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Chapter 1

Introduction and Getting Started

1.1 INSTALL Installing FreeMat

1.1.1 General Instructions

Here are the general instructions for installing FreeMat. First, follow the instructions listed below
for the platform of interest. Then, run the

-->pathtool

which brings up the path setup tool. More documentation on the GUI elements (and how to use
them) will be forthcoming.

1.1.2 Linux

For Linux, FreeMat is now provided as a binary installation. To install it simply download the
binary using your web browser, and then unpack it

tar xvfz FreeMat-3.5-Linux-Binary.tar.gz
You can then run FreeMat directly without any additional effort
FreeMat-3.5-Linux-Binary/Contents/bin/FreeMat

will start up FreeMat as an X application. If you want to run it as a command line application (to
run from within an xterm), use the nogui flag

FreeMat-3.5-Linux-Binary/Contents/bin/FreeMat -nogui
If you do not want FreeMat to use X at all (no graphics at all), use the noX flag
FreeMat-3.5-Linux-Binary/Contents/bin/FreeMat -noX

For convenience, you may want to add FreeMat to your path. The exact mechanism for doing this
depends on your shell. Assume that you have unpacked FreeMat-3.5-Linux-Binary.tar.gz into
the directory /home/myname. Then if you use csh or its derivatives (like tcsh) you should add the
following line to your .cshrec file:
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set path=($path /home/myname/FreeMat-3.5-Linux/Binary/Contents/bin)
If you use bash, then add the following line to your .bash_profile
PATH=$PATH: /home/myname/FreeMat-3.5-Linux/Binary/Contents/bin

If the prebuilt binary package does not work for your Linux distribution, you will need to build
FreeMat from source (see the source section below). When you have FreeMat running, you can
setup your path using the pathtool. Note that the FREEMAT_PATH is no longer used by FreeMat.
You must use the pathtool to adjust the path.

1.1.3 Windows

For Windows, FreeMat is installed via a binary installer program. To use it, simply download the
setup program FreeMat-3.5-Setup.exe, and double click it. Follow the instructions to do the
installation, then setup your path using pathtool.

1.1.4 Mac OS X

For Mac OS X, FreeMat is distributed as an application bundle. To install it, simply download the
compressed disk image file FreeMat-3.5.dmg, double click to mount the disk image, and then copy
the application FreeMat-3.5 to some convenient place. To run FreeMat, simply double click on the
application. Run pathtool to setup your FreeMat path.

1.1.5 Source Code

The source code build is a little more complicated than previous versions of FreeMat. Here are the
current build instructions for all platforms.

1. Build and install Qt 4.2 or later - http://www.trolltech.com/download/opensource.html
2. Install g77 or gfortran (use fink for Mac OS X, use gcc-g77 package for MinGW)
Download the source code FreeMat-3.5-src.tar.gz.

Unpack the source code: tar xvfz FreeMat-3.5-src.tar.gz.

ovok W

For Windows, you will need to install MSYS as well as MINGW to build FreeMat. You will
also need unzip to unpack the enclosed matio.zip archive. Alternately, you can cross-build the
Windows version of FreeMat under Linux (this is how I build it now).

6. If you are extraordinarily lucky (or prepared), you can issue the usual ./configure, then the
make and make install. This is not likely to work because of the somewhat esoteric dependen-
cies of FreeMat. The configure step will probably fail and indicate what external dependencies
are still needed.

7. T assume that you are familiar with the process of installing dependencies if you are trying to
build FreeMat from source.

To build a binary distributable (app bundle on the Mac, setup installer on win32, and a binary
distribution on Linux), you will need to run make package instead of make install.



Chapter 2

Variables and Arrays

2.1 CELL Cell Array Definitions

2.1.1 Usage

The cell array is a fairly powerful array type that is available in FreeMat. Generally speaking, a
cell array is a heterogenous array type, meaning that different elements in the array can contain
variables of different type (including other cell arrays). For those of you familiar with C, it is the
equivalent to the void #* array. The general syntax for their construction is

A = {row_defl;row_def2;...;row_defN}
where each row consists of one or more elements, seperated by commas
row_defi = element_il,element_i2,...,element_iM

Each element can be any type of FreeMat variable, including matrices, arrays, cell-arrays, structures,
strings, etc. The restriction on the definition is that each row must have the same number of elements
in it.

2.1.2 Examples

Here is an example of a cell-array that contains a number, a string, and an array

--> A = {14,’hello’,[1:10]%}
A =

[14] [’hello’] [[1 10] int32]

Note that in the output, the number and string are explicitly printed, but the array is summarized.
We can create a 2-dimensional cell-array by adding another row definition
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--> B = {pi,i;e,-1}
B =

[3.14159] [0+11]
[2.71828] [-1]

Finally, we create a new cell array by placing A and B together

--> C = {A,B}
C =

{[1 3] cell } A{[2 2] cell }

2.2 Function Handles

2.2.1 Usage

Starting with version 1.11, FreeMat now supports function handles, or function pointers. A
function handle is an alias for a function or script that is stored in a variable. First, the way to
assign a function handle is to use the notation

handle = Q@func

where func is the name to point to. The function func must exist at the time we make the call. It
can be a local function (i.e., a subfunction). To use the handle, we can either pass it to feval via

[x,y] = feval(handle,argl,arg2).
Alternately, you can the function directly using the notation

[x,y] = handle(argl,arg2)

2.3 GLOBAL Global Variables
2.3.1 Usage

Global variables are shared variables that can be seen and modified from any function or script that
declares them. The syntax for the global statement is

global variable_1 variable_2 ...

The global statement must occur before the variables appear.
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2.3.2 Example

Here is an example of two functions that use a global variable to communicate an array between
them. The first function sets the global variable.

set_global.m
function set_global(x)
global common_array
common_array = X;

The second function retrieves the value from the global variable

get_global.m
function x = get_global
global common_array
X = common_array;

Here we exercise the two functions
--> set_global(’Hello’)
-—> get_global

ans =

Hello

2.4 INDEXING Indexing Expressions

2.4.1 Usage

There are three classes of indexing expressions available in FreeMat: (), {}, and . Each is explained
below in some detail, and with its own example section.

2.4.2 Array Indexing

We start with array indexing (), which is the most general indexing expression, and can be used on
any array. There are two general forms for the indexing expression - the N-dimensional form, for
which the general syntax is

variable(index_1,index_2,...,index_n)
and the vector form, for which the general syntax is
variable (index)

Here each index expression is either a scalar, a range of integer values, or the special token :, which
is shorthand for 1:end. The keyword end, when included in an indexing expression, is assigned the
length of the array in that dimension. The concept is easier to demonstrate than explain. Consider
the following examples:
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--> A = zeros(4)

A =

O O O O
O O O O
O O O O
O O O O

--> B = float(randn(2))
B =

-0.9394 -0.0531
-0.0065 -0.1648

--> A(2:3,2:3) =B

-0.9394 -0.0531
-0.0065 -0.1648

O O O O
O O O O

Here the array indexing was used on the left hand side only. It can also be used for right hand side
indexing, as in

--> C = A(2:3,1:end)
C =

0 -0.9394 -0.0531 0
0 -0.0065 -0.1648 0

Note that we used the end keyword to avoid having to know that A has 4 columns. Of course, we
could also use the : token instead:

--> C = A(2:3,:)
C =

0 -0.9394 -0.0531 0
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0 -0.0065 -0.1648 0

An extremely useful example of : with array indexing is for slicing. Suppose we have a 3-D array,
that is 2 x 2 x 3, and we want to set the middle slice:

--> D = zeros(2,2,3)

--> D(:,:,2) = int32(10*rand(2,2))

~
.

.
—
N2
]

~
.
.
N
~
]

—~
.

.
w
N2
]
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In another level of nuance, the assignment expression will automatically fill in the indexed rectangle
on the left using data from the right hand side, as long as the lengths match. So we can take a
vector and roll it into a matrix using this approach:

--> A = zeros(4)

A =
0000
0000
0000
0000

-—> v = [1;2;3;4]

D wWw N e

--> A(2:3,2:3) = v

A =

0000
0130
0240
0000

The N-dimensional form of the variable index is limited to accessing only (hyper-) rectangular
regions of the array. You cannot, for example, use it to access only the diagonal elements of the
array. To do that, you use the second form of the array access (or a loop). The vector form treats
an arbitrary N-dimensional array as though it were a column vector. You can then access arbitrary
subsets of the arrays elements (for example, through a find expression) efficiently. Note that in
vector form, the end keyword takes the meaning of the total length of the array (defined as the
product of its dimensions), as opposed to the size along the first dimension.

2.4.3 Cell Indexing

The second form of indexing operates, to a large extent, in the same manner as the array indexing,
but it is by no means interchangable. As the name implies, cell-indexing applies only to cell
arrays. For those familiar with C, cell- indexing is equivalent to pointer derefencing in C. First, the
syntax:
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variable{index_1,index_2,...,index_n}
and the vector form, for which the general syntax is
variable{index}

The rules and interpretation for N-dimensional and vector indexing are identical to (), so we will
describe only the differences. In simple terms, applying () to a cell-array returns another cell array
that is a subset of the original array. On the other hand, applying {} to a cell-array returns the
contents of that cell array. A simple example makes the difference quite clear:

--> A = {1, ’hello’, [1:4]1}
A =
[1] [’hello’] [[1 4] int32]
-—> A(1:2)
ans =
[1] [’hello’]
-—> A{1:2}
ans =

1 of 2:

2 of 2:

hello

You may be surprised by the response to the last line. The output is multiple assignments to ans!.
The output of a cell-array dereference can be used anywhere a list of expressions is required. This
includes arguments and returns for function calls, matrix construction, etc. Here is an example of
using cell-arrays to pass parameters to a function:

--> A = {[1,3,0],[5,2,7]1%}
A =

[[1 3] int32] [[1 3] int32]
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--> max (A{1:end})

537

And here, cell-arrays are used to capture the return.

-—> [K{1:2}] = max(randn(1,4))
K =

[1.18247] [1]

Here, cell-arrays are used in the matrix construction process:

-=> C = [A{1};A{2}]

C =

[S2 I
N W
~N O

Note that this form of indexing is used to implement variable length arguments to function. See
varargin and varargout for more details.

2.4.4 Structure Indexing

The third form of indexing is structure indexing. It can only be applied to structure arrays, and has
the general syntax

variable.fieldname

where fieldname is one of the fields on the structure. Note that in FreeMat, fields are allocated
dynamically, so if you reference a field that does not exist in an assignment, it is created automatically
for you. If variable is an array, then the result of the . reference is an expression list, exactly like
the {} operator. Hence, we can use structure indexing in a simple fashion:

—--=> clear A
--> A.color = ’blue’

A=
color: [’blue’]
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--> B = A.color
B =

blue

Or in more complicated ways using expression lists for function arguments

--> clear A
--> A(1) .maxargs = [1,6,7,3]

A=
maxargs: [[1 4] int32]
--> A(2) .maxargs = [5,2,9,0]
A=
Fields

maxargs
--> max (A.maxargs)

ans =

5693

or to store function outputs

-=> clear A

--> A(1) .maxreturn = [];

--> A(2) .maxreturn = [];

--> [A.maxreturn] = max(randn(1,4))

Fields
maxreturn

FreeMat now also supports the so called dynamic-field indexing expressions. In this mode, the
fieldname is supplied through an expression instead of being explicitly provided. For example
suppose we have a set of structure indexed by color,

--> x.red = 430;
--> x.green = 240;
--> x.blue = 53;
--> x.yello = 105
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x =
red: [430]
green: [240]
blue: [53]

yello: [105]

Then we can index into the structure x using a dynamic field reference:
--> y = ’green’
y =

green

-—> a = x.(y)

240

Note that the indexing expression has to resolve to a string for dynamic field indexing to work.

2.4.5 Complex Indexing

The indexing expressions described above can be freely combined to affect complicated indexing
expressions. Here is an example that exercises all three indexing expressions in one assignment.

-=> Z{3}.foo0(2) = pi
7 =

(] (] [[1 1] struct array]

From this statement, FreeMat infers that Z is a cell-array of length 3, that the third element is a
structure array (with one element), and that this structure array contains a field named ’foo’ with
two double elements, the second of which is assigned a value of pi.

2.5 MATRIX Matrix Definitions

2.5.1 Usage

The matrix is the basic datatype of FreeMat. Matrices can be defined using the following syntax
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A = [row_defl;row_def2;...,row_defN]
where each row consists of one or more elements, seperated by commas
row_defi = element_il,element_i2,...,element_iM

Each element can either be a scalar value or another matrix, provided that the resulting matrix
definition makes sense. In general this means that all of the elements belonging to a row have the
same number of rows themselves, and that all of the row definitions have the same number of columns.
Matrices are actually special cases of N-dimensional arrays where N<=2. Higher dimensional arrays
cannot be constructed using the bracket notation described above. The type of a matrix defined in
this way (using the bracket notation) is determined by examining the types of the elements. The
resulting type is chosen so no information is lost on any of the elements (or equivalently, by choosing
the highest order type from those present in the elements).

2.5.2 Examples

Here is an example of a matrix of int32 elements (note that untyped integer constants default to
type int32).

--> A = [1,2;5,8]

A =

(S
o N

Now we define a new matrix by adding a column to the right of A, and using float constants.

--> B = [A,[3.2f;5.1f]]
B =

1.0000 2.0000 3.2000
5.0000 8.0000 5.1000

Next, we add extend B by adding a row at the bottom. Note how the use of an untyped floating
point constant forces the result to be of type double

--> C = [B;5.2,1.0,0.0]
C =

1.0000 2.0000 3.2000
5.0000 8.0000 5.1000
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5.2000 1.0000 0

If we instead add a row of complex values (recall that i is a complex constant, not a dcomplex
constant)

--> D = [B;2.0f+3.0f*i,i,0.0f]
D =

1.0000 + 0.00001 2.0000 + 0.00001 3.2000 + 0.00001
5.0000 + 0.0000i 8.0000 + 0.0000i 5.1000 + 0.0000i
2.0000 + 3.00001i 0.0000 + 1.00001 0

Likewise, but using dcomplex constants

--> E = [B;2.0+3.0%1,i,0.0]
E =

1.0000 + 0.0000i 2.0000 + 0.0000i 3.2000 + 0.0000i1
5.0000 + 0.00001 8.0000 + 0.0000i 5.1000 + 0.00001
2.0000 + 3.00001 0.0000 + 1.00001 0

Finally, in FreeMat, you can construct matrices with strings as contents, but you have to make sure
that if the matrix has more than one row, that all the strings have the same length.

--> F = [’hello’;’there’]
F =

hello
there

2.6 PERSISTENT Persistent Variables

2.6.1 Usage

Persistent variables are variables whose value persists between calls to a function or script. The
general syntax for its use is

persistent variablel variable2 ... variableN

The persistent statement must occur before the variable is the tagged as persistent.
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2.6.2 Example

Here is an example of a function that counts how many times it has been called.

count_calls.m

function count_calls
persistent ccount
if (Texist(’ccount’)) ccount = 0; end;
= ccount + 1;
printf (’Function has been called %d times\n’,ccount);

ccount

We now call the function several times:

--> for i=1:10;

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

has
has
has
has
has
has
has
has
has
has

been
been
been
been
been
been
been
been
been
been

called
called
called
called
called
called
called
called
called
called

count_calls; end

1 times
2 times
3 times
4 times
5 times
6 times
7 times
8 times
9 times
10 times

2.7 STRING String Arrays

2.7.1 Usage
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FreeMat supports a string array type that operates very much as you would expect. Strings are
stored internally as 8-bit values, and are otherwise similar to numerical arrays in all respects. In
some respects, this makes strings arrays less useful than one might imagine. For example, numerical
arrays in 2-D are rectangular. Thus, each row in the array must have the same number of columns.
This requirement is natural for numerical arrays and matrices, but consider a string array. If one
wants to store multiple strings in a single data structure, they must all be the same length (unlikely).
The alternative is to use a cell array of strings, in which case, each string can be of arbitrary length.
Most of the functions that support strings in a set-theoretic way, like unique and sort operate on
cell-arrays of strings instead of string arrays. Just to make the example concrete, here is the old
way of storing several strings in an array:

-—> % This is an error
-=> A = [’hello’;’bye’]
Error: Mismatch in dimension for rows in matrix definition
--> % This is OK, but awkward

-=> A = [’hello’;’bye

’]
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A =

hello
bye

--> % This is the right way to do it
-=> A = {’hello’,’bye’}

A=

[’hello’] [’bye’]

One important (tricky) point in FreeMat is the treatment of escape sequences. Recall that in
C programming, an escape sequence is a special character that causes the output to do something
unusual. FreeMat supports the following escape sequences:

e \t - causes a tab to be output

e \r - causes a carriage return (return to the beginning of the line of output, and overwrite the
text)

e \n - causes a linefeed (advance to next line)

FreeMat follows the Unix/Linux convention, that a \n causes both a carriage return and a linefeed.
To put a single quote into a string use the MATLAB convention of two single quotes, not the \’
sequence. Here is an example of a string containing some escape sequences:

--> a = ’I can’’t use contractions\n\tOr can I7\n’
a =

I can’t use contractions\n\tOr can I?\n

Now, note that the string itself still contains the \n characters. With the exception of the \’, the
escape sequences do not affect the output unless the strings are put through printf or fprintf.
For example, if we printf the variable a, we see the \n and \t take effect:

-=> printf(a);
I can’t use contractions
Or can I7?

The final complicating factor is on MSWin systems. There, filenames regularly contain \ characters.
Thus, if you try to print a string containing the filename C:\redball\timewarp\newton.txt, the
output will be mangled because FreeMat thinks the \r, \t and \n are escape sequences. You have
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two options. You can use disp to show the filename (disp does not do escape translation to be
compatible with MATLAB). The second option is to escape the backslashes in the string, so that
the string you send to printf contains C:\\redball\\timewarp\\newton.txt.

--> 7} disp displays it ok
--> a = ’C:\redball\timewarp\newton.txt’

a =
C:\redball\timewarp\newton.txt

--> Y, printf makes a mess

--> printf(a)

C:

edball imewarp

ewton.txt--> % If we double up the slashes it works fine
-=> a = ’C:\\redball\\timewarp\\newton.txt’

a =
C:\\redball\\timewarp\\newton.txt

-=> printf(a)
C:\redball\timewarp\newton.txt

2.8 STRUCT Structure Array Constructor

2.8.1 Usage
Creates an array of structures from a set of field, value pairs. The syntax is
y = struct(n_1,v_1,n_2,v_2,...)

where n_i are the names of the fields in the structure array, and v_i are the values. The values v_i
must either all be scalars, or be cell-arrays of all the same dimensions. In the latter case, the output
structure array will have dimensions dictated by this common size. Scalar entries for the v_i are
replicated to fill out their dimensions. An error is raised if the inputs are not properly matched (i.e.,
are not pairs of field names and values), or if the size of any two non-scalar values cell-arrays are
different.

Another use of the struct function is to convert a class into a structure. This allows you to
access the members of the class, directly but removes the class information from the object.

2.8.2 Example

This example creates a 3-element structure array with three fields, foo bar and key, where the
contents of foo and bar are provided explicitly as cell arrays of the same size, and the contents of
bar are replicated from a scalar.
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--> y = struct(’foo’,{1,3,4}, ’bar’,{’cheese’,’cola’, ’beer’}, *key’,508)

y =
Fields
foo
bar
key
-=> y(1)
ans =
foo: [1]
bar: [’cheese’]
key: [508]
-=> y(2)
ans =
foo: [3]
bar: [’cola’]
key: [508]
-—> y(3)
ans =
foo: [4]
bar: [’beer’]
key: [508]

An alternate way to create a structure array is to initialize the last element of each field of the
structure

--> Test(2,3) .Type = ’Beer’;

--> Test(2,3) .0unces = 12;

--> Test(2,3) .Container = ’Can’;
--> Test(2,3)

ans =
Type: [’Beer’]
QOunces: [12]
Container: [’Can’]
--> Test(1,1)

ans =
Type: []
QOunces: []
Container: []
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Functions and Scripts

3.1 ANONYMOUS Anonymous Functions

3.1.1 Usage

Anonymous functions are simple, nameless functions that can be defined anywhere (in a script,
function, or at the prompt). They are intended to supplant inline functions. The syntax for an
anonymous function is simple:

y = @(argl,arg2,...,argn) expression

where argl,arg2,...,argn is a list of valid identifiers that define the arguments to the function,
and expression is the expression to compute in the function. The returned value y is a function
handle for the anonymous function that can then be used to evaluate the expression. Note that y
will capture the value of variables that are not indicated in the argument list from the current scope
or workspace at the time it is defined. So, for example, consider the simple anonymous function
definition

y = @(x) ax(x+b)

In order for this definition to work, the variables a and b need to be defined in the current workspace.
Whatever value they have is captured in the function handle y. To change the values of a and b in
the anonymous function, you must recreate the handle using another call. See the examples section
for more information. In order to use the anonymous function, you can use it just like any other
function handle. For example,

p = y(3
p=y0
p = feval(y,3)

are all examples of using the y anonymous function to perform a calculation.

3.1.2 Examples

Here are some examples of using an anonymous function

55
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-=> a =2; b = 4; % define a and b (slope and intercept)
-=>y = a*x+b % create the anonymous function

|
@
~
o]
~

Q(x) a*x+b reate the anonymous function

--> y(2) % evaluate it for x = 2

ans =

8

-—=>a=5; b=7; % change a and b

-=> y(2) % the value did not change! because a=2,b=4 are captured in y
ans =

8

-=> y = @(x) a*x+b ¥ recreate the function

y:

@(x) axx+b % recreate the function

-—> y(2) % now the new values are used
ans =

17

3.2 FUNCTION Function Declarations

3.2.1 Usage

There are several forms for function declarations in FreeMat. The most general syntax for a function
declaration is the following:

function [out_1,...,out_M,varargout] = fname(in_1,...,in_N,varargin)

where out_i are the output parameters, in_i are the input parameters, and varargout and
varargin are special keywords used for functions that have variable inputs or outputs. For functions
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with a fixed number of input or output parameters, the syntax is somewhat simpler:
function [out_1,...,out_M] = fname(in_1,...,in_N)

Note that functions that have no return arguments can omit the return argument list (of out_i)
and the equals sign:

function fname(in_1,...,in_N)

Likewise, a function with no arguments can eliminate the list of parameters in the declaration:
function [out_1,...,out_M] = fname

Functions that return only a single value can omit the brackets
function out_1 = fname(in_1,...,in_N)

In the body of the function in_i are initialized with the values passed when the function is
called. Also, the function must assign values for out_i to pass values to the caller. Note that by
default, FreeMat passes arguments by value, meaning that if we modify the contents of in_i inside
the function, it has no effect on any variables used by the caller. Arguments can be passed by
reference by prepending an ampersand & before the name of the input, e.g.

function [outl,...,out_M] = fname(in_1,&in_2,in_3,...,in_N)

in which case in_2 is passed by reference and not by value. Also, FreeMat works like C in that the
caller does not have to supply the full list of arguments. Also, when keywords (see help keywords)
are used, an arbitrary subset of the parameters may be unspecified. To assist in deciphering the exact
parameters that were passed, FreeMat also defines two variables inside the function context: nargin
and nargout, which provide the number of input and output parameters of the caller, respectively.
See help for nargin and nargout for more details. In some circumstances, it is necessary to have
functions that take a variable number of arguments, or that return a variable number of results. In
these cases, the last argument to the parameter list is the special argument varargin. Inside the
function, varargin is a cell-array that contains all arguments passed to the function that have not
already been accounted for. Similarly, the function can create a cell array named varargout for
variable length output lists. See help varargin and varargout for more details.

The function name fname can be any legal FreeMat identifier. Functions are stored in files with
the .m extension. Note that the name of the file (and not the function name fname used in the
declaration) is how the function appears in FreeMat. So, for example, if the file is named foo.m,
but the declaration uses bar for the name of the function, in FreeMat, it will still appear as function
foo. Note that this is only true for the first function that appears in a .m file. Additional functions
that appear after the first function are known as helper functions or local functions. These are
functions that can only be called by other functions in the same .m file. Furthermore the names of
these helper functions are determined by their declaration and not by the name of the .m file. An
example of using helper functions is included in the examples.

Another important feature of functions, as opposed to, say scripts, is that they have their own
scope. That means that variables defined or modified inside a function do not affect the scope of
the caller. That means that a function can freely define and use variables without unintentionally
using a variable name reserved elsewhere. The flip side of this fact is that functions are harder to
debug than scripts without using the keyboard function, because the intermediate calculations used
in the function are not available once the function exits.
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3.2.2 Examples
Here is an example of a trivial function that adds its first argument to twice its second argument:

addtest.m
function ¢ = addtest(a,b)
c = a + 2%b;

--> addtest(1,3)
ans =

7

--> addtest(3,0)

ans =

Suppose, however, we want to replace the value of the first argument by the computed sum. A first
attempt at doing so has no effect:

addtest2.m
function addtest2(a,b)
a = a + 2%xb;

--> argl =1
argl =

1
--> arg2 = 3
arg2 =

3

--> addtest2(argl,arg?2)
--> argl

ans =
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--> arg?

ans =

The values of argl and arg?2 are unchanged, because they are passed by value, so that any changes
to a and b inside the function do not affect argl and arg2. We can change that by passing the first
argument by reference:

addtest3.m
function addtest3(&a,b)
a =a + 2%xb

Note that it is now illegal to pass a literal value for a when calling addtest3:

--> addtest3(3,4)
a =
11

Error: Must have lvalue in argument passed by reference
--> addtest3(argl,arg2)

ans =

The first example fails because we cannot pass a literal like the number 3 by reference. However, the
second call succeeds, and note that argl has now changed. Note: please be careful when passing by
reference - this feature is not available in MATLAB and you must be clear that you are using it.
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As variable argument and return functions are covered elsewhere, as are keywords, we include
one final example that demonstrates the use of helper functions, or local functions, where multiple
function declarations occur in the same file.

euclidlength.m
function y = foo(x,y)
square_me (x) ;
square_me (y) ;
y = sqrt(x+y);

function square_me(&t)
t = t72;

--> euclidlength(3,4)

ans

--> euclidlength(2,0)

:

3.3 KEYWORDS Function Keywords

3.3.1 Usage

A feature of IDL that FreeMat has adopted is a modified form of keywords. The purpose of keywords
is to allow you to call a function with the arguments to the function specified in an arbitrary order.
To specify the syntax of keywords, suppose there is a function with prototype

function [out_1,...,out_M] = foo(in_1,...,in_N)

Then the general syntax for calling function foo using keywords is
foo(val_1, val_2, /in_k=3)

which is exactly equivalent to
foo(val_1, val_2, [1, [1, ..., [1, 3),

where the 3 is passed as the k-th argument, or alternately,

foo(val_1, val_2, /in_k)
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which is exactly equivalent to
foo(val_1, val_2, [], [1, ..., [1, logical(l)),

Note that you can even pass reference arguments using keywords.

3.3.2 Example

The most common use of keywords is in controlling options for functions. For example, the following
function takes a number of binary options that control its behavior. For example, consider the
following function with two arguments and two options. The function has been written to properly
use and handle keywords. The result is much cleaner than the MATLAB approach involving testing
all possible values of nargin, and forcing explicit empty brackets for don’t care parameters.

keyfunc.m
function ¢ = keyfunc(a,b,operation,printit)
if (Tisset(’a’) | ~isset(’b’))

error (’keyfunc requires at least the first two 2 arguments’);
end;
if (“isset(’operation’))
% user did not define the operation, default to ’+’
operation = ’+’;
end
if (Tisset(’printit’))
% user did not specify the printit flag, default is false
printit = 0O;
end
% simple operatiom...
eval([’c = a ’ operation ’ b;’]);
if (printit)
printf (°%f %s %f = %f\n’,a,operation,b,c);
end

Now some examples of how this function can be called using keywords.

--> keyfunc(1,3) % specify a and b, defaults for the others
ans =

4

--> keyfunc(1,3,/printit) % specify printit is true

1.000000 + 3.000000 = 4.000000
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--> keyfunc(/operation=’-’,2,3) % assigns a=2, b=3
ans =
-1

--> keyfunc(4,/operation="%’,/printit) % error as b is unspecified
In base(base) on line O

In simkeys(built in) on line O

In Eval(keyfunc(4,/operation...) on line 1

In keyfunc(keyfunc) on line 3

Error: keyfunc requires at least the first two 2 arguments

3.4 NARGIN Number of Input Arguments

3.4.1 Usage

The special variable nargin is defined inside of all functions. It indicates how many arguments were
passed to the function when it was called. FreeMat allows for fewer arguments to be passed to a
function than were declared, and nargin, along with isset can be used to determine exactly what
subset of the arguments were defined. There is no syntax for the use of nargin - it is automatically
defined inside the function body.

3.4.2 Example

Here is a function that is declared to take five arguments, and that simply prints the value of nargin
each time it is called.

nargintest.m
function nargintest(al,a2,a3,a4,ab)
printf (’nargin = %d\n’,nargin);

--> nargintest(3);

nargin = 1

--> nargintest(3,’h’);

nargin = 2

--> nargintest(3,’h’,1.34);
nargin = 3

--> nargintest(3,’h’,1.34,pi,e);
nargin = 5
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3.5 NARGOUT Number of Output Arguments

3.5.1 Usage

The special variable nargout is defined inside of all functions. It indicates how many return values
were requested from the function when it was called. FreeMat allows for fewer return values to
be requested from a function than were declared, and nargout can be used to determine exactly
what subset of the functions outputs are required. There is no syntax for the use of nargout - it is
automatically defined inside the function body.

3.5.2 Example

Here is a function that is declared to return five values, and that simply prints the value of nargout
each time it is called.

nargouttest.m
function [al,a2,a3,a4,ab] = nargouttest
printf (’nargout = %d\n’,nargout);
al = 1; a2 = 2; a3 = 3; a4 = 4; a5 = 5;

--> al = nargouttest
nargout = 1

al =

--> [al,a2] = nargouttest
nargout = 2
al =

--> [al,a2,a3] = nargouttest
nargout = 3
al =

a2 =



64 CHAPTER 3. FUNCTIONS AND SCRIPTS

a3 =
3

--> [al,a2,a3,a4,ab] = nargouttest
nargout = 5
al =

a2

a3

a4

ab

3.6 SCRIPT Script Files

3.6.1 Usage

A script is a sequence of FreeMat commands contained in a .m file. When the script is called (via
the name of the file), the effect is the same as if the commands inside the script file were issued one
at a time from the keyboard. Unlike function files (which have the same extension, but have a
function declaration), script files share the same environment as their callers. Hence, assignments,
ete, made inside a script are visible to the caller (which is not the case for functions.

3.6.2 Example

Here is an example of a script that makes some simple assignments and printf statements.

tscript.m
a = 13;
printf(’a is %d\n’,a);
b=a+ 32
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If we execute the script and then look at the defined variables

-—> tscript
a is 13
b =
45
--> who
Variable Name Type Flags Size
a int32 [1 1]
ans double [0 0]
b int32 1 1]

we see that a and b are defined appropriately.

3.7 SPECIAL Special Calling Syntax

3.7.1 Usage

To reduce the effort to call certain functions, FreeMat supports a special calling syntax for functions
that take string arguments. In particular, the three following syntaxes are equivalent, with one
caveat:

functionname(’argl’,’arg2’,...,’argn’)

or the parenthesis and commas can be removed
functionname ’argl’ ’arg2’ ... ’argn’

The quotes are also optional (providing, of course, that the argument strings have no spaces in them)
functionname argl arg2 ... argn

This special syntax enables you to type hold on instead of the more cumbersome hold(’on’). The
caveat is that FreeMat currently only recognizes the special calling syntax as the first statement on
a line of input. Thus, the following construction

for i=1:10; plot(vec(i)); hold on; end

would not work. This limitation may be removed in a future version.

3.7.2 Example

Here is a function that takes two string arguments and returns the concatenation of them.
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strcattest.m
function strcattest(strl,str2)
str3 = [strl,str2];
printf(’strl = Ys, str2 = %s, str3 = ¥s\n’,strl,str2,str3);

We call strcattest using all three syntaxes.

--> strcattest(’hi’,’ho’)

strl = hi, str2 = ho, str3 = hiho
-=> strcattest ’hi’ ’ho’

strl = hi, str2 = ho, str3 = hiho
—--> strcattest hi ho

strl = hi, str2 = ho, str3 = hiho

3.8 VARARGIN Variable Input Arguments

3.8.1 Usage

FreeMat functions can take a variable number of input arguments by setting the last argument in
the argument list to varargin. This special keyword indicates that all arguments to the function
(beyond the last non-varargin keyword) are assigned to a cell array named varargin available
to the function. Variable argument functions are usually used when writing driver functions, i.e.,
functions that need to pass arguments to another function. The general syntax for a function that
takes a variable number of arguments is

function [out_1,...,out_M] = fname(in_1,..,in_M,varargin)

Inside the function body, varargin collects the arguments to fname that are not assigned to the
in_k.

3.8.2 Example

Here is a simple wrapper to feval that demonstrates the use of variable arguments functions.

wrapcall.m
function wrapcall(fname,varargin)
feval (fname,varargin{:});

Now we show a call of the wrapcall function with a number of arguments
-=> wrapcall(Cprintf’,’%f...%f\n’,pi,e)
3.141593...2.718282

A more serious driver routine could, for example, optimize a one dimensional function that takes a
number of auxilliary parameters that are passed through varargin.
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3.9 VARARGOUT Variable Output Arguments

3.9.1 Usage

FreeMat functions can return a variable number of output arguments by setting the last argument
in the argument list to varargout. This special keyword indicates that the number of return values
is variable. The general syntax for a function that returns a variable number of outputs is

function [out_1,...,out_M,varargout] = fname(in_1,...,in_M)

The function is responsible for ensuring that varargout is a cell array that contains the values to
assign to the outputs beyond out_M. Generally, variable output functions use nargout to figure out
how many outputs have been requested.

3.9.2 Example

This is a function that returns a varying number of values depending on the value of the argument.

varoutfunc.m
function [varargout] = varoutfunc
switch(nargout)
case 1

varargout = {’one of one’};
case 2
varargout = {’one of two’,’two of two’l};
case 3
varargout = {’one of three’,’two of three’,’three of three’};

end
Here are some examples of exercising varoutfunc:

--> [c1] = varoutfunc
cl =

one of one

--> [c1,c2] = varoutfunc
cl =

one of two
c2 =
two of two

-=> [c1,c2,c3] = varoutfunc
cl =
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one of three

c2 =

two of three

c3 =

three of three
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Chapter 4

Mathematical Operators

4.1 COLON Index Generation Operator

4.1.1 Usage

There are two distinct syntaxes for the colon : operator - the two argument form
y=a:c
and the three argument form
y=a:b:c
The two argument form is exactly equivalent to a:1:c. The output y is the vector
y=la,a+b,a+2b,...,a+ nd

where a+nb <= c. There is a third form of the colon operator, the no-argument form used in indexing
(see indexing for more details).

4.1.2 Function Internals

The colon operator turns out to be trickier to implement than one might believe at first, primarily
because the floating point versions should do the right thing, which is not the obvious behavior. For
example, suppose the user issues a three point colon command

y=a:b:c
The first question that one might need to answer is: how many points in this vector? If you answered

cC—a

b

n= +1

then you would be doing the straighforward, but not correct thing. because a, b, and ¢ are all
floating point values, there are errors associated with each of the quantities that can lead to n not
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being an integer. A better way (and the way FreeMat currently does the calculation) is to compute
the bounding values (for b positive)

(c—a)—0 (c—a)— 0
1
"l T oo T bo0 T

where

r—1Y

means we replace x by the floating point number that is closest to it in the direction of y. Once we
have determined the number of points we have to compute the intermediate values

[a,a+b,a+2x%b,...,a+nx*b
but one can readily verify for themselves that this may not be the same as the vector
fliplrfe,c — b,c — 2% b,...,c —n*b)

even for the case where
c=a+nx*b

for some n. The reason is that the roundoff in the calculations may be different depending on the
nature of the sum. FreeMat uses the following strategy to compute the double-colon vector:

1. The value n is computed by taking the floor of the larger value in the interval defined above.

2. Ifn falls inside the interval defined above, then it is assumed that the user intended ¢ = a + n*b,
and the symmetric algorithm is used. Otherwise, the nonsymmetric algorithm is used.

3. The symmetric algorithm computes the vector via
[a,a+b,a+2b,...,c—2b,c—b,(]

working symmetrically from both ends of the vector (hence the nomenclature), while the
nonsymmetric algorithm computes

[a,a+b,a+2b,...,a+ nbl

In practice, the entries are computed by repeated accumulation instead of multiplying the step
size by an integer.

4. The real interval calculation is modified so that we get the exact same result with a:b:c and
c:-b:a (which basically means that instead of moving towards infinity, we move towards the
signed infinity where the sign is inherited from b).

If you think this is all very obscure, it is. But without it, you will be confronted by mysterious
vectors where the last entry is dropped, or where the values show progressively larger amounts of
accumulated roundoff error.
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4.1.3 Examples

Some simple examples of index generation.

-——>y=1:4

y =

1234

Now by half-steps:

-->y =1:.5:4
y =
1.0000 1.5000 2.0000 2.5000
Now going backwards (negative steps)
-—>y =4:-.5:1
y =
4.0000 3.5000 3.0000 2.5000
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3.0000 3.5000 4.0000

2.0000 1.5000 1.0000

If the endpoints are the same, one point is generated, regardless of the step size (middle argument)

-—>y =4:1:4

y:

4

If the endpoints define an empty interval, the output is an empty matrix:

-->y =5:4

y =
Empty array [1 0]
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4.2 COMPARISONOPS Array Comparison Operators

4.2.1 Usage

There are a total of six comparison operators available in FreeMat, all of which are binary operators
with the following syntax

y=a<b
y=a<=b
y=a>b
y=a>b»o
y=a’™=b
y=a==b

where a and b are numerical arrays or scalars, and y is a logical array of the appropriate size.
Each of the operators has three modes of operation, summarized in the following list:

1. ais a scalar, b is an n-dimensional array - the output is then the same size as b, and contains
the result of comparing each element in b to the scalar a.

2. a is an n-dimensional array, b is a scalar - the output is the same size as a, and contains the
result of comparing each element in a to the scalar b.

3. a and b are both n-dimensional arrays of the same size - the output is then the same size as
both a and b, and contains the result of an element-wise comparison between a and b.

The operators behave the same way as in C, with unequal types meing promoted using the standard
type promotion rules prior to comparisons. The only difference is that in FreeMat, the not-equals
operator is ~= instead of !=.

4.2.2 Examples

Some simple examples of comparison operations. First a comparison with a scalar:

--> a = randn(1,5)

-0.1219 0.5028 0.7476  -0.8449 0.4388

--> a>0

01101

Next, we construct two vectors, and test for equality:
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-->a = [1,2,5,7,3]
a =

12573

--> b = [2,2,5,9,4]
b =

22594

-—> Cc = ==

01100

4.3 DOTLEFTDIVIDE Element-wise Left-Division Opera-
tor

4.3.1 Usage

Divides two numerical arrays (elementwise) - gets its name from the fact that the divisor is on the
left. There are two forms for its use, both with the same general syntax:

y=a.\b

where a and b are n-dimensional arrays of numerical type. In the first case, the two arguments are
the same size, in which case, the output y is the same size as the inputs, and is the element-wise
division of b by a. In the second case, either a or b is a scalar, in which case y is the same size as
the larger argument, and is the division of the scalar with each element of the other argument.

The type of y depends on the types of a and b using type promotion rules, with one important
exception: unlike C, integer types are promoted to double prior to division.

4.3.2 Function Internals

There are three formulae for the dot-left-divide operator, depending on the sizes of the three ar-
guments. In the most general case, in which the two arguments are the same size, the output is
computed via:
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If a is a scalar, then the output is computed via

b(ml,...,md)

y(ma,...,mq) = "

On the other hand, if b is a scalar, then the output is computed via

b

mi,...,Mq) = —F/——.
y( ! ) a(ml,...,md)

4.3.3 Examples

Here are some examples of using the dot-left-divide operator. First, a straight-forward usage of the
\\ operator. The first example is straightforward:

-->3 .\ 8

ans

2.6667

Note that this is not the same as evaluating 8/3 in C - there, the output would be 2, the result of
the integer division.
We can also divide complex arguments:

-—> a = 3 + 4%i

3.0000 + 4.0000i

-=> b =5 + 8xi

5.0000 + 8.0000i

-—>c=Db .\ a

0.5281 - 0.04491

If a complex value is divided by a double, the result is promoted to dcomplex.
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-->b=a .\ 2.0
b =

0.2400 - 0.32001

We can also demonstrate the three forms of the dot-left-divide operator. First the element-wise
version:

--> a [1,2;3,4]

|

|
\4
o

|

= [2,3;6,7]

2.0000 1.5000
2.0000 1.7500

Then the scalar versions

-—>c=a .\ 3

3.0000 1.5000
1.0000 0.7500
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0.3333 0.6667
1.0000 1.3333

4.4 DOTPOWER Element-wise Power Operator

4.4.1 Usage

Raises one numerical array to another array (elementwise). There are three operators all with the
same general syntax:

y=a."b
The result y depends on which of the following three situations applies to the arguments a and b:

1. a is a scalar, b is an arbitrary n-dimensional numerical array, in which case the output is a
raised to the power of each element of b, and the output is the same size as b.

2. ais an n-dimensional numerical array, and b is a scalar, then the output is the same size as a,
and is defined by each element of a raised to the power b.

3. a and b are both n-dimensional numerical arrays of the same size. In this case, each element of
the output is the corresponding element of a raised to the power defined by the corresponding
element of b.

The output follows the standard type promotion rules, although types are not generally preserved
under the power operation. In particular, integers are automatically converted to double type, and
negative numbers raised to fractional powers can return complex values.

4.4.2 Function Internals
There are three formulae for this operator. For the first form

) — ab(ml,...7md)

y(mla'“vmd ;

and the second form
b

y(my,...,mqg) = almq,...,my)’,
and in the third form

y(ma, ..., mq) = a(my, ..., mg)P0m—ma),

4.4.3 Examples

We demonstrate the three forms of the dot-power operator using some simple examples. First, the
case of a scalar raised to a series of values.
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]
N

--> a

--> b =1:4

2 4 8 16

The second case shows a vector raised to a scalar.

--> c =b."a

1 4 9 16

The third case shows the most general use of the dot-power operator.

-—> A

[1,2;3,2]

A =

|

|
\4
oo

|

= [2,1.5;0.5,0.6]

2.0000 1.5000
0.5000 0.6000
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1.0000 2.8284
1.7321 1.5157

4.5 DOTRIGHTDIVIDE Element-wise Right-Division Op-
erator

4.5.1 Usage

Divides two numerical arrays (elementwise). There are two forms for its use, both with the same
general syntax:

y=a./b

where a and b are n-dimensional arrays of numerical type. In the first case, the two arguments are
the same size, in which case, the output y is the same size as the inputs, and is the element-wise
division of b by a. In the second case, either a or b is a scalar, in which case y is the same size as
the larger argument, and is the division of the scalar with each element of the other argument.

The type of y depends on the types of a and b using type promotion rules, with one important
exception: unlike C, integer types are promoted to double prior to division.

4.5.2 Function Internals

There are three formulae for the dot-right-divide operator, depending on the sizes of the three
arguments. In the most general case, in which the two arguments are the same size, the output is
computed via:

a(ml, v ,md)
Y ) )
If a is a scalar, then the output is computed via
B a
e ) = )

On the other hand, if b is a scalar, then the output is computed via

a(mla"'amd)

y(my,...,mg) = 5

4.5.3 Examples

Here are some examples of using the dot-right-divide operator. First, a straight-forward usage of
the ./ operator. The first example is straightforward:
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-->3 ./ 8

ans

0.3750

Note that this is not the same as evaluating 3/8 in C - there, the output would be 0, the result of
the integer division.
We can also divide complex arguments:

-=> a = 3 + 4x%i

3.0000 + 4.00001

-—> b =5 + 8%i

5.0000 + 8.00001

0.5281 - 0.0449i

If a complex value is divided by a double, the result is promoted to dcomplex.

-->b=a./2.0

1.5000 + 2.0000i

We can also demonstrate the three forms of the dot-right-divide operator. First the element-wise
version:

--> a = [1,2;3,4]

a =
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|

|
v
o

|

= [2,3;6,7]

0.5000 0.6667
0.5000 0.5714

Then the scalar versions

-->c=a ./ 3

0.3333 0.6667
1.0000 1.3333

3.0000 1.5000
1.0000 0.7500

4.6 DOTTIMES Element-wise Multiplication Operator

4.6.1 Usage

Multiplies two numerical arrays (elementwise). There are two forms for its use, both with the same
general syntax:

y=a.*xb
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where a and b are n-dimensional arrays of numerical type. In the first case, the two arguments are
the same size, in which case, the output y is the same size as the inputs, and is the element-wise
product of a and b. In the second case, either a or b is a scalar, in which case y is the same size as
the larger argument, and is the product of the scalar with each element of the other argument.

The type of y depends on the types of a and b using type promotion rules. All of the types
are preserved under multiplication except for integer types, which are promoted to int32 prior to
multiplication (same as C).

4.6.2 Function Internals

There are three formulae for the dot-times operator, depending on the sizes of the three arguments.
In the most general case, in which the two arguments are the same size, the output is computed via:

y(ma,...,mq) = almq,...,mg) x b(my,...,mq)
If a is a scalar, then the output is computed via
y(m,...,mq) =a x b(my,...,mq).
On the other hand, if b is a scalar, then the output is computed via

y(ma,...,mq) = a(my,...,mg) X b.

4.6.3 Examples

Here are some examples of using the dottimes operator. First, a straight-forward usage of the .*
operator. The first example is straightforward:

-—> 3 .x 8

24

Note, however, that because of the way that input is parsed, eliminating the spaces 3.*8 results in
the input being parsed as 3. * 8, which yields a double result:

--> 3.%8

24

This is really an invokation of the times operator.
Next, we use the floating point syntax to force one of the arguments to be a double, which
results in the output being double:
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ans

6.2000

Note that if one of the arguments is complex-valued, the output will be complex also.

--> a =3 + 4xi

3.0000 + 4.00001

-->b =a .x 2.0f

6.0000 + 8.00001

If a complex value is multiplied by a double, the result is promoted to dcomplex.

6.0000 + 8.00001

We can also demonstrate the three forms of the dottimes operator. First the element-wise version:

- [1:2;3’4]

|
I

v

©
|

|

|
\4
o

1]

[2,3;6,7]
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6 7

-->c=a .*xb

2 6
18 28

Then the scalar versions

-->c=a .*x 3

4.7 HERMITIAN Matrix Hermitian (Conjugate Transpose)
Operator

4.7.1 Usage
Computes the Hermitian of the argument (a 2D matrix). The syntax for its use is
y=a’;
where a is a M x N numerical matrix. The output y is a numerical matrix of the same type of size

N x M. This operator is the conjugating transpose, which is different from the transpose operator .’
(which does not conjugate complex values).

4.7.2 Function Internals
The Hermitian operator is defined simply as
Yij = 5

where y_1ij is the element in the ith row and jth column of the output matrix y.
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4.7.3 Examples

A simple transpose example:

-—> A = [1,2,0;4,1,-1]

A =
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Here, we use a complex matrix to demonstrate how the Hermitian operator conjugates the entries.

——> A = [1+i,2-i]

1.0000 + 1.00001

ans

[ae

.0000 + 1.00001
.0000 - 1.0000i

N

2.0000 -

1.00001

4.8 LEFTDIVIDE Matrix Equation Solver/Divide Operator

The divide operator \ is really a combination of three operators, all of which have the same general

4.8.1 Usage
syntax:
Y=A\B

where A and B are arrays of numerical type. The result Y depends on which of the following three
situations applies to the arguments A and B:
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1. Ais a scalar, B is an arbitrary n-dimensional numerical array, in which case the output is each
element of B divided by the scalar A.

2. B is a scalar, A is an arbitrary n-dimensional numerical array, in which case the output is the
scalar B divided by each element of A.

3. A,B are matrices with the same number of rows, i.e., A is of size M x K, and Bis of size M x L,
in which case the output is of size K x L.

The output follows the standard type promotion rules, although in the first two cases, if A and B are
integers, the output is an integer also, while in the third case if A and B are integers, the output is
of type double.

A few additional words about the third version, in which A and B are matrices. Very loosely
speaking, Y is the matrix that satisfies A * Y = B. In cases where such a matrix exists. If such a
matrix does not exist, then a matrix Y is returned that approximates A * Y \approx B.

4.8.2 Function Internals

There are three formulae for the times operator. For the first form

B
y(mh”.,md)zw’

and the second form
Y(mi,...,mq) = ——m—.
( ) A(ma,...,mq)
In the third form, the calculation of the output depends on the size of A. Because each column of B
is treated independantly, we can rewrite the equation A Y = B as

A[ylvaa"'vyl] = [blaan"'abl}

where y_i are the columns of Y, and b_i are the columns of the matrix B. If A is a square matrix,
then the LAPACK routine *gesvx (where the * is replaced with sdcz depending on the type of
the arguments) is used, which uses an LU decomposition of A to solve the sequence of equations
sequentially. If A is singular, then a warning is emitted.

On the other hand, if A is rectangular, then the LAPACK routine *gelsy is used. Note that
these routines are designed to work with matrices A that are full rank - either full column rank or full
row rank. If A fails to satisfy this assumption, a warning is emitted. If A has full column rank (and
thus necessarily has more rows than columns), then theoretically, this operator finds the columns
y_i that satisfy:

yi = argmin [[Ay — bi2

and each column is thus the Least Squares solution of A y = b_i. On the other hand, if A has full
row rank (and thus necessarily has more columns than rows), then theoretically, this operator finds
the columns y_i that satisfy

yi = arg min |y

and each column is thus the Minimum Norm vector y_i that satisfies A y_i = b_i. In the event
that the matrix A is neither full row rank nor full column rank, a solution is returned, that is the
minimum norm least squares solution. The solution is computed using an orthogonal factorization
technique that is documented in the LAPACK User’s Guide (see the References section for details).



86 CHAPTER 4. MATHEMATICAL OPERATORS

4.8.3 Examples

Here are some simple examples of the divide operator. We start with a simple example of a full
rank, square matrix:

-—> A = [1,1;0,1]

A=

O =
=

Suppose we wish to solve

1 1 Yyi| 3

0 1 Y2 T2
yy-2 =

(which by inspection has the solution y_1 = 1 2). Thus we compute:

--> B = [3;2]
B =

3

2

--> Y = A\B
Yy =

1

2

Suppose we wish to solve a trivial Least Squares (LS) problem. We want to find a simple scaling
of the vector [1;1] that is closest to the point [2,1]. This is equivalent to solving

il

in a least squares sense. For fun, we can calculate the solution using calculus by hand. The error
we wish to minimize is

ey)=@—-27+(y—1)>°

Taking a derivative with respect to y, and setting to zero (which we must have for an extrema when
y is unconstrained)
2(y—2)+2(y—1)=0
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which we can simplify to 4y = 6 or y = 3/2 (we must, technically, check to make sure this is a
minimum, and not a maximum or an inflection point). Here is the same calculation performed using
FreeMat:

-—> A = [1;1]

|

|
A\
(vs]

|

= [2;1]

--> A\B
ans =

1.5000

which is the same solution.

4.9 LOGICALOPS Logical Array Operators

4.9.1 Usage

There are three Boolean operators available in FreeMat. The syntax for their use is:

y="x

y=aé&bhb

y=alb

where x, a and b are logical arrays. The operators are

e NOT (~) - output y is true if the corresponding element of x is false, and ouput y is false if
the corresponding element of x is true.

e OR (—) - output y is true if corresponding element of a is true or if corresponding element of
b is true (or if both are true).

e AND (\&) - output y is true only if both the corresponding elements of a and b are both true.
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The binary operators AND and OR can take scalar arguments as well as vector arguments, in which
case, the scalar is operated on with each element of the vector. As of version 1.10, FreeMat supports
shortcut evaluation. This means that if we have two expressions

if (exprl & expr2)
then if expril evaluates to false, then expr2 is not evaluated at all. Similarly, for the expression
if (exprl | expr2)

then if exprl evaluates to true, then expr2 is not evaluated at all. Shortcut evaluation is useful for
doing a sequence of tests, each of which is not valid unless the prior test is successful. For example,

if isa(p,’string’) & strcmp(p,’fro’)

is not valid without shortcut evaluation (if p is an integer, for example, the first test returns false,
and an attempt to evaluate the second expression would lead to an error). Note that shortcut
evaluation only works with scalar expressions.

4.9.2 Examples

Some simple examples of logical operators. Suppose we want to calculate the exclusive-or (XOR) of
two vectors of logical variables. First, we create a pair of vectors to perform the XOR operation on:

--> a = (randn(1,6)>0)

100101
--> b = (randn(1,6)>0)
b =

010001

Next, we can compute the OR of a and b:

->c=alb

110101

However, the XOR and OR operations differ on the fifth entry - the XOR would be false, since it is
true if and only if exactly one of the two inputs is true. To isolate this case, we can AND the two
vectors, to find exactly those entries that appear as true in both a and b:



4.10. MINUS SUBTRACTION OPERATOR 89

-->d=aé&b
d =

000001

At this point, we can modify the contents of ¢ in two ways — the Boolean way is to AND \sim d
with c, like so

--> xor = ¢ & (7d)
xor =

110100

The other way to do this is simply force c(d) = 0, which uses the logical indexing mode of FreeMat
(see the chapter on indexing for more details). This, however, will cause ¢ to become an int32 type,
as opposed to a logical type.

-—> c(d =0

110100

4.10 MINUS Subtraction Operator

4.10.1 Usage

Subtracts two numerical arrays (elementwise). There are two forms for its use, both with the same
general syntax:

y=a-b>

where a and b are n-dimensional arrays of numerical type. In the first case, the two arguments are
the same size, in which case, the output y is the same size as the inputs, and is the element-wise
difference of a and b. In the second case, either a or b is a scalar, in which case y is the same size
as the larger argument, and is the difference of the scalar to each element of the other argument.

The type of y depends on the types of a and b using the type promotion rules. The types are
ordered as:

1. uint8 - unsigned, 8-bit integers range [0,255]
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2. int8 - signed, 8-bit integers [-127,128]

uint16 - unsigned, 16-bit integers [0,65535]

int16 - signed, 16-bit integers [-32768,32767]

uint32 - unsigned, 32-bit integers [0,4294967295]

int32 - signed, 32-bit integers [-2147483648,2147483647]
float - 32-bit floating point

double - 64-bit floating point

© 0 N e e W

complex - 32-bit complex floating point
10. dcomplex - 64-bit complex floating point

Note that the type promotion and combination rules work similar to C. Numerical overflow rules are
also the same as C.

4.10.2 Function Internals

There are three formulae for the subtraction operator, depending on the sizes of the three arguments.
In the most general case, in which the two arguments are the same size, the output is computed via:

y(ma,...,mq) = a(my,...,mq) —blmq,...,mg)
If a is a scalar, then the output is computed via
y(ma,...,mq) =a—>b(my,...,my).
On the other hand, if b is a scalar, then the output is computed via

y(my,...,mq) = almy,...,mg) —b.

4.10.3 Examples

Here are some examples of using the subtraction operator. First, a straight-forward usage of the
minus operator. The first example is straightforward - the int32 is the default type used for integer
constants (same as in C), hence the output is the same type:

-->3-8

Next, we use the floating point syntax to force one of the arguments to be a double, which results
in the output being double:
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--> 3.1 -2

ans

1.1000

Note that if one of the arguments is complex-valued, the output will be complex also.

--> a =3 + 4xi

3.0000 + 4.00001
-->b =a - 2.0f
b =

1.0000 + 4.00001

If a double value is subtracted from a complex, the result is promoted to dcomplex.

-——->b=a-2.0
b =

1.0000 + 4.00001

We can also demonstrate the three forms of the subtraction operator. First the element-wise version:

--> a = [1,2;3,4]

|

|
\4
o

1]

[2,3;6,7]
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6 7

-—>c=a-b>b

-1 -1
-3 -3

Then the scalar versions

-——>c=a-1

c=

01

23
-—>c=1-b
c =

-1 -2

-5 -6

4.11 PLUS Addition Operator

4.11.1 Usage

Adds two numerical arrays (elementwise) together. There are two forms for its use, both with the
same general syntax:

y=a+b

where a and b are n-dimensional arrays of numerical type. In the first case, the two arguments are
the same size, in which case, the output y is the same size as the inputs, and is the element-wise the
sum of a and b. In the second case, either a or b is a scalar, in which case y is the same size as the
larger argument, and is the sum of the scalar added to each element of the other argument.

The type of y depends on the types of a and b using the type promotion rules. The types are
ordered as:

1. uint8 - unsigned, 8-bit integers range [0,255]

2. int8 - signed, 8-bit integers [-127,128]
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3. uint16 - unsigned, 16-bit integers [0,65535]

4. int16 - signed, 16-bit integers [-32768,32767]

5. uint32 - unsigned, 32-bit integers [0,4294967295]

int32 - signed, 32-bit integers [-2147483648,2147483647]
float - 32-bit floating point

double - 64-bit floating point

© % N @

complex - 32-bit complex floating point
10. dcomplex - 64-bit complex floating point

Note that the type promotion and combination rules work similar to C. Numerical overflow rules are
also the same as C.

4.11.2 Function Internals

There are three formulae for the addition operator, depending on the sizes of the three arguments.
In the most general case, in which the two arguments are the same size, the output is computed via:

y(ma,...,mq) = almq,...,mg) +b(my,...,mg)
If a is a scalar, then the output is computed via
y(my,...,mq) =a+b(my,...,mg).
On the other hand, if b is a scalar, then the output is computed via
y(ma,...,mq) = almy,...,mg) +b.

4.11.3 Examples

Here are some examples of using the addition operator. First, a straight-forward usage of the plus
operator. The first example is straightforward - the int32 is the default type used for integer
constants (same as in C), hence the output is the same type:

-->3+38
ans =

11

Next, we use the floating point syntax to force one of the arguments to be a double, which results
in the output being double:
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ans

5.1000

Note that if one of the arguments is complex-valued, the output will be complex also.

--> a =3 + 4xi

3.0000 + 4.00001

-->b =a + 2.0f

5.0000 + 4.00001

If a complex value is added to a double, the result is promoted to dcomplex.

-->b=a+ 2.0

5.0000 + 4.00001

We can also demonstrate the three forms of the addition operator. First the element-wise version:

- [1:2;3’4]

|
I

v

©
|

|

|
\4
o

1]

[2,3;6,7]
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6 7

-—>c=a+b

Then the scalar versions

-——>c=a+1

=N
[S2 VM)

-—>c=1+bD

~N w
o »

4.12 POWER Matrix Power Operator

4.12.1 Usage

The power operator for scalars and square matrices. This operator is really a combination of two
operators, both of which have the same general syntax:

y=a’~b

The exact action taken by this operator, and the size and type of the output, depends on which of
the two configurations of a and b is present:

1. ais a scalar, b is a square matrix

2. ais a square matrix, b is a scalar
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4.12.2 Function Internals

In the first case that a is a scalar, and b is a square matrix, the matrix power is defined in terms
of the eigenvalue decomposition of b. Let b have the following eigen-decomposition (problems arise
with non-symmetric matrices b, so let us assume that b is symmetric):

M O - 0
p=p|0 N E!
0
0 0 A\
Then a raised to the power b is defined as
a0 0
A2
d=p" @ E!
SO
0 0 a’

Similarly, if a is a square matrix, then a has the following eigen-decomposition (again, suppose a is
symmetric):

M O -0
a=p|0 E!

. 0

0 0 A

Then a raised to the power b is defined as

Ao 0
=g |0 M B

. 0

0 0 X

4.12.3 Examples

We first define a simple 2 x 2 symmetric matrix

--> A =1.5
A =
1.5000

--> B = [1,.2;.2,1]
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1.0000 0.2000
0.2000 1.0000

First, we raise B to the (scalar power) A:

--> C = B"A

1.0150 0.2995
0.2995 1.0150

Next, we raise A to the matrix power B:

-->C = A"B

1.5049 0.1218
0.1218 1.5049

4.13 RIGHTDIVIDE Matrix Equation Solver/Divide Oper-
ator

4.13.1 Usage

The divide operator / is really a combination of three operators, all of which have the same general
syntax:

Y=A/B

where A and B are arrays of numerical type. The result Y depends on which of the following three
situations applies to the arguments A and B:

1. A is a scalar, B is an arbitrary n-dimensional numerical array, in which case the output is the
scalar A divided into each element of B.

2. Bis a scalar, A is an arbitrary n-dimensional numerical array, in which case the output is each
element of A divided by the scalar B.
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3. A,B are matrices with the same number of columns, i.e., A is of size K x M, and B is of size
L x M, in which case the output is of size K x L.

The output follows the standard type promotion rules, although in the first two cases, if A and B are
integers, the output is an integer also, while in the third case if A and B are integers, the output is
of type double.

4.13.2 Function Internals

There are three formulae for the times operator. For the first form
A
Y(mi,...,mq) = =¥,
( ) B(my,...,mgq)

and the second form
A(my, ..., myq)

Y(mi,...,mq) = B

In the third form, the output is defined as:
Y — (B/\A/)/

and is used in the equation Y B = A.

