MN 55812 USA
http://www.d.umn.edu/ tpederse/nsp.html

Abstract. The Ngram Statistics Package (NSP) is a flexible and easy—
to—use software tool that supports the identification and analysis of
Ngrams, sequences of N tokens in online text. We have designed and
implemented NSP to be easy to customize to particular problems and
yet remain general enough to serve a broad range of needs. This pa-
per provides an introduction to NSP while raising some general issues
in Ngram analysis, and summarizes several applications where NSP has
been successfully employed. NSP is written in Perl and is freely available
under the GNU Public License.

1 Introduction

A simple model of written text is as a series of symbols that carry some meaning
when considered as a whole. We may wish to treat those symbols as phrases,
words, or characters depending on our motivations. Ngrams are a simple rep-
resentation that suits this view of written language. An Ngram is a sequence
of N units, or tokens, of text, where those units are typically single characters
or strings that are delimited by spaces. However, a token could also be a fixed
length character sequence, strings with embedded spaces, etc. depending on the
intended application.

The identification of Ngrams that are interesting in some way is a fundamen-
tal task in natural language processing. An Ngram might be considered inter-
esting if it occurs more often than would be expected by chance, or has some
tendency to predict the occurrence of other phenomena in text. There is a long
history of research in this area. Character Ngrams were used by Shannon [10]
to estimate the per—letter entropy of the English language. In the last decade
there has been a large amount of work in developing corpus—based techniques to
identify collocations in text (e.g., [2], [3], [6], [9]).

This paper describes the Ngram Statistics Package (NSP), a general purpose
software tool that allows users to define Ngrams as they wish and then utilize
standard methods from statistics and information theory to identify interesting
or significant instances of Ngrams in large corpora of text.

Earlier versions of this package were known as the Bigram Statistics Package
(BSP). This was first released in November 2000 (v0.1) and was limited to dealing

with two word sequences (bigrams). In June 2001 BSP became NSP (v0.5) and
was extended to handle Ngrams. As of this writing NSP is at v0.51 and remains
an active project, with future releases planned.

What follows is a summary of NSP designed to acquaint a potential user
with a few of the many features of the package. We also review general issues of
Ngram processing, and briefly discuss research that has incorporated NSP.

2 Tokenization of Text

The typical first step of any natural language processing application is tokeniza-
tion. The symbols that make up a text file are divided into tokens which represent
the smallest indivisible units in that text. Tokens are often defined to be space
delimited alphanumeric strings or individual ASCII characters, but could take
many other forms depending on the application.

NSP is designed to allow the user to define tokens through the use of Perl
regular expressions. In particular we define a token as a contiguous sequence of
characters that match one of a set of regular expressions. These may be user-
provided (via the --token option) and must be Perl regular expressions. If the
user does not provide a token definition, the following two regular expressions
provide a default, where the backslashes delimit a Perl regular expression:

/\w+/ — a contiguous sequence of alpha—numeric characters
/[\-»:\?!]/ — a single punctuation mark

This default says that a token is either an alpha—numeric character string or
an individual punctuation mark. Thus in President George W. Bush visits with
guests the tokens are : President<>, George<>, W<>, .<>, Bush<>, visits<>,
with<>, and guests<>.

In our notation tokens are terminated by the meta—character <>, and Ngrams
composed of N tokens are represented by concatenating the <> terminated to-
kens one after another. Such a representation is required since tokens may in-
clude embedded spaces and using white space as a delimiter isn’t possible. For
example, George W. Bush<> represents a single token that starts with G, ends
with A and includes two embedded spaces. This token could then be paired with
another to create a bigram, as in President<>George W. Bush<>.

