LAMMPS Users Manual

Large-scale Atomic/Molecular Massively Parallel Simulator

http://lammps.sandia.gov - Sandia National Laboratories
Copyright (2003) Sandia Corporation. This software and manual is distributed under the GNU General Public License.

LAMMPS Users Manual

Table of Contents

LAMMPS DOCUMENEALION. . ..cuvitieereientenieetenteeteeitete sttt et sttt ste bt et ete st ebe et stesetestentesbeessensesbesbeensensene 1
VETSION IOttt ettt b e s bt eae et st e bt et e naesueeaeennenre e 1
L INEEOAUCHION. ...ttt sttt st ettt st et a e bt et sb e sbe et e b s b eaeenae b 4

1.1 What is LAMMPS ..ottt ettt st s nae e 4
1.2 LAMMPS fEATUTES.vevieieeiieiintieitetesit ettt ettt sttt sttt ettt sttt sae st sbesbe st enenae e 5
GENETAL fEALUTES. ... ettt ettt ettt st ettt st e be s bt et et eae e e naenaes 5
Particle and MOAE] Y PES......ccuiiiiiieiiieie ettt ettt ettt ettt et b e bbb 5
FOTCE FIRLAS. ... ettt ettt ettt sttt s b e ettt enaenaes 5
ATOIMN CTEALION ...ttt ettt ettt ettt ettt sb sttt b et e e sb e bt et e bt sheestebesbeebeente bt eaeennenaenaes 6
Ensembles, constraints, and boundary CONitions............cc.eerueerieerienieniienieieenie e 6
TEEZTALOTS. ..ottt ettt sttt e ettt et esbb e sab e e sabeeeabeeenbaeenbbeenabeenateas 7
DEAGNOSTICS -ttt ettt ettt ettt ettt et e bt e bt et e e bt e bt e bt e bt e bt e bt e bt e b e enbeenbeebeenee 7
OULPUL. ..ttt ettt et e et e ettt e bt e e bt e e sb bt e sbbeesbbeesabeeeabeeebbe e bbeenbbeesabeesabeesabeeans 7
MUlti-replica MOAEISoiiiiiiiie ettt ettt e b e bt e b et ebeeee e 7
Pre- and POSt-PrOCESSINZeeuvteieeieite ettt ettt ettt ettt ettt et e bt et et e e bt e bt e bt e bt e bt enbeeteeseenee 7
SPECIAlIZEA TERALUTES. ... ettt ettt ettt ettt et ettt e et e eabeeateenees 7
1.3 LAMMPS NON-{EALUTEScvventiiieiteieniiritetetesteeiteteste ettt ettt sttt et st sbe et naesre e 8
1.4 Open Source diStrIDULION........ccuirutrtirtiririetetenieeetee ettt ettt et bbbt enaesae e 9
1.5 Acknowledgments and CItAtIONS........ccueeueruieiieie ettt ettt et sttt st s tesaee s e 10
2. GOING STATTEA ...ttt ettt ettt ettt et e e et e s ateea e e eatesabesatesatesatesateeasesaeesaeesnnens 12
2.1 What's in the LAMMPS diStriDUtION.c..coueeiiriiniiieiiniiniietccnetece e e 12
2.2 Making LAMMPSoiiee ettt sttt st st 13
2.3 Making LAMMPS with optional packages...........ccceeueriririerininieieneneneeiene e 19
2.4 Building LAMMPS via the MaKe.pY SCIIPL.....cccuiiiiriiiiieieeie ettt 22
2.5 Building LAMMPS a8 @ IIDTATY.......coiouiiiiiiieiieee e 23
2.6 Running LAMMPS ...ttt ettt st 24
2.7 CommMANd-1INE OPLIONS .. .eeiuiieuiiiiiiiiie ettt ettt ettt et et e et ea e et e st e st e eatesatesateeseesaaesanesneenas 25
2.8 LAMMPS SCIEEN OULPUL.......euiiiiiiiieiieiiie ettt sttt st s s s e s s e s 29
2.9 Tips for users of previous LAMMPS VEISIONS.......cccccueriririenieninieienienienieeienre et 30
3 COMIMANGS ...ttt ettt ettt st s e et e et e st e saeesanesaneeaeesanesaeesanesane e 32
3.1 LAMMPS I0PULE SCIIPL.wtutieuiteiiteiie ittt ettt ettt ettt ettt et st st e sate st e et e eseesiaesaaesneeeas 32
3.2 ParSING TUIBS ...ttt ettt ettt st e e et et e it e sateeatesate et e eseesanesanesaeeeas 33
3.3 TNPUL SCTIPE SEITUCTUTR. ...ttt ettt ettt ettt ettt ettt e it e seteeateeateeatesatesaeeeateeaeesaeessaesanesanesnnenas 33
3.4 Commands [iStEd DY CAtBZOTY......ueiuuiriiriieiieie ettt ettt et ettt saae s 35
3.5 Individual COMMANAS.....c..erueriiriirieiieiene ettt ettt sttt ettt b e s be b e ene 35
X SEY @Sttt ettt ettt et ettt et et et e be et et et s 36
COMPULE SEYLES ..ttt et e bt e e sab e sttt st eebeeenbbeesabeesabeeeane 37
Pair_SEYLE POLENTIALS.....ceueiiiiieieie ettt ettt ettt ettt ettt et e ae e s 37
Bond_Style POLENTIALS.....co.eeiiriiriiiiitiieet ettt s 39
ANgle_Style POLENTIALSc..eeiiiiiieiiiiii ettt ettt e 39
Dihedral_style POtENtIAlS.......cc.eveeiiriiririeieniiriet ettt ettt sttt saeeaeens 39
IMProper_style POtENTIALS.c..eitieie ettt ettt ettt ettt 40
KISPACE SOLVETS. ..ttt sttt ettt et e sab e st esabeeebeeenaees 40
A PaACKAZES. ¢ttt st e b e s bt e s bt e et e e b et ebaeenbbeesabee s 41
4.1 Standard PACKAESveeieiieeie ettt et ettt ettt ettt et eane s 41
4.2 USET PACKAZES. ... uteeuteeite ettt ettt ettt ettt et et e et et e e bt e bt enbeenbeebeentean 42
USER-MISC PACKAZE. ...ttt ettt et ettt ettt ettt ettt eaeenee s 43

USER-ATC PACKAZE. ...ttt ettt sttt sttt et e st esabee e 43

LAMMPS Users Manual

Table of Contents

USER-AWPMD PACKAZE.eeeitieiiieiiiiiiieete ettt ettt et ettt ettt sttt e bt e e sateesabeeeane 44
USER-COLVARS PACKAZE. ...ccueeeuteeieeieeieee ettt ettt ettt ettt ettt ettt et eae e s 44
USER-CG-CMM PACKAZE.eeeueeeuieeiieeieete ettt ettt ettt ettt ettt ettt e e bt e bt et enbeeaeeneeas 45
USER-CUDA PACKAZE. ... ettt ettt ettt et ettt ettt ettt ettt e e e bt e bt e beeabeenbeenneeneean 45
USER-EFF PACKAZE. ...ttt ettt ettt ettt ettt ettt ettt ae et s 45
USER-EWALDN PACKAZE......ccutteuiiiiiiiiettee ettt ettt ettt ettt ettt e s 46
USER-OMP PACKAZE.e ettt ettt ettt ettt et ettt ettt eae et s 46
USER-REAXC PACKAZE. ...ceuttteitieiiieiiie ettt sttt ettt et sttt sttt et e e bt e e sabeesabeesane 47
USER-SPH PACKAZE. ...ttt ettt et et ettt ettt ettt ettt e e enee s 47
5. Accelerating LAMMPS Performance.cocueeuiiiiiiieiieieeeeie ettt 48
5.1 Measuring PEITOITNANCE.eeutetteiieiiete ettt ettt ettt ettt ettt et e e e bt e beeabeenbeenaeeneeas 48
5.2 GENETAL SITALEZICS ..c.veveeueitirieeitetinte ettt sttt et ettt et et bt bt et bt bt esae bt b e ebeesbenbesbeeanentesaeeneens 49
5.3 Packages with optimized StYIES.......ccceevueriiririeiiiniiiciecreetee et 49
5.4 OPT PACKAZE. ...ttt ettt et ettt et ettt et e bt et e eaeentean 50
5.5 USER-OMP PACKAZE.....c.ueeeutieuiieiieie ettt ettt ettt ettt ettt et e e s 50
5.0 GPU PACKAZE.....ceueeeeieieee ettt ettt ettt ettt ettt et enae et s 52
5.7 USER-CUDA PACKAZE......couetiuiiiiiiiiete ettt ettt ettt ettt et ettt et enee s 54
5.8 Comparison of GPU and USER-CUDA packages..........ccceceeriiriiieiiieiiiiiieieececeeeeeieeee 56
6. HOW-L0 QISCUSSIONS ..utitiiieuteierieeitetente ettt ettt ettt ettt et et sa et e et e ebe et e s bt sbeesaeaeebeeeeeste et eaeennen 58
6.1 Restarting @ SIMUIATION.c...eoiiiiiiii ittt ettt st s saaesaae s 58
6.2 2d SIMUIALIONS. c..c.eveiieiientisteetee sttt et ettt ettt sttt b ebe et enbesbeebeesbenbeebeene 60
6.3 CHARMM, AMBER, and DREIDING force fields..........cccceeerimirnenininieninenecicienceene 60
6.4 Running multiple simulations from one iNPUt SCIIPL........eerviriiiiiriiiie e 61
6.5 Multi-replica STMUIATIONS.cc..iiiiiiiiie ettt et ettt st saae s eae 63
6.6 Granular MOAEIScoveiiriririee ettt ettt et sb st sb e sbe e be b b ene 63
6.7 TIP3P Watel MOTEL.....cc.eitiriiiiiiiriiiieee ettt ettt sttt b e st ene 64
6.8 TIPAP Water MOUEL.....ccuiitiriiiiiiiitiiietee ettt ettt st b e s be e ene 65
6.9 SPC Water MOAEL......c.cooiiiiiiiiiiiiiiteee ettt bttt 66
6.10 Coupling LAMMPS t0 Other COAES.ceuiriiiiiiiiiiieie ettt 67
6.11 Visualizing LAMMPS SNaPShOLS.......cooiiiiiiiieieei ettt 68
6.12 Triclinic (non-orthogonal) siMulation DOXES..........cccueruiririeriirinieienenieeeeenre e 69
6.13 NEMD SIMUIALONS. ..ottt sttt ettt ettt sttt sbesbe e etesbe e ene 73
6.14 Extended spherical and aspherical partiCles...........occcooiiiiiiiiiiiiiiiiieee e 73
6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)...........cccccecuervueriennenne 76
6.16 Thermostatting, barostatting, and computing teMPETatUre.............ceouerueruerierienieriesieeeenne 80
0. 17 WALLS....oiiiiiiieiieitet ettt et ettt b et e sb ettt bttt b e sh et be et enee 82
6.18 ElAStiC COMSLANLSccuteutitiriieiietirteeitetente sttt ettt ettt et et saesbt s et st ebe e s e st e sbeebaenbenbeeaeene 83
6.19 Library interface to LAMMPS.........cccooiiiiiiiiietccrteee et 84
6.20 Calculating thermal CONAUCHIVILY........ceuiriiriieiiiie ettt 85
6.21 CalCUlating VISCOSILY...ccuveeuiieuiieiieite ettt ettt ettt ettt sttt et st e st e sate st e st e eaaesaaesanesneeeas 86
7. EXQMPLE PIODIEIINS. . .ceeiiiriiiiiiiiiieit ettt sttt ettt ettt sa e sttt st s 89
8. Performance & SCalability........ccc.cvirieiiriiniiieienereeeeee ettt 91
9. AddItIONAL TOOIS...c..eueeiiiiiitieiteteeet ettt sttt sttt sttt s 92
AMDET2IMP LOOL...eeiiiiiieiieiirte ettt sttt ettt b e sb et et 92
DINATY2EXE EOOL. . etiiiiiiiieete ettt ettt et ettt b e sttt st a e eanen 93
Ch2IMIP TOOL ..ttt st b e sttt b e ebe b e sbesbe et entesbeeneens 93
CRAII EOOL. ...ttt ettt et st ebt et bt bttt b e b e nbesbe et entesbeebeens 93
CTEALEALOINS LOOL...e.uteutiiiriieititi ettt ettt ettt ettt ettt be et et sb e e et bt ebe e b e nbesbeeasentesaeeneens 93

10.

11.

13.