4.13.3 Examples

The right-divide operator is much less frequently used than the left-divide operator, but the concepts
are similar. It can be used to find least-squares and minimum norm solutions. It can also be used
to solve systems of equations in much the same way. Here’s a simple example:

--> B = [1,1;0,1];
-—> A = [4,5]

A =

45

--> A/B

ans =

41

4.14 TIMES Matrix Multiply Operator
4.14.1 Usage

Multiplies two numerical arrays. This operator is really a combination of three operators, all of
which have the same general syntax:
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y=axb

99

where a and b are arrays of numerical type. The result y depends on which of the following three

situations applies to the arguments a and b:

1. a is a scalar, b is an arbitrary n-dimensional numerical array, in which case the output is the

element-wise product of b with the scalar a.

2. b is a scalar, a is an arbitrary n-dimensional numerical array, in which case the output is the

element-wise product of a with the scalar b.

3. a,b are conformant matrices, i.e., a is of size M x K, and b is of size K x N, in which case the

output is of size M x N and is the matrix product of a, and b.

The output follows the standard type promotion rules, although in the first two cases, if a and b are
integers, the output is an integer also, while in the third case if a and b are integers, ,the output is

of type double.

4.14.2 Function Internals

There are three formulae for the times operator. For the first form
y(my,...,mqg) =a xb(my,...,mq),

and the second form
y(ma,...,mq) = a(my,...,mg) X b.

In the third form, the output is the matrix product of the arguments

K
y(m,n) = a(m, k)b(k,n)

4.14.3 Examples

Here are some examples of using the matrix multiplication operator. First, the scalar examples

(types 1 and 2 from the list above):

-->a = [1,3,4;0,2,1]
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042

The matrix form, where the first argument is 2 x 3, and the second argument is 3 x 1, so that the
product is size 2 x 1.

--> a = [1,2,0;4,2,3]

a =

120

4 2 3

--> b = [5;3;1]
b =

5

3

1

--> c = ax*b
C =

11

29

Note that the output is double precision.

4.15 TRANSPOSE Matrix Transpose Operator

4.15.1 Usage
Performs a transpose of the argument (a 2D matrix). The syntax for its use is
y=a.’;
where a is a M x N numerical matrix. The output y is a numerical matrix of the same type of

size N x M. This operator is the non-conjugating transpose, which is different from the Hermitian
operator ’ (which conjugates complex values).



4.15. TRANSPOSE MATRIX TRANSPOSE OPERATOR 101

4.15.2 Function Internals

The transpose operator is defined simply as
Yij = Qg

where y_1ij is the element in the ith row and jth column of the output matrix y.

4.15.3 Examples

A simple transpose example:

--> A = [1,2,0;4,1,-1]

A

Here, we use a complex matrix to demonstrate how the transpose does not conjugate the entries.

-=> A = [1+i,2-1]

1.0000 + 1.0000i 2.0000 - 1.00001i

ans

[

.0000 + 1.0000i
.0000 - 1.00001

N
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Chapter 5

Flow Control

5.1 BREAK Exit Execution In Loop

5.1.1 Usage

The break statement is used to exit a loop prematurely. It can be used inside a for loop or a while
loop. The syntax for its use is

break

inside the body of the loop. The break statement forces execution to exit the loop immediately.

5.1.2 Example

Here is a simple example of how break exits the loop. We have a loop that sums integers from 1 to
10, but that stops prematurely at 5 using a break. We will use a while loop.

break_ex.m
function accum = break_ex
accum = 0;
i=1;
while (i<=10)
accum = accum + i;
if (i == b)
break;
end

The function is exercised here:

-=> break_ex
ans =

103
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15

--> sum(1:5)

15

5.2 CONTINUE Continue Execution In Loop

5.2.1 Usage

The continue statement is used to change the order of execution within a loop. The continue
statement can be used inside a for loop or a while loop. The syntax for its use is

continue

inside the body of the loop. The continue statement forces execution to start at the top of the loop
with the next iteration. The examples section shows how the continue statement works.

5.2.2 Example

Here is a simple example of using a continue statement. We want to sum the integers from 1 to
10, but not the number 5. We will use a for loop and a continue statement.

continue_ex.m
function accum = continue_ex
accum = 0;
for i=1:10
if (i==b)
continue;
end
accum = accum + 1; Y%skipped if i == 5!
end

The function is exercised here:

--> continue_ex

ans =

--> sum([1:4,6:10])
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ans =

50

5.3 ERROR Causes an Error Condition Raised

5.3.1 Usage

The error function causes an error condition (exception to be raised). The general syntax for its
use is

error(s),

where s is the string message describing the error. The error function is usually used in conjunction
with try and catch to provide error handling. If the string s, then (to conform to the MATLAB
API), error does nothing.

5.3.2 Example

Here is a simple example of an error being issued by a function evenoddtest:

evenoddtest.m
function evenoddtest(n)
if (n==0)
error(’zero is neither even nor odd’);
elseif (“isa(m,’int327’))
error(’expecting integer argument’);
end;
if (n==int32(n/2)*2)
printf(’%d is even\n’,n);
else
printf(°%d is odd\n’,n);
end

The normal command line prompt --> simply prints the error that occured.

--> evenoddtest(4)

4 is even

--> evenoddtest(5)

5 is odd

--> evenoddtest (0)

In base(base) on line O

In simkeys(built in) on line O

In Eval(evenoddtest(0)) on line 1
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In evenoddtest(evenoddtest) on line 3
Error: zero is neither even nor odd
--> evenoddtest (pi)

In base(base) on line 0O

In simkeys(built in) on line O

In Eval(evenoddtest(pi)) on line 1

In evenoddtest(evenoddtest) on line 5
Error: expecting integer argument

5.4 FOR For Loop

5.4.1 Usage

The for loop executes a set of statements with an index variable looping through each element in
a vector. The syntax of a for loop is one of the following:

for (variable=expression)
statements
end

Alternately, the parenthesis can be eliminated

for variable=expression
statements
end

or alternately, the index variable can be pre-initialized with the vector of values it is going to take:

for variable
statements
end

The third form is essentially equivalent to for variable=variable, where variable is both the
index variable and the set of values over which the for loop executes. See the examples section for
an example of this form of the for loop.

5.4.2 Examples

Here we write for loops to add all the integers from 1 to 100. We will use all three forms of the for
statement.

--> accum = 0;
--> for (i=1:100); accum = accum + i; end
—-—> accunm



5.5. IF-ELSEIF-ELSE CONDITIONAL STATEMENTS 107

5050

The second form is functionally the same, without the extra parenthesis

-=> accum = 0;
--=> for i=1:100; accum = accum + i; end
--> accum

5050

In the third example, we pre-initialize the loop variable with the values it is to take

5.5 IF-ELSEIF-ELSE Conditional Statements

5.5.1 Usage

The if and else statements form a control structure for conditional execution. The general syntax
involves an if test, followed by zero or more elseif clauses, and finally an optional else clause:

if conditional_expression_1
statements_1

elseif conditional_expression_2
statements_2

elseif conditional_expresiion_3
statements_3

else
statements_N

end

Note that a conditional expression is considered true if the real part of the result of the expression
contains any non-zero elements (this strange convention is adopted for compatibility with MATLAB).

5.5.2 Examples

Here is an example of a function that uses an if statement

if_test.m
function ¢ = if_test(a)
if (a == 1)
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c = ’one’;
elseif (a==2)
c = ’two’;
elseif (a==3)
c = ’three’;
else
¢ = ’something else’;
end

Some examples of if_test in action:

--> if_test (1)

one

-=> if_test(2)
ans =

two

-—> if_test(3)
ans =

three

--> if_test(pi)
ans =

something else

CHAPTER 5. FLOW CONTROL

5.6 KEYBOARD Initiate Interactive Debug Session

5.6.1 Usage

The keyboard statement is used to initiate an interactive session at a specific point in a function.

The general syntax for the keyboard statement is

keyboard
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A keyboard statement can be issued in a script, in a function, or from within another keyboard
session. The result of a keyboard statement is that execution of the program is halted, and you are
given a prompt of the form:

[scope,n] -->

where scope is the current scope of execution (either the name of the function we are executing, or
base otherwise). And n is the depth of the keyboard session. If, for example, we are in a keyboard
session, and we call a function that issues another keyboard session, the depth of that second session
will be one higher. Put another way, n is the number of return statements you have to issue to
get back to the base workspace. Incidentally, a return is how you exit the keyboard session and
resume execution of the program from where it left off. A retall can be used to shortcut execution
and return to the base workspace.

The keyboard statement is an excellent tool for debugging FreeMat code, and along with eval
provide a unique set of capabilities not usually found in compiled environments. Indeed, the
keyboard statement is equivalent to a debugger breakpoint in more traditional environments, but
with significantly more inspection power.

5.6.2 Example

Here we demonstrate a two-level keyboard situation. We have a simple function that calls keyboard
internally:

key_one.m
function ¢ = key_one(a,b)
c =a+ b;
keyboard

Now, we execute the function from the base workspace, and at the keyboard prompt, we call it
again. This action puts us at depth 2. We can confirm that we are in the second invocation of the
function by examining the arguments. We then issue two return statements to return to the base
workspace.

--> key_one(1,2)
[key_one,3]--> key_one(5,7)
[key_one,3]--> a

ans =

[key_one,3]--> b
ans =
7

[key_one,3]--> ¢
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ans =
12
[key_one,3]--> return
ans =
12
[key_one,3]--> a

ans =

[key_one,3]--> b
ans =
2
[key_one,3]--> ¢
ans =
3
[key_one,3]--> return

ans =

5.7 LASTERR Retrieve Last Error Message
5.7.1 Usage

Either returns or sets the last error message. The general syntax for its use is either
msg = lasterr

which returns the last error message that occured, or
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lasterr(msg)

which sets the contents of the last error message.

5.7.2 Example

Here is an example of using the error function to set the last error, and then retrieving it using
lasterr.

--> try; error(’Test error message’); catch; end;
--> lasterr

ans =

Test error message

Or equivalently, using the second form:

--> lasterr(’Test message’);
-=> lasterr

ans

Test message

5.8 RETALL Return From All Keyboard Sessions

5.8.1 Usage

The retall statement is used to return to the base workspace from a nested keyboard session. It
is equivalent to forcing execution to return to the main prompt, regardless of the level of nesting of
keyboard sessions, or which functions are running. The syntax is simple

retall

The retall is a convenient way to stop debugging. In the process of debugging a complex program
or set of functions, you may find yourself 5 function calls down into the program only to discover
the problem. After fixing it, issueing a retall effectively forces FreeMat to exit your program and
return to the interactive prompt.

5.8.2 Example

Here we demonstrate an extreme example of retall. We are debugging a recursive function self to
calculate the sum of the first N integers. When the function is called, a keyboard session is initiated
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after the function has called itself N times. At this keyboard prompt, we issue another call to self
and get another keyboard prompt, this time with a depth of 2. A retall statement returns us to
the top level without executing the remainder of either the first or second call to self:

self.m
function y = self(n)

if (n>1)
y = n + self(n-1);
printf(’y is %d\n’,y);

else
y=1
printf(’y is initialized to one\n’);
keyboard

end

--> self(4)

y is initialized to one
[self,8]--> self(6)

y is initialized to omne
[self,8]--> retall

5.9 RETURN Return From Function

5.9.1 Usage

The return statement is used to immediately return from a function, or to return from a keyboard
session. The syntax for its use is

return

Inside a function, a return statement causes FreeMat to exit the function immediately. When a
keyboard session is active, the return statement causes execution to resume where the keyboard
session started.

5.9.2 Example

In the first example, we define a function that uses a return to exit the function if a certain test
condition is satisfied.

return_func.m
function ret = return_func(a,b)
ret = ’a is greater’;
if (a > b)
return;
end
ret = ’b is greater’;
printf (’finishing up...\n’);



5.9. RETURN RETURN FROM FUNCTION 113

Next we exercise the function with a few simple test cases:
--> return_func(1,3)

finishing up...

ans =

b is greater

--> return_func(5,2)

ans =

a is greater

In the second example, we take the function and rewrite it to use a keyboard statement inside the
if statement.

return_func2.m
function ret = return_func2(a,b)
if (a > b)
ret = ’a is greater’;
keyboard;
else
ret = ’b is greater’;
end
printf (’finishing up...\n’);

Now, we call the function with a larger first argument, which triggers the keyboard session. After
verifying a few values inside the keyboard session, we issue a return statement to resume execution.

--> return_func2(2,4)
finishing up...

ans =
b is greater

--> return_func2(5,1)
[return_func2,4]--> ret

a is greater

[return_func2,4]--> a
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[return_func2,4]--> b

ans =

[return_func2,4]--> return
finishing up...

ans =

a is greater

5.10 SWITCH Switch statement

5.10.1 Usage

The switch statement is used to selective execute code based on the value of either scalar value or
a string. The general syntax for a switch statement is

switch(expression)
case test_expression_1
statements
case test_expression_2
statements
otherwise
statements
end

The otherwise clause is optional. Note that each test expression can either be a scalar value, a
string to test against (if the switch expression is a string), or a cell-array of expressions to test
against. Note that unlike C switch statements, the FreeMat switch does not have fall-through,
meaning that the statements associated with the first matching case are executed, and then the
switch ends. Also, if the switch expression matches multiple case expressions, only the first one
is executed.

5.10.2 Examples

Here is an example of a switch expression that tests against a string input:
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switch_test.m
function ¢ = switch_test(a)
switch(a)
case {’lima beans’,’root beer’}
c = ’food’;
case {’red’,’green’,’blue’}
c = ’color’;
otherwise
c = ’not sure’;
end

Now we exercise the switch statements

--> switch_test(’root beer’)
ans =

food

--> switch_test(’red’)
ans =

color
--> switch_test(’carpet’)
ans =

not sure

5.11 TRY-CATCH Try and Catch Statement

5.11.1 Usage

115

The try and catch statements are used for error handling and control. A concept present in C++,

the try and catch statements are used with two statement blocks as follows

try
statements_1
catch
statements_2
end

The meaning of this construction is: try to execute statements_1, and if any errors occur during
the execution, then execute the code in statements_2. An error can either be a FreeMat generated
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error (such as a syntax error in the use of a built in function), or an error raised with the error
command.

5.11.2 Examples

Here is an example of a function that uses error control via try and catch to check for failures in
fopen.

read_file.m
function ¢ = read_file(filename)
try

fp = fopen(filename,’r’);

c = fgetline(fp);

fclose(fp);
catch

¢ = [’could not open file because of error :’ lasterr]
end

Now we try it on an example file - first one that does not exist, and then on one that we create (so
that we know it exists).

--> read_file(’this_filename_is_invalid’)
In base(base) on line O

In simkeys(built in) on line O

In Eval(read_file(’this_file...) on line 1
In read_file(read_file) on line 3

could not open file because of error :No such file or directory for fopen argument this_i

ans =

could not open file because of error :No such file or directory for fopen argument this_1
--> fp = fopen(’test_text.txt’,’w’);
--> fprintf(fp,’a line of text\n’);

--> fclose(fp);
--> read_file(’test_text.txt’)

a line of text
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5.12 WARNING Emits a Warning Message

5.12.1 Usage

The warning function causes a warning message to be sent to the user. The general syntax for its
use is

warning(s)

where s is the string message containing the warning.

5.13 WHILE While Loop
5.13.1 Usage

The while loop executes a set of statements as long as a the test condition remains true. The
syntax of a while loop is

while test_expression
statements
end

Note that a conditional expression is considered true if the real part of the result of the expression
contains any non-zero elements (this strange convention is adopted for compatibility with MATLAB).

5.13.2 Examples

Here is a while loop that adds the integers from 1 to 100:

-=> accum = 0;

--> k=1;
--> while (k<100), accum = accum + k; k = k + 1; end
-=> accun
ans =
4950
testeq.m

function x = testeq(a,b)
if (size(a,l1) ~= size(b,1) || size(a,2) "= size(b,2))

x = 0;
return;
end

d = full(a)-full(b);
if (strcmp(typeof(d),’double’) | strcmp(typeof(d),’dcomplex’))
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x = isempty(find(abs(d)>10%*eps));
else

x = isempty(find(abs(d)>10*feps));
end



Chapter 6

FreeMat Functions

6.1 ADDPATH Add

6.1.1 Usage

The addpath routine adds a set of directories to the current path. The first form takes a single
directory and adds it to the beginning or top of the path:

addpath(’directory’)

The second form add several directories to the top of the path:
addpath(’dir1’,’dir2’,...,’dirn’)

Finally, you can provide a flag to control where the directories get added to the path
addpath(’dir1’,’dir2’,...,’dirn’,’-flag’)

where if flag is either ’-0’ or ’-begin’, the directories are added to the top of the path, and if
the flag is either -1’ or ’-end’ the directories are added to the bottom (or end) of the path.

6.2 ASSIGNIN Assign Variable in Workspace

6.2.1 Usage

The assignin function allows you to assign a value to a variable in either the callers work space or
the base work space. The syntax for assignin is

assignin(workspace,variablename,value)

The argument workspace must be either 'caller’ or ’base’. If it is 'caller’ then the variable is assigned
in the caller’s work space. That does not mean the caller of assignin, but the caller of the current
function or script. On the other hand if the argument is ’base’, then the assignment is done in the
base work space. Note that the variable is created if it does not already exist.

119
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6.3 BUILTIN Evaulate Builtin Function

6.3.1 Usage

The builtin function evaluates a built in function with the given name, bypassing any overloaded
functions. The syntax of builtin is

[yl,y2,...,yn] = builtin(fname,x1,x2,...,xm)

where fname is the name of the function to call. Apart from the fact that fname must be a string,
and that builtin always calls the non-overloaded method, it operates exactly like feval. Note
that unlike MATLAB, builtin does not force evaluation to an actual compiled function. It simply
subverts the activation of overloaded method calls.

6.4 CLC Clear Dislplay

6.4.1 Usage

The clc function clears the current display. The syntax for its use is

clc

6.5 CLOCK Get Current Time

6.5.1 Usage

Returns the current date and time as a vector. The syntax for its use is
y = clock
where y has the following format:

y = [year month day hour minute seconds]

6.5.2 Example

Here is the time that this manual was last built:

--> clock

1.0e+03 *

2.0070 0.0090 0.0220 0.0220 0.0060 0.0423
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6.6 CLOCKTOTIME Convert Clock Vector to Epoch Time

6.6.1 Usage

Given the output of the clock command, this function computes the epoch time, i.e, the time in
seconds since January 1,1970 at 00:00:00 UTC. This function is most useful for calculating elapsed
times using the clock, and should be accurate to less than a millisecond (although the true accuracy
depends on accuracy of the argument vector). The usage for clocktotime is

y = clocktotime(x)

where x must be in the form of the output of clock, that is

x = [year month day hour minute seconds]

6.6.2 Example

Here is an example of using clocktotime to time a delay of 1 second

--> x = clock

1.0e+03 *
2.0070 0.0090 0.0220 0.0220 0.0060 0.0429

--> sleep(1)
--> y = clock

y =
1.0e+03 *
2.0070 0.0090 0.0220 0.0220 0.0060 0.0439
--> clocktotime(y) - clocktotime(x)
ans =

1.0010



122 CHAPTER 6. FREEMAT FUNCTIONS

6.7 COMPUTER Computer System FreeMat is Running On
6.7.1 Usage

Returns a string describing the name of the system FreeMat is running on. The exact value of this
string is subject to change, although the *MAC’> and *PCWIN’ values are probably fixed.

str = computer

Currently, the following return values are defined
e ’PCWIN’ - MS Windows
e *MAC’ - Mac OS X

e ’UNIX’ - All others

6.8 DIARY Create a Log File of Console
6.8.1 Usage

The diary function controls the creation of a log file that duplicates the text that would normally
appear on the console. The simplest syntax for the command is simply:

diary

which toggles the current state of the diary command. You can also explicitly set the state of the
diary command via the syntax

diary off
or
diary on
To specify a filename for the log (other than the default of diary), you can use the form:
diary filename
or
diary(’filename’)

which activates the diary with an output filename of filename. Note that the diary command is
thread specific, but that the output is appended to a given file. That means that if you call diary
with the same filename on multiple threads, their outputs will be intermingled in the log file (just
as on the console). Because the diary state is tied to individual threads, you cannot retrieve the
current diary state using the get (0, ’Diary’) syntax from MATLAB. Instead, you must call the
diary function with no inputs and one output:

state = diary

which returns a logical 1 if the output of the current thread is currently going to a diary, and a
logical 0 if not.
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6.9 DOCLI Start a Command Line Interface

6.9.1 Usage

The docli function is the main function that you interact with when you run FreeMat. I am not
sure why you would want to use it, but hey - its there if you want to use it.

6.10 EDIT Open Editor Window

6.10.1 Usage

Brings up the editor window. The arguments of edit function are names of files for editing:

edit filel file2 file3

6.11 EDITOR Open Editor Window

6.11.1 Usage

Brings up the editor window. The editor function takes no arguments:

editor

6.12 ERRORCOUNT Retrieve the Error Counter for the In-
terpreter

6.12.1 Usage

This routine retrieves the internal counter for the interpreter, and resets it to zero. The general
syntax for its use is

count = errorcount

6.13 ETIME Elapsed Time Function

6.13.1 Usage

The etime calculates the elapsed time between two clock vectors x1 and x2. The syntax for its use
is

y = etime(x1,x2)
where x1 and x2 are in the clock output format

x = [year month day hour minute seconds]
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6.13.2 Example

Here we use etime as a substitute for tic and toc

--> x1 = clock;
--> sleep(1);

--> x2 = clock;
--> etime(x2,x1);

6.14 EVAL Evaluate a String

6.14.1 Usage

The eval function evaluates a string. The general syntax for its use is
eval(s)

where s is the string to evaluate. If s is an expression (instead of a set of statements), you can assign
the output of the eval call to one or more variables, via

x = eval(s)
[x,y,2z] = eval(s)

Another form of eval allows you to specify an expression or set of statements to execute if an
error occurs. In this form, the syntax for eval is

eval(try_clause,catch_clause),
or with return values,

x = eval(try_clause,catch_clause)
[x,y,2z] = eval(try_clause,catch_clause)

These later forms are useful for specifying defaults. Note that both the try_clause and catch_clause
must be expressions, as the equivalent code is

try

[x,y,2] = try_clause
catch

[x,y,2z] = catch_clause
end

so that the assignment must make sense in both cases.

6.14.2 Example

Here are some examples of eval being used.
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-—> eval(’a = 327)

32
--> b = eval(’a’)
b =

32

The primary use of the eval statement is to enable construction of expressions at run time.

-—>s=[b=a > +2]

b=a+2
--> eval(s)
b:

34

Here we demonstrate the use of the catch-clause to provide a default value

-=> a = 32
a =
32
-->b = eval(’a’,’1?)
b =
32

--> b = eval(’z’,’a+1’)
In base(base) on line O
In simkeys(built in) on line O
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In Eval(b = eval(’z’,’a+1’)) on line 1
In eval(built in) on line O
In Eval(t 0 = z;) on line 1

b =

33

Note that in the second case, b takes the value of 33, indicating that the evaluation of the first
expression failed (because z is not defined).

6.15 EVALIN Evaluate a String in Workspace

6.15.1 Usage

The evalin function is similar to the eval function, with an additional argument up front that
indicates the workspace that the expressions are to be evaluated in. The various syntaxes for
evalin are:

evalin(workspace,expression)

x = evalin(workspace,expression)

[x,y,z] = evalin(workspace,expression)
evalin(workspace,try_clause,catch_clause)

x = evalin(workspace,try_clause,catch_clause)
[x,y,2z] = evalin(workspace,try_clause,catch_clause)

The argument workspace must be either ’caller’ or 'base’. If it is ’caller’, then the expression is
evaluated in the caller’s work space. That does not mean the caller of evalin, but the caller of
the current function or script. On the other hand if the argument is ’base’, then the expression is
evaluated in the base work space. See eval for details on the use of each variation.

6.16 EXIT Exit Program

6.16.1 Usage

The usage is
exit

Quits FreeMat. This script is a simple synonym for quit.

6.17 FEVAL Evaluate a Function
6.17.1 Usage

The feval function executes a function using its name. The syntax of feval is
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[yl,y2,...,yn] = feval(f,x1,x2,...,xm)

where f is the name of the function to evaluate, and xi are the arguments to the function, and yi
are the return values.

Alternately, £ can be a function handle to a function (see the section on function handles for
more information).

Finally, FreeMat also supports £ being a user defined class in which case it will atttempt to
invoke the subsref method of the class.

6.17.2 Example
Here is an example of using feval to call the cos function indirectly.

--> feval(’cos’,pi/4)
ans =

0.7071

Now, we call it through a function handle

-=> ¢ = Qcos

Q@cos
--> feval(c,pi/4)
ans =

0.7071

Here we construct an inline object (which is a user-defined class) and use feval to call it

--> afunc = inline(’cos(t)+sin(t)’,’t’)

afunc =
inline function object
f(t) = cos(t)+sin(t)
--> feval(afunc,pi)

ans =
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-1.0000
--> afunc(pi)
ans =

-1.0000

In both cases, (the feval call and the direct invokation), FreeMat calls the subsref method of the
class, which computes the requested function.

6.18 FILESEP Directory Separation Character

6.18.1 Usage

The filesep routine returns the character used to separate directory names on the current platform
(basically, a forward slash for Windows, and a backward slash for all other OSes). The syntax is
simple:

x = filesep

6.19 HELP Help

6.19.1 Usage

Displays help on a function available in FreeMat. The help function takes one argument:
help topic
where topic is the topic to look for help on. For scripts, the result of running help is the contents

of the comments at the top of the file. If FreeMat finds no comments, then it simply displays the
function declaration.

6.20 HELPWIN Online Help Window

6.20.1 Usage

Brings up the online help window with the FreeMat manual. The helpwin function takes no argu-
ments:

helpwin
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6.21 JITCONTROL Control the Just In Time Compiler

6.21.1 Usage

The jitcontrol functionality in FreeMat allows you to control the use of the Just In Time (JIT)
compiler.

6.22 MFILENAME Name of Current Function
6.22.1 Usage

Returns a string describing the name of the current function. For M-files this string will be the
complete filename of the function. This is true even for subfunctions. The syntax for its use is

y = mfilename

6.23 PATH Get or Set FreeMat Path

6.23.1 Usage
The path routine has one of the following syntaxes. In the first form
x = path

path simply returns the current path. In the second, the current path is replaced by the argument
string ’thepath’

path(’thepath’)

In the third form, a new path is appended to the current search path
path(path, *newpath’)

In the fourth form, a new path is prepended to the current search path
path(’newpath’,path)

In the final form, the path command prints out the current path

path

6.24 PATHSEP Path Directories Separation Character

6.24.1 Usage

The pathsep routine returns the character used to separate multiple directories on a path string for
the current platform (basically, a semicolon for Windows, and a regular colon for all other OSes).
The syntax is simple:

x = pathsep
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6.25 PATHTOOL Open Path Setting Tool

6.25.1 Usage

Brings up the pathtool dialog. The pathtool function takes no arguments:

pathtool

6.26 PCODE Convert a Script or Function to P-Code

6.26.1 Usage

Writes out a script or function as a P-code function. The general syntax for its use is:
pcode funl fun2 ...

The compiled functions are written to the current directory.

6.27 QUIET Control the Verbosity of the Interpreter

6.27.1 Usage

The quiet function controls how verbose the interpreter is when executing code. The syntax for
the function is

quiet flag
where flag is one of
e ’normal’ - normal output from the interpreter

e ’quiet’ - only intentional output (e.g. printf calls and disp calls) is printed. The output of
expressions that are not terminated in semicolons are not printed.

e ’silent’ - nothing is printed to the output.

The quiet command also returns the current quiet flag.

6.28 QUIT Quit Program

6.28.1 Usage

The quit statement is used to immediately exit the FreeMat application. The syntax for its use is

quit
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6.29 REHASH Rehash Directory Caches

6.29.1 Usage

Usually, FreeMat will automatically determine when M Files have changed, and pick up changes you
have made to M files. Sometimes, you have to force a refresh. Use the rehash command for this
purpose. The syntax for its use is

rehash

6.30 RESCAN Rescan M Files for Changes

6.30.1 Usage

Usually, FreeMat will automatically determine when M Files have changed, and pick up changes you
have made to M files. Sometimes, you have to force a refresh. Use the rescan command for this
purpose. The syntax for its use is

rescan

6.31 SIMKEYS Simulate Keypresses from the User

6.31.1 Usage
This routine simulates keystrokes from the user on FreeMat. The general syntax for its use is
otext = simkeys(text)

where text is a string to simulate as input to the console. The output of the commands are captured
and returned in the string otext. This is primarily used by the testing infrastructure.

6.32 SLEEP Sleep For Specified Number of Seconds

6.32.1 Usage

Suspends execution of FreeMat for the specified number of seconds. The general syntax for its use
is

sleep(n),

where n is the number of seconds to wait.

6.33 SOURCE Execute an Arbitrary File

6.33.1 Usage

The source function executes the contents of the given filename one line at a time (as if it had been
typed at the —==> prompt). The source function syntax is
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source(filename)

where filename is a string containing the name of the file to process.

6.33.2 Example
First, we write some commands to a file (note that it does not end in the usual .m extension):

source_test
a = 32;
b = a;
printf(’a is %d and b is %d\n’,a,b);

Now we source the resulting file.

--> clear a b
—-=> source source_test
a is 32 and b is 32

6.34 STARTUP Startup Script

6.34.1 Usage

Upon starting, FreeMat searches for a script names startup.m, and if it finds it, it executes it. This
script can be in the current directory, or on the FreeMat path (set using setpath). The contents of
startup.m must be a valid script (not a function).

6.35 TIC Start Stopwatch Timer
6.35.1 Usage

Starts the stopwatch timer, which can be used to time tasks in FreeMat. The tic takes no arguments,
and returns no outputs. You must use toc to get the elapsed time. The usage is

tic

6.35.2 Example

Here is an example of timing the solution of a large matrix equation.

--> A = rand(100);
--> b = rand(100,1);
--> tic; ¢ = A\b; toc

0.1110
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6.36 TOC Stop Stopwatch Timer
6.36.1 Usage

Stop the stopwatch timer, which can be used to time tasks in FreeMat. The toc function takes no
arguments, and returns no outputs. You must use toc to get the elapsed time. The usage is

toc

6.36.2 Example
Here is an example of timing the solution of a large matrix equation.

--> A = rand(100);
--> b = rand(100,1);
--> tic; ¢ = A\b; toc

2.0000e-03

6.37 TYPERULES Type Rules
6.37.1 Usage

FreeMat follows an extended form of C’s type rules (the extension is to handle complex data types.
The general rules are as follows:

e Integer types are promoted to int32 types, except for matrix operations and division opera-
tions.

e Mixtures of float and complex types produce complex outputs.
e Mixtures of double or int32 types and dcomplex types produce dcomplex outputs.
e Arguments to operators are promoted to the largest type present among the operands.

e Type promotion is not allowed to reduce the information content of the variable. The only
exception to this is 64-bit integers, which can lose information when they are promoted to
64-bit double values.

These rules look tricky, but in reality, they are designed so that you do not actively have to worry
about the types when performing mathematical operations in FreeMat. The flip side of this, of
course is that unlike C, the output of numerical operations is not automatically typecast to the type
of the variable you assign the value to.
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6.38 VERSION The Current Version Number
6.38.1 Usage

The version function returns the current version number for FreeMat (as a string). The general
syntax for its use is

v = version

6.38.2 Example

The current version of FreeMat is

--> version

3.5

6.39 VERSTRING The Current Version String

6.39.1 Usage

The verstring function returns the current version string for FreeMat. The general syntax for its
use is

version = verstring

6.39.2 Example

The current version of FreeMat is

--> verstring
ans =

FreeMat v3.5
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Debugging FreeMat Code

7.1 DBAUTO Control Dbauto Functionality

7.1.1 Usage

The dbauto functionality in FreeMat allows you to debug your FreeMat programs. When dbauto is
on, then any error that occurs while the program is running causes FreeMat to stop execution at that
point and return you to the command line (just as if you had placed a keyboard command there).
You can then examine variables, modify them, and resume execution using return. Alternately,
you can exit out of all running routines via a retall statement. Note that errors that occur inside
of try/catch blocks do not (by design) cause auto breakpoints. The dbauto function toggles the
dbauto state of FreeMat. The syntax for its use is

dbauto(state)
where state is either
dbauto(’on’)
to activate dbauto, or
dbauto(’off’)
to deactivate dbauto. Alternately, you can use FreeMat’s string-syntax equivalence and enter
dbauto on
or
dbauto off

to turn dbauto on or off (respectively). Entering dbauto with no arguments returns the current
state (either ’on’ or ’off’).

135
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7.2 DBDELETE Delete a Breakpoint

7.2.1 Usage
The dbdelete function deletes a breakpoint. The syntax for the dbdelete function is

dbdelete (num)

where num is the number of the breakpoint to delete.

7.3 DBLIST List Breakpoints

7.3.1 Usage
List the current set of breakpoints. The syntax for the dblist is simply

dblist

7.4 DBSTEP Step N Statements

7.4.1 Usage
Step N statements during debug mode. The synax for this is either

dbstep(N)
to step N statements, or
dbstep

to step one statement.

7.5 DBSTOP

7.5.1 Usage
Set a breakpoint. The syntax for this is:

dbstop (funcname, linenumber)

where funcname is the name of the function where we want to set the breakpoint, and linenumber
is the line number.
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Sparse Matrix Support

8.1 EIGS Sparse Matrix Eigendecomposition

8.1.1 Usage

Computes the eigendecomsition of a sparse square matrix. The eigs function has several forms.
The most general form is

[v,D] = eigs(A,k,sigma)

where A is the matrix to analyze, k is the number of eigenvalues to compute and sigma determines
which eigenvallues to solve for. Valid values for sigma are 'Im’ - largest magnitude ’sm’ - smallest
magnitude ’la’ - largest algebraic (for real symmetric problems) ’sa’ - smallest algebraic (for real
symmetric problems) 'be’ - both ends (for real symmetric problems) 'Ir’ - largest real part ’sr’
- smallest real part ’li’ - largest imaginary part ’si’ - smallest imaginary part scalar - find the
eigenvalues closest to sigma. The returned matrix V contains the eigenvectors, and D stores the
eigenvalues. The related form

d = eigs(A,k,sigma)
computes only the eigenvalues and not the eigenvectors. If sigma is omitted, as in the forms
[V,D] = eigs(A,k)
and
d = eigs(A,k)

then eigs returns the largest magnitude eigenvalues (and optionally the associated eigenvectors).
As an even simpler form, the forms

[V,D] = eigs(A)
and

d = eigs(h)

137
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then eigs returns the six largest magnitude eigenvalues of A and optionally the eigenvectors. The
eigs function uses ARPACK to compute the eigenvectors and/or eigenvalues. Note that due to a
limitation in the interface into ARPACK from FreeMat, the number of eigenvalues that are to be
computed must be strictly smaller than the number of columns (or rows) in the matrix.

8.1.2 Example

Here is an example of using eigs to calculate eigenvalues of a matrix, and a comparison of the
results with eig

--> a = sparse(rand(9))

a:
Matrix is sparse with 81 nonzeros
--> eigs(a)
ans =
4.6829 + 0.00001i
0.1461 - 0.8635i
0.1461 + 0.86351
-0.5896 - 0.2277i
-0.5896 + 0.2277i
0.5487 + 0.1436i

-—> eig(full(a))

ans =
4.6829 + 0.0000i
0.1461 + 0.8635i
0.1461 - 0.86351
0.5487 + 0.14361
0.5487 - 0.1436i
-0.5896 + 0.2277i
-0.5896 - 0.22771
-0.1536 + 0.26921
-0.1536 - 0.26921

Next, we exercise some of the variants of eigs:

--> eigs(a,4,’sm’)

ans =
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-0.1536 - 0.26921
-0.1536 + 0.2692i1
0.5487 - 0.1436i

0.5487 + 0.1436i

--> eigs(a,4,’1lr’)

ans

.6829 + 0.0000i
. 5487 0.14361
.5487 + 0.14361
.1461 0.86351

O O O b

--> eigs(a,4,’sr’)

ans =
-0.5896 - 0.22771
-0.5896 + 0.22771
-0.1536 - 0.26921

-0.1536 + 0.26921

8.2 FULL Convert Sparse Matrix to Full Matrix

8.2.1 Usage
Converts a sparse matrix to a full matrix. The syntax for its use is
y = full(x)

The type of x is preserved. Be careful with the function. As a general rule of thumb, if you can work
with the full representation of a function, you probably do not need the sparse representation.

8.2.2 Example

Here we convert a full matrix to a sparse one, and back again.

-->a = [1,0,4,2,0;0,0,0,0,0;0,1,0,0,2]

a:
10420
00000
01002
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--> A = sparse(a)
A=
Matrix is sparse with 5 nonzeros

-=> full(A)

ans =

O O =
= O O
O O
O O N
N O O

8.3 NNZ Number of Nonzeros

8.3.1 Usage

Returns the number of nonzero elements in a matrix. The general format for its use is
y = nnz(x)

This function returns the number of nonzero elements in a matrix or array. This function works for
both sparse and non-sparse arrays. For

8.3.2 Example

-->a = [1,0,0,5;0,3,2,0]
1005

0320

-=> nnz(a)

ans =

4

--> A = sparse(a)
A =

Matrix is sparse with 4 nonzeros
--> nnz(A)
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ans =

8.4 SPARSE Construct a Sparse Matrix

8.4.1 Usage

Creates a sparse matrix using one of several formats. The first creates a sparse matrix from a full
matrix

y = sparse(x).

The second form creates a sparse matrix containing all zeros that is of the specified size (the sparse
equivalent of zeros).

y = sparse(m,n)
where m and n are integers. Just like the zeros function, the sparse matrix returned is of type float.
The third form constructs a sparse matrix from the IJV syntax. It has two forms. The first version
autosizes the sparse matrix

y = sparse(i,j,v)

while the second version uses an explicit size specification

y = sparse(i,j,v,m,n)

8.5 SPEYE Sparse Identity Matrix

8.5.1 Usage

Creates a sparse identity matrix of the given size. The syntax for its use is
y = speye(m,n)

which forms an m x n sparse matrix with ones on the main diagonal, or
y = speye(n)

which forms an n x n sparse matrix with ones on the main diagonal. The matrix type is a float
single precision matrix.
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8.5.2 Example

The following creates a 5000 by 5000 identity matrix, which would be difficult to do using sparse (eye (5000) )
because of the large amount of intermediate storage required.

--> I = speye(5000)
I =

Matrix is sparse with 5000 nonzeros
-=> full(I(1:10,1:10))

ans =

1000000000
0100000000
0010000000
0001000000
0000100000
0000010000
0000001000
0000000100
000000O0O010O0
0000000O0O01

8.6 SPONES Sparse Ones Function
8.6.1 Usage

Returns a sparse float matrix with ones where the argument matrix has nonzero values. The
general syntax for it is

y = spones (x)

where x is a matrix (it may be full or sparse). The output matrix y is the same size as x, has type
float, and contains ones in the nonzero positions of x.

8.6.2 Examples
Here are some examples of the spones function

-->a = [1,0,3,0,5;0,0,2,3,0;1,0,0,0,1]

a =

o =
o O
N W
w O
[@2Né)]
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10001

--> b = spones(a)

b =

Matrix is sparse with 7 nonzeros

--=> full(b)

ans =

= O
o O O
O -
O = O
= O

8.7 SPRAND Sparse Uniform Random Matrix

8.7.1 Usage

Creates a sparse matrix with uniformly distributed random entries (on [0,1]). The syntax for its use
is

y = sprand(x)

where x is a sparse matrix, where y is a sparse matrix that has random entries where x is nonzero.
The second form specifies the size of the matrix and the density

y = sprand(m,n,density)

where m is the number of rows in the output, n is the number of columns in the output, and density
(which is between 0 and 1) is the density of nonzeros in the resulting matrix. Note that for very
high densities the actual density of the output matrix may differ from the density you specify. This
difference is a result of the way the random entries into the matrix are generated. If you need a very
dense random matrix, it is better to generate a full matrix and zero out the entries you do not need.

8.7.2 Examples

Here we seed sprand with a full matrix (to demonstrate how the structure of the output is determined
by the input matrix when using the first form).

-->x = [1,0,0;0,0,1;1,0,0]

o =
o O
= O
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100

--> y = sprand(x)

y =
Matrix is sparse with 3 nonzeros
--> full(y)
ans =
0.1322 0 0
0 0 0.3487
0.3071 0 0

The more generic version with a density of 0.001. On many systems the following is impossible
using full matrices

--> y = sprand(10000,10000, .001)
y =

Matrix is sparse with 99946 nonzeros
-=> nnz(y) /1000072

ans =

9.9946e-04

8.8 SPRANDN Sparse Normal Random Matrix

8.8.1 Usage

Creates a sparse matrix with normally distributed random entries (mean 0, sigma 1). The syntax
for its use is

y = sprandn(x)

where x is a sparse matrix, where y is a sparse matrix that has random entries where x is nonzero.
The second form specifies the size of the matrix and the density

y = sprandn(m,n,density)

where m is the number of rows in the output, n is the number of columns in the output, and density
(which is between 0 and 1) is the density of nonzeros in the resulting matrix. Note that for very
high densities the actual density of the output matrix may differ from the density you specify. This
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difference is a result of the way the random entries into the matrix are generated. If you need a very
dense random matrix, it is better to generate a full matrix and zero out the entries you do not need.

8.8.2 Examples

Here we seed sprandn with a full matrix (to demonstrate how the structure of the output is deter-
mined by the input matrix when using the first form).

-->x = [1,0,0;0,0,1;1,0,0]

= O -
O O O
o = O

--> y = sprandn(x)

y =
Matrix is sparse with 3 nonzeros
--> full(y)
ans =
0.3278 0 0
0 0 -1.0332
-0.8342 0 0

The more generic version with a density of 0.001. On many systems the following is impossible
using full matrices

--> y = sprandn(10000,10000,.001)

y:
Matrix is sparse with 99953 nonzeros
--> nnz(y)/10000°2

ans =

9.9953e-04
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8.9 SPY Visualize Sparsity Pattern of a Sparse Matrix

8.9.1 Usage

Plots the sparsity pattern of a sparse matrix. The syntax for its use is
spy ()

which uses a default color and symbol. Alternately, you can use
spy (x,colspec)

where colspec is any valid color and symbol spec accepted by plot.

8.9.2 Example

First, an example of a random sparse matrix.

--> y = sprand(1000,1000,.001)
y:

Matrix is sparse with 1000 nonzeros
—_> Spy(y’:ro7)

which is shown here

ey,
g

<
24

Here is a sparse matrix with a little more structure. First we build a sparse matrix with block
diagonal structure, and then use spy to visualize the structure.

--> A = sparse(1000,1000);

--> for i=1:25; A((1:40) + 40*(i-1),(1:40) + 40*(i-1)) = 1; end;
--> spy(4,’gx’)

with the result shown here
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Chapter 9

Mathematical Functions

9.1 ACOS Inverse Trigonometric Arccosine Function

9.1.1 Usage
Computes the acos function for its argument. The general syntax for its use is
y = acos(x)
where x is an n-dimensional array of numerical type. Integer types are promoted to the double type

prior to calculation of the acos function. Output y is of the same size and type as the input x,
(unless x is an integer, in which case y is a double type).

9.1.2 Function Internals
Mathematically, the acos function is defined for all arguments x as
acosT = % +ilog (zx +1- x2) .

For real valued variables x in the range [-1,1], the function is computed directly using the standard
C library’s numerical acos function. For both real and complex arguments x, note that generally

acos(cos(x)) # x,

9.1.3 Example

The following code demonstates the acos function over the range [-1,1].

--> t = linspace(-1,1);
--> plot(t,acos(t))

149
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9.2 ACOSD Inverse Cosine Degrees Function
9.2.1 Usage

Computes the inverse cosine of the argument, but returns the argument in degrees instead of radians
(as is the case for acos. The syntax for its use is

y = acosd(x)

9.2.2 Examples
The inverse cosine of sqrt (2)/2 should be 45 degrees:
-=> acosd(sqrt(2)/2)

ans =

45

and the inverse cosine of 0.5 should be 60 degrees:

--> acosd(0.5)

60.0000

9.3 ACOSH Inverse Hyperbolic Cosine Function

9.3.1 Usage

Computes the inverse hyperbolic cosine of its argument. The general syntax for its use is
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y = acosh(x)

where x is an n-dimensional array of numerical type.

9.3.2 Function Internals
The acosh function is computed from the formula
cosh™!(z) = log (z + (2% —1)°.5)

where the log (and square root) is taken in its most general sense.

9.3.3 Examples
Here is a simple plot of the inverse hyperbolic cosine function

--> x = linspace(1l,pi);
--> plot(x,acosh(x)); grid(’on’);

9.4 ACQOT Inverse Cotangent Function

9.4.1 Usage

Computes the inverse cotangent of its argument. The general syntax for its use is
y = acot(x)

where x is an n-dimensional array of numerical type.

9.4.2 Function Internals

The acot function is computed from the formula

cot !(x) = tan~! (;)



152 CHAPTER 9. MATHEMATICAL FUNCTIONS

9.4.3 Examples
Here is a simple plot of the inverse cotangent function

-=> x1 = -2%pi:pi/30:-0.1;
-=> x2 = 0.1:pi/30:2%pi;
--> plot(xl,acot(xl),x2,acot(x2)); grid(’on’);

Q”y = acot(0.342)”,71.24126615675785”, 7 close” @” y=acot(0.342+0.5321)”,” 1.14543846 762527 -
0.49811525236799i” " close” @Q"y = acot(inf)”,”0",” exact” @”y=acot(0.523f)”,”1.0889184” " close”

9.5 ACOTD Inverse Cotangent Degrees Function

9.5.1 Usage
Computes the inverse cotangent of its argument in degrees. The general syntax for its use is
y = acotd(x)

where x is an n-dimensional array of numerical type.

9.6 ACOTH Inverse Hyperbolic Cotangent Function

9.6.1 Usage
Computes the inverse hyperbolic cotangent of its argument. The general syntax for its use is
y = acoth(x)

where x is an n-dimensional array of numerical type.

9.6.2 Function Internals

The acoth function is computed from the formula

coth™(z) = tanh™* <1>
x
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9.6.3 Examples
Here is a simple plot of the inverse hyperbolic cotangent function

--> x = linspace(l,pi);
--> plot(x,acoth(x)); grid(’on’);
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9.7 ACSC Inverse Cosecant Function

9.7.1 Usage

Computes the inverse cosecant of its argument. The general syntax for its use is

y = acsc(x)

where x is an n-dimensional array of numerical type.

9.7.2 Function Internals

The acosh function is computed from the formula

esc () = sin™! <i)

9.7.3 Examples

Here is a simple plot of the inverse cosecant function

--> x1 -10:.01:-1.01;
-—> x2 1.01:.01:10;
--> plot(xl,acsc(xl),x2,acsc(x2)); grid(’on’);
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9.8 ACSCD Inverse Cosecant Degrees Function
9.8.1 Usage

Computes the inverse cosecant of the argument, but returns the argument in degrees instead of
radians (as is the case for acsc. The syntax for its use is

y = acscd(x)

9.8.2 Examples
The inverse cosecant of 2/sqrt (2) should be 45 degrees:
-=> acscd(2/sqrt(2))

ans =

45.0000

and the inverse cosecant of 2 should be 30 degrees:

--> acscd(0.5)

90.0000 + 75.45611

9.9 ACSCH Inverse Hyperbolic Cosecant Function

9.9.1 Usage

Computes the inverse hyperbolic cosecant of its argument. The general syntax for its use is
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y = acsch(x)

where x is an n-dimensional array of numerical type.

9.9.2 Function Internals

The acsch function is computed from the formula

esch™!(x) = sinh™* (1>

X

9.9.3 Examples
Here is a simple plot of the inverse hyperbolic cosecant function

-—> x1 -20:.01:-1;
-—> x2 1:.01:20;
--> plot(xl,acsch(xl),x2,acsch(x2)); grid(’on’);

9.10 ANGLE Phase Angle Function

9.10.1 Usage

Compute the phase angle in radians of a complex matrix. The general syntax for its use is

p = angle(c)

where ¢ is an n-dimensional array of numerical type.

9.10.2 Function Internals
For a complex number x, its polar representation is given by
x = |x|e?’

and we can compute
0 = atan2(Sz, Rr)

155
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9.10.3 Example

Here are some examples of the use of angle in the polar decomposition of a complex number.

-=> x = 3+4x1

x =
3.0000 + 4.00001

-—> a = abs(x)

a =

5

--> t = angle(x)

t =
0.9273

-=> axexp(i*t)
ans =

3.0000 + 4.0000i

M version contributor: M.W. Vogel 01-30-06

9.11 ASEC Inverse Secant Function

9.11.1 Usage
Computes the inverse secant of its argument. The general syntax for its use is
y = asec(x)

where x is an n-dimensional array of numerical type.

9.11.2 Function Internals

The acosh function is computed from the formula

eyt (1)
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9.11.3 Examples

Here is a simple plot of the inverse secant function

--> x1 = -5:.01:-1;
--> x2 = 1:.01:5;
--> plot(xl,asec(xl),x2,asec(x2)); grid(’on’);

9.12 ASECD Inverse Secant Degrees Function

9.12.1 Usage

Computes the inverse secant of the argument, but returns the argument in degrees instead of radians
(as is the case for asec. The syntax for its use is

y = asecd(x)

9.12.2 Examples
The inverse secant of 2/sqrt (2) should be 45 degrees:

--> asecd(2/sqrt(2))
ans =

45

and the inverse secant of 2 should be 60 degrees:

--> asecd(2)
ans =

60.0000



158 CHAPTER 9. MATHEMATICAL FUNCTIONS

9.13 ASECH Inverse Hyperbolic Secant Function
9.13.1 Usage

Computes the inverse hyperbolic secant of its argument. The general syntax for its use is
y = asech(x)

where x is an n-dimensional array of numerical type.

9.13.2 Function Internals

The asech function is computed from the formula
. /1
sech™ " (z) = cosh <)
x

9.13.3 Examples

Here is a simple plot of the inverse hyperbolic secant function

-->x1 = -20:.01:-1;
--> x2 = 1:.01:20;
--> plot(x1l,imag(asech(x1)),x2,imag(asech(x2))); grid(’on’);

9.14 ASIN Inverse Trigonometric Arcsine Function
9.14.1 Usage

Computes the asin function for its argument. The general syntax for its use is

y = asin(x)
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where x is an n-dimensional array of numerical type. Integer types are promoted to the double type
prior to calculation of the asin function. Output y is of the same size and type as the input x,
(unless x is an integer, in which case y is a double type).

9.14.2 Function Internals
Mathematically, the asin function is defined for all arguments x as
asinz = —ilog (zx +vV1- x2) .

For real valued variables x in the range [-1,1], the function is computed directly using the standard
C library’s numerical asin function. For both real and complex arguments x, note that generally

asin(sin(z)) # z,

due to the periodicity of sin(x).

9.14.3 Example

The following code demonstates the asin function over the range [-1,1].

--> t = linspace(-1,1);
--> plot(t,asin(t))

9.15 ASIND Inverse Sine Degrees Function

9.15.1 Usage

Computes the inverse sine of the argument, but returns the argument in degrees instead of radians
(as is the case for asin). The syntax for its use is

y = asind(x)
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9.15.2 Examples
The inverse sine of sqrt (2)/2 should be 45 degrees:

--> asind(sqrt(2)/2)
ans =

45.0000

and the inverse sine of 0.5 should be 30 degrees:
--> asind(0.5)
ans =

30.0000

9.16 ASINH Inverse Hyperbolic Sine Function

9.16.1 Usage

Computes the inverse hyperbolic sine of its argument. The general syntax for its use is
y = asinh(x)

where x is an n-dimensional array of numerical type.

9.16.2 Function Internals

The asinh function is computed from the formula
sinh™*(z) = log (z + (2% +1)°.5)

where the log (and square root) is taken in its most general sense.

9.16.3 Examples

Here is a simple plot of the inverse hyperbolic sine function

--> x = -5:.01:5;
--> plot(x,asinh(x)); grid(’on’);
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9.17 ATAN Inverse Trigonometric Arctangent Function

9.17.1 Usage

Computes the atan function for its argument. The general syntax for its use is
y = atan(x)

where x is an n-dimensional array of numerical type. Integer types are promoted to the double type
prior to calculation of the atan function. Output y is of the same size and type as the input x,
(unless x is an integer, in which case y is a double type).

9.17.2 Function Internals

Mathematically, the atan function is defined for all arguments x as

atanz = = (log(1 — iz) — log(iz + 1)).

N |

For real valued variables x, the function is computed directly using the standard C library’s numerical
atan function. For both real and complex arguments x, note that generally

atan(tan(x)) # z,

due to the periodicity of tan(x).

9.17.3 Example

The following code demonstates the atan function over the range [-1,1].

--> t = linspace(-1,1);
-=> plot(t,atan(t))
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9.18 ATAN2 Inverse Trigonometric 4-Quadrant Arctangent
Function

9.18.1 Usage
Computes the atan2 function for its argument. The general syntax for its use is
y = atan2(y,x)

where x and y are n-dimensional arrays of numerical type. Integer types are promoted to the double
type prior to calculation of the atan2 function. The size of the output depends on the size of x and
y. If x is a scalar, then z is the same size as y, and if y is a scalar, then z is the same size as x. The
type of the output is equal to the type of —y/x—.

9.18.2 Function Internals

The function is defined (for real values) to return an angle between -pi and pi. The signs of x and
y are used to find the correct quadrant for the solution. For complex arguments, the two-argument

arctangent is computed via
atan2(y, x) = —ilog _rrw
/ZEQ + yQ

For real valued arguments x,y, the function is computed directly using the standard C library’s
numerical atan2 function. For both real and complex arguments x, note that generally

atan2(sin(x), cos(x)) # x,

due to the periodicities of cos(x) and sin(x).

9.18.3 Example

The following code demonstates the difference between the atan2 function and the atan function
over the range [-pi,pi].
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--> x = linspace(-pi,pi);
--> sx = s8in(x); cx = cos(x);
--> plot(x,atan(sx./cx),x,atan2(sx,cx))

Note how the two-argument atan2 function (green line) correctly “unwraps” the phase of the
angle, while the atan function (red line) wraps the angle to the interval [-\pi/2,\pi/2].

9.19 ATAND Inverse Tangent Degrees Function

9.19.1 Usage

Computes the inverse tangent of the argument, but returns the argument in degrees instead of
radians (as is the case for atan. The syntax for its use is

y = atand(x)

9.19.2 Examples
The inverse tangent of 1 should be 45 degrees:

--> atand (1)

45

9.20 ATANH Inverse Hyperbolic Tangent Function
9.20.1 Usage

Computes the inverse hyperbolic tangent of its argument. The general syntax for its use is
y = atanh(x)

where x is an n-dimensional array of numerical type.
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9.20.2 Function Internals

The atanh function is computed from the formula

1 1
tanh ™! (z) = 5 log (1 i_ z>

where the log (and square root) is taken in its most general sense.

9.20.3 Examples

Here is a simple plot of the inverse hyperbolic tangent function

-—>x = -0.99:.01:0.99;
--> plot(x,atanh(x)); grid(’on’);

9.21 COS Trigonometric Cosine Function
9.21.1 Usage

Computes the cos function for its argument. The general syntax for its use is
y = cos(x)

where x is an n-dimensional array of numerical type. Integer types are promoted to the double type
prior to calculation of the cos function. Output y is of the same size and type as the input x, (unless
x is an integer, in which case y is a double type).

9.21.2 Function Internals
Mathematically, the cos function is defined for all real valued arguments x by the infinite summation
oo
(—1)”1‘277'
cosT = Z —
|
—  (2n)!

For complex valued arguments z, the cosine is computed via

cos z = cos Rz cosh Iz — sin Rz sinh Fz.
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9.21.3 Example

The following piece of code plots the real-valued cos(2 pi x) function over one period of [0,1]:

--> x = linspace(0,1);
-=> plot(x,cos(2*pi*x))

9.22 COSD Cosine Degrees Function

9.22.1 Usage

Computes the cosine of the argument, but takes the argument in degrees instead of radians (as is
the case for cos). The syntax for its use is

y = cosd(x)

9.22.2 Examples
The cosine of 45 degrees should be sqrt(2)/2
--> cosd(45)

0.7071

and the cosine of 60 degrees should be 0.5:
-=> cosd(60)

ans =

0.5000
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9.23 COSH Hyperbolic Cosine Function

9.23.1 Usage

Computes the hyperbolic cosine of the argument. The syntax for its use is

y = cosh(x)

9.23.2 Function Internals

The cosh function is computed from the formula
et +e "

cosh(z) =

9.23.3 Examples

Here is a simple plot of the hyperbolic cosine function

--> x = linspace(-5,5);
--> plot(x,cosh(x)); grid(’on’);

9.24 COT Trigonometric Cotangent Function

9.24.1 Usage
Computes the cot function for its argument. The general syntax for its use is
y = cot(x)

where x is an n-dimensional array of numerical type. Integer types are promoted to the double type
prior to calculation of the cot function. Output y is of the same size and type as the input x, (unless
x is an integer, in which case y is a double type).
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9.24.2 Function Internals

Mathematically, the cot function is defined for all arguments x as
cosx

cotxr = —
sinx

For complex valued arguments z, the cotangent is computed via
cos 2Rz + cosh 28z
sin 2Rz + sinh 232

cotz =

9.24.3 Example

The following piece of code plots the real-valued cot (x) function over the interval [-1,1]:

--> t = linspace(-1,1);
-=> plot(t,cot(t))

9.25 COTD Cotangent Degrees Function

9.25.1 Usage

Computes the cotangent of the argument, but takes the argument in degrees instead of radians (as
is the case for cot). The syntax for its use is

y = cotd(x)

9.25.2 Examples

The cotangent of 45 degrees should be 1.
-=> cotd(45)



168 CHAPTER 9. MATHEMATICAL FUNCTIONS

9.26 COTH Hyperbolic Cotangent Function

9.26.1 Usage

Computes the hyperbolic cotangent of the argument. The syntax for its use is

y = coth(x)
9.26.2 Function Internals
The coth function is computed from the formula

coth(z) = tanlll(:r)

9.26.3 Examples

Here is a simple plot of the hyperbolic cotangent function

--> x1 -pi+.01:.01:-.01;
-—> x2 .01:.01:pi-.01;
--> plot(xl,coth(x1),x2,coth(x2)); grid(’on’);

9.27 CROSS Cross Product of Two Vectors

9.27.1 Usage

Computes the cross product of two vectors. The general syntax for its use is
¢ = cross(a,b)

where a and b are 3-element vectors.
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9.28 CSC Trigonometric Cosecant Function

9.28.1 Usage
Computes the csc function for its argument. The general syntax for its use is
y = csc(x)

where x is an n-dimensional array of numerical type. Integer types are promoted to the double type
prior to calculation of the csc function. Output y is of the same size and type as the input x, (unless
x is an integer, in which case y is a double type).

9.28.2 Function Internals

Mathematically, the csc function is defined for all arguments as

1

sinx’

CSCx =

9.28.3 Example

The following piece of code plots the real-valued csc(2 pi x) function over the interval of [-1,1]:

--> t = linspace(-1,1,1000);
-—> plot(t,csc(2*pi*t))
--> axis([-1,1,-10,10]);

08 08 04 0z 0 02 04 08 0.8

9.29 C(CSCD Cosecant Degrees Function
9.29.1 Usage

Computes the cosecant of the argument, but takes the argument in degrees instead of radians (as is
the case for csc). The syntax for its use is

y = cscd(x)
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9.30 CSCH Hyperbolic Cosecant Function

9.30.1 Usage

Computes the hyperbolic cosecant of the argument. The syntax for its use is

y = csch(x)

9.30.2 Function Internals

The csch function is computed from the formula

1

csch(z) = sinh(x)

9.30.3 Examples

Here is a simple plot of the hyperbolic cosecant function

--> x1 -pi+.01:.01:-.01;
-—> x2 .01:.01:pi-.01;
--> plot(xl,csch(xl),x2,csch(x2)); grid(’on’);

9.31 DAWSON Dawson Integral Function

9.31.1 Usage
Computes the dawson function for real arguments. The dawson function takes only a single argument
y = dawson(x)

where x is either a float or double array. The output vector y is the same size (and type) as x.
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9.31.2 Function Internals

The dawson function is defined as

x
dawson(z) = e / e’ dt
Jo

9.31.3 Example

Here is a plot of the dawson function over the range [-5,5].

--> x = linspace(-5,5);
--> y = dawson(x) ;
--> plot(x,y); xlabel(’x’); ylabel(’dawson(x)’);

which results in the following plot.

9.32 DEG2RAD Convert From Degrees To Radians

9.32.1 Usage

Converts the argument from degrees to radians. The syntax for its use is
y = deg2rad(x)

where x is a numeric array. Conversion is done by simply multiplying x by pi/180.

9.32.2 Example
How many radians in a circle:

--> deg2rad(360) - 2*pi

ans =

171
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9.33 EI Exponential Integral Function
9.33.1 Usage

Computes the exponential integral function for real arguments. The ei function takes only a single
argument

y = ei(x)

where x is either a float or double array. The output vector y is the same size (and type) as x.