The NSP default definition of a token as a string of alphanumerics or a single
punctuation mark may not be suitable in all cases. For example, we may not
want to treat George<>, W.<>, and Bush<> as three separate tokens but
as one, since they represent a single entity known as George W. Bush<>. On
the other hand, in Welcome first—time home buyers! should the string first—
time be two tokens or one? Further, do we wish to distinguish between first—
time and first time? What about punctuation marks; should they be a part of
the previous word, a token by themselves or should they be ignored? Similarly,
there are various choices to be made in dealing with numbers, symbols, dates,

abbreviations, etc. The lack of a universally appropriate definition for tokens
motivates our desire to support a very flexible notion of tokenization in NSP.

Tokenization in NSP is done via the program count.pl. It converts the input
file into one long string by replacing new—line characters with spaces. This string
is then matched against the user—provided regular expressions (or the system
defaults). Every regular expression specified is checked (in order) to see if any
of them match the string starting with the first character of the input string.
If none match, then the first character of the input string is considered a non—
token and is removed and henceforth ignored. Otherwise the matching process
stops at the first regular expression that yields a match. The longest sequence
of characters (starting with the first character of the input string) that matches
this regular expression is then identified as the next token and removed from the
string. This process continues until the entire string has been matched and all
the text identified as either tokens or not.

For example, assume that the following two regular expressions are being
used to define tokens: /George W. Bush/, /\w+/. That is, the string George W.
Bush<> will be considered a token, and so will every other unbroken sequence
of alpha numeric characters. Thus, given the sentence President George W. Bush
visits with guests, the output tokens are President<>, George W. Bush<>,
visits<>, with<> and guests<>. Note that after President<> has been rec-
ognized as a token and removed, the resulting string George W. Bush visits with
guests is matched by both regular expressions. However since regular expression
are checked in the order in which they are provided, and the matching process
stops at the first successful match, the resulting token is George W. Bush<>
instead of just George<>. Thus the ordering of regular expressions in the token
definition imposes a sort of priority, and it should be clear to a user that different
orderings of a set of regular expressions can result in different tokenizations.

3 From Tokens to Ngrams

Once tokens are identified, count.pl assembles sequences of N tokens into
Ngrams. Typically Ngrams are formed of contiguous tokens, that is tokens that
occur one after another in the input corpus. Given President George W. Bush
visits with guests and the token definition regular expression /\w+/, the possi-
ble bigrams (Ngrams with N = 2) are: President<>George<>, George<>W<>,
W< > Bush<>, Bush<> visits<>, visits<>with<>, and with<>guests<>. Sim-
ilarly, the possible trigrams (Ngrams with N =3) are: President<> George<> W<>,
George<> W< > Bush<>, W<>Bush<>visits<>, Bush<>visits<>with<>, and
visits<>with<>guests<>.

It may also be necessary to identify Ngrams from non—contiguous tokens,
that is tokens separated by some number of intermediate tokens. For example,
given the text President George W. Bush, it may be advantageous to identify
the bigrams President<>Bush<> and George<>Bush<> and the trigram
President<> George<> Bush<> in addition to the sequential bigrams described
above. This is useful when one wants to report having observed the bigram

George<>Bush<> even when those two tokens are separated by the intervening
token W< >.

To allow Ngrams to be formed from non—contiguous tokens, count.pl pro-
vides a ——window option. This defines a window of k contiguous tokens, where
the value of k is greater than or equal to the value of N. An Ngram can be formed
from any N tokens as long as all the tokens belong to a single window of size
k. Further the N tokens in the Ngram must occur in exactly the same order as
they do in the original window of text.

Thus given a window size of k and an Ngram size of N, we have *Cy (k
choose N) Ngrams per window. For example, consider again the text Pres-
ident George W. Bush visits with guests. The following are all the possible
bigrams for a window size of 3: President<>George<>, President<>W<>,
George<>W<>, George<>Bush<>, W<>Bush<>, W<>uvisits<>, Bush<>
visits<>, Bush<>with<>, visits<>with<>, visits<>guests<>, and with <> guests<>.

4 Counting Ngram Frequencies

Having tokenized a given corpus of text and from that constructed Ngrams, the
program count.pl counts the number of times each Ngram occurs in the corpus.
It outputs the frequency of each unique Ngram, as well as the frequencies of the
various combinations of tokens that make up the Ngram.