LAMMPS Users Manual

Table of Contents

data2XMOVIE TOOL..c..eeuiiiiiieiiiiiiteetctete ettt ettt sttt ettt ettt b et sb e sbe et et saeeaeens 94
€am database LOOL.....c..couiiiiiiiiiiieie ettt sttt s 94
€AIM ZENETALE TOOL. ..ottt et ettt et ettt 94
BEF LOOL. ettt bbbttt sheeaeen 94
EINACS TOOL. vttt ettt et ettt b ettt b et s h e ebe et bbb e et bt ebe ettt ae b e tesbeeaeens 94
PP TOOL ittt et bt b e e bttt b et b et be et sheebeens 94
IMP2AIC TOOL....ceiiiiieiie ettt ettt et et e 95
IMP2CEZ LOOL ittt ettt ettt sttt e 95
IMP2VINA EOOL...ceiiiieiiiiertietete ettt ettt sttt ettt sb et eb e bt eae bbb et saeeaeens 95
INALIAD TOOL. .. ettt ettt st b e ettt b ettt et sheeneens 95
IECEILE2A LOOL....c.iiieiiiiiiecc ettt sttt b ettt b et a e bbb e st saeebeens 95
MSIZIMP LOOL ...ttt sttt ettt b et ea e st sttt b ebeens 95
PYMOI_ASPhere t00L......coc.iiiiiiiii e 96
PYTRON TOOL ...ttt et et e 96
TEAX TOOL .ttt ettt ettt ettt b ettt e b ettt b bt h e bt et b e bt bt et b e e et e a bt eanen 96
TESLATt2AALA TOOL..c..iuiiiiiiieit ettt ettt ettt et b e ettt st eanen 96
ThETMNO_ EXITACE TOOL...ciiiiiiiiiiiie i e e ettt et e e e e e e eeeeeeeeeeeeaeeeeeeeeeeeens 97
VAL EOOL .ttt ettt sttt b e s bt ettt b et b e bbb tesheeaeens 97
XIMIOVIE TOOL ...ttt sttt ettt ettt et st ebe et b e eb e s e sttt ebee b e nbesbee s entesbeeneens 97
Modifying & extending LAMMPS.........coiiiiiiicereteese ettt 98
TO.T ATOM SEYIES.. ittt st st et e s s e s 99
10.2 Bond, angle, dihedral, improper potentials............ccceerieiienienienieniesee e 100
10.3 COMPULE SEYLES ..eeuteentietietiete ettt ettt ettt et e bt e bt e sbe e bt e bt et e e sbeesbeesbeenbeenbeesbeesbeesbeenneenns 101
1O.4 DUIMD SEYLES...eeuteeiiiiiiiteeite ettt ettt ettt e st sab e st e e bb e e sbbe e sbteesateesabeesabeeenne 101
10.5 Dump CUStOIM OULPUL OPTIOMS.teutientieiietietiesteesteenteesteesteesbeesteesteesbeesseesseesbeesseesseesseenseennes 102
TO.6 FIX SEYLES. ..ttt ettt ettt e b e bt e bt e bt e bt e sbe e s bt e bt e b e e bt e nbeesbeesbeenneens 102
10.7 Input SCIiPt COMMANGS.......veeutienttetietteteet ettt et et et et e bt e bt e steesbeesbeenbeenbeesbeesbeesbeenneennes 104
10.8 KSPACE COMPULALIONS.eeutieutieiieteetienteettenttesteesteesteesteesbee bt e bt e steesbeesseesbeesbeesbeesseesseenseenns 104
10.9 MINIMIZAtION SEYIES ...cviiveiiiiiiniieiieteieee ettt ettt eenes 104
10.10 PairwiSe POENTIALS. ...cc.veeutietieiiete ettt ettt ettt ettt ettt et e st e b et e bt e sbeesbeesaeenais 105
TO.TT REZION SEYLES ...ttt ettt ettt sb et e bt e sb e sbe e b e bt e bt e bt e sbeesbeenneennis 105
10.12 Thermodynamic OULPUL OPLIOMS. ...ceuveetietientierteerieentiestienteenteesteesteesteesteesseesbeesbeesbeesneenseennes 106
10.13 Variable OPLIONS.....c.eetieiieiietteteete ettt ettt ettt et esbe e bt e sbeesbe e bt e bt enbeesbeesbeesseenseennis 106
10.14 Submitting new features for inclusion in LAMMPS........c.ccoiiiiiiiiinieeeeeee 107
Python interface to LAMMPS........cc.ooiiiii ettt 109
11.1 Building LAMMPS as a shared lbrary..........cc.ccooeeriiiiiniinieneeeee e 110
11.2 Installing the Python wrapper into Python..........c.ccoccoiiiiiiiiiiieee e 110
11.3 Extending Python with MPI to run in parallel...........ccccoooiiiiiiiniieeee 111
11.4 Testing the Python-LAMMPS Interface..........ccccevieiiiiiinienienienieieeee e 112
11.5 Using LAMMPS from Python........cooiiiiiiiiieeeeteeee e 114
11.6 Example Python scripts that use LAMMPS... ..o 117
EITOTS ..ottt et ettt ettt et et ettt ettt ettt e 119
12.1 COomMMON PIODIEIMScuviiiiiiiiitieiteitetiete ettt ettt et sttt et sbe ettt ebe e eae et eaeeanes 119
12.2 REPOTTING DUEZS. .. c ettt ettt ettt ettt ettt e bt e bt e be et esbeesbe e bt e bt e bt e nbeesbeesbeenaeenis 120
12.3 EITOT & WAITNEZ NMNESSAZES .e.uveeuveenteenteenteatianteanteesteenteesueesseesseesseesseesseesseesseesseesseesseesseesseennes 120
EITOTS: ettt st 121
VTS ettt ettt et a e e et e et e s et e e et e e at e e st e e st e eateeabeeabeeabeenteeateeabeeateeas 187
FULUTE AN NISTOTY....cuvitiiieitiiceicet ettt sttt a ettt sae st enaesbeeaeens 193

LAMMPS Users Manual

Table of Contents

13.1 COMING AUIACLIONS. . .euveveieenieteeieeiteteete et ettt ettt e e sttt et e sbe s bt eat et e s besbteste bt ebeessensenaesaeennen 193

13.2 PaSE VETSIOMNS . c.euteeienieierteeiteteste ettt ettt ettt sttt ettt et st bt et et e s bt sbeest et ebeeeeentenaesaeeanen 193
angle_style charmm COMMAN..........ccccoiiiiiiiiiniiniieee ettt 195
angle_style charmm/omp COMMANd..........cocoeouiriririiriininieiee ettt eaeens 195
angle_style class2 COMMANA.........coccecuiriinirieiiiriieteerteee ettt st sae e eaeens 197
angle_style class2/0mp COMMANG........c..coirieriiriirirteienerteere ettt ettt sae e eaeens 197
angle_Coeff COMMANA........cc.iiiiiiii ettt et e bt e b e b e be et e sbeesbee e eais 199
angle_style COSINE COMMANC........coiuiiiiiiiiieete ettt ettt ettt et e bt et e bt e bt e sbeesbeesbeenaeeais 201
angle_style coSine/omp COMMAN.cccutiitieiuieitieiietiete ettt ettt et ee st e bt e bt e sbee st e bt e sbeesaeesbeeneeeas 201
angle_style cosine/delta COMMAN............cooueeiiiiiiiiiiiiieie ettt 203
angle_style cosine/delta/omp COMMANA........cc.eoiiiiiiiiiiieeeee ettt 203
angle_style cosine/periodic COMMANM..........coiiiiieiiiiriieiieeee ettt ettt e s e e 205
angle_style cosine/periodic/omp COMMANG..........coiuiertiirienienietietiet ettt ettt ee st e s e saee e 205
angle_style cosine/shift COMMAN............cooeiiiiiiiiiiee ettt 207
angle_style cosine/shift/omp cOmMMAN............coiiiiiiiiiiiiniie e 207
angle_style cosine/shift/exp cOmMmMand..........c.ccooririerininiiiiiininreee ettt 209
angle_style cosine/shift/exp/omp command..............ccccrerieieniiniriinineneeteeee et 209
angle_style cosine/squared COMMANA........c..eeruiiiiiiiiiiniiiiieeee ettt ettt e e e aes 211
angle_style cosine/squared/omp COMMANC........c..eeiuiirtiiriieriiiieiei ettt e e 211
angle_style dipole COMMAN..........cc.iiiiiiiiiiieei ettt ettt sb et e st e bt e e e as 213
angle_style dipole/omp COMMANC........coouiiiiiiiiieiee ettt ettt e e e 213
angle_style harmonic COMMAN............coouiiiiiiiiiiriieiecee ettt ettt e s e e es 215
angle_style harmonic/omp COMMANA........cc.eiiuiiiiiiiiieiieiieeee ettt e e e aes 215
angle_style hybrid cOmmMand.............oooiiiiiiiiiee et 217
angle_style NONe COMMANT........cccoieiiriinirietinie ettt ettt ettt et sa et e e saeeaeens 219
angle_style SdK COMMEANA.........coouiiiiiiii ettt ettt sb et e e e b e e as 220
ANZle_SEYLE COMMEANC........iiiiiiiiii ittt ettt et e bt e bt e bt e bt e bt e sbeesbeesbeenseenas 221
angle_style table COMMEAN.........c.oiiuiiiiiiie ettt ettt et sb e bt et esae e b e e e s 223
angle_style table/omp COMMANC.........c.eiitiiiiiiieii ettt ettt et e b e b e e as 223
atom_mOdify COMMEAN........eiiiiiiiiiiieiiee ettt ettt ettt et e e bt e bt e bt et e e bt e sbeesbeesbeenseenns 226
ALOM_SEYIE COMMEAN.......eiiiiiiiiii ettt ettt et e bt e bt e b e bt e beenbeesbeesbeenseenas 228
balance COMMANG........co.eiiiriiiiiiiierceet ettt st ettt et e sa st e st bt eeae b e b saeenee 231
bond_style class2 COMMEANA........cccueiiiiiiiiiiii ettt ettt et ettt et eaeeeaaesaeeeas 235
bond_style class2/0mp COMMANA.........c.eeuiiiiiiieieeie ettt sttt st tesaee s eas 235
DONA_COETT COMMUEANG. ... oo e e e e e e et e e e e e e e e e e e eeeaaaaaaaeaas 237
bond_style fene COmMMAnd...........oceeiiiiiiiiiiiee ettt st 239
bond_style fene/omp COMMAN.........c..cocueriririiriiniiieenree ettt 239
bond_style fene/expand COMMANA..........cocuiiiiiiiiiiiiii ettt s 241
bond_style fene/expand/omp COMMANC..........cocuiiiiiiiiiiiiie ettt st 241
bond_style harmonic COMMANA..........cocuiiiiiiiiii ettt s 243
bond_style harmonic/omp COMMANG..........coouiiiiiiiiiiieieeie ettt et 243
bond_style harmonic/shift COMMANd..........ccceiiiiiiiiiiiiiii e 245
bond_style harmonic/shift/omp command..............cooioiiiiiiiiiiiii e 245
bond_style harmonic/shift/cut command............ccccoooiiiiiiiiiiiii e 247
bond_style harmonic/shift/cut/omp cOmMMmMAaNd............coceiiiiiiiiiiiiiiiieee e 247
bond_style hybrid COMMANA...........coeriiiiriiiiieiitee ettt st 249
bond_style MOrse COMMEANA........cccuiiiiiiiiiiiii ettt ettt ettt sttt ateeateeaeesaeeeas 251
bond_style morse/0mp COMMANA.........c.eeiiiiiiiiiiieie ettt ettt et sttt et eeesaeesaeeeas 251

LAMMPS Users Manual

Table of Contents

bond_style NONE COMMANT..........oiiiiiiiiiieiiee ettt ettt saee et e saae s eas 253
bond_style nonlinear COMMANA...........ocueiiiiiiiiiiie ettt ettt s 254
bond_style nonlinear/omp COMMANG..........ccouiiuiiiiiiiieieeie ettt ettt st saee s 254
bond_style quartic COMMANA..........cocuiiiiiiiiii ettt et sttt et tesaae s eas 256
bond_style quartic/omp COMMANG..........ccutiuiiiiiiieie ettt et ettt et eesaee e eas 256
bond_Style COMMANG......couiiiiiiiiie ettt ettt ettt et e st e et e et e eateeateeaeesaneeas 258
bond_style table COMMANT..........ooiuiiiiiiiii ettt sttt st eaee s eas 260
bond_style table/omp COMMAN..........ccueeiiiiiiiieiieie ettt et ettt e 260
DOUNAArY COMMIANC. ...ttt ettt ettt et ettt et s ate et esateeatesateenaesaneeas 263
DOX COMMEANT. ...c..eiuiiiiiieiietirteet ettt ettt ettt sttt sh et eb e bt bt e b e bt sbe et enaesaeebaenenbesaeenee 265
Cchange_bDOX COMMEANA........couiiiiiiiiii ittt e bt e sae e bt e s bt e sbeesbeesbeesaeenaeeais 266
Clear COMIMANG........cocuiiiiiiiiiiee ettt sttt st et sae e s s e esaeeae 271
COMMUNICALE COMMAN....c.viueeititintieitetenterttet et sttt st ebeeste bt ebeeebenbesaeeb e et e bt sbeessenbenbeeseentensesseennen 272
COMPULE COMIMANT.eeutieriiiiiitie ettt ettt ettt ettt ettt e sabeesabeesabeeeabeeebeeesbbeesbbeesabeesabeesabeeebeeenanes 274
compute ackland/atom COMMANC...........cooiiiiiiiiiiiie et 278
compute angle/10cal COMMEANC...........oiiiiiiiiiii ettt st e e 280
compute atom/molecule COMMEAN........cocuiiiiiiiiiiiii ettt st 282
compute bond/local COMMEANA...........oiiiiiiiiiiiie e ettt st e s e e es 284
compute centro/atom COMMEANG.coutriirierieeieitte ettt ettt e st te st e sttesttesttesaeesbeesbeesbeesbeesaeesaeenaeeees 286
compute cluster/atom COMMEANC........cocuiiiiiiiiiiiie ettt sttt st sbeesaee bt e i e seeees 288
compute cna/atom COMMEANTcc.eruirrerteriirietententeetetente et este st eteeetete bt ebeessenbesbeeseensesbeeseensenseeaeennen 289
COMPULE COM COMMANT.....cuveueeitetitieitetente et ettt ett ettt bt est et sbeestestesaeebeemsenbesbeesaenbenbeebeensenaeeneennen 291
compute com/molecule COMMAN........cc.coeririiriiririiiin ettt sttt b e eanes 292
compute contact/atom COMMAN...........eoueriririertiriertetene ettt eetet ettt et e st sbeeseestesbeeaeensenaesaeennes 294
compute coord/atom COMMEAN..........ceeruerierirrerterteeteteneeteetent et eetete st steestentesbeeseentesbeeseensenseeaeennes 295
compute damage/atom COMMEAN..........cc.erererrirterierieiene ettt et ettt ste et e sttt eseentesbeeeeensensesaeeanes 297
compute dihedral/local COMMAN.........cc.coiririiriniiiiiit ettt 298
compute displace/atom COMMEANC.........cccotreriirieririeieneet ettt ettt ettt st ettt eaeeaenaeeaeeanes 299
compute erotate/asphere COMMEAN............couiriiiiiiiiiie ettt sttt sbeesbeesaee e e seeeas 301
compute erotate/SPhere COMMAN..........couiiiiiiiiiiiii ettt st st e e 302
compute erotate/sphere/atom COMMANC..........coouiiiiiiiiiiiniieniee ettt ettt see e e e e 303
compute event/displace COMMANG.........couiiiiiiiiieiie ettt sttt siee bt e st e e s 304
COMPULE Zroup/SroUP COMMAN.....eiiuiieriiiiriiiiiiie ettt ettt ettt et e et e esbteesbbeesabeesabeesabeeebeeenanes 305
COMPULE ZYTAtION COMMEAN.......eiutiiiiiitieeiieeiie ettt ettt e st e st e sttesbeesbtesaeesbeesbeesbeesbeesbeesbeesaeesaeenneenees 307
compute gyration/molecule COMMANd...........cocveriririiiiiniiieieeee et 309
compute heat/flux COMMANC..........coouiiiiiiiiie ettt st e e 311
compute improper/local COMMAN.........c.c.ooiiiiiiiiiiiiie ettt 315
COMPULE K& COMMEANT......eiiiiiiiiiiiie ettt st et e s bt e bt e b e sbeesbeesaeesaeenaeees 316
compute Ke/atom COMMEAN...........coiiiiiiiiiie ettt sttt e bt sbee b e saeesaeesaeeas 317
compute ke/atom/eff COMMAN.............ooiiiiiiiiii e e e 318
compute ke/eff COMMAN...........cccoiiiiiiii et 320
compute Mmeso_e/atom COMMEANG........eeerureerieiriieiiieeiteeniteentee st e et e ebeeebeeesiteessbeesateesabeesabeeenbeeenanes 322
compute meso_rho/atom COMMEAN...........iiiiiiiiiiiiiie ettt st e s e e aes 323
compute MeSO_t/atom COMMANGccutriirierieeiieeiteette et e ette et e st et eesbtesttesttesaeesbeesbeesbeesbeesaeesaeenneens 324
compute_mOdify COMMEAN..........c.eiiiiiiiiiiie ettt st e st e s e e as 325
comPUte MSA COMMEANT.....couiiiiiiiiiiiti ittt sh e shtesaeesbeesb e e sbeesbeesbeesbeenaeeeis 326
compute msd/molecule COMMAN..........cccuoiiiiiiiiiiiie et st 328
COMPULE PAIT COMIMANA.eutiiiieiit ittt st et e eatesate s bt e sbtesabesheesaeesbeesbeesbeesbeesbeesbeenseenns 330