9.33.2 Function Internals
The ei function is defined by the integral:

0o Lt
ei(a:)z—/ c tdt.

—X

9.33.3 Example
Here is a plot of the ei function over the range [-5,5].

--> x = linspace(-5,5);
-—>y = ei(x);
--> plot(x,y); xlabel(’x’); ylabel(’ei(x)’);

which results in the following plot.

9.34 EONE Exponential Integral Function
9.34.1 Usage

Computes the exponential integral function for real arguments. The eone function takes only a
single argument

y = eone(x)

where x is either a float or double array. The output vector y is the same size (and type) as x.
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9.34.2 Function Internals

The eone function is defined by the integral:

o0 —U d
eone(x) :/ ¢
x

u

9.34.3 Example

Here is a plot of the eone function over the range [-5,5].

--> x = linspace(-5,5);
--> y = eone(x);
-=> plot(x,y); xlabel(’x’); ylabel(’eone(x)’);

which results in the following plot.

9.35 ERF Error Function

9.35.1 Usage

Computes the error function for real arguments. The erf function takes only a single argument
y = erf(x)

where x is either a float or double array. The output vector y is the same size (and type) as x.

9.35.2 Function Internals
The erf function is defined by the integral:

9 T
erf(x) = ﬁ/o €_t2 dt,

and is the integral of the normal distribution.
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9.35.3 Example

Here is a plot of the erf function over the range [-5,5].

-—> x linspace(-5,5);
-—> y = erf(x);
--> plot(x,y); xlabel(’x’); ylabel(’erf(x)’);

which results in the following plot.

9.36 ERFC Complimentary Error Function
9.36.1 Usage

Computes the complimentary error function for real arguments. The erfc function takes only a
single argument

y = erfc(x)

where x is either a float or double array. The output vector y is the same size (and type) as x.

9.36.2 Function Internals
The erfc function is defined by the integral:

2 e
erfe(x) = — e ' dt,
7

and is the integral of the normal distribution.

9.36.3 Example
Here is a plot of the erfc function over the range [-5,5].

--> x = linspace(-5,5);
-=>y = erfc(x);
-=> plot(x,y); xlabel(’x’); ylabel(’erfc(x)’);
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which results in the following plot.

9.37 ERFCX Complimentary Weighted Error Function

9.37.1 Usage

175

Computes the complimentary error function for real arguments. The erfcx function takes only a

single argument

y = erfcx(x)

where x is either a float or double array. The output vector y is the same size (and type) as x.

9.37.2 Function Internals

The erfcx function is defined by the integral:

2

2e” & 2

erfex(z) = eV dt,
e /x

and is an exponentially weighted integral of the normal distribution.

9.37.3 Example

Here is a plot of the erfcx function over the range [-5,5].

--> x = linspace(0,5);
-y erfcx(x);
--> plot(x,y); xlabel(’x’); ylabel(’erfcx(x)’);

which results in the following plot.
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9.38 EXP Exponential Function
9.38.1 Usage
Computes the exp function for its argument. The general syntax for its use is
y = exp(x)
where x is an n-dimensional array of numerical type. Integer types are promoted to the double type

prior to calculation of the exp function. Output y is of the same size and type as the input x, (unless
x is an integer, in which case y is a double type).

9.38.2 Function Internals

Mathematically, the exp function is defined for all real valued arguments x as
expr = e”,
where
= 1
3
0
and is approximately 2.718281828459045 (returned by the function e). For complex values z, the

famous Euler formula is used to calculate the exponential

e* = el [cos Rz + i sin Rz]

9.38.3 Example

The following piece of code plots the real-valued exp function over the interval [-1,1]:

--> x = linspace(-1,1);
--> plot(x,exp(x))
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In the second example, we plot the unit circle in the complex plane e"{i 2 pi x}forx in [-1,1].

--> x = linspace(-1,1);
-=> plot(exp(-i*x*2*pi))

U\ /
1 0.8 06 0.4 02 o 0z 04 08 0.8 1

A

9.39 EXPEI Exponential Weighted Integral Function

9.39.1 Usage

Computes the exponential weighted integral function for real arguments. The expei function takes
only a single argument

y = expei(x)

where x is either a float or double array. The output vector y is the same size (and type) as x.

9.39.2 Function Internals

The expei function is defined by the integral:

> et dt

expei(z) = fe*””/ ot

—x
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9.39.3 Example

Here is a plot of the expei function over the range [-5,5].

--> x = linspace(-5,5);
-=> y = expei(x);
--> plot(x,y); xlabel(’x’); ylabel(’expei(x)’);

which results in the following plot.

9.40 EXPMI1 Exponential Minus One Function

9.40.1 Usage

Computes exp(x)-1 function accurately for x small. The syntax for its use is
y = expml(x)

where x is an n-dimensional array of numerical type.

9.41 FIX Round Towards Zero

9.41.1 Usage

Rounds the argument array towards zero. The syntax for its use is
y = fix(x)

where x is a numeric array. For positive elements of x, the output is the largest integer smaller than
x. For negative elements of x the output is the smallest integer larger than x. For complex x, the
operation is applied seperately to the real and imaginary parts.

9.41.2 Example

Here is a simple example of the fix operation on some values
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--> a = [-1.8,pi,8,-pi,-0.001,2.3+0.31i]

a =

Columns 1 to 5
-1.8000 + 0.00001

Columns 6 to 6
2.3000 + 0.30001

-=> fix(a)

ans =

Columns 1 to 5
-1.0000 + 0.0000i

Columns 6 to 6

2.0000 + 0.00001

9.42

9.42.1 Usage

3.1416 + 0.00001

3.0000 + 0.00001

GAMMA Gamma Function

8.0000 + 0.00001

8.0000 + 0.0000i
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-3.1416 + 0.00001

-3.0000 + 0.0000i

Computes the gamma function for real arguments. The gamma function takes only a single argument

y = gamma(x)

where x is either a float or double array. The output vector y is the same size (and type) as x.

9.42.2 Function Internals

The gamma function is defined by the integral:

F(x)z/ e ftrlat
0

The gamma function obeys the interesting relationship

INz)=(z— 1) (z-1),

and for integer arguments, is equivalent to the factorial function.

-0.0010 +

0.000
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9.42.3 Example

Here is a plot of the gamma function over the range [-5,5].

--> x = linspace(-5,5);

--> y = gamma(x);

--> plot(x,y); xlabel(’x’); ylabel(’gamma(x)’);
--> axis([-5,5,-5,5]);

which results in the following plot.

gamma (x)
o

9.43 GAMMALN Log Gamma Function

9.43.1 Usage

Computes the natural log of the gamma function for real arguments. The gammaln function takes
only a single argument

y = gammaln(x)

where x is either a float or double array. The output vector y is the same size (and type) as x.

9.43.2 Example

Here is a plot of the gammaln function over the range [-5,5].

--> x = linspace(0,10);
--> y = gammaln(x);
-=> plot(x,y); xlabel(’x’); ylabel(’gammaln(x)’);

which results in the following plot.
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gammaint)

9.44 IDIV Integer Division Operation

9.44.1 Usage

Computes the integer division of two arrays. The syntax for its use is

y = idiv(a,b)

181

where a and b are arrays or scalars. The effect of the idiv is to compute the integer division of b
into a.

9.44.2 Example

The following examples show some uses of idiv arrays.

-—>

ans

ans

ans

idiv(27,6)

idiv(4,-2)

idiv(15,3)
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9.45 LOG Natural Logarithm Function

9.45.1 Usage
Computes the log function for its argument. The general syntax for its use is
y = log(x)

where x is an n-dimensional array of numerical type. Integer types are promoted to the double type
prior to calculation of the log function. Output y is of the same size as the input x. For strictly
positive, real inputs, the output type is the same as the input. For negative and complex arguments,
the output is complex.

9.45.2 Function Internals

Mathematically, the log function is defined for all real valued arguments x by the integral

Tdt
logz = —.
1t
For complex-valued arguments, z, the complex logarithm is defined as

log z = log |z| + i arg z,

where arg is the complex argument of z.

9.45.3 Example

The following piece of code plots the real-valued log function over the interval [1,100]:

--> x = linspace(1,100);
-=> plot(x,log(x))

--> xlabel(’x’);

-=> ylabel(’log(x)’);
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9.46 LOG10 Base-10 Logarithm Function

9.46.1 Usage

Computes the 1ogl10 function for its argument. The general syntax for its use is

y = loglo(x)

where x is an n-dimensional array of numerical type. Integer types are promoted to the double type
prior to calculation of the 1og10 function. Output y is of the same size as the input x. For strictly
positive, real inputs, the output type is the same as the input. For negative and complex arguments,
the output is complex.

9.46.2 Example

The following piece of code plots the real-valued 1og10 function over the interval [1,100]:

--> x = linspace(1,100);
--> plot(x,logl0(x))
--> xlabel(’x’);

-—> ylabel(’logl0(x)’);

9.47 LOGI1P Natural Logarithm of 14+P Function

9.47.1 Usage

Computes the log function for one plus its argument. The general syntax for its use is

y = loglp(x)

where x is an n-dimensional array of numerical type.
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9.48 LOG2 Base-2 Logarithm Function

9.48.1 Usage

Computes the log2 function for its argument. The general syntax for its use is
y = log2(x)

where x is an n-dimensional array of numerical type. Integer types are promoted to the double type
prior to calculation of the log2 function. Output y is of the same size as the input x. For strictly
positive, real inputs, the output type is the same as the input. For negative and complex arguments,
the output is complex.

9.48.2 Example

The following piece of code plots the real-valued log2 function over the interval [1,100]:

--> x = linspace(1,100);
-=> plot(x,log2(x))

--> xlabel(’x’);

-=> ylabel(’log2(x)’);

9.49 MOD Modulus Operation

9.49.1 Usage

Computes the modulus of an array. The syntax for its use is
y = mod(x,n)

where x is matrix, and n is the base of the modulus. The effect of the mod operator is to add or
subtract multiples of n to the vector x so that each element x_i is between 0 and n (strictly). Note
that n does not have to be an integer. Also, n can either be a scalar (same base for all elements of
x), or a vector (different base for each element of x).

Note that the following are defined behaviors:
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1. mod(x,0) = x@

0@

2. mod(x,x)

3. mod(x,n)@ has the same sign as n for all other cases.

9.49.2 Example

The following examples show some uses of mod arrays.

--> mod(18,12)
ans =

6

--> mod (6,5)

ans =

-=> mod (2*pi,pi)

ans =

Here is an example of using mod to determine if integers are even or odd:

--> mod([1,3,5,2]1,2)
ans =

1110

Here we use the second form of mod, with each element using a separate base.

-=> mod([9 3 2 0],[1 0 2 2])

0300

185
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9.50 PSI Psi Function
9.50.1 Usage

Computes the psi function for real arguments. The psi function takes only a single argument
y = psi(x)

where x is either a float or double array. The output vector y is the same size (and type) as x.

9.50.2 Function Internals

The psi function is defined as

@ In~y(x)
dzx 7

and for integer arguments, is equivalent to the factorial function.

9.50.3 Example
Here is a plot of the psi function over the range [-5,5].

--> x = linspace(-5,5);
-—> y = psi(x);
-=> plot(x,y); xlabel(’x’); ylabel(’psi(x)’);

which results in the following plot.

9.51 RAD2DEG Radians To Degrees Conversion Function
9.51.1 Usage

Converts the argument array from radians to degrees. The general syntax for its use is
y = rad2deg(x)

Note that the output type will be the same as the input type, and that complex arguments are
allowed. The output is not wrapped to [0,360).
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9.51.2 Examples

Some known conversion factors
--> rad2deg(1) % one radian is about 57 degrees
ans =
57.2958
--> rad2deg(pi/4) % should be 45 degrees
ans =
45
--> rad2deg(2*pi) % Note that this is 360 not O degrees
ans =

360

9.52 REM Remainder After Division

9.52.1 Usage

Computes the remainder after division of an array. The syntax for its use is
y = rem(x,n)

where x is matrix, and n is the base of the modulus. The effect of the rem operator is to add or
subtract multiples of n to the vector x so that each element x_i is between 0 and n (strictly). Note
that n does not have to be an integer. Also, n can either be a scalar (same base for all elements of
x), or a vector (different base for each element of x).

Note that the following are defined behaviors:

1. rem(x,0) = nan@
2. rem(x,x) = 0Q for nonzero x
3. rem(x,n)@ has the same sign as x for all other cases.

Note that rem and mod return the same value if x and n are of the same sign. But differ by n if x
and y have different signs.
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9.52.2 Example
The following examples show some uses of rem arrays.

--> rem(18,12)

ans =

--> rem(6,5)

-=> rem(2*pi,pi)

Here is an example of using rem to determine if integers are even or odd:

--> rem([1,3,5,21,2)
ans =

1110

Here we use the second form of rem, with each element using a separate base.

-=> rem([9 3 2 0],[1 0 2 2])
ans =

0 nan 0 0

9.53 SEC Trigonometric Secant Function

9.53.1 Usage

Computes the sec function for its argument. The general syntax for its use is
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y = sec(x)

where x is an n-dimensional array of numerical type. Integer types are promoted to the double type
prior to calculation of the sec function. Output y is of the same size and type as the input x, (unless
x is an integer, in which case y is a double type).

9.53.2 Function Internals

Mathematically, the sec function is defined for all arguments as
1

secr = .
CoOsST

9.53.3 Example

The following piece of code plots the real-valued sec(2 pi x) function over the interval of [-1,1]:

--> t = linspace(-1,1,1000);
-—> plot(t,sec(2*pixt))
--> axis([-1,1,-10,10]);

bk
ANA
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9.54 SECD Secant Degrees Function

9.54.1 Usage

Computes the secant of the argument, but takes the argument in degrees instead of radians (as is
the case for sec). The syntax for its use is

y = secd(x)

9.55 SECH Hyperbolic Secant Function

9.55.1 Usage

Computes the hyperbolic secant of the argument. The syntax for its use is

y = sech(x)
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9.55.2 Function Internals
The sech function is computed from the formula

1
cosh(z)

sech(z) =

9.55.3 Examples
Here is a simple plot of the hyperbolic secant function

-=> x = —2%pi:.01:2%pi;
--> plot(x,sech(x)); grid(’on’);

9.56 SIN Trigonometric Sine Function

9.56.1 Usage
Computes the sin function for its argument. The general syntax for its use is

y = sin(x)
where x is an n-dimensional array of numerical type. Integer types are promoted to the double type
prior to calculation of the sin function. Output y is of the same size and type as the input x, (unless
x is an integer, in which case y is a double type).
9.56.2 Function Internals
Mathematically, the sin function is defined for all real valued arguments x by the infinite summation
> (_1)n—1 2n—1

. T
ST = E

—~ (2n-1)
For complex valued arguments z, the sine is computed via

sin z = sin Rz cosh Sz — 7 cos Rz sinh Fz.
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9.56.3 Example

The following piece of code plots the real-valued sin(2 pi x) function over one period of [0,1]:

--> x = linspace(0,1);
-=> plot(x,sin(2*pi*x))

9.57 SIND Sine Degrees Function
9.57.1 Usage

Computes the sine of the argument, but takes the argument in degrees instead of radians (as is the
case for cos). The syntax for its use is

y = sind(x)

9.57.2 Examples
The sine of 45 degrees should be sqrt(2)/2
--> sind (45)

0.7071

and the sine of 30 degrees should be 0.5:
--> sind (30)

ans =

0.5000
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9.58 SINH Hyperbolic Sine Function

9.58.1 Usage

Computes the hyperbolic sine of the argument. The syntax for its use is

y = sinh(x)

9.58.2 Function Internals

The sinh function is computed from the formula
e~ e T
sinh(z) = ete”

9.58.3 Examples

Here is a simple plot of the hyperbolic sine function

--> x = linspace(-5,5);
--> plot(x,sinh(x)); grid(’on’);

9.59 SQRT Square Root of an Array

9.59.1 Usage

Computes the square root of the argument matrix. The general syntax for its use is

y = sqrt(x)

where x is an N-dimensional numerical array.
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9.59.2 Example

Here are some examples of using sqrt

-=> sqrt(9)

-=> sqrt(i)

0.7071 + 0.7071i

-=> sqrt(-1)

0.0000 + 1.0000i

--> x = rand(4)

0.2550 0.0649 0.8151 0.3022
0.2716 0.0796 0.0013 0.9098
0.2932 0.5069 0.3592 0.1642
0.4481 0.5085 0.3159 0.1587
-=> sqrt(x)
ans =
0.5050 0.2547 0.9028 0.5497
0.5211 0.2822 0.0354 0.9538
0.5415 0.7120 0.5993 0.4052
0.6694 0.7131 0.5621 0.3984
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9.60 TAN Trigonometric Tangent Function

9.60.1 Usage

Computes the tan function for its argument. The general syntax for its use is
y = tan(x)
where x is an n-dimensional array of numerical type. Integer types are promoted to the double type

prior to calculation of the tan function. Output y is of the same size and type as the input x, (unless
x is an integer, in which case y is a double type).

9.60.2 Function Internals

Mathematically, the tan function is defined for all real valued arguments x by the infinite summation

¢ A
anzr=x+ —+—+---,
3 15
or alternately by the ratio
sinx
tanx =
cos

For complex valued arguments z, the tangent is computed via

sin 2Rz + i sinh 23z
cos 2%z + cosh 23z

tan z =

9.60.3 Example

The following piece of code plots the real-valued tan(x) function over the interval [-1,1]:

--> t = linspace(-1,1);
-=> plot(t,tan(t))
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9.61 TAND Tangent Degrees Function

9.61.1 Usage

Computes the tangent of the argument, but takes the argument in degrees instead of radians (as is
the case for cos). The syntax for its use is

y = tand(x)

9.61.2 Examples

The tangent of 45 degrees should be 1
--> tand(45)
ans =

1.0000

9.62 TANH Hyperbolic Tangent Function
9.62.1 Usage
Computes the hyperbolic tangent of the argument. The syntax for its use is

y = tanh(x)

9.62.2 Function Internals

The tanh function is computed from the formula

sinh(z)

tanh(z) = cosh(z)

9.62.3 Examples

Here is a simple plot of the hyperbolic tangent function

--> x = linspace(-5,5);
--> plot(x,tanh(x)); grid(’on’);
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Chapter 10

Base Constants

10.1 E Euler Constant (Base of Natural Logarithm)

10.1.1 Usage

Returns a double (64-bit floating point number) value that represents Euler’s constant, the base of
the natural logarithm. Typical usage

y=¢e

This value is approximately 2.718281828459045.

10.1.2 Example

The following example demonstrates the use of the e function.

2.7183
-=> log(e)

ans =

197
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10.2 EPS Double Precision Floating Point Relative Machine
Precision Epsilon

10.2.1 Usage

Returns eps, which quantifies the relative machine precision of floating point numbers (a machine
specific quantity). The syntax for eps is:

y = eps

which returns eps for double precision values. For most typical processors, this value is approxi-
mately 27-52, or 2.2204e-16.

10.2.2 Example

The following example demonstrates the use of the eps function, and one of its numerical conse-
quences.

-=> eps
ans =
2.2204e-16

-=> 1.0+eps

ans

1.0000

10.3 FALSE Logical False

10.3.1 Usage
Returns a logical 0. The syntax for its use is

y = false

10.4 FEPS Single Precision Floating Point Relative Machine
Precision Epsilon

10.4.1 Usage

Returns feps, which quantifies the relative machine precision of floating point numbers (a machine
specific quantity). The syntax for feps is:
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y = feps

which returns feps for single precision values. For most typical processors, this value is approxi-
mately 27-24, or 5.9604e-8.

10.4.2 Example

The following example demonstrates the use of the feps function, and one of its numerical conse-
quences.

--> feps
ans =
1.1921e-07

--> 1.0f+eps

ans

1.0000

10.5 1I-J Square Root of Negative One
10.5.1 Usage

Returns a complex value that represents the square root of -1. There are two functions that return
the same value:

y=1i
and
y=13

This allows either i or j to be used as loop indices. The returned value is a 32-bit complex value.

10.5.2 Example

The following examples demonstrate a few calculations with 1.

> i

ans

0.0000 + 1.0000i
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-=> i"2

-1.0000 + 0.00001

The same calculations with j:

--> j
ans =

0.0000 + 1.00001i
-=> j"2
ans =

-1.0000 + 0.0000i

Here is an example of how i can be used as a loop index and then recovered as the square root of
-1.

-=> accum = 0; for i=1:100; accum = accum + i; end; accum

-=> clear i

ans

0.0000 + 1.00001
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10.6 INF Infinity Constant
10.6.1 Usage

Returns a value that represents positive infinity for both 32 and 64-bit floating point values.
y = inf

The returned type is a 64-bit float, but demotion to 64 bits preserves the infinity.

10.6.2 Function Internals

The infinity constant has several interesting properties. In particular:

oo x 0 = NaN

oo xa =ooforalla >0
oo xXa = —ooforalla <0
oo/oo = NaN

o0/0 =00

Note that infinities are not preserved under type conversion to integer types (see the examples
below).

10.6.3 Example

The following examples demonstrate the various properties of the infinity constant.

—-=> inf*0

nan
-=> inf*2
ans =

inf

-=> inf*-2

-inf
--> inf/inf

ans =
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nan
--> inf/0
ans =

inf

--> inf/nan
ans =

nan

Note that infinities are preserved under type conversion to floating point types (i.e., float, double,
complex and dcomplex types), but not integer types.

-=> uint32(inf)

--> complex(inf)
ans =

inf + 0.00001

10.7 NAN Not-a-Number Constant

10.7.1 Usage

Returns a value that represents “not-a-number” for both 32 and 64-bit floating point values. This
constant is meant to represent the result of arithmetic operations whose output cannot be meaning-
fully defined (like zero divided by zero).

y = nan

The returned type is a 64-bit float, but demotion to 32 bits preserves the not-a-number. The not-a-
number constant has one simple property. In particular, any arithmetic operation with a NaN results
in a NaN. These calculations run significantly slower than calculations involving finite quantities!
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Make sure that you use NalNs in extreme circumstances only. Note that NaN is not preserved under
type conversion to integer types (see the examples below).

10.7.2 Example
The following examples demonstrate a few calculations with the not-a-number constant.

—-> nan*0
ans =

nan
——> nan-nan
ans =

nan

Note that NaNs are preserved under type conversion to floating point types (i.e., float, double,
complex and dcomplex types), but not integer types.

--> uint32(nan)

0
--> complex(nan)
ans =

nan + 0.00001

10.8 PI Constant Pi

10.8.1 Usage

Returns a double (64-bit floating point number) value that represents pi (ratio between the circum-
ference and diameter of a circle...). Typical usage

y =pi
This value is approximately 3.141592653589793.
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10.8.2 Example
The following example demonstrates the use of the pi function.

--> pi
ans =
3.1416

--> cos(pi)

10.9 TEPS Type-based Epsilon Calculation

10.9.1 Usage

Returns eps for double precision arguments and feps for single precision arguments. The syntax
for teps is

y = teps(x)

The teps function is most useful if you need to compute epsilon based on the type of the array.

10.9.2 Example

The following example demonstrates the use of the teps function, and one of its numerical conse-
quences.

--> teps(float(3.4))

ans =

1.1921e-07

-—> teps(complex(3.4+i*2))
ans =

1.1921e-07

--> teps(double(3.4))
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ans =
2.2204e-16

-—> teps(dcomplex(3.4+i*2))
ans =

2.2204e-16

10.10 TRUE Logical TRUE

10.10.1 Usage

Returns a logical 1. The syntax for its use is

y = true
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Chapter 11

Elementary Functions

11.1 ABS Absolute Value Function
11.1.1 Usage

Returns the absolute value of the input array for all elements. The general syntax for its use is
y = abs(x)

where x is an n-dimensional array of numerical type. The output is the same numerical type as the
input, unless the input is complex or dcomplex. For complex inputs, the absolute value is a floating
point array, so that the return type is float. For dcomplex inputs, the absolute value is a double
precision floating point array, so that the return type is double.

11.1.2 Example
The following demonstrates the abs applied to a complex scalar.

--> abs(3+4x*i)

The abs function applied to integer and real values:

-=> abs([_2)3,_4)5])
2345

207
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For a double-precision complex array,
--> abs([2.0+3.0%i,i])
ans =

3.6056 1.0000

11.2 ALL All True Function

11.2.1 Usage

Reduces a logical array along a given dimension by testing for all logical 1s. The general syntax for
its use is

y = all(x,d)

where x is an n-dimensions array of logical type. The output is of logical type. The argument d
is optional, and denotes the dimension along which to operate. The output y is the same size as x,
except that it is singular along the operated direction. So, for example, if x is a 3 x 3 x 4 array,
and we all operation along dimension d=2, then the output is of size 3 x 1 x 4.

11.2.2 Function Internals
The output is computed via

y(m17 ceeyMg—1, 17 Mma+1y-- -, mp) = mkinx(mla ceeyMd—1, kvmd-‘rla s am[))
If d is omitted, then the minimum is taken over all elements of x.

11.2.3 Example

The following piece of code demonstrates various uses of the all function

--> A = [1,0,0;1,0,0;0,0,1]

A =

O - -
O O O
= O O

We start by calling all without a dimension argument, in which case it defaults to testing all values
of A
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-=> all(a)

ans =

The all function is useful in expressions also.

--> all(A>=0)

ans =

Next, we apply the all operation along the rows.

-=> all(A,2)

O - -
O O O
= O O

11.3 ANY Any True Function

11.3.1 Usage

209

Reduces a logical array along a given dimension by testing for any logical 1s. The general syntax

for its use is

y = any(x,d)

where x is an n-dimensions array of logical type. The output is of logical type. The argument d
is optional, and denotes the dimension along which to operate. The output y is the same size as x,
except that it is singular along the operated direction. So, for example, if x is a 3 x 3 x 4 array,

and we any operation along dimension d=2, then the output is of size 3 x 1 x 4.

11.3.2 Function Internals

The output is computed via

y(ma,...,mg—1,1,mgq1,...,myp) = m]?xx(ml,..

S Ma—1,k,mMag1,. ..
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If 4 is omitted, then the summation is taken along the first non-singleton dimension of x.

11.3.3 Example

The following piece of code demonstrates various uses of the summation function
--> A = [1,0,0;1,0,0;0,0,1]

A =

O =
o O O
= O O

We start by calling any without a dimension argument, in which case it defaults to the first nonsin-
gular dimension (in this case, along the columns or d = 1).

--> any(A)

ans =

Next, we apply the any operation along the rows.

--> any(A,2)

ans =

11.4 CEIL Ceiling Function

11.4.1 Usage

Computes the ceiling of an n-dimensional array elementwise. The ceiling of a number is defined as
the smallest integer that is larger than or equal to that number. The general syntax for its use is

y = ceil(x)
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where x is a multidimensional array of numerical type. The ceil function preserves the type of the
argument. So integer arguments are not modified, and float arrays return float arrays as outputs,
and similarly for double arrays. The ceil function is not defined for complex or dcomplex types.

11.4.2 Example

The following demonstrates the ceil function applied to various (numerical) arguments. For integer
arguments, the ceil function has no effect:

-=> ceil(3)

ans =

ans =

Next, we take the ceil of a floating point value:

--> ceil(3.023f)

ans =

-=> ceil(-2.341f)

ans =

Note that the return type is a float also. Finally, for a double type:

--> ceil(4.312)

ans =

--> ceil(-5.32)
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11.5 CONJ Conjugate Function
11.5.1 Usage

Returns the complex conjugate of the input array for all elements. The general syntax for its use is
y = conj(x)

where x is an n-dimensional array of numerical type. The output is the same numerical type as the
input. The conj function does nothing to real and integer types.

11.5.2 Example

The following demonstrates the complex conjugate applied to a complex scalar.

-=> conj(3+4x*i)
ans =

3.0000 - 4.00001

The conj function has no effect on real arguments:

--> conj([2,3,4])
ans =

234

For a double-precision complex array,

-=> conj([2.0+3.0%1,i])
ans =

2.0000 - 3.00001 0.0000 - 1.00001
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11.6 CUMPROD Cumulative Product Function
11.6.1 Usage

Computes the cumulative product of an n-dimensional array along a given dimension. The general
syntax for its use is

y = cumprod(x,d)

where x is a multidimensional array of numerical type, and d is the dimension along which to perform
the cumulative product. The output y is the same size of x. Integer types are promoted to int32.
If the dimension d is not specified, then the cumulative sum is applied along the first non-singular
dimension.

11.6.2 Function Internals

The output is computed via

J
y(mla" '7md71,j7md+17' "7mp) = Hx(mla"'7md717kamd+17"'amp)'
k=1

11.6.3 Example

The default action is to perform the cumulative product along the first non-singular dimension.

--> A = [5,1,3;3,2,1;0,3,1]

A =
513
321
031
—-=> cumprod(A)
ans =
5 1 3
15 2 3
0 6 3

To compute the cumulative product along the columns:

-=> cumprod(A,2)

ans =
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o w o,
o O »

-
o o »

The cumulative product also works along arbitrary dimensions

-=> B(:,:,1) [(5,2;8,9]1;
--> B(:,:,2) = [1,0;3,0]

B =

(:,:,1)

52
8 9

(:,:,2)
10
30
--> cumprod(B,3)

ans =

2]
N

24 0

11.7 CUMSUM Cumulative Summation Function

11.7.1 Usage

Computes the cumulative sum of an n-dimensional array along a given dimension. The general
syntax for its use is
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y = cumsum(x,d)

where x is a multidimensional array of numerical type, and d is the dimension along which to perform
the cumulative sum. The output y is the same size of x. Integer types are promoted to int32. If
the dimension d is not specified, then the cumulative sum is applied along the first non-singular
dimension.

11.7.2 Function Internals

The output is computed via
J
y(ma,...,m4_1,7, Mat1,...,Mp) = Zx(ml, M=, Ky Mg, -y Myp).
k=1

11.7.3 Example

The default action is to perform the cumulative sum along the first non-singular dimension.

--> A = [5,1,3;3,2,1;0,3,1]

A=

o w wm
w N =
= = W

--> cumsum(A)

ans =

o 00 ;1
D W =
g W

To compute the cumulative sum along the columns:

--> cumsum(A,?2)

ans =

O w ;m
w oo,
e ]
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The cumulative sum also works along arbitrary dimensions

-=> B(:,:,1) (5,2;8,9];
--> B(:,:,2) = [1,0;3,0]

~
.
.
—
~
]

—~
.
.
N
~
]

--> cumsum (B, 3)

ans =
(:,:,1) =
5 2
8 9
(:,:,2) =
6 2
11 9

11.8 DEAL Multiple Simultaneous Assignments

11.8.1 Usage

When making a function call, it is possible to assign multiple outputs in a single call, (see, e.g., max
for an example). The deal call allows you to do the same thing with a simple assignment. The
syntax for its use is

[a,b,c,...] = deal(expr)

where expr is an expression with multiple values. The simplest example is where expr is the
dereference of a cell array, e.g. expr <-- A{:}. In this case, the deal call is equivalent to

a = A{1}; b = A{2}; C = A{3};



11.9. DEC2HEX CONVERT DECIMAL NUMBER TO HEXADECIMAL 217

Other expressions which are multivalued are structure arrays with multiple entries (non-scalar),
where field dereferencing has been applied.

11.9 DEC2HEX Convert Decimal Number to Hexadecimal

11.9.1 Usage

Converts an integer value into its hexadecimal representation. The syntax for its use is
y = dec2hex(x)

where x is an integer (and is promoted to a 64-bit integer if it is not). The returned value y is a
string containing the hexadecimal representation of that integer. If you require a minimum length
for the hexadecimal representation, you can specify an optional second argument

y = dec2hex(x,n)

where n indicates the minimum number of digits in the representation.

11.9.2 Example

Here are some simple examples:

-=> dec2hex(1023)
ans =

3ff

--> dec2hex(58128493)
ans =

376£86d

11.10 DOT Dot Product Function

11.10.1 Usage

Computes the scalar dot product of its two arguments. The general syntax for its use is

y = dot(x,z)
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where x and z are numerical vectors of the same length. If x and z are multi-dimensional arrays of
the same size, then the dot product is taken along the first non-singleton dimension. You can also
specify the dimension to take the dot product along using the alternate form

y = dot(x,z,dim)

where dim specifies the dimension to take the dot product along.

11.11 FLOOR Floor Function

11.11.1 Usage

Computes the floor of an n-dimensional array elementwise. The floor of a number is defined as the
smallest integer that is less than or equal to that number. The general syntax for its use is

y = floor(x)

where x is a multidimensional array of numerical type. The floor function preserves the type of the
argument. So integer arguments are not modified, and float arrays return float arrays as outputs,
and similarly for double arrays. The floor function is not defined for complex or dcomplex types.

11.11.2 Example

The following demonstrates the f1loor function applied to various (numerical) arguments. For integer
arguments, the floor function has no effect:

--> floor(3)
ans =
3

--> floor(-3)

Next, we take the floor of a floating point value:

--> floor(3.023f)
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--> floor(-2.341f)

Note that the return type is a float also. Finally, for a double type:
--> floor(4.312)

ans =
4

--> floor(-5.32)

11.12 GETFIELD Get Field Contents

11.12.1 Usage

Given a structure or structure array, returns the contents of the specified field. The first version is
for scalar structures, and has the following syntax

y = getfield(x,’fieldname’)

and is equivalent to y = x.fieldname where x is a scalar (1 x 1) structure. If x is not a scalar
structure, then y is the first value, i.e., it is equivalent to y = x(1) .fieldname. The second form
allows you to specify a subindex into a structure array, and has the following syntax

y = getfield(x, {m,n}, ’fieldname’)

and is equivalent to y = x(m,n) .fieldname. You can chain multiple references together using this
syntax.

11.13 HEX2DEC Convert Hexadecimal Numbers To Deci-
mal

11.13.1 Usage

Converts a hexadecimal number (encoded as a string matrix) into integers. The syntax for its use is
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y = hex2dec(x)

where x is a character matrix where each row represents an integer in hexadecimal form. The output
is of type FM_DOUBLE.

11.13.2 Examples
--> hex2dec(’3ff’)

ans =

1023

Or for a more complex example

-=> hex2dec([’0ff’;’2de’;’123°])
ans =

255
734
291

11.14 IMAG Imaginary Function

11.14.1 Usage
Returns the imaginary part of the input array for all elements. The general syntax for its use is
y = imag(x)

where x is an n-dimensional array of numerical type. The output is the same numerical type as
the input, unless the input is complex or dcomplex. For complex inputs, the imaginary part is a
floating point array, so that the return type is float. For dcomplex inputs, the imaginary part is a
double precision floating point array, so that the return type is double. The imag function returns
zeros for real and integer types.

11.14.2 Example

The following demonstrates imag applied to a complex scalar.

-=> imag(3+4x*i)

ans =
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The imaginary part of real and integer arguments is a vector of zeros, the same type and size of the
argument.

--> imag([2,4,5,6])
ans =

0000

For a double-precision complex array,

--> imag([2.0+3.0%i,i])

ans =

11.15 MAX Maximum Function
11.15.1 Usage

Computes the maximum of an array along a given dimension, or alternately, computes two arrays
(entry-wise) and keeps the smaller value for each array. As a result, the max function has a number
of syntaxes. The first one computes the maximum of an array along a given dimension. The first
general syntax for its use is either

[y,n] = max(x,[],d)

where x is a multidimensional array of numerical type, in which case the output y is the maximum
of x along dimension d. The second argument n is the index that results in the maximum. In the
event that multiple maxima are present with the same value, the index of the first maximum is used.
The second general syntax for the use of the max function is

[y,n] = max(x)

In this case, the maximum is taken along the first non-singleton dimension of x. For complex data
types, the maximum is based on the magnitude of the numbers. NaNs are ignored in the calculations.
The third general syntax for the use of the max function is as a comparison function for pairs of
arrays. Here, the general syntax is
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y = max(x,z)

where x and z are either both numerical arrays of the same dimensions, or one of the two is a scalar.
In the first case, the output is the same size as both arrays, and is defined elementwise by the smaller
of the two arrays. In the second case, the output is defined elementwise by the smaller of the array
entries and the scalar.

11.15.2 Function Internals

In the general version of the max function which is applied to a single array (using the max(x, [],d)
or max(x) syntaxes), The output is computed via

y(mh ceeyMg—1, 1,md+17 (R 7mp) = mkaxx(ml, <oy Md—1, k7 Md+1,---, mp),
and the output array n of indices is calculated via

n(mi,...,mg_1,1,May1,...,mp) = argmkaxx(ml,...,md,l,kz,mdﬂ,...,mp)

In the two-array version (max(x,z)), the single output is computed as

y(ma,...,mg_1,1, mgg1,...,my) =

x(mlv"'7md—17k7md+1a"'7mp) I()SZ()
z(ma,...,mg_1,k,may1,...,mp) 2(---) <ax(---).

11.15.3 Example

The following piece of code demonstrates various uses of the maximum function. We start with the
one-array version.

--> A = [5,1,3;3,2,1;0,3,1]

A =

o w o
W N =
=W

We first take the maximum along the columns, resulting in a row vector.

--> max(A)
ans =

533
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Next, we take the maximum along the rows, resulting in a column vector.

-—> maX(A’ [] ’2)

w

When the dimension argument is not supplied, max acts along the first non-singular dimension. For
a row vector, this is the column direction:

--> max([5,3,2,9])

ans =

For the two-argument version, we can compute the smaller of two arrays, as in this example:

--> a = int8(100*randn(4))

0 115 15 -20
-26 127 1 -41
-12 5 -84 52
85 -108 -7 -100
--> b = int8(100*randn(4))
b =
-30 14 -33 -69
-62 -71 48 8
-52 2 -95 75
40 44 120 -4
--> max(a,b)

ans =

0 115 15 -20
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-26 127 48 8
-12 5 -84 75
856 44 120 -4

Or alternately, we can compare an array with a scalar

--> a = randn(2)

a -
2.2822 -0.9318
-0.3667 0.5529
--> max(a,0)
ans =
2.2822 0
0 0.5529

11.16 MEAN Mean Function

11.16.1 Usage

Computes the mean of an array along a given dimension. The general syntax for its use is
y = mean(x,d)

where x is an n-dimensions array of numerical type. The output is of the same numerical type as the
input. The argument d is optional, and denotes the dimension along which to take the mean. The
output y is the same size as x, except that it is singular along the mean direction. So, for example,
ifxisa 3 x 3 x 4 array, and we compute the mean along dimension d=2, then the output is of size
3x1x4

11.16.2 Function Internals

The output is computed via

1

N
:N E ZE(Tnlv"'77nd—1avand—‘rla"'7Tnp)

k=1

y(ma,...,mg—1,1,mgg1,...,my)

If d is omitted, then the mean is taken along the first non-singleton dimension of x.
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11.16.3 Example

The following piece of code demonstrates various uses of the mean function
--> A = [5,1,3;3,2,1;0,3,1]

A=

O W O,
w N =
= = W

We start by calling mean without a dimension argument, in which case it defaults to the first
nonsingular dimension (in this case, along the columns or d = 1).

--> mean(A)
ans =

2.6667 2.0000 1.6667

Next, we take the mean along the rows.

--> mean(A,2)

ans

3.0000
2.0000
1.3333

11.17 MIN Minimum Function

11.17.1 Usage

Computes the minimum of an array along a given dimension, or alternately, computes two arrays
(entry-wise) and keeps the smaller value for each array. As a result, the min function has a number
of syntaxes. The first one computes the minimum of an array along a given dimension. The first
general syntax for its use is either

[y,n] = min(x,[],d)
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where x is a multidimensional array of numerical type, in which case the output y is the minimum
of x along dimension d. The second argument n is the index that results in the minimum. In the
event that multiple minima are present with the same value, the index of the first minimum is used.
The second general syntax for the use of the min function is

[y,n] = min(x)

In this case, the minimum is taken along the first non-singleton dimension of x. For complex data
types, the minimum is based on the magnitude of the numbers. NaNs are ignored in the calculations.
The third general syntax for the use of the min function is as a comparison function for pairs of
arrays. Here, the general syntax is

y = min(x,z)

where x and z are either both numerical arrays of the same dimensions, or one of the two is a scalar.
In the first case, the output is the same size as both arrays, and is defined elementwise by the smaller
of the two arrays. In the second case, the output is defined elementwise by the smaller of the array
entries and the scalar.

11.17.2 Function Internals

In the general version of the min function which is applied to a single array (using the min(x, [],d)
or min(x) syntaxes), The output is computed via

y(ma,...,mg_1,1,mgp1,...,my) = mljnx(ml,...,md,l,k,md+1,...,mp),

and the output array n of indices is calculated via

n(ma,...,mg-1,1,Mgy1,...,mp) = argrrgnx(ml,...,md_l,k,md+1,...,mp)

In the two-array version (min(x,z)), the single output is computed as

—~
~—

z(my,...,mg—1,k, Mge1,...,M z(---) <z
y(ml’.”’md_171’md+1’“"mp):{ ( 1 ) 1, R, +1, ) P) ( )

z(ma, ..., ma—1,k,may1,...,mp) 2(---) <ax(---).

11.17.3 Example

The following piece of code demonstrates various uses of the minimum function. We start with the
one-array version.

--> A = [5,1,3;3,2,1;0,3,1]

A=

O w wm
w N =
= = W
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We first take the minimum along the columns, resulting in a row vector.

-=> min(A)

ans =

011

Next, we take the minimum along the rows, resulting in a column vector.

--> min(A, [],2)

ans =

(e

When the dimension argument is not supplied, min acts along the first non-singular dimension. For
a row vector, this is the column direction:

--> min([5,3,2,9])

ans =

For the two-argument version, we can compute the smaller of two arrays, as in this example:

--> a = int8(100%*randn(4))

-3 59 -5 110
-14 70 -16 -3
69 -93 1 118
-23 0 16 -74

--> b = int8(100*randn(4))

b =
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64 -51 74 84
-40 -62 -84 -126
-102 -12 43 -54
69 560 -56 29

--> min(a,b)

-40 -62 -84 -126
-102 -93 1 -54
-23 0 -56 -74
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Or alternately, we can compare an array with a scalar

--> a = randn(2)

a =
-0.8512 -0.6258
0.8415 1.3391

--> min(a,0)

ans =

-0.8512 -0.6258
0 0

11.18 NUM2HEX Convert Numbers to IEEE Hex Strings

11.18.1 Usage

Converts single and double precision arrays to IEEE hex strings. The syntax for its use is

y = num2hex(x)

where x is either a float or double array. The output y is a n-by-p character array, where n is the
number of elements in x, and p is 16 for double arrays, and 8 for single arrays.

11.18.2 Example

Some interesting numbers
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-=> num2?hex([1 0 0.1 -pi inf nan])
ans =

3££0000000000000
0000000000000000
3£b999999999999a
c00921£b54442d18
7££0000000000000
7££8000000000000

The same in single precision
--> num2hex(float([1 0 0.1 -pi inf nan]))
ans =

3800000

00000000

3dcccced

c0490fdb

7£800000
7£c00000

11.19 PROD Product Function

11.19.1 Usage
Computes the product of an array along a given dimension. The general syntax for its use is
y = prod(x,d)
where x is an n-dimensions array of numerical type. The output is of the same numerical type as

the input, except for integer types, which are automatically promoted to int32. The argument 4 is
optional, and denotes the dimension along which to take the product. The output is computed via

y(mi,...,mg—1,1,mgq1,...,mp) = Hm(mh...7md,1,k,md+1,...7mp)
k

If d is omitted, then the product is taken along the first non-singleton dimension of x. Note that by
definition (starting with FreeMat 2.1) prod([1) = 1.
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11.19.2 Example
The following piece of code demonstrates various uses of the product function

--> A = [5,1,3;3,2,1;0,3,1]

A =

o w wm
w N =
= = W

We start by calling prod without a dimension argument, in which case it defaults to the first
nonsingular dimension (in this case, along the columns or d = 1).

--> prod(A)
ans =

063

Next, we take the product along the rows.

-=> prod(4,2)
ans =

15
6
0

11.20 REAL Real Function
11.20.1 Usage

Returns the real part of the input array for all elements. The general syntax for its use is
y = real(x)

where x is an n-dimensional array of numerical type. The output is the same numerical type as the
input, unless the input is complex or dcomplex. For complex inputs, the real part is a floating point
array, so that the return type is float. For dcomplex inputs, the real part is a double precision
floating point array, so that the return type is double. The real function does nothing to real and
integer types.
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11.20.2 Example

The following demonstrates the real applied to a complex scalar.

--> real (3+4x*i)

The real function has no effect on real arguments:
--> real([2,3,4])
ans =

234

For a double-precision complex array,

--> real([2.0+3.0%i,i])
ans =

20

11.21 ROUND Round Function

11.21.1 Usage
Rounds an n-dimensional array to the nearest integer elementwise. The general syntax for its use is
y = round(x)

where x is a multidimensional array of numerical type. The round function preserves the type of the
argument. So integer arguments are not modified, and float arrays return float arrays as outputs,
and similarly for double arrays. The round function is not defined for complex or dcomplex types.

11.21.2 Example

The following demonstrates the round function applied to various (numerical) arguments. For integer
arguments, the round function has no effect:
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ans

Next, we take the round of a floating point value:

-—>

ans

ans

round(3)

round (-3)

round (3.023f)

round (-2.341f)
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Note that the return type is a float also. Finally, for a double type:

-—>

ans

ans

round(4.312)

round (-5.32)
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11.22 STD Standard Deviation Function
11.22.1 Usage

Computes the standard deviation of an array along a given dimension. The general syntax for its
use is
y = std(x,d)

where x is an n-dimensions array of numerical type. The output is of the same numerical type as
the input. The argument 4 is optional, and denotes the dimension along which to take the variance.
The output y is the same size as x, except that it is singular along the mean direction. So, for
example, if x is a 3 x 3 x 4 array, and we compute the mean along dimension d=2, then the output
isof size 3 x 1 x 4.

11.22.2 Example

The following piece of code demonstrates various uses of the std function

--> A = [5,1,3;3,2,1;0,3,1]

A=

O w w
W N =
= =W

We start by calling std without a dimension argument, in which case it defaults to the first nonsin-
gular dimension (in this case, along the columns or d = 1).

--> std(A)
ans =

2.5166 1.0000 1.1547

Next, we take the variance along the rows.

--> std(A,2)

ans

2.0000
1.0000
1.5275
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11.23 SUB2IND Convert Multiple Indexing To Linear In-
dexing

11.23.1 Usage

The sub2ind function converts a multi-dimensional indexing expression into a linear (or vector)
indexing expression. The syntax for its use is

y = sub2ind(sizevec,d1,d2,...,dn)

where sizevec is the size of the array being indexed into, and each di is a vector of the same length,
containing index values. The basic idea behind sub2ind is that it makes

[z(d1(1),d2(1),...,dn(1)),...,z(d1(n),d2(n),...,dn(n))]
equivalent to
z(sub2ind(size(z),d1,d2,...,dn))

where the later form is using vector indexing, and the former one is using native, multi-dimensional
indexing.

11.23.2 Example

Suppose we have a simple 3 x 4 matrix A containing some random integer elements

--> A = randi(ones(3,4),10%ones(3,4))

A =
7T 9 7T 2
8 4 8 2
6 710 5

We can extract the elements (1,3),(2,3),(3,4) of A via sub2ind. To calculate which elements of
A this corresponds to, we can use sub2ind as

--> n = sub2ind(size(A),1:3,2:4)

n =
4 8 12

-=> A(n)

ans =

985
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11.24 SUM Sum Function

11.24.1 Usage

Computes the summation of an array along a given dimension. The general syntax for its use is
y = sum(x,d)

where x is an n-dimensions array of numerical type. The output is of the same numerical type as the
input. The argument d is optional, and denotes the dimension along which to take the summation.
The output y is the same size as x, except that it is singular along the summation direction. So, for
example, if x is a 3 x 3 x 4 array, and we compute the summation along dimension d=2, then the
output is of size 3 x 1 x 4.

11.24.2 Function Internals

The output is computed via

y<m17 sy, Md—1, 17md+17 s amp) = Zx(mla s 7md717k/’amd+17 s amp)
k
If d is omitted, then the summation is taken along the first non-singleton dimension of x.

11.24.3 Example

The following piece of code demonstrates various uses of the summation function

--> A = [5,1,3;3,2,1;0,3,1]

A=

O w wm
W N =
= = W

We start by calling sum without a dimension argument, in which case it defaults to the first nonsin-
gular dimension (in this case, along the columns or d = 1).

-=> sum(A)

865

Next, we take the sum along the rows.
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--> sum(4,2)

ans =

@)

11.25 TEST Test Function

11.25.1 Usage

Tests for the argument array to be all logical 1s. It is completely equivalent to the all function
applied to a vectorized form of the input. The syntax for the test function is

y = test(x)

and the result is equivalent to all(x(:)).

11.26 VAR Variance Function

11.26.1 Usage
Computes the variance of an array along a given dimension. The general syntax for its use is
y = var(x,d)

where x is an n-dimensions array of numerical type. The output is of the same numerical type as
the input. The argument d is optional, and denotes the dimension along which to take the variance.
The output y is the same size as x, except that it is singular along the mean direction. So, for
example, if xisa 3 x 3 x 4 array, and we compute the mean along dimension d=2, then the output
isof size 3 x 1 x 4.

11.26.2 Function Internals

The output is computed via

N
(m m 1,m m)—; (x(m ma—1,k,m my) — 7)°
Yy LyeoeyTed—1, L, T10d+41y -5 1llp _N—l Ly ooy Td—1,y Ry TTd41y -+« 5 Tllp )
k=1
where
N
_ 1
x:NE ‘r(mla'"amd—lvkamd-‘rl?"'amp)
k=1

If d is omitted, then the mean is taken along the first non-singleton dimension of x.
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11.26.3 Example

The following piece of code demonstrates various uses of the var function
--> A = [5,1,3;3,2,1;0,3,1]

A=

O w wm
w N =
= = W

We start by calling var without a dimension argument, in which case it defaults to the first nonsin-
gular dimension (in this case, along the columns or d = 1).

--> var (A)
ans =

6.3333 1.0000 1.3333

Next, we take the variance along the rows.

--> var(4,2)

ans

4.0000
1.0000
2.3333

11.27 VEC Reshape to a Vector

11.27.1 Usage

Reshapes an n-dimensional array into a column vector. The general syntax for its use is
y = vec(x)

where x is an n-dimensional array (not necessarily numeric). This function is equivalent to the
expression y = x(:).
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11.27.2 Example

A simple example of the vec operator reshaping a 2D matrix:

--> A = [1,2,4,3;2,3,4,5]
A =
1243
2345

-—> vec(A)

:

O wWd P> wWwNDN -



Chapter 12

Inspection Functions

12.1 CLEAR Clear or Delete a Variable

12.1.1 Usage

Clears a set of variables from the current context, or alternately, delete all variables defined in the
current context. There are several formats for the function call. The first is the explicit form in
which a list of variables are provided:

clear al a2 ...

The variables can be persistent or global, and they will be deleted. The second form
clear ’all’

clears all variables and libraries from the current context. Alternately, you can use the form:
clear ’libs’

which will unload any libraries or DLLs that have been imported. Optionally, you can specify that
persistent variables should be cleared via:

clear ’persistent’

and similarly for global variables:
clear ’global’

You can use
clear ’classes’

to clear all definitions of user-defined classes. With no arguments, clear defaults to clearing >all’.

239
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12.1.2 Example

Here is a simple example of using clear to delete a variable. First, we create a variable called a:

--> a = 53

53

Next, we clear a using the clear function, and verify that it is deleted.

--> clear a
--> a
Error: Undefined function or variable a

12.2 EXIST Test for Existence

12.2.1 Usage
Tests for the existence of a variable, function, directory or file. The general syntax for its use is
y = exist(item,kind)

where item is a string containing the name of the item to look for, and kind is a string indicating
the type of the search. The kind must be one of

e ’builtin’ checks for built-in functions
e ’dir’ checks for directories
e "file’ checks for files
e ’var’ checks for variables
e ’all’ checks all possibilities (same as leaving out kind)
You can also leave the kind specification out, in which case the calling syntax is
y = exist(item)
The return code is one of the following:
e 0 - if item does not exist
e 1 -if item is a variable in the workspace

e 2 -if itemis an M file on the search path, a full pathname to a file, or an ordinary file on your
search path



12.2. EXIST TEST FOR EXISTENCE 241

e 5 - if item is a built-in FreeMat function

e 7 -if item is a directory
Note: previous to version 1.10, exist used a different notion of existence for variables: a variable
was said to exist if it was defined and non-empty. This test is now performed by isset.

12.2.2 Example

Some examples of the exist function. Note that generally exist is used in functions to test for
keywords. For example,

function y = testfunc(a, b, c)

if (Texist(’c?))
% c was not defined, so establish a default
c = 13;

y=a+b+c;

An example of exist in action.

--> a = randn(3,5,2)

a:
G,:,1) =
0.8887 -0.2749 -0.1202 0.2347 0.2815
-0.9052 0.2688 1.9047 -0.0533 -1.6196
-1.6519 0.1689 0.5134 -0.5795 0.7863
(:,:,2) =
0.8246 -0.5823 -0.6986 0.3591  -2.5987
-0.5022 2.4368 1.2679 -1.4748 -0.4239
-0.9966 -0.5530 -0.3325 2.29084 0.5024
-=>b =[]
b =
(]
--> who
Variable Name Type Flags Size
a double [3 5 2]
b double [0 0]

--> exist(’a’)

ans =
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1
-=> exist(’b’)
ans =

1

--> exist(’c’)

12.3 FIELDNAMES Fieldnames of a Structure

12.3.1 Usage

Returns a cell array containing the names of the fields in a structure array. The syntax for its use is
x = fieldnames(y)

where y is a structure array of object array. The result is a cell array, with one entry per field in y.

12.3.2 Example

We define a simple structure array:

--> y.foo = 3; y.goo = ’hello’;
--> x = fieldnames(y)

X =

[’foo’]
[’goo’]

12.4 ISA Test Type of Variable

12.4.1 Usage

Tests the type of a variable. The syntax for its use is
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y = isa(x,type)
where x is the variable to test, and type is the type. Supported built-in types are
e ’cell’ for cell-arrays
e ’struct’ for structure-arrays
e ’logical’ for logical arrays
e ’uint8’ for unsigned 8-bit integers
e ’int8’ for signed 8-bit integers
e ’uint16’ for unsigned 16-bit integers
e ’int16’ for signed 16-bit integers
e ’uint32’ for unsigned 32-bit integers
e ’int32’ for signed 32-bit integers
e ’uint64’ for unsigned 64-bit integers
e ’int64’ for signed 64-bit integers
e ’float’ for 32-bit floating point numbers
e ’double’ for 64-bit floating point numbers
e ’complex’ for complex floating point numbers with 32-bits per field
e ’dcomplex’ for complex floating point numbers with 64-bits per field
e ’string’ for string arrays

If the argument is a user-defined type (via the class function), then the name of that class is
returned.

12.4.2 Examples

Here are some examples of the isa call.

-—> a = {1}

[1]
--> isa(a,’string’)

ans =
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0

--> isa(a,’cell’)

Here we use isa along with shortcut boolean evaluation to safely determine if a variable contains
the string *hello’

-=> a = ’hello’

hello
--> isa(a,’string’) && strcmp(a,’hello’)

ans =

12.5 ISCELL Test For Cell Array

12.5.1 Usage

The syntax for iscell is
x = iscell(y)

and it returns a logical 1 if the argument is a cell array and a logical 0 otherwise.

12.5.2 Example

Here are some examples of iscell

--> iscell(’foo0’)

ans =
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--> iscell(2)

ans =

--> iscell({1,2,3})

12.6 ISCELLSTR Test For Cell Array of Strings

12.6.1 Usage

The syntax for iscellstr is
x = iscellstr(y)

and it returns a logical 1 if the argument is a cell array in which every cell is a character array (or
is empty), and a logical 0 otherwise.

12.6.2 Example

Here is a simple example

--> A = {’Hello’,’Yellow’;’Mellow’,’0thello’}
A =

[’Hello’] [’Yellow’]
[’Mellow’] [’0thello’]

-=> iscellstr(4d)
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12.7 ISCHAR Test For Character Array (string)

12.7.1 Usage
The syntax for ischar is
x = ischar(y)

and it returns a logical 1 if the argument is a string and a logical 0 otherwise.

12.8 ISEMPTY Test For Variable Empty

12.8.1 Usage

The isempty function returns a boolean that indicates if the argument variable is empty or not.
The general syntax for its use is

y = isempty(x).

12.8.2 Examples

Here are some examples of the isempty function

-—>a =[]
a =
d
--> isempty(a)
ans =
1
-—>b =1:3
b =
123

--> isempty(b)

ans =

Note that if the variable is not defined, isempty does not return true.
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--> clear x
--> isempty(x)
Error: Undefined function or variable x

12.9 ISFIELD Test for Existence of a Structure Field
12.9.1 Usage

Given a structure array, tests to see if that structure array contains a field with the given name.
The syntax for its use is

y = isfield(x,field)
and returns a logical 1 if x has a field with the name field and a logical 0 if not. It also returns a
logical 0 if the argument x is not a structure array.

12.9.2 Example

Here we define a simple struct, and then test for some fields

--> a.foo = 32

foo: [32]
--> a.goo = 64

foo: [32]
goo: [64]
--> isfield(a,’goo’)

ans

--> isfield(a,’got’)

:

--> isfield(pi,’round’)
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12.10 ISHANDLE Test for Graphics Handle

12.10.1 Usage

Given a constant, this routine will test to see if the constant is a valid graphics handle or not. The
syntax for its use is

y = ishandle(h,type)

and returns a logical 1 if x is a handle of type type and a logical 0 if not.

12.11 ISINF Test for infinities

12.11.1 Usage

Returns true for entries of an array that are infs (i.e., infinities). The usage is
y = isinf(x)

The result is a logical array of the same size as x, which is true if x is not-a-number, and false
otherwise. Note that for complex or dcomplex data types that the result is true if either the real or
imaginary parts are infinite.

12.11.2 Example

Suppose we have an array of floats with one element that is inf:

--> a = [1.2 3.4 inf 5]

1.2000 3.4000 inf 5.0000
--> isinf(a)

ans =

0010

-—>b=23./[250 3 1]

b =

1.5000 0.6000 inf 1.0000 3.0000
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12.12 ISINTTYPE Test For Integer-type Array

12.12.1 Usage

The syntax for isinttype is
x = isinttype(y)

and it returns a logical 1 if the argument is an integer type and a logical 0 otherwise. Note that this
function only tests the type of the variable, not the value. So if, for example, y is a float array
containing all integer values, it will still return a logical 0.

12.13 ISLOGICAL Test for Logical Array

12.13.1 Usage

The syntax for islogical is
x = islogical(y)

and it returns a logical 1 if the argument is a logical array and a logical 0 otherwise.

12.14 ISNAN Test for Not-a-Numbers

12.14.1 Usage

Returns true for entries of an array that are NaN’s (i.e., Not-a-Numbers). The usage is
y = isnan(x)

The result is a logical array of the same size as x, which is true if x is not-a-number, and false
otherwise. Note that for complex or dcomplex data types that the result is true if either the real or
imaginary parts are NaNs.

12.14.2 Example

Suppose we have an array of floats with one element that is nan:

--> a = [1.2 3.4 nan 5]

1.2000 3.4000 nan 5.0000

--> isnan(a)
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0010

12.15 ISNUMERIC Test for Numeric Array
12.15.1 Usage

The syntax for isnumeric is
x = isnumeric(y)

and it returns a logical 1 if the argument is a numeric (i.e., not a structure array, cell array, string
or user defined class), and a logical 0 otherwise.

12.16 ISREAL Test For Real Array

12.16.1 Usage
The syntax for isreal is
x = isreal(y)

and it returns a logical 1 if the argument is a real type (integer, float, or double), and a logical 0
otherwise.

12.17 ISSCALAR Test For Scalar
12.17.1 Usage

The syntax for isscalar is
x = isscalar(y)

and it returns a logical 1 if the argument is a scalar, and a logical 0 otherwise.

12.18 ISSET Test If Variable Set
12.18.1 Usage

Tests for the existence and non-emptiness of a variable. the general syntax for its use is
y = isset(’name’)

where name is the name of the variable to test. This is functionally equivalent to
y = exist(’name’,’var’) & ~isempty(name)

It returns a logical 1 if the variable is defined in the current workspace, and is not empty, and
returns a 0 otherwise.
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12.18.2 Example
Some simple examples of using isset
--> who

Variable Name Type Flags
--> isset(’a’)
ans =

0

-—>a=[];
--> isset(’a’)

ans =

-—> a = 2
--> isset(’a’)

ans =

12.19 ISSPARSE Test for Sparse Matrix

12.19.1 Usage

Test a matrix to see if it is sparse or not. The general format for its use is

y = issparse(x)

This function returns true if x is encoded as a sparse matrix, and false otherwise.