4.1 Counting Bigrams

Suppose NSP is counting two token sequences of alphanumeric strings. The out-
put of count.pl consists of a count of the total number of bigrams in the corpus,
followed by a list of all the unique bigrams and their associated frequency counts.
Here we show a small example, which just shows a single bigram and its counts:

1,319,237
George<>Bush<>27 134 463

The value 1,319,237 is the number of bigrams found in the corpus, and can
be thought of as the sample size. Note that this is not a count of the unique
bigrams but rather the total number of bigrams without regard to repetition.
The next line represents the bigram George<>Bush<> and shows that the bi-
gram itself has occurred 27 times in the corpus. Further, the token George<>
has occurred as the “left hand” token in 134 bigrams in the corpus, which in-
cludes the 27 instances of the bigram George<>Bush<> itself. Similarly the
token Bush<> has occurred as the “right hand” token in 463 bigrams, 27 of
which are George<>Bush<>.

The format of the count.pl output is a compact representation of a typical
two—by—two contingency table. For example in Table 1, the four internal cells
categorize the 1,319,237 bigrams in the corpus into four disjoint sets: 27 instances
of the bigram George<>Bush<>, 436 bigrams that have Bush<> as the second

Table 1. Contingency table for George<>Bush<>

Bush| !'Bush
George 27 107 134
1George| 436[1,318,667|1,319,103
463(1,318,774|1,319,237

token and do not have George<> as the first token, 107 bigrams that have
George<> as the first token and do not have Bush<> as the second token, and
the remaining 1,318,667 bigrams that have neither George<> as the first token
nor Bush<> as the second token.

Observe that the rest of the contingency table can be reconstructed from
the internal cell count 27, the marginal frequencies 134 and 463, and the sample
size of 1,319,237. Note that the sample size will be the same regardless of which
Ngram from the corpus is under consideration. Thus, this value need only be
represented once in the count.pl output.

4.2 Counting Ngrams

Although counting bigrams is the default behavior of program count.pl, the
user can set the value of N through the option ——ngram. For trigrams and longer
Ngrams, frequency values of various combinations of tokens are also computed.
For example consider the following output after creating and counting trigrams:

1,316,737
President<>George<>Bush<>2 338 134 463 3 2 27

The sample size is 1,316,737 and indicates the total number of trigrams in the cor-
pus. The next line gives counts for the trigram President<>George<>Bush<>,
which occurs in the corpus exactly twice. Further, the token President<> occurs
as the first token in 338 trigrams, the token George<> occurs as the second token
in 134 trigrams and the token Bush<> occurs as the third token in 463 trigrams
in the corpus. Finally the tokens President<> and George<> occur simulta-
neously as the first and second tokens in 3 trigrams, the tokens President<>
and Bush<> occur as the first and third tokens in 2 trigrams and the tokens
George<> and Bush<> occur as the second and third tokens in 27 trigrams.

This data is represented in Table 2. Here, the 1,316,737 trigrams are broken
up into eight categories depending upon whether they contain or do not contain
the three particular tokens in the three specific positions. Observe that count.pl
only produces the minimum number of frequencies required to reconstruct the
table. This is particularly important as the value of N grows larger.

When given an Ngram, count.pl represents its leftmost token as wy, the
next token as wi, and so on until w,_;. Further let f(a,b,...,c) be the number
of Ngrams that have token w, in position a, token wp in position b, ... and token

Table 2. Contingency tables for President<> George<>Bush<>

Bush| !Bush

President | George 2 1 3
President |!George 0 335 335
!President| George 25 106 131