LAMMPS Users Manual

Table of Contents

compute pair/10cal COMMEAN.........cccuiiiiiiiiiieieee ettt ettt st et esaee i e e s 332
COMPULE PE COMIMANA......eeitiiiiiiieiiteite ettt ettt ettt ettt e st e st e e sabeeeabeeebeeesbbeesbbeesateesabeesabeeenbeeenanes 334
compute pe/cuda COMMEANC........cccuiiiiiiiiii ettt sttt e bt e bt e sbeesbeesaeesaeeais 334
COMPULE PE/ALOM COMIMANTeiiuiiiiiiienitieriee ettt ettt ettt stt ettt e et eebeeesbteessbeesateesabeesabeeenbeeenanes 336
COMPULE PreSSUIe COMIMANC.eiiuiiiiiiieritieniite ettt ettt ettt sit et et e et eeebeeesbbeessbeesabeesabeesabeeenbeeenanes 338
compute pressure/cuda COMMEAN.eeiiiiiiiiiiieiie ettt ee st e st esaee e e seeeas 338
compute property/atom COMMANC........cocueeruiiriiiiiiieeiteetee ettt ee ettt e sabeesibeesabeesbeesbeeenbeeenanes 340
compute property/local COMMAN..........cccuiiiiiiiiiiiii ettt st 342
compute property/molecule COMMAN............cc.oiiiiiiiiiiiiiieeee et e 344
COMPULE TAE COMIMANG.......eeiiiiiiiie ettt sb e st esbeesatesbeesb e e sbeesbeesaeesbeenaeeas 345
cOmMPUtE TEAUCE COMMEANT.....cuuiiiiiiiiiiiiitie ettt e st e sbtesatesbeesbeesbeesbeesaeesaeenaeeais 347
compute reduce/region COMMEAN.iiiiiiiiiiiieiite ettt sttt et e st e sbee b eesbeesbeesaeesaeeseeenais 347
COMPULE SIICE COMMANA.....c..eiiiiiiiiiiii ittt sbtesat e s bt e bt e sbeesbeesbeesaeenaeees 350
compute Stress/atom COMMANT.coiutiiriiiriiiriie ettt ettt sttt ee et e esabeesibeesateesbeesabeeebeeenanes 352
COMPULE LEMP COMIMANA.c...tiiutiiiiiieiie ettt ettt sab e st e et e et ebeeesbbeesbbeesateesabeesabeeenbeeenanes 354
compute temp/cuda COMMANG........cc.eiiiiriiiieiieeie ettt ettt et esetesaeesaeesaeesbeesbeesbeesaeesaeenneens 354
compute temp/asphere COMMAN...........couiiiiiiiiieiie ettt sttt e st e et e i e seeees 356
compute temp/CoOmM COMMANG.........cccuiriiiiiiiiiierieite ettt e s e aee 359
compute temp/deform COMMANG...........coiiiiiiiiiie ettt st 361
compute temp/deform/eff comMmAand............ccoooiiiiiiiiiiii e 363
compute temp/eff COMMANC...........ooiiiiiiiii ettt 364
compute temp/partial COMMANC.........cocuiiiiiiiiiiie ettt st e e 366
compute temp/partial/cuda COMMANG.cccueiiiiiiiiiiiie et 366
compute temp/profile COMMEAN..........cceiiiiiiiiiii et e 368
compute temp/ramp COMMANG........corutierteeriiiriie ettt ettt e ntee st e et e ebeeenbeeesateessbeesateesabeesabeeenseeensees 370
compute temMp/reZion COMMANC.oouiiiiiiiiiiiie ettt st et e st e bt e bt e sbeesaeesaeeseeenas 372
compute temp/region/eff COmMMANA...........coouiiiiiiiiiiii s 374
compute temMpP/rotate COMMANT.eiiiiiiiieiieeie ettt ettt et esbtesbeesbeesbeesbeesbeesaeesaeenaeees 375
compute temp/SPhere COMMANG.........couiiiiiiiiiiiie ettt ettt sb e sbee s e et e b e seeees 3717
COMPULE t] COMIMAN.cuvitiriieiiitiitieit ettt sttt ettt ettt ettt besae bt et esbe bt eseesbesbeebeenaenaeeaeennen 379
Create_atomMS COMIMANT........ieeeeeeeeeete e et e et e e et e e e e e e e et e e e et e e e e eaeeeeetaeeeeeanaeeeeaaeeeeraneeeeeanns 381
CTEALE_DOX COMUIMANT .. .eeveeeeeiiee ettt e et e e e et e e e et e e e e e e e e e aaeeeetanaaeeeeaaeseeeanaeeeeeanns 384
delete _atOmMS COMIMANG........oeeeeeee ettt e e et e e e et e e e e eaee e e e e e e e eeanaaeeeeaaaeeeeanaeeeeanns 386
delete_ DONAS COMIMANG........ooeeeeeeeeeee et e e et e e e e e eaee e e e e e e e et e e e e eaaeeeeeaaeeeeeanas 388
dielectric COMMANG........cc.eririiieiiriiet ettt ettt ettt ettt et ettt sbe et bt eaeenaenaeeaeeanen 390
dihedral_style charmm command..............coouiiiiiiiiiiiie et 391
dihedral_style charmm/omp COMMANd..........cocueriiririiiiiniiieicne et 391
dihedral_style class2 COMMAN.........cocuiiiiiiiiiiee ettt sttt 393
dihedral_style class2/0mp COMMANG.......c..coceeeiiriiririiriinineeteneee ettt sttt eanes 393
dihedral_COETT COMMEAN...... ...ttt e s e e e e e e s e eeeesesnsnnnes 397
dihedral_style cosine/shift/exp command..........c..c.ccecuerierinieiiininiiieeneese e 399
dihedral_style cosine/shift/exp/omp coOmMmand............cccooereerieninieieneneneeene et 399
dihedral_style harmonic COMMANA............couiiiiiiiiiiiie ettt 401
dihedral_style harmonic/omp COMMAN............cocueiiiiiiiiiiieeieee ettt 401
dihedral_style heliX cOmMMand...........cocoiiiiiiiiiiiii et 403
dihedral_style heliX/Omp COMMANG.......c...ooiiiiiiiiiiiiiie ettt st 403
dihedral_style hybrid COMMANA.............coouiiiiiiiiii et 405
dihedral_style multi/harmonic COMMANA...........ccceiiiiiiiiiiieeiee et 407

Vi

LAMMPS Users Manual

Table of Contents

dihedral_style multi/harmonic/omp COMMANG..........ccuiiiiiiiiiinienierie ettt 407
dihedral_style NONE COMMANG.......c..eiiiiiiiiieiiiee ettt sttt sttt e saee b e naeeas 409
dihedral_style oplS COMMAN.........cccuiiiiiiiiiiiiee ettt sttt e e e as 410
dihedral_style opls/omp COMMANA........c.c.ooiiiiiiiiiiiiie et 410
dihedral_style COMMAN............coouiiiiiiiiiee ettt st sb et e st e et e e as 412
dihedral_style table COMMANA...........coouiiiiiiiiiieee ettt sttt 414
dihedral_style table/omp cOmMMAan...........cocoiiiiiiiiiiieiie e e 414
dIMENSION COMIMEANT.......cciiiiiiiiiiiie ittt ee e e e eeeee e e e e e e et eeeeeeeeaaeeeeeeeeesaaaeeeeeessesnataeeeeessesnnannreeesenans 417
displace_atoms COMMANA..........couiiiiiiiiie ettt st e bt e sae e bt e sbee bt e sbeesaeesaeenaeeeis 418
AUMP COMMEAN. ...ttt ettt et e et e s a e s bt e s bt e sheesheesbeesbeesbeesbeesbeesaeesaeenneennis 420
dUMP IMAZE COMMANT.eeiiiiiiiiii ettt sa et e bt e st esbtesheesbeesbeesbeesbeesbeesbeesaeesbeenseenns 420
dump mMOIfile COMMANG.....cc.eiiiiiiiiiie ettt st ettt sbee s e bt e saeenaeeais 420
dUMP IMAZE COMIMANT.eeuiiiiiiiie ettt ettt e b e b e e sbtesheesbeesaeesbeesbeesbeesbeesaeesaeenneenns 427
dump_modify COMMANG........cccuiiiiiiiiiiiie ettt sttt e bt sbee bt e saeesaee et ees 434
dump mMOIfile COMMANG.....c..eiiiiiiiiii ettt sb e st esbeesae e b e e eas 443
€CHO COMMEANU. ...ttt e e ettt e e e e e e e e e e e s eaaaeeeeesseenaaareeeeeenns 445
§ D e10) 1110 V21 4 ¢ RSN 446
fiX adapt COMMANC........eiiiiiii ettt et e et be e s bt e bt e sbeesaeesbeenaeeais 451
fiX addfOrce COMMEANT........ooiiieiiiie et e ettt e e e e e e e e e e eata e e e e e s seeaaaeeeeesenns 455
fix addforce/cuda COMMIANA..........ccoiiiiiiiiiiie et e e e e e e e et e e e e e e eeeaaaeeeeeeeens 455
fix addtorque COMMEANC.........oiiiiiiiiii ettt sttt sb e st sbeesbeesaee e eas 458
fix append/atoms COMMEANA...........ooiiiiiiiiiie ettt sttt e bt e bt e sbeesaee bt e seeeas 460
FIX AEC COMIMANG.......evvviiiiiiiiiiiieeee et e e ettt e e e e e e et e e e e e eeaaaeeeeeesseaaaaeeeeessennsaaeeeeesenans 462
fiX ave/atom COMMEANT.........ccouveiiiiiiiecieeee et e ettt e e e et e e e e e e e e e e e e e s eeaaaeeeeessennsaaeeeeesenns 466
fiX ave/Correlate COMMAN............ocoiiiiiiieiiie et ee et e e e e et e e e e e e eaaaeeeeesseenaaaeeeeeseens 468
fiX ave/hiStO COMMIANA.oiiiiiiiiie ettt e e ettt e e e e e et e e e e s e eaaaeeeeesseenaaaeeeeeeeens 473
fix ave/spatial COMMANC........cocuiiiiiiiiii ettt sttt sb e s bee st e bt e b e e eas 478
fiX aVe/tiMeE COMIMIANG.........oiiiieeiiie ettt e e e e e ettt e e e e e e e e e e e e e e eaaeeeeeeesssnaaaeeeeessennnaaseeeesenans 483
fiX aVefOrce COMMIANA.........ooiiieiiiii ettt e e e ettt e e e e e et e e e e e s e eataeeeeesseensaaeeeeeeeens 488
fix aveforce/cuda COMMANG.............ooovuiiiiiiiiiiee et e e e e e e e et e e e e e e eeaaaereeeseens 488
fiX DAlanCe COMIMANG..........oooiuiiiiiiii it e ettt e e e e e et e e e e e et eeeeeeseeaaaaeeeeesseennaaeeeeesenns 490
fiX bond/Dreak COMMANG..........uvviiiiiiiiiiiiiiie ettt e e e et e e e e e et e e e e s eeataeeeeesseensaaeeeeesenns 494
fiX bond/Create COMMANG............ooiiiiiiiiiiiieie et eeee e e e et e e e e e e e e e e s eeaaaeeeeesseenaaaeeeeesenns 497
fiX bONA/SWaP COMMANG.eiiiiiiiiiiiiiie ettt st st btesae e s bt e sbeesbeesbeesaeesaeenaeenis 500
fiX DOX/TElaX COMMIANA ... oottt e e et e e e e e et e e e e e s eeaataeeeeesseennaaereeesenns 503
fIX COIVATS COMIMANG.........iiiiiiiiiiiie ettt e et e e e ettt e e e e et e e e e e e eaaaeeeeeesseaataeeeeessennnaaeeeeesenans 508
fiX defOrm COMIMANG..........cooiiuieiiiii et e ettt e e e e e e e e e e e s eaaaeeeeesseenaaaeeeeeeeans 510
fiX dePOSIE COMIMANA.cuiiiiiiiiiiie ettt st st e bt e s bt e bt e sb e e sbeesbeesbeesaeenaeeas 518
FIX drag COMMANG......oiuiiiiieieieee ettt ettt s bt s ht e sbe e s bt e sbeesb e e sbeesbeesbeesbeenneenns 521
FIX dt/TESEt COMMAN.......coiiiiiiiiiiiee ettt e e ettt e e e e et e e e e e e et e e e e eesseaaaaeeeeessennsaaeeeeeeenns 522
fIX field COMMANG.......oooiiiiiiiiiiiiic et e e et e e e e e e et e e e e s e emaaaeeeeesseenaaaereeesenns 524
fiX enforce2d COMIMANG.........cuvveiiiiiieeiieeie ettt e e e e e e e e e e e aae e e e e s seensaaeeeeeeeens 525
fix enforce2d/cuda COMMEANT...........oooouiiiiiie it e e e e e e et e e e e e e e eeaaaeeeeeeeens 525
fiX @VAPOTate COMIMANT.couiiiiiiiiiiiti ettt ettt sht e sbe e s bt e sbeesbeesbeesbeesaeesaeenaeens 526
fiX eXternal COMIMANG..........ccoouueiiiiiiieeeeeie ettt e e e e e et e e e e e e eaaaeeeeesseenaaaeeeeeeenns 528
fIX frEEZE COMIMAN........ooiiiiiiiiiiiiie et e ettt e e e e et e e e e e e et e e e e e e s seataeeeeessennsaaeeeeeeenns 530
fix freeze/cuda COMMEANG...........ooviiiiiiiiieiee ettt e e e e e e e e e atae e e e e s seeaaaeeeeeseens 530
fIX GCMC COMMANA.....c..iiiiiiiiiieie ettt e s bt e s bt e bt e s b e e sbeesbeesbeesbeenaeenis 532