12.19.2 Example

Here is an example of using issparse:

-->a = [1,0,0,5;0,3,2,0]

a =

o =
w O
N O
[@XNe]

Size

251
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--> issparse(a)

ans =

--> A = sparse(a)
A=
Matrix is sparse with 4 nonzeros

--> issparse(A)

ans =

12.20 ISSTR Test For Character Array (string)
12.20.1 Usage

The syntax for isstr is
x = isstr(y)

and it returns a logical 1 if the argument is a string and a logical 0 otherwise.

12.21 ISSTRUCT Test For Structure Array
12.21.1 Usage

The syntax for isstruct is
x = isstruct(y)

and it returns a logical 1 if the argument is a structure array, and a logical 0 otherwise.

12.22 ISVECTOR Test For a Vector

12.22.1 Usage
This function tests to see if the argument is a vector. The syntax for isvector is
x = isvector(y)

and it returns a logical 1 if the argument is size N x 1 or 1 x N and a logical 0 otherwise.
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12.23 LENGTH Length of an Array

12.23.1 Usage
Returns the length of an array x. The syntax for its use is
y = length(x)

and is defined as the maximum length of x along any of its dimensions, i.e., max(size(x)). If you
want to determine the number of elements in x, use the numel function instead.

12.23.2 Example
For a 4 x 4 x 3 matrix, the length is 4, not 48, as you might expect.

--> x = rand(4,4,3);
--> length(x)

ans =

4

12.24 NDIMS Number of Dimensions in Array

12.24.1 Usage

The ndims function returns the number of dimensions allocated in an array. The general syntax for
its use is

n = ndims(x)

and is equivalent to length(size(x)).

12.25 NUMEL Number of Elements in an Array

12.25.1 Usage

Returns the number of elements in an array x, or in a subindex expression. The syntax for its use
is either

y = numel(x)
or
y = numel (x,varargin)

Generally, numel returns prod(size(x)), the number of total elements in x. However, you can
specify a number of indexing expressions for varagin such as index1, index2, ..., indexm. In
that case, the output of numel is prod(size(x(index1,...,indexm))).
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12.25.2 Example
For a 4 x 4 x 3 matrix, the length is 4, not 48, as you might expect, but numel is 48.

--> x = rand(4,4,3);
--> length(x)

ans =

--> numel (x)
ans =

48

Here is an example of using numel with indexing expressions.

--> numel(x,1:3,1:2,2)

ans =

12.26 SIZE Size of a Variable

12.26.1 Usage

Returns the size of a variable. There are two syntaxes for its use. The first syntax returns the size
of the array as a vector of integers, one integer for each dimension

[d1,d2,...,dn] = size(x)
The other format returns the size of x along a particular dimension:
d = size(x,n)

where n is the dimension along which to return the size.

12.26.2 Example

--> a = randn(23,12,5);
--> size(a)
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ans =

23 12 5

Here is an example of the second form of size.

--> size(a,2)
ans =

12

12.27 TYPEOF Determine the Type of an Argument
12.27.1 Usage

Returns a string describing the type of an array. The syntax for its use is
y = typeof (x),
The returned string is one of
e ’cell’ for cell-arrays
e ’struct’ for structure-arrays
e ’logical’ for logical arrays
e ’uint8’ for unsigned 8-bit integers
e ’int8’ for signed 8-bit integers
e ’uint16’ for unsigned 16-bit integers
e ’int16°’ for signed 16-bit integers
e ’uint32’ for unsigned 32-bit integers
e ’int32’ for signed 32-bit integers
e ’float’ for 32-bit floating point numbers
e ’double’ for 64-bit floating point numbers
e ’complex’ for complex floating point numbers with 32-bits per field
e ’dcomplex’ for complex floating point numbers with 64-bits per field

e ’string’ for string arrays
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12.27.2 Example

The following piece of code demonstrates the output of the typeof command for each possible type.
The first example is with a simple cell array.

--> typeof ({1})
ans =

cell

The next example uses the struct constructor to make a simple scalar struct.

--> typeof (struct(’foo’,3))
ans =

struct

The next example uses a comparison between two scalar integers to generate a scalar logical type.

--> typeof (3>5)
ans =

logical

For the smaller integers, and the 32-bit unsigned integer types, the typecast operations are used to
generate the arguments.

--> typeof (uint8(3))
ans =

uint8
--> typeof (int8(8))
ans =

int8

--> typeof (uint16(3))
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ans =

uint16
--> typeof (int16(8))
ans =

int16
--> typeof (uint32(3))
ans =

uint32

The 32-bit signed integer type is the default for integer arguments.

--> typeof (-3)
ans =

int32
--> typeof (8)
ans =

int32

Float, double, complex and double-precision complex types can be created using the suffixes.

--> typeof (1.0f)
ans =
float
--> typeof (1.0D)

ans =
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double
-=> typeof (1.0f+i)
ans =

complex
-=> typeof (1.0D+2.0D*1i)
ans =

dcomplex

12.28 WHERE Get Information on Program Stack

12.28.1 Usage

Returns information on the current stack. The usage is
where

The result is a kind of stack trace that indicates the state of the current call stack, and where you
are relative to the stack.

12.28.2 Example
Suppose we have the following chain of functions.

chainl.m
function chainl
a = 32;
b=a+ 5;
chain2(b)

chain2.m
function chain2(d)
d=d + 5;
chain3

chain3.m
function chain3
g = 54;
f=g+1;
keyboard
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The execution of the where command shows the stack trace.

—--> chainil

[chain3,4]--> where

In base(base) on line O

In simkeys(built in) on line O
In Eval(chainl) on line 2

In chaini(chainl) on line 4
In chain2(chain2) on line 4
In chain3(chain3) on line 4
In Eval(where) on line 2

In where(built in) on line O
[chain3,4]

12.29 WHICH Get Information on Function

12.29.1 Usage

Returns information on a function (if defined). The usage is

which(fname)

where fname is a string argument that contains the name of the function. For functions and scripts
defined via .m files, the which command returns the location of the source file:

y = which(fname)

will return the filename for the .m file corresponding to the given function, and an empty string
otherwise.

12.29.2 Example

First, we apply the which command to a built in function.

--> which fft
Function fft is a built in function

Next, we apply it to a function defined via a .m file.

--> which fliplr
Function fliplr, M-File function in file ’/home/basu/dev/trunk/FreeMat2/src/toolbox/array/fliplr.m’
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12.30 WHO Describe Currently Defined Variables
12.30.1 Usage

Reports information on either all variables in the current context or on a specified set of variables.
For each variable, the who function indicates the size and type of the variable as well as if it is a
global or persistent. There are two formats for the function call. The first is the explicit form, in
which a list of variables are provided:

who al a2 ...
In the second form
who

the who function lists all variables defined in the current context (as well as global and persistent
variables). Note that there are two alternate forms for calling the who function:

and

who(’al’,’a2’,...)

12.30.2 Example

Here is an example of the general use of who, which lists all of the variables defined.

-=> cCc = [1)233];
--> f = ’hello’;
--> p = randn(1,256);

-—> who
Variable Name Type Flags Size
c int32 [1 3]
f string [1 5]
p double [1 256]

In the second case, we examine only a specific variable:

--> who ¢
Variable Name Type Flags Size
c int32 [1 3]
-=> who(’c’)
Variable Name Type Flags Size

c int32 [1 3]
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Type Conversion Functions

13.1 BIN2DEC Convert Binary String to Decimal

13.1.1 USAGE
Converts a binary string to an integer. The syntax for its use is
y = bin2dec(x)

where x is a binary string. If x is a matrix, then the resulting y is a column vector.

13.1.2 Example

Here we convert some numbers to bits

--> bin2dec(’101110’)
ans =

46

--> bin2dec(’010’)

ans =

261
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13.2 BIN2INT Convert Binary Arrays to Integer

13.2.1 Usage

Converts the binary decomposition of an integer array back to an integer array. The general syntax
for its use is

y = bin2int(x)

where x is a multi-dimensional logical array, where the last dimension indexes the bit planes (see
int2bin for an example). By default, the output of bin2int is unsigned uint32. To get a signed
integer, it must be typecast correctly.

13.2.2 Example

The following piece of code demonstrates various uses of the int2bin function. First the simplest
example:

--> A = [2;5;6;2]

A=

N OO N

--> B = int2bin(A,8)

B =

o O O O
O O O O
O O O O
O O O O
O O O O
O = O
= = O =
O O+~ O

--> bin2int (B)

ans

N OO N

-=> A = [1;2;-5;2]
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--> B = int2bin(A,8)

B =
00000001
00000010
11111011
00000O01O

--> bin2int (B)

13.3 CAST Typecast Variable to Specified Type

13.3.1 Usage

The cast function allows you to typecast a variable from one type to another. The syntax for its
use is

y = cast(x,toclass)

where toclass is the name of the class to cast x to. Note that the typecast must make sense, and
that toclass must be one of the builtin types. The current list of supported types is
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’cell’ for cell-arrays

’struct’ for structure-arrays
’logical’ for logical arrays

’uint8’ for unsigned 8-bit integers
’int8’ for signed 8-bit integers
’uint16°’ for unsigned 16-bit integers
’int16° for signed 16-bit integers
’uint32’ for unsigned 32-bit integers
’int32’ for signed 32-bit integers
’uint64’ for unsigned 64-bit integers
’int64° for signed 64-bit integers
’float’ for 32-bit floating point numbers
’single’ is a synonym for ’float’

’double’ for 64-bit floating point numbers

TYPE CONVERSION FUNCTIONS

’complex’ for complex floating point numbers with 32-bits per field

’dcomplex’ for complex floating point numbers with 64-bits per field

’string’ for string arrays

13.3.2 Example

Here is an example of a typecast from a float to an 8-bit integer

--> cast(pi,’uint8’)

ans

and here we cast an array of arbitrary integers to a logical array

--> cast([1 0 3 0],’logical’)

ans

1010
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13.4 CHAR Convert to character array or string
13.4.1 Usage

The char function can be used to convert an array into a string. It has several forms. The first form
is

y = char(x)

where x is a numeric array containing character codes. FreeMat does not currently support Unicode,
so the character codes must be in the range of [0,255]. The output is a string of the same size as
x. A second form is

y = char(c)

where c is a cell array of strings, creates a matrix string where each row contains a string from the
corresponding cell array. The third form is

y = char(sl, s2, s3, ...)
where si are a character arrays. The result is a matrix string where each row contains a string from
the corresponding argument.

13.4.2 Example

Here is an example of the first technique being used to generate a string containing some ASCII
characters

--> char([32:64;65:97])
ans =

P #$%& (O *x+,-./0123456789: ;<=>7Q
ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]"_‘a

In the next example, we form a character array from a set of strings in a cell array. Note that the
character array is padded with spaces to make the rows all have the same length.

--> char({’hello’,’to’,’the’,’world’})
ans =

hello
to
the
world
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In the last example, we pass the individual strings as explicit arguments to char
--> char(’hello’,’to’,’the’, ’world’)
ans =

hello
to
the
world

13.5 COMPLEX Convert to 32-bit Complex Floating Point

13.5.1 Usage

Converts the argument to a 32-bit complex floating point number. The syntax for its use is
y = complex(x)

where x is an n-dimensional numerical array. Conversion follows the general C rules. Note that both
NaN and Inf in the real and imaginary parts are both preserved under type conversion.

13.5.2 Example

The following piece of code demonstrates several uses of complex. First, we convert from an integer
(the argument is an integer because no decimal is present):

--> complex(200)
ans =

2.0000e+00 +0.0000e+001

In the next example, a double precision argument is passed in (the presence of a decimal without
the £ suffix implies double precision).

--> complex (400.0)
ans =

4.0000e+00 +0.0000e+001
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In the next example, a dcomplex argument is passed in.

-=> complex(3.0+4.0%1i)

ans =

3.0000 + 4.0000i

In the next example, a string argument is passed in. The string argument is converted into an
integer array corresponding to the ASCII values of each character.

--> complex(’he’)
ans =
1.0e+02 *

1.0400 + 0.00001 1.0100 + 0.00001

In the next example, the NaN argument is converted.

--> complex(nan)
ans =

nan + 0.00001

In the last example, a cell-array is passed in. For cell-arrays and structure arrays, the result is an
€erTor.

--> complex({4})
Error: Cannot convert cell-arrays to any other type.

13.6 DCOMPLEX Convert to 32-bit Complex Floating Point

13.6.1 Usage
Converts the argument to a 32-bit complex floating point number. The syntax for its use is
y = dcomplex(x)

where x is an n-dimensional numerical array. Conversion follows the general C rules. Note that both
NaN and Inf in the real and imaginary parts are both preserved under type conversion.
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13.6.2 Example

The following piece of code demonstrates several uses of dcomplex. First, we convert from an integer
(the argument is an integer because no decimal is present):

--> dcomplex (200)
ans =

2.0000e+00 +0.0000e+001

In the next example, a double precision argument is passed in (the presence of a decimal without
the f suffix implies double precision).

--> dcomplex(400.0)
ans =

4.0000e+00 +0.0000e+001

In the next example, a complex argument is passed in.

--> dcomplex(3.0+4.0%1i)
ans =

3.0000 + 4.00001

In the next example, a string argument is passed in. The string argument is converted into an
integer array corresponding to the ASCII values of each character.

--> dcomplex(’h’)
ans =

1.0400e+00 +0.0000e+00i

In the next example, the NaN argument is converted.

--> dcomplex(nan)
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nan + 0.0000i

In the last example, a cell-array is passed in. For cell-arrays and structure arrays, the result is an
error.

--> dcomplex ({4})
Error: Cannot convert cell-arrays to any other type.

13.7 DEC2BIN Convert Decimal to Binary String
13.7.1 USAGE

Converts an integer to a binary string. The syntax for its use is
y = dec2bin(x,n)

where x is the positive integer, and n is the number of bits to use in the representation. Alternately,
if you leave n unspecified,

y = dec2bin(x)

the minimum number of bits needed to represent x are used. If x is a vector, then the resulting y is
a character matrix.

13.7.2 Example

Here we convert some numbers to bits

--> dec2bin(56)

ans =

111000

-=> dec2bin(1039456)

ans =
11111101110001100000
--> dec2bin([63,73,32],5)

ans =
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11111
01001
00000

13.8 DOUBLE Convert to 64-bit Floating Point

13.8.1 Usage

Converts the argument to a 64-bit floating point number. The syntax for its use is
y = double(x)

where x is an n-dimensional numerical array. Conversion follows the general C rules. Note that both
NaN and Inf are both preserved under type conversion.

13.8.2 Example

The following piece of code demonstrates several uses of double. First, we convert from an integer
(the argument is an integer because no decimal is present):

--> double(200)
ans =

200

In the next example, a single precision argument is passed in (the presence of the f suffix implies
single precision).

--> double (400.0f)

400

In the next example, a dcomplex argument is passed in. The result is the real part of the argument,
and in this context, double is equivalent to the function real.

--> double(3.0+4.0%i)
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In the next example, a string argument is passed in. The string argument is converted into an
integer array corresponding to the ASCII values of each character.

--> double(’helo’)
ans =

104 101 108 111

In the last example, a cell-array is passed in. For cell-arrays and structure arrays, the result is an
€erTor.

--> double ({4})
Error: Cannot convert cell-arrays to any other type.

13.9 FLOAT Convert to 32-bit Floating Point

13.9.1 Usage
Converts the argument to a 32-bit floating point number. The syntax for its use is
y = float(x)

where x is an n-dimensional numerical array. Conversion follows the general C rules. Note that both
NaN and Inf are both preserved under type conversion.

13.9.2 Example

The following piece of code demonstrates several uses of float. First, we convert from an integer
(the argument is an integer because no decimal is present):

--> float (200)
ans =

200

In the next example, a double precision argument is passed in (the presence of a decimal without
the f suffix implies double precision).
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--> float(400.0)

400

In the next example, a dcomplex argument is passed in. The result is the real part of the argument,
and in this context, float is equivalent to the function real.

--> float(3.0+4.0%i)

ans =

In the next example, a string argument is passed in. The string argument is converted into an
integer array corresponding to the ASCII values of each character.

--> float(’helo’)
ans =

104 101 108 111

In the last example, a cell-array is passed in. For cell-arrays and structure arrays, the result is an
error.

--> float ({4})
Error: Cannot convert cell-arrays to any other type.

13.10 INT16 Convert to Signed 16-bit Integer

13.10.1 Usage
Converts the argument to an signed 16-bit Integer. The syntax for its use is
y = int16(x)

where x is an n-dimensional numerical array. Conversion follows the general C rules (e.g., if x is
outside the normal range for a signed 16-bit integer of [-32768,32767], the least significant 16 bits
of x are used after conversion to a signed integer). Note that both NaN and Inf both map to 0.
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13.10.2 Example
The following piece of code demonstrates several uses of int16. First, the routine uses

--> int16(100)
ans =
100
--> int16(-100)
ans =

-100

In the next example, an integer outside the range of the type is passed in. The result is the 16 least
significant bits of the argument.

--> int16(40000)

-25536

In the next example, a positive double precision argument is passed in. The result is the signed
integer that is closest to the argument.

--> int16(pi)

ans =

In the next example, a complex argument is passed in. The result is the signed integer that is closest
to the real part of the argument.

-=> int16(5+2%i)
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In the next example, a string argument is passed in. The string argument is converted into an
integer array corresponding to the ASCII values of each character.

--> int16(’helo’)

104 101 108 111

In the last example, a cell-array is passed in. For cell-arrays and structure arrays, the result is an
error.

--> int16({4})
Error: Cannot convert cell-arrays to any other type.

13.11 INT2BIN Convert Integer Arrays to Binary

13.11.1 Usage

Computes the binary decomposition of an integer array to the specified number of bits. The general
syntax for its use is

y = int2bin(x,n)
where x is a multi-dimensional integer array, and n is the number of bits to expand it to. The
output array y has one extra dimension to it than the input. The bits are expanded along this extra
dimension.

13.11.2 Example

The following piece of code demonstrates various uses of the int2bin function. First the simplest
example:

--> A = [2;5;6;2]

A=

N OO N

--> int2bin(A,8)

ans =
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00000010
00000101
00000110
00000010

--> A = [1;2;-5;2]

A=

--> int2bin(A,8)

ans =

00000O0O01
00000010
11111011
00000010

13.12 INT32 Convert to Signed 32-bit Integer
13.12.1 Usage

Converts the argument to an signed 32-bit Integer. The syntax for its use is
y = int32(x)

where x is an n-dimensional numerical array. Conversion follows the general C rules (e.g., if x
is outside the normal range for a signed 32-bit integer of [-2147483648,2147483647], the least
significant 32 bits of x are used after conversion to a signed integer). Note that both NaN and Inf
both map to 0.

13.12.2 Example

The following piece of code demonstrates several uses of int32. First, the routine uses

--> int32(100)
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100
--> int32(-100)
ans =

-100

In the next example, an integer outside the range of the type is passed in. The result is the 32 least
significant bits of the argument.

--> int32(40e9)
ans =

-2147483648

In the next example, a positive double precision argument is passed in. The result is the signed
integer that is closest to the argument.

--> int32(pi)

ans =

In the next example, a complex argument is passed in. The result is the signed integer that is closest
to the real part of the argument.

-—> int32(5+2%i)

In the next example, a string argument is passed in. The string argument is converted into an
integer array corresponding to the ASCII values of each character.

--> int32(’helo’)

ans =
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104 101 108 111

In the last example, a cell-array is passed in. For cell-arrays and structure arrays, the result is an
error.

--> int32({4})
Error: Cannot convert cell-arrays to any other type.

13.13 INT64 Convert to Signed 64-bit Integer
13.13.1 Usage

Converts the argument to an signed 64-bit Integer. The syntax for its use is
y = int64(x)

where x is an n-dimensional numerical array. Conversion follows the general C rules (e.g., if x is
outside the normal range for a signed 64-bit integer of [-2763,2°63-1], the least significant 64 bits
of x are used after conversion to a signed integer). Note that both NaN and Inf both map to 0.

13.13.2 Example
The following piece of code demonstrates several uses of int64. First, the routine uses

--> int64(100)

100
--> int64(-100)
ans =

-100

In the next example, an integer outside the range of the type is passed in. The result is the 64 least
significant bits of the argument.

--> int64(40e9)

ans =
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40000000000

In the next example, a positive double precision argument is passed in. The result is the signed
integer that is closest to the argument.

--> int64(pi)

ans =

In the next example, a complex argument is passed in. The result is the signed integer that is closest
to the real part of the argument.

-=> int64(5+2%i)

ans =

In the next example, a string argument is passed in. The string argument is converted into an
integer array corresponding to the ASCII values of each character.

--> int64(’helo’)
ans =

104 101 108 111

In the last example, a cell-array is passed in. For cell-arrays and structure arrays, the result is an
error.

--> int64({4})
Error: Cannot convert cell-arrays to any other type.

13.14 INTS8 Convert to Signed 8-bit Integer

13.14.1 Usage

Converts the argument to an signed 8-bit Integer. The syntax for its use is
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y = int8(x)

where x is an n-dimensional numerical array. Conversion follows the general C rules (e.g., if x is
outside the normal range for a signed 8-bit integer of [-128,127], the least significant 8 bits of x
are used after conversion to a signed integer). Note that both NaN and Inf both map to 0.

13.14.2 Example

The following piece of code demonstrates several uses of int8. First, the routine uses

--> int8(100)
ans =
100
--> int8(-100)
ans =

-100

In the next example, an integer outside the range of the type is passed in. The result is the 8 least
significant bits of the argument.

--> int8(400)

-112

In the next example, a positive double precision argument is passed in. The result is the signed
integer that is closest to the argument.

--> int8(pi)

ans =

In the next example, a complex argument is passed in. The result is the signed integer that is closest
to the real part of the argument.
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--> int8(5+2*i)

In the next example, a string argument is passed in. The string argument is converted into an
integer array corresponding to the ASCII values of each character.

--> int8(’helo’)
ans =

104 101 108 111

In the last example, a cell-array is passed in. For cell-arrays and structure arrays, the result is an
error.

--> int8({4})
Error: Cannot convert cell-arrays to any other type.

13.15 LOGICAL Convert to Logical
13.15.1 Usage

Converts the argument to a logical array. The syntax for its use is
y = logical(x)

where x is an n-dimensional numerical array. Any nonzero element maps to a logical 1.

13.15.2 Example

Here we convert an integer array to logical:

--> logical([1,2,3,0,0,0,5,2,2])
ans =

111000111

The sampe example with double precision values:
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--> logical([pi,pi,0,e,0,-11)
ans =

110101

13.16 SINGLE Convert to 32-bit Floating Point
13.16.1 Usage

A synonym for the float function, converts the argument to a 32-bit floating point number. The
syntax for its use is

y = float(x)

where x is an n-dimensional numerical array. Conversion follows the general C rules. Note that both
NaN and Inf are both preserved under type conversion.

13.17 STRING Convert Array to String
13.17.1 Usage

Converts the argument array into a string. The syntax for its use is
y = string(x)

where x is an n-dimensional numerical array.

13.17.2 Example

Here we take an array containing ASCII codes for a string, and convert it into a string.

--> a = [104,101,108,108,111]

104 101 108 108 111
--> string(a)
ans =

hello
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13.18 UINT16 Convert to Unsigned 16-bit Integer

13.18.1 Usage

Converts the argument to an unsigned 16-bit Integer. The syntax for its use is
y = uint16(x)

where x is an n-dimensional numerical array. Conversion follows the general C rules (e.g., if x is
outside the normal range for an unsigned 16-bit integer of [0,65535], the least significant 16 bits
of x are used after conversion to an integer). Note that both NaN and Inf both map to 0.

13.18.2 Example

The following piece of code demonstrates several uses of uint16.

--> uint16(200)
ans =

200

In the next example, an integer outside the range of the type is passed in. The result is the 16 least
significant bits of the argument.

--> uint16(99400)
ans =

33864

In the next example, a negative integer is passed in. The result is the 16 least significant bits of the
argument, after taking the 2’s complement.

--> uint16(-100)

65436

In the next example, a positive double precision argument is passed in. The result is the unsigned
integer that is closest to the argument.
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--> uint16(pi)

ans =

In the next example, a complex argument is passed in. The result is the unsigned integer that is
closest to the real part of the argument.

--> uint16(5+2x*i)

ans =

In the next example, a string argument is passed in. The string argument is converted into an
integer array corresponding to the ASCII values of each character.

--> uint16(’helo’)
ans =

104 101 108 111

In the last example, a cell-array is passed in. For cell-arrays and structure arrays, the result is an
error.

-=> uint16({4})
Error: Cannot convert cell-arrays to any other type.

13.19 UINT32 Convert to Unsigned 32-bit Integer

13.19.1 Usage
Converts the argument to an unsigned 32-bit Integer. The syntax for its use is
y = uint32(x)

where x is an n-dimensional numerical array. Conversion follows the general C rules (e.g., if x is
outside the normal range for an unsigned 32-bit integer of [0,4294967295], the least significant 32
bits of x are used after conversion to an integer). Note that both NaN and Inf both map to 0.
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13.19.2 Example

The following piece of code demonstrates several uses of uint32.

--> uint32(200)

200

In the next example, an integer outside the range of the type is passed in. The result is the 32 least
significant bits of the argument.

-=> uint32(40e9)
ans =

1345294336

In the next example, a negative integer is passed in. The result is the 32 least significant bits of the
argument, after taking the 2’s complement.

--> uint32(-100)
ans =

4294967196

In the next example, a positive double precision argument is passed in. The result is the unsigned
integer that is closest to the argument.

--> uint32(pi)

ans =

In the next example, a complex argument is passed in. The result is the unsigned integer that is
closest to the real part of the argument.

--> uint32(5+2%i)
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In the next example, a string argument is passed in. The string argument is converted into an
integer array corresponding to the ASCII values of each character.

--> uint32(’helo’)
ans =

104 101 108 111

In the last example, a cell-array is passed in. For cell-arrays and structure arrays, the result is an
error.

--> uint32({4})
Error: Cannot convert cell-arrays to any other type.

13.20 UINT64 Convert to Unsigned 64-bit Integer
13.20.1 Usage

Converts the argument to an unsigned 64-bit Integer. The syntax for its use is
y = uint64(x)

where x is an n-dimensional numerical array. Conversion follows the general C rules (e.g., if x is
outside the normal range for an unsigned 64-bit integer of [0,2764-1], the least significant 64 bits
of x are used after conversion to an integer). Note that both NaN and Inf both map to 0.

13.20.2 Example

The following piece of code demonstrates several uses of uint64.

-=> uint64(200)
ans =

200
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In the next example, an integer outside the range of the type is passed in. The result is the 64 least
significant bits of the argument.

--> uint64(40e9)
ans =

40000000000

In the next example, a negative integer is passed in. The result is the 64 least significant bits of the
argument, after taking the 2’s complement.

--> uint64(-100)
ans =

18446744073709551516

In the next example, a positive double precision argument is passed in. The result is the unsigned
integer that is closest to the argument.

--> uint64(pi)

ans =

In the next example, a complex argument is passed in. The result is the unsigned integer that is
closest to the real part of the argument.

-=> uint64 (5+2%i)

ans =

In the next example, a string argument is passed in. The string argument is converted into an
integer array corresponding to the ASCII values of each character.

-=> uint64(’helo’)
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ans =

104 101 108 111

In the last example, a cell-array is passed in. For cell-arrays and structure arrays, the result is an
€erTor.

--> uint64({4})
Error: Cannot convert cell-arrays to any other type.

13.21 UINTS8 Convert to Unsigned 8-bit Integer

13.21.1 Usage

Converts the argument to an unsigned 8-bit Integer. The syntax for its use is
y = uint8(x)

where x is an n-dimensional numerical array. Conversion follows the general C rules (e.g., if x is
outside the normal range for an unsigned 8-bit integer of [0,255], the least significant 8 bits of x
are used after conversion to an integer). Note that both NaN and Inf both map to 0.

13.21.2 Example

The following piece of code demonstrates several uses of uint8.

--> 1uint8(200)

200

In the next example, an integer outside the range of the type is passed in. The result is the 8 least
significant bits of the argument.

--> uint8(400)
ans =

144
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In the next example, a negative integer is passed in. The result is the 8 least significant bits of the
argument, after taking the 2’s complement.

--> uint8(-100)
ans =

156

In the next example, a positive double precision argument is passed in. The result is the unsigned
integer that is closest to the argument.

--> uint8(pi)

ans =

In the next example, a complex argument is passed in. The result is the unsigned integer that is
closest to the real part of the argument.

-=> uint8(5+2*i)

ans =

In the next example, a string argument is passed in. The string argument is converted into an
integer array corresponding to the ASCII values of each character.

--> uint8(’helo’)
ans =

104 101 108 111

In the last example, a cell-array is passed in. For cell-arrays and structure arrays, the result is an
€erTor.

--> uint8({4})
Error: Cannot convert cell-arrays to any other type.



Chapter 14

Array Generation and
Manipulations

14.1 ASSIGN Making assignments

14.1.1 Usage

FreeMat assignments take a number of different forms, depending on the type of the variable you
want to make an assignment to. For numerical arrays and strings, the form of an assignment is
either

a(ndx) = val

where ndx is a set of vector indexing coordinates. This means that the values ndx takes reference the
elements of a in column order. So, if, for example a is an N x M matrix, the first column has vector
indices 1,2, ...,N, and the second column has indices N+1,N+2, ... ,2N, and so on. Alternately, you
can use multi-dimensional indexing to make an assignment:

a(ndx_1,ndx_2,..,ndx_m) = val

where each indexing expression ndx_i corresponds to the i-th dimension of a. In both cases, (vector
or multi-dimensional indexing), the right hand side val must either be a scalar, an empty matrix,
or of the same size as the indices. If val is an empty matrix, the assignment acts like a delete. Note
that the type of a may be modified by the assignment. So, for example, assigning a double value
to an element of a float array a will cause the array a to become double.

For cell arrays, the above forms of assignment will still work, but only if val is also a cell array.
If you want to assign the contents of a cell in a cell array, you must use one of the two following
forms, either

a{ndx} = val
or
a{ndx_1,ndx_2,...,ndx_m} = val

which will modify the contents of the cell.

289
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14.2 CELL Cell Array of Empty Matrices

14.2.1 Usage

Creates a cell array of empty matrix entres. Two seperate syntaxes are possible. The first syntax
specifies the array dimensions as a sequence of scalar dimensions:

y = cell(d1,d2,...,dn).

The resulting array has the given dimensions, and is filled with all zeros. The type of y is cell, a
cell array.

The second syntax specifies the array dimensions as a vector, where each element in the vector
specifies a dimension length:

y = cell([d1,d2,...,dn]).

This syntax is more convenient for calling zeros using a variable for the argument. In both cases,
specifying only one dimension results in a square matrix output.

14.2.2 Example
The following examples demonstrate generation of some zero arrays using the first form.

--> cell(2,3,2)

ans =
(:,:,1) =

] ] ]
1 1 1
(:,:,2) =

(] (] (]
1 d d

--> cell(1,3)

:

o o o

The same expressions, using the second form.

--> cell([2,6])
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ans =

o o o o o o
o o o o o o

--> cell([1,3])
ans =

o 0o o

14.3 CIRCSHIFT Circularly Shift an Array
14.3.1 USAGE

Applies a circular shift along each dimension of a given array. The syntax for its use is
y = circshift(x,shiftvec)
where x is an n-dimensional array, and shiftvec is a vector of integers, each of which specify how
much to shift x along the corresponding dimension.
14.3.2 Example

The following examples show some uses of circshift on N-dimensional arrays.

--> x = int32(rand(4,5)*10)

x =
13140
72724
40118
36735

--> circshift(x, [1,0])

ans =

36735
13140
7T2724
40118

--> circshift(x, [0,-1])
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O O N W
~N = N
W= N
o 00 P O
W N

--> circshift(x, [2,2])

ans =

18401
35367
40131
24727

--> x = int32(rand(4,5,3)*10)

W w~N»
0 N w o,
[S2 e NG I
o o 01 N
O N O w

~No o~
S © 0 N
= o N

~Nw O -
a3 O N

g b N =
NN OO
> o 01 =
(620> N IVe]
= oo o

--> circshift(x,[1,0,0])

ans =
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:,1) =

38580
65173
73550
37667

1,2) =

74176
72718
6 8502
6 9436

:,3) =

52451

10196
75575
42665

--> circshift(x,[0,-1,0])

51736
35507
76673
85803

1,2) =

27187
85026
94366
41767

:,3) =

01961
556757
26654
24515
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--> circshift(x, [0,0,-1])

72718
6 8502
6 9436
74176

1,2) =

10196
75575
42665
52451

:,3) =

65173
73550
37667
38580

--> circshift(x,[2,-3,1])

65426
51524
96101
75755

1,2) =

67376
80385
73651
50735

:,3) =

366094
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76741
18727
02685

14.4 COND Condition Number of a Matrix
14.4.1 Usage

Calculates the condition number of a matrix. To compute the 2-norm condition number of a matrix
(ratio of largest to smallest singular values), use the syntax

y = cond(A)

where A is a matrix. If you want to compute the condition number in a different norm (e.g., the
1-norm), use the second syntax

y = cond(A,p)

where p is the norm to use when computing the condition number. The following choices of p are
supported

e p = 1 returns the 1-norm, or the max column sum of A

e p = 2 returns the 2-norm (largest singular value of A)

e p = inf returns the infinity norm, or the max row sum of A

e p = ’fro’ returns the Frobenius-norm (vector Euclidean norm, or RMS value)

14.4.2 Function Internals

The condition number is defined as
1Al
1A=,
This equation is precisely how the condition number is computed for the case p = 2. For the p=2
case, the condition number can be computed much more efficiently using the ratio of the largest and
smallest singular values.

14.4.3 Example
The condition number of this matrix is large

-—> A = [1,1;0,1e-15]
A =

1.0000 1.0000
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0 0.0000

--> cond(A)

2000000000000000
--> cond(A,1)
ans =

2000000000000002

You can also (for the case p=1 use rcond to calculate an estimate of the condition number

--> 1/rcond(A)
ans =

2.0000e+15

14.5 DET Determinant of a Matrix
14.5.1 Usage

Calculates the determinant of a matrix. Note that for all but very small problems, the determinant
is not particularly useful. The condition number cond gives a more reasonable estimate as to the
suitability of a matrix for inversion than comparing det (A) to zero. In any case, the syntax for its
use is

y = det(A)

where A is a square matrix.

14.5.2 Function Internals

The determinant is calculated via the LU decomposition. Note that the determinant of a product of
matrices is the product of the determinants. Then, we have that

LU = PA

where L is lower triangular with 1s on the main diagonal, U is upper triangular, and P is a row-
permutation matrix. Taking the determinant of both sides yields

[LU| = |L||U| = [U| = [PA| = |P[|A]
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where we have used the fact that the determinant of L is 1. The determinant of P (which is a row
exchange matrix) is either 1 or -1.

14.5.3 Example

Here we assemble a random matrix and compute its determinant

--> A = rand(5);
-=> det (4)

ans =

-5.0277e-02

Then, we exchange two rows of A to demonstrate how the determinant changes sign (but the mag-
nitude is the same)

--> B = A([2,1’3:4’5]::);
-—> det (B)

ans =

5.0277e-02

14.6 DIAG Diagonal Matrix Construction/Extraction

14.6.1 Usage

The diag function is used to either construct a diagonal matrix from a vector, or return the diagonal
elements of a matrix as a vector. The general syntax for its use is

y = diag(x,n)

If x is a matrix, then y returns the n-th diagonal. If n is omitted, it is assumed to be zero. Conversely,
if x is a vector, then y is a matrix with x set to the n-th diagonal.

14.6.2 Examples

Here is an example of diag being used to extract a diagonal from a matrix.

--> A = int32(10*rand(4,5))

A=
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g w NN w
SN OO
= 01 0 W
~N o ~No;
o w U1 ©

--> diag(A)

ans =

~N oo W

--> diag(A,1)

ans =

O 00 O;

Here is an example of the second form of diag, being used to construct a diagonal matrix.

--> x = int32(10*rand(1,3))

649
--> diag(x)

ans =

O O O
o > O
© O O

--> diag(x,-1)

ans =

o O
o O
o O
o O
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o O
[@ 3
© O
o O

14.7 EXPM Matrix Exponential

14.7.1 Usage

Calculates e~A for a square, full rank matrix A. The syntax for its use is
y = expm(A)

Internally, expm is mapped to a simple e~A expression (which in turn uses the eigenvalue expansion
of A to compute the exponential).

14.7.2 Example

An example of expm

-—>A=1[110;002; 00 -1]

A =

o
O O =
= N O

--> expm(A)

2.7183 1.7183 1.0862
0 1.0000 1.2642
0 0 0.3679

14.8 EYE Identity Matrix
14.8.1 USAGE

Creates an identity matrix of the specified size. The syntax for its use is
y = eye(n)

where n is the size of the identity matrix. The type of the output matrix is float.



300 CHAPTER 14. ARRAY GENERATION AND MANIPULATIONS

14.8.2 Example

The following example demonstrates the identity matrix.

--> eye(3)

ans =

O O =
o - O
= O O

14.9 FIND Find Non-zero Elements of An Array

14.9.1 Usage
Returns a vector that contains the indicies of all non-zero elements in an array. The usage is
y = find(x)

The indices returned are generalized column indices, meaning that if the array x is of size [d1,d2, ... ,dn],
and the element x(i1,i2,...,in) is nonzero, then y will contain the integer

i1+ (ig — 1)d1 + (ig — l)dldQ —+ ...
The second syntax for the find command is
[r,c] = find(x)

which returns the row and column index of the nonzero entries of x. The third syntax for the find
command also returns the values

[r,c,v] = find(x).

Note that if the argument is a row vector, then the returned vectors are also row vectors. This form
is particularly useful for converting sparse matrices into IJV form.

The find command also supports some additional arguments. Each of the above forms can be
combined with an integer indicating how many results to return:

y = find(x,k)

where k is the maximum number of results to return. This form will return the first k results. You
can also specify an optional flag indicating whether to take the first or last k values:

find(x,k,’first’)
find(x,k,’last’)

y
y

in the case of the >last’ argument, the last k values are returned.
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14.9.2 Example

Some simple examples of its usage, and some common uses of find in FreeMat programs.

-=> a = [1:2,5’2:4];
--> find(a==2)

ans =

2 4

Here is an example of using find to replace elements of A that are 0 with the number 5.

--> A = [1,0,3;0,2,1;3,0,0]

A =

w O =
O N O
O~ W

--> n = find(A==0)

© o N

-—> A(n) =5

w O =
a N O
(62 V]

Incidentally, a better way to achieve the same concept is:

--> A = [1,0,3;0,2,1;3,0,0]

A =
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w O =
o N O
O - W

--> A(A==0) =5

A =

w O -
o N O
g = W

ARRAY GENERATION AND MANIPULATIONS

Now, we can also return the indices as row and column indices using the two argument form of find:

--> A = [1,0,3;0,2,1;3,0,0]

A =

w O =
o NN O
O = W

--> [r,c] = find(A)
r =

N =~ N W=

W WwWN ==

Or the three argument form of find, which returns the value also:

--> [r,c,v] = find(A)
r =
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W wWN == N~ N W

= W N W

14.10 FLIPDIM Reverse a Matrix Along a Given Dimension
14.10.1 USAGE

Reverses an array along the given dimension. The syntax for its use is
y = flipdim(x,n)

where x is matrix, and n is the dimension to reverse.

14.10.2 Example

The following examples show some uses of f1lipdim on N-dimensional arrays.

--> x = int32(rand(4,5,3)*10)
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304

45629
53816

:,2) =

TT7T424
58531
22799
6 0702

1,3) =

32071
46063
52172
62671

--> flipdim(x,1)

53816
456209
20695
80266

1,2) =

6 0702
22799
58531
TT7T 424

:,3) =

62671

52172
46063
32071

--> flipdim(x,2)

ans
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:,1) =

6 6208
59602
92654
61835

1,2) =

42477

13585
99722
20706

:,3) =

17023
36064
27125

17626

--> flipdim(x,3)

32071
46063
52172
62671

1,2) =

TT7T424
58531

22799
6 0702

:,3) =

80266
20695
45629

53816
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14.11 FLIPLR Reverse the Columns of a Matrix
14.11.1 USAGE

Reverses the columns of a matrix. The syntax for its use is
y = fliplr(x)

where x is matrix. If x is an N-dimensional array then the second dimension is reversed.

14.11.2 Example

The following example shows £1iplr applied to a 2D matrix.

--> x = int32(rand(4)*10)

N o1 0
w o1 O O
~N © O u»m
o > O O

-=> fliplr(x)

ans =

O > O O
~N © O u»
w o O O
o N o1

For a 3D array, note how the columns in each slice are flipped.

--> x = int32(rand(4,4,3)*10)

0 00 =
o w o
O W o
w w N
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14.11.

0930

1,2) =

8255
9739

1632
3674

:,3) =

6 6 68
3464
9785

8554

--> fliplr(x)

7661

3338
3908

0390

1,2) =

5528
9379
2361

4763

:,3) =

8666
4643
5879
4558
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14.12 FLIPUD Reverse the Columns of a Matrix
14.12.1 USAGE

Reverses the rows of a matrix. The syntax for its use is
y = flipud(x)

where x is matrix. If x is an N-dimensional array then the first dimension is reversed.

14.12.2 Example

The following example shows flipud applied to a 2D matrix.

--> x = int32(rand(4)*10)

o 00 = N
w N W
= 00 D -
0N W=

--> flipud(x)

ans =

~N = 00 O
W Nw
=D 00 =
= W N oo

For a 3D array, note how the rows in each slice are flipped.

--> x = int32(rand(4,4,3)*10)

~
-

-
-
~
[}

w o~ N
o~ o o
© o oo
SO 0N
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8695
96 33

3454

7369

:,3) =

6461

3668

1544
7966

--> flipud(x)

3694
57009
7869

7602

1,2) =

7369

3454
9633

8695

:,3) =

7966

1544
3668
6461
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14.13 ITPERMUTE Array Inverse Permutation Function

14.13.1 Usage

The ipermute function rearranges the contents of an array according to the inverse of the specified
permutation vector. The syntx for its use is

y = ipermute(x,p)

where p is a permutation vector - i.e., a vector containing the integers 1. ..ndims(x) each occuring
exactly once. The resulting array y contains the same data as the array x, but ordered according to
the inverse of the given permutation. This function and the permute function are inverses of each
other.

14.13.2 Example

First we create a large multi-dimensional array, then permute it and then inverse permute it, to
retrieve the original array:

--> A = randn(13,5,7,2);

--> size(A)
ans =
13 5 7 2

--> B = permute(4, [3,4,2,1]);

--> size(B)
ans =
7 2 513

--> C = ipermute(B, [3,4,2,1]);

--> size(C)
ans =

13 5 7 2
--> any (A~=C)
ans =
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14.14 ISFLOAT Test for Floating Point Array

14.14.1 Usage

The syntax for isfloat is
x = isfloat(y)

and it returns a logical 1 if the argument is a floating point array (i.e., a float or double), and a
logical 0 otherwise.

14.15 ISINTEGER Test for Integer Array

14.15.1 Usage

The syntax for isnumeric is
x = isnumeric(y)

and it returns a logical 1 if the argument is an integer. The decision of whether the argument is an
integer or not is made based on the class of y, not on its value.

14.16 LINSPACE Linearly Spaced Vector

14.16.1 Usage

Generates a row vector with the specified number of elements, with entries uniformly spaced between
two specified endpoints. The syntax for its use is either

y = linspace(a,b,count)
or, for a default count = 100,

y = linspace(a,b);

14.16.2 Examples

Here is a simple example of using linspace

--> x = linspace(0,1,5)

0 0.2500 0.5000 0.7500 1.0000
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14.17 LOGSPACE Logarithmically Spaced Vector

14.17.1 Usage

Generates a row vector with the specified number number of elements, with entries logarithmically
spaced between two specified endpoints. The syntax for its use is either

y = logspace(a,b,count)
or, for a default count = 100,
y = logspace(a,b)
A third special use is when
y = logspace(a,pi)

where it generates points between 10~a and pi
Contributed by Paulo Xavier Candeias under GPL.

14.17.2 Example

Here is an example of the use of logspace

--> logspace(1,2,3)
ans =
1.0e+02 *

0.1000 0.3162 1.0000

14.18 MESHGRID Generate Grid Mesh For Plots
14.18.1 Usage

The meshgrid function generates arrays that can be used for the generation of surface plots. The
syntax is one of

[X,Y] = meshgrid(x)
[X,Y] = meshgrid(x,y)
[X,Y,Z] = meshgrid(x,y,z)

where x,y,z are vectors, and X,Y,Z are matrices. In the first case [X,Y] = meshgrid(x), the rows
of X and the columns of Y contain copies of the vector x. In the second case [X,Y] = meshgrid(x,y),
the rows of X contain copies of x, and the columns of Y contain copies of y. In the third case, each
input is copied along the row, column or slice direction of the corresponding output variable.
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14.18.2 Example
In the first example:

--> [X,Y] = meshgrid(-2:.4:2)
X =

Columns 1 to 10

-2.0000 -1.6000 -1.2000 -0.8000 -0.4000 -0.0000 0.4000 0.8000 1.2000 1.6000
-2.0000 -1.6000 -1.2000 -0.8000 -0.4000 -0.0000 0.4000 0.8000 1.2000 1.6000
-2.0000 -1.6000 -1.2000 -0.8000 -0.4000 -0.0000 0.4000 0.8000 1.2000 1.6000
-2.0000 -1.6000 -1.2000 -0.8000 -0.4000 -0.0000 0.4000 0.8000 1.2000 1.6000
-2.0000 -1.6000 -1.2000 -0.8000 -0.4000 -0.0000 0.4000 0.8000 1.2000 1.6000
-2.0000 -1.6000 -1.2000 -0.8000 -0.4000 -0.0000 0.4000 0.8000 1.2000 1.6000
-2.0000 -1.6000 -1.2000 -0.8000 -0.4000 -0.0000 0.4000 0.8000 1.2000 1.6000
-2.0000 -1.6000 -1.2000 -0.8000 -0.4000 -0.0000 0.4000 0.8000 1.2000 1.6000
-2.0000 -1.6000 -1.2000 -0.8000 -0.4000 -0.0000 0.4000 0.8000 1.2000 1.6000
-2.0000 -1.6000 -1.2000 -0.8000 -0.4000 -0.0000 0.4000 0.8000 1.2000 1.6000
-2.0000 -1.6000 -1.2000 -0.8000 -0.4000 -0.0000 0.4000 0.8000 1.2000 1.6000

Columns 11 to 11

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

NNNNDNNDNDNDNDNDNDN

Y =

Columns 1 to 10

-2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000
-1.6000 -1.6000 -1.6000 -1.6000 -1.6000 -1.6000 -1.6000 -1.6000 -1.6000 -1.6000
-1.2000 -1.2000 -1.2000 -1.2000 -1.2000 -1.2000 -1.2000 -1.2000 -1.2000 -1.2000
-0.8000 -0.8000 -0.8000 -0.8000 -0.8000 -0.8000 -0.8000 -0.8000 -0.8000 -0.8000
-0.4000 -0.4000 -0.4000 -0.4000 -0.4000 -0.4000 -0.4000 -0.4000 -0.4000 -0.4000
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000
0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000
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1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000
1.6000 1.6000 1.6000 1.6000 1.6000 1.6000 1.6000 1.6000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000

Columns 11 to 11

-2.0000
-1.6000
-1.2000
-0.8000
-0.4000
-0.0000
0.4000
0.8000
1.2000
1.6000
2.0000

Next, we use different vectors for X and for Y:

--> [X,Y] = meshgrid([1,2,3,4],[6,7,8])
X =

N
N NN
w
N

w0 N O
0 N O
~N O
~N o

14.19 NDGRID Generate N-Dimensional Grid

14.19.1 Usage

Generates N-dimensional grids, each of which is constant in all but one dimension. The syntax for
its use is either

[yl, y2, ..., ym] = ndgrid(xl, x2, ..., xn)

where m <= n or

1.200¢
1.600(
2.000(
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[yl, y2, ..., ym] = ndgrid(x1)

which is equivalent to the first form, with x1=x2=...=xn. Each output yi is an n-dimensional array,
with values such that

yz‘(dh cos s, dyy dig, - ;dm) = xz(dz)

ndgrid is useful for evaluating multivariate functionals over a range of arguments. It is a general-
ization of meshgrid, except that meshgrid transposes the dimensions corresponding to the first two
arguments to better fit graphical applications.

14.19.2 Example

Here is a simple ndgrid example

--> [a,b] = ndgrid(1:2,3:5)
a =

N =
N =
N =

345
345

--> [a,b,c] = ndgrid(1:2,3:5,0:1)

~
-

-
-
~
[}

~
-

-
N
~
[}

~
.
-
[N
~
]

~
.
.
N
~
]
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~
-
.
-
~
L}

~
.

-
N
—
1]

Here we use the second form

--> [a,b,c] = ndgrid(1:3)

w N =
w N =
w N =

[OVIN S
w N =
w N =

w N =
w N =
w N =

~
.

.
—
N2
]

N
N NN
w w w
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= e
N NN
w w w

= e
N NN
w w w

~
.

.
—
N7
1]

N NN e i
N NN il
NN N i

W w w
w w w
W w w

14.20 NONZEROS Retrieve Nonzero Matrix Entries

14.20.1 USAGE

Returns a dense column vector containing the nonzero elements of the argument matrix. The syntax
for its use is

y = nonzeros(x)

where x is the argument array. The argument matrix may be sparse as well as dense.
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14.20.2 Example

Here is an example of using nonzeros on a sparse matrix.

--> a = rand(8); a(a>0.2) = 0;
sparse(a)

|

|
\4
=

]

Matrix is sparse with 19 nonzeros
--> nonzeros(A)

L1767
.0337
.1943
.0846
.0200
.1884
.0619
.0745
.0538
.0838
.0560
.1657
.0433
.1788
.1374
.1702
.0613
L1767
.0628

O OO OO OO ODIODODOOO0OOOOOOoOOo

14.21 NORM Norm Calculation

14.21.1 Usage

Calculates the norm of a matrix. There are two ways to use the norm function. The general syntax
is

y = norm(A,p)

where A is the matrix to analyze, and p is the type norm to compute. The following choices of p are
supported

e p = 1 returns the 1-norm, or the max column sum of A



14.21.

For a vector, the regular norm calculations are performed:

e p = 2 returns the 2-norm (largest singular value of A)
e p = inf returns the infinity norm, or the max row sum of A

e p = ’fro’ returns the Frobenius-norm (vector Euclidean norm, or RMS value)

e 1 <= p < inf returns sum(abs(A) . p)~(1/p)

e p unspecified returns norm(A,2)

e p = inf returns max(abs(A))

*p

14.21.2 Examples

Here are the various norms calculated for a sample matrix

-—>

A=

ans

ans

ans

ans

A = float(rand(3,4))

0.2751 0.5250
0.9886 0.7171
0.5634 0.9679

norm(A,1)

2.2099

norm(A,2)

2.0674

norm(A,inf)

2.8597

norm(A, ’fro’)

-inf returns min(abs(A))

0.0532
0.6396
0.7133

NORM NORM CALCULATION

0.8315
0.5145
0.0706

319
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2.2313

Next, we calculate some vector norms.
--> A = float(rand(4,1))
A=
0.0288
0.6311
0.4853
0.6145
--> norm(A,1)
ans =

1.7596

--> norm(A,2)

1.0061
--> norm(A,7)
ans =

0.6962
--> norm(A,inf)
ans =

0.6311

-—> norm(A,-inf)

2.8751e-02

ARRAY GENERATION AND MANIPULATIONS
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14.22 NUM2STR Convert Numbers To Strings

14.22.1 Usage
Converts an array into its string representation. The general syntax for this function is
s = num2str(X)

where s is a string (or string matrix) and X is an array. By default, the num2str function uses 4
digits of precision and an exponent if required. If you want more digits of precision, you can specify
the precition via the form

s = num2str(X, precision)

where precision is the number of digits to include in the string representation. For more control
over the format of the output, you can also specify a format specifier (see printf for more details).

s = num2str(X, format)

where format is the specifier string.

14.23 ONES Array of Ones
14.23.1 Usage

Creates an array of ones of the specified size. Two seperate syntaxes are possible. The first syntax
specifies the array dimensions as a sequence of scalar dimensions:

y = ones(d1,d2,...,dn).

The resulting array has the given dimensions, and is filled with all ones. The type of y is float,
a 32-bit floating point array. To get arrays of other types, use the typecast functions (e.g., uint8,
int8, etc.).

The second syntax specifies the array dimensions as a vector, where each element in the vector
specifies a dimension length:

y = ones([d1,d2,...,dn]).

This syntax is more convenient for calling ones using a variable for the argument. In both cases,
specifying only one dimension results in a square matrix output.

14.23.2 Example

The following examples demonstrate generation of some arrays of ones using the first form.

--> ones(2,3,2)
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=
=
[

=
=
[

--> ones(1,3)

The same expressions, using the second form.
--> ones([2,6])

ans =

=
=
=
=
[N
=

--> ones([1,3])

ans =

ARRAY GENERATION AND MANIPULATIONS

Finally, an example of using the type casting function uint16 to generate an array of 16-bit unsigned

integers with a value of 1.

--> uint16(ones(3))

= e
e
= e
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14.24 PERMUTE Array Permutation Function

14.24.1 Usage

The permute function rearranges the contents of an array according to the specified permutation
vector. The syntax for its use is

y = permute(x,p)

where p is a permutation vector - i.e., a vector containing the integers 1...ndims(x) each occuring
exactly once. The resulting array y contains the same data as the array x, but ordered according to
the permutation. This function is a generalization of the matrix transpose operation.

14.24.2 Example

Here we use permute to transpose a simple matrix (note that permute also works for sparse matrices):
--> A = [1,2;4,5]

A =
12
45
--> permute(4, [2,1])
ans =

14
25

—-_> A)

N =
[S R

Now we permute a larger n-dimensional array:

--> A = randn(13,5,7,2);
--> size(4)

13 5 7 2
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--> B = permute(4, [3,4,2,1]);

--> size(B)
ans =
7 2 513

14.25 PINV Moore-Penrose Pseudoinverse

14.25.1 Usage

Calculates the Moore-Penrose pseudoinverse of a matrix. The general syntax for its use is
y = pinv(A,tol)

or for a default specification of the tolerance tol,
y = pinv(A)

For any m x n matrix A, the Moore-Penrose pseudoinverse is the unique n x m matrix B that satisfies
the following four conditions

e ABA=A
e BAB-=B
e (AB)’ =AB
e (BA)’”=BA

Also, it is true that B y is the minimum norm, least squares solution to A x = y. The Moore-Penrose
pseudoinverse is computed from the singular value decomposition of A, with singular values smaller
than tol being treated as zeros. If tol is not specified then it is chosen as

tol = max(size(A)) * norm(A) * teps(A).

14.25.2 Function Internals

The calculation of the MP pseudo-inverse is almost trivial once the svd of the matrix is available.
First, for a real, diagonal matrix with positive entries, the pseudo-inverse is simply

1/0’“‘ gy >0
(E+)ii - {0 else

One can quickly verify that this choice of matrix satisfies the four properties of the pseudoinverse.
Then, the pseudoinverse of a general matrix A = U S V’ is defined as

At =vsty’
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and again, using the facts that U> U = I and V V’ = I, one can quickly verify that this choice of
pseudoinverse satisfies the four defining properties of the MP pseudoinverse. Note that in practice,
the diagonal pseudoinverse S~{+} is computed with a threshold (the tol argument to pinv) so that
singular values smaller than tol are treated like zeros.

14.25.3 Examples

Consider a simple 1 x 2 matrix example, and note the various Moore-Penrose conditions:

--> A = float(rand(1,2))
A =

1.0e-02 *

1.4518 1.8382

--> B = pinv(A)

-=> AxBxA
ans =
00

-—> B*xAxB

--> AxB

ans =
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o O
o O

To demonstrate that pinv returns the least squares solution, consider the following very simple case

-=> A = float([1;1;1;11)

A =

= e e

The least squares solution to A x = b is just x = mean(b), and computing the pinv of A demon-
strates this

-=> pinv(A)
ans =

0000

Similarly, we can demonstrate the minimum norm solution with the following simple case

-=> A = float([1,1])

The solutions of A x = 5 are those x_1 and x_2 such that x_1 + x_2 = 5. The norm of x is
x_17 + x_272, which is x_1"2 + (5-x_1) "2, which is minimized for x_1 = x_2 = 2.5:

-—> pinv(A) * 5.0f

ans =
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14.26 RANK Calculate the Rank of a Matrix
14.26.1 Usage

Returns the rank of a matrix. There are two ways to use the rank function is
y = rank(A,tol)
where tol is the tolerance to use when computing the rank. The second form is
y = rank(A)
in which case the tolerance tol is chosen as
tol = max(size(A))*max(s)*eps,
where s is the vector of singular values of A. The rank is computed using the singular value decom-
position svd.
14.26.2 Examples

Some examples of matrix rank calculations

-=> rank([1,3:234:5,6])

ans =

-—=> rank([1,2,3,2,4,6])

Here we construct an ill-conditioned matrix, and show the use of the tol argument.

--> A = [1,0;0,eps/2]

A =
1.0000 0
0 0.0000
-=> rank(A)
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1
--> rank(A,eps/8)

ans =

14.27 RCOND Reciprocal Condition Number Estimate

14.27.1 Usage

The rcond function is a FreeMat wrapper around LAPACKSs function XGECON, which estimates the
1-norm condition number (reciprocal). For the details of the algorithm see the LAPACK documen-
tation. The syntax for its use is

x = rcond(A)

where A is a matrix.

14.27.2 Example

Here is the reciprocal condition number for a random square matrix

--> A = rand(30);
-=> rcond(A)

ans =

6.6318e-04

And here we calculate the same value using the definition of (reciprocal) condition number

-=> 1/(norm(A,1)*norm(inv(A),1))
ans =

6.5055e-04

Note that the values are very similar. LAPACKSs rcond function is far more efficient than the explicit
calculation (which is also used by the cond function.
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14.28 REPMAT Array Replication Function

14.28.1 Usage

The repmat function replicates an array the specified number of times. The source and destination
arrays may be multidimensional. There are three distinct syntaxes for the repmap function. The
first form:

y = repmat(x,n)

replicates the array x on an n-times-n tiling, to create a matrix y that has n times as many rows
and columns as x. The output y will match x in all remaining dimensions. The second form is

y = repmat(x,m,n)

And creates a tiling of x with m copies of x in the row direction, and n copies of x in the column
direction. The final form is the most general

y = repmat(x,[m n p...])

where the supplied vector indicates the replication factor in each dimension.

14.28.2 Example

Here is an example of using the repmat function to replicate a row 5 times. Note that the same
effect can be accomplished (although somewhat less efficiently) by a multiplication.

-—>x = [1 2 3 4]

1234

--> y = repmat(x, [5,1])

y:

e
NN N NN
W wwww
NGNS N NS

The repmat function can also be used to create a matrix of scalars or to provide replication in
arbitrary dimensions. Here we use it to replicate a 2D matrix into a 3D volume.



330 CHAPTER 14. ARRAY GENERATION AND MANIPULATIONS

-—> x = [1 2;3 4]

--> y = repmat(x,[1,1,3])

14.29 RESHAPE Reshape An Array
14.29.1 Usage

Reshapes an array from one size to another. Two seperate syntaxes are possible. The first syntax
specifies the array dimensions as a sequence of scalar dimensions:

y = reshape(x,d1,d2,...,dn).

The resulting array has the given dimensions, and is filled with the contents of x. The type of y is
the same as x. The second syntax specifies the array dimensions as a vector, where each element in
the vector specifies a dimension length:

y = reshape(x,[d1,d2,...,dn]).

This syntax is more convenient for calling reshape using a variable for the argument. The reshape
function requires that the length of x equal the product of the di values. Note that arrays are stored
in column format, which means that elements in x are transferred to the new array y starting with
the first column first element, then proceeding to the last element of the first column, then the first
element of the second column, etc.
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14.29.2 Example

Here are several examples of the use of reshape applied to various arrays. The first example reshapes
a row vector into a matrix.

--> a = uint8(1:6)

123456
--> reshape(a,?2,3)

ans =

N~
S w
o o

The second example reshapes a longer row vector into a volume with two planes.

--> a = uint8(1:12)

1 2 3 4 5 6 7 8 910 11 12

--> reshape(a, [2,3,2])

ans =

(:,:,1) =
1 3 5
2 4 6
(:,:,2) =
7 9 11
8 10 12

The third example reshapes a matrix into another matrix.

-->a = [1,6,7;3,4,2]
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167
342
--> reshape(a,3,2)

ans =

o w R
N~

14.30 RESIZE Resizing an Array

14.30.1 Usage

Arrays in FreeMat will resize themselves automatically as required in order to accomodate assign-
ments. The rules for resizing are as follows. If an assignment is made to an n-dimensional array
(where n ;= 2) that is outside the current dimension bounds of the array, then the array is zero
padded until the it is large enough for the assignment to work. If the array is a scalar, and an
assignment is made to the non-unity element, such as:

a=1
a(3)

[

4;

then the result will be a row vector (in this case, of size 3). Row and column vectors will be resized
so as to preserve their orientation. And if an n-dimensional array is forced to resize using the vector
notation, then the result is a row vector.