!President |!George| 436(1,315,832|1,316,268
463(1,316,274|1,316,737

w, in position ¢, where 0 <=a < b < ... < ¢ < n. Then, given an Ngram, the
first frequency value reported is f(0,1,...,n — 1); this is the frequency of the
Ngram itself. This is followed by n frequency values, f(0), f(1), ..., f(n — 1);
these are the frequencies of the individual tokens in their specific positions in
the given Ngram. This is followed by (n choose 2) values, f(0,1), f(0,2), ...,
f(0,n —1), f(1,2), ..., f(1,n —1), ... f(n —2,n — 1). This is followed by (n
choose 3) values, £(0,1,2), f(0,1,3), ..., f/(0,1,n—1), f(0,2,3), ..., f(0,2,n—1),
vy J(O,m—2,n—1), f(1,2,3), ..., f(n—3,n—2,n—1). And so on, until (n
choose n-1), that is n, frequency values f(0,1,...,n —2), f(0,1,...,n —3,n —1),
f(0,1,..,n—4,n—-2n-1), .., f(1,2,..,n—1).

This gives us a total of 27! possible frequency values for Ngrams of size n.
We call each such frequency value a frequency combination, since it expresses
the number of Ngrams that have a given combination of one or more tokens
in one or more specific positions. By default all such combinations are output,
exactly in the order shown above. However the total number of frequency values
grows exponentially with the value of n, that is the Ngram size under consid-
eration. Since computing, storing and later displaying such a large number of
frequency values can be both very resource intensive as well as unnecessary, the
package gives the user the capability to specify which frequency combinations he
wishes to have computed and displayed. Specifically the user can use the option
--set_freq_combo to provide program count.pl with a file containing the inputs
to the hypothetical f() function above to specify which frequency combinations
she desires to have counted. For example, to compute only the frequencies of the
trigrams and those of the three individual tokens in the trigrams (and not of
the pairs of tokens), the user can tell the package just to count the following f()
functions: f(0,1,2), f(0), (1), and f(2). This will result in the following counts:

President <>George<>Bush<>2 338 134 463

The only difference from the previous example is the fact that the frequency
values f(0,1), f(0,2) and f(1,2) are not output. However, there are consider-
able internal differences as any frequency combinations that are not requested
are not counted, thus realizing a considerable savings in computation time and
memory utilization for large corpora and larger values of N.

4.3 Ngram Filters

Often it is necessary to filter the entire set of Ngrams and observe only a small
subset of all the possible Ngrams in a given input text. For example sometimes
Ngrams made up entirely of function words are not interesting and one may wish
to stop or ignore them. This package provides two different mechanisms through
which to create smaller subsets of Ngrams.

In the first mechanism, the user may use the option —-stop to pass to pro-
gram count.pl a file containing a list of stop words, and Ngrams that are made
up entirely of these words will not be created. For example if the user provides
the words the and of as stop words, then given the sentence He is one of the worst
kinds, the bigram of<>the<> will not be created. However bigrams one<>of<>
and the<>worst<> will continue to be created since they are not made up en-
tirely of stop—words and have at least one word not in the stop list. This stopping
technique is particularly useful during the creation of non—contiguous Ngrams
when Ngrams composed entirely of function words become more likely.

In the second mechanism, the user may specify a frequency cut—off. Every
Ngram that occurs less than some specified number of times can be ignored
(option ——remove), in which case they are excluded from the sample size and do
not affect any frequency counts, or they can be counted but simply not displayed
(option --frequency), in which case they are included in the sample size and
affect the various frequencies. The first case assumes that Ngrams that occur less
than the cut—off number of times are not significant enough to include in overall
counts, while in the second case these low frequency Ngrams affect the overall
counts but are not displayed in the count.pl output. These are radically different
approaches to counting, and both are appropriate under certain circumstances.
The user must choose between these cut—off mechanisms with some care so as
to avoid unexpected results.

5 Measures of Association for Ngrams

Once a user has identified and counted Ngrams and their components via the
count.pl program, NSP allows a user to go on and apply various measures of
association to that data with the program statistic.pl. Such measures judge
whether the tokens that make up the Ngram occur together more often than
would be expected by chance. If so, then the Ngram may represent a collocation
or some other interesting phenomena.