Vii

LAMMPS Users Manual

Table of Contents

fiX Gravity COMMEAN.cocuiiiiiiiiiiiie ettt ettt sat e sae e satesbtesbee s bt e sbeesbeesbeenaeenis 535
fix gravity/cuda COMMANC.........oouiiiiiiiiie et sttt sb e st e st esae e et e e e as 535
fiX gravity/Omp COMIMANG.c..eiiiiiiiiiiieiie ettt sttt esaeesat e bt e sb e e sbeesbeesaeesaeenaeenaes 535
X DAt COMMAN.... ..ottt ettt st st e s bt e s bt e s bt e s bt e sbeesbeesbeesaeeneeeas 537
FIX IMA COMMEAN.......eiiiiiiii ettt st e et e bt e b e sbee bt e saeesaeenaeeas 539
X INAENE COMMANG ...ttt ettt sb e bt e sbe e s et e s bt e sbeesbeesbeesaeesbeenaeees 542
fiX 1angeVIN COMMANC.eiiiiiiiiii ittt st st e bt e e bt e s bt e sb e e sbeesbeesaeesaeenaeees 545
fix langevin/eff COMMANG........cc.coiiiiiiiini ettt 549
fiX INEfOrce COMMEANA.......ooiiiiiiiiiie ettt sttt st et e bt e et e e e as 551
fiX MESO COMMEAN.....c..eiiiiiiiiiiiiie ettt e bt e s bt e bt e sb e e sbeesbeesbeesbeenaeeeis 552
fiX MesO/StatioNAry COMMANG.ciuiiiiriiieiie ettt ettt et eshtesbtesaeesbeesbeesbeesbeesaeesaeenaeenns 553
FIX_MOdify COMMANG.....cueiiiiiiiiiii ettt st sb e bt s esbtesbeenaeees 554
fiX MOMENtUM COMMEAN.......cocuiiiiiiiiiit ittt sttt e st e bt e bt e sbeesaeesaeeseeeas 555
fIX MOVE COMIMANG.....c..eiiiiiiiiiiiieie ettt ettt st sb e see e satesatesbeesbeesbeesbeesaeesaeenneeais 557
FIX MSSt COMMAN.......eeutiiiiiiiete ettt et et ettt et et e eateeabeeabeeateemeeeneeeneesaneeas 560
FIX NED COMMEANG. ...ttt sttt st s esaee bt e bt e as 563
FIX NVE COMMEAN. ...ttt ettt st s h e s bt e sbeesbe e s bt e s bt e sbeesaeesbeenaeees 565
fiX NV/CUdA COMMANC.......eiiiiiiiiii ettt ettt et esbeesbeesaeesbeeneeenis 565
FIX NP COMMEAN....c.eiiiiiiiie ettt st st e s bt e s bt e s bt e sb e e sbeesbeesheesaeenaeens 565
fiX NPt/cuda COMMEANC.oiiiiiiiii ettt sttt e st be e b e sbeesbeesaee bt e naeees 565
FIX PN COMIMANG ...ttt ettt st s h e s bt e sae e s bt e sbeesbeesbeesaeesbeenaeees 565
fiX NV COMMAN.......coiiiiiii ettt bbbt e st e e 573
fiX NP/Eff COMMAN.......coiiiiiiiii ettt st st e st e e e aes 573
fiX NPh/ff COMMANC.co.iiiiiiii ettt st e s e et 573
fix nph/asphere COMMAN..........c.c.oiiiiiiiii ettt sttt st e e e es 576
fix NPh/SPhEere COMMAN.c.oiiiiiiiii ettt ettt e st e s e e as 578
fIX NPAUZ COMMANG.......eiiiiieiieeie ettt st s h e bt e s bt e sbeesb e e sbeesbeesbeesbeenaeeeis 580
fiX NPt/asphere COMMANG.ciiiiiiiie ettt ettt sb e bt e s esbeesaeeneeeeis 583
fiX NPt/SPhere COMMANA.........cccuiiiiiiiii ettt sttt sbee st esae e bt e e eaes 586
FIX NIVE COMMAN. ...ttt ettt b e s he e sbeesae e s bt e s bt e sbeesbeesaeesbeenaeeais 588
fiX NVE/CUAA COMMANG.ottt st e st e bt e s b e sbeesbeesaeesaeenaeeeis 588
fix nve/asphere COMMANd........c..coiiiiiiiiriiiiei ettt st eaesae e eanes 589
fix nve/asphere/noforce CoOmMmMANd...........coeviriiriniriiiinie ettt 590
fiX nve/eff COMMAN........c.oiiiii ettt st e st e st e e as 591
fiX NVE/TIMIE COMMANT. ... ittt st e s bt e saeesbeesb e e sbeesbeesaeesaeenaeeeis 592
fiX NVE/IINE COMIMANG........eiiiiiiiiiiiie ettt st st s bt e e bt e bt e sbeesbeesbeesbeesaeenaeeas 594
fiX NVE/NOTOICE COMMANGottt ettt e st sbe e sbt e bt e b e saeesaeeneeees 595
fiX NVE/SPhEre COMMEANG......cc.eiiiriiriiiiieienereet ettt sttt bbbt eae bt eanen 596
fix nve/sphere/omp COMMANC.cc.eeiiriiririiiitereetcere ettt sttt st ea e eanen 596
FIX NVE/IT COMIMANG.eeiiiiieiieie ettt st st e s bt e s bt e bt e s bt e sbeesbeesaeesaeenaeens 598
fiX NVE/aSphere COMMANG........cccuiitiriiiiriirirce ettt ettt sttt be e eae b eanes 599
fiX NVE/SIIOd COMMANG.......eiiiiiiiiiee ettt ettt sbe e sb e bt bt e sae e bt e nbeees 601
fix nvt/sllod/eff COMMANA..........oooiiiiiiii et st 603
fiX NVE/SPhere COMMANA.........cociiiiiiiiiie et sttt et beesbeesaee e eais 605
fiX OrieNt/fCC COMMEAN.oouiiiiiiiiiiiie ettt et e st be e b e bt e bt e saeesaeenaeeais 607
fiXx planeforce COMMAN...........c.iiiiiiiiii ettt sttt sbe e s esaeesaee e e as 611
D 107311 KSR U TS URT 612
FIX POUT COMMEAN.ouiiiiiiiiieeie ettt st e s bt e sat e s bt e sbee s bt e sbeesbeesaeenaeens 614

LAMMPS Users Manual

Table of Contents

fix press/berendsen COMMEAN............oouiiiiiiiiiiie ettt sb e sbee s esaeesaee e e es 616
IX PriNt COMMAN......coueiiiiiiiiieieti ettt ettt et ettt ettt bbbt bt esaenbeeaeeanen 619
fiX eq/COmMb COMMAN..........oiiiiiiiiiiiie ittt st e st beesb e sbeesbeesbeesaeenaeeas 621
fix geq/comb/OmpP COMMEANC.........oiiiiiiiiiiie ettt ettt e st e bt e bt e e e es 621
X gEQ/TEAX COMMIANC. ... eiiiiiiiiiii ittt ettt s bt sat e she e sae e s bt e sb e e sbeesbeesaeesbeenaeeas 623
fiX reax/bonds COMMEAN..........c.eiiiiiiiiiiie ettt et e st e bt e sbeesbeesaeesaeesaeenis 625
fix reax/c/bonds COMMEAN.........cocuiiiiiiiiiieie ettt sttt e bt e bt e s e saeesaee e eais 626
fiX TECENTET COMIMAN......c..eiiuiiiiiiiiiiitie ettt ettt et sb e satesheesaeesbeesbeesbeesbeesaeesbeenaeeneis 628
FIX TeSTrain COMMEANC.....couiiiiiiiiiie ettt ettt sh e sht e sbeesatesbeesb e e sbeesbeesaeesbeenaeeneis 630
FIX TIZIA COMMIANA. ...ttt st st e bt e bt e s bt e s bt e sbeesbeesaeesaeenaeeas 633
fiX T1ZIA/MVE COMMANG.eiiiiiiiiiii ettt st e st e bt e sbe e s bt e sbeesbeesaeesbeeneeens 633
FIX T1ZIA/MVE COMMANC. ...ttt st e st be e s bt esbeesbeesbeesaeesaeeas 633
FiX T1IA/MPL COMMEANC. ...ttt st e st sbe e bt esbee bt e saeesaeenaeeas 633
fixX rigid/MPph COMMAN.... ..ottt ettt sttt st esae e et e e e as 633
fiX SEtOrCe COMMANC........eiiiiiiiiiii ettt sttt sb et e bt e et e et e as 641
fix setforce/cuda COMMANG.cccuiiiiiiiiie ettt ettt e st e b e e e s 641
fiX Shake COMMEAN........oooiiiiii ettt ettt st e st e e ais 643
fix shake/cuda COMMANA..........coioiiiiiiii ettt s st see e 643
X SIMA COMMAN........oiiiiiiiiiiie ettt h e st beesaeesbeesbee bt e sbeesaeesaeenaeees 645
FIX SPIING COMMANG.......eiiiiiiiiieie ettt ettt b e st esb e e sateshtesbeesbeesbeesbeesbeesaeesbeenseennis 648
fiX SPIING/TZ COMMANG. ... eiiuiiiiiiiiiiiie ettt sttt e sht e sbtesaeesbeesbeesbeesbeesaeesbeenaeenes 650
fixX SPring/self COMMAN.........cocuiiiiiiiiii ettt sb e st e bt e b e et e as 652
FIX ST COMIMANG.......eeiiiiiiie ettt sttt s bt s at e sbe e s bt e sbtesb e e sbeesbeesaeesbeenseenis 654
fiX StOre/fOrce COMMEANM.......eiiiiiiiiiiii ittt ettt sbtesbee s esaeesaee e eais 659
fiX StOTe/StAte COMMANT.....cuiiiiiiiiiiiiietie ettt ettt sttt s b e s htesbtesbeesbeesbeesbeesbeesbeesaeenaeenns 660
fix temp/berendsen COMMANG.eiiiiiiiieiie ettt sttt e bt e bt e bt e saeesaeesaeees 662
fix temp/berendsen/cuda COMMANG.......c...eiiiiiiiiiiieiie ettt sttt st e siee e e i e e e s 662
fix temp/rescale COMMANG.........ooouiiiiiiiiie ettt sttt e s e bt e b e e e ais 665
fix temp/rescale/cuda COMMAN.........cceiiiiiiiiiiii ettt 665
fix temp/rescale/limit/cuda COMMAN...........c.oooiiiiiiiiiiiie e 665
fix temp/rescale/eff COMMAN............cooiiiiiiiii e s 668
fix thermal/conductivity COMMANG........cccueiiiiiiiiiiii ettt st 670
FIX tMA COMMEAN.......eiiiiiiii ettt e st e bt e bt e bt e sbeesaeesaeenaeeas 673
FIX TN COMIMANG. ...ttt ettt e s bt e s et e s bt e saeesbeesb e e sbeesbeesbeesbeenaeenis 675
fIX VISCOSIEY COMMEANAeiiuiiiiiiiiiiiie ettt ettt sa e st e bt e s bt e s bt e sb e e sbeesbeesbeesbeenaeeeis 678
FIX VISCOUS COMMEANTL.....euiiiiiiiiiiiie ettt ettt sb e s ht e s bt e saeesbeesb e e sbeesbeesaeesaeenaeeneis 681
fix viscous/cuda COMMANC.........coouiiiiiiiiie ettt sttt sb e st e s e saeesaee e e ais 681
fix Wall/IJ93 COMMAN.......cc.irieiiiiniieieterece ettt sttt b e s sbe s bbb e bt eanen 683
fiX Wall/[J126 COMMANG......ccueiiiiiiiiiie ettt st sbt e s bt be e s bt e bt e sbeesaeesaeenaeeas 683
fix wall/colloid COMMANG......cccuiiiiiiiiii ettt sttt st e st e st e e as 683
fix wall/harmonic COMMANG..........oiuiiiiiiiiie ettt sttt sb e sbee s beesaee bt e e e as 683
fix wall/gran COMMANG.......c.oiiiiiiiii ettt ettt sbe e bt e b e sae e et e neeeeis 687
fix wall/piston COMMANC..........eouiriiriiiiiierieree ettt sttt s sb e b e ea e bt eanen 692
fix wall/reflect COMMANA...........oooiiiiiiiii ettt st st see e 694
fix wall/region COMMEAN.........ccueriiriiiieniiree ettt ettt st e eaesae e eanen 697
fix Wall/Srd COMMANG.........oiiiiiiiiii ettt sttt e bt e sbee bt e saeesaeeneeees 700
GIOUP COMMMAN. ...t entteiiee ittt ettt ettt ettt e st e et e et e e be e e bt e e sbbeesabeesabeeeabeeeabaeenbbeessbeesateesabeesabeeenbeeensnes 703
I COMIMAN. ...ttt ettt s b e s he e sbeesbeesbte s bt e sbeesbeesaeesbeenneeeis 705