14.31 RREF Reduced Row Echelon Form of a Matrix

14.31.1 Usage

Calculates the reduced row echelon form of a matrix using Gauss Jordan elimination with partial
pivoting. The generic syntax for rref is

R = rref(4)

A default tolerance of max (size (A))*eps*norm(A,inf) is used to detect negligible column elements.
The second form of rref returns a vector k as well as R

[R,k] = rref(h)

where k is a vector that correponds to the columns of A used as pivot columns. If you want to control
the tolerance used to identify negligible elements, you can use the form
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[R,k] = rref(A, tolerance)

This implementation of rref is based on the one from the matcompat lib for octave. It is copyright
Paul Kienzle, and distributed under the GNU GPL.

14.32 SHIFTDIM Shift Array Dimensions Function

14.32.1 Usage

The shiftdim function is used to shift the dimensions of an array. The general syntax for the
shiftdim function is

y = shiftdim(x,n)

where x is a multidimensional array, and n is an integer. If n is a positive integer, then shiftdim
circularly shifts the dimensions of x to the left, wrapping the dimensions around as necessary. If n
is a negative integer, then shiftdim shifts the dimensions of x to the right, introducing singleton
dimensions as necessary. In its second form:

[y,n] = shiftdim(x)

the shiftdim function will shift away (to the left) the leading singleton dimensions of x until the
leading dimension is not a singleton dimension (recall that a singleton dimension p is one for which
size(x,p) == 1).

14.32.2 Example

Here are some simple examples of using shiftdim to remove the singleton dimensions of an array,
and then restore them:

--> x = uint8(10*randn(1,1,1,3,2));
-—> [y,n] = shiftdim(x);
-->n

--> size(y)

32

--> ¢ = shiftdim(y,-n);
--> size(c)
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11132
--> any(c™=x)

ans =

Note that these operations (where shifting involves only singleton dimensions) do not actually cause
data to be resorted, only the size of the arrays change. This is not true for the following example,
which triggers a call to permute:

--> z = shiftdim(x,4);

Note that z is now the transpose of x

--> squeeze(x)

ans =

254 0
17 6

245 7

--> squeeze(z)
ans =

254 17 245
o 6 7

14.33 SORT Sort

14.33.1 Usage

Sorts an n-dimensional array along the specified dimensional. The first form sorts the array along
the first non-singular dimension.

B = sort(4)

Alternately, the dimension along which to sort can be explicitly specified
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B = sort(A,dim)

FreeMat does not support vector arguments for dim - if you need A to be sorted along multiple
dimensions (i.e., row first, then columns), make multiple calls to sort. Also, the direction of the
sort can be specified using the mode argument

B = sort(A,dim,mode)

wheremode = ’ascend’ means to sort the data in ascending order (the default), and mode = ’descend’
means to sort the data into descending order.
When two outputs are requested from sort, the indexes are also returned. Thus, for

[B,IX] = sort(A)
[B,IX] = sort(A,dim)
[B,IX] = sort(A,dim,mode)

an array IX of the same size as A, where IX records the indices of A (along the sorting dimension)
corresponding to the output array B.

Two additional issues worth noting. First, a cell array can be sorted if each cell contains a
string, in which case the strings are sorted by lexical order. The second issue is that FreeMat uses
the same method as MATLAB to sort complex numbers. In particular, a complex number a is less
than another complex number b if abs(a) < abs(b). If the magnitudes are the same then we test
the angle of a, i.e. angle(a) < angle(b), where angle(a) is the phase of a between -pi,pi.

14.33.2 Example

Here are some examples of sorting on numerical arrays.

--> A = int32(10%*rand(4,3))

A =
837
538
651
735

--> [B,IX] = sort(A)
B =

0 ~N o O,
O w ww
0 N 0~

IX
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=W
W >N
N =D

--> [B,IX] = sort(A,2)
B =

W=, W w
oo o0 N
~N O 00

IX

N W NN
W N - W
=R W

--> [B,IX] = sort(A,1,’descend’)
B =

oo N 0

W wwom
= O N 0

IX

N Wb =
SN - W
W =N

Here we sort a cell array of strings.

--> a = {’hello’,’abba’,’goodbye’,’jockey’,’cake’}
a =

[’hello’] [’abba’] [’goodbye’] [’ jockey’] [’cake’]
--> b = sort(a)

b =
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[’abba’] [’cake’] [’goodbye’] [’hello’] [’ jockey’]

14.34 SQUEEZE Remove Singleton Dimensions of an Array

14.34.1 Usage

This function removes the singleton dimensions of an array. The syntax for its use is

y = squeeze(x)

where x is a multidimensional array. Generally speaking, if x is of size d1 x 1 x d2 x ..., then
squeeze(x) is of size d1 x d2 x ..., i.e., each dimension of x that was singular (size 1) is squeezed
out.

14.34.2 Example

Here is a many dimensioned, ungainly array, both before and after squeezing;

--> x = zeros(1,4,3,1,1,2);
--> size(x)

ans =
143112

--> y = squeeze(x);
--> size(y)

ans =

4 32

14.35 TRANSPOSE Matrix Transpose

14.35.1 Usage

Performs a (nonconjugate) transpose of a matrix. The syntax for its use is
y = transpose(x)

and is a synonym for y = x.’.
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14.35.2 Example

Here is an example of the transpose of a complex matrix. Note that the entries are not conjugated.

-=> A = [1+i,2+1i;3-2%1,4+2%i]

A =
1.0000 + 1.0000i 2.0000 + 1.0000i
3.0000 - 2.0000i 4.0000 + 2.0000i
--> transpose(A)
ans =
1.0000 + 1.0000i 3.0000 - 2.00001i
2.0000 + 1.00001 4.0000 + 2.00001

14.36 UNIQUE Unique
14.36.1 Usage

Returns a vector containing the unique elements of an array. The first form is simply
y = unique(x)

where x is either a numerical array or a cell-array of strings. The result is sorted in increasing order.
You can also retrieve two sets of index vectors

[y, m, n] = unique(x)

such that y = x(m) and x = y(n). If the argument x is a matrix, you can also indicate that FreeMat
should look for unique rows in the matrix via

y = unique(x,’rows’)
and

[y, m, n] = unique(x,’rows’)

14.36.2 Example

Here is an example in row mode

--> A = randi(1,3*ones(15,3))

A =
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N MO MOMNHOANANATAMOANMNMM—A M
MO A N AN AN NOOAN—A MMM
AN AN AN ANANANAATONAAONOMAN

--> unique (A, ’rows’)

ans

HANMOM A ANMOANNOANM—MmH
S AN AN A A ANANMOM—H M
A A A NN AN ANANANANMOMmM

= unique(A,’rows’);

--> [b,m,n]
-->b

ans

— N M oM -
— N AN M -
— — = — N
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340

ANOANOOANM—A M-
= N ANMOM A M
AN AN ANANANNOOMM

-=> A(m,:)

:

HANMOMHO A ANMOANONM—MmA
— N ANMN A A A NANO”DM—H M
A AN AN AN ANANANANMO MM

--> b(n,:)

ans

N MO OMNHOANAN—ATOMOANMM
M = N A N AN~ NN
AN AN AN ANANNAAONONAAM
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N W
w w
w -

Here is an example in vector mode

--> A = randi(1,5%ones(10,1))

A=

N W > Wowo oo,

-=> unique(4)

ans =

g W N

-=> [b,m,n] = unique(A,’rows’);
-->b

g W N

-=> A(m)

ans =
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O W N

--> b(n)

ans =

N W& WOowo oo,

For cell arrays of strings.
--> A = {’hi’,’bye’,’good’,’tell’, ’hi’, ’bye’}
A =
[’hi’] [’bye’] [’good’] [’tell’] [’hi’] [’bye’]
-=> unique(4)
ans =
[’bye’]
[’good’]

[’hi’]
[’tell’]

14.37 XNRM2 BLAS Norm Calculation
14.37.1 Usage

Calculates the 2-norm of a vector. The syntax for its use is
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y = xnrm2(A)

where A is the n-dimensional array to analyze. This form uses the underlying BLAS implementation
to compute the 2-norm.

14.38 ZEROS Array of Zeros

14.38.1 Usage

Creates an array of zeros of the specified size. Two seperate syntaxes are possible. The first syntax
specifies the array dimensions as a sequence of scalar dimensions:

y = zeros(dl,d2,...,dn).

The resulting array has the given dimensions, and is filled with all zeros. The type of y is double,
a 64-bit floating point array. To get arrays of other types, use the typecast functions (e.g., uint8,
int8, etc.). An alternative syntax is to use the following notation:

y = zeros(d1,d2,...,dn,classname)
where classname is one of ’double’, ’single’, ’int8’, "uint8’, ’int16’, "uint16’, 'int32’, "uint32’, ’int64’,
‘uint64’, float’, ’logical’.

The second syntax specifies the array dimensions as a vector, where each element in the vector
specifies a dimension length:

y = zeros([d1,d2,...,dn]),

or

zeros([d1,d2,...,dn],classname).

y

This syntax is more convenient for calling zeros using a variable for the argument. In both cases,
specifying only one dimension results in a square matrix output.

14.38.2 Example

The following examples demonstrate generation of some zero arrays using the first form.

--> zeros(2,3,2)

ans =

(:,:,1)

000
000

(:,:,2)
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000
000
--> zeros(1,3)

ans =

000

The same expressions, using the second form.

--> zeros([2,6])
ans =
000000
000000
--> zeros([1,3])

ans =

000

ARRAY GENERATION AND MANIPULATIONS

Finally, an example of using the type casting function uint16 to generate an array of 16-bit unsigned

integers with zero values.

--> uint16(zeros(3))

ans =

o O O
O O O
O O O

Here we use the second syntax where the class of the output is specified explicitly

--> zeros(3,’int16’)
ans =

000
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o O
O O
o O
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Chapter 15

Random Number Generation

15.1 RAND Uniform Random Number Generator

15.1.1 Usage

Creates an array of pseudo-random numbers of the specified size. The numbers are uniformly
distributed on [0,1). Two seperate syntaxes are possible. The first syntax specifies the array
dimensions as a sequence of scalar dimensions:

y = rand(d1,d2,...,dn).

The resulting array has the given dimensions, and is filled with random numbers. The type of y is
double, a 64-bit floating point array. To get arrays of other types, use the typecast functions.

The second syntax specifies the array dimensions as a vector, where each element in the vector
specifies a dimension length:

y = rand([d1,d2,...,dn]).

This syntax is more convenient for calling rand using a variable for the argument.
Finally, rand supports two additional forms that allow you to manipulate the state of the random

number generator. The first retrieves the state

y = rand(’state’)
which is a 625 length integer vector. The second form sets the state

rand(’state’,y)
or alternately, you can reset the random number generator with

rand(’state’,0)

347
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15.1.2 Example

The following example demonstrates an example of using the first form of the rand function.

--> rand(2,2,2)

ans =
(:,:,1) =
0.3478 0.5313
0.0276 0.9958
(:,:,2) =

0.2079 0.7597
0.4921 0.3365

The second example demonstrates the second form of the rand function.

--> rand([2,2,2])

ans =
(:,:,1) =
0.8670 0.2174
0.2714 0.6897
(:,:,2) =

0.2305 0.3898
0.1721 0.9545

The third example computes the mean and variance of a large number of uniform random numbers.
Recall that the mean should be 1/2, and the variance should be 1/12 ~ 0.083.

--> x = rand(1,10000);
--> mean(x)

ans =

0.5023
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--> var (x)
ans =

8.3981e-02

Now, we use the state manipulation functions of rand to exactly reproduce a random sequence. Note
that unlike using seed, we can exactly control where the random number generator starts by saving
the state.

--> rand(’state’,0) % restores us to startup conditions
--> a = rand(1,3) % random sequence 1
a=

0.3759 0.0183 0.9134
--> b = rand(’state’); % capture the state vector
--> ¢ = rand(1,3) % random sequence 2
c:

0.3580 0.7604 0.8077
--> rand(’state’,b); % restart the random generator so...
--> ¢ = rand(1,3) % we get random sequence 2 again
C=

0.3580 0.7604 0.8077

15.2 RANDBETA Beta Deviate Random Number Genera-
tor

15.2.1 Usage

Creates an array of beta random deviates based on the supplied two parameters. The general syntax
for randbeta is

y = randbeta(alpha, beta)

where alpha and beta are the two parameters of the random deviate. There are three forms for
calling randbeta. The first uses two vectors alpha and beta of the same size, in which case the
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output y is the same size as both inputs, and each deviate uses the corresponding values of alpha
and beta from the arguments. In the other forms, either alpha or beta are scalars.

15.2.2 Function Internals
The probability density function (PDF) of a beta random variable is
f(z)=2'a—1)* (1 —xz)b—1)/B(a,b)
for x between 0 and 1. The function B(a,b) is defined so that the integral of f (x) is 1.

15.2.3 Example
Here is a plot of the PDF of a beta random variable with a=3, b=7.
-——>a=3;b=7;

--> x = (0:100)/100; t = x."(a-1) .*(1-x)."(b-1);
-—> t = t/(sum(t)*.01);
-=> plot(x,t);

which is plotted as

If we generate a few random deviates with these values, we see they are distributed around the
peak of roughly 0.25.

--> randbeta(3*ones(1,5),7*ones(1,5))
ans =

0.2777 0.0642 0.3305 0.5259 0.4003

15.3 RANDBIN Generate Binomial Random Variables

15.3.1 Usage

Generates random variables with a binomial distribution. The general syntax for its use is
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y = randbin(N,p)

where N is a vector representing the number of Bernoulli trials, and p is the success probability
associated with each trial.

15.3.2 Function Internals

A Binomial random variable describes the number of successful outcomes from N Bernoulli trials,
with the probability of success in each trial being p. The probability distribution is

N!
P(n) = " (1=p

nl(N —n) A

15.3.3 Example

Here we generate 10 binomial random variables, corresponding to N=100 trials, each with probability
p=0.1, using both randbin and then again using rand (to simulate the trials):

--> randbin (100, . 1*ones(1,10))
ans =

13 6 8 911 9 6 9 7 10
--> sum(rand(100,10)<0.1)

ans =

8§12 10 712 411 8 9 6

15.4 RANDCHI Generate Chi-Square Random Variable

15.4.1 Usage

Generates a vector of chi-square random variables with the given number of degrees of freedom. The
general syntax for its use is

y = randchi(n)

where n is an array containing the degrees of freedom for each generated random variable.

15.4.2 Function Internals

A chi-square random variable is essentially distributed as the squared Euclidean norm of a vector of
standard Gaussian random variables. The number of degrees of freedom is generally the number of



352 CHAPTER 15. RANDOM NUMBER GENERATION
elements in the vector. In general, the PDF of a chi-square random variable is
r/2—1_,—x/2
T e
fz) =

- I(r/2)27/?

15.4.3 Example

First, a plot of the PDF for a family of chi-square random variables

--> f = zeros(7,100);

--> x (1:100)/10;

-=> for n=1:7;t=x."(n/2-1) .*xexp(-x/2) ;f(n, :)=10*%t/sum(t) ;end
-—> plot(x,f’);

The PDF is below:

Here is an example of using randchi and randn to compute some chi-square random variables
with four degrees of freedom.

--> randchi (4*ones(1,6))
ans =
8.9675 4.0015 3.2578 5.5461 2.5090 5.7587
--> sum(randn(4,6)."2)
ans =

1.1941 10.6441 3.6228 8.4425 2.5031 1.9058
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15.5 RANDEXP Generate Exponential Random Variable

15.5.1 Usage

Generates a vector of exponential random variables with the specified parameter. The general syntax
for its use is

y = randexp(lambda)

where lambda is a vector containing the parameters for the generated random variables.

15.5.2 Function Internals

The exponential random variable is usually associated with the waiting time between events in a
Poisson random process. The PDF of an exponential random variable is:

f(x) =Xe

15.5.3 Example

Here is an example of using the randexp function to generate some exponentially distributed random
variables

--> randexp(ones(1,6))
ans =

0.0608 0.0019 1.1266 0.2012 0.5079 3.4205

15.6 RANDF Generate F-Distributed Random Variable
15.6.1 Usage

Generates random variables with an F-distribution. The general syntax for its use is
y = randf(n,m)

where n and m are vectors of the number of degrees of freedom in the numerator and denominator
of the chi-square random variables whose ratio defines the statistic.

15.6.2 Function Internals

The statistic F_{n,m} is defined as the ratio of two chi-square random variables:

Xa/n
X2,/ m

Fn,’m =
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The PDF is given by

B mm/Znn/an/Qfl
Jnm = (m + nx)(+m)/2B(n/2,m/2)’

where B(a,b) is the beta function.

15.6.3 Example

Here we use randf to generate some F-distributed random variables, and then again using the
randchi function:

--> randf (5%ones(1,9),7)
ans =
1.1944 0.9069 0.7558 1.5029 0.0621 1.3860 1.8161 0.3755 3.579¢
--> randchi(5*%ones(1,9))./randchi(7*ones(1,9))
ans =

1.3085 1.2693 1.0684 0.4377 1.1158 0.7171 0.4151 1.8022 1.460¢

15.7 RANDGAMMA Generate Gamma-Distributed Random
Variable

15.7.1 Usage

Generates random variables with a gamma distribution. The general syntax for its use is
y = randgamma(a,r),

where a and r are vectors describing the parameters of the gamma distribution. Roughly speaking,
if a is the mean time between changes of a Poisson random process, and we wait for the r change,
the resulting wait time is Gamma distributed with parameters a and r.

15.7.2 Function Internals

The Gamma distribution arises in Poisson random processes. It represents the waiting time to
the occurance of the r-th event in a process with mean time a between events. The probability
distribution of a Gamma random variable is

arxr—le—am

PO =10

Note also that for integer values of r that a Gamma random variable is effectively the sum of r
exponential random variables with parameter a.
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15.7.3 Example

Here we use the randgamma function to generate Gamma-distributed random variables, and then
generate them again using the randexp function.

--> randgamma(1,15%ones(1,9))
ans =
22.7804 11.5514 16.8537 12.7457 16.2303 10.7442 19.3942 16.3612 17.4772
--> sum(randexp (ones(15,9)))
ans =

14.6404 15.1860 13.3147 11.4380 7.2307 10.8225 14.5271 12.4631 11.8753

15.8 RANDI Uniformly Distributed Integer

15.8.1 Usage

Generates an array of uniformly distributed integers between the two supplied limits. The general
syntax for randi is

y = randi(low,high)

where low and high are arrays of integers. Scalars can be used for one of the arguments. The output
y is a uniformly distributed pseudo-random number between low and high (inclusive).

15.8.2 Example

Here is an example of a set of random integers between zero and 5:

--> randi(zeros(1,6),5*%ones(1,6))

104150
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15.9 R ANDMULTI Generate Multinomial-distributed Ran-
dom Variables

15.9.1 Usage

This function generates samples from a multinomial distribution given the probability of each out-
come. The general syntax for its use is

y = randmulti(N,pvec)
where N is the number of experiments to perform, and pvec is the vector of probabilities describing
the distribution of outcomes.
15.9.2 Function Internals

A multinomial distribution describes the number of times each of m possible outcomes occurs out of
N trials, where each outcome has a probability p_i. More generally, suppose that the probability of
a Bernoulli random variable X_i is p_i, and that

Then the probability that X_i occurs x_i times is

N
_ x T
PN(I'lazQa"'v'rn)* | |p11”'pn .
L1 Tp:

15.9.3 Example

Suppose an experiment has three possible outcomes, say heads, tails and edge, with probabilities
0.4999, 0.4999 and 0.0002, respectively. Then if we perform ten thousand coin flips we get

--> randmulti (10000, [0.4999,0.4999,0.0002])
ans =

5026 4973 1

15.10 RANDN Gaussian (Normal) Random Number Gener-
ator

15.10.1 Usage

Creates an array of pseudo-random numbers of the specified size. The numbers are normally dis-
tributed with zero mean and a unit standard deviation (i.e., mu = 0, sigma = 1). Two seperate
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syntaxes are possible. The first syntax specifies the array dimensions as a sequence of scalar dimen-
sions:

y = randn(d1,d2,...,dn).

The resulting array has the given dimensions, and is filled with random numbers. The type of y is
double, a 64-bit floating point array. To get arrays of other types, use the typecast functions.

The second syntax specifies the array dimensions as a vector, where each element in the vector
specifies a dimension length:

y = randn([d1,d2,...,dn]).

This syntax is more convenient for calling randn using a variable for the argument.
Finally, randn supports two additional forms that allow you to manipulate the state of the
random number generator. The first retrieves the state

y = randn(’state’)

which is a 625 length integer vector. The second form sets the state
randn(’state’,y)

or alternately, you can reset the random number generator with

randn(’state’,0)

15.10.2 Function Internals
Recall that the probability density function (PDF) of a normal random variable is

1 —(e—pw)?
f(gj) = e 202
V2mo?
The Gaussian random numbers are generated from pairs of uniform random numbers using a trans-
formation technique.

15.10.3 Example

The following example demonstrates an example of using the first form of the randn function.

--> randn(2,2,2)

(:,:,1) =

-1.7375 -0.5664
-0.2634 -1.0112
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-0.4020 0.0557
-1.8966 0.2098

The second example demonstrates the second form of the randn function.

--> randn([2,2,2])

-0.7183 1.9415
0.1010  -1.1747

0.3048 3.1685
-1.4185 -0.6130

In the next example, we create a large array of 10000 normally distributed pseudo-random numbers.
We then shift the mean to 10, and the variance to 5. We then numerically calculate the mean and
variance using mean and var, respectively.

--> x = 10+sqrt(5)*randn(1,10000);
--> mean(x)

ans =

10.0135
-=> var (x)
ans =

4.9458

Now, we use the state manipulation functions of randn to exactly reproduce a random sequence.
Note that unlike using seed, we can exactly control where the random number generator starts by
saving the state.

--> randn(’state’,0) % restores us to startup conditions
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--> a = randn(1,3) % random sequence 1

-0.0362 -0.1404 0.6934

--> b = randn(’state’); J capture the state vector
randn(1,3) % random sequence 2

|

|
\4
[e]

]

0.5998 0.7086 -0.9394
--> randn(’state’,b); % restart the random generator so...
--> ¢ = randn(1,3) % we get random sequence 2 again
c =

0.5998 0.7086 -0.9394

15.11 RANDNBIN Generate Negative Binomial Random Vari-
ables

15.11.1 Usage
Generates random variables with a negative binomial distribution. The general syntax for its use is
y = randnbin(r,p)

where r is a vector of integers representing the number of successes, and p is the probability of
success.

15.11.2 Function Internals

A negative binomial random variable describes the number of failures x that occur in x+r bernoulli
trials, with a success on the x+r trial. The pdf is given by

rz+r—1

Pl = (") - wn

15.11.3 Example

Here we generate some negative binomial random variables:
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--> randnbin(3*ones(1,4),.01)
ans =
150 274 304 159

--> randnbin(6*ones(1,4),.01)

657 626 357 663

15.12 RANDNCHI Generate Noncentral Chi-Square Ran-
dom Variable

15.12.1 Usage

Generates a vector of non-central chi-square random variables with the given number of degrees of
freedom and the given non-centrality parameters. The general syntax for its use is

y = randnchi(n,mu)

where n is an array containing the degrees of freedom for each generated random variable (with each
element of n ;= 1), and mu is the non-centrality shift (must be positive).

15.12.2 Function Internals

A non-central chi-square random variable is the sum of a chisquare deviate with n-1 degrees of
freedom plus the square of a normal deviate with mean mu and standard deviation 1.

15.12.3 Examples

Here is an example of a non-central chi-square random variable:
--> randnchi (5*%ones(1,9),0.3)
ans =

0.1157 0.0020 0.0029 0.0764 0.0035 0.0669 0.4731 0.0469

0.066:
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15.13 R ANDNF Generate Noncentral F-Distribution Ran-
dom Variable

15.13.1 Usage

Generates a vector of non-central F-distributed random variables with the specified parameters. The
general syntax for its use is

y = randnf(n,m,c)

where n is the number of degrees of freedom in the numerator, and m is the number of degrees of
freedom in the denominator. The vector ¢ determines the non-centrality shift of the numerator.

15.13.2 Function Internals

A non-central F-distributed random variable is the ratio of a non-central chi-square random variable
and a central chi-square random variable, i.e.,

Xa.o/n

F = .
n,m,c X%n/m

15.13.3 Example

Here we use the randf to generate some non-central F-distributed random variables:
--> randnf (5%ones(1,9),7,1.34)
ans =

2.0107 0.1890 0.7468 2.3759 8.2553 1.8047 0.2222 2.2680

15.14 RANDP Generate Poisson Random Variable

15.14.1 Usage

Generates a vector Poisson random variables with the given parameters. The general syntax for its
use is

y = randp(nu),

where nu is an array containing the rate parameters for the generated random variables.

1.9690
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15.14.2 Function Internals

A Poisson random variable is generally defined by taking the limit of a binomial distribution as the
sample size becomes large, with the expected number of successes being fixed (so that the probability
of success decreases as 1/N). The Poisson distribution is given by

Vnefnu

Py(n) = n!

15.14.3 Example

Here is an exmaple of using randp to generate some Poisson random variables, and also using
randbin to do the same using N=1000 trials to approximate the Poisson result.

--> randp(33*ones(1,10))

ans =

31 33 34 44 32 29 34 30 32 32

--> randbin(1000*ones (1,10),33/1000*ones(1,10))
ans =

32 36 36 39 33 34 41 33 42 32

15.15 SEED Seed the Random Number Generator

15.15.1 Usage

Seeds the random number generator using the given integer seeds. Changing the seed allows you to
choose which pseudo-random sequence is generated. The seed takes two uint32 values:

seed(s,t)

where s and t are the seed values. Note that due to limitations in ranlib, the values of s,t must
be between 0 <= s,t <= 2°30.

15.15.2 Example

Here’s an example of how the seed value can be used to reproduce a specific random number sequence.

--> seed(32,41);
--> rand(1,5)

ans =
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0.8589 0.3727 0.5551 0.9557 0.7367

--> seed(32,41);
--> rand(1,5)

ans =

0.8589 0.3727 0.5551 0.9557 0.7367
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Chapter 16

Input /Ouput Functions

16.1 CSVREAD Read Comma Separated Value (CSV) File
16.1.1 Usage

The csvread function reads a text file containing comma separated values (CSV), and returns
the resulting numeric matrix (2D). The function supports multiple syntaxes. The first syntax for
csvread is

x = csvread(’filename’)

which attempts to read the entire CSV file into array x. The file can contain only numeric values.
Each entry in the file should be separated from other entries by a comma. However, FreeMat will
attempt to make sense of the entries if the comma is missing (e.g., a space separated file will also
parse correctly). For complex values, you must be careful with the spaces). The second form of
csvread allows you to specify the first row and column (zero-based index)

x = csvread(’filename’,firstrow,firstcol)
The last form allows you to specify the range to read also. This form is
x = csvread(’filename’ ,firstrow,firstcol,readrange)

where readrange is either a 4-vector of the form [R1,C1,R2,C2], where R1,C1 is the first row and
column to use, and R2,C2 is the last row and column to use. You can also specify the readrange
as a spreadsheet range B12..C34, in which case the index for the range is 1-based (as in a typical
spreadsheet), so that A1 is the first cell in the upper left corner. Note also that csvread is somewhat
limited.

16.1.2 Example
Here is an example of a CSV file that we wish to read in

sample_data.csv
10, 12, 13, 00, 45, 16

365
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09, 11, 52, 93,
01, 03, 04, 04,
14, 17, 13, 67,
21, 33, 14, 44,

We start by reading the entire file

--> csvread(’sample_data.csv’)

ans =

10 12 13 0 45
9 11 52 93 5
1 3 4 490

14 17 13 67 30

21 33 14 44 1

05,
90,
30,
01,

16
6
-3
43
0

06
-3
43
00
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Next, we read everything starting with the second row, and third column

--> csvread(’sample_data.csv’,1,2)

ans =

52 93 5 6
4 4 90 -3
13 67 30 43
14 44 1 O

Finally, we specify that we only want the 3 x 3 submatrix starting with the second row, and third

column

--> csvread(’sample_data.csv’,1,2,[1,2,3,4])

ans =

52 93 b
4 4 90
13 67 30
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16.2 CSVWRITE Write Comma Separated Value (CSV) File

16.2.1 Usage

The csvwrite function writes a given matrix to a text file using comma separated value (CSV)
notation. Note that you can create CSV files with arbitrary sized matrices, but that csvread has
limits on line length. If you need to reliably read and write large matrices, use rawwrite and
rawread respectively. The syntax for csvwrite is

csvurite(’filename’ ,x)

where x is a numeric array. The contents of x are written to filename as comma-separated values.
You can also specify a row and column offset to csvwrite to force csvwrite to write the matrix x
starting at the specified location in the file. This syntax of the function is

csvwrite(’filename’,x,startrow,startcol)

where startrow and startcol are the offsets in zero-based indexing.

16.2.2 Example
Here we create a simple matrix, and write it to a CSV file

-—> x = [1,2,3;5,6,7]
123

567

--> csvwrite(’csvwrite.csv’,x)
--> csvread(’csvwrite.csv’)

ans =

[e2 I
DN
~N W

Next, we do the same with an offset.

--> csvwrite(’csvwrite.csv’,x,1,2)
--> csvread(’csvwrite.csv’)

ans =

o O
= O
N O
w O
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0567

Note the extra zeros.

16.3 DISP Display a Variable or Expression

16.3.1 Usage

Displays the result of a set of expressions. The disp function takes a variable number of arguments,
each of which is an expression to output:

disp(exprl,expr2,...,exprn)

This is functionally equivalent to evaluating each of the expressions without a semicolon after each.

16.3.2 Example

Here are some simple examples of using disp.
--> a = 32;

--> b = 1:4;

--> disp(a,b,pi)

32
1234

3.1416

16.4 DLMREAD Read ASCII-delimited File

16.4.1 Usage

Loads a matrix from an ASCII-formatted text file with a delimiter between the entries. This function
is similar to the load -ascii command, except that it can handle complex data, and it allows you
to specify the delimiter. Also, you can read only a subset of the data from the file. The general
syntax for the dlmread function is

y = dlmread(filename)
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where filename is a string containing the name of the file to read. In this form, FreeMat will guess
at the type of the delimiter in the file. The guess is made by examining the input for common
delimiter characters, which are ,;: or a whitespace (e.g., tab). The text in the file is preprocessed
to replace these characters with whitespace and the file is then read in using a whitespace for the
delimiter.

If you know the delimiter in the file, you can specify it using this form of the function:

y = dlmread(filename, delimiter)

where delimiter is a string containing the delimiter. If delimiter is the empty string, then the
delimiter is guessed from the file.
You can also read only a portion of the file by specifying a start row and start column:

y = dlmread(filename, delimiter, startrow, startcol)

where startrow and startcol are zero-based. You can also specify the data to read using a range
argument:

y = dlmread(filename, delimiter, range)

where range is either a vector [startrow,startcol,stoprow,stopcol] or is specified in spread-
sheet notation as B4..ZA5.

Note that complex numbers can be present in the file if they are encoded without whitespaces
inside the number, and use either i or j as the indicator. Note also that when the delimiter is
given, each incidence of the delimiter counts as a separator. Multiple separators generate zeros in
the matrix.

16.5 FCLOSE File Close Function

16.5.1 Usage

Closes a file handle, or all open file handles. The general syntax for its use is either
fclose(handle)

or
fclose(’all’)

In the first case a specific file is closed, In the second, all open files are closed. Note that until a file

is closed the file buffers are not flushed. Returns a ’0’ if the close was successful and a ’-1’ if the
close failed for some reason.

16.5.2 Example

A simple example of a file being opened with fopen and then closed with fclose.
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--> fp = fopen(’test.dat’,’wb’,’ieee-le’)
fp =
8
--> fclose(fp)

ans =

16.6 FEOF End Of File Function

16.6.1 Usage
Check to see if we are at the end of the file. The usage is

b = feof (handle)

The handle argument must be a valid and active file handle. The return is true (logical 1) if the
current position is at the end of the file, and false (logical 0) otherwise. Note that simply reading to
the end of a file will not cause feof to return true. You must read past the end of the file (which
will cause an error anyway). See the example for more details.

16.6.2 Example

Here, we read to the end of the file to demonstrate how feof works. At first pass, we force a read
of the contents of the file by specifying inf for the dimension of the array to read. We then test the
end of file, and somewhat counter-intuitively, the answer is false. We then attempt to read past
the end of the file, which causes an error. An feof test now returns the expected value of true.

--> fp = fopen(’test.dat’,’rb’);
--> x = fread(fp, [612,inf], ’float’);
--> feof (fp)

ans =

--> x = fread(fp,[1,1],’float’);
Error: Insufficient data remaining in file to fill out requested size
-=> feof (fp)

ans =
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16.7 FFLUSH Force File Flush

16.7.1 Usage
Flushes any pending output to a given file. The general use of this function is
fflush(handle)

where handle is an active file handle (as returned by fopen).

16.8 FGETLINE Read a String from a File
16.8.1 Usage

Reads a string from a file. The general syntax for its use is
s = fgetline(handle)

This function reads characters from the file handle into a string array s until it encounters the
end of the file or a newline. The newline, if any, is retained in the output string. If the file is at its
end, (i.e., that feof would return true on this handle), fgetline returns an empty string.

16.8.2 Example
First we write a couple of strings to a test file.

--> fp = fopen(’testtext’,’w’);
--> fprintf(fp,’String 1\n’);
--> fprintf(fp,’String 2\n’);
--> fclose(fp);

Next, we read then back.
--> fp = fopen(’testtext’,’r’)
fp =
12
--> fgetline(fp)

ans =
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String 1

--> fgetline(fp)
ans =

String 2

--> fclose(fp);

16.9 FOPEN File Open Function

16.9.1 Usage

Opens a file and returns a handle which can be used for subsequent file manipulations. The general
syntax for its use is

fp = fopen(fname,mode,byteorder)

Here fname is a string containing the name of the file to be opened. mode is the mode string for the
file open command. The first character of the mode string is one of the following:

e ’r’ Open file for reading. The file pointer is placed at the beginning of the file. The file can
be read from, but not written to.

e ’r+’ Open for reading and writing. The file pointer is placed at the beginning of the file. The
file can be read from and written to, but must exist at the outset.

e ’w’ Open file for writing. If the file already exists, it is truncated to zero length. Otherwise,
a new file is created. The file pointer is placed at the beginning of the file.

e ’w+’ Open for reading and writing. The file is created if it does not exist, otherwise it is
truncated to zero length. The file pointer placed at the beginning of the file.

e ’a’ Open for appending (writing at end of file). The file is created if it does not exist. The
file pointer is placed at the end of the file.

e ’a+’ Open for reading and appending (writing at end of file). The file is created if it does not
exist. The file pointer is placed at the end of the file.

On some platforms (e.g. Win32) it is necessary to add a ’'b’ for binary files to avoid the operating
system’s "CR/LFj-;CR’ translation.

Finally, FreeMat has the ability to read and write files of any byte-sex (endian). The third
(optional) input indicates the byte-endianness of the file. If it is omitted, the native endian-ness of
the machine running FreeMat is used. Otherwise, the third argument should be one of the following
strings:
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e ’le’,’ieee-le’,’little-endian’,’littleEndian’,’little’
e ’be’,’ieee-be’,’big-endian’,’bigEndian’,’big’

If the file cannot be opened, or the file mode is illegal, then an error occurs. Otherwise, a file
handle is returned (which is an integer). This file handle can then be used with fread, fwrite, or
fclose for file access.

Note that three handles are assigned at initialization time:

e Handle O - is assigned to standard input
e Handle 1 - is assigned to standard output
e Handle 2 - is assigned to standard error

These handles cannot be closed, so that user created file handles start at 3.

16.9.2 Examples

Here are some examples of how to use fopen. First, we create a new file, which we want to be
little-endian, regardless of the type of the machine. We also use the fwrite function to write some
floating point data to the file.

--> fp = fopen(’test.dat’,’wb’,’ieee-le’)

--> furite(fp,float([1.2,4.3,2.1]))

--> fclose(fp)

Next, we open the file and read the data back

--> fp = fopen(’test.dat’,’rb’,’ieee-le’)

fp =
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--> fread(fp, [1,3],’float’)
ans =
1.2000 4.3000 2.1000
--> fclose(fp)
ans =
0

CHAPTER 16. INPUT/OUPUT FUNCTIONS

Now, we re-open the file in append mode and add two additional floats to the file.

--> fp = fopen(’test.dat’,’a+’,’le’)

furite(fp,float([pi,el))

ans =

fclose(£fp)

Finally, we read all 5 float values from the file
--> fp = fopen(’test.dat’,’rb’,’ieece-1le’)
fp =

8

--> fread(fp, [1,5],’float’)



16.10. FORMAT CONTROL THE FORMAT OF MATRIX DISPLAY 375

ans =
1.2000 4.3000 2.1000 3.1416 2.7183
--> fclose(fp)

ans =

16.10 FORMAT Control the Format of Matrix Display

16.10.1 Usage

FreeMat supports several modes for displaying matrices (either through the disp function or simply
by entering expressions on the command line. There are several options for the format command.
The default mode is equivalent to

format short

which generally displays matrices with 4 decimals, and scales matrices if the entries have magnitudes
larger than roughly 1e2 or smaller than 1e-2. For more information you can use

format long

which displays roughly 7 decimals for float and complex arrays, and 14 decimals for double and
dcomplex. You can also use

format short e

to get exponential format with 4 decimals. Matrices are not scaled for exponential formats. Similarly,
you can use

format long e

which displays the same decimals as format long, but in exponential format. You can also use the
format command to retrieve the current format:

s = format

where s is a string describing the current format.

16.10.2 Example

We start with the short format, and two matrices, one of double precision, and the other of single
precision.
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--> format short
--> a = randn(4)

-0.3610 0.1437 -0.6212 -0.8556
-0.5851 -0.6293 -0.7944 0.7246
-0.7003 3.0445 -0.2511 -0.3654
-1.5856 0.4217 0.9614 0.5157

--> b = float(randn(4))

-0.6938 -1.7681 0.2468 0.9813
0.3994 1.1454  -0.9926 0.2513
-0.4021 -0.7800 0.3820 -1.3138
-0.1383 -1.4973 -0.3438 0.9952

Note that in the short format, these two matrices are displayed with the same format. In long
format, however, they display differently

--> format long
--> a

ans =

-0.36104109917203  0.14371748458334 -0.62119867856148 -0.85561084566703
-0.58514130479808 -0.62934886335610 -0.79443760799311 0.72456209775698
-0.70030658677887  3.04451182288483 -0.25112914812979 -0.36541385410128
-1.585568937953551  0.42165459944770 0.96139968715180 0.51566533614799

-->b
ans =

-0.6937948 -1.7681128 0.2468418  0.9813337
0.3994139  1.1454117 -0.9926057  0.2513486

-0.4021498 -0.7800179  0.3820494 -1.3138303
-0.1382517 -1.4973482 -0.3438159  0.9952367

Note also that we we scale the contents of the matrices, FreeMat rescales the entries with a scale
premultiplier.
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--> format short
-=> axle4d

ans =
1.0e+04 *
-0.3610 0.1437 -0.6212 -0.8556
-0.5851 -0.6293 -0.7944 0.7246
-0.7003 3.0445 -0.2511 -0.3654
-1.5856 0.4217 0.9614 0.5157

--> axle—-4

1.0e-04 *

-0.3610 0.1437 -0.6212 -0.8556
-0.5851 -0.6293 -0.7944 0.7246
-0.7003 3.0445 -0.2511 -0.3654
-1.5856 0.4217 0.9614 0.5157

--> bxle4d

ans =
1.0e+04 *
-0.6938 -1.7681 0.2468 0.9813
0.3994 1.1454  -0.9926 0.2513
-0.4021 -0.7800 0.3820 -1.3138
-0.1383 -1.4973 -0.3438 0.9952

-=> bx*xle—-4

1.0e-04 *

-0.6938 -1.7681 0.2468 0.9813
0.3994 1.1454  -0.9926 0.2513
-0.4021 -0.7800 0.3820 -1.3138
-0.1383 -1.4973 -0.3438 0.9952
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Next, we use the exponential formats:

--> format short e
-=> axle4d

ans =

-3.6104e+03 1.4372e+03 -6.2120e+03 -8.5561e+03
-5.8514e+03 -6.2935e+03 -7.9444e+03 7.2456e+03
-7.0031e+03 3.0445e+04 -2.5113e+03 -3.6541e+03
-1.5856e+04 4.2165e+03 9.6140e+03 5.1567e+03

--> axle-4

-3.6104e-05 1.4372e-05 -6.2120e-05 -8.5561e-05
-5.8514e-05 -6.2935e-05 -7.9444e-05 7.2456e-05
-7.0031e-05 3.0445e-04 -2.5113e-05 -3.6541e-05
-1.5856e-04 4.2165e-05 9.6140e-05 5.1567e-05

—-=> bx*le4d

-6.9379e+03 -1.7681e+04 2.4684e+03 9.8133e+03
3.9941e+03 1.1454e+04 -9.9261e+03 2.5135e+03
-4.0215e+03 -7.8002e+03 3.8205e+03 -1.3138e+04
-1.3825e+03 -1.4973e+04 -3.4382e+03 9.9524e+03

-=> bxle-4
ans =

-6.9379e-05 -1.7681e-04 2.4684e-05 9.8133e-05
3.9941e-05 1.1454e-04 -9.9261e-05 2.5135e-05
-4.0215e-05 -7.8002e-05 3.8205e-05 -1.3138e-04
-1.3825e-05 -1.4973e-04 -3.4382e-05 9.9524e-05

Finally, if we assign the format function to a variable, we can retrieve the current format:

--> format short
--> t = format
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short

16.11 FPRINTF Formated File Output Function (C-Style)

16.11.1 Usage
Prints values to a file. The general syntax for its use is
fprintf (fp,format,al,a2,...).

Here format is the format string, which is a string that controls the format of the output. The
values of the variables ai are substituted into the output as required. It is an error if there are not
enough variables to satisfy the format string. Note that this fprintf command is not vectorized!
Each variable must be a scalar. The value fp is the file handle. For more details on the format
string, see printf. Note also that fprintf to the file handle 1 is effectively equivalent to printf.

16.11.2 Examples

A number of examples are present in the Examples section of the printf command.

16.12 FREAD File Read Function
16.12.1 Usage

Reads a block of binary data from the given file handle into a variable of a given shape and precision.
The general use of the function is

A = fread(handle,size,precision)

The handle argument must be a valid value returned by the fopen function, and accessable for
reading. The size argument determines the number of values read from the file. The size argument
is simply a vector indicating the size of the array A. The size argument can also contain a single
inf dimension, indicating that FreeMat should calculate the size of the array along that dimension
so as to read as much data as possible from the file (see the examples listed below for more details).
The data is stored as columns in the file, not rows.

Alternately, you can specify two return values to the fread function, in which case the second
value contains the number of elements read

[A,count] = fread(...)

where count is the number of elements in A.
The third argument determines the type of the data. Legal values for this argument are listed
below:

e ’uint8’,’uchar’,’unsigned char’ for an unsigned, 8-bit integer.
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e ’int8’,’char’,’integer*1’ for a signed, 8-bit integer.

e ’uint16’,’unsigned short’ for an unsigned, 16-bit integer.
e ’int16’,’short’,’ integer*2’ for a signed, 16-bit integer.

e ’'uint32’,’unsigned int’ for an unsigned, 32-bit integer.

e ’int32’)int’integer*4’ for a signed, 32-bit integer.

e ’single’'float32’,'float’,’real*4’ for a 32-bit floating point.

e ’double’,float64’,’real*8’ for a 64-bit floating point.

INPUT/OUPUT FUNCTIONS

e ’complex’’complex*8’ for a 64-bit complex floating point (32 bits for the real and imaginary

part).

e ’dcomplex’,’complex*16’ for a 128-bit complex floating point (64 bits for the real and imaginary

part).

16.12.2 Example

First, we create an array of 512 x 512 Gaussian-distributed float random variables, and then

writing them to a file called test.dat.

--> A = float(randn(512));

--> fp = fopen(’test.dat’,’wb’);
--> furite(fp,A);

--> fclose(fp);

Read as many floats as possible into a row vector

--> fp = fopen(’test.dat’,’rb’);
--> x = fread(fp,[1,inf],’float’);
--> who x
Variable Name Type Flags Size
X float [1 262144]

Read the same floats into a 2-D float array.

--> fp = fopen(’test.dat’,’rb’);
--> x = fread(fp, [512,inf],’float’);
--> who x
Variable Name Type Flags Size
b4 float [612 512]
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16.13 FSCANF Formatted File Input Function (C-Style)

16.13.1 Usage

Reads values from a file. The general syntax for its use is
[al,...,an] = fscanf(handle,format)

Here format is the format string, which is a string that controls the format of the input. Each
value that is parsed from the file described by handle occupies one output slot. See printf for a
description of the format. Note that if the file is at the end-of-file, the fscanf will return

16.14 FSEEK Seek File To A Given Position

16.14.1 Usage

Moves the file pointer associated with the given file handle to the specified offset (in bytes). The
usage is

fseek(handle,offset,style)

The handle argument must be a value and active file handle. The offset parameter indicates the
desired seek offset (how much the file pointer is moved in bytes). The style parameter determines
how the offset is treated. Three values for the style parameter are understood:

e string ’bof’ or the value -1, which indicate the seek is relative to the beginning of the file.
This is equivalent to SEEK_SET in ANSI C.

e string ’cof’ or the value 0, which indicates the seek is relative to the current position of the
file. This is equivalent to SEEK_CUR in ANSI C.

e string ’eof’ or the value 1, which indicates the seek is relative to the end of the file. This is
equivalent to SEEK_END in ANSI C.

The offset can be positive or negative.

16.14.2 Example

The first example reads a file and then “rewinds” the file pointer by seeking to the beginning. The
next example seeks forward by 2048 bytes from the files current position, and then reads a line of
512 floats.

--> Y, First we create the file

--> fp = fopen(’test.dat’,’wb’);
--> furite(fp,float(rand(4096,1)));
--> fclose(fp);

--> Y, Now we open it

--> fp = fopen(’test.dat’,’rb’);
--> 7 Read the whole thing
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--> x = fread(fp,[1,inf],’float’);
-=> % Rewind to the beginning

--> fseek(fp,0,’bof’);

--> Y, Read part of the file

--> y = fread(fp,[1,1024],’float’);

--> who x ¥y
Variable Name Type Flags Size
X float [1 4096]
v float [1 1024]

-=> Y, Seek 2048 bytes into the file
--> fseek(fp,2048,’cof’);

--> % Read 512 floats from the file
--> x = fread(fp,[5612,1],’float’);
--> % Close the file

--> fclose(fp);

16.15 FTELL File Position Function

16.15.1 Usage

INPUT/OUPUT FUNCTIONS

Returns the current file position for a valid file handle. The general use of this function is

n = ftell(handle)

The handle argument must be a valid and active file handle. The return is the offset into the file

relative to the start of the file (in bytes).

16.15.2 Example

Here is an example of using ftell to determine the current file position. We read 512 4-byte floats,

which results in the file pointer being at position 512%4 = 2048.

--> fp = fopen(’test.dat’,’wb’);
--> furite(fp,randn(512,1));

--> fclose(fp);

--> fp = fopen(’test.dat’,’rb’);
--> x = fread(fp,[512,1],’float’);
--> ftell(fp)

2048
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16.16 FWRITE File Write Function
16.16.1 Usage

Writes an array to a given file handle as a block of binary (raw) data. The general use of the function
is

n = fwrite(handle,A)

The handle argument must be a valid value returned by the fopen function, and accessable for
writing. The array A is written to the file a column at a time. The form of the output data depends
on (and is inferred from) the precision of the array A. If the write fails (because we ran out of disk
space, etc.) then an error is returned. The output n indicates the number of elements successfully
written.

16.16.2 Example

Heres an example of writing an array of 512 x 512 Gaussian-distributed float random variables,
and then writing them to a file called test.dat.

--> A = float(randn(512));

--> fp = fopen(’test.dat’,’wb’);
--> fwrite(fp,A);

--> fclose(fp);

16.17 GETLINE Get a Line of Input from User

16.17.1 Usage

Reads a line (as a string) from the user. This function has two syntaxes. The first is
a = getline(prompt)

where prompt is a prompt supplied to the user for the query. The second syntax omits the prompt
argument:

a = getline

Note that this function requires command line input, i.e., it will only operate correctly for programs
or scripts written to run inside the FreeMat GUI environment or from the X11 terminal. If you build
a stand-alone application and expect it to operate cross-platform, do not use this function (unless
you include the FreeMat console in the final application).

16.18 GETPRINTLIMIT Get Limit For Printing Of Arrays

16.18.1 Usage

Returns the limit on how many elements of an array are printed using either the disp function or
using expressions on the command line without a semi-colon. The default is set to one thousand
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elements. You can increase or decrease this limit by calling setprintlimit. This function is
provided primarily so that you can temporarily change the output truncation and then restore it to
the previous value (see the examples).

n=getprintlimit

where n is the current limit in use.

16.18.2 Example

Here is an example of using getprintlimit along with setprintlimit to temporarily change the
output behavior of FreeMat.

--> A = randn(100,1);
-->n getprintlimit

1000

--> setprintlimit(5);
-—> A

ans

0.6082

0.6264

0.6468

-0.4669

0.8649
Print limit has been reached. Use setprintlimit function to enable longer printouts
--> setprintlimit(n)

16.19 HTMLREAD Read an HTML Document into FreeMat

16.19.1 Usage

Given a filename, reads an HTML document, (attempts to) parse it, and returns the result as a
FreeMat data structure. The syntax for its use is:

p = htmlread(filename)

where filename is a string. The resulting object p is a data structure containing the information
in the document. Note that this function works by internally converting the HTML document
into something closer to XHTML, and then using the XML parser to parse it. In some cases, the
converted HTML cannot be properly parsed. In such cases, a third party tool such as ”tidy” will
probably do a better job.
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16.20 IMREAD Read Image File To Matrix

16.20.1 Usage

Reads the image data from the given file into a matrix. Note that FreeMat’s support for imread
is not complete. Only some of the formats specified in the MATLAB API are implemented. The
syntax for its use is

[A,map,alpha] = imread(filename)

where filename is the name of the file to read from. The returned arrays A contain the image data,
map contains the colormap information (for indexed images), and alpha contains the alphamap
(transparency). The returned values will depend on the type of the original image. Generally you
can read images in the jpg,png,xpm,ppm and some other formats.

16.21 INPUT Get Input From User
16.21.1 Usage

The input function is used to obtain input from the user. There are two syntaxes for its use. The
first is

r = input(’prompt’)

in which case, the prompt is presented, and the user is allowed to enter an expression. The expression
is evaluated in the current workspace or context (so it can use any defined variables or functions),
and returned for assignment to the variable (r in this case). In the second form of the input function,
the syntax is

r = input(’prompt’,’s’)

in which case the text entered by the user is copied verbatim to the output.

16.22 LOAD Load Variables From A File
16.22.1 Usage

Loads a set of variables from a file in a machine independent format. The load function takes one
argument:

load filename,
or alternately,
load(’filename’)

This command is the companion to save. It loads the contents of the file generated by save back
into the current context. Global and persistent variables are also loaded and flagged appropriately.
By default, FreeMat assumes that files that end in a .mat or .MAT extension are MATLAB-formatted
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files. Also, FreeMat assumes that files that end in .txt or .TXT are ASCII files. For other filenames,
FreeMat first tries to open the file as a FreeMat binary format file (as created by the save function).
If the file fails to open as a FreeMat binary file, then FreeMat attempts to read it as an ASCII file.

You can force FreeMat to assume a particular format for the file by using alternate forms of the
load command. In particular,

load -ascii filename

will load the data in file filename as an ASCII file (space delimited numeric text) loaded into a
single variable in the current workspace with the name filename (without the extension).
For MATLAB-formatted data files, you can use

load -mat filename

which forces FreeMat to assume that filename is a MAT-file, regardless of the extension on the
filename.

You can also specify which variables to load from a file (not from an ASCII file - only single 2-D
variables can be successfully saved and retrieved from ASCII files) using the additional syntaxes of
the load command. In particular, you can specify a set of variables to load by name

load filename Var_1 Var_2 Var_3 ...

where Var_n is the name of a variable to load from the file. Alternately, you can use the regular
expression syntax

load filename -regexp expr_1 expr_2 expr_3 ...

where expr_n is a regular expression (roughly as expected by regexp). Note that a simpler regular
expression mechanism is used for this syntax than the full mechanism used by the regexp command.

Finally, you can use load to create a variable containing the contents of the file, instead of
automatically inserting the variables into the curent workspace. For this form of load you must use
the function syntax, and capture the output:

V = load(’argl’,’arg2’,...)

which returns a structure V with one field for each variable retrieved from the file. For ASCII files,
V is a double precision matrix.

16.22.2 Example

Here is a simple example of save/load. First, we save some variables to a file.

--> D = {1,5,’hello’};
-=> s = ’test string’;
--> x = randn(512,1);
--> z = zeros(512);
-=> who
Variable Name Type Flags Size
D cell [1 3]

s string [1 11]
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X double [612 1]
z double [612 512]
--> save loadsave.dat

Next, we clear the variables, and then load them back from the file.

-—=> clear D s x z

--> who
Variable Name Type Flags Size
ans double [0 0]
--> load loadsave.dat
--> who
Variable Name Type Flags Size
D cell [1 3]
ans double [0 0]
s string [1 11]
X double [612 1]
z double [5612 512]

16.23 PAUSE Pause Script Execution

16.23.1 Usage

The pause function can be used to pause execution of FreeMat scripts. There are several syntaxes
for its use. The first form is

pause

This form of the pause function pauses FreeMat until you press any key. The second form of the
pause function takes an argument

pause (p)

where p is the number of seconds to pause FreeMat for. The pause argument should be accurate to
a millisecond on all supported platforms. Alternately, you can control all pause statements using:

pause on
which enables pauses and
pause off

which disables all pause statements, both with and without arguments.
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16.24 PRINTF Formated Output Function (C-Style)

16.24.1 Usage

Prints values to the output. The general syntax for its use is
printf (format,al,a2,...)

Here format is the format string, which is a string that controls the format of the output. The
values of the variables a_i are substituted into the output as required. It is an error if there are
not enough variables to satisfy the format string. Note that this printf command is not vectorized!
Each variable must be a scalar.

16.24.2 Format of the format string

The format string is a character string, beginning and ending in its initial shift state, if any. The
format string is composed of zero or more directives: ordinary characters (not unchanged to the
output stream; and conversion specifications, each of which results in fetching zero or more subse-
quent arguments. Each conversion specification is introduced by the character conversion specifier.
In between there may be (in this order) zero or more flags, an optional minimum field width, and
an optional precision.

The arguments must correspond properly (after type promotion) with the conversion specifier,
and are used in the order given.

16.24.3 The flag characters

The character % is followed by zero or more of the following flags:

e \# The value should be converted to an “alternate form”. For o conversions, the first character
of the output string is made zero (by prefixing a 0 if it was not zero already). For x and X
conversions, a nonzero result has the string >0x’ (or >0X’ for X conversions) prepended to it.
Fora, A, e, E, f, F, g, and G conversions, the result will always contain a decimal point,
even if no digits follow it (normally, a decimal point appears in the results of those conversions
only if a digit follows). For g and G conversions, trailing zeros are not removed from the result
as they would otherwise be. For other conversions, the result is undefined.

e 0 The value should be zero padded. For d, i, o, u, x, X, a, A, e, E, £, F, g, and
G conversions, the converted value is padded on the left with zeros rather than blanks. If
the 0 and - flags both appear, the 0 flag is ignored. If a precision is given with a numeric
conversion (d, i, o, u, x, and X), the O flag is ignored. For other conversions, the behavior
is undefined.

e - The converted value is to be left adjusted on the field boundary. (The default is right
justification.) Except for n conversions, the converted value is padded on the right with
blanks, rather than on the left with blanks or zeros. A - overrides a 0 if both are given.

e ’ ’ (aspace) A blank should be left before a positive number (or empty string) produced by
a signed conversion.
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e + A sign (+ or -) always be placed before a number produced by a signed conversion. By
default a sign is used only for negative numbers. A + overrides a space if both are used.

16.24.4 The field width

An optional decimal digit string (with nonzero first digit) specifying a minimum field width. If
the converted value has fewer characters than the field width, it will be padded with spaces on the
left (or right, if the left-adjustment flag has been given). A negative field width is taken as a ’-’
flag followed by a positive field width. In no case does a non-existent or small field width cause
truncation of a field; if the result of a conversion is wider than the field width, the field is expanded
to contain the conversion result.

16.24.5 The precision

An optional precision, in the form of a period (’. ) followed by an optional decimal digit string. If
the precision is given as just ’.°, or the precision is negative, the precision is taken to be zero. This
gives the minimum number of digits to appear for d, i, o, u, x, and X conversions, the number
of digits to appear after the radix character for a, A, e, E, f, and F conversions, the maximum
number of significant digits for g and G conversions, or the maximum number of characters to be
printed from a string for s conversions.

16.24.6 The conversion specifier

A character that specifies the type of conversion to be applied. The conversion specifiers and their
meanings are:

e d,i The int argument is converted to signed decimal notation. The precision, if any, gives the
minimum number of digits that must appear; if the converted value requires fewer digits, it is
padded on the left with zeros. The default precision is 1. When 0 is printed with an explicit
precision 0, the output is empty.

e 0,u,x,X The unsigned int argument is converted to unsigned octal (o), unsigned decimal (u),
or unsigned hexadecimal (x and X) notation. The letters abcdef are used for x conversions;
the letters ABCDEF are used for X conversions. The precision, if any, gives the minimum number
of digits that must appear; if the converted value requires fewer digits, it is padded on the
left with zeros. The default precision is 1. When 0 is printed with an explicit precision 0, the
output is empty.

e ¢,E The double argument is rounded and converted in the style [-1d.ddde dd where there is
one digit before the decimal-point character and the number of digits after it is equal to the
precision; if the precision is missing, it is taken as 6; if the precision is zero, no decimal-point
character appears. An E conversion uses the letter E (rather than e) to introduce the exponent.
The exponent always contains at least two digits; if the value is zero, the exponent is 00.

e f ,F The double argument is rounded and converted to decimal notation in the style [-]1ddd.ddd,
where the number of digits after the decimal-point character is equal to the precision spec-
ification. If the precision is missing, it is taken as 6; if the precision is explicitly zero, no
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decimal-point character appears. If a decimal point appears, at least one digit appears before
it.

e g,G The double argument is converted in style £ or e (or F or E for G conversions). The precision
specifies the number of significant digits. If the precision is missing, 6 digits are given; if the
precision is zero, it is treated as 1. Style e is used if the exponent from its conversion is less
than -4 or greater than or equal to the precision. Trailing zeros are removed from the fractional
part of the result; a decimal point appears only if it is followed by at least one digit.

e c The int argument is converted to an unsigned char, and the resulting character is written.
e s The string argument is printed.

e /A °%’ is written. No argument is converted. The complete conversion specification is ’%%’.

16.24.7 Example

Here are some examples of the use of printf with various arguments. First we print out an integer
and double value.

-=> printf (’intvalue is %d, floatvalue is %f\n’,3,1.53);
intvalue is 3, floatvalue is 1.530000

Next, we print out a string value.

--> printf (’string value is %s\n’,’hello’);
string value is hello

Now, we print out an integer using 12 digits, zeros up front.

--> printf(’integer padded is %012d\n’,32);
integer padded is 000000000032

Print out a double precision value with a sign, a total of 18 characters (zero prepended if necessary),
a decimal point, and 12 digit precision.

--> printf(’float value is %+018.12f\n’,pi);
float value is +0003.141592653590

16.25 RAWREAD Read N-dimensional Array From File

16.25.1 Usage

The syntax for rawread is

function x = rawread(fname,size,precision,byteorder)
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where fname is the name of the file to read from, and size is an n-dimensional vector that stores
the size of the array in each dimension. The argument precision is the type of the data to read in:

e ’'uint8’,’uchar’,’unsigned char’ for unsigned, 8-bit integers
e ’int8’,’char’,’integer*1’ for signed, 8-bit integers

e ’uint16’,’unsigned short’ for unsigned, 16-bit integers

e ’int16’,’short’,’integer*2’ for signed, 16-bit integers

e ’uint32’,’unsigned int’ for unsigned, 32-bit integers

e ’int32’int’'integer*4’ for signed, 32-bit integers

e ’uint64’,’unsigned int’ for unsigned, 64-bit integers

e ’int64’,int’,’integer*8’ for signed, 64-bit integers

e ’single’,’float32’,'float’,’real*4’ for 32-bit floating point

e ’double’,float64’,’real*8’ for 64-bit floating point

e ’complex’’complex*8’ for 64-bit complex floating point (32 bits for the real and imaginary
part).

e ’dcomplex’,’complex*16’ for 128-bit complex floating point (64 bits for the real and imaginary
part).

