curl_multi_soclet(3) libcurl Manual curl_multi_soek(3)

NAME
curl_multi_socket — reads/writegailable data

SYNOPSIS
#include <curl/curl.h>

CURLMcode curl_multi_socket_action(CURLM * multi_handle,
curl_socket_t sockfd, int ev_bitmask,
int *running_handles);

CURLMcode curl_multi_socket(CURLM * multi_handle, curl_socket_t sockfd,
int *running_handles);

CURLMcode curl_multi_socket_all(CURLM *multi_handle,
int *running_handles);

DESCRIPTION
Alternative vesions of curl_multi_perform(3) that allavs the application to pass in the file descrip-
tor/soclet that has been detected tadndaction” on it and let libcurl perform. This allows libcurl to not
have b scan through all possible file descriptors to check for action. When the application has detected
action on a socket handled by libcurl, it should cail_multi_socket_action(3) with the sockfd argument
set to the socket with the action. When thienés on a socket are known, yhean be passed as aveets
bitmaskev_bitmask by first settingev_bitmask to 0, and then adding using bitwise OR (|y aambina-
tion of events to be chosen from CURL_CSELECT IN, CURL_CSELECT OUT or CURL_CSE-
LECT_ERR. When thevents on a socket are unknown, pass 0 instead, and libcurl will test the descriptor
internally.

At return, the intrunning_handles points to will contain the number of still running easy handles within

the multi handle. When this number reaches zero, all transfers are complete/done. Note that when you call
curl_multi_socket_action(3) on a specific soekt and the counter decreases by one, it DOES h&dessar-

ily mean that this exact soeltransfer is the one that completed. Os#_multi_info_read(3) to figure out

which easy handle that completed.

The curl_multi_sockt functions inform the application about updates in the socket (file descriptor) status
by doing none, one or multiple calls to the ssogallback function set with the CURLMOPT_SOCKET
FUNCTION option tocurl_multi_setopt(3). They update the status with changes since the previous time
this function was called.

Force libcurl to (re-)check all its internal s@tk and transfers instead of just a single one by calling
curl_multi_socket_all(3). Note that there should rarely be reasons to use this function!

Get the timeout time - lwolong to wait for sockt actions at most before doing the timeout action: call the
curl_multi_socket(3) function with thesockfd agument set to CURL_SOCKET_TIMEOUbBy tting

the CURLMOPT_TIMERFUNCTION option with curl_multi_setopt(3). You can also use the
curl_multi_timeout(3) function to poll the value at grgiven time, but for an eent-based system using the
callback is far better than relying on polling the timeout value.

Usage of curl_multi_socket(3) is deprecated, whereas the function is ‘egent to
curl_multi_socket_action(3), whenev_bitmask is set to 0.

CALLB ACK DETAILS
The socketallback function uses a prototype ékhis

int curl_socket_callback(CURL *easy /* easy handle */
curl_socket t s, /* socket */

libcurl 7.16.0 9 ul 2006 1

curl_multi_soclet(3) libcurl Manual curl_multi_soek(3)

int action, /* see values belo*/
void *userp, /* private callback pointer */
void *socketp); /* prvate socket pointer */

The callback MUST return 0.

The easy agument is a pointer to the easy handle that deals with this particular socket. Note that a single
handle may work with seral sockets simultaneously.

Thesargument is the actual socket value as you use it within your system.

Theaction argument to the callback has one oéfimlues:

CURL_POLL_NONE (0)
register not interested in readiness (yet)

CURL_POLL_IN (1)
register interested in read readiness

CURL_POLL_OUT (2)
register interested in write readiness

CURL_POLL_INOUT (3)
register interested in both read and write readiness

CURL_POLL_REMOVE (4)
unregister

The socketp argument is a pviate pointer you hae greviously set withcurl_multi_assign(3) to be associ-
ated with thes soclet. If no pointer has been set, seigkwill be NULL. This argument is of course a-ser
vice to applications that want to keep certain data or structs that are strictly associated/én toekgt.

The userp argument is a pyiate pointer you hae previously set withcurl_multi_setopt(3) and the CURL-
MOPT_SOCKETIATA option.

RETURN VALUE
CURLMcode type, general libcurl multi interface error code.

If you receve CURLM_CALL_MULTI_PERFORM, this basically means that you should call
curl_multi_socket(3) again, before you wait for more actions on libcsidckets. You dort haveto do it
immediately but the return code means that libcurl mayehaore data @ailable to return or that there may
be more data to sendfdiefore it is "satisfied".

NOTE that this only returns errors etqgaading the whole multi stack. There might stillveacccurred
problems on individual transfersem when this function returns OK.

TYPICAL USAGE
1. Create a multi handle

2. Set the socket callback with CURLMOPT_SOCKETFUNCTION

3. Set the timeout callback with CURLMOPT_TIMERFUNCTION, to get tovkmdhat timeout value to
use when waiting for socket activities.

4. Add easy handles with curl_multi_add_handle()

5. Provide some means to manage the sockets libcurl is using, so you can check thewityoil higtican
be done through your application code, or by way of an external library suchvaatliteglib.

libcurl 7.16.0 9 ul 2006 2

curl_multi_soclet(3) libcurl Manual curl_multi_soek(3)

6. Wait for activity on ayof libcurl’'s sockets, use the timeout value your callback has been told

7, When activity is detected, call curl_multi_setkaction() for the socket(s) that got action. If novétgti
is detected and the timeout expires, catl_multi_socket action(3) with CURL_SOCKET_TIMEOUT

8. Go back to step 6.

AVAILABILITY
This function was added in libcurl 7.15.4, although deemed stable since 7.16.0.

curl_multi_socket(3) is deprecated, ussirl_multi_socket_action(3) instead!

SEE ALSO
curl_multi_cleanup(3), curl_multi_init (3), curl_multi_fdset(3), curl_multi_info_read(3), the hiper-
fifo.c example

libcurl 7.16.0 9 ul 2006 3