LAMMPS Users Manual

Table of Contents

improper_style class2 COmMMAN............cocuiiiiiiiiiiiie ettt et 708
improper_style class2/0mp COMMEANC.........ccuoiiiiiiiiiiiiie ettt 708
IMpProper_coeff COMMANG..........cocuiiiiiiiiie ettt sttt e st e e e saeeas 711
improper_style COSSQ COMMANC.........oouiiiiiiiiiieiieeie ettt ettt sb e bt e sbeesaeesaeeseeeas 713
improper_style coSSq/OmMP COMMANG.........couiiiiriiriiiiie ittt sttt et et sieesbeesbeesaeesaeesaeeseeenas 713
improper_style cvif COMMAaN...........cociiiiiiiii e e e 715
improper_style cvif/omp COMMANG.......c.c.ciiiiiiiiiiii e e 715
improper_style harmonic COMMANC...........cocuiiiiiiiiiiiie et 717
improper_style harmonic/omp COMMANG..........cccuiiiiiiirieiieeieee ettt st 717
improper_style hybrid command.............coooeeiiriiiiiiiiniee e 719
IMproper_style NONE COMMANC.oiiiiiiiieiiiiie ittt st ettt sbee b e bt e sbeesaeesbeesneeas 720
improper_style ring COMMEAN...........ooiiiiiiiiiieie et sttt st sb e sbee s e bt e e e seeeas 721
improper_style ring/0mp COMMANG.c..uoiiiiiiiiiiie ettt ettt ettt e sbeesaee i e seeees 721
IMPropPer_Style COMMANT.......cccuiiiiiiiiiieie ettt st et e st sbe e b e bt e sbeesaeesaeesaeeais 723
improper_style umbrella COMMANd...........coouiiiiiiiiiiii e e 725
improper_style umbrella/omp command.............ccoooiiiiiiiiiiii e 725
INCIUAE COMMEANA.....c..eiiiiiiiiiieeicti ettt ettt ettt bbb e eae bt e eanen 727
JUIMP COMIMANG. ...ttt ettt ettt e b e sb e e shtesh e e eh e e e bt e eb e e sbeesbeesheesbeesbeesbeesbeesbeesaeesneenneenaes 728
kspace_modify COMMANG........ccoiiiiiiiiiiie ettt ettt et et 730
KSPace_Style COMIMANG.......ccuiiiiiiieiiee ettt ettt ettt et st e et e et e e esteeaaesaneeas 732
Label COMMANG........oiuiiiiiiiiiectct ettt ettt et ettt sbe et be et esa e bt eaeeanen 736
1attiCe COMMIANG.couiiiiiiiiieieet ettt ettt ettt eb et a e bt et e bt bt e st enbe s bt ebeenaenaeeaeennen 737
LOZ COMMUEAN. ...ttt ettt sttt e ettt ettt e sbteesbbeesateesabeesabeeebaeenaees 740
MASS COMIMANT.eiiiiiiiiiiiiiiiet ettt st sae e s e st e s bt e b e saeesaeesaeesaeesaeenaeenae 741
MIN_MOdify COMMANG.......ccuiiiiiiiiiiiie ettt e st e bt e bt e sbeesbeesaeesaeeseeeais 743
MIN_StY1E COMMANG.iiiiiiiiiiiiiii ettt st e s bt e s bt e bt e sb e e sbeesbeesaeesbeenaeees 745
MINTMIZE COMIMANC. c..c..eiitiiieiieitetitt ettt et ettt eb ettt ebe et e bt sbeesaenbesbeebeenaenaeeaeennen 747
NED COMIMAN. ...ttt ettt ettt ettt e b e st ettt eb et e s bt ebe et e bt sbeestebesbeebeenaenaeeaeennen 751
neigh_mMOodify COMMANG........cocuiiiiiiiiie ettt ettt e bt st esaeesaeesaeeaes 756
NEIZNDOT COMMANG.....c..eiuiiiiiiieiteiitet ettt ettt et ettt sbe et b e e b e nae e eanen 759
NEWLON COMIMAN....c.uetiiiiitieteeitetent ettt ettt ettt e beest et ebe et et e s aeebeeste bt sbeesaenbesbeebeensenseeueennen 761
NEXE COMIMAN. ...ttt ettt ettt et sttt et sb e bt eat e bt e bt eat et eb e e st e b e sbeebeemte bt sbeestenbenbeebeentenseaneennen 762
OTIENE COMIMANG. ...c.eteteeititiete ettt et ettt sttt sb ettt e bt ebeeat et e et e es s entesaeebeemte bt sbeeseenbenbeebeenbenseeueennen 764
OTIZIN COMIMANG ...ttt ettt ettt h e s h e e et b e s atesbeeebeesbtesaeesbeesaeesbeesbeesbeesbeesaeesbeenneenns 765
PACKAZE COMMAN.......cuiiiiiiiiie ettt ettt ettt ettt et e s ate e et e eateeateeaeesntesaneeas 766
pair_style adp COMMAN.........cocuiiiiiiiiiiie ettt ettt sttt et 770
pair_style adp/omp COMMANA.........cocuiiiiiiiiii ettt ettt sttt e saee e e 770
pair_style airebo COMMANA.........coouiiiiiiiie ettt et sttt et eaee s eas 773
pair_style airebo/Omp COMMANG.........coouiiiiiiiiiieie ettt et sttt et e saee s eas 773
PaIr_style reb0 COMMEANT.ooiiiiiiiiiiie ettt ettt sttt et e eaae e eas 773
pair_style rebo/omp COMMANG........couiiiiiiiiiieie ettt ettt et sttt et eesaee s eas 773
pair_style awpmd/cut COMMAN..........ccueeiiiiiiiieie ettt sttt et et eas 776
pair_style beck COMMANA..........c.cooiiiiiiii ettt 778
pair_style beck/Omp COMMANA.........c.oiiiiiiiiiie et ettt s 778
Pair_style BOp COMMEANA.........ooiiiiiiiiiii ettt et sttt sttt saee s 780
Pair_style BOrn COMMANG........coouiiiiiiiiiee ettt et ettt st e saee s eas 786
pair_style born/omp COMMEANA..........c.ooiiiiiiiiiie ettt et ettt saee s eas 786
pair_style born/gpu COMMEANA.........cocuiiiiiiiiiiiie ettt ettt s 786

LAMMPS Users Manual

Table of Contents

pair_style born/coul/long cOMMAN............cocueiiiiiiiiiiiiiiiie ettt 786
pair_style born/coul/long/cuda command.............ccoocuiiiiiiiiiiiii e 786
pair_style born/coul/long/gpu COMMANC..........ccueiiiiiiiiiiiiiee et 786
pair_style born/coul/long/omp COMMANA.........c.eeiiiiiiiiiiiiie ettt s 786
pair_style born/coul/wWolf cOMMANA...........cociiiiiiiiiiiiii e 786
pair_style born/coul/wolf/gpu command..............ccoociiiiiiiiiiiiii e 786
pair_style born/coul/wolf/omp command.............cccocuiiiiiiiiiiiiiie e 786
pair_style brownian COMMANd........c..coeeoiiriirieieriinineeene ettt sttt et st e 789
pair_style brownian/omp COMMANG..........cccerieieriinirierienienieee ettt ettt et ae b e ene 789
pair_style brownian/poly COMMAN..........ccceeieieriinirieniinienietee ettt st 789
pair_style brownian/poly/omp COMMANC.........c..couiruiriiriinirieieeneetetee ettt 789
pair_style buck COmMMANA........cccceoiiririiiiiiieete ettt e 791
pair_style buck/cuda COMMAN..........cocceoiiriiiiiiiiiiiiee ettt 791
pair_style buck/gpu cOmmMANA........c..coeeiiriiiiiiiiee et 791
pair_style buck/omp cOmMMANA.......c..coeeiiiririiiiiii ettt 791
pair_style buck/coul/cut cOMMANd........cc.coirieiiriiriiieitenree ettt st 791
pair_style buck/coul/cut/cuda cOmmAand..........c..cceririiriiriniiiieneeecee e 791
pair_style buck/coul/cut/gpu cOmMmAaNd..........ccceeouiririeriininieienieneeectese ettt 791
pair_style buck/coul/cut/omp COMMANG.........cccueruiririeriininieiee ettt st 791
pair_style buck/coul/long COMMANd.........ccceeieiiriiririeitiniirieee ettt 791
pair_style buck/coul/long/cuda command...........c..coeecierienirieiinineeteene et 791
pair_style buck/coul/long/gpu cOMMANd.........c.ccouiruiriiriiririeiiieneeeetese ettt 791
pair_style buck/coul/long/omp COMMANG........c..couiririiriinirieienieneetetene ettt 791
pair_style buck/coul command..........c..ccceririeieriiniiiiee et 794
pair_style buck/coul/omp COMMANd.........ccceririiriiririiiirireeee ettt et 794
pair_style lj/charmm/coul/charmm command.............cccccoerirriinininieninieeeeneerene e 797
pair_style lj/charmm/coul/charmm/cuda command...............ccceeirernienininieneninieene et 797
pair_style lj/charmm/coul/charmm/omp command............c..ccceeererrienininienenineeene e 797
pair_style lj/charmm/coul/charmm/implicit command...........ccccocererierininrieneninieene e 797
pair_style lj/charmm/coul/charmm/implicit/cuda command...........cccccecerireereninirsenenenieneneeeenn 797
pair_style lj/charmm/coul/charmm/implicit/omp command............cccceerirreereneniesenenenieneneeeenn 797
pair_style lj/charmm/coul/long command...........c..coceeceereriririinineeieiee ettt 797
pair_style lj/charmm/coul/long/cuda command............c..cocereeeieninirienininieeneneeene e 797
pair_style lj/charmm/coul/long/gpu command.............ccccoereeiinineeieninieeeeneeerene e 797
pair_style lj/charmm/coul/long/opt cOmMmMANd...........ccceoveririeriinineeieniinteeeene et 797
pair_style lj/charmm/coul/long/omp command............ccccoereerienineeieninineeneneneetene et 797
pair_style lj/charmm/coul/pppm/omp command..........c..cocereeierererienineeienieneneerene et eeeene 797
pair_style 1j/class2 COMMANd.coouiiiiiiiiiiiie ettt ettt et 801
pair_style lj/class2/cuda command.............cooueeiiiiiiiiiiieie ettt 801
pair_style 1j/class2/gpu COMMEANC.........c.ooiiiiiiiiiiie ettt s 801
pair_style 1j/class2/0mp COMMANG..........coouiiiiiiiiiiieie ettt 801
pair_style lj/class2/coul/cut COMMAN............coouiiiiiiiiiiiie et 801
pair_style lj/class2/coul/cut/cuda cOmmAand...........cocoeiiiiiiiiiiiiiie e 801
pair_style lj/class2/coul/cut/omp COMMANG..........ceeoiiiiiiiiiiiiie ettt 801
pair_style lj/class2/coul/long command............cooouiiiiiiiiiiiiiiie e 801
pair_style lj/class2/coul/long/cuda command.............coceiiiiiiiiiiiiiiieeeee e 801
pair_style lj/class2/coul/long/gpu COMMAN...........coouiiiiiiiiiiiiieie et 801
pair_style lj/class2/coul/long/omp COMMANC..........cocuiiiiiiiiiiiieiie et 801