As a special feature, one of the size elements can be ’inf’, in which case, the largest possible array
is read in. If byteorder is left unspecified, the file is assumed to be of the same byte-order as the
machine FreeMat is running on. If you wish to force a particular byte order, specify the byteorder
argument as

e ’le’,’ieee-le’,’little-endian’,’littleEndian’,’little’

® ’be’,’ieee-be’,’big-endian’,’bigkndian’,’big’

16.26 RAWWRITE Write N-dimensional Array From File
16.26.1 Usage

The syntax for rawwrite is
function rawwrite(fname,x,byteorder)

where fname is the name of the file to write to, and the (numeric) array x is writen to the file in its
native type (e.g. if x is of type int16, then it will be written to the file as 16-bit signed integers.
If byteorder is left unspecified, the file is assumed to be of the same byte-order as the machine
FreeMat is running on. If you wish to force a particular byte order, specify the byteorder argument
as

e ’le’,’ieee-le’,’little-endian’,’littleEndian’,’little’

® ’be’,’ieee-be’,’big-endian’,’bigkndian’,’big’
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16.27 SAVE Save Variables To A File
16.27.1 Usage

Saves a set of variables to a file in a machine independent format. There are two formats for the
function call. The first is the explicit form, in which a list of variables are provided to write to the
file:

save filename al a2 ...
In the second form,
save filename

all variables in the current context are written to the file. The format of the file is a simple binary
encoding (raw) of the data with enough information to restore the variables with the load command.
The endianness of the machine is encoded in the file, and the resulting file should be portable between
machines of similar types (in particular, machines that support IEEE floating point representation).

You can also specify both the filename as a string, in which case you also have to specify the
names of the variables to save. In particular

save(’filename’,’al’,’a2’)
will save variables al and a2 to the file.

Starting with version 2.0, FreeMat can also read and write MAT files (the file format used by
MATLAB) thanks to substantial work by Thomas Beutlich. Support for MAT files in version 2.1
has improved over previous versions. In particular, classes should be saved properly, as well as a
broader range of sparse matrices. Compression is supported for both reading and writing to MAT
files. MAT file support is still in the alpha stages, so please be cautious with using it to store critical
data. The file format is triggered by the extension. To save files with a MAT format, simply use a
filename with a ”.mat” ending.

The save function also supports ASCII output. This is a very limited form of the save command
- it can only save numeric arrays that are 2-dimensional. This form of the save command is triggered
using

save -ascii filename varl var 2

although where —ascii appears on the command line is arbitrary (provided it comes after the save
command, of course). Be default, the save command uses an 8-digit exponential format notation
to save the values to the file. You can specify that you want 16-digits using the

save —ascii -double filename varl var2

form of the command. Also, by default, save uses spaces as the delimiters between the entries in
the matrix. If you want tabs instead, you can use

save -ascii -tabs filename varl var2

(you can also use both the -tabs and -double flags simultaneously).
Finally, you can specify that save should only save variables that match a particular regular
expression. Any of the above forms can be combined with the -regexp flag:

save filename -regexp patternl pattern2

in which case variables that match any of the patterns will be saved.
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16.27.2 Example

Here is a simple example of save/load. First, we save some variables to a file.

--> D = {1,5,’hello’};

--> s = ’test string’;

--> x = randn(512,1);

--> z = zeros(512);

--> who

Variable Name Type

D cell
s string
X double
z double

--> save loadsave.dat

Flags

Size

[1 3]

[1 11]
[512 1]
[512 512]

Next, we clear the variables, and then load them back from the file.

-=> clear D s x z
--> who
Variable Name Type
ans double
--> load loadsave.dat
--> who

Variable Name Type
D cell

ans double

s string

double

z double

Flags

Flags

Size
[0 0]

Size

[1 3]

[0 0]

[1 11]
[612 1]
[612 512]
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16.28 SETPRINTLIMIT Set Limit For Printing Of Arrays

16.28.1 Usage

Changes the limit on how many elements of an array are printed using either the disp function or
using expressions on the command line without a semi-colon. The default is set to one thousand
elements. You can increase or decrease this limit by calling

setprintlimit(n)

where n is the new limit to use.

16.28.2 Example

Setting a smaller print limit avoids pages of output when you forget the semicolon on an expression.
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-=> A = randn(512);
--> setprintlimit (10)
-—> A

Columns 1 to 10

-1.9107 0.6750 -0.0673 0.9689 -0.6160 -1.2424 0.3498 -0.0847 -0.522¢
Print limit has been reached. Use setprintlimit function to enable longer printouts
--> setprintlimit(1000)

16.29 SPRINTF Formated String Output Function (C-Style)

16.29.1 Usage

Prints values to a string. The general syntax for its use is
y = sprintf (format,al,a2,...).

Here format is the format string, which is a string that controls the format of the output. The
values of the variables a_i are substituted into the output as required. It is an error if there are not
enough variables to satisfy the format string. Note that this sprintf command is not vectorized!
Each variable must be a scalar. The returned value y contains the string that would normally have
been printed. For more details on the format string, see printf.

16.29.2 Examples

Here is an example of a loop that generates a sequence of files based on a template name, and stores
them in a cell array.

-—> 1 ={}; for i = 1:5; s = sprintf(°file_ld.dat’,i); 1(i) = {s}; end;
-1

ans

[’file_1.dat’] [’file_2.dat’] [’file_3.dat’] [’file_4.dat’] [’file_5.dat’]

16.30 SSCANF Formated String Input Function (C-Style)
16.30.1 Usage

Reads values from a string. The general syntax for its use is
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[al,...,an] = sscanf(text,format)

Here format is the format string, which is a string that controls the format of the input. Each value
that is parsed from the text occupies one output slot. See printf for a description of the format.

16.31 STR2NUM Convert a String to a Number

16.31.1 Usage
Converts a string to a number. The general syntax for its use is
X = str2num(string)

Here string is the data string, which contains the data to be converted into a number. The output
is in double precision, and must be typecasted to the appropriate type based on what you need.

16.32 URLWRITE Retrieve a URL into a File

16.32.1 Usage

Given a URL and a timeout, attempts to retrieve the URL and write the contents to a file. The
syntax is

f = urlwrite(url,filename,timeout)

The timeout is in milliseconds. Note that the URL must be a complete spec (i.e., including the
name of the resource you wish to retrieve). So for example, you cannot use http://www.google. com
as a URL, but must instead use http://www.google.com/index.html.

16.33 WAVPLAY

16.33.1 Usage

Plays a linear PCM set of samples through the audio system. This function is only available if the
portaudio library was available when FreeMat was built. The syntax for the command is one of:

wavplay(y)
wavplay(y,sampling_rate)
wavplay(. . .,mode)

where y is a matrix of audio samples. If y has two columns, then the audio playback is in stereo.
The y input can be of types float, double, int32, intl16, int8, uint8. For float and double
types, the sample values in y must be between -1 and 1. The sampling_rate specifies the rate at
which the data is recorded. If not specified, the sampling_rate defaults to 11025Hz. Finally,
you can specify a playback mode of ’sync’ which is synchronous playback or a playback mode of
>async’ which is asynchronous playback. For ’sync’ playback, the wavplay function returns when
the playback is complete. For ’async’ playback, the function returns immediately (unless a former
playback is still issuing).
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16.34 WAVREAD Read a WAV Audio File

16.34.1 Usage

The wavread function (attempts) to read the contents of a linear PCM audio WAV file. This
function could definitely use improvements - it is based on a very simplistic notion of a WAV file.
The simplest form for its use is

y = wavread(filename)

where filename is the name of the WAV file to read. If no extension is provided, FreeMat will add
a ".wav’ extension. This loads the data from the WAV file into y, and returns it in double precision,
normalized format. If you want additional information on, for example, the WAV sampling rate or
bit depth, you can request it via

[y, SamplingRate, BitDepth] = wavread(filename)

where SamplingRate and BitDepth are the sampling rate (in Hz) and the bit depth of the original
data in the WAV file. If you only want to load part of the WAV file, you can use

[...] = wavread(filename, N)

where N indicates the number of samples to read from the file. Alternately, you can indicate a range
of samples to load via

[...] = wavread(filename, [N1 N2])

which returns only the indicated samples from each channel in the file. By default, the output
format is double precision. You can cntrol the format of the output by indicating

[...] = wavread(filename, format)

where format is either >double’ for double precision output, or *native’ for native precision output
(meaning whatever bitdepth that was present in the original file). Finally, you can use the ’size’
flag

y_siz = wavread(filename,’size’)

which returns a vector [samples channels] indicating the size of the data present in the WAV
file.

16.35 WAVRECORD
16.35.1 Usage

Records linear PCM sound from the audio system. This function is only available if the portaudio
library was available when FreeMat was built. The syntax for this command is one of:

y = wavrecord(samples,rate)
y = wavrecord(...,channels)
y = wavrecord(...,’datatype’)
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where samples is the number of samples to record, and rate is the sampling rate. If not spec-
ified, the rate defaults to 11025Hz. If you want to record in stero, specify channels = 2. Fi-
nally, you can specify the type of the recorded data (defaults to FM_DOUBLE). Valid choices are
float, double, int32, intl16, int8, uint8.

16.36 WAV WRITE Write a WAV Audio File

16.36.1 Usage

The wavwrite funtion writes an audio signal to a linear PCM WAV file. The simplest form for its
use is

wavwrite(y,filename)

which writes the data stored in y to a WAV file with the name filename. By default, the output
data is assumed to be sampled at a rate of 8 KHz, and is output using 16 bit integer format. Each
column of y is written as a separate channel. The data are clipped to the range [-1,1] prior to
writing them out. If you want the data to be written with a different sampling frequency, you can
use the following form of the wavwrite command:

wavwrite(y,SampleRate,filename)

where SampleRate is in Hz. Finally, you can specify the number of bits to use in the output form
of the file using the form

wavwrite(y,SampleRate,NBits,filename)

where NBits is the number of bits to use. Legal values include 8,16,24,32. For less than 32 bit
output format, the data is truncated to the range [-1,1], and an integer output format is used (type
1 PCM in WAV-speak). For 32 bit output format, the data is written in type 3 PCM as floating
point data.

16.37 XMLREAD Read an XML Document into FreeMat
16.37.1 Usage

Given a filename, reads an XML document, parses it, and returns the result as a FreeMat data
structure. The syntax for its use is:

p = xmlread(filename)

where filename is a string. The resulting object p is a data structure containing the information
in the document. Note that the returned object p is not the same object as the one returned by
MATLAB’s xmlread, although the information content is the same. The output is largely compatible
with the output of the parseXML example in the xmlread documentation of the MATLAB API.
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Chapter 17

String Functions

17.1 CELLSTR Convert character array to cell array of strings

17.1.1 Usage

The cellstr converts a character array matrix into a a cell array of individual strings. Each string
in the matrix is placed in a different cell, and extra spaces are removed. The syntax for the command
is

y = cellstr(x)

where x is an N x M array of characters as a string.

17.1.2 Example

Here is an example of how to use cellstr
-=> a = [’quick’;’brown’;’fox ’;’is ]
a =

quick

brown

fox

is
--> cellstr(a)
ans =

[’quick’]

[’brown’]

[’fox’]
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[’is’]

17.2 DEBLANK Remove trailing blanks from a string

17.2.1 Usage

The deblank function removes spaces at the end of a string when used with the syntax

y = deblank(x)

where x is a string, in which case, all of the extra spaces in x are stripped from the end of the string.

CHAPTER 17. STRING FUNCTIONS

Alternately, you can call deblank with a cell array of strings

y = deblank(c)

in which case each string in the cell array is deblanked.

17.2.2 Example

A simple example

--> deblank(’hello )
ans =

hello

and a more complex example with a cell array of strings

--> deblank({’hello ’,’there ’,’ is ’,’ sign
ans =

[’hello’] [’there’] [> is’] [’ sign’]

17.3 ISALPHA Test for Alpha Characters in a String

17.3.1 Usage

The isalpha functions returns a logical array that is 1 for characters in the argument string that
are letters, and is a logical 0 for characters in the argument that are not letters. The syntax for its

use is

P
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x = isalpha(s)

where s is a string. Note that this function is not locale sensitive, and returns a logical 1 for letters
in the classic ASCII sense (a through z, and A through Z).

17.3.2 Example

A simple example of isalpha:
--> isalpha(’numb3r5’)
ans =

1111010

17.4 ISDIGIT Test for Digit Characters in a String

17.4.1 Usage

The isdigit functions returns a logical array that is 1 for characters in the argument string that
are digits, and is a logical 0 for characters in the argument that are not digits. The syntax for its
use is

x = isdigit(s)

where s is a string.

17.4.2 Example

A simple example of isdigit:

--> isdigit(’numb3r5’)
ans =

0000101

17.5 ISSPACE Test for Space Characters in a String
17.5.1 Usage

The isspace functions returns a logical array that is 1 for characters in the argument string that
are spaces, and is a logical 0 for characters in the argument that are not spaces. The syntax for its
use is



402 CHAPTER 17. STRING FUNCTIONS

x = isspace(s)

where s is a string. A blank character is considered a space, newline, tab, carriage return, formfeed,
and vertical tab.

17.5.2 Example

A simple example of isspace:
--> isspace(’ hello there world ’)
ans =

11000001000001000001

17.6 LOWER Convert strings to lower case
17.6.1 Usage

The lower function converts a string to lower case with the syntax
y = lower(x)

where x is a string, in which case all of the upper case characters in x (defined as the range *A’-°Z?)
are converted to lower case. Alternately, you can call lower with a cell array of strings

y = lower(c)

in which case each string in the cell array is converted to lower case.

17.6.2 Example
A simple example:

--> lower (’this Is Strange CAPitalizaTion’)
ans =

this is strange capitalization

and a more complex example with a cell array of strings

-=> lower({’This’,’Is’,’Strange’,’CAPitalizaTion’})

ans =
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[’this’] [’is’] [’strange’] [’capitalization’]

17.7 REGEXP Regular Expression Matching Function
17.7.1 Usage

Matches regular expressions in the provided string. This function is complicated, and compatibility
with MATLABSs syntax is not perfect. The syntax for its use is

regexp(’str’, ’expr’)

which returns a row vector containing the starting index of each substring of str that matches
the regular expression described by expr. The second form of regexp returns six outputs in the
following order:

[start stop tokenExtents match tokens names] = regexp(’str’,’expr’)
where the meaning of each of the outputs is defined below.

e start is a row vector containing the starting index of each substring that matches the regular
expression.

e stop is a row vector containing the ending index of each substring that matches the regular
expression.

e tokenExtents is a cell array containing the starting and ending indices of each substring
that matches the tokens in the regular expression. A token is a captured part of the regular
expression. If the >once’ mode is used, then this output is a double array.

e match is a cell array containing the text for each substring that matches the regular expression.
In ’once’ mode, this is a string.

e tokens is a cell array of cell arrays of strings that correspond to the tokens in the regular
expression. In ’once’ mode, this is a cell array of strings.

e named is a structure array containing the named tokens captured in a regular expression. Each
named token is assigned a field in the resulting structure array, and each element of the array
corresponds to a different match.

If you want only some of the the outputs, you can use the following variant of regexp:
[0l 02 ...] = regexp(’str’,’expr’, ’pl’, ’p2’, ...)

where pl etc. are the names of the outputs (and the order we want the outputs in). As a final
variant, you can supply some mode flags to regexp

[0l 02 ...] = regexp(’str’,’expr’, pl, p2, ..., ’model’, ’mode2’)
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where acceptable mode flags are:
e ’once’ - only the first match is returned.
e ’matchcase’ - letter case must match (selected by default for regexp)
e ’ignorecase’ - letter case is ignored (selected by default for regexpi)
e >dotall’ - the ’.’ operator matches any character (default)
e ’dotexceptnewline’ - the ’.’ operator does not match the newline character

e ’stringanchors’ - the ~ and $ operators match at the beginning and end (respectively) of a
string.

e ’lineanchors’ - the ~ and $ operators match at the beginning and end (respectively) of a
line.

e ’literalspacing’ - the space characters and comment characters # are matched as literals,
just like any other ordinary character (default).

e ’freespacing’ - all spaces and comments are ignored in the regular expression. You must
use ’ 7 and ’#’ to match spaces and comment characters, respectively.

Note the following behavior differences between MATLABs regexp and FreeMats:

e If you have an old version of pcre installed, then named tokens must use the older <?P<name>
syntax, instead of the new <?<name> syntax.

e The pcre library is pickier about named tokens and their appearance in expressions. So, for
example, the regexp from the MATLAB manual ’ (?<first>\\w+)\\s+(?<last>\\w+) (?jlast;,
W),
s+ (?ifirsty,
w+)'— does not work correctly (as of this writing) because the same named tokens appear
multiple times. The workaround is to assign different names to each token, and then collapse
the results later.

17.7.2 Example
Some examples of using the regexp function

--> [start,stop,tokenExtents,match,tokens,named] = regexp(’quick down town zoo’,’(.)own’)
start =

7 12
stop =

10 15
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tokenExtents =

[[1 2] uint32] [[1 2] uint32]
match =

[’down’] [’town’]
tokens =

{01 1] cell } {[1 1] cell }

named =

17.8 REGEXPREP Regular Expression Replacement Func-
tion
17.8.1 Usage
Replaces regular expressions in the provided string. The syntax for its use is
outstring = regexprep(instring,pattern,replacement,modes)

Here instring is the string to be operated on. And pattern is a regular expression of the type
accepted by regexp. For each match, the contents of the matched string are replaced with the
replacement text. Tokens in the regular expression can be used in the replacement text using $N
where N is the number of the token to use. You can also specify the same mode flags that are used
by regexp.

17.9 STRCMP String Compare Function
17.9.1 USAGE

Compares two strings for equality. The general syntax for its use is
p = strcemp(x,y)

where x and y are two strings. Returns true if x and y are the same size, and are equal (as strings).
Otherwise, it returns false. In the second form, strcmp can be applied to a cell array of strings.
The syntax for this form is

p = strcmp(cellstra,cellstrb)

where cellstra and cellstrb are cell arrays of a strings to compare. Also, you can also supply a
character matrix as an argument to stremp, in which case it will be converted via cellstr (so that
trailing spaces are removed), before being compared.
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17.9.2 Example

The following piece of code compares two strings:

--> x1 = ’astring’;
--> x2 = ’bstring’;
--> x3 = ’astring’;

--> strcmp(x1,x2)

--> strecmp(x1,x3)

ans =

Here we use a cell array strings
--> x = {’astring’,’bstring’,43, ’astring’}
x =
[’astring’] [’bstring’] [43] [’astring’]
--> p = strcmp(x,’astring’)
p =

1001

Here we compare two cell arrays of strings
--> strcmp({’this’,’is’,’a’, ’pickle’},{’what’,’is’, to’, pickle’})
ans =

0101

Finally, the case where one of the arguments is a matrix string
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-=> strcmp({’this’,’is’,’a’,’pickle’}, [’peter ’;’piper ’;’hated ’;’pickle’])
ans =

0001

17.10 STRCMPI String Compare Case Insensitive Function
17.10.1 Usage

Compares two strings for equality ignoring case. The general syntax for its use is
p = strecmpi(x,y)

where x and y are two strings, or cell arrays of strings. See strcmp for more help.

17.11 STRFIND Find Substring in a String

17.11.1 Usage

Searches through a string for a pattern, and returns the starting positions of the pattern in an array.
There are two forms for the strfind function. The first is for single strings

ndx = strfind(string, pattern)

the resulting array ndx contains the starting indices in string for the pattern pattern. The second
form takes a cell array of strings

ndx = strfind(cells, pattern)

and applies the search operation to each string in the cell array.

17.11.2 Example
Here we apply strfind to a simple string

--> a = ’how now brown cow?’
a =

how now brown cow?

--> b = strfind(a, ’ow’)

b =
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2 611 16

Here we search over multiple strings contained in a cell array.

--> a = {’how now brown cow’,’quick brown fox’,’coffee anyone?’}
a =

[’how now brown cow’] [’quick brown fox’] [’coffee anyone?’]
--> b = strfind(a,’ow’)
b =

[[1 4] int32] [9] d

17.12 STRNCMP String Compare Function To Length N
17.12.1 USAGE

Compares two strings for equality, but only looks at the first N characters from each string. The
general syntax for its use is

p = strncmp(x,y,n)

where x and y are two strings. Returns true if x and y are each at least n characters long, and if the
first n characters from each string are the same. Otherwise, it returns false. In the second form,
strancmp can be applied to a cell array of strings. The syntax for this form is

p = strncmp(cellstra,cellstrb,n)

where cellstra and cellstrb are cell arrays of a strings to compare. Also, you can also supply a
character matrix as an argument to strcmp, in which case it will be converted via cellstr (so that
trailing spaces are removed), before being compared.

17.12.2 Example

The following piece of code compares two strings:

--> x1 = ’astring’;
--> x2 = ’bstring’;
--> x3 = ’astring’;

--> strncmp(x1,x2,4)



17.13. STRREP STRING REPLACE FUNCTION

ans =
0
--> strncmp(x1,x3,4)

ans =

Here we use a cell array strings

--> x = {’ast’,’bst’,43,’astr’}

[’ast’] [’bst’] [43] [’astr’]
--> p = strncmp(x,’ast’,3)
p =

1001

Here we compare two cell arrays of strings

--> strncmp({’this’,’is’,’a’,’pickle’},{’think’,’is’,’to’, ’pickle’},3)
ans =

1001

Finally, the case where one of the arguments is a matrix string

-=> strncmp({’this’,’is’,’a’,’pickle’}, [’peter ’;’piper ’;’hated ’;’pickle’],4);

17.13 STRREP String Replace Function
17.13.1 Usage

Replace every occurance of one string with another. The general syntax for its use is

409
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p = strrep(source,find,replace)

Every instance of the string find in the string source is replaced with the string replace. Any of
source, find and replace can be a cell array of strings, in which case each entry has the replace
operation applied.

17.13.2 Example

Here are some examples of the use of strrep. First the case where are the arguments are simple
strings

--> strrep(’Matlab is great’,’Matlab’,’FreeMat’)
ans =

FreeMat is great

And here we have the replace operation for a number of strings:

-—> strrep({’time is money’;’A stitch in time’;’No time for games’},’time’, ’money’)
ans =

[’money is money’]
[’A stitch in money’]
[’No money for games’]

17.14 STRSTR String Search Function
17.14.1 Usage

Searches for the first occurance of one string inside another. The general syntax for its use is
p = strstr(x,y)

where x and y are two strings. The returned integer p indicates the index into the string x where
the substring y occurs. If no instance of y is found, then p is set to zero.

17.14.2 Example

Some examples of strstr in action

-—> strstr(’hello’,’lo’)
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ans =

4

--> strstr(’quick brown fox’,’own’)
ans =

9

--> strstr(’free stuff’,’lunch’)

ans =

17.15 STRTRIM Trim Spaces from a String
17.15.1 Usage

Removes the white-spaces at the beginning and end of a string (or a cell array of strings). See
isspace for a definition of a white-space. There are two forms for the strtrim function. The first
is for single strings

y = strtrim(strng)
where strng is a string. The second form operates on a cell array of strings
y = strtrim(cellstr)

and trims each string in the cell array.

17.15.2 Example

Here we apply strtrim to a simple string

-=> strtrim(’® lot of blank spaces )

and here we apply it to a cell array

-=> strtrim({’ space’,’enough ’,’ for ’,’’})
ans =

[’space’] [’ enough’] [’for’] d
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17.16 UPPER Convert strings to upper case
17.16.1 Usage

The upper function converts a string to upper case with the syntax
y = upper(x)

where x is a string, in which case all of the lower case characters in x (defined as the range ’a’-’z?)
are converted to upper case. Alternately, you can call upper with a cell array of strings

y = upper(c)

in which case each string in the cell array is converted to upper case.

17.16.2 Example
A simple example:

--> upper (*this Is Strange CAPitalizaTion’)
ans =

THIS IS STRANGE CAPITALIZATION

and a more complex example with a cell array of strings

--> upper({’This’,’Is’,’Strange’,’CAPitalizaTion’})
ans =

[’THIS’] [’IS’] [’STRANGE’] [’CAPITALIZATION’]
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Transforms/Decompositions

18.1 EIG Eigendecomposition of a Matrix

18.1.1 Usage

Computes the eigendecomposition of a square matrix. The eig function has several forms. The first
returns only the eigenvalues of the matrix:

s = eig(A)

The second form returns both the eigenvectors and eigenvalues as two matrices (the eigenvalues are
stored in a diagonal matrix):

[V,D] = eig(A)

where D is the diagonal matrix of eigenvalues, and V is the matrix of eigenvectors.

Eigenvalues and eigenvectors for asymmetric matrices A normally are computed with balancing
applied. Balancing is a scaling step that normaly improves the quality of the eigenvalues and
eigenvectors. In some instances (see the Function Internals section for more details) it is necessary
to disable balancing. For these cases, two additional forms of eig are available:

s = eig(A,’nobalance’),

which computes the eigenvalues of A only, and does not balance the matrix prior to computation.
Similarly,

[V,D] = eig(A, ’nobalance’)

recovers both the eigenvectors and eigenvalues of A without balancing. Note that the 'nobalance’
option has no affect on symmetric matrices.

FreeMat also provides the ability to calculate generalized eigenvalues and eigenvectors. Similarly
to the regular case, there are two forms for eig when computing generalized eigenvector (see the
Function Internals section for a description of what a generalized eigenvector is). The first returns
only the generalized eigenvalues of the matrix pair A,B

s = eig(A,B)

413
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The second form also computes the generalized eigenvectors, and is accessible via

[V,D] = eig(A,B)

18.1.2 Function Internals

Recall that v is an eigenvector of A with associated eigenvalue d if
Av = dv.

This decomposition can be written in matrix form as
AV =VD

where

V = [v1,09,...,0,], D = diag(dy, da, ..., dy).

The eig function uses the LAPACK class of functions GEEVX to compute the eigenvalue decomposition
for non-symmetric (or non-Hermitian) matrices A. For symmetric matrices, SSYEV and DSYEV are
used for float and double matrices (respectively). For Hermitian matrices, CHEEV and ZHEEV are
used for complex and dcomplex matrices.

For some matrices, the process of balancing (in which the rows and columns of the matrix are
pre-scaled to facilitate the search for eigenvalues) is detrimental to the quality of the final solution.
This is particularly true if the matrix contains some elements on the order of round off error. See
the Example section for an example.

A generalized eigenvector of the matrix pair A,B is simply a vector v with associated eigenvalue
d such that

Av = dBw,

where B is a square matrix of the same size as A. This decomposition can be written in matrix form
as

AV =BVD

where

V = [v1,09,...,0,], D = diag(dy,da, ..., d,).

For general matrices A and B, the GGEV class of routines are used to compute the generalized eigen-
decomposition. If howevever, A and B are both symmetric (or Hermitian, as appropriate), Then
FreeMat first attempts to use SSYGV and DSYGV for float and double arguments and CHEGV and
ZHEGV for complex and dcomplex arguments (respectively). These routines requires that B also be
positive definite, and if it fails to be, FreeMat will revert to the routines used for general arguments.

18.1.3 Example

Some examples of eigenvalue decompositions. First, for a diagonal matrix, the eigenvalues are the
diagonal elements of the matrix.
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--> A = diag([1.02f,3.04f,1.53f])

1.0200 0 0
0 3.0400 0
0 0 1.5300

ans

e

.0200
.5300
.0400

w =

Next, we compute the eigenvalues of an upper triangular matrix, where the eigenvalues are again
the diagonal elements.

--> A = [1.0£,3.0f,4.0f;0,2.0£,6.7£;0.0f,0.0f,1.0f]

A=
1.0000 3.0000 4.0000
0 2.0000 6.7000
0 0 1.0000
-=> eig(A)
ans =
1
2
1

Next, we compute the complete eigenvalue decomposition of a random matrix, and then demonstrate
the accuracy of the solution

--> A = float(randn(2))
A =

0.4619 -0.3720
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-0.1875 -0.7272
--> [V,D] = eig(A)
vV =
0.9888 0.2863
-0.1490 0.9582
D =
0.5179 0
0 -0.7832
-=> A%V - V%D
ans =
1.0e-08 x*
-5.9605 1.4901
-1.4901 0
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Now, we consider a matrix that requires the nobalance option to compute the eigenvalues and
eigenvectors properly. Here is an example from MATLAB’s manual.

--> B = [3,-2,-.9,2%eps;-2,4,1,-eps;-eps/4,eps/2,-1,0;-.5,

B =

3.0000
-2.0000
-0.0000
-0.5000

--> [VB,DB]

VB =
0.6153
-0.7881
-0.0000
0.0189
DB =

5.5616

-2.0000
4.0000
0.0000

-0.5000

= eig(B)

-0.4176
-0.3261
-0.0000

0.8481

.9000
.0000
.0000
.1000

.0000
.0000
.0000
.0000

-.5,.1,1]

.0000
.0000

.0000

.15630
.1346
.9790
.0097
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o O

--> BxVB -

0.0000
-0.0000
-0.0000
-0.0000

--> [VN,DN]
VN =

0.6153
-0.7881
-0.0000

0.0189

DN =

-—> B*xVN -

1.0e-16

8.8818
-8.8818
0.1718
-0.6939

1.4384
0
0

VB*DB

-0.0000
-0.0000
-0.0000

0.0000

-0.4176
-0.3261
-0.0000

0.8481

1.4384

VN*DN

-1.1102
2.7756
0.0154

1.0000

-0.0000
0.0000
-0.0000
0

eig(B, ’nobalance’)

0.0000
0.0000
-0.0000
-1.0000

1.0000

-1.8784
0.4454
0.0663

o O

.0000

.0000
.0000

.1082

.15628
.1345
.9781
.0443

.0000

.1102
.8327

.1102
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18.2 FFT (Inverse) Fast Fourier Transform Function

18.2.1 Usage

Computes the Discrete Fourier Transform (DFT) of a vector using the Fast Fourier Transform
technique. The general syntax for its use is

y = fft(x,n,d)

where x is an n-dimensional array of numerical type. Integer types are promoted to the double type
prior to calculation of the DFT. The argument n is the length of the FFT, and 4 is the dimension
along which to take the DFT. If —n— is larger than the length of x along dimension d, then x is
zero-padded (by appending zeros) prior to calculation of the DFT. If n is smaller than the length of
x along the given dimension, then x is truncated (by removing elements at the end) to length n.

If 4 is omitted, then the DFT is taken along the first non-singleton dimension of x. If n is omitted,
then the DFT length is chosen to match of the length of x along dimension d.

Note that FFT support on Linux builds requires availability of the FFTW libraries at compile
time. On Windows and Mac OS X, single and double precision FFTs are available by default.

18.2.2 Function Internals

The output is computed via

n _ 2m(k—1)1
y(ma,...,mg_1,l,mgg1,...,my) = E z(m,...,Ma—1,k, May1,...,mpe
k=1

For the inverse DFT, the calculation is similar, and the arguments have the same meanings as
the DFT:

2m(k—1)1
E z(mi,...,ma—1,k, Mag1,...,mple =
k=1

S|

y(ma,...,mq_1,l,mgg1,...,mp) =

The FFT is computed using the FFTPack library, available from netlib at http://www.netlib.org.
Generally speaking, the computational cost for a FFT is (in worst case) 0(n~2). However, if n is
composite, and can be factored as

P
n = H mg,
k=1
then the DFT can be computed in
P
O(n Z mg)
k=1

operations. If n is a power of 2, then the FFT can be calculated in 0(n log_2 n). The calculations
for the inverse FFT are identical.
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18.2.3 Example
The following piece of code plots the FFT for a sinusoidal signal:

--> t = linspace(0,2*pi,128);
-—> x = cos(15%t);

-—=> vy fft(x);

-=> plot(t,abs(y));

The resulting plot is:

The FFT can also be taken along different dimensions, and with padding and/or truncation.
The following example demonstrates the Fourier Transform being computed along each column, and
then along each row.

--> A = [2,5;3,6]

A =

w N
[e 3N ]

--> real (fft (4, [1,1))

:

5 11
-1 -1

--> real (fft (4, [1,2))

ans
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Fourier transforms can also be padded using the n argument. This pads the signal with zeros prior
to taking the Fourier transform. Zero padding in the time domain results in frequency interpolation.
The following example demonstrates the FFT of a pulse (consisting of 10 ones) with (red line) and
without (green circles) padding.

--> delta(1:10) = 1;

--> plot ((0:255)/256*pi*2,real (fft(delta,256)),’r-’);
--> hold on

-=> plot((0:9)/10*pix*2,real (fft(delta)),’go’);

The resulting plot is:

18.3 FFTN N-Dimensional Forward FFT

18.3.1 Usage

Computes the DFT of an N-dimensional numerical array along all dimensions. The general syntax
for its use is

y = fftn(x)

which computes the same-size FFTs for each dimension of x. Alternately, you can specify the size
vector

y = fftn(x,dims)

where dims is a vector of sizes. The array x is zero padded or truncated as necessary in each
dimension so that the output is of size dims. The fftn function is implemented by a sequence of
calls to fft.

18.4 FFTSHIFT Shift FFT Output

18.4.1 Usage

The fftshift function shifts the DC component (zero-frequency) of the output from an FFT to the
center of the array. For vectors this means swapping the two halves of the vector. For matrices, the
first and third quadrants are swapped. So on for N-dimensional arrays. The syntax for its use is
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y = fftshift(x).
Alternately, you can specify that only one dimension be shifted

y = fftshift(x,dim).

18.5 HILBERT Hilbert Transform

18.5.1 Usage

The hilbert function computes the hilbert transform of the argument vector or matrix. The
FreeMat hilbert function is compatible with the one from the MATLAB API. This means that
the output of the hilbert function is the sum of the original function and an imaginary signal
containing the Hilbert transform of it. There are two syntaxes for the hilbert function. The first is

y = hilbert (x)

where x is real vector or matrix. If x is a matrix, then he Hilbert transform is computed along the
columns of x.

18.6 IFFTN N-Dimensional Inverse FFT

18.6.1 Usage

Computes the inverse DFT of an N-dimensional numerical array along all dimensions. The general
syntax for its use is

y = ifftn(x)

which computes the same-size inverse FFTs for each dimension of x. Alternately, you can specify
the size vector

y = ifftn(x,dims)

where dims is a vector of sizes. The array x is zero padded or truncated as necessary in each
dimension so that the output is of size dims. The ifftn function is implemented by a sequence of
calls to ifft.

18.7 IFFTSHIFT Inverse Shift FFT Output
18.7.1 Usage

The ifftshift function shifts the DC component (zero-frequency) of the output from the center of
the array back to the first position and iseffectively the inverse of fftshift. For vectors this means
swapping the two halves of the vector. For matrices, the first and third quadrants are swapped. So
on for N-dimensional arrays. The syntax for its use is

y = ifftshift(x).
Alternately, you can specify that only one dimension be shifted

y = ifftshift(x,dim).
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18.8 INV Invert Matrix
18.8.1 Usage

Inverts the argument matrix, provided it is square and invertible. The syntax for its use is
y = inv(x)

Internally, the inv function uses the matrix divide operators. For sparse matrices, a sparse matrix
solver is used.

18.8.2 Example
Here we invert some simple matrices

--> a = randi(zeros(3),5%ones(3))

a:
114
101
041
--> b = inv(a)
b =
-0.3636 1.3636 0.0909
-0.0909 0.0909 0.2727
0.3636 -0.3636 -0.0909
-=> ax*b
ans =
1.0000 0.0000 0
0 1.0000 0.0000
0 0 1.0000
-=> b*a
ans =

1.0000 0.0000 0.0000
0 1.0000 -0.0000
0 0 1.0000
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18.9 LU LU Decomposition for Matrices
18.9.1 Usage

Computes the LU decomposition for a matrix. The form of the command depends on the type of
the argument. For full (non-sparse) matrices, the primary form for lu is

[L,U,P] = 1uh),

where L is lower triangular, U is upper triangular, and P is a permutation matrix such that LxU = Px*A.
The second form is

[V,U] = 1u(d),

where V is P’*L (a row-permuted lower triangular matrix), and U is upper triangular. For sparse,
square matrices, the LU decomposition has the following form:

(L,U,P,Q,R] = 1u(d),

where A is a sparse matrix of either double or dcomplex type. The matrices are such that L¥U=P*R*A*Q,
where L is a lower triangular matrix, U is upper triangular, P and Q are permutation vectors and R
is a diagonal matrix of row scaling factors. The decomposition is computed using UMFPACK for
sparse matrices, and LAPACK for dense matrices.

18.9.2 Example

First, we compute the LU decomposition of a dense matrix.

--> a = float([1,2,3;4,5,8;10,12,3])

—
o
—
N O N
w 00 W

-—> [1,u,p] = lu(a)

1 =
1.0000 0 0
0.1000 1.0000 0
0.4000 0.2500 1.0000

u=

10.0000 12.0000 3.0000
0 0.8000 2.7000
0 0 6.1250
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p:
001
100
010

-=> 1*u

ans =
10 12 3

1 2 3
4 5 8

—-=> p*a

ans =
10 12 3

1 2 3
4 5 8

Now we repeat the exercise with a sparse matrix, and demonstrate the use of the permutation
vectors.

--> a = sparse([1,0,0,4;3,2,0,0;0,0,0,1;4,3,2,4])

a =
Matrix is sparse with 9 nonzeros
--> [1,u,p,q,r] = lu(a)

1=

Matrix is sparse with 4 nonzeros
u =

Matrix is sparse with 9 nonzeros

Matrix is sparse with 4 nonzeros
-=> full(lx*a)
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ans =

1004
3200
0001
4324

-—> b = r*xa

b =

Matrix is sparse with 9 nonzeros
-=> full(b(p,q))

ans =

0.1538 0.2308 0.3077 0.3077

0 0.4000 0.6000 0
0 0 0.2000 0.8000
0 0 0 1.0000

18.10 QR QR Decomposition of a Matrix
18.10.1 Usage

Computes the QR factorization of a matrix. The qr function has multiple forms, with and without
pivoting. The non-pivot version has two forms, a compact version and a full-blown decomposition
version. The compact version of the decomposition of a matrix of size M x N is

[q,r] = qr(a,0)

where q is a matrix of size M x L and r is a matrix of size L x Nand L = min(N,M), and g*r = a.
The QR decomposition is such that the columns of Q are orthonormal, and R is upper triangular.
The decomposition is computed using the LAPACK routine xgeqrf, where x is the precision of the
matrix. Unlike MATLAB (and other MATLAB-compatibles), FreeMat supports decompositions of
all four floating point types, float, complex, double, dcomplex.

The second form of the non-pivot decomposition omits the second 0 argument:

[q,r] = qr(a)

This second form differs from the previous form only for matrices with more rows than columns
(M > N). For these matrices, the full decomposition is of a matrix Q of size M x M and a matrix R of
size M x N. The full decomposition is computed using the same LAPACK routines as the compact
decomposition, but on an augmented matrix [a 0], where enough columns are added to form a
square matrix.
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Generally, the QR decomposition will not return a matrix R with diagonal elements in any specific
order. The remaining two forms of the qr command utilize permutations of the columns of a so that
the diagonal elements of r are in decreasing magnitude. To trigger this form of the decomposition, a
third argument is required, which records the permutation applied to the argument a. The compact
version is

[q,r,e] = qr(a,0)

where e is an integer vector that describes the permutation of the columns of a necessary to reorder
the diagonal elements of r. This result is computed using the LAPACK routines (s,d)geqp3. In
the non-compact version of the QR decomposition with pivoting,

[q,r,e] = qr(a)

the returned matrix e is a permutation matrix, such that q*r*e’ = a.

18.11 SVD Singular Value Decomposition of a Matrix

18.11.1 Usage

Computes the singular value decomposition (SVD) of a matrix. The svd function has three forms.
The first returns only the singular values of the matrix:

s = svd(A)

The second form returns both the singular values in a diagonal matrix S, as well as the left and right
eigenvectors.

[U,S,V] = svd(A)

The third form returns a more compact decomposition, with the left and right singular vectors
corresponding to zero singular values being eliminated. The syntax is

[U,s,V] = svd(A,0)

18.11.2 Function Internals

Recall that sigma_i is a singular value of an M x N matrix A if there exists two vectors u_i, v_i
where u_i is of length M, and v_i is of length u_i and

AUL‘ = O;U;

and generally

K

/

A= E Oil; * U,
i=1

where K is the rank of A. In matrix form, the left singular vectors u_i are stored in the matrix U as
U=lu1,...,um],V="1[v1,...,0]

The matrix S is then of size M x N with the singular values along the diagonal. The SVD is computed
using the LAPACK class of functions GESDD.
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18.11.3 Examples

Here is an example of a partial and complete singular value decomposition.

--> A = float(randn(2,3))

A =
0.8958 0.6486 -1.7291
-0.4528 -0.4949 -1.3478
--> [U,S,V] = svd(A)
U =
-0.8714  -0.4906
-0.4906 0.8714
S =
2.2618 0 0
0 1.1678 0
V =
-0.2469 -0.7142 0.6550
-0.1425 -0.6418 -0.7535
0.9585 -0.2794 0.0567
-=> U*SxV’
ans =
0.8958 0.6486 -1.7291
-0.4528 -0.4949 -1.3478
--> svd(4)
ans =
2.2618

1.1678
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Chapter 19

Signal Processing Functions

19.1 CONYV Convolution Function

19.1.1 Usage

The conv function performs a one-dimensional convolution of two vector arguments. The syntax for
its use is

z = conv(x,y)

where x and y are vectors. The output is of length nx + ny -1. The conv function calls conv2 to
do the calculation. See its help for more details.

19.2 CONV2 Matrix Convolution
19.2.1 Usage

The conv2 function performs a two-dimensional convolution of matrix arguments. The syntax for
its use is

Z = conv2(X,Y)

which performs the full 2-D convolution of X and Y. If the input matrices are of size [xm,xn] and
[ym,yn] respectively, then the output is of size [xm+ym-1,xn+yn-1]. Another form is

Z = conv2(hcol,hrow,X)

where hcol and hrow are vectors. In this form, conv2 first convolves Y along the columns with hcol,
and then convolves Y along the rows with hrow. This is equivalent to conv2(hcol(:)*hrow(:)’,Y).
You can also provide an optional shape argument to conv2 via either

Z = conv2(X,Y, ’shape’)
Z = conv2(hcol,hrow,X, ’shape’)

where shape is one of the following strings

429
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e *full’ - compute the full convolution result - this is the default if no shape argument is

provided.
e ’same’ - returns the central part of the result that is the same size as X.

e ’valid’ - returns the portion of the convolution that is computed without the zero-padded
edges. In this situation, Z has size [xm-ym+1,xn-yn+1] when xm>=ym and xn>=yn. Otherwise
conv2 returns an empty matrix.

19.2.2 Function Internals

The convolution is computed explicitly using the definition:

Z(m,n) = ZZX(k,j)Y(m—k‘,n—j)
ko J

If the full output is requested, then m ranges over 0 <= m < xm+ym-1 and nrangesover 0 <= n < xn+yn-1.
For the case where shape is ’same’, the output ranges over (ym-1)/2 <= m < xm + (ym-1)/2 and
(yn-1)/2 <= n < xn + (yn-1)/2.
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Operating System Functions

20.1 CD Change Working Directory Function
20.1.1 Usage

Changes the current working directory to the one specified as the argument. The general syntax for
its use is

cd(’dirname’)

but this can also be expressed as
cd ’dirname’

or
cd dirname

Examples of all three usages are given below. Generally speaking, dirname is any string that would
be accepted by the underlying OS as a valid directory name. For example, on most systems, *.°’
refers to the current directory, and ’..° refers to the parent directory. Also, depending on the OS,
it may be necessary to “escape” the directory seperators. In particular, if directories are seperated
with the backwards-slash character >\\’, then the path specification must use double-slashes >\\\\".
Note: to get file-name completion to work at this time, you must use one of the first two forms of
the command.

20.1.2 Example

The pwd command returns the current directory location. First, we use the simplest form of the cd
command, in which the directory name argument is given unquoted.

--> pwd

ans =

431
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/home/basu/dev/trunk/FreeMat2/help/tmp

-=>cd ..
--> pwd

ans =

/home/basu/dev/trunk/FreeMat2/help

Next, we use the “traditional” form of the function call, using both the parenthesis and a variable
to store the quoted string.

--> a = pwd;
-=> cd(a)
--> pwd

ans =

/home/basu/dev/trunk/FreeMat2/help/tmp

20.2 COPYFILE Copy Files
20.2.1 Usage

Copies a file or files from one location to another. There are several syntaxes for this function that
are acceptable:

copyfile(file_in,file_out)
copies the file from file_in to file_out. Also, the second argument can be a directory name:
copyfile(file_in,directory_out)

in which case file_in is copied into the directory specified by directory_out. You can also use
copyfile to copy entire directories as in

copyfile(dir_in,dir_out)

in which case the directory contents are copied to the destination directory (which is created if
necessary). Finally, the first argument to copyfile can contain wildcards

copyfile(pattern,directory_out)

in which case all files that match the given pattern are copied to the output directory. Note that to
remain compatible with the MATLAB API, this function will delete/replace destination files that
already exist, unless they are marked as read-only. If you want to force the copy to succeed, you
can append a *f’ argument to the copyfile function:
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copyfile(argl,arg2,’f’)
or equivalently

copyfile argl arg2 f

20.3 DELETE Delete a File
20.3.1 Usage

Deletes a file. The general syntax for its use is
delete(’filename’)

or alternately
delete filename

which removes the file described by filename which must be relative to the current path.

20.4 DIR List Files Function

20.4.1 Usage

In some versions of FreeMat (pre 3.1), the dir function was aliased to the 1s function. Starting
with version 3.1, the dir function has been rewritten to provide compatibility with MATLAB. The
general syntax for its use is

dir
in which case, a listing of the files in the current directory are output to the console. Alternately,
you can specify a target via
dir(’name’)
or using the string syntax
dir name
If you want to capture the output of the dir command, you can assign the output to an array
result = dir(’name’)

(or you can omit ’name’ to get a directory listing of the current directory. The resulting array
result is a structure array containing the fields:

e name the filename as a string

e date the modification date and time stamp as a string

e bytes the size of the file in bytes as a uint64

e isdir a logical that is 1 if the file corresponds to a directory.

Note that ’name’ can also contain wildcards (e.g., dir *.m to get a listing of all FreeMat scripts in
the current directory.
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20.5 DIRSEP Director Seperator
20.5.1 Usage

Returns the directory seperator character for the current platform. The general syntax for its use is
y = dirsep

This function can be used to build up paths (or see fullfile for another way to do this.

20.6 FILEPARTS Extract Filename Parts

20.6.1 Usage

The fileparts takes a filename, and returns the path, filename, extension, and (for MATLAB-
compatibility) an empty version number of the file. The syntax for its use is

[path,name,extension,version] = fileparts(filename)

where filename is a string containing the description of the file, and path is the path to the file,

20.7 FULLFILE Build a Full Filename From Pieces

20.7.1 Usage

The fullfile routine constructs a full filename from a set of pieces, namely, directory names and
a filename. The syntax is:

x = fullfile(dirl,dir2,...,dirn,filename)

where each of the arguments are strings. The fullfile function is equivalent to [dirl dirsep dir2 dirsep

20.7.2 Example
--> fullfile(’path’,’to’,’my’,’file.m’)
ans =

path/to/my/file.m

20.8 GETPATH Get Current Search Path

20.8.1 Usage

Returns a string containing the current FreeMat search path. The general syntax for its use is
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y = getpath

The delimiter between the paths depends on the system being used. For Win32, the delimiter is a
semicolon. For all other systems, the delimiter is a colon.

20.8.2 Example
The getpath function is straightforward.

--> getpath
ans =
Columns 1 to 113

/home/basu/dev/trunk/FreeMat2/src/toolbox/array: /home/basu/dev/trunk/FreeMat2/src/toolbox: /home/basu/d
Columns 114 to 226

eeMat2/src/toolbox/binary: /home/basu/dev/trunk/FreeMat2/src/toolbox/fitting: /home/basu/dev/trunk/FreeM
Columns 227 to 339

1lbox/func:/home/basu/dev/trunk/FreeMat2/src/toolbox/general: /home/basu/dev/trunk/FreeMat2/src/toolbox/
Columns 340 to 452

basu/dev/trunk/FreeMat2/src/toolbox/graph: /home/basu/dev/trunk/FreeMat2/src/toolbox/help: /home/basu/de
Columns 453 to 565

eMat2/src/toolbox/io: /home/basu/dev/trunk/FreeMat2/src/toolbox/matrix: /home/basu/dev/trunk/FreeMat2/sr
Columns 566 to 678

pi:/home/basu/dev/trunk/FreeMat2/src/toolbox/numerical: /home/basu/dev/trunk/FreeMat2/src/toolbox/os:/h
Columns 679 to 791
v/trunk/FreeMat2/src/toolbox/poly:/home/basu/dev/trunk/FreeMat2/src/toolbox/signal: /home/basu/dev/trun
Columns 792 to 904

src/toolbox/sparse: /home/basu/dev/trunk/FreeMat2/src/toolbox/stat: /home/basu/dev/trunk/FreeMat2/src/to

Columns 905 to 1017
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g:/home/basu/dev/trunk/FreeMat2/src/toolbox/time: /home/basu/dev/trunk/FreeMat2/src/toolb
Print limit has been reached. Use setprintlimit function to enable longer printouts

20.9 LS List Files Function

20.9.1 Usage

Lists the files in a directory or directories. The general syntax for its use is
1s(’dirnamel’,’dirname2’, ..., ’dirnameN’)

but this can also be expressed as
1ls ’dirnamel’ ’dirname2’ ... ’dirnamelN’

or
1s dirnamel dirname2 ... dirnameN

For compatibility with some environments, the function dir can also be used instead of 1s. Gen-
erally speaking, dirname is any string that would be accepted by the underlying OS as a valid
directory name. For example, on most systems, ’.’ refers to the current directory, and ’ ..’ refers
to the parent directory. Also, depending on the OS, it may be necessary to “escape” the directory
seperators. In particular, if directories are seperated with the backwards-slash character >\\’, then
the path specification must use double-slashes >\\\\’. Two points worth mentioning about the 1s
function:

e To get file-name completion to work at this time, you must use one of the first two forms of
the command.

e If you want to capture the output of the 1s command, use the system function instead.

20.9.2 Example

First, we use the simplest form of the 1s command, in which the directory name argument is given
unquoted.

-=> 1s m*.m

Next, we use the “traditional” form of the function call, using both the parenthesis and the quoted
string.

-=> 1s(’m*.m’)

In the third version, we use only the quoted string argument without parenthesis.

--> 1s ’m*x.m’
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20.10 MKDIR Make Directory
20.10.1 Usage

Creates a directory. The general syntax for its use is
mkdir (’dirname’)

which creates the directory dirname if it does not exist. The argument dirname can be either a
relative path or an absolute path. For compatibility with MATLAB, the following syntax is also
allowed

mkdir(’parentdir’,’dirname’)

which attempts to create a directory dirname in the directory given by parentdir. However, this
simply calls mkdir([parentdir dirsep dirname]), and if this is not the required behavior, please
file an enhancement request to have it changed. Note that mkdir returns a logical 1 if the call
succeeded, and a logical 0 if not.

20.11 PWD Print Working Directory Function

20.11.1 Usage

Returns a string describing the current working directory. The general syntax for its use is

y = pwd

20.11.2 Example

The pwd function is fairly straightforward.
-=> pwd

ans =

/home/basu/dev/trunk/FreeMat2/help/tmp

20.12 RMDIR Remove Directory

20.12.1 Usage

Deletes a directory. The general syntax for its use is
rmdir (’dirname’)

which removes the directory dirname if it is empty. If you want to delete the directory and all
subdirectories and files in it, use the syntax

rmdir(’dirname’,’s’)
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20.13 SETPATH Set Current Search Path

20.13.1 Usage

Changes the current FreeMat search path. The general syntax for its use is
setpath(y)

where y is a string containing a delimited list of directories to be searched for M files and libraries.
The delimiter between the paths depends on the system being used. For Win32, the delimiter is a
semicolon. For all other systems, the delimiter is a colon.

@Example The setpath function is straightforward.

--> getpath

ans =

Columns 1 to 113

/home/basu/dev/trunk/FreeMat2/src/toolbox/array: /home/basu/dev/trunk/FreeMat2/src/toolbo:
Columns 114 to 226

eeMat2/src/toolbox/binary: /home/basu/dev/trunk/FreeMat2/src/toolbox/fitting: /home/basu/de
Columns 227 to 339

1lbox/func:/home/basu/dev/trunk/FreeMat2/src/toolbox/general: /home/basu/dev/trunk/FreeMat:
Columns 340 to 452
basu/dev/trunk/FreeMat2/src/toolbox/graph:/home/basu/dev/trunk/FreeMat2/src/toolbox/help:
Columns 453 to 565

eMat2/src/toolbox/io: /home/basu/dev/trunk/FreeMat2/src/toolbox/matrix:/home/basu/dev/tru
Columns 566 to 678
pi:/home/basu/dev/trunk/FreeMat2/src/toolbox/numerical:/home/basu/dev/trunk/FreeMat2/src,
Columns 679 to 791
v/trunk/FreeMat2/src/toolbox/poly:/home/basu/dev/trunk/FreeMat2/src/toolbox/signal: /home,

Columns 792 to 904
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src/toolbox/sparse: /home/basu/dev/trunk/FreeMat2/src/toolbox/stat: /home/basu/dev/trunk/FreeMat2/src/to
Columns 905 to 1017

g:/home/basu/dev/trunk/FreeMat2/src/toolbox/time: /home/basu/dev/trunk/FreeMat2/src/toolbox/trig:
Print limit has been reached. Use setprintlimit function to enable longer printouts

--> setpath(’/usr/local/FreeMat/MFiles:/localhome/basu/MFiles’)

--> getpath

ans =

/usr/local/FreeMat/MFiles:/localhome/basu/MFiles

20.14 SYSTEM Call an External Program

20.14.1 Usage

The system function allows you to call an external program from within FreeMat, and capture the
output. The syntax of the system function is

y = system(cmd)

where cmd is the command to execute. The return array y is of type cell-array, where each entry
in the array corresponds to a line from the output.

20.14.2 Example

Here is an example of calling the 1s function (the list files function under Un*x-like operating
system).

--> y = system(’ls m*x.m’)
‘y =

Empty array [0 1]
--> y{1}
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Chapter 21

Optimization and Curve Fitting

21.1 FITFUN Fit a Function
21.1.1 Usage

Fits n (non-linear) functions of m variables using least squares and the Levenberg-Marquardt algo-
rithm. The general syntax for its usage is

[xopt,yopt] = fitfun(fcn,xinit,y,weights,tol,params...)

Where fcn is the name of the function to be fit, xinit is the initial guess for the solution (required),
y is the right hand side, i.e., the vector y such that:

ropt = arg min ||diag(weights) * (f(x) —y)||3,

the output yopt is the function fcn evaluated at xopt. The vector weights must be the same size
as y, and contains the relative weight to assign to an error in each output value. Generally, the ith
weight should reflect your confidence in the ith measurement. The parameter tol is the tolerance
used for convergence. The function fcn must return a vector of the same size as y, and params are
passed to fcn after the argument x, i.e.,

y = fen(z, paraml, param?, ...).

Note that both x and y (and the output of the function) must all be real variables. Complex variables
are not handled yet.

21.2 GAUSFIT Gaussian Curve Fit
21.2.1 Usage

The gausfit routine has the following syntax

[mu,sigma,dc,gain,yhat] = gausfit(t,y,w,mug,sigmag,dcg,gaing).
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where the required inputs are
e t - the values of the independant variable (e.g., time samples)
e v - the values of the dependant variable (e.g., f(t))
The following inputs are all optional, and default values are available for each of them.
e w - the weights to use in the fitting (set to ones if omitted)
e mug - initial estimate of the mean
e sigmag - initial estimate of the sigma (standard deviation)
e dcg - initial estimate of the DC value
e gaing - initial estimate of the gain
The fit is of the form yhat=gain*exp((t-mu) . 2/ (2*sigma~2))+dc. The outputs are

e mu - the mean of the fit

sigma - the sigma of the fit

e dc - the dc term of the fit

gain - the gain of the gaussian fit
e yhat - the output samples (the Gaussian fits)

Because the fit is nonlinear, a good initial guess is critical to convergence of the solution. Thus, you
can supply initial guesses for each of the parameters using the mug, sigmag, dcg, gaing arguments.
Any arguments not supplied are estimated using a simple algorithm. In particular, the DC value is
estimated by taking the minimum value from the vector y. The gain is estimated from the range of
y. The mean and standard deviation are estimated using the first and second order moments of y.
This function uses fitfun.

21.2.2 Example

Suppose we want to fit a cycle of a cosine using a Gaussian shape.

--> t = linspace(-pi,pi);

-=> y = cos(t);

--> [mu,sigma,dc,gain,yhat] = gausfit(t,y);
--> plot(t,y,’rx’,t,yhat,’g-");

Which results in the following plot



21.3. INTERPLINI1 LINEAR 1-D INTERPOLATION 443

o

21.3 INTERPLINI1 Linear 1-D Interpolation

21.3.1 Usage

Given a set of monotonically increasing x coordinates and a corresponding set of y values, performs
simple linear interpolation to a new set of x coordinates. The general syntax for its usage is

yi = interplinl(xl,yl,xi)

where x1 and y1 are vectors of the same length, and the entries in x1 are monotoniccally increasing.
The output vector yi is the same size as the input vector xi. For each element of xi, the values
in y1 are linearly interpolated. For values in xi that are outside the range of x1 the default value
returned is nan. To change this behavior, you can specify the extrapolation flag:

yi = interplini(x1l,yl,xi,extrapflag)
Valid options for extrapflag are:
e ’nan’ - extrapolated values are tagged with nans
e ’zero’ - extrapolated values are set to zero
e ’endpoint’ - extrapolated values are set to the endpoint values
e ’extrap’ - linear extrapolation is performed

The x1 and xi vectors must be real, although complex types are allowed for y1.

21.3.2 Example

Here is an example of simple linear interpolation with the different extrapolation modes. We start
with a fairly coarse sampling of a cosine.

--> x = linspace(-pix*7/8,pi*7/8,15);
-—>y cos(x);
--> plot(x,y,’ro’);
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which is shown here

Next, we generate a finer sampling over a slightly broader range (in this case [-pi,pil). First,
we demonstrate the nan’ extrapolation method

--> xi = linspace(-4,4,100);

--> yi_nan = interplini(x,y,xi,’nan’);

--> yi_zero = interplinl(x,y,xi,’zero’);

--> yi_endpoint = interplinl(x,y,xi,’endpoint’);

--> yi_extrap = interplinl(x,y,xi,’extrap’);

--> plot(x,y,’ro’,xi,yi_nan,’g-x’,xi,yi_zero,’g-x’,xi,yi_endpoint,’g-x’,xi,yi_extrap,’g-x

which is shown here

21.4 POLY Convert Roots To Polynomial Coefficients

21.4.1 Usage

This function calculates the polynomial coefficients for given roots
p = poly(r)

when r is a vector, is a vector whose elements are the coefficients of the polynomial whose roots are
the elements of r. Alternately, you can provide a matrix

p = poly(d)
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when A is an N x N square matrix, is a row vector with N+1 elements which are the coefficients of
the characteristic polynomial, det (lambda*eye (size(A))-A4).
Contributed by Paulo Xavier Candeias under GPL.

21.4.2 Example

Here are some examples of the use of poly

--> A = [1,2,3;4,5,6;7,8,0]

--> p = poly(4)

1.0000 -6.0000 -72.0000 -27.0000

--> r = roots(p)

12.1229
-5.7345
-0.3884

21.5 POLYDER Polynomial Coefficient Differentiation

21.5.1 Usage

The polyder function returns the polynomial coefficients resulting from differentiation of polynomial
p- The syntax for its use is either

pder = polyder(p)
for the derivitave of polynomial p, or
convplp2der = polyder(pl,p2)
for the derivitave of polynomial conv(p1,p2), or still

[nder,dder] = polyder(n,d)
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for the derivative of polynomial n/d (nder is the numerator and dder is the denominator). In all
cases the polynomial coefficients are assumed to be in decreasing degree. Contributed by Paulo
Xavier Candeias under GPL

21.5.2 Example

Here are some examples of the use of polyder

--> polyder([2,3,4])
ans =

4 3

--> polyder([2,3,4],7)

28 21

--> [n,d] = polyder([2,3,4],5)

20 15

21.6 POLYFIT Fit Polynomial To Data

21.6.1 Usage
The polyfit routine has the following syntax
p = polyfit(x,y,n)

where x and y are vectors of the same size, and n is the degree of the approximating polynomial.
The resulting vector p forms the coefficients of the optimal polynomial (in descending degree) that
fit y with x.
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21.6.2 Function Internals

The polyfit routine finds the approximating polynomial
p(x) = pr1a™ +pax”™ "t - pu + Poga

such that
Z(p(l“z) — )
i
is minimized. It does so by forming the Vandermonde matrix and solving the resulting set of
equations using the backslash operator. Note that the Vandermonde matrix can become poorly
conditioned with large n quite rapidly.

21.6.3 Example

A classic example from Edwards and Penny, consider the problem of approximating a sinusoid with
a polynomial. We start with a vector of points evenly spaced on the unit interval, along with a
vector of the sine of these points.