A measure that returns a score that can be assigned statistical significance is
referred to more precisely as a test of association. Examples supported in NSP
include the log-likelihood ratio, Fisher’s exact test, and Pearson’s chi-squared
test. Measures that do not allow for significance to be assigned to their value
include the Dice Coefficient and pointwise Mutual Information. When discussing
both kinds of techniques we refer to them generically as measures of association
and use the more specific term test of association when appropriate.

5.1 Background

To support measures of association on Ngrams, NSP implicitly defines IV random
binary variables W;,0 < i < N, where W; represents the i*" token in the Ngram.
Each of these variables indicate whether or not a particular token occurs at the
given position. For example, the variable Wy could represent whether or not
George<> occurs in the first position of the Ngram.

In Table 1 the first row of the contingency table represents all Ngrams such
that Wy = George<> (it occurs), while the second row represents all Ngrams
such that Wy # George<> (it does not occur). Similarly, the first column rep-
resents all Ngrams such that W; = Bush<> while the second column represents
all Ngrams such that Wi # Bush<>.

Tests of association between two random variables typically set up a null
hypothesis that holds if the two random variables are independent of each other.
A pair of words that fail this test might then be considered to be related or de-
pendent in some way, since they have failed to exhibit statistical independence.
Formally speaking, for two words that make up a bigram to be considered inde-
pendent, we would expect the probability of the two words occurring together to
be equal to the product of the probabilities of the two words occurring separately.

For example, if the bigram under consideration is George<>Bush<>, the
probability of its occurrence could be represented by P(Wy, W1). For these two
words to be considered independent this joint probability would have to be
equal (or nearly so) to the product of the probabilities of the individual words
George<> and Bush<>, represented by P(Wp) and P(W;). Thus, these tests
of association are based on the formal definition of statistical independence,
i.e., P(Wp, W1) = P(Wy)P(W7). To reject the hypothesis of independence, one
must find that the value of P(Wy, W;) that is based on observed frequency
counts diverges from the expected values that are based on the hypothesis of
independence.

For Ngrams where N > 3, there are numerous ways to formulate a null hy-
pothesis. With more than 2 random variables, the null hypothesis can capture a
wider range of possible models than simple independence. Here we are moving
from tests of association into the more general realm of statistical model evalu-
ation. For example, when N = 3, one can formulate the null hypothesis that the
observed probability of a trigram reflects that the three words are completely
independent of one another, or that two of the words are dependent on each
other but independent of the third. In these cases the null hypotheses could be
formulated as: P(WQ)P(Wl)P(WQ) or P(Wo, Wl)P(WQ) or P(Wo)P(Wl, WQ) or
P(W1)P(Wy, Wa).

Each of these null hypotheses represents a different hypotheses, and the ex-
pected values for each could be compared to the observed value of P(Wy, W1, W)
to determine how closely the observed values correspond with the expected val-
ues. Recall from the previous section that program count.pl allows the user to
compute all such frequencies through the option —-set_freq_combo. Thus the
package allows the user to create a wide range of null hypotheses particularly as
N grows larger.

5.2 Implementation

Given the observed frequencies from count.pl, a user can apply a measure of
association to determine if the words in an Ngram are somehow related. Although
this package implements several measures of association, the primary design goal
was to facilitate the quick and easy implementation by the user of their own
favorite measures. This is achieved via the program statistic.pl, which is the
tool designed to process the list of Ngram counts produced by count.pl and
apply measures of association to that data.

The program statistic.pl remains unchanged regardless of the measure
of association it is performing. This is achieved by requiring that a measure be
implemented as a Perl module that exists as a file separate from the rest of the
program and is plugged into statistic.pl at run—time. Such a module must
follow a set of rules that specify the interface between it and statistic.pl. For
each Ngram in the corpus, statistic.pl passes to the module the size of the
corpus and the various frequency values associated with the Ngram. The module
is then expected to return a floating point number that expresses the degree to
which the tokens that make up the given Ngram are associated with each other.
Mechanisms exist for the module to throw exceptions so that statistic.pl can
exit gracefully.