Xi

LAMMPS Users Manual

Table of Contents

pair_style lj/class2/coul/pppm/omp COMMANA..........c.cocueiiiiiiriiiie ettt 801
PAIT_COCTE COMMANG........iiiiiiiiiiiii ettt ettt ettt e et e et et eeateeatesaeeeas 804
pair_style colloid COMMANA........ccciiiiiiiiii ettt ettt et 807
pair_style colloid/gpu COMMANG.........cocuiiiiiiiiie ettt ettt st s 807
pair_style colloid/omp COMMANG........cccueiiiiiiiiieie ettt ettt s ee s 807
pair_style COmMb COMMANT.oiiiiiiiiiiie ettt et sttt et esate s eas 812
pair_style comb/Omp COMMANG..........coouiiiiiiiiit ettt ettt et sttt et et saee s eas 812
pair_style coul/cut COMMEANA..........ooiiiiiiiiiiii ettt ettt sttt saee s 816
pair_style coul/cut/omp COMMANG..........oeuiiiiiiieiieie ettt ettt et sttt et eesaee s eas 816
pair_style coul/debye COMMANC..........cocuiiiiiiiiiiiie ettt et 816
pair_style coul/debye/omp COMMAN...........cueriiiiiiiiiiiiiiiie ettt 816
pair_style coul/Iong COMMEANA..........c.ooiiiiiiiiiii ettt ettt et 816
pair_style coul/long/omp COMMANG........cccuiiiiiiiiiieiieie ettt ettt st 816
pair_style coul/long/gpu COMMANG.........cccuiiiiiiiiiieie ettt ettt et e 816
pair_style coul/Wolf COMMANG........cocuiiiiiiiiii ettt et 816
pair_style coul/wolf/omp COMMAN............coouiiiiiiiiiiieie ettt e 816
pair_style coul/diel COMMANd.........c..coeeiiiriiiiiiiiic ettt 819
pair_style dipole/cut COMMAN...........coouiiiiiiiiie ettt ettt et et eaee s 821
pair_style dipole/cut/gpu COMMANC.........ccuiiiiiiiiiiieie ettt ettt 821
pair_style dipole/cut/omp COMMEANC...........coouiiiiiiiiiiiieie ettt et et 821
pair_style dipole/sf COMMANA..........cc.oiiiiiiiii et 821
pair_style dipole/st/gpu cOmMMANd...........ccoiuiiiiiiiiii ettt 821
pair_style dipole/sf/omp COMMANG.........cccuiiiiiiiiiiei ettt 821
pair_style dpd COMMANA.........coouiiiiiiiii ettt et sttt st s 828
pair_style dpd/omp COMMANG.........coouiiiiiiiiiiie ettt et sttt et saae s eas 828
pair_style dpd/tstat COMMAN...........c.oiiiiiiiiiiie ettt ettt st 828
pair_style dpd/tstat/omp COMMANC.........cccuiiiiiiiiiiiieii ettt ettt 828
Pair_style dSIMC COMMANG.......cccuiiiiiiieieee ettt et sttt et esaae e eas 831
PAIr_Style €am COMMANT........coouiiiiiiiiiie ettt ettt ettt st e et eateesteeaeesaeeeas 833
pair_style eam/cuda COMMANG........cocuiiiiiiiiii ettt ettt sttt et saee s 833
pair_style eam/gpu COMMAN.........cccuiiiiiiiiiiiie ettt ettt ettt ettt et et 833
pair_style eam/omp COMMANG.c.oeuiiiiiiiiii ettt ettt ettt sttt e st e aeeeatesaeesaeeeas 833
pair_style eam/opt COMMANA.ooiuiiiiiiiiii ettt ettt et sttt e eesaeesaeeeas 833
pair_style eam/alloy COMMANA.........c.oooiiiiiiiiii ettt et st 833
pair_style eam/alloy/cuda COMMANG...........coouiiiiiiiiiiiii ettt s 833
pair_style eam/alloy/gpu cOMMAN............cocueiiiiiiiiiiiiiii ettt 833
pair_style eam/alloy/omp COMMAN...........cocuiriiiiiiiiiieieiie ettt ettt s 833
pair_style eam/alloy/opt COMMANA.........cccuiiiiiiiiiiiiii ettt 833
pair_style eam/cd COMMEANA..........c.eoiiiiiiiiiiie ettt et ettt et et saae s eae 833
pair_style eam/cd/Omp COMMANA...........eoiiiiiiiiiii ettt ettt et saee s eae 833
pair_style eam/fs COMMANG........cccuiiiiiiiiii ettt et ettt ettt eae 833
pair_style eam/fs/cuda COMMANG..........cueeiiiiiiit ittt ettt e 833
pair_style eam/fs/gpu COMMAN.........cccueeiiiiiiiieie ettt ettt et 833
pair_style eam/fs/omp COMMAN............cccuiiiiiiiiiiieie ettt ettt ettt s 833
pair_style eam/fs/Opt COMMANA..........oooiiiiiiiiiie ettt ettt s 833
pair_style edip COMMAN..........coiiiiiiiiiie ettt st ettt saae s eas 840
pair_style eff/cut COMMANG...........coiiiiiiii et 843
PaIr_style eim COMMEANC.........ooiiiiiiiiiiie ettt ettt ettt et et et e et eateeatesaeesaeeeas 848

Xii

LAMMPS Users Manual

Table of Contents

pair_style eim/omp COMMANG.........coouiiiiiiiiit ettt ettt ettt st st e et e st e ateeatesaeeeaneeas 848
PaIr_Style Zauss COMMANM.ccuiiiiiiiiiiieiie ettt ettt ettt ettt st e et e et e ateeateeaeesaeeens 852
pair_style gauss/gPu COMMANG.oouiiiiiiiiie ettt ettt st sttt e e aeeeatesaneeas 852
pair_style gauss/Omp COMMANG.ccouiriiiiiiiteie ettt ettt ettt sttt e et e e ateeaeesaeesaeeeas 852
pair_style gauss/Cut COMMANG.c.oiuiiiiiiieie ettt ettt sttt e eeeateeaaesaeeeas 852
pair_style gauss/cut/Omp COMMANC........cccuiiiiiiiiiiiii ettt et sttt et sate s eas 852
pair_style gayberne COMMANA.........cc.oiiiiiiiii ittt ettt e saae s eae 855
pair_style gayberne/gpu COmMMAnd.............coouiiiiiiiiiiieie ettt 855
pair_style gayberne/omp COMMAN............coouiiiiiiiiiiieieeie ettt ettt 855
pair_style gran/hooke COMMAN........c..cccueriiiiiiriinieieeneree ettt st 859
pair_style gran/cuda COMMAN..........coceeciiririeieriinieieterereet ettt ettt et st 859
pair_style gran/omp COMMANC........c..coeeriiriirieieiiiiet ettt ettt ettt sttt sae et ae b saeene 859
pair_style gran/hooke/history COMMAN..........ccceouiruirierienirieieeneeeetente ettt 859
pair_style gran/hooke/history/omp COMMANd...........cecuerreriirieieneneeienieneeeetente sttt eaeene 859
pair_style gran/hertz/history COmMmMANd...........cocueruiruirierienirieieneneetetese ettt 859
pair_style gran/hertz/history/omp COMMANG.......c..coerierieriirierienineetentene ettt 859
pair_style 1j/gromacs COMMANA..........cocuiiiiiiiiiiii ettt sttt st 863
pair_style lj/gromacs/cuda COMMANG..........cccuiiiiiiiiiiiiie et 863
pair_style 1j/gromacs/omp COMMANG..........cccuiiiiiiiiiiieieeie ettt ettt et s 863
pair_style lj/gromacs/coul/gromacs COMMANA............cccuerueiiiriieiieeieeie ettt 863
pair_style lj/gromacs/coul/gromacs/cuda command.............cccecueiiiiiiiiiiniini e 863
pair_style lj/gromacs/coul/gromacs/omp COMMANA...........cooueriiriiiriiiniiiieeie ettt 863
pair_style hbond/dreiding/lj COMMANA...........cocuiiiiiiiiiiiiiie et 866
pair_style hbond/dreiding/lj/omp cOmMMAand............cccocueiiiiiiniiiiie ettt 866
pair_style hbond/dreiding/morse COMMAN............cecuiriiiiiiiiiie ettt s 866
pair_style hbond/dreiding/morse/omp COMMANA............ccoueiiirieriiieiieeie et 866
pair_style hybrid COmMmMand............coouiiiiiiiii e 871
pair_style hybrid/omp cOmMmMAaNA............coouiiiiiiiiii e 871
pair_style hybrid/overlay command..............ccooouiiiiiiiiiiii e 871
pair_style hybrid/overlay/omp command...........c.ccoooiiiiiiiiiiiiiiie e 871
pair_style Kim COMMANG.........oooiiiiiiiiiie ettt ettt ettt et esaae s eas 876
pair_style 1chop COMMANA..........ooiiiiiiiii ettt et et 880
pair_style 1line/lj COMMANG..........cocuiiiiiiii ettt ettt e 882
pair_style 1ine/1j/omp COMMANT..........ooouiiiiiiiiii ettt sttt et 882
pair_style 1j/cut COMMANC.........coiiiiiiiiii ettt ettt e 884
pair_style lj/cut/cuda COMMANA..........cccoiiiiiiiiiii ettt 884
pair_style lj/cut/experimental/cuda command...............ccooueriiiriiiiiiiiiieie e 884
pair_style 1j/cut/gpu COMMANG........cccuiiiiiiiiieeie et ettt s 884
pair_style 1j/cut/opt COMMANA.........cocuiiiiiiiiiieie ettt st 884
pair_style 1j/cut/omp COMMANG.........c.oiiiiiiiiiiie ettt ettt 884
pair_style lj/cut/coul/cut COMMANG.........cccuiiiiiiiiiieie ettt s 884
pair_style lj/cut/coul/cut/cuda cOmMmMAand............c.ceeouiriiiiiiiiiiiie et 884
pair_style lj/cut/coul/cut/gpu cOMMANA..........coouiiiiiiiiiiiie e 884
pair_style lj/cut/coul/cut/omp COMMANG.........cccueriiiiiiiiiiieeie ettt s 884
pair_style lj/cut/coul/debye command..............ccooouiiiiiiiiiiiiiiiiie e 884
pair_style lj/cut/coul/debye/cuda command..............ccoocueiiiiiiiiiiiiiii e 884
pair_style lj/cut/coul/debye/gpu command............ccocuiiiiiiiiiiiiiiie e 884
pair_style lj/cut/coul/debye/omp command............cccooiiiiiiiiiiiiiiie e 884

LAMMPS Users Manual

Table of Contents

pair_style lj/cut/coul/Iong COMMANC...........ooouiiiiiiiiiiieie ettt e 884
pair_style lj/cut/coul/long/cuda cOmMMANd...........cceeriiiiiiiiiiiiie ettt 884
pair_style lj/cut/coul/long/gpu COMMANA............eeouiriiiiiiiiiieeie ettt 884
pair_style lj/cut/coul/long/opt COMMANC.........cocuiiiiiiiiiiiiii ettt 884
pair_style lj/cut/coul/long/omp COMMANG..........cecuiriiriiiiiiieeie ettt 884
pair_style lj/cut/coul/long/tip4p cOMMANd...........c.eeriiiiiiiiiiieie ettt 884
pair_style lj/cut/coul/long/tip4p/omp COMMANA.........cccueiiiiiiiiriiiie ettt 884
pair_style lj/cut/coul/long/tip4p/opt COMMAN.........c.eeruiiiiiiiiieiie ettt 885
pair_style 1j96/cut COMMANT........cccoiriiiiriiiieieteeeet ettt ettt et 889
pair_style 1j96/cut/cuda cCOMMANA.........cccoiririiriiriiieienreee ettt 889
pair_style 1j96/cut/Zpu cOMMANC.......c..cocuiriiiiiiiiiieieerree ettt st 889
pair_style 1j96/cut/omp COMMANC.........ccceririiiiriiniieieerree ettt s 889
pair_style 1j/coul COmMMANd..........cc.coeriiiiiiiiiiiie ettt 891
pair_style lj/coul/omp COMMANG........c..cocuiririiiiiiriieieerree ettt st 891
pair_style 1j/cubic COMMANA........cc.coeriiiiiiiiiieiee ettt 894
pair_style lj/cubic/omp COMMAN..........ccccoirieiiriiniiieiininee ettt 894
pair_style 1j/cut/smooth COMMANA.........ccccoiririiriiniiieenee ettt st 896
pair_style lj/cut/smooth/cuda cOmmand............ccoevirieriiriiriiiinineeece et 896
pair_style lj/cut/smooth/omp COMMEANC..........cccueriiririiriininieieeneet ettt 896
pair_style lj/expand cOmMANA........c..coceeriiririeiiniinieieerree ettt 897
pair_style lj/expand/cuda cOmmand.............coceecueriiririenieninieieeeeecee et 897
pair_style lj/expand/gpu cOMMANA........c..coerieiiriiniiieiinree ettt st 897
pair_style lj/expand/omp COMMANC..........ccceeiriiriiririeitininieee ettt st 897
pair_style 1j/sf COMMAN..........cociiiiiriiiiiiiictce ettt 900
pair_style 1j/sf/0mp COMMANQ.........c.coeiiiiiiiiiiiiie ettt et 900
pair_style 1j/smooth COMMANd........c..coeeriiriiiiiiiii ettt e 902
pair_style lj/smooth/cuda command.........c..coceeieriiririenininiee et 902
pair_style 1j/smooth/omp COMMAN..........ccceeieiiriiniiiiiiniree ettt 902
pair_style lj/smooth/linear COMMANQ...........ccceecueriiririeniininieieee ettt 904
pair_style lj/smooth/linear/omp COMMAN..........cccovirieriiririeiinineetetee ettt 904
pair_style lubricate COMMANd.........c.ccoeeriiriiiieiiiiei ettt st 906
pair_style lubricate/omp COMMANG........c.coviririiriiniiieteneree ettt st e 906
pair_style lubricate/poly COMMANG........c..coirieiiriinirieienireeee ettt 906
pair_style lubricate/poly/omp COMMANC.........ccceeruiririeririnieiee ettt 906
pair_style lubricateU cOmMmMAand............ccceoirieiiriiniiieenreeee ettt 910
pair_style lubricateU/poly cOMMANd........c..coeeeeriiniirienieniinieieieneetetesie ettt 910
pair_style meam COMMAN..........cciririiiiriiietetitt ettt sttt ettt sttt saeeaeeaesbeeaeene 914
Pair_Style MEAM/SPIINE.......ccueruiiiiiiririeeiee ettt sttt sttt st 920
pair_style meam/SPINE/OMP.ccueririiriiriniietetirte ettt sttt ettt sttt st 920
pair_mOodify COMMEANA.ccoiiiiiiiriiriietere ettt sttt et sa st e st bt eeteaesbesaeenee 923
pair_style morse COMMEANC..........cciririiiirinietetite ettt sttt et sb sttt saeeeeeaesbesaeene 926
pair_style morse/cuda COMMANG........c..cocueririeiiriinieietenteneet ettt sttt et s ae b e ene 926
pair_style morse/gpu COMMAN.........coeeouiriirieieriiniieiete sttt ettt ettt et et ettt et e eeeenenbeeaeenee 926
pair_style morse/Omp COMMAN........c..cecueririeteriiniieietene ettt ettt et ete st st resaesaeeeeebenbeeaeenee 926
pair_style morse/Opt COMMEANA.c..coeeiiririeieiintieiet ettt sttt ettt ettt st et et e eeeesaesresaeenee 926
Pair_style NONE COMMANM.....c..eotertiririeiiiieeteet ettt ettt et sttt ettt et ettt sttt sbeeeeenenbeeaeenee 928
pair_style peri/pmb COMMANG.........coereiiiririetetiiiet ettt ettt ettt et sae b st aesbesaeene 929
pair_style peri/pmb/Omp COMMANC.......c..coirieiiriiririeenreet ettt sttt ene 929