--> x = linspace(0,1,20);
-=> y = sin(2*pi*x);
--> plot(x,y,’r-’)

The resulting plot is shown here

Next, we fit a third degree polynomial to the sine, and use polyval to plot it
--> p = polyfit(x,y,3)
p =

21.9170 -32.8756 11.1897 -0.1156

--> f = polyval(p,x);
--> plot(x,y,’r-’,x,f,’ko’);
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The resulting plot is shown here

Increasing the order improves the fit, as

--> p = polyfit(x,y,11)
p =
1.0e+02 *
Columns 1 to 10
0.1246 -0.6855 1.3006 -0.7109 -0.3828
Columns 11 to 12
0.0628 -0.0000

--> f = polyval(p,x);
--> plot(x,y,’r-’,x,f,’ko’);

The resulting plot is shown here

-0.1412

0.8510

-0.0056

-0.412¢
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21.7 POLYINT Polynomial Coefficient Integration

21.7.1 Usage

The polyint function returns the polynomial coefficients resulting from integration of polynomial p.
The syntax for its use is either

pint = polyint(p,k)
or, for a default k = 0,
pint = polyint(p);

where p is a vector of polynomial coefficients assumed to be in decreasing degree and k is the
integration constant. Contributed by Paulo Xavier Candeias under GPL

21.7.2 Example

Here is are some examples of the use of polyint.
--> polyint([2,3,4])
ans =

0.6667 1.5000 4.0000 0

And
--> polyint([2,3,4],5)
ans =

0.6667 1.5000 4.0000 5.0000

21.8 POLY VAL Evaluate Polynomial Fit at Selected Points

21.8.1 Usage
The polyval routine has the following syntax
y = polyval(p,x)

where p is a vector of polynomial coefficients, in decreasing degree (as generated by polyfit, for
example). If x is a matrix, the polynomial is evaluated in the matrix sense (in which case x must
be square).
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21.8.2 Function Internals

The polynomial is evaluated using a recursion method. If the polynomial is
p(z) = pra” +pax™ 4 4 ppt + ppga
then the calculation is performed as

p(x) = ((p1)x + p2)x + p3

21.8.3 Example

Here is a plot of x~3 generated using polyval
-=>p=1[100 0]

p =

1000

--> x = linspace(-1,1);

--> y = polyval(p,x);
--> plot(x,y,’r-’)

Here is the resulting plot

21.9 ROOTS Find Roots of Polynomial

21.9.1 Usage

The roots routine will return a column vector containing the roots of a polynomial. The general
syntax is

z = roots(p)

where p is a vector containing the coefficients of the polynomial ordered in descending powers.
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21.9.2 Function Internals

Given a vector
[p17p27 .. pn]

which describes a polynomial
e A R

we construct the companion matrix (which has a characteristic polynomial matching the polynomial
described by p), and then find the eigenvalues of it (which are the roots of its characteristic poly-
nomial), and which are also the roots of the polynomial of interest. This technique for finding the
roots is described in the help page for roots on the Mathworks website.

21.9.3 Example

Here is an example of finding the roots to the polynomial
z® — 627 — 722 — 27

--> roots([1 -6 -72 -27])

ans =

12.1229
-5.7345
-0.3884
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Chapter 22

MPI Functions

22.1 MPIRUN MPI Process Run
22.1.1 Usage

This function is a simple example of how to use FreeMat and MPI to execute functions remotely.
More documentation on how to use this function will be written later...

22.2 MPISERVER MPI Process Server

22.2.1 Usage

This function is a simple example of how to use FreeMat and MPI to execute functions remotely.
More documentation on how to use this function will be written later...
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Chapter 23

Handle-Based (Graphics

23.1 AXES Create Handle Axes

23.1.1 Usage
This function has three different syntaxes. The first takes no arguments,
h = axes

and creates a new set of axes that are parented to the current figure (see gcf). The newly created
axes are made the current axes (see gca) and are added to the end of the list of children for the
current figure. The second form takes a set of property names and values

h = axes(propertyname,value,propertyname,value,...)

Creates a new set of axes, and then sets the specified properties to the given value. This is a
shortcut for calling set (h,propertyname,value) for each pair. The third form takes a handle as
an argument

axes (handle)

and makes handle the current axes, placing it at the head of the list of children for the current
figure.

23.2 AXIS Setup Axis Behavior

23.2.1 Usage

Control the axis behavior. There are several versions of the axis command based on what you would
like the axis command to do. The first versions set scalings for the current plot. The general syntax
for its use is

axis([xmin xmax ymin ymax zmin zmax cmin cmax])

which sets the limits in the X, Y, Z and color axes. You can also set only the X, Y and Z axes:
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axis([xmin xmax ymin ymax zmin zmax])
or only the X and Y axes:
axis([xmin xmax ymin ymax])
To retrieve the current axis limits, use the syntax
X = axis

where x is a 4-vector for 2D plots, and a 6-vector for 3D plots.

There are a number of axis options supported by FreeMat. The first version sets the axis limits
to be automatically selected by FreeMat for each dimension. This state is the default one for new
axes created by FreeMat.

axis auto

The next option sets all of the axis limits to manual mode. This state turns off automatic scaling of
the axis based on the children of the current axis object.

axis manual
The next option sets the axis limits to fit tightly around the data.
axis tight

The next option adjusts the axis limits and plotbox aspect ratio so that the axis fills the position
rectangle.

axis fill

The next option puts the axis in matrix mode. This mode is equivalent to the standard mode, but
with the vertical axis reversed. Thus, the origin of the coordinate system is at the top left corner of
the plot. This mode makes plots of matrix elements look normal (i.e., an identity matrix goes from
upper left to lower right).

axis ij
The next option puts the axis in normal mode, with the origin at the lower left corner.
axis xy

The next option sets the axis parameters (specifically the data aspect ratio) so that equal ticks on
each axis represent equal length. In this mode, spheres look spherical insteal of ellipsoidal.

axis equal

The next option is the same as axis equal, but sets the plot box to fit tightly around the data (so
no background shows through). It is the best option to use when displaying images.

axis image

The next option makes the axis box square.
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axis square

The next option restores many of the normal characteristics of the axis. In particular, it undoes the
effects of square image and equal modes.

axis normal
The next mode freezes axis properties so that 3D objects can be rotated properly.
axis vis3d
The next mode turns off all labels, tick marks and background.
axis on
The next mode turns on all labels, tick marks and background.
axis off

The next mode is similar to axis off, but also repacks the figure as tightly as possible. The result
is a plot box that takes up the entire outerposition vector.

axis maximal

The axis command can also be applied to a particular axis (as opposed to the current axis as
returned by gca) handle

axis(M,...)

23.3 AXISPROPERTIES Axis Object Properties
23.3.1 Usage

Below is a summary of the properties for the axis.
e activepositionproperty - four vector - Not used.

e alim - two vector - Controls the mapping of transparency. The vector [a_1,a_2]@ defines
the scale for transparency. Plots then map a_1 to a completely opaque value, and a_2 to a
completely transparent value. This mapping is applied to the alpha data of the plot data.

e alimmode - {’auto’,’manual’} - For auto mode, we map the alpha ranges of all objects in
the plot to a full scale. For manual mode, we use the alim vector.

e ambientlightcolor - colorspec - Not used.
e box - On/0£ff - Not used.
e cameraposition - three vector - Set the position for the camera in axis space.

e camerapositionmode - {’auto’,’manual’} - For manual mode, the camera position is picked
up from the cameraposition vector. For auto mode, the camera position is set to be centered
on the x and y axis limits, and beyond the z maximum limit.
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cameratarget - three vector - Defines the point in axis space that the camera is targetted
at.

cameratargetmode - {’auto’,’manual’} - For manual mode the camera target is picked up
from the cameratarget vector. For auto mode, the camera target is chosen to be the center
of the three axes.

cameraupvector - three vector - Defines the upwards vector for the camera (what is ulti-
mately mapped to the vertical axis of the plot or screen). This vector must not be parallel to
the vector that is defined by the optical axis (i.e., the one connecting the target to the camera
position).

cameraupvectormode - {’auto’, ’manual’} - For manual mode, the camera up vector is picked
up from the cameraupvector. The auto mode chooses the up vector to point along the positive
y axis.

cameraviewangle - scalar - Not used.
cameraviewanglemode - {’auto’, ’manual’} - Not used.

children - vector of handles - A vector containing handles to children of the current axis.
Be careful as to how you manipulate this vector. FreeMat uses a reference counting mechanism
for graphics objects, so if you remove a handle from the children property of an axis, and
you have not added it to the children property of another object, it will be deleted.

clim - two vector - The color range vector. This vector contains two values that dictate how
children of this axis get mapped to the colormap. Values between the two endpoints of this
vector are mapped to the extremes of the colormap.

climmode - {’auto’,’manual’} - For auto mode, the color limits are chosen to span the
colordata for all of the children objects. For manual mode, the color mapping is based on
clim.

clipping - {’on’,’0off’} - Not used.

color - colorspec - The color used to draw the background box for the axes. Defaults to
white.

colororder - color vector - A vector of color specs (in RGB) that are cycled between when
drawing line plots into this axis. The default is order blue,green,red,cyan,magenta,yellow,black.

datalimits - six vector - A vector that contains the x, y and z limits of the data for children
of the current axis. Changes to this property are ignored - it is calculated by FreeMat based
on the datasets.

dataaspectratio - three vector - A vector that describes the aspect ratio of the data. You
can think of this as the relative scaling of units for each axis. For example, if one unit along
the x axis is twice as long as one unit along the y axis, you would specify a data aspect ratio
of [2,1,1].
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e dataaspectratiomode - {’auto’,’manual’} - When the data aspect ratio is set to manual,
the data is scaled by the data aspect ratio before being plotted. When the data aspect ratio
mode is auto a complex set of rules are applied to determine how the data should be scaled.
If dataaspectratio mode is auto and plotboxaspectratio is auto, then the default data
aspect ratio is set to [1,1,1] and the default plot box aspect ratio is chosen proportional to
[xrange,yrange,zrange], where xrange is the span of data along the x axis, and similarly for
yrange and zrange. If plotboxaspectratio is set to [px,py,pz], then the dataaspectratio
is set to [xrange/px,yrange/py,zrange/pz]. If one of the axes has been specified manually,
then the data will be scaled to fit the axes as well as possible.

e fontangle - {’normal’,’italic’,’oblique’} - The angle of the fonts used for text labels
(e.g., tick labels).

e fontsize - scalar - The size of fonts used for text labels (tick labels).
e fontunits - Not used.

e fontweight - {’normal’,’bold’,’light’,’demi’} - The weight of the font used for tick
labels.

e gridlinestyle - {°-’,’-=",7:’,°~.? ’none’} - The line style to use for drawing the grid
lines. Defaults to > :°.

e handlevisibility - Not used.
e hittest - Not used.

e interruptible - Not used.

e layer - Not used.

e linestyleorder - linestyle vector - A vector of linestyles that are cycled through when
plotted line series.

e linewidth - scalar - The width of line used to draw grid lines, axis lines, and other lines.

e minorgridlinestyle - {’-’,’-=,7:7,°-.7 ’none’} - The line style used for drawing grid
lines through minor ticks.

e nextplot - {’add’,’replace’, ’replacechildren’} - Controls how the next plot interacts
with the axis. If it is set to *add’ the next plot will be added to the current axis. If it is set
to ’replace’ the new plot replaces all of the previous children.

e outerposition - four vector - Specifies the coordinates of the outermost box that con-
tains the axis relative to the containing figure. This vector is in normalized coordinates and
corresponds to the x, y, width, height coordinates of the box.

e parent - handle - The handle for the containing object (a figure).

e plotboxaspectratio - three vector - Controls the aspect ratio of the plot box. See the entry
under dataaspectratio for details on how FreeMat uses this vector in combination with the
axis limits and the plotboxaspectratio to determine how to scale the data.
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plotboxaspectratiomode - {’auto’, ’manual’} - The plot box aspect ratio mode interacts
with the dataaspectratiomode and the axis limits.

position - fourvector - The normalized coordinates of the plot box space. Should be inside
the rectable defined by outerposition.

projection - Not used.

selected - Not used.

selectionhighlight - Not used.

tag - A string that can be set to tag the axes with a name.

textheight - scalar - This value is set by FreeMat to the height of the current font in pixels.

tickdir - {’in’,’out’} - The direction of ticks. Defaults to >in’ for 2D plots, and ’out’
for 3D plots if tickdirmode is auto.

tickdirmode - {’auto’,’manual’} - When set to ’auto’ the tickdir defaults to ’in’ for
2D plots, and ’out’ for 3D plots.

ticklength - two vector - The first element is the length of the tick in 2D plots, and the
second is the length of the tick in the 3D plots. The lengths are described as fractions of the
longer dimension (width or height).

tightinset - Not used.

title - handle - The handle of the label used to represent the title of the plot.
type - string - Takes the value of >axes’ for objects of the axes type.

units - Not used.

userdata - array - An arbitrary array you can set to anything you want.

visible - {’on’,’0off’} - If set to >on’ the axes are drawn as normal. If set to >off’, only
the children of the axes are drawn. The plot box, axis lines, and tick labels are not drawn.

xaxislocation - {’top’, ’bottom’} - Controls placement of the x axis.
yaxislocation - {’left’,’right’} - Controls placement of the y axis.

xcolor - colorspec - The color of the x elements including the the x axis line, ticks, grid lines
and tick labels

ycolor - colorspec - The color of the y elements including the the y axis line, ticks, grid lines
and tick labels.

zcolor - colorspec - The color of the z elements including the the z axis line, ticks, grid lines
and tick labels.
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e xdir - {’normal’,’reverse’} - For normal, axes are drawn as you would expect (e.g, in
default 2D mode, the x axis has values increasing from left to right. For reverse, the x axis
has values increasing from right to left.

e ydir - {’normal’,’reverse’} - For normal, axes are drawn as you would expect (e.g, in
default 2D mode, the y axis has values increasing from bottom to top. For reverse, the y
axis has values increasing from top to bottom.

e zdir - {’normal’,’reverse’} - For normal, axes are drawn as you would expect. In default
3D mode, the z axis has values increasing in some direction (usually up). For reverse the z
axis increases in the opposite direction.

e xgrid - {’on’,’0off’} - Set to on to draw grid lines from ticks on the x axis.
o ygrid- {’on’,’off’} - Set to on to draw grid lines from ticks on the y axis.
o zgrid - {’on’,’off’} - Set to on to draw grid lines from ticks on the z axis.

e xlabel - handle - The handle of the text label attached to the x axis. The position of that
label and the rotation angle is computed automatically by FreeMat.

e ylabel - handle - The handle of the text label attached to the y axis. The position of that
label and the rotation angle is computed automatically by FreeMat.

e zlabel - handle - The handle of the text label attached to the z axis. The position of that
label and the rotation angle is computed automatically by FreeMat.

e xlim- two vector - Contains the limits of the data along the x axis. These are set automati-
cally for x1immode. When manually set it allows you to zoom into the data. The first element
of this vector should be the smallest x value you want mapped to the axis, and the second
element should be the largest.

e ylim- two vector - Contains the limits of the data along the y axis. These are set automati-
cally for ylimmode. When manually set it allows you to zoom into the data. The first element
of this vector should be the smallest y value you want mapped to the axis, and the second
element should be the largest.

e zlim - two vector - Contains the limits of the data along the z axis. These are set automati-
cally for zlimmode. When manually set it allows you to zoom into the data. The first element
of this vector should be the smallest z value you want mapped to the axis, and the second
element should be the largest.

e xlimmode - {’auto’,’manual’} - Determines if x1im is determined automatically or if it is
determined manually. When determined automatically, it is chosen to span the data range (at
least).

e ylimmode - {’auto’,’manual’} - Determines if ylim is determined automatically or if it is
determined manually. When determined automatically, it is chosen to span the data range (at
least).
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zlimmode - {’auto’,’manual’} - Determines if z1im is determined automatically or if it is
determined manually. When determined automatically, it is chosen to span the data range (at
least).

xminorgrid - {’on’,’off’} - Set to on to draw grid lines from minor ticks on the x axis.
yminorgrid - {’on’,’off’} - Set to on to draw grid lines from minor ticks on the y axis.
zminorgrid - {’on’,’off’} - Set to on to draw grid lines from minor ticks on the z axis.

xscale - {’1linear’,’log’} - Determines if the data on the x axis is linear or logarithmically
scaled.

yscale - {’1linear’,’log’} - Determines if the data on the y axis is linear or logarithmically
scaled.

zscale - {’linear’,’log’} - Determines if the data on the z axis is linear or logarithmically
scaled.

xtick - vector - A vector of x coordinates where ticks are placed on the x axis. Setting this
vector allows you complete control over the placement of ticks on the axis.

ytick - vector - A vector of y coordinates where ticks are placed on the y axis. Setting this
vector allows you complete control over the placement of ticks on the axis.

ztick - vector - A vector of z coordinates where ticks are placed on the z axis. Setting this
vector allows you complete control over the placement of ticks on the axis.

xticklabel - string vector - A string vector, of the form ’stringstring—string’— that
contains labels to assign to the labels on the axis. If this vector is shorter than xtick, then
FreeMat will cycle through the elements of this vector to fill out the labels.

yticklabel - string vector - A string vector, of the form ’stringstring—string’— that
contains labels to assign to the labels on the axis. If this vector is shorter than ytick, then
FreeMat will cycle through the elements of this vector to fill out the labels.

zticklabel - string vector - A string vector, of the form ’stringstring—string’— that
contains labels to assign to the labels on the axis. If this vector is shorter than ztick, then
FreeMat will cycle through the elements of this vector to fill out the labels.

xtickmode - {’auto’,’manual’} - Set to ’auto’ if you want FreeMat to calculate the tick
locations. Setting ’*xtick’ will cause this property to switch to ’manual’.

ytickmode - {’auto’,’manual’} - Set to ’auto’ if you want FreeMat to calculate the tick
locations. Setting ’ytick’ will cause this property to switch to ’manual’.

ztickmode - {’auto’,’manual’} - Set to ’auto’ if you want FreeMat to calculate the tick
locations. Setting ’ztick’ will cause this property to switch to ’manual’.

xticklabelmode - {’auto’,’manual’} - Set to ’auto’ if you want FreeMat to set the tick
labels. This will be based on the vector xtick.
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e yticklabelmode - {’auto’,’manual’} - Set to ’auto’ if you want FreeMat to set the tick
labels. This will be based on the vector ytick.

e zticklabelmode - {’auto’,’manual’} - Set to ’auto’ if you want FreeMat to set the tick
labels. This will be based on the vector ztick.

23.4 CLA Clear Current Axis

23.4.1 Usage

Clears the current axes. The syntax for its use is

cla

23.5 CLABEL Add Labels To Contour Plot

23.5.1 Usage

The clabel function adds labels to a contour plot Generate contour labels for a contour plot. The
syntax for its use is either:

handles = clabel(contourhandle,property,value,property,value,...)
which labels all of the contours in the plot, or

handles = clabel(contourhandle,vals,property,value,property,value,...)

which only labels those contours indicated by the vector vals. The contourhandle must be the
handle to a contour plot object. The remaining property/value pairs are passed to the text function
to control the parameters of the generated text labels. See the text properties for the details on
what can be used in those labels.

23.5.2 Example

--> [x,y] = meshgrid(linspace(-1,1,50));

-=> z = x.xexp(-(x.72+y."2));

--> h = contour(z);

--> clabel (h, ’backgroundcolor’, [1,1,.6], ’edgecolor’,[.7,.7,.7]1);

which results in
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Alternately, we can just label a subset of the contours

--> h = contour(z);
--> clabel(h,[-.2,0,.3]1);

which results in

ot

vz

0 5 10 15 20 25 30 35 40 a5 50

23.6 CLF Clear Figure

23.6.1 Usage
This function clears the contents of the current figure. The syntax for its use is

clf

23.7 CLIM Adjust Color limits of plot
23.7.1 Usage

There are several ways to use clim to adjust the color limits of a plot. The various syntaxes are

clim
clim([lo,hi])
clim(’auto’)
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clim(’manual’)
clim(’mode’)
clim(handle,...)

The first form (without arguments), returns a 2-vector containing the current limits. The second
form sets the limits on the plot to [1o,hi]. The third and fourth form set the mode for the limit to
auto and manual respectively. In auto mode, FreeMat chooses the range for the axis automatically.
The clim(’mode’) form returns the current mode for the axis (either ’auto’ or ’manual’).

Switching to manual mode does not change the limits, it simply allows you to modify them (and
disables the automatic adjustment of the limits as more objects are added to the plot). Also, if you
specify a set of limits explicitly, the mode is set to manual

Finally, you can specify the handle of an axis to manipulate instead of using the current one.

23.7.2 Example

Here is an example of using clim to change the effective window and level onto an image. First, the
image with default limits

--> x = repmat(linspace(-1,1),[100,1]); y = x’;
-=> z = exp(-x.72-y."2);
--> image(z);
-=> min(z(:))
ans =
0.1353
--> max(z(:))

ans =

0.9998

which results in

100
20 40 &0 a0 100

Next, we change the colorscale of the image using the clim function
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--> image(z);
--> ¢l1im([0,0.2]);

which results in

23.8 CLOSE Close Figure Window
23.8.1 Usage

Closes a figure window, either the currently active window, a window with a specific handle, or all
figure windows. The general syntax for its use is

close(handle)

in which case the figure window with the speicified handle is closed. Alternately, issuing the com-
mand with no argument

close
is equivalent to closing the currently active figure window. Finally the command
close(’all’)

closes all figure windows currently open.

23.9 COLORBAR Add Colorbar to Current Plot
23.9.1 Usage

There are a number of syntaxes for the colorbar command. The first takes no arguments, and adds
a vertical colorbar to the right of the current axes.

colorbar
You can also pass properties to the newly created axes object using the second syntax for colorbar

colorbar(properties...)
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23.10 COLORMAP Image Colormap Function

23.10.1 Usage

Changes the colormap for the current figure. The generic syntax for its use is

colormap (map)

where map is a an array organized as 3 \times N), which defines the RGB (Red Green Blue) coor-
dinates for each color in the colormap. You can also use the function with no arguments to recover
the current colormap

map = colormap

23.10.2 Function Internals

Assuming that the contents of the colormap function argument c are labeled as:

rt g1 b
rt g2 bo
¢=|r g3 b3

then these columns for the RGB coordinates of pixel in the mapped image. Assume that the image
occupies the range [a, b]. Then the RGB color of each pixel depends on the value z via the following
integer
T—a
k=1+[256——/,
+ (2565 —]

so that a pixel corresponding to image value z will receive RGB color [rg, g, bx]. Colormaps are
generally used to pseudo color images to enhance visibility of features, etc.

23.10.3 Examples

We start by creating a smoothly varying image of a 2D Gaussian pulse.

--> x = linspace(-1,1,512) ’*ones(1,512);
-=>y =x’;

-—> Z = exp(-(x.72+y."2)/0.3);

--> image(Z);

which we display with the default (grayscale) colormap here.
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Next we switch to the copper colormap, and redisplay the image.

--> colormap(copper) ;
--> image(Z);

which results in the following image.

If we capture the output of the copper command and plot it, we obtain the following result:

-=> a = copper;
--> plot(a);

Note that in the output that each of the color components are linear functions of the index, with
the ratio between the red, blue and green components remaining constant as a function of index.
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The result is an intensity map with a copper tint. We can similarly construct a colormap of our own
by defining the three components seperately. For example, suppose we take three gaussian curves,
one for each color, centered on different parts of the index space:

|

|
\4
ct

]

linspace(0,1,256) ;
[exp(-(t-1.0).72/0.1) ;exp(-(t-0.5).72/0.1) ;exp(-t.~2/0.1)]17;
-=> plot(A);

|

|
v
=

1]

The resulting image has dark bands in it near the color transitions.

--> image(Z);
--> colormap(A);

These dark bands are a result of the nonuniform color intensity, which we can correct for by
renormalizing each color to have the same norm.

-=> w = sqrt(sum(A’."2));
-=> sA = diag(1l./w)*4A;
-—> plot(A);



470 CHAPTER 23. HANDLE-BASED GRAPHICS

The resulting image has no more dark bands.

--> image(Z);
-=> colormap(4);

23.11 COLORSPEC Color Property Description

23.11.1 Usage

There are a number of ways of specifying a color value for a color-based property. Examples include
line colors, marker colors, and the like. One option is to specify color as an RGB triplet

set(h,’color’, [r,g,bl)
where r,g,b are between @[0,1]@. Alternately, you can use color names to specify a color.
e ’none’ - No color.
e ’y’,’yellow’ - The color @[1,1,0]@ in RGB space.
e ’'m’,’magenta’ - The color @[1,0,1]@ in RGB space.
e ’c’,’cyan’ - The color @[0,1,1]@Q in RGB space.

e ’r’,’red’ - The color @[1,0,0]@ in RGB space.
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e ’g’,’green’ - The color @[0,1,0]@ in RGB space.
e ’b’,’blue’ - The color @[0,0,1]@ in RGB space.
e ’w’,’white’ - The color @[1,1,1]@ in RGB space.

e ’k’,’black’ - The color @[0,0,0]@Q in RGB space.

23.12 CONTOUR Contour Plot Function

23.12.1 Usage

This command generates contour plots. There are several syntaxes for the command. The simplest
is

contour(Z)

which generates a contour plot of the data in matrix Z, and will automatically select the contour
levels. The x,y coordinates of the contour default to 1:n and 1:m, where n is the number of columns
and m is the number of rows in the Z matrix. Alternately, you can specify a scalar n

contour(Z,n)

which indicates that you want n contour levels. For more control, you can provide a vector v
containing the levels to contour. If you want to generate a contour for a particular level, you must
pass a vector [t,t] where t is the level you want to contour. If you have data that lies on a
particular X,Y grid, you can pass either vectors x,y or matrices X,Y to the contour function via

contour(X,Y,Z)
contour(X,Y,Z,n)

contour(X,Y,Z,v)

Each form of contour can optionally take a line spec to indicate the color and linestyle of the
contours to draw:

contour(...,linespec)

or any of the other forms of contour. Furthermore, you can supply an axis to target the contour
plot to (so that it does not get added to the current axis, which is the default):

contour (axis_handle,...)
Finally, the contour command returns a handle to the newly returned contour plot.
handle = contour(...)

To place labels on the contour plot, use the clabel function.
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23.12.2 Example

Here is a simple example of a contour plot with the default x,y coordinates:

--> [x,y] = meshgrid(linspace(-1,1,25),linspace(-2,2,30));
-=> z = x.*exp(-x.72-y."2);
--> contour(z)

which results in the following plot

0 25

Here, we specify the x and y coordinates explictly

--> contour(x,y,z)

note that the axis limits have changed appropriately

By default, contours are created at values selected by FreeMat. To provide our own set of contour
values (asymmetrically about zero in this case), we supply them as

--> contour(x,y,z,[-.4,0.,3])

which is here
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Also be default, contour uses the current color map and clim limits to determine the coloring
of the contours. Here, we override the color spec so that we have all black contour

--> contour(x,y,z,’b-")

which is here

23.13 CONTOURS3 3D Contour Plot Function

23.13.1 Usage

This command generates contour plots where the lines are plotted in 3D. The syntax for its use is
identical to the contour function. Please see its help for details.

23.13.2 Example

Here is a simple example of a 3D contour plot.

-—> [x,y] = meshgrid([-2:.25:2]);
-—> z=x.*exp(-x."2-y."2);

--> contour3(x,y,z,30);

--> axis square;

--> view(-15,25)
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The resulting plot

23.14 COPPER Copper Colormap

23.14.1 Usage

Returns a copper colormap. The syntax for its use is

y = copper

23.14.2 Example

Here is an example of an image displayed with the copper colormap

--> x = linspace(-1,1,512) **ones(1,512);
-y = x7;
-—> Z = exp(-(x.72+y."2)/0.3);

--> image(Z);
--> colormap (copper) ;

which results in the following image
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23.15 COPY Copy Figure Window
23.15.1 Usage

Copies the currently active figure window to the clipboard. The syntax for its use is:

copy

The resulting figure is copied as a bitmap to the clipboard, and can then be pasted into any suitable
application.

23.16 COUNTOUR Contour Object Properties

23.16.1 Usage
Below is a summary of the properties for a line series.

e contourmatrix - array - the matrix containing contour data for the plot. Thisis a 2 x N
matrix containing x and y coordinates for points on the contours. In addition, each contour
line starts with a column containing the number of points and the contour value.

e displayname - string - The name of this line series as it appears in a legend.
e floating - {’on’,’off’} - set to on to have floating (3D) contours
e levellist - vector - a vector of Z-values for the contours

e levellistmode - {’auto’,’manual’} - set to auto for automatic selection of Z-values of the
contours.

e linecolor - color of the contour lines.

e linestyle- {’-’,’--",7:?,7~.7 ’none’} - the line style to draw the contour in.
e linewidth - scalar - the width of the lines

e parent - handle - The axis that contains this object

e tag - string - A string that can be used to tag the object.

e type - string - Returns the string ’contour’.

e userdata - array - Available to store any variable you want in the handle object.
e visible - {’on’,’0off’} - Controls visibility of the the line.

e xdata - matrix - Contains the x coordinates of the surface on which the zdata is defined. This
can either be a monotonic vector of the same number of columns as zdata, or a 2D matrix
that is the same size as zdata.

e xdatamode - {’auto’,’manual’} - When set to ’auto’ FreeMat will autogenerate the x
coordinates for the contours. These values will be 1,..,N where N is the number of columns
of zdata.
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e ydata - matrix - Contains the y coordinates of the surface on which the zdata is defined. This
can either be a monotonic vector of the same number of rows as zdata or a 2D matrix that is
the same size as zdata.

e ydatamode - {’auto’,’manual’} - When set to ’auto’ FreeMat will autogenerate the y
coordinates for the contour data.

e zdata - matrix - The matrix of z values that are to be contoured.

23.17 DRAWNOW Flush the Event Queue

23.17.1 Usage

The drawnow function can be used to process the events in the event queue of the FreeMat applica-
tion. The syntax for its use is

drawnow

Now that FreeMat is threaded, you do not generally need to call this function, but it is provided for
compatibility.

23.18 FIGLOWER Lower a Figure Window

23.18.1 Usage

Lowers a figure window indicated by the figure number. The syntax for its use is
figlower (fignum)

where fignum is the number of the figure to lower. The figure will be lowerd to the bottom of the
GUI stack (meaning that it we be behind other windows). Note that this function does not cause
fignum to become the current figure, you must use the figure command for that. Similarly, if
fignum is the current figure, it will remain the current figure (even though the figure is now behind
others).

23.19 FIGRAISE Raise a Figure Window

23.19.1 Usage

Raises a figure window indicated by the figure number. The syntax for its use is
figraise(fignum)

where fignum is the number of the figure to raise. The figure will be raised to the top of the GUI
stack (meaning that it we be visible). Note that this function does not cause fignum to become the
current figure, you must use the figure command for that.



23.20. FIGURE FIGURE WINDOW SELECT AND CREATE FUNCTION 477

23.20 FIGURE Figure Window Select and Create Function

23.20.1 Usage
Changes the active figure window to the specified figure number. The general syntax for its use is
figure (number)

where number is the figure number to use. If the figure window corresponding to number does not
already exist, a new window with this number is created. If it does exist then it is brought to the
forefront and made active. You can use gcf to obtain the number of the current figure.

Note that the figure number is also the handle for the figure. While for most graphical objects
(e.g., axes, lines, images), the handles are large integers, for figures, the handle is the same as the
figure number. This means that the figure number can be passed to set and get to modify the
properties of the current figure, (e.g., the colormap). So, for figure 3, for example, you can use
get (3, ’colormap’) to retrieve the colormap for the current figure.

23.21 FIGUREPROPERTIES Figure Object Properties

23.21.1 Usage

Below is a summary of the properties for the axis.

e alphamap - vector - Contains the alpha (transparency) map for the figure. If this is set to a
scalar, then all values are mapped to the same transparency. It defaults to 1, which is all values
being fully opaque. If you set this to a vector, the values of graphics objects will be mapped
to different transparency values, based on the setting of their alphadatamapping property.

e color - colorspec - The background color of the figure (defaults to a gray [0.6,0.6,0.6]).
During printing, this color is set to white, and then is restored.

e colormap - color vector - an N x 3 matrix of RGB values that specifies the colormap for
the figure. Defaults to an HSV map.

e children - handle vector - the handles for objects that are children of this figure. These
should be axis objects.

e currentaxes - handle - the handle for the current axes. Also returned by gca.
e doublebuffer - Not used.

e parent - Not used.

e position - Not used.

e type - string - returns the string ’figure’.

e userdata - array - arbitrary array you can use to store data associated with the figure.
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e nextplot - {’add’, ’replace’,’replacechildren’} - If set to >add’ then additional axes
are added to the list of children for the current figure. If set to >replace’, then a new axis
replaces all of the existing children.

e figsize - two vector - the size of the figure window in pixels (width x height).

e renderer - {’painters’,’opengl’} - When set to ’painters’ drawing is based on the Qt
drawing methods (which can handle flat shading of surfaces with transparency). If you set the
renderer to ’opengl’ then OpenGL is used for rendering. Support for OpenGL is currently
in the alpha stage, and FreeMat does not enable it automatically. You can set the renderer
mode to ’opengl’ manually to experiment. Also, OpenGL figures cannot be printed yet.

23.22 GCA Get Current Axis

23.22.1 Usage
Returns the handle for the current axis. The syntax for its use is
handle = gca

where handle is the handle of the active axis. All object creation functions will be children of this
axis.

23.23 GCF Get Current Figure

23.23.1 Usage

Returns the figure number for the current figure (which is also its handle, and can be used to set
properties of the current figure using set). The syntax for its use is

figure_number = gcf

where figure_number is the number of the active figure (also the handle of the figure).

Note that figures have handles, just like axes, images, plots, etc. However the handles for figures
match the figure number (while handles for other graphics objects tend to be large, somewhat arbi-
trary integers). So, to retrieve the colormap of the current figure, you could use get (gcf, > colormap’),
or to obtain the colormap for figure 3, use get(3,’colormap’).

23.24 GET Get Object Property

23.24.1 Usage
This function allows you to retrieve the value associated with a property. The syntax for its use is
value = get(handle,property)

where property is a string containing the name of the property, and value is the value for that
property. The type of the variable value depends on the property being set. See the help for the
properties to see what values you can set.
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23.25 GRAY Gray Colormap

23.25.1 Usage

Returns a gray colormap. The syntax for its use is
y = gray

23.25.2 Example

Here is an example of an image displayed with the gray colormap

--> x = linspace(-1,1,512) **ones(1,512);

—> y = X);
-—> Z = exp(-(x.72+y."2)/0.3);
--> image(Z);

--> colormap(gray) ;

which results in the following image

23.26 GRID Plot Grid Toggle Function
23.26.1 Usage

Toggles the drawing of grid lines on the currently active plot. The general syntax for its use is

grid(state)

where state is either
grid(’on’)

to activate the grid lines, or

grid(’off?)

to deactivate the grid lines. If you specify no argument then grid toggles the state of the grid:

479
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grid
You can also specify a particular axis to the grid command
grid(handle,...)

where handle is the handle for a particular axis.

4 0z o 0z o

23.26.2 Example

Here is a simple plot without grid lines.
--> x = linspace(-1,1);

-=> y = cos(3*pix*x);

--> plot(x,y,’r-’);

Next, we activate the grid lines.

-=> plOt(X:Y, 71'_’) H
-=> grid on

23.27 HCONTOUR Create a contour object
23.27.1 Usage

Creates a contour object and parents it to the current axis. The syntax for its use is
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handle = hcontour(property,value,property,value,...)

where property and value are set. The handle ID for the resulting object is returned. It is
automatically added to the children of the current axis.

23.28 HIMAGE Create a image object

23.28.1 Usage
Creates a image object and parents it to the current axis. The syntax for its use is
handle = himage(property,value,property,value,...)

where property and value are set. The handle ID for the resulting object is returned. It is
automatically added to the children of the current axis.

23.29 HLINE Create a line object

23.29.1 Usage
Creates a line object and parents it to the current axis. The syntax for its use is
handle = hline(property,value,property,value,...)

where property and value are set. The handle ID for the resulting object is returned. It is
automatically added to the children of the current axis.

23.30 HOLD Plot Hold Toggle Function

23.30.1 Usage

Toggles the hold state on the currently active plot. The general syntax for its use is
hold(state)

where state is either
hold(’on’)

to turn hold on, or
hold(’off’)

to turn hold off. If you specify no argument then hold toggles the state of the hold:
hold

You can also specify a particular axis to the hold command
hold(handle,...)

where handle is the handle for a particular axis.
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23.30.2 Function Internals

The hold function allows one to construct a plot sequence incrementally, instead of issuing all of
the plots simultaneously using the plot command.

23.30.3 Example

Here is an example of using both the hold command and the multiple-argument plot command to
construct a plot composed of three sets of data. The first is a plot of a modulated Gaussian.

--> x = linspace(-5,5,500);

-—> t = exp(-x.72);
-=> y = t.*cos(2*pi*x*3);
--> plot(x,y);

We now turn the hold state to ’on’, and add another plot sequence, this time composed of the
top and bottom envelopes of the modulated Gaussian. We add the two envelopes simultaneously
using a single plot command. The fact that hold is >on’ means that these two envelopes are added
to (instead of replace) the current contents of the plot.

--> plot(x,y);
-=> hold on
--> plot(x,t,’g-’,x,-t,’b-?)
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23.31 HPOINT Get Point From Window

23.31.1 Usage

This function waits for the user to click on the current figure window, and then returns the coordi-
nates of that click. The generic syntax for its use is

[x,y] = hpoint

23.32 HSURFACE Create a surface object

23.32.1 Usage

Creates a surface object and parents it to the current axis. The syntax for its use is
handle = hsurface(property,value,property,value,...)

where property and value are set. The handle ID for the resulting object is returned. It is
automatically added to the children of the current axis.

23.33 HTEXT Create a text object

23.33.1 Usage

Creates a text object and parents it to the current axis. The syntax for its use is
handle = htext(property,value,property,value,...)

where property and value are set. The handle ID for the resulting object is returned. It is
automatically added to the children of the current axis.

23.34 IMAGE Image Display Function

23.34.1 Usage

The image command has the following general syntax
handle = image(x,y,C,properties...)

where x is a two vector containing the x coordinates of the first and last pixels along a column,
and y is a two vector containing the y coordinates of the first and last pixels along a row. The
matrix C constitutes the image data. It must either be a scalar matrix, in which case the image
is colormapped using the colormap for the current figure. If the matrix is M x N x 3, then C is
intepreted as RGB data, and the image is not colormapped. The properties argument is a set of
property/value pairs that affect the final image. You can also omit the x and y,

handle = image(C, properties...)
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in which case they default to x = [1,size(C,2)] and y = [1,size(C,1)]. Finally, you can use
the image function with only formal arguments

handle = image(properties...)
To support legacy FreeMat code, you can also use the following form of image
image(C, zoomfactor)

which is equivalent to image(C) with the axes removed so that the image takes up the full figure
window, and the size of the figure window adjusted to achieve the desired zoom factor using the
zoom command.

23.34.2 Example

In this example, we create an image that is 512 x 512 pixels square, and set the background to a
noise pattern. We set the central 128 x 256 pixels to be white.

--> x = rand(512);
--> x((-64:63)+256, (-128:127)+256) = 1.0;
--> figure

--> image(x)
--> colormap(gray)

The resulting image looks like:

Here is an example of an RGB image

--> t = linspace(0,1);
--> red = t’*t;

-=> green = t’*(t."2);
-=> blue = t?*(0*t+1);
-—> A(:,:,1) = red;
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-=> A(:,:,2) = green;

--> A(:,:,3)

blue;

--> image(A);

The resulting image looks like:

23.35 IMAGEPROPERTIES Image Object Properties
23.35.1 Usage

Below is a summary of the properties for the axis.

alphadata - vector - This is a vector that should contain as many elements as the image data
itself cdata, or a single scalar. For a single scalar, all values of the image take on the same
transparency. Otherwise, the transparency of each pixel is determined by the corresponding
value from the alphadata vector.

alphadatamapping - {’scaled’,’direct’, ’none’} - For none mode (the default), no trans-
parency is applied to the data. For direct mode, the vector alphadata contains values
between @[0,M-1]— where M is the length of the alpha map stored in the figure. For scaled
mode, the alim vector for the figure is used to linearly rescale the alpha data prior to lookup
in the alpha map.

cdata - array - This is either a M x N array or an M x N x 3 array. If the data is M x N
the image is a scalar image (indexed mode), where the color associated with each image pixel
is computed using the colormap and the cdatamapping mode. If the data is M x N x 3 the
image is assumed to be in RGB mode, and the colorpanes are taken directly from cdata (the
colormap is ignored). Note that in this case, the data values must be between @[0,1]— for
each color channel and each pixel.

cdatamapping - {’scaled’, ’direct’} - For scaled (the default), the pixel values are scaled
using the clim vector for the figure prior to looking up in the colormap. For direct mode,
the pixel values must be in the range [0,N-1 where N is the number of colors in the colormap
if the data is integer type. For floating point data types, values must be in the range [1,N].

children - Not used.
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e parent - handle - The axis containing the image.
e tag - string - You can set this to any string you want.
e type - string - Set to the string ’image’.

e xdata - two vector - contains the x coordinates of the first and last column (respectively).
Defaults to [1,C] where C is the number of columns in the image.

e ydata - two vector - contains the y coordinates of the first and last row (respectively).
Defaults to [1,R] where R is the number of rows in the image.

e userdata - array - Available to store any variable you want in the handle object.

e visible - {’on’,’off’} - Controls whether the image is visible or not.

23.36 IMAGESC Image Display Function

23.36.1 Usage
The imagesc command has the following general syntax
handle = imagesc(x,y,C,clim)

where x is a two vector containing the x coordinates of the first and last pixels along a column,
and y is a two vector containing the y coordinates of the first and last pixels along a row. The
matrix C constitutes the image data. It must either be a scalar matrix, in which case the image
is colormapped using the colormap for the current figure. If the matrix is M x N x 3, then C is
intepreted as RGB data, and the image is not colormapped. The clim argument is a pairs [low high]
that specifies scaling. You can also omit the x and y,

handle = imagesc(C, clim)

in which case they default to x = [1,size(C,2)] and y = [1,size(C,1)]. Finally, you can use
the image function with only formal arguments

handle = imagesc(properties...)

23.36.2 Example

In this example, we create an image that is 512 x 512 pixels square, and set the background to a
noise pattern. We set the central 128 x 256 pixels to be white.

--> x = rand(512);
--> x((-64:63)+256, (-128:127)+256) = 1.0;
--> figure
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--> imagesc(x, [0 .5])
--> colormap(gray)

23.37 IS2DVIEW Test Axes For 2D View
23.37.1 Usage

This function returns true if the current axes are in a 2-D view, and false otherwise. The generic
syntax for its use is

y = is2dview(x)

where x is the handle of an axes object.

23.38 ISHOLD Test Hold Status

23.38.1 Usage

Returns the state of the hold flag on the currently active plot. The general syntax for its use is
ishold

and it returns a logical 1 if hold is on, and a logical 0 otherwise.

23.39 LEGEND Add Legent to Plot

23.39.1 Usage

This command adds a legend to the current plot. Currently, the following forms of the legend
command are supported. The first form creates a legend with the given labels for the data series:

legend(’labell’,’label2’,...)

where ’1labell’ is the text label associated with data plot 1 and so on. You can also use the legend
command to control the appearance of the legend in the current plot. To remove the legend from
the current plot, use

legend(’off’)

To hide the legend for the current plot (but do not remove it)
legend(’hide’)

And to show the legend that has been hidden, use

legend(’show’)
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You can also toggle the display of the box surrounding the legend. Use
legend (’boxoff’)

or
legend (’boxon’)

to turn the legend box off or on, respectively. To toggle the visible state of the current legend, use
legend (’toggle’)

Specifying no arguments at all (apart from an optional location argument as specified below) results
in the legend being rebuilt. This form is useful for picking up font changes or relocating the legend.

legend

By default, the 1legend command places the new legend in the upper right corner of the current
plot. To change this behavior, use the ’location’ specifier (must be the last two options to the
command)

legend(...,’location’,option)
where option takes on the following possible values

e north,N - top center of plot
e south,S - bottom center of plot
e east,E - middle right of plot
e west,W - middle left of plot
e northeast,NE - top right of plot (default behavior)
e northwest,NW - top left of plot
e southeast,SE - bottom right of plot
e southwest,SW - bottom left of plot

This implementation of legend is incomplete relative to the MATLAB API. The functionality will
be improved in future versions of FreeMat.

23.40 LINE Line Display Function
23.40.1 Usage

The line command has the following general syntax
handle = line(x,y,z,properties...)

where...
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23.41 LINEPROPERTIES Line Series Object Properties

23.41.1 Usage

Below is a summary of the properties for a line series.
e color - colorspec - The color that is used to draw the line.
e children - Not used.
e displayname - The name of this line series as it appears in a legend.
e linestyle- {’-’,’--",7:?,°-.” ’none’} - The style of the line.

e linewidth - scalar - The width of the line.
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e marker - {’+7,%0°,’°%’,’ .’ ’x’, ’square’,’s’,’diamond’,’d’,’"’,’v’,’>?,°<’} - The
marker for data points on the line. Some of these are redundant, as ’square’ ’s’ are syn-

onyms, and ’diamond’ and ’d’ are also synonyms.

e markeredgecolor - colorspec - The color used to draw the marker. For some of the markers
(circle, square, etc.) there are two colors used to draw the marker. This property controls the

edge color (which for unfilled markers) is the primary color of the marker.

e markerfacecolor - colorspec - The color used to fill the marker. For some of the markers

(circle, square, etc.) there are two colors used to fill the marker.

e markersize - scalar - Control the size of the marker. Defaults to 6, which is effectively the

radius (in pixels) of the markers.
e parent - handle - The axis that contains this object.
e tag - string - A string that can be used to tag the object.
e type - string - Returns the string ’line’.

e visible - {’on’,’0off’} - Controls visibility of the the line.

e xdata - vector - Vector of x coordinates of points on the line. Must be the same size as the

ydata and zdata vectors.

e ydata - vector - Vector of y coordinates of points on the line. Must be the same size as the

xdata and zdata vectors.

e zdata - vector - Vector of z coordinates of points on the line. Must be the same size as the

xdata and ydata vectors.

e xdatamode - {’auto’,’manual’} - When set to ’auto’ FreeMat will autogenerate the x
coordinates for the points on the line. These values will be 1,..,N where N is the number of

points in the line.

e userdata - array - Available to store any variable you want in the handle object.
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23.42 LOGLOG Log-Log Plot Function

23.42.1 Usage

This command has the exact same syntax as the plot command:
loglog(<data 1>,{linespec 1},<data 2>,{linespec 2}...,properties...)

in fact, it is a simple wrapper around plot that sets the x and y axis to have a logarithmic scale.

23.42.2 Example

Here is an example of a doubly exponential signal plotted first on a linear plot:

--> x = linspace(1,100);

--> plot(x,y,’r-’);

and now on a log-log plot

--> loglog(x,y,’r=");
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23.43 NEWPLOT Get Handle For Next Plot

23.43.1 Usage
Returns the handle for the next plot operation. The general syntax for its use is
h = newplot

This routine checks the nextplot properties of the current figure and axes to see if they are set to
replace or not. If the figures nextplot property is set to replace, the current figure is cleared. If
the axes nextplot property is set to replace then the axes are cleared for the next operation.

23.44 PCOLOR Pseudocolor Plot

23.44.1 Usage

This routine is used to create a pseudocolor plot of the data. A pseudocolor plot is a essentially a
surface plot seen from above. There are two forms for the pcolor command:

pcolor(C)
which uses a rectangular grid. Alternately, you can specify X,Y matrices or vectors.

pcolor(X,Y,C)

23.45 PLOT Plot Function

23.45.1 Usage

This is the basic plot command for FreeMat. The general syntax for its use is
plot(<data 1>,{linespec 1},<data 2>,{linespec 2}...,properties...)

where the <data> arguments can have various forms, and the linespec arguments are optional. We
start with the <data> term, which can take on one of multiple forms:

e Vector Matrix Case — In this case the argument data is a pair of variables. A set of x coordinates
in a numeric vector, and a set of y coordinates in the columns of the second, numeric matrix.
x must have as many elements as y has columns (unless y is a vector, in which case only the
number of elements must match). Each column of y is plotted sequentially against the common
vector x.

e Unpaired Matrix Case — In this case the argument data is a single numeric matrix y that
constitutes the y-values of the plot. An x vector is synthesized as x = 1:1length(y), and each
column of y is plotted sequentially against this common x axis.

e Complex Matrix Case — Here the argument data is a complex matrix, in which case, the real
part of each column is plotted against the imaginary part of each column. All columns receive
the same line styles.



492 CHAPTER 23. HANDLE-BASED GRAPHICS

Multiple data arguments in a single plot command are treated as a sequence, meaning that all
of the plots are overlapped on the same set of axes. The linespec is a string used to change
the characteristics of the line. In general, the linespec is composed of three optional parts, the
colorspec, the symbolspec and the linestylespec in any order. Each of these specifications is a
single character that determines the corresponding characteristic. First, the colorspec:

e ’r’ - Color Red
e g’ - Color Green
e ’b’ - Color Blue
e ’k’ - Color Black
e ’c’ - Color Cyan
e ’'m’ - Color Magenta
e ’y’ - Color Yellow
The symbolspec specifies the (optional) symbol to be drawn at each data point:
e ’ .’ - Dot symbol
e ’0’ - Circle symbol
e ’x’ - Times symbol
e ’+’ - Plus symbol
e ’x’ - Agterisk symbol
e ’s’ - Square symbol
e ’d’ - Diamond symbol
e ’v’ - Downward-pointing triangle symbol
e ’~’ - Upward-pointing triangle symbol
e ’<’ - Left-pointing triangle symbol
e ’>’ - Right-pointing triangle symbol
The linestylespec specifies the (optional) line style to use for each data series:
e ’-’ - Solid line style
e ’:’ - Dotted line style
e ’— .’ - Dot-Dash-Dot-Dash line style

e ’——’ - Dashed line style
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For sequences of plots, the linespec is recycled with color order determined by the properties of
the current axes. You can also use the properties argument to specify handle properties that will
be inherited by all of the plots generated during this event. Finally, you can also specify the handle
for the axes that are the target of the plot operation.

handle = plot(handle,...)

23.45.2 Example

The most common use of the plot command probably involves the vector-matrix paired case. Here,
we generate a simple cosine, and plot it using a red line, with no symbols (i.e., a linespec of *r-?).

--> x = linspace(-pi,pi);
-—=> vy cos(x);
--> plot(x,y,’r-’);

which results in the following plot.

Next, we plot multiple sinusoids (at different frequencies). First, we construct a matrix, in which
each column corresponds to a different sinusoid, and then plot them all at once.

--> x = linspace(-pi,pi);
-=> y = [cos(x(:)),cos(3*x(:)),cos(5*x(:))];
-=> plot(x,y);

In this case, we do not specify a linespec, so that we cycle through the colors automatically (in
the order listed in the previous section).
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This time, we produce the same plot, but as we want to assign individual linespecs to each
line, we use a sequence of arguments in a single plot command, which has the effect of plotting all
of the data sets on a common axis, but which allows us to control the linespec of each plot. In the
following example, the first line (harmonic) has red, solid lines with times symbols marking the data
points, the second line (third harmonic) has blue, solid lines with right-pointing triangle symbols,
and the third line (fifth harmonic) has green, dotted lines with asterisk symbols.

-=> plot(x,y(:,1), rx-",x,y(:,2), b>=" ,x,y(:,3),7gx:");

The second most frequently used case is the unpaired matrix case. Here, we need to provide
only one data component, which will be automatically plotted against a vector of natural number of
the appropriate length. Here, we use a plot sequence to change the style of each line to be dotted,
dot-dashed, and dashed.

-—> plot(y(:,1),’r:’,y(:,2),°b;’,y(:,3),°gl’);

Note in the resulting plot that the x-axis no longer runs from [-pi,pil, but instead runs from
[1,100].



23.45. PLOT PLOT FUNCTION 495

The final case is for complex matrices. For complex arguments, the real part is plotted against
the imaginary part. Hence, we can generate a 2-dimensional plot from a vector as follows.

--> y = cos(2%x) + i * cos(3*x);
-=> plot(y);

Here is an example of using the handle properties to influence the behavior of the generated lines.

--> t = linspace(-3,3);
-=> plot(cos(5*t) .*exp(-t),’r-’,’linewidth’,3);
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23.46 PLOT3 Plot 3D Function

23.46.1 Usage
This is the 3D plot command. The general syntax for its use is
plot3(X,Y,Z,{linespec 1},X,Y,Z,{linespec 2},...,properties...)

where X Y and Z are the coordinates of the points on the 3D line. Note that in general, all three
should be vectors. If some or all of the quantities are matrices, then FreeMat will attempt to expand
the vector arguments to the same size, and then generate multiple plots, one for each column of
the matrices. The linespec is optional, see plot for details. You can specify properties for the
generated line plots. You can also specify a handle as an axes to target

plot3(handle,...)

23.46.2 Example

Here is a simple example of a 3D helix.

-—> t
-=> x

linspace(0,5%pi,200);
cos(t); y = sin(t); z = t;
-=> plot3(x,y,2z);

-=> view(3);

Shown here

23.47 POINT Get Axis Position From Mouse Click

23.47.1 Usage

Returns information about the currently displayed image based on a use supplied mouse-click. The
general syntax for its use is

t = point
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The returned vector y has two elements:
t=[z,y]

where x,y are the coordinates in the current axes of the click. This function has changed since
FreeMat 1.10. If the click is not inside the active area of any set of axes, a pair of NaNs are
returned.

23.48 PRINT Print a Figure To A File

23.48.1 Usage

This function “prints” the currently active fig to a file. The generic syntax for its use is
print(filename)

or, alternately,
print filename

where filename is the (string) filename of the destined file. The current fig is then saved to the
output file using a format that is determined by the extension of the filename. The exact output
formats may vary on different platforms, but generally speaking, the following extensions should be
supported cross-platform:

¢ jpg, jpeg — JPEG file
e pdf — Portable Document Format file
e png — Portable Net Graphics file

Postscript (PS, EPS) is supported on non-Mac-OSX Unix only. Note that only the fig is printed,
not the window displaying the fig. If you want something like that (essentially a window-capture)
use a seperate utility or your operating system’s built in screen capture ability.

23.48.2 Example

Here is a simple example of how the figures in this manual are generated.

--> x = linspace(-1,1);
-=> y = cos(b*pi*x);

--> plot(x,y,’r-’);

-=> print(’printfigl. jpg’)
-=> print(’printfigl.png’)

which creates two plots printfigl.png, which is a Portable Net Graphics file, and printfigl. jpg
which is a JPEG file.
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o

23.49 PVALID Validate Property Name

23.49.1 Usage

This function checks to see if the given string is a valid property name for an object of the given
type. The syntax for its use is

b = pvalid(type,propertyname)

where string is a string that contains the name of a valid graphics object type, and propertyname
is a string that contains the name of the property to test for.

23.49.2 Example

Here we test for some properties on an axes object.

--> pvalid(’axes’,’type’)

ans =

--> pvalid(’axes’,’children’)

ans =

--> pvalid(’axes’,’foobar’)

ans =
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23.50 SEMILOGX Semilog X Axis Plot Function

23.50.1 Usage

This command has the exact same syntax as the plot command:

semilogx(<data 1>,{linespec 1},<data 2>,{linespec 2}...,properties...)

in fact, it is a simple wrapper around plot that sets the x axis to have a logarithmic scale.

23.50.2 Example

Here is an example of an exponential signal plotted first on a linear plot:

linspace(0,2);
(10) .7y,
--> plot(x,y,’r-’);

-=> x

0 10 20 30 40 50 80 70 a0 20 100

and now with a logarithmic x axis

--> semilogx(x,y,’r-’);

499
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23.51 SEMILOGY Semilog Y Axis Plot Function

23.51.1 Usage

This command has the exact same syntax as the plot command:
semilogy(<data 1>,{linespec 1},<data 2>,{linespec 2}...,properties...)

in fact, it is a simple wrapper around plot that sets the y axis to have a logarithmic scale.

23.51.2 Example

Here is an example of an exponential signal plotted first on a linear plot:

--> x = linspace(0,2);
-->y = 10.0.7x;
-—> plot(X,y, ,I'_’);

and now with a logarithmic y axis

--> semilogy(x,y,’r-’);

o 05 1 15 2 25
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23.52 SET Set Object Property
23.52.1 Usage

This function allows you to change the value associated with a property. The syntax for its use is
set (handle,property,value,property,value,...)

where property is a string containing the name of the property, and value is the value for that
property. The type of the variable value depends on the property being set. See the help for the
properties to see what values you can set.

23.53 SIZEFIG Set Size of an Fig Window

23.53.1 Usage

The sizefig function changes the size of the currently selected fig window. The general syntax for
its use is

sizefig(width,height)

where width and height are the dimensions of the fig window.

23.54 SUBPLOT Subplot Function

23.54.1 Usage

This function divides the current figure into a 2-dimensional grid, each of which can contain a plot
of some kind. The function has a number of syntaxes. The first version

subplot (row, col,num)

which either activates subplot number num, or sets up a subplot grid of size row x col, and then
activates num. You can also set up subplots that cover multiple grid elements

subplot (row,col, [vec])

where vec is a set of indexes covered by the new subplot. Finally, as a shortcut, you can specify a
string with three components

subplot (*mnp’)
or using the alternate notation
subplot mnp

where m is the number of rows, n is the number of columns and p is the index. You can also specify
the location of the subplot explicitly using the syntax

subplot (’position’, [left bottom width height])
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23.54.2 Example
Here is the use of subplot to set up a 2 x 2 grid of plots

--> t = linspace(-pi,pi);

--> subplot(2,2,1)

—--> plot(t,cos(t).*exp(-2*t));
--> subplot(2,2,2);

-=> plot(t,cos(t*2).*exp(-2%t));
--> subplot(2,2,3);

-—> plot(t,cos(t*3).*exp(-2%t));
--> subplot(2,2,4);

-=> plot(t,cos(t*4).*exp(-2%t));

1000 1000

1000 4000
e “

2 [ 2 4 2 0 2 4

Here we use the second form of subplot to generate one subplot that is twice as large.

--> t = linspace(-pi,pi);

--> subplot(2,2,[1,2])

-=> plot(t,cos(t).*exp(-2%t));
--> subplot(2,2,3);

-=> plot(t,cos(t*3).*exp(-2%t));
--> subplot(2,2,4);

-=> plot(t,cos(t*4).*exp(-2%t));

A ——————

-1000
4
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-1000
4
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)
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Note that the subplots can contain any handle graphics objects, not only simple plots.
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-=> t=0:(2%pi/100) : (2*pi);

-=> x=cos (t*2) .*(2+sin(t*3)*.3);
-=> y=sin(t*2) .*(2+sin(t*3)*.3);
--> z=cos(t*3)*.3;

--> subplot(2,2,1)

--> plot(t,x);

--> subplot(2,2,2);

--> plot(t,y);

--> subplot(2,2,3);

--> plot(t,2);

--> subplot(2,2,4);

--> tubeplot(x,y,z,0.14*xsin(t*5)+.29,t,10)
--> axis equal

--> view(3)

o
o

25 25
o
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23.55 SURF Surface Plot Function

23.55.1 Usage

This routine is used to create a surface plot of data. A surface plot is a 3D surface defined by the
xyz coordinates of its vertices and optionally by the color at the vertices. The most general syntax
for the surf function is

h = surf(X,Y,Z,C,properties...)

Where X is a matrix or vector of x coordinates, Y is a matrix or vector of y coordinates, Z is a
2D matrix of coordinates, and C is a 2D matrix of color values (the colormap for the current fig
is applied). In general, X and Y should be the same size as Z, but FreeMat will expand vectors to
match the matrix if possible. If you want the color of the surface to be defined by the height of the
surface, you can omit C

h = surf(X,Y,Z,properties...)

in which case C=Z. You can also eliminate the X and Y matrices in the specification
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h = surf(Z,properties)

in which case they are set to 1:size(Z,2) and 1:size(Y,2) respectively. You can also specify a
handle as the target of the surf command via

h = surf(handle,...)

23.55.2 Example

Here we generate a surface specifying all four components.