A module that implements a measure of association must ezport two functions
to statistic.pl: initializeStatistic() and calculateStatistic(). The
former is the first function called by statistic.pl and is used to pass to the
module such information as the Ngram size, the total number of Ngrams in
the corpus and a data structure containing the list of frequency combinations
associated with each Ngram in this dataset. For every Ngram, statistic.pl
calls function calculateStatistic() and passes to it all the frequency values
associated with that Ngram. This function is expected to return a floating point
value proportional to the degree of association for the Ngram in question.

Besides these two functions, the user may also implement and export three
more functions: errorCode(), errorString() and getStatisticName(). The
first two can be used to throw exceptions while the last can be used to return a
string containing the name of the measure; if returned, this string is used in the
formatted output of the program.

The advantage of this design is that it allows the user to concentrate entirely
on the mechanism of the statistical measure without concern to the rest of the
infrastructure. For example the processing of the list of Ngrams in the corpus
of text, the counting and storage of their frequency values, etc is already taken
care of. The author of a new measure need only focus on the measure’s inputs,
outputs and internal computation.

6 Comparing Ranked Lists of Ngrams

NSP is designed not only to create and analyze Ngrams in a corpus of text, but
also to allow the user to study the effect of new measures of association. Section

5 describes how the user can implement a new measure and integrate it into the
package. NSP also provides a program rank.pl that allows a user to compare
two ranked lists of Ngrams and determine how much they differ with respect to
each other. Thus if a user introduces a new measure it is possible to determine
how much it resembles or differs from some existing ones.

rank.pl implements the Spearman’s Rank Correlation Coefficient to com-
pare two measures of association. This coefficient measures the correlation be-
tween two different rankings of a list of items. Specifically, given a set of Ngrams
and their frequencies as observed in a corpus of text, we rank them according
to each of the two measures of association, and then compute the correlation
between these two different rankings using equation 1.

_ . 6XiiD?
r=1-— n(n? —1) (1)

In this equation, n is the total number of unique Ngrams in the corpus,
D; is the difference between the rankings of Ngram 7 in the two lists and r is
the value of the correlation. The value of r ranges from -1 to +1. A value of 0
implies no correlation between the two lists, while values that are further away
from 0 imply greater correlation where the sign of the value indicates positive
or negative correlation.

7 Applications of the Ngram Statistics Package

The range of applications in which NSP has been utilized reflects the generality
with which Ngrams can be employed.

An original motivation for developing NSP was to support the second au-
thor’s work in word sense disambiguation. He has developed a supervised ap-
proach to word sense disambiguation that learns decision trees of bigrams from
sense—tagged corpora (e.g., [7], [8]). In this approach a word is disambiguated
based on the word bigrams that occur nearby. This approach has proven to be
relatively successful and is quite easy to implement, at least in part due to NSP.

The language independence of Ngrams and NSP is demonstrated by sev-
eral applications with Dutch that identify collocations that involve non—content
words. Bouman and Villada [1] use NSP to identify collocational prepositional
phrases, while van der Wouden [11] uses it to determine a variety of non—content
collocations in Dutch text.

The range of possible applications for Ngrams and NSP is illustrated by
the following projects. Zaiu-Inkpen and Hirst [13] extend a database of near—
synonyms with information about their collocational behavior. Lopez et. al. [5]
use information about word bigrams to take the place of parses when no parse
was available in performing word alignment of parallel text. Gill and Oberlander
[4] compare the writing styles of introverts and extroverts by identifying word
bigrams used by one group but not the other in written text.

8 Future Work

There are a number of possible enhancements to NSP that will be carried out
in the next few years.

Ngrams are counted by storing them in a hash table. This poses no problems
for relatively large corpora of a few million tokens, but to process 100 million
token corpora a more efficient mechanism must be developed. One possibility
would be the use of suffix trees as described by Yanamoto and Church [12].