Xiv

LAMMPS Users Manual

Table of Contents

pair_style peri/Ips COMMANA........cc.coeriiiiiririeieiitee ettt ettt et ae e 929
pair_style peri/Ips/omp COMMAN..........cccriririiriiriiieieneree ettt st 929
pair_style reaX COMMANG......c..coctiriiririieiirieeteeit ettt ettt ettt ettt e e st sbe et enaesaeebeebenbeeaeenee 932
pair_style reax/C COMMANC..........cciririiriiiinietetet ettt sttt ettt et sae e aesbe e ene 935
pair_style resquared COMMANG........c..coeeriiririeteriintiet ettt sttt et ettt st et e e e eeeeaesbeeaeene 940
pair_style resquared/Zpu COMMANC........c..coirieieriiririeienereet ettt sttt ae e e ene 940
pair_style resquared/Omp COMMEANA......c..coueruietiriiriirietenteneet ettt et sttt et i eeeenenbeeaeene 940
pair_style 1j/sdk COMMANA...........coouiririiiiniiieice ettt et 944
pair_style 1j/sdk/Zpu cOmMANA.coceeviiririiiiiiie ettt et 944
pair_style 1j/sdk/omp COMMANQ.........coceeriiririiiiiiieieeree ettt st 944
pair_style 1j/sdk/coul/long cOMMANd........c..coceeueriiririeniininieiee ettt st 944
pair_style 1j/sdk/coul/long/gpu cOMMANd...........ccuiruirienieniirieieieneetctete ettt 944
pair_style 1j/sdk/coul/long/omp cOMMAN..........cceririeriiriririenienieetetee ettt 944
pair_style SOft COMMEANA.......cceiciiiiiriiiiiieret ettt sttt et bbb ene 947
pair_style soft/omp COMMANC.........ccccoiiiiiriiiiiiiiie ettt 947
pair_style sph/heatconduction COMMANG.........cceerviririerieririeienie ettt st 949
pair_style sph/idealgas COmMMANA..........ccccoiririiriiniiiiiene ettt 950
pair_style Sph/lj COMMANA.........ccceouiririiiiiinietc ettt ettt et s ene 952
pair_style sph/rhosSum COMMANC..........cccueririiiiriiniiiieeee ettt 954
pair_style sph/taitwater COMMANG........cccueruirrieieriiniieietene ettt ettt ettt sttt saeeseeaesbeeaeene 955
pair_style sph/taitwater/morris COMMANG.c..couiririerieririeienie ettt sttt et eeeeaesbeeaeene 957
PAIT_StYLe COMIMANT.......eiiiiiiiiiiiierieiteetee ettt ettt sttt ettt sa st e st saeeeeebenbeeaeene 959
PAIr_StYle SW COMMAN......ccuiriiiiiiniiniieiee ettt sttt ettt sttt sae e ebesbesaeenee 962
pair_style sw/cuda COMMANG..........coceriiiiriinieieiee ettt ettt ene 962
pair_style SW/OmpP COMMEANC.......cceririiriiriinietetite ettt ettt ettt sttt sbeeeeeaesbeeaeene 962
pair_style table COMMANA........cocueviiriiiiiiiereetc ettt ettt sttt st 966
pair_style table/gpu COMMANA........cccoiiiiriiiiieiitet ettt st 966
pair_style table/omp COMMEANA........c..coeeriiririeieiiiiet ettt sttt et st 966
pair_style terSoff COMMEANC..........cciiiiiiiiiiiiiei ettt st 970
pair_style tersoff/table command...........cceoiriiiiiiiniiii e 970
PAIT_StYLe teTSOFT/CUARA ...cveiiiiiiieiieece ettt st e 970
PAIr_StYLe teTSOFT/OMIP . c..c vttt sttt et e 970
pair_style tersoff/table/omp cOmMMAN.........cc.cocueriiririiiininiiree e 970
pair_style tersoff/zbl commMAN..........c..ccceriiiiiiiiiiiii e e 975
pair_style tersoff/zbl/omp command...........c..cecueriiniriiininiiii e 975
pair_style tri/lj COMMAN.........ccceeiiiriiiiiiiireetct ettt sttt et st 981
pair_style tri/lj/omp COMMANd........c.coeiiiriirieieiitiei ettt ettt et 981
PAIT_WIILE COMIMANG.......eeiuiiiiitiiie ettt ettt ettt ettt eat e eateeateeateeateeaeeeaaesateeabeeabeemeeeneesneesaneens 983
pair_style yukawa COMMAN........cc.coerieiiriinieieiieeet ettt ettt et s be e ene 985
pair_style yukawa/gpu COMMANG.......c..cocuiriirieiiriiniieietenterieet ettt ettt s ae b e ene 985
pair_style yukawa/omp COMMANG.....c..cccueririeieriininieteneneet ettt ettt et et s ae b e ene 985
pair_style yukawa/colloid cOmMmand...........coceecueruiririenieninieiee ettt 987
pair_style yukawa/colloid/gpu command...........c..coeeierieniiririineneeteene ettt 987
pair_style yukawa/colloid/omp cOmMmAand..........c..cocereerieririeiinineeieniene ettt 987
PArtition COMIMAN......coueiiiiiriiiieterterteet ettt ettt ettt et b e et e e sa s bt et ebesaeeseenenbesaeenee 990
PIA COMMEANC ...ttt ettt ettt sttt bttt b e e bt esbesb e sbe et enaesaeeatennenbeeueenee 992
PIINE COMIMANA ..c..eeitiititeeiteterte ettt ettt ettt ettt ettt et et e sbeea b etesbeebe et e s bt e bt e b e naesbe et entesaeesaennenbesueenee 996
PTOCESSOTS COMIMANC.euteutiiiriieitenterteeitente ettt ettt et ettt sbeea e tesbeebe et e sbe e bt enaenaesbe et entesaeeaeennenbeeueenee 997

XV

LAMMPS Users Manual

Table of Contents

QUIE COTMIMANA. ¢+ttt ettt ettt et ettt et et e ea bt eab e ea bt enteenbeenbeenbeembeenbeenbeenbeenbeenseenseensean 1002
TEAA_dAtA COMMUANG ...t e e et e aaaaaaaees 1003
read_dUump COMMANG.coiiiiiiiie ettt e bt b e b et e bt e bt e sbe e bt ebeebeeneeas 1015
TEAA_TESTATT COMIMANT. ... oot e e e et e aaaaaaaees 1020
TEZION COMIMAN ...ttt ettt et e s bt e st e e bt e bt e bt e sbeesbeesb e e bt e bt e bt enbee bt e bt enbeebeenbeenbeensean 1022
TEPlICAtE COMMEAN.oiiiieiiiiiiiie ettt b et e b e bt e b e bt e bt e bt e bt e ebee bt ebeebeensean 1026
TEIUN COMIMANGoiiiiiiiiiiiii it ee e eeee et e ettt aaataeaeaeeeaeeeeeeeeeeeeseeseaeaeaeeaeeaaeeeeeaeneeens 1027
reset_tiMEeSteP COMIMANT.....c.eiiuiiitiiitieiie ittt ettt ettt et e st e bt e bt e bt e bt e bt e bt e bt enbeebeebeenbeensean 1030
F S 821 AeT0) 101 0F:1 1 Le IO SRR 1031
TUN COMIMEANT.....tiiiiiiiiiiiieiiee ettt e e e e e et e e e e e e ee et aaeeeeesseeaaaaeeeeeseesnaaaeeeeesssenssaeseeeeseannraeneeens 1033
TUN_SEYI& COMMEAN.....c..iiiiiiiiiie ettt b et e bt e bt e b e b ebeebeeneean 1036
SEE COMIMANC. .. .ueiiiiiiiiiiiiiiteiiee ettt et et e e et e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeesasesssssssssssssssssesasessssssssenerenenees 1040
SHEIL COMMEANT......evviiiiiiiieeeee et e e et e e e e e e et e e e e e s eeaaaeeeeessesnaaeeeeeseeans 1045
special_bonds COMMEAN...........oooiiiiiiiii ettt et ettt et ettt eneea 1047
R 00§ D10} 101 0F21 o 6 RO 1050
L2270 IT0) 001 00 21 1 (o IR SRR 1052
EEIMPET COMIMANT. ...ttt ettt ettt et et et e et e e s bt e bt enbe e bt enbeenbeenteebeenbeenbeenseensean 1056
110150 0010 IR w10} 1011 0F2Y o ¢ AU PP 1058
thermo_modify COMMANG.c.ooiuiiiiiiieie ettt ettt ettt et e b e b ebeeneean 1059
thermo_Style COMMANG.c.eoiuiiiiiie ettt et e b et e e bt et e bt e beebeebeennean 1061
tIMESLEP COMIMAN.....eeueeiutieiiieiteite ettt ettt et ettt e bt et et e et e es bt eabeenbeenbeenbeenbeenteenbeenbeenbeenseensean 1066
UNCOMPULE COMIMATIA. c...eiiiiiiiiiieitie ettt ettt ettt ettt e ettt e sttt e sabeesateesabeeeabeeebeeesbbeesbbeessbeesabeesnbeeanne 1067
UNAUMP COMIMAN. ...ttt ettt ettt ettt et e et et e et e enteenbeenbeenbeenbeenbeenbeenbeenbeenbeenseensean 1068
UNTIX COMIMANG......ccoiniiiiiiieeieeeee ettt e ettt e e e e e et eeeeeeseeaaaaeeeeesseenaaneeeesseennaaeeeeeeeaans 1069
UNIES COMIMANG......ciiuiiiiiiiieeiiieeee ettt e e e e e et et e e e e e et aeeeeeeeeeaaaaseeeesseassaaeeeeesseesaaneeeessesnnseeeeeesenans 1070
Variable COMIMANG..........ooiiiiiiiiiiiii et e e e e e e e e e e et ae e e e e s eeeaaaaeeeesseennaaeeeeeeeaans 1073

IMAALR OPETALOTS. ...ttt ettt ettt ettt ettt ettt et et et e et e eabe e bt embeenbeenteebeenbeenbeenbeansean 1077

Y BT 0T S e el T0) o O PTSRRN 1077

Group and Region FUNCHONS.cccoiiiiiiiiiiiieicnectce et 1079

SPECial FUNCHOMNS.cviiiiiiiiiitieiieie ettt ettt et sa et sae b eneens 1079

Atom Values and VECLOTS........ooiiiiiiiiiieieeeeeeeeeeeeeeeeeee e e e e e e e e e e e e e eeeeeeeeaeeaaeeeeeas 1080

COMPULE RETEIENCES. ...ttt ettt ettt et b et beeneeas 1080

FIX RETEIEICES. ...vveeiiiiieeeeeee ettt ettt e e e e e et e e e e e e et aae e e e e s seeaaaneeeeeeeans 1081

Variable REFEIEICES........vvviiiiiiiieeeee ettt e e e e e e e e e s s e eaaaeeeeeeens 1081
VEIOCILY COMIMANG.eeiuiiiiiieieee ettt et ettt ettt e bt e bt e bt et e e bt enbeebeebeenbeenbeansean 1085
WIILE_ TESTATT COMMUANG. ... ettt e e et e e e e e e e e e et e e e e e e e e e e e e e aaeeeeeeeeeeaeaans 1088

XVi

LAMMPS Documentation

Version info:

The LAMMPS "version" is the date when it was released, such as 1 May 2010. LAMMPS is updated
continuously. Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this page of
the WWW site. Each dated copy of LAMMPS contains all the features and bug-fixes up to and including that
version date. The version date is printed to the screen and logfile every time you run LAMMPS. It is also in the
file src/version.h and in the LAMMPS directory name created when you unpack a tarball.

¢ If you browse the HTML doc pages on the LAMMPS WWW site, they always describe the most current
version of LAMMPS.

¢ If you browse the HTML doc pages included in your tarball, they describe the version you have.

¢ The PDF file on the WWW site or in the tarball is updated about once per month. This is because it is
large, and we don't want it to be part of every patch.

¢ There is also a Developer.pdf file in the doc directory, which describes the internal structure and
algorithms of LAMMPS.

LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator.

LAMMPS is a classical molecular dynamics simulation code designed to run efficiently on parallel computers. It
was developed at Sandia National Laboratories, a US Department of Energy facility, with funding from the DOE.
It is an open-source code, distributed freely under the terms of the GNU Public License (GPL).

The primary developers of LAMMPS are Steve Plimpton, Aidan Thompson, and Paul Crozier who can be
contacted at sjplimp,athomps,pscrozi at sandia.gov. The LAMMPS WWW Site at http://lammps.sandia.gov has
more information about the code and its uses.

The LAMMPS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the LAMMPS documentation.

Once you are familiar with LAMMPS, you may want to bookmark this page at Section_commands.html#comm
since it gives quick access to documentation for all LAMMPS commands.

PDF file of the entire manual, generated by htmldoc

1. Introduction
1.1 What is LAMMPS
1.2 LAMMPS features
1.3 LAMMPS non-features
1.4 Open source distribution
1.5 Acknowledgments and citations
2. Getting started
2.1 What's in the LAMMPS distribution
2.2 Making LAMMPS
2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS via the Make.py script
2.5 Building LAMMPS as a library
2.6 Running LAMMPS
2.7 Command-line options
2.8 Screen output

http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov/bug.html
http://www.sandia.gov/~sjplimp
http://lammps.sandia.gov
http://www.easysw.com/htmldoc

S O o0

2.9 Tips for users of previous versions
. Commands
3.1 LAMMPS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically
. Packages
4.1 Standard packages
4.2 User packages
. Accelerating LAMMPS performance
5.1 Measuring performance
5.2 General strategies
5.3 Packages with optimized styles
5.4 OPT package
5.5 USER-OMP package
5.6 GPU package
5.7 USER-CUDA package
5.8 Comparison of GPU and USER-CUDA packages
. How-to discussions
6.1 Restarting a simulation
6.2 2d simulations
6.3 CHARMM and AMBER force fields
6.4 Running multiple simulations from one input script
6.5 Multi-replica simulations
6.6 Granular models
6.7 TIP3P water model
6.8 TIP4P water model
6.9 SPC water model
6.10 Coupling LAMMPS to other codes
6.11 Visualizing LAMMPS snapshots
6.12 Triclinic (non-orthogonal) simulation boxes
6.13 NEMD simulations
6.14 Extended spherical and aspherical particles
6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
6.16 Thermostatting, barostatting, and compute temperature
6.17 Walls
6.18 Elastic constants
6.19 Library interface to LAMMPS
6.20 Calculating thermal conductivity
6.21 Calculating viscosity
. Example problems
. Performance & scalability
. Additional tools
. Modifying & extending LAMMPS
10.1 Atom styles
10.2 Bond, angle, dihedral, improper potentials
10.3 Compute styles
10.4 Dump styles
10.5 Dump custom output options
10.6 Fix styles
10.7 Input script commands

10.8 Kspace computations
10.9 Minimization styles
10.10 Pairwise potentials
10.11 Region styles
10.12 Thermodynamic output options
10.13 Variable options
10.14 Submitting new features for inclusion in LAMMPS
11. Python interface
11.1 Extending Python with a serial version of LAMMPS
11.2 Creating a shared MPI library
11.3 Extending Python with a parallel version of LAMMPS
11.4 Extending Python with MPI
11.5 Testing the Python-LAMMPS interface
11.6 Using LAMMPS from Python
11.7 Example Python scripts that use LAMMPS
12. Errors
12.1 Common problems
12.2 Reporting bugs
12.3 Error & warning messages
13. Future and history
13.1 Coming attractions
13.2 Past versions

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

1. Introduction

This section provides an overview of what LAMMPS can and can't do, describes what it means for LAMMPS to
be an open-source code, and acknowledges the funding and people who have contributed to LAMMPS over the
years.