--> x = repmat(linspace(-1,1),[100,1]);
-=>r = x.72+y."2;

-=> z = exp(-r*3) .*cos(b*r);

-=> C = r;

--> surf(x,y,z,c)
--> axis equal
--> view(3)

If we allow FreeMat to specify the color component, we see that the colorfield is the same as the
height

--> surf(x,y,z)
--> axis equal
-=> view(3)
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23.56 SURFACEPROPERTIES Surface Object Properties

23.56.1 Usage

Below is a summary of the properties for the axis.

alphadata - vector - This is a vector that should contain as many elements as the surface data
itself cdata, or a single scalar. For a single scalar, all values of the surface take on the same
transparency. Otherwise, the transparency of each pixel is determined by the corresponding
value from the alphadata vector.

alphadatamapping - {’scaled’,’direct’, ’none’} - For none mode (the default), no trans-
parency is applied to the data. For direct mode, the vector alphadata contains values
between @[0,M-1]— where M is the length of the alpha map stored in the figure. For scaled
mode, the alim vector for the figure is used to linearly rescale the alpha data prior to lookup
in the alpha map.

ambientstrength - Not used.
backfacelighting - Not used.

cdata - array - This is either a M x N array or an M x N x 3 array. If the data is M x N the
surface is a scalar surface (indexed mode), where the color associated with each surface pixel
is computed using the colormap and the cdatamapping mode. If the data is M x N x 3 the
surface is assumed to be in RGB mode, and the colorpanes are taken directly from cdata (the
colormap is ignored). Note that in this case, the data values must be between @[0,1]— for
each color channel and each point on the surface.

cdatamapping - {’scaled’,’direct’} - For scaled (the default), the pixel values are scaled
using the clim vector for the figure prior to looking up in the colormap. For direct mode,
the pixel values must be in the range [0,N-1 where N is the number of colors in the colormap.

children - Not used.

diffusestrength - Not used.
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edgealpha - {’flat’,’interp’,’scalar’} - Controls how the transparency is mapped for
the edges of the surface.

edgecolor - {’flat’,’interp’, ’none’,colorspec} - Specifies how the edges are colored.
For *flat’ the edges are flat colored, meaning that the line segments that make up the edges
are not shaded. The color for the line is determined by the first edge point it is connected to.

edgelighting - Not used.

facealpha - {’flat’,’interp’,’texturemap’,scalar} - Controls how the transparency of
the faces of the surface are controlled. For flat shading, the faces are constant transparency.
For interp mode, the faces are smoothly transparently mapped. If set to a scalar, all faces
have the same transparency.

facecolor - {’none’,’flat’,’interp’,colorspec} - Controls how the faces are colored.
For ’none’ the faces are uncolored, and the surface appears as a mesh without hidden lines
removed. For >flat’ the surface faces have a constant color. For ’interp’ smooth shading is
applied to the surface. And if a colorspec is provided, then the faces all have the same color.

facelighting - Not used.

linestyle - {’-?,>-=",7:7,°-.? ’none’} - The style of the line used to draw the edges.
linewidth - scalar - The width of the line used to draw the edges.

marker - {’+’,%0°,’%?,° .’ ’x’ ’square’,’s’,’diamond’,’d’,’"’,’v’,’>’,’<’} - The
marker for data points on the line. Some of these are redundant, as ’square’ ’s’ are syn-

onyms, and ’diamond’ and ’d’ are also synonyms.

markeredgecolor - colorspec - The color used to draw the marker. For some of the markers
(circle, square, etc.) there are two colors used to draw the marker. This property controls the
edge color (which for unfilled markers) is the primary color of the marker.

markerfacecolor - colorspec - The color used to fill the marker. For some of the markers
(circle, square, etc.) there are two colors used to fill the marker.

markersize - scalar - Control the size of the marker. Defaults to 6, which is effectively the
radius (in pixels) of the markers.

meshstyle - {’both’, ’rows’, ’cols} - This property controls how the mesh is drawn for the
surface. For rows and cols modes, only one set of edges is drawn.

normalmode - Not used.

parent - handle - The axis containing the surface.
specularcolorreflectance - Not used.
specularexponent - Not used.

specularstrength - Not used.
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tag - string - You can set this to any string you want.

type - string - Set to the string ’surface’.

userdata - array - Available to store any variable you want in the handle object.
vertexnormals - Not used.

xdata - array - Must be a numeric array of size M x N which contains the x location of each
point in the defined surface. Must be the same size as ydata and zdata. Alternately, you can
specify an array of size 1 x N in which case FreeMat replicates the vector to fill out an M x N
matrix.

xdatamode - {’auto’, ’manual’} - When set to auto then FreeMat will automatically generate
the x coordinates.

ydata - array - Must be a numeric array of size M x N which contains the y location of each
point in the defined surface. Must be the same size as xdata and zdata. Alternately, you can
specify an array of size M x 1 in which case FreeMat replicates the vector to fill out an M x N
matrix.

ydatamode - {’auto’, ’manual’} - When set to auto then FreeMat will automatically generate
the y coordinates.

zdata - array - Must be a numeric array of size M x N which contains the y location of each
point in the defined surface. Must be the same size as xdata and ydata.

visible - {’on’,’off’} - Controls whether the surface is visible or not.

23.57 TEXT Add Text Label to Plot

23.5
Adds

7.1 Usage

a text label to the currently active plot. The general syntax for it is use is either

text(x,y,’label’)

where x and y are both vectors of the same length, in which case the text >label’ is added to the
current plot at each of the coordinates x(i),y(i) (using the current axis to map these to screen
coordinates). The second form supplies a cell-array of strings as the second argument, and allows
you to place many labels simultaneously

text(x,y,{’labell’,’label2’,....})

where the number of elements in the cell array must match the size of vectors x and y. You can also
specify properties for the labels via

handles = text(x,y,{labels},properties...)
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23.57.2 Example

Here is an example of a few labels being added to a random plot:

--> plot(rand(1,4))
--> text([2,3],[0.5,0.5],{’hello’, ’there’})

Here is the same example, but with larger labels:

--> plot(rand(1,4))
--> text([2,3],[0.5,0.5],{’hello’, ’there’}, ’fontsize’,20)

23.58 TEXTPROPERTIES Text Object Properties

23.58.1 Usage

Below is a summary of the properties for a text object.

e boundingbox - four vector - The size of the bounding box containing the text (in pixels).
May contain negative values if the text is slanted.

e children - Not used.

e string - string - The text contained in the label.
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e extent - Not used.

e horizontalalignment - {’left’,’center’,’right’} - Controls the alignment of the text
relative to the specified position point.

e position - three vector - The position of the label in axis coordinates.
e rotation - scalar - The rotation angle (in degrees) of the label.
e units - Not used.

e verticalalignment - {’top’,’bottom’,’middle’} - Controls the alignment fo the text rel-
ative to the specified position point in the vertical position.

e backgroundcolor - colorspec - The color used to fill in the background rectangle for the
label. Normally this is none.

e edgecolor - colorspec - The color used to draw the bounding rectangle for the label. Nor-
mally this is none.

e linewidth - scalar - The width of the line used to draw the border.
e linestyle- {’-’,’--?,2:7,°-. "none’} - The style of the line used to draw the border.

e margin - scalar - The amount of spacing to place around the text as padding when drawing
the rectangle.

e fontangle - {’normal’,’italic’,’oblique’} - The angle of the fonts used for the labels.
e fontsize - scalar - The size of fonts used for the text.

e fontunits - Not used.

e fontweight - {’normal’,’bold’,’light’,’demi’} - The weight of the font used for the label
e visible - {’on’,’0ff’} - Controls visibility of the the line.

e color - colorspec - The color of the text of the label.

e children - Not used.

e parent - The handle of the axis that owns this label.

e tag - string - A string that can be used to tag the object.

e type - string - Returns the string ’text’.

e userdata - array - Available to store any variable you want in the handle object.
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23.59 TITLE Plot Title Function

23.59.1 Usage

This command adds a title to the plot. The general syntax for its use is
title(’label’)

or in the alternate form
title ’label’

or simply
title label

Here label is a string variable. You can also specify properties for the label, and a handle to serve
as a target for the operation

title(handle,’label’ ,properties...)

23.59.2 Example

Here is an example of a simple plot with a title.

-—> x linspace(-1,1);

-=> y = cos(2*pi*x);

--> plot(x,y,’r-’);

--> title(’cost over time’);

which results in the following plot.

cost overtime

We now increase the size of the font using the properties of the label

--> title(’cost over time’,’fontsize’,20);
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cost over time

23.60 TUBEPLOT Creates a Tubeplot

23.60.1 Usage

This tubeplot function is from the tubeplot package written by Anders Sandberg. The simplest
syntax for the tubeplot routine is

tubeplot (x,y,2z)

plots the basic tube with radius 1, where x,y,z are vectors that describe the tube. If the radius of
the tube is to be varied, use the second form

tubeplot (x,y,z,r)

which plots the basic tube with variable radius r (either a vector or a scalar value). The third form
allows you to specify the coloring using a vector of values:

tubeplot(x,y,z,r,v)

where the coloring is now dependent on the values in the vector v. If you want to create a tube plot
with a greater degree of tangential subdivisions (i.e., the tube is more circular, use the form

tubeplot (x,y,z,r,v,s)

where s is the number of tangential subdivisions (default is 6) You can also use tubeplot to calculate
matrices to feed to mesh and surf.

[X,Y,Z]=tubeplot(x,y,z)

returns N x 3 matrices suitable for mesh or surf.

Note that the tube may pinch at points where the normal and binormal misbehaves. It is suitable
for general space curves, not ones that contain straight sections. Normally the tube is calculated
using the Frenet frame, making the tube minimally twisted except at inflexion points.

To deal with this problem there is an alternative frame:

tubeplot(x,y,z,r,v,s,vec)

calculates the tube by setting the normal to the cross product of the tangent and the vector vec. If
it is chosen so that it is always far from the tangent vector the frame will not twist unduly.
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23.60.2 Example
Here is an example of a tubeplot.

-=> £=0:(2*pi/100): (2*pi);

-=> x=cos (t*2) .*(2+sin(t*3)*.3) ;

-=> y=sin(t*2) .*(2+sin(t*3)*.3);

-=> z=cos (t*3)*.3;

--> tubeplot(x,y,z,0.14*sin(t*5)+.29,t,10);

Written by Anders Sandberg, asa@nada.kth.se, 2005

23.61 UICONTROL Create a UI Control object
23.61.1 Usage

Creates a Ul control object and parents it to the current figure. The syntax for its use is
handle = uicontrol(property,value,property,value,...)

where property and value are set. The handle ID for the resulting object is returned. It is
automatically added to the children of the current figure.

23.62 UICONTROLPROPERTIES UI Control Properties
23.62.1 Usage

Below is a summary of the properties for user interface controls.
e backgroundcolor - colorspec - The background color for the widget.
e busyaction - Not used.
e buttondownfcn - Not used.

e callback - string - the callback to execute when the GUI control does its action. Clicking
a button or moving a scroller will cause the callback to be executed. Also, pressing enter in a
text box causes the callback to be executed.
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e cdata - an M x N x 3 array that represents an RGB image to use as the truecolor image
displayed on push bottons or toggle buttons. The values must be between 0 and 1.
e children - Not used.
e createfcn - Not used.
e deletefcn - Not used;

e enable - {’on’,’inactive’,’off’} - For on (the default) the uicontrol behaves normally.
For inactive, it is not operational, but looks the same as on. For off, the control is grayed
out.

e extent - a read only property that contains the extent of the text for the control.

e fontangle - {’normal’,’italic’,’oblique’} - The angle of the fonts used for text labels
(e.g., tick labels).

e fontsize - scalar - The size of fonts used for text labels (tick labels).

e fontunits - Not used.

e fontname - string - The name of the font to use for the widget.

e fontweight - {’normal’,’bold’,’light’,’demi’} - The weight of the font used

e foregroundcolor - colorspec - the foreground color for text.

e handlevisibility - Not used.

e hittest - Not used.

e horizontalalignment - {’left’,’center’,’right} - determines the justification of text.
e interruptible - Not used.

e keypressfcn - functionspec - a string or function handle that is called when a key is pressed
and a uicontrol object has focus.

e listboxtop - a scalar (used only by the listbox style of uicontrols) that specifies which string
appears at the top of the list box.

e max - a scalar that specifies the largest value allowed for the value property. The interpretation
varies depending on the type of the control
— check boxes - specifies what value is set to when the check box is selected.

— edit box - if max-min>1 then the text box allows for multiple lines of input. Otherwise,
it is a single line only.

— list box - if max-min>1 then multiple item selections are allowed. Otherwise, only single
item selections are allowed.

— radio buttons - specifies what value is set to when the radio button is selected.
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— slider - the maximum value the slider can take.

— toggle button - specifies what value is set to when the toggle button is selected.

e min - a scalar that specifies the smallest value for the value property. The interpretation of it
depends on the type of the control

— check boxes - specifies what value is set to when the check box is not selected.

— edit box - if max-min>1 then the text box allows for multiple lines of input. Otherwise,
it is a single line only.

— list box - if max-min>1 then multiple item selections are allowed. Otherwise, only single
item selections are allowed.

— radio buttons - specifies what value is set to when the radio button is not selected.
— slider - the minimum value the slider can take.

— toggle button - specifies what value is set to when the toggle button is not selected.
e parent - the handle of the parent object.

e position - size and location of the uicontrol as a four vector [1eft, bottom, width, height].
If width>height then sliders are horizontal, otherwise the slider is oriented vertically.

e selected - {’on’,’off’} - not used.
e selectionhighlight - {’on’,’off’} - not used.

e sliderstep - a two vector [min_step max_step] that controls the amount the slider value
changes when you click the mouse on the control. If you click the arrow for the slider, the
value changes by min_step, while if you click the trough, the value changes by max_step. Each
value must be in the range [0,1], and is a percentage of the range max-min.

e string - string - the text for the control.

e style - @—'pushbutton’,’toggle’,’radiobutton’,’checkbox’, ’edit’,’text’,’slider’,’frame’,listbox’,’popupn
e tag - string - user specified label.

e tooltipstring - string the tooltip for the control.

e type - string - the text is set to ’uicontrol’.

e uicontextmenu - handle the handle of the uicontextmenu that shows up when you right-click
over the control.

e units - not used.
e userdata - array - any data you want to associate with the control.
e value - The meaning of this property depends on the type of the control:

— check box - set to max when checked, and min when off.
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— list box - set to a vector of indices corresponding to selected items, with 1 corresponding
to the first item in the list.

— pop up menu - set to the index of the item selected (starting with 1)

— radio buttons - set to max when selected, and set to min when not selected.
— sliders - set to the value of the slider

— toggle buttons - set to max when selected, and set to min when not selected.

— text controls, push buttons - do not use this property.

e visible - {’on’,’off’} - controls whether the control is visible or not

23.63 VIEW Set Graphical View

23.63.1 Usage

The view function sets the view into the current plot. The simplest form is
view(n)

where n=2 sets a standard view (azimuth 0 and elevation 90), and n=3 sets a standard 3D view
(azimuth 37.5 and elevation 30). With two arguments,

view(az,el)

you set the viewpoint to azimuth az and elevation el.

23.63.2 Example

Here is a 3D surface plot shown with a number of viewpoints. First, the default view for a 3D plot.

--> x = repmat(linspace(-1,1),[100,1]);
-=>y =x’;

-=>r = x.72+y."2;

-=> z = exp(-r*3) .*cos(5*pix*r);

--> surf(x,y,z);
-—> axis equal
-=> view(3)
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Next, we look at it as a 2D plot

--> surf(x,y,z);
--> axis equal
-=> view(2)

Finally, we generate a different view of the same surface.

--> surf(x,y,z);
--> axis equal
--> view(25,50);

23.64 WINLEYV Image Window-Level Function

23.64.1 Usage

Adjusts the data range used to map the current image to the current colormap. The general syntax
for its use is

winlev(window,level)
where window is the new window, and level is the new level, or
winlev

in which case it returns a vector containing the current window and level for the active image.
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23.64.2 Function Internals

FreeMat deals with scalar images on the range of [0,1], and must therefor map an arbitrary image
x to this range before it can be displayed. By default, the image command chooses

window = maxz — min z,

and .
window

2

This ensures that the entire range of image values in x are mapped to the screen. With the winlev
function, you can change the range of values mapped. In general, before display, a pixel x is mapped

to [0,1] via:
— level
max <O,min (17 w))
window

level =

23.64.3 Examples

The window level function is fairly easy to demonstrate. Consider the following image, which is a
Gaussian pulse image that is very narrow:

--> t = linspace(-1,1,256);

--> xmat = ones(256,1)*t; ymat = xmat’;
-=> A = exp(-(xmat."2 + ymat. 2)*100);
--> image(A);

The data range of A is [0,1], as we can verify numerically:

--> min(A(:))
ans =
1.3839e-87

--> max(A(:))

0.9969

To see the tail behavior, we use the winlev command to force FreeMat to map a smaller range of A
to the colormap.

--> image(A);
-—> winlev(le-4,0.5e-4)
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The result is a look at more of the tail behavior of A. We can also use the winlev function to find
out what the window and level are once set, as in the following example.

--> image(A);
--> winlev(le-4,0.5e-4)
--> winlev

ans =

1.0000e-04

23.65 XLABEL Plot X-axis Label Function

23.65.1 Usage

This command adds a label to the x-axis of the plot. The general syntax for its use is
xlabel(’label’)

or in the alternate form
xlabel ’label’

or simply
xlabel label

Here label is a string variable. You can also specify properties for that label using the syntax

xlabel(’label’,properties...)

23.65.2 Example

Here is an example of a simple plot with a label on the x-axis.

--> x = linspace(-1,1);
-=> y = cos(2*pi*x);
--> plot(x,y,’r-’);
--> xlabel(’time’);

which results in the following plot.
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23.66 XLIM Adjust X Axis limits of plot

23.66.1 Usage

There are several ways to use x1im to adjust the X axis limits of a plot. The various syntaxes are

xlim
x1im([1lo,hi])
x1lim(’auto’)
x1im(’manual’)
x1im(’mode’)
xlim(handle,...)

The first form (without arguments), returns a 2-vector containing the current limits. The second
form sets the limits on the plot to [1o,hi]. The third and fourth form set the mode for the limit to
auto and manual respectively. In auto mode, FreeMat chooses the range for the axis automatically.
The x1im(’mode’) form returns the current mode for the axis (either auto’ or ’manual’). Finally,
you can specify the handle of an axis to manipulate instead of using the current one.

23.66.2 Example

--> x = linspace(-1,1);

-=> y = sin(2*pi*x);

--> plot(x,y,’r-’);

--> xlim % what are the current limits?

which results in
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Next, we zoom in on the plot using the x1im function

-—> plot(x,y,’r-’)
--> x1im([-0.2,0.2])

which results in

23.67 YLABEL Plot Y-axis Label Function
23.67.1 Usage

This command adds a label to the y-axis of the plot. The general syntax for its use is
ylabel(’label’)

or in the alternate form
ylabel ’label’

or simply
ylabel label

You can also specify properties for that label using the syntax

ylabel(’label’,properties...)
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23.67.2 Example
Here is an example of a simple plot with a label on the y-axis.

--> x = linspace(-1,1);
-=> y = cos(2*pi*x);
--> plot(x,y,’r-’);
--> ylabel(’cost’);

which results in the following plot.
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23.68 YLIM Adjust Y Axis limits of plot
23.68.1 Usage

There are several ways to use ylim to adjust the Y axis limits of a plot. The various syntaxes are

ylim
ylim([lo,hi])
ylim(’auto’)
ylim(’manual’)
ylim(’mode’)
ylim(handle,...)

The first form (without arguments), returns a 2-vector containing the current limits. The second
form sets the limits on the plot to [1o,hi]. The third and fourth form set the mode for the limit to
auto and manual respectively. In auto mode, FreeMat chooses the range for the axis automatically.
The ylim(’mode’) form returns the current mode for the axis (either >auto’ or ’manual’). Finally,
you can specify the handle of an axis to manipulate instead of using the current one.

23.68.2 Example

--> x = linspace(-1,1);

-=> y = sin(2*pi*x);

--> plot(x,y,’r-’);

--> ylim Y what are the current limits?
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which results in

Next, we zoom in on the plot using the ylim function

--> plot(x,y,’r-’)
--> y1im([-0.2,0.2])

which results in

02

o
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23.69 ZLABEL Plot Z-axis Label Function

23.69.1 Usage

This command adds a label to the z-axis of the plot. The general syntax for its use is
zlabel(’label’)

or in the alternate form

zlabel ’label’
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or simply
zlabel label
Here label is a string variable. You can also specify properties for that label using the syntax

zlabel(’label’ ,properties...)

23.69.2 Example

Here is an example of a simple plot with a label on the z-axis.

--> t = linspace(0,5*pi);
-—> x = cos(t);

-->y = sin(t);

-=> z =1t;

--> plot3(x,y,z,’r-’);
-=> view(3);

-=> zlabel(’time’);

which results in the following plot.

23.70 ZLIM Adjust Z Axis limits of plot

23.70.1 Usage

There are several ways to use zlim to adjust the Z axis limits of a plot. The various syntaxes are

zlim
zlim([lo,hi])
z1lim(’auto’)
z1lim(’manual’)
z1lim(’mode’)
zlim(handle,...)
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The first form (without arguments), returns a 2-vector containing the current limits. The second
form sets the limits on the plot to [1o,hi]. The third and fourth form set the mode for the limit to
auto and manual respectively. In auto mode, FreeMat chooses the range for the axis automatically.
The z1im(’mode’) form returns the current mode for the axis (either >auto’ or manual’). Finally,
you can specify the handle of an axis to manipulate instead of using the current one.

23.70.2 Example

--> x = linspace(-1,1);

-=> y = sin(2*pi*x);

--> plot(x,y,’r-’);

--> zlim % what are the current limits?

ans =

-0.5000 0.5000

which results in

Next, we zoom in on the plot using the z1im function

-—> plot(x,y,’r-’)
-=> z1im([-0.2,0.2])

which results in
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23.71 7ZOOM Image Zoom Function

23.71.1 Usage

This function changes the zoom factor associated with the currently active image. It is a legacy
support function only, and thus is not quite equivalent to the zoom function from previous versions
of FreeMat. However, it should achieve roughly the same effect. The generic syntax for its use is

zoom(x)
where x is the zoom factor to be used. The exact behavior of the zoom factor is as follows:
e x>0 The image is zoomed by a factor x in both directions.

e x=0 The image on display is zoomed to fit the size of the image window, but the aspect ratio
of the image is not changed. (see the Examples section for more details). This is the default
zoom level for images displayed with the image command.

e x<0 The image on display is zoomed to fit the size of the image window, with the zoom factor
in the row and column directions chosen to fill the entire window. The aspect ratio of the
image is not preserved. The exact value of x is irrelevant.

23.71.2 Example

To demonstrate the use of the zoom function, we create a rectangular image of a Gaussian pulse.
We start with a display of the image using the image command, and a zoom of 1.

--> x = linspace(-1,1,300) >*ones(1,600) ;
ones(300,1)*linspace(-1,1,600);
exp(-(x."2+y.~2)/0.3);

--> image(Z);

--> zoom(1.0);

[
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At this point, resizing the window accomplishes nothing, as with a zoom factor greater than zero,
the size of the image is fixed.

If we change the zoom to another factor larger than 1, we enlarge the image by the specified
factor (or shrink it, for zoom factors 0 < x < 1. Here is the same image zoomed out to 60

--> image(Z);
--> zoom(0.6);

Similarly, we can enlarge it to 130

--> image(Z)
--> zoom(1.3);
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The “free” zoom of x = 0 results in the image being zoomed to fit the window without changing
the aspect ratio. The image is zoomed as much as possible in one direction.

--> image(Z);
-=> zoom(0) ;
--> sizefig(200,400);
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The case of a negative zoom x < 0 results in the image being scaled arbitrarily. This allows the
image aspect ratio to be changed, as in the following example.

--> image(Z);
--> zoom(-1);
--> sizefig(200,400);
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23.72 ZPLANE Zero-pole plot

23.72.1 Usage

This function makes a zero-pole plot of a discrete-time system defined by its zeros and poles. The
various syntaxes are
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zplane(z,p)
where z and p are the zeros and the poles of the system stored as column vectors, or
zplane(b,a)

where a and b are the polynomial coefficients of the numerator and denominator stored as line
vectors (roots is used to find the zeros and poles). The symbol ’o’ represents a zero and the
symbol ’x’ represents a pole. The plot includes the unit circle for reference. Contributed by Paulo
Xavier Candeias under GPL
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Object Oriented Programming

24.1 AND Overloaded Logical And Operator

24.1.1 Usage

This is a method that is invoked to combine two variables using a logical and operator, and is invoked
when you call

¢ = and(a,b)
or for
c=a&b

24.2 CLASS Class Support Function

24.2.1 Usage

There are several uses for the class function. The first version takes a single argument, and returns
the class of that variable. The syntax for this form is

classname = class(variable)

and it returns a string containing the name of the class for variable. The second form of the class
function is used to construct an object of a specific type based on a structure which contains data
elements for the class. The syntax for this version is

classvar = class(template, classname, parentl, parent2,...)

This should be called inside the constructor for the class. The resulting class will be of the type
classname, and will be derived from parentl, parent2, etc. The template argument should be a
structure array that contains the members of the class. See the constructors help for some details
on how to use the class function. Note that if the template argument is an empty structure matrix,
then the resulting variable has no fields beyond those inherited from the parent classes.
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24.3 COLON Overloaded Colon Operator

24.3.1 Usage

This is a method that is invoked in one of two forms, either the two argument version
c = colon(a,b)

which is also called using the notation
c = a:b

and the three argument version
d = colon(a,b,c)

which is also called using the notation

d = a:b:c

24.4 CONSTRUCTORS Class Constructors

24.4.1 Usage

When designing a constructor for a FreeMat class, you should design the constructor to take a
certain form. The following is the code for the sample mat object

function p = mat(a)
if (nargin == 0)
p.c = [1;
p = class(p,’mat’);
elseif isa(a,’mat’)

P = a;
else

p.c = a;

p = class(p,’mat’);
end

Generally speaking when it is provided with zero arguments, the constructor returns a default
version of the class using a template structure with the right fields populated with default values.
If the constructor is given a single argument that matches the class we are trying to construct, the
constructor passes through the argument. This form of the constructor is used for type conversion.
In particular,

p = mat(a)

guarantees that p is an array of class mat. The last form of the constructor builds a class object
given the input. The meaning of this form depends on what makes sense for your class. For example,
for a polynomial class, you may want to pass in the coefficients of the polynomial.
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24.5 CTRANSPOSE Overloaded Conjugate Transpose Op-
erator

24.5.1 Usage

This is a method that is invoked when a variable has the conjugate transpose operator method
applied, and is invoked when you call

c = ctranspose(a)
or

/ c=a’

24.6 EQ Overloaded Equals Comparison Operator
24.6.1 Usage

This is a method that is invoked to combine two variables using an equals comparison operator, and
is invoked when you call

c = eq(a,b)
or for
C = a 3

24.7 GE Overloaded Greater-Than-Equals Comparison Op-
erator

24.7.1 Usage

This is a method that is invoked to combine two variables using a greater than or equals comparison
operator, and is invoked when you call

c = ge(a,b)
or for

c=a>b»o

24.8 GT Overloaded Greater Than Comparison Operator
24.8.1 Usage

This is a method that is invoked to combine two variables using a greater than comparison operator,
and is invoked when you call
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c = gt(a,b)
or for
c=a>b

24.9 HORZCAT Overloaded Horizontal Concatenation

24.9.1 Usage

This is a method for a class that is invoked to concatenate two or more variables of the same class
type together. Besides being called when you invoke

¢ = horzcat(a,b,c)

when a is a class, it is also called for

c [a,b,c]

when one of these variables is a class. The exact meaning of horizontal concatenation depends on
the class you have designed.

24.10 LDIVIDE Overloaded Left Divide Operator

24.10.1 Usage

This is a method that is invoked when two variables are divided and is invoked when you call
¢ = ldivide(a,b)

or for

c=a.\b

24.11 LE Overloaded Less-Than-Equals Comparison Opera-
tor

24.11.1 Usage

This is a method that is invoked to compare two variables using a less than or equals comparison
operator, and is invoked when you call

c = le(a,b)

or for
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24.12 LT Overloaded Less Than Comparison Operator

24.12.1 Usage

This is a method that is invoked to compare two variables using a less than comparison operator,
and is invoked when you call

c = 1t(a,b)
or for
c=a<b

24.13 MINUS Overloaded Addition Operator
24.13.1 Usage

This is a method that is invoked when two variables are subtracted and is invoked when you call
¢ = minus(a,b)
or for

c=a-b>b

24.14 MLDIVIDE Overloaded Matrix Left Divide Operator

24.14.1 Usage

This is a method that is invoked when two variables are divided using the matrix (left) divide
operator, and is invoked when you call

¢ = mldivide(a,b)
or for

c=a\b

24.15 MPOWER Overloaded Matrix Power Operator

24.15.1 Usage

This is a method that is invoked when one variable is raised to another variable using the matrix
power operator, and is invoked when you call

¢ = mpower(a,b)
or

a"b

[¢]
]
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24.16 MRDIVIDE Overloaded Matrix Right Divide Opera-
tor

24.16.1 Usage

This is a method that is invoked when two variables are divided using the matrix divide operator,
and is invoked when you call

¢ = mrdivide(a,b)
or for

c=a/b

24.17 MTIMES Overloaded Matrix Multiplication Operator
24.17.1 Usage

This is a method that is invoked when two variables are multiplied using the matrix operator and
is invoked when you call

c = mtimes(a,b)
or for

c=axb

24.18 NE Overloaded Not-Equals Comparison Operator

24.18.1 Usage

This is a method that is invoked to combine two variables using a not-equals comparison operator,
and is invoked when you call

¢ = ne(a,b)
or for

c=al!=pb

24.19 NOT Overloaded Logical Not Operator

24.19.1 Usage
This is a method that is invoked when a variable is logically inverted, and is invoked when you call
¢ = not(a)

or for
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24.20 OR Overloaded Logical Or Operator

24.20.1 Usage

This is a method that is invoked to combine two variables using a logical or operator, and is invoked
when you call

c = or(a,b)
or for

c=alb

24.21 PLUS Overloaded Addition Operator

24.21.1 Usage

This is a method that is invoked when two variables are added and is invoked when you call
¢ = plus(a,b)
or for

c=a+b

24.22 POWER Overloaded Power Operator

24.22.1 Usage

This is a method that is invoked when one variable is raised to another variable using the dot-power
operator, and is invoked when you call

¢ = power(a,b)
or

c=a.’"b

24.23 RDIVIDE Overloaded Right Divide Operator

24.23.1 Usage

This is a method that is invoked when two variables are divided and is invoked when you call
¢ = rdivide(a,b)
or for

c=a./b
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24.24 SUBSASGN Overloaded Class Assignment

24.24.1 Usage
This method is called for expressions of the form
a(b) = ¢, a{b} = c, a.b = ¢

and overloading the subsasgn method can allow you to define the meaning of these expressions for
objects of class a. These expressions are mapped to a call of the form

a = subsasgn(a,s,b)
where s is a structure array with two fields. The first field is
e type is a string containing either > ()’ or *{}’ or ’.’ depending on the form of the call.
e subs is a cell array or string containing the the subscript information.

When multiple indexing experssions are combined together such as a(5) .foo{:} = b, the s array
contains the following entries

s(1).type = O’ s(1).subs = {5}
s(2).type = 7.7 s(2).subs = ’foo’
s(3).type = *{}’ s(3).subs = ’:’

24.25 SUBSINDEX Overloaded Class Indexing
24.25.1 Usage

This method is called for classes in the expressions of the form
¢ = subsindex(a)

where a is an object, and c is an index vector. It is also called for
c = b(a)

in which case subsindex(a) must return a vector containing integers between 0 and N-1 where N is
the number of elements in the vector b.

24.26 SUBSREF Overloaded Class Indexing
24.26.1 Usage

This method is called for expressions of the form
c = a(b), ¢ = a{b}, ¢ = a.b

and overloading the subsref method allows you to define the meaning of these expressions for
objects of class a. These expressions are mapped to a call of the form
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b = subsref(a,s)
where s is a structure array with two fields. The first field is
e type is a string containing either *> ()’ or {}’ or ’.’ depending on the form of the call.
e subs is a cell array or string containing the the subscript information.

When multiple indexing experssions are combined together such as b = a(5).foo{:}, the s array
contains the following entries

s(1).type = O’ s(1).subs = {5}
s(2).type = 7.7 s(2).subs = ’foo’
s(3).type = *{}’ s(3).subs = ’:’

24.27 TIMES Overloaded Multiplication Operator
24.27.1 Usage

This is a method that is invoked when two variables are multiplied and is invoked when you call
c = times(a,b)
or for

c=a .*xb

24.28 TRANSPOSE Overloaded Transpose Operator

24.28.1 Usage

This is a method that is invoked when a variable has the transpose operator method applied, and
is invoked when you call

¢ = transpose(a)

or

24.29 UMINUS Overloaded Unary Minus Operator
24.29.1 Usage

This is a method that is invoked when a variable is negated, and is invoked when you call
¢ = uminus(a)

or for
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24.30 UPLUS Overloaded Unary Plus Operator
24.30.1 Usage

This is a method that is invoked when a variable is preceeded by a ”+”, and is invoked when you
call

¢ = uplus(a)
or for

c = +a

24.31 VERTCAT Overloaded Vertical Concatenation

24.31.1 Usage

This is a method for a class that is invoked to concatenate two or more variables of the same class
type together. Besides being called when you invoke

c = vertcat(a,b,c)
when a is a class, it is also called for
¢ = [a;b;c]

when one of the variables is a class. The exact meaning of vertical concatenation depends on the
class you have designed.
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Bitwise Operations

25.1 BITAND Bitwise Boolean And Operation

25.1.1 Usage

Performs a bitwise binary and operation on the two arguments and returns the result. The syntax
for its use is

y = bitand(a,b)

where a and b are unsigned integer arrays. The and operation is performed using 32 bit unsigned
intermediates. Note that if a or b is a scalar, then each element of the other array is anded with
that scalar. Otherwise the two arrays must match in size.

25.1.2 Example
Here we AND some arrays together

--> bitand([3 4 2 3 10 12],5)

140104

This is a nice trick to look for odd numbers

--> bitand([3 4 2 3 10 12],1)
ans =

100100

541
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25.2 BITCMP Bitwise Boolean Complement Operation

25.2.1 Usage

Performs a bitwise binary complement operation on the argument and returns the result. The syntax
for its use is

y = bitcmp(a)

where a is an unsigned integer arrays. This version of the command uses as many bits as required
by the type of a. For example, if a is an uint8 type, then the complement is formed using 8 bits.
The second form of bitcmp allows you to specify the number of bits to use,

y = bitcmp(a,n)

in which case the complement is taken with respect to n bits.

25.2.2 Example

Generally, the bitwise complement of a number is known as its ones-complement. Here are some
examples. First we take the binary complement using 8 bits.

-=> bitcmp(uint8(55))
ans =

200

Then the complement using 16 bits

--> bitcmp(uint16(55))
ans =

65480

Finally, we look for the 4 bit complement

-=> bitcmp(3,4)
ans =

12
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25.3 BITOR Bitwise Boolean Or Operation
25.3.1 Usage

Performs a bitwise binary or operation on the two arguments and returns the result. The syntax for
its use is

y = bitor(a,b)

where a and b are unsigned integer arrays. The or operation is performed using 32 bit unsigned
intermediates. Note that if a or b is a scalar, then each element of the other array is ored with that
scalar. Otherwise the two arrays must match in size.

25.3.2 Example

Here we OR some arrays together
--> bitor([3 4 2 3 10 12],5)
ans =

7 5 7 T 15 13

This is a nice trick to look for odd numbers

-=> bitor([3 4 2 3 10 12],1)
ans =

3 5 3 31113

25.4 BITXOR Bitwise Boolean Exclusive-Or (XOR) Opera-
tion

25.4.1 Usage

Performs a bitwise binary xor operation on the two arguments and returns the result. The syntax
for its use is

y = bitxor(a,b)

where a and b are unsigned integer arrays. The xor operation is performed using 32 bit unsigned
intermediates. Note that if a or b is a scalar, then each element of the other array is xored with that
scalar. Otherwise the two arrays must match in size.
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25.4.2 Example

Here we XOR some arrays together

--> bitxor([3 4 2 3 10 12],5)

6 1 7 615 9

This is a nice trick to look for odd numbers

--> bitxor([3 4 2 3 10 12],1)

2 5 3 21113

BITWISE OPERATIONS
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FreeMat Threads

26.1 THREADCALL Call Function In A Thread

26.1.1 Usage

The threadcall function is a convenience function for executing a function call in a thread. The
syntax for its use is

[vall,...,valn] = threadcall(threadid,timeout,funcname,argl,arg2,...)

where threadid is the ID of the thread (as returned by the threadnew function), funcname is the
name of the function to call, and argi are the arguments to the function, and timeout is the amount
of time (in milliseconds) that the function is allowed to take.

26.1.2 Example

Here is an example of executing a simple function in a different thread.

--> id = threadnew
id =
3
--> d = threadcall(id, 1000, ’cos’,1.02343)
d =
0.5204

--> threadfree(id)
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26.2 THREADFREE Free thread resources
26.2.1 Usage

The threadfree is a function to free the resources claimed by a thread that has finished. The syntax
for its use is

threadfree(handle)

where handle is the handle returned by the call to threadnew. The threadfree function requires
that the thread be completed. Otherwise it will wait for the thread to complete, potentially for an
arbitrarily long period of time. To fix this, you can either call threadfree only on threads that are
known to have completed, or you can call it using the syntax

threadfree(handle,timeout)

where timeout is a time to wait in milliseconds. If the thread fails to complete before the timeout
expires, an error occurs.

26.3 THREADID Get Current Thread Handle
26.3.1 Usage

The threadid function in FreeMat tells you which thread is executing the context you are in.
Normally, this is thread 1, the main thread. However, if you start a new thread using threadnew,
you will be operating in a new thread, and functions that call threadid from the new thread will
return their handles.

26.3.2 Example
From the main thread, we have

—--> threadid

ans =

But from a launched auxilliary thread, we have

-=> t_id = threadnew
t_id =
3

--> id = threadcall(t_id, 1000, ’threadid’)
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id =
3

--> threadfree(t_id);

26.4 THREADKILL Halt execution of a thread
26.4.1 Usage

The threadkill function stops (or attempts to stop) execution of the given thread. It works only
for functions defined in M-files (i.e., not for built in or imported functions), and it works by setting
a flag that causes the thread to stop execution at the next available statement. The syntax for this
function is

threadkill (handle)

where handle is the value returned by a threadnew call. Note that the threadkill function returns
immediately. It is still your responsibility to call threadfree to free the thread you have halted.
You cannot kill the main thread (thread id 1).

26.4.2 Example

Here is an example of stopping a runaway thread using threadkill. Note that the thread function
in this case is an M-file function. We start by setting up a free running counter, where we can access
the counter from the global variables.

freecount.m
function freecount
global count
if (Texist(’count’)) count = 0; end % Initialize the counter
while (1)
count = count + 1; % Update the counter
end

We now launch this function in a thread, and use threadkill to stop it:

--> a = threadnew;

--> global count % register the global variable count
--> count = 0;

--> threadstart(a, ’freecount’,0) % start the thread

--> count % it is counting
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39

--> sleep(1)
-=> count

ans =
203664

--> threadkill(a)
--> threadwait(a,1000)

—-=> count
ans =
203720

--> sleep(1)
-—=> count

ans =
203720

--> threadfree(a)

)
%

A
A

A
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Wait a bit
it is still counting

kill the counter
wait for it to finish

The count will no longer increase

26.5 THREADNEW Create a New Thread

26.5.1 Usage

The threadnew function creates a new FreeMat thread, and returns a handle to the resulting thread.
The threadnew function takes no arguments. They general syntax for the threadnew function is

handle = threadnew

Once you have a handle to a thread, you can start the thread on a computation using the threadstart
function. The threads returned by threadnew are in a dormant state (i.e., not running). Once you
are finished with the thread you must call threadfree to free the resources associated with that

thread.

Some additional important information. Thread functions operate in their own context or
workspace, which means that data cannot be shared between threads. The exception is global
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variables, which provide a thread-safe way for multiple threads to share data. Accesses to global
variables are serialized so that they can be used to share data. Threads and FreeMat are a new
feature, so there is room for improvement in the API and behavior. The best way to improve threads
is to experiment with them, and send feedback.

26.6 THREADSTART Start a New Thread Computation
26.6.1 Usage

The threadstart function starts a new computation on a FreeMat thread, and you must provide
a function (no scripts are allowed) to run inside the thread, pass any parameters that the thread
function requires, as well as the number of output arguments expected. The general syntax for the
threadstart function is

threadstart (threadid,function,nargout,argl,arg2,...)

where threadid is a thread handle (returned by threadnew), where function is a valid function
name (it can be a built-in imported or M-function), nargout is the number of output arguments
expected from the function, and argl is the first argument that is passed to the function. Because
the function runs in its own thread, the return values of the function are not available imediately.
Instead, execution of that function will continue in parallel with the current thread. To retrieve
the output of the thread function, you must wait for the thread to complete using the threadwait
function, and then call threadvalue to retrieve the result. You can also stop the running thread
prematurely by using the threadkill function. It is important to call threadfree on the handle
you get from threadnew when you are finished with the thread to ensure that the resoures are
properly freed.

It is also perfectly reasonable to use a single thread multiple times, calling threadstart and
threadreturn multiple times on a single thread. The context is preserved between threads. When
calling threadstart on a pre-existing thread, FreeMat will attempt to wait on the thread. If the
wait fails, then an error will occur.

Some additional important information. Thread functions operate in their own context or
workspace, which means that data cannot be shared between threads. The exception is global
variables, which provide a thread-safe way for multiple threads to share data. Accesses to global
variables are serialized so that they can be used to share data. Threads and FreeMat are a new
feature, so there is room for improvement in the API and behavior. The best way to improve threads
is to experiment with them, and send feedback.

26.6.2 Example

Here we do something very simple. We want to obtain a listing of all files on the system, but do not
want the results to stop our computation. So we run the system call in a thread.

-=> a = threadnew; % Create the thread

--> threadstart(a,’system’,1,’1ls -1rt /’); % Start the thread

--> b = rand(100)\rand(100,1); % Solve some equations simultaneously
--> ¢ = threadvalue(a); % Retrieve the file list

--> size(c) % It is large!
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ans =
22 1

--> threadfree(a);

The possibilities for threads are significant. For example, we can solve equations in parallel, or take
Fast Fourier Transforms on multiple threads. On multi-processor machines or multicore CPUs, these
threaded calculations will execute in parallel. Neat.

The reason for the nargout argument is best illustrated with an example. Suppose we want to
compute the Singular Value Decomposition svd of a matrix A in a thread. The documentation for
the svd function tells us that the behavior depends on the number of output arguments we request.
For example, if we want a full decomposition, including the left and right singular vectors, and a
diagonal singular matrix, we need to use the three-output syntax, instead of the single output syntax
(which returns only the singular values in a column vector):

--> A = float(rand(4))

A =
0.1464 0.9718 0.5050 0.7066
0.8136 0.2183 0.1436 0.5205
0.7036 0.3557 0.4504 0.5723
0.0734 0.0937 0.9466 0.8561
-=> [u,s,v] = svd(d) % Compute the full decomposition
u =
-0.5672 0.2524 0.7754 0.1152
-0.3902 -0.6769 -0.1549 0.6046
-0.4901 -0.3820 -0.1191 -0.7744
-0.5346 0.5764 -0.6004 0.1464
S =
2.0739 0 0 0
0 0.8494 0 0
0 0 0.6947 0
0 0 0 0.1064
V =

-0.3783 -0.8715 -0.2021 -0.2379
-0.4151 0.0185 0.8941 -0.1672
-0.5156 0.4755 -0.3638 -0.6130
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-0.6471 0.1188 -0.1655 0.7347
--> sigmas = svd(A) % Only want the singular values
sigmas =

2.0739
0.8494
0.6947
0.1064

Normally, FreeMat uses the left hand side of an assignment to calculate the number of outputs
for the function. When running a function in a thread, we separate the assignment of the output
from the invokation of the function. Hence, we have to provide the number of arguments at the time
we invoke the function. For example, to compute a full decomposition in a thread, we specify that
we want 3 output arguments:

--> a = threadnew; % Create the thread

--> threadstart(a,’svd’,3,A); % Start a full decomposition
--> [ul,s1,vl] = threadvalue(a); % Retrieve the function values
--> threadfree(a);

If we want to compute just the singular values, we start the thread function with only one output
argument:

--> a = threadnew;
--> threadstart(a,’svd’,1,A);
--> sigmas = threadvalue(a);
--> threadfree(a)

26.7 THREADVALUE Retrieve the return values from a
thread

26.7.1 Usage

The threadvalue function retrieves the values returned by the function specified in the threadnew
call. The syntax for its use is

[argl,arg2,...,argN] = threadvalue(handle)

where handle is the value returned by a threadnew call. Note that there are issues with nargout.
See the examples section of threadnew for details on how to work around this limitation. Because
the function you have spawned with threadnew may still be executing, threadvalue must first
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threadwait for the function to complete before retrieving the output values. This wait may take an
arbitrarily long time if the thread function is caught in an infinite loop. Hence, you can also specify
a timeout parameter to threadvalue as

[argl,arg2,...,argN] = threadvalue(handle,timeout)

where the timeout is specified in milliseconds. If the wait times out, an error is raised (that can be
caught with a try and catch block.

In either case, if the thread function itself caused an error and ceased execution abruptly, then
calling threadvalue will cause that function to raise an error, allowing you to retrieve the error
that was caused and correct it. See the examples section for more information.

26.7.2 Example

Here we do something very simple. We want to obtain a listing of all files on the system, but do not
want the results to stop our computation. So we run the system call in a thread.

--> a = threadnew; % Create the thread

--> threadstart(a,’system’,1,’1ls -1rt /’); % Start the thread

--> b = rand(100)\rand(100,1); % Solve some equations simultaneously
--> ¢ = threadvalue(a); % Retrieve the file list

--> size(c) % It is large!

ans =

22 1

--> threadfree(a);

In this example, we force the threaded function to cause an exception (by calling the error function
as the thread function). When we call threadvalue, we get an error, instead of the return value of
the function

--> a = threadnew

3

--> threadstart(a,’error’,0,’Hello world!’); 7% Will immediately stop due to error
--> ¢ = threadvalue(a) % The error comes to us

Error: Thread: Hello world!

--> threadfree(a)

Note that the error has the text Thread: prepended to the message to help you identify that this
was an error in a different thread.
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26.8 THREADWAIT Wait on a thread to complete execu-
tion

26.8.1 Usage

The threadwait function waits for the given thread to complete execution, and stops execution of
the current thread (the one calling threadwait) until the given thread completes. The syntax for
its use is

success = threadwait(handle)

where handle is the value returned by threadnew and success is a logical vaariable that will be
1 if the wait was successful or 0 if the wait times out. By default, the wait is indefinite. It is better
to use the following form of the function

success = threadwait(handle,timeout)

where timeout is the amount of time (in milliseconds) for the threadwait function to wait before
a timeout occurs. If the threadwait function succeeds, then the return value is a logical 1, and if it
fails, the return value is a logical 0. Note that you can call threadwait multiple times on a thread,
and if the thread is completed, each one will succeed.

26.8.2 Example

Here we lauch the sleep function in a thread with a time delay of 10 seconds. This means that the
thread function will not complete until 10 seconds have elapsed. When we call threadwait on this
thread with a short timeout, it fails, but not when the timeout is long enough to capture the end of
the function call.

-—> a = threadnew;
--> threadstart(a,’sleep’,0,10); % start a thread that will sleep for 10

--> threadwait (a,2000) % 2 second wait is not long enough
ans =

0

--> threadwait(a, 10000) % 10 second wait is long enough
ans =

1

--> threadfree(a)
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Chapter 27

Function Related Functions

27.1 INLINE Construct Inline Function
27.1.1 Usage

Constructs an inline function object. The syntax for its use is either
y = inline(expr)

which uses the symvar function to identify the variables in the expression, or the explicit form
y = inline(expr,varl,var2,...,varn)

where the variables are explicitly given. Note that inline functions are only partially supported in
FreeMat. If you need features of the inline function that are not currently implemented, please file
a feature request at the FreeMat website.

27.1.2 Example

Here we construct an inline expression using the autodetection of symvar
--> a = inline(’x"2’)
a =
inline function object
f(x) = x72
-=> a(3d)

ans =

--> a(i)

555
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-1.0000 + 0.0000i

In this case, we have multiple arguments (again, autodetected)

--> a = inline(’x+y-cos(x+y)’)

a =
inline function object
f(x,y) = x+y-cos(x+y)
-=> a(pi,-pi)

ans =

-1

In this form, we specify which arguments we want to use (thereby also specifying the order of the
arguments

--> a = inline(’x+t-sin(x)’,’x’,’t’)
a =
inline function object

f(x,t) = x+t-sin(x)
--> a(0.5,1)

ans =

1.0206

Inline objects can also be used with feval

--> a = inline(’cos(t)’)

a:
inline function object
f(t) = cos(t)

--> feval(a,pi/2)

ans =
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6.1230e-17

27.2 SYMVAR Find Symbolic Variables in an Expression
27.2.1 Usage

Finds the symbolic variables in an expression. The syntax for its use is
syms = symvar (expr)

where expr is a string containing an expression, such as ’x"2 + cos(t+alpha)’. The result is a cell
array of strings containing the non-function identifiers in the expression. Because they are usually
not used as identifiers in expressions, the strings *pi’,’inf’,’nan’,’eps’,’i’,’j’ are ignored.

27.2.2 Example

Here are some simple examples:
--> symvar (’x"2+sqrt(x)’) % sqrt is eliminated as a function
ans =
’x’]
--> symvar (’pi+3’) % No identifiers here
ans =
(]
--> symvar(’x + t*alpha’) % x, t and alpha

ans =

[’alpha’] [’t’] [’x’]
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Chapter 28

FreeMat External Interface

28.1 CENUM Lookup Enumerated C Type

28.1.1 Usage

The cenum function allows you to use the textual strings of C enumerated types (that have been
defined using ctypedefine) in your FreeMat scripts isntead of the hardcoded numerical values. The
general syntax for its use is

enum_int = cenum(enum_type,enum_string)

which looks up the integer value of the enumerated type based on the string. You can also supply
an integer argument, in which case cenum will find the matching string

enum_string = cenum(enum_type,enum_int)

28.2 CTYPECAST Cast FreeMat Structure to C Structure

28.2.1 Usage

The ctypecast function is a convenience function for ensuring that a FreeMat structure fits the
definition of a C struct (as defined via ctypedefine. It does so by encoding the structure to a byte
array using ctypefreeze and then recovering it using the ctypethaw function. The usage is simply

s = ctypecast(s,typename)
where s is the structure and typename is the name of the C structure that describes the desired layout

and types for elements of s. This function is equivalent to calling ctypefreeze and ctypethaw in
succession on a FreeMat structure.

559
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28.3 CTYPEDEFINE Define C Type

28.3.1 Usage

The ctypedefine function allows you to define C types for use with FreeMat. Three variants of
C types can be used. You can use structures, enumerations, and aliases (typedefs). All three are
defined through a single function ctypedefine. The general syntax for its use is

ctypedefine(typeclass,typenane,...)

where typeclass is the variant of the type (legal values are ’struct’, ’alias’, ’enum’). The
second argument is the name of the C type. The remaining arguments depend on what the class of
the typedef is.

To define a C structure, use the >struct’ type class. The usage in this case is:

ctypedefine(’struct’,typename,fieldl,typel,field2,type2,...)

The argument typename must be a valid identifier string. Each of of the field arguments is also a
valid identifier string that describe in order, the elements of the C structure. The type arguments
are typespecs. They can be of three types:

e Built in types, e.g. uint8’ or ’double’ to name a couple of examples.

e C types that have previously been defined with a call to ctypedefine, e.g. mytype’ where
‘mytype’ has already been defined through a call to ctypedefine.

e Arrays of either built in types or previously defined C types with the length of the array coded
as an integer in square brackets, for example: >uint8[10]°’ or >double[1000]’.

To define a C enumeration, use the ’enum’ type class. The usage in this case is: ctypede-
fine(’enum’,typename,namel,valuel,name2 value2,...) @] The argument typename must be a valid
identifier string. Each of the name arguments must also be valid identifier strings that describe the
possible values that the enumeration can take an, and their corresponding integer values. Note that
the names should be unique. The behavior of the various cenum functions is undefined if the names
are not unique.

To define a C alias (or typedef), use the following form of ctypedefine:

ctypedefine(’alias’,typename,aliased_typename)

where aliased_typename is the type that is being aliased to.

28.4 CTYPEFREEZE Convert FreeMat Structure to C Type

28.4.1 Usage

The ctypefreeze function is used to convert a FreeMat structure into a C struct as defined by a
C structure typedef. To use the cstructfreeze function, you must first define the type of the C
structure using the ctypedefine function. The ctypefreeze function then serializes a FreeMat
structure to a set of bytes, and returns it as an array. The usage for ctypefreeze is
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byte_array = ctypefreeze(mystruct, ’typename’)

where mystruct is the array we want to ’freeze’ to a memory array, and typename is the name of
the C type that we want the resulting byte array to conform to.

28.5 CTYPENEW Create New Instance of C Structure

28.5.1 Usage

The ctypenew function is a convenience function for creating a FreeMat structure that corresponds
to a C structure. The entire structure is initialized with zeros. This has some negative implications,
because if the structure definition uses cenums, they may come out as ’unknown’ values if there are
no enumerations corresponding to zero. The use of the function is

a = ctypenew(’typename’)

which creates a single structure of C structure type ’typename’. To create an array of structures,
we can provide a second argument

a = ctypenew(’typename’,count)

where count is the number of elements in the structure array.

28.6 CTYPEPRINT Print C Type

28.6.1 Usage

The ctypeprint function prints a C type on the console. The usage is
ctypeprint (typename)

where typename is a string containing the name of the C type to print. Depending on the class of
the C type (e.g., structure, alias or enumeration) the ctypeprint function will dump information
about the type definition.

28.7 CTYPEREAD Read a C Structure From File

28.7.1 Usage

The ctyperead function is a convenience function for reading a C structure from a file. This
is generally a very bad idea, as direct writing of C structures to files is notoriously unportable.
Consider yourself warned. The syntax for this function is

a = ctyperead(fid, ’typename’)

where ’typename’ is a string containing the name of the C structure as defined using ctypedefine,
and fid is the file handle returned by the fopen command. Note that this form will read a single
structure from the file. If you want to read multiple structures into an array, use the following form
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a = ctyperead(fid,’typename’,count)

Note that the way this function works is by using ctypesize to compute the size of the structure,
reading that many bytes from the file, and then calling ctypethaw on the resulting buffer. A
consequence of this behavior is that the byte-endian corrective behavior of FreeMat does not work.

28.8 CTYPESIZE Compute Size of C Struct

28.8.1 Usage

The ctypesize function is used to compute the size of a C structure that is defined using the
ctypedefine function. The usage of ctypesize is

size = ctypesize(’typename’)

where typename is the name of the C structure you want to compute the size of. The returned count
is measured in bytes. Note that as indicated in the help for ctypedefine that FreeMat does not
automatically pad the entries of the structure to match the particulars of your C compiler. Instead,
the assumption is that you have adequate padding entries in your structure to align the FreeMat
members with the C ones. See ctypedefine for more details. You can also specify an optional count
parameter if you want to determine how large multiple structures are

size = ctypesize(’typename’,count)

28.9 CTYPETHAW Convert C Struct to FreeMat Structure

28.9.1 Usage

The ctypethaw function is used to convert a C structure that is encoded in a byte array into a
FreeMat structure using a C structure typedef. To use the ctypethaw function, you must first
define the type of the C structure using the ctypedefine function. The usage of ctypethaw is

mystruct = ctypethaw(byte_array, ’typename’)

where byte_array is a uint8 array containing the bytes that encode the C structure, and typename
is a string that contains the type description as registered with ctypedefine. If you want to retrieve
multiple structures from a single byte array, you can specify a count as

mystruct = ctypethaw(byte_array, ’typename’, count)

where count is an integer containing the number of structures to retrieve. Sometimes it is also
useful to retrieve only part of the structure from a byte array, and then (based on the contents of
the structure) retrieve more data. In this case, you can retrieve the residual byte array using the
optional second output argument of ctypethaw:

[mystruct,byte_array_remaining] = ctypethaw(byte_array, ’typename’,...)
y y y g yp y y yp
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28.10 CTYPEWRITE Write a C Typedef To File
28.10.1 Usage

The ctypewrite function is a convenience function for writing a C typedef to a file. This is generally
a very bad idea, as writing of C typedefs to files is notoriously unportable. Consider yourself warned.
The syntax for this function is

ctypewrite(fid,a,’typename’)

where a is the FreeMat typedef to write, >typename’ is a string containing the name of the C typedef
to use when writing the typedef to the file (previously defined using ctypedefine), and fid is the
file handle returned by fopen.

28.11 IMPORT Foreign Function Import

28.11.1 Usage

The import function allows you to call functions that are compiled into shared libraries, as if they
were FreeMat functions. The usage is

import (libraryname ,symbol,function,return, arguments)

The argument libraryname is the name of the library (as a string) to import the function from.
The second argument symbol (also a string), is the name of the symbol to import from the library.
The third argument function is the the name of the function after its been imported into Freemat.
The fourth argument is a string that specifies the return type of the function. It can take on one of
the following types:

e 'uint8’ for an unsigned, 8-bit integer.

e 'int8 for a signed, 8-bit integer.

e ’'uintl6’ an unsigned, 16-bit integer.

e ’'intl6’ a signed, 16-bit integer.

e ’uint32’ for an unsigned, 32-bit integer.
e ’'int32’ for a signed, 32-bit integer.

e ’single’ for a 32-bit floating point.

e ’double’ for a 64-bit floating point.

e ’void’ for no return type.

The fourth argument is more complicated. It encodes the arguments of the imported function using
a special syntax. In general, the argument list is a string consisting of entries of the form:

type [optional bounds check] {optional &}name
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Here is a list of various scenarios (expressed in ’C’), and the corresponding entries, along with
snippets of code.
Scalar variable passed by value: Suppose a function is defined in the library as

int fooFunction(float t),

i.e., it takes a scalar value (or a string) that is passed by value. Then the corresponding argument
string would be

’float t’

For a C-string, which corresponds to a function prototype of
int fooFunction(const char *t),

the corresponding argument string would be
’string t’

Other types are as listed above. Note that FreeMat will automatically promote the type of scalar
variables to the type expected by the C function. For example, if we call a function expecting a
float with a double or int16 argument, then FreeMat will automatically apply type promotion
rules prior to calling the function.

Scalar variable passed by reference: Suppose a function is defined in the library as

int fooFunction(float *t),

i.e., it takes a scalar value (or a string) that is passed as a pointer. Then the corresponding argument
string would be

’float &t’

If the function fooFunction modifies t, then the argument passed in FreeMat will also be modified.

Array variable passed by value: In C, it is impossible to distinguish an array being passed from
a simple pointer being passed. More often than not, another argument indicates the length of the
array. FreeMat has the ability to perform bounds-checking on array values. For example, suppose
we have a function of the form

int sum_onehundred_ints(int *t),

where sum_onehundred_ints assumes that t is a length 100 vector. Then the corresponding FreeMat
argument is

’float32[100] t’.

Note that because the argument is marked as not being passed by reference, that if sub_onehundred_ints
modifies the array t, this will not affect the FreeMat argument. Note that the bounds-check expres-
sion can be any legal scalar expression that evaluates to an integer, and can be a function of the
arguments. For example to pass a square N x N matrix to the following function:

float determinantmatrix(int N, float *A),

we can use the following argument to import:
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’int32 N, float[N*N] t’.

Array variable passed by reference: If the function in C modifies an array, and we wish this to
be reflected in the FreeMat side, we must pass that argument by reference. Hence, consider the

following hypothetical function that squares the elements of an array (functionally equivalent to
2
x.%):

void squarearray(int N, float *A)
we can use the following argument to import:
’int32 N, float[N] &A’.

Note that to avoid problems with memory allocation, external functions are not allowed to return
pointers. As a result, as a general operating mechanism, the FreeMat code must allocate the proper
arrays, and then pass them by reference to the external function.

28.11.2 Example

Here is a complete example. We have a C function that adds two float vectors of the same length,
and stores the result in a third array that is modified by the function. First, the C code:

addArrays.c
void addArrays(int N, float *a, float *b, float *c) {
int i;

for (i=0;i<N;i++)
cli] = al[i] + bl[il;
}

We then compile this into a dynamic library, say, add.so. The import command would then be:

import(’add.so’,’addArrays’, ’addArrays’, ’void’,
’int32 N, float[N] a, float[N] b, float[N] &c’);

We could then exercise the function exactly as if it had been written in FreeMat. The following only
works on systems using the GNU C Compiler:

--> if (strcmp(computer,’MAC’)) system(’gcc -bundle -flat_namespace -undefined suppress -o add.so addAr;
--> if ("strcmp(computer,’MAC’)) system(’gcc -shared -fPIC -o add.so addArrays.c’); end;

--> import(’add.so’,’addArrays’,’addArrays’,’void’,’int32 N, float[N] a, float[N] b, float[N] &c’);
-->a = [3,2,3,1];

-->b [5,6,0,2];

--> ¢ = [0,0,0,0];

--> addArrays(length(a),a,b,c)
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28.12 LOADLIB Load Library Function

28.12.1 Usage

The loadlib function allows a function in an external library to be added to FreeMat dynamically.
This interface is generally to be used as last resort, as the form of the function being called is assumed
to match the internal implementation. In short, this is not the interface mechanism of choice. For
all but very complicated functions, the import function is the preferred approach. Thus, only a very
brief summary of it is presented here. The syntax for loadlib is

loadlib(libfile, symbolname, functionname, nargin, nargout)

where libfile is the complete path to the library to use, symbolname is the name of the symbol
in the library, functionname is the name of the function after it is imported into FreeMat (this is
optional, it defaults to the symbolname), nargin is the number of input arguments (defaults to 0),
and nargout is the number of output arguments (defaults to 0). If the number of (input or output)
arguments is variable then set the corresponding argument to -1.