NSP version 0.51 provides a small number of measures of association that
are only implemented for bigrams. We are beginning to implement measures
for trigrams and will include those in future releases. In addition, NSP is now
geared towards ASCII text. We attempted to incorporate Unicode support as
provided in Perl 5.6 but found that it was not yet stable. We are hopeful that
this situation will improve with Perl 5.8 and allow NSP to support Unicode.

At present NSP is a stand—alone package that runs from the command line.
We plan to implement it as a set of library modules that will allow it to be
included in programs and also to take advantage of some of the object oriented
features that Perl supports. We also plan to provide a graphical interface with
Perl/ Tk in addition to the command line support. In conjunction with this we
would increase the graphs and charts available to the user for exploring their
data.

9 Acknowledgments

The Ngram Statistics Package was implemented by the first author while he was
at the University of Minnesota, Duluth. During 2000-2001 he was supported by
a Grant-in-Aid of Research, Artistry and Scholarship from the Office of the Vice
President for Research and the Dean of the Graduate school of the University
of Minnesota. In 2001-2002 both authors were supported by a National Science
Foundation Faculty Early CAREER Development award (#0092784). The first
author is currently supported by the National Science Foundation under Grant
No. REC-9979894.

Any opinions, findings, conclusions, or recommendations expressed in this
publication are those of the authors and do not necessarily reflect the views
of the National Science Foundation or the official policies, either expressed or
implied, of the sponsors or of the United States Government.

References

1. G. Bouman and B. Villada. Corpus—based acquisition of collocational prepositional
phrases. Computational Linguistics in the Netherlands (CLIN), 2002.

2. K. Church and P. Hanks. Word association norms, mutual information and lexi-
cography. In Proceedings of the 28th Annual Meeting of the Association for Com-
putational Linguistics, pages 76—83, 1990.

10.

11.

12.

13.

T. Dunning. Accurate methods for the statistics of surprise and coincidence. Com-
putational Linguistics, 19(1):61-74, 1993.

A. Gill and J. Oberlander. Taking care of the linguistic features of extraversion. In
Proceedings of the 24th Annual Conference of the Cognitive Science Society, pages
363—-368, Washington, D.C., 2002.

A. Lopez, M. Nossal, R. Hwa, and P. Resnik. Word—level alignment for multilin-
gual resource acquisition. In Proceedings of the 2002 LREC Workshop on Linguis-
tic Knowledge Acquisition and Representation: Bootstrapping Annotated Language
Data, 2002.

T. Pedersen. Fishing for exactness. In Proceedings of the South Central SAS User’s
Group (SCSUG-96) Conference, pages 188-200, Austin, TX, October 1996.

T. Pedersen. A decision tree of bigrams is an accurate predictor of word sense. In
Proceedings of the Second Annual Meeting of the North American Chapter of the
Association for Computational Linguistics, pages 79-86, Pittsburgh, July 2001.
T. Pedersen. Machine learning with lexical features: The Duluth approach to
Senseval-2. In Proceedings of the Senseval-2 Workshop, pages 139-142, Toulouse,
July 2001.

T. Pedersen, M. Kayaalp, and R. Bruce. Significant lexical relationships. In Pro-
ceedings of the Thirteenth National Conference on Artificial Intelligence, pages
455-460, Portland, OR, August 1996.

C. Shannon. Prediction and entropy of printed English. The Bell System Technical
Journal, 30(50-64), 1951.

T. van der Wouden. Collocational behavior in non content words. In ACL/EACL
Workshop on Collocations, Toulouse, France, 2001.

M. Yanamoto and K. Church. Using suffix arrays to compute term frequency
and document frequency for all substrings in a corpus. Computational Linguistics,
27(1):1-30, 2001.

D. Zaiu Inkpen and G. Hirst. Acquiring collocations for lexical choice between
near synonyms. In SIGLEX Workshop on Unsupervised Lexical Acquisition, 40th
meeting of the Association for Computational Linguistics, Philadelphia, 2002.