1.1 What is LAMMPS

1.2 LAMMPS features

1.3 LAMMPS non-features

1.4 Open source distribution

1.5 Acknowledgments and citations

1.1 What is LAMMPS

LAMMPS is a classical molecular dynamics code that models an ensemble of particles in a liquid, solid, or
gaseous state. It can model atomic, polymeric, biological, metallic, granular, and coarse-grained systems using a
variety of force fields and boundary conditions.

For examples of LAMMPS simulations, see the Publications page of the LAMMPS WWW Site.

LAMMPS runs efficiently on single-processor desktop or laptop machines, but is designed for parallel computers.
It will run on any parallel machine that compiles C++ and supports the MPI message-passing library. This
includes distributed- or shared-memory parallel machines and Beowulf-style clusters.

LAMMPS can model systems with only a few particles up to millions or billions. See Section_perf for
information on LAMMPS performance and scalability, or the Benchmarks section of the LAMMPS WWW Site.

LAMMPS is a freely-available open-source code, distributed under the terms of the GNU Public License, which
means you can use or modify the code however you wish. See this section for a brief discussion of the
open-source philosophy.

LAMMPS is designed to be easy to modify or extend with new capabilities, such as new force fields, atom types,
boundary conditions, or diagnostics. See Section_modify for more details.

The current version of LAMMPS is written in C++. Earlier versions were written in F77 and F90. See
Section_history for more information on different versions. All versions can be downloaded from the LAMMPS
WWW Site.

LAMMPS was originally developed under a US Department of Energy CRADA (Cooperative Research and
Development Agreement) between two DOE labs and 3 companies. It is distributed by Sandia National Labs. See
this section for more information on LAMMPS funding and individuals who have contributed to LAMMPS.

In the most general sense, LAMMPS integrates Newton's equations of motion for collections of atoms, molecules,
or macroscopic particles that interact via short- or long-range forces with a variety of initial and/or boundary
conditions. For computational efficiency LAMMPS uses neighbor lists to keep track of nearby particles. The lists
are optimized for systems with particles that are repulsive at short distances, so that the local density of particles
never becomes too large. On parallel machines, LAMMPS uses spatial-decomposition techniques to partition the
simulation domain into small 3d sub-domains, one of which is assigned to each processor. Processors

http://lammps.sandia.gov
http://lammps.sandia.gov
http://www-unix.mcs.anl.gov/mpi
http://lammps.sandia.gov
http://www.gnu.org/copyleft/gpl.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.sandia.gov

communicate and store "ghost" atom information for atoms that border their sub-domain. LAMMPS is most
efficient (in a parallel sense) for systems whose particles fill a 3d rectangular box with roughly uniform density.
Papers with technical details of the algorithms used in LAMMPS are listed in this section.

1.2 LAMMPS features

This section highlights LAMMPS features, with pointers to specific commands which give more details. If
LAMMPS doesn't have your favorite interatomic potential, boundary condition, or atom type, see
Section_modify, which describes how you can add it to LAMMPS.

General features

® runs on a single processor or in parallel

e distributed-memory message-passing parallelism (MPI)

e spatial-decomposition of simulation domain for parallelism

¢ open-source distribution

¢ highly portable C++

e optional libraries used: MPI and single-processor FFT

¢ GPU (CUDA and OpenCL) and OpenMP support for many code features

¢ cagsy to extend with new features and functionality

¢ runs from an input script

¢ syntax for defining and using variables and formulas

¢ syntax for looping over runs and breaking out of loops

¢ run one or multiple simulations simultaneously (in parallel) from one script

¢ build as library, invoke LAMMPS thru library interface or provided Python wrapper
e couple with other codes: LAMMPS calls other code, other code calls LAMMPS, umbrella code calls both

Particle and model types
(atom style command)

® atoms

e coarse-grained particles (e.g. bead-spring polymers)

¢ united-atom polymers or organic molecules

¢ all-atom polymers, organic molecules, proteins, DNA
® metals

¢ granular materials

e coarse-grained mesoscale models

¢ finite-size spherical and ellipsoidal particles

¢ finite-size line segment (2d) and triangle (3d) particles
® point dipolar particles

¢ rigid collections of particles

¢ hybrid combinations of these

Force fields
(pair style, bond style, angle style, dihedral style, improper style, kspace style commands)
® pairwise potentials: Lennard-Jones, Buckingham, Morse, Born-Mayer-Huggins, Yukawa, soft, class 2

(COMPASS), hydrogen bond, tabulated
¢ charged pairwise potentials: Coulombic, point-dipole

¢ manybody potentials: EAM, Finnis/Sinclair EAM, modified EAM (MEAM), embedded ion method
(EIM), EDIP, ADP, Stillinger-Weber, Tersoff, REBO, AIREBO, ReaxFF, COMB

¢ electron force field (eFF, AWPMD)

¢ coarse-grained potentials: DPD, GayBerne, REsquared, colloidal, DLVO

® mesoscopic potentials: granular, Peridynamics, SPH

¢ bond potentials: harmonic, FENE, Morse, nonlinear, class 2, quartic (breakable)

¢ angle potentials: harmonic, CHARMM, cosine, cosine/squared, cosine/periodic, class 2 (COMPASS)

¢ dihedral potentials: harmonic, CHARMM, multi-harmonic, helix, class 2 (COMPASS), OPLS

¢ improper potentials: harmonic, cvff, umbrella, class 2 (COMPASS)

¢ polymer potentials: all-atom, united-atom, bead-spring, breakable

¢ water potentials: TIP3P, TIP4P, SPC

¢ implicit solvent potentials: hydrodynamic lubrication, Debye

¢ KIM archive of potentials

¢ Jong-range Coulombics and dispersion: Ewald, Wolf, PPPM (similar to particle-mesh Ewald), Ewald/N
for long-range Lennard-Jones

¢ force-field compatibility with common CHARMM, AMBER, DREIDING, OPLS, GROMACS,
COMPASS options

¢ handful of GPU-enabled pair styles

¢ hybrid potentials: multiple pair, bond, angle, dihedral, improper potentials can be used in one simulation

¢ overlaid potentials: superposition of multiple pair potentials

Atom creation
(read_data, lattice, create_atoms, delete_atoms, displace_atoms, replicate commands)

¢ read in atom coords from files

e create atoms on one or more lattices (e.g. grain boundaries)
¢ delete geometric or logical groups of atoms (e.g. voids)

¢ replicate existing atoms multiple times

¢ displace atoms

Ensembles, constraints, and boundary conditions
(fix command)

¢ 2d or 3d systems

¢ orthogonal or non-orthogonal (triclinic symmetry) simulation domains
¢ constant NVE, NVT, NPT, NPH, Parinello/Rahman integrators

¢ thermostatting options for groups and geometric regions of atoms

¢ pressure control via Nose/Hoover or Berendsen barostatting in 1 to 3 dimensions
¢ simulation box deformation (tensile and shear)

¢ harmonic (umbrella) constraint forces

¢ rigid body constraints

¢ SHAKE bond and angle constraints

¢ bond breaking, formation, swapping

¢ walls of various kinds

¢ non-equilibrium molecular dynamics (NEMD)

¢ variety of additional boundary conditions and constraints

http://openkim.org

Integrators
(run, run_style, minimize commands)

¢ velocity-Verlet integrator

¢ Brownian dynamics

¢ rigid body integration

® energy minimization via conjugate gradient or steepest descent relaxation
¢ rRESPA hierarchical timestepping

¢ rerun command for post-processing of dump files

Diagnostics

e see the various flavors of the fix and compute commands
Output
(dump, restart commands)

¢]og file of thermodynamic info

¢ text dump files of atom coords, velocities, other per-atom quantities

® binary restart files

e parallel I/O of dump and restart files

® per-atom quantities (energy, stress, centro-symmetry parameter, CNA, etc)
¢ user-defined system-wide (log file) or per-atom (dump file) calculations

e spatial and time averaging of per-atom quantities

¢ time averaging of system-wide quantities

¢ atom snapshots in native, XYZ, XTC, DCD, CFG formats

Multi-replica models
nudged elastic band parallel replica dynamics temperature accelerated dynamics parallel tempering
Pre- and post-processing

¢ Various pre- and post-processing serial tools are packaged with LAMMPS; see these doc pages.

¢ Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing
setup, analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

Specialized features
These are LAMMPS capabilities which you may not think of as typical molecular dynamics options:

¢ stochastic rotation dynamics (SRD)

¢ real-time visualization and interactive MD

¢ atom-to-continuum coupling with finite elements

¢ coupled rigid body integration via the POEMS library
¢ grand canonical Monte Carlo insertions/deletions

e Direct Simulation Monte Carlo for low-density fluids
¢ Peridynamics mesoscale modeling

¢ targeted and steered molecular dynamics

http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html

¢ two-temperature electron model

1.3 LAMMPS non-features

LAMMPS is designed to efficiently compute Newton's equations of motion for a system of interacting particles.
Many of the tools needed to pre- and post-process the data for such simulations are not included in the LAMMPS
kernel for several reasons:

¢ the desire to keep LAMMPS simple
¢ they are not parallel operations

¢ other codes already do them

¢ limited development resources

Specifically, LAMMPS itself does not:

¢ run thru a GUI

¢ build molecular systems

¢ assign force-field coefficients automagically

¢ perform sophisticated analyses of your MD simulation
¢ visualize your MD simulation

¢ plot your output data

A few tools for pre- and post-processing tasks are provided as part of the LAMMPS package; they are described
in this section. However, many people use other codes or write their own tools for these tasks.

As noted above, our group has also written and released a separate toolkit called Pizza.py which addresses some
of the listed bullets. It provides tools for doing setup, analysis, plotting, and visualization for LAMMPS
simulations. Pizza.py is written in Python and is available for download from the Pizza.py WWW site.

LAMMPS requires as input a list of initial atom coordinates and types, molecular topology information, and
force-field coefficients assigned to all atoms and bonds. LAMMPS will not build molecular systems and assign
force-field parameters for you.

For atomic systems LAMMPS provides a create_atoms command which places atoms on solid-state lattices (fcc,
bec, user-defined, etc). Assigning small numbers of force field coefficients can be done via the pair coeff, bond
coeff, angle coeff, etc commands. For molecular systems or more complicated simulation geometries, users
typically use another code as a builder and convert its output to LAMMPS input format, or write their own code
to generate atom coordinate and molecular topology for LAMMPS to read in.

For complicated molecular systems (e.g. a protein), a multitude of topology information and hundreds of
force-field coefficients must typically be specified. We suggest you use a program like CHARMM or AMBER or
other molecular builders to setup such problems and dump its information to a file. You can then reformat the file
as LAMMPS input. Some of the tools in this section can assist in this process.

Similarly, LAMMPS creates output files in a simple format. Most users post-process these files with their own
analysis tools or re-format them for input into other programs, including visualization packages. If you are
convinced you need to compute something on-the-fly as LAMMPS runs, see Section_modify for a discussion of
how you can use the dump and compute and fix commands to print out data of your choosing. Keep in mind that
complicated computations can slow down the molecular dynamics timestepping, particularly if the computations
are not parallel, so it is often better to leave such analysis to post-processing codes.

http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html
http://www.scripps.edu/brooks
http://amber.scripps.edu

A very simple (yet fast) visualizer is provided with the LAMMPS package - see the xmovie tool in this section. It
creates xyz projection views of atomic coordinates and animates them. We find it very useful for debugging
purposes. For high-quality visualization we recommend the following packages:

e VMD

¢ AtomEye
¢ PyMol

® Raster3d
® RasMol

Other features that LAMMPS does not yet (and may never) support are discussed in Section_history.

Finally, these are freely-available molecular dynamics codes, most of them parallel, which may be well-suited to
the problems you want to model. They can also be used in conjunction with LAMMPS to perform complementary
modeling tasks.

e CHARMM
e AMBER

e NAMD

e NWCHEM
e DL_POLY
¢ Tinker

CHARMM, AMBER, NAMD, NWCHEM, and Tinker are designed primarily for modeling biological molecules.
CHARMM and AMBER use atom-decomposition (replicated-data) strategies for parallelism; NAMD and
NWCHEM use spatial-decomposition approaches, similar to LAMMPS. Tinker is a serial code. DL_POLY
includes potentials for a variety of biological and non-biological materials; both a replicated-data and
spatial-decomposition version exist.

1.4 Open source distribution

LAMMPS comes with no warranty of any kind. As each source file states in its header, it is a copyrighted code
that is distributed free-of- charge, under the terms of the GNU Public License (GPL). This is often referred to as
open-source distribution - see www.gnu.org or www.opensource.org for more details. The legal text of the GPL is
in the LICENSE file that is included in the LAMMPS distribution.

Here is a summary of what the GPL means for LAMMPS users:

(1) Anyone is free to use, modify, or extend LAMMPS in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of LAMMPS, it must remain open-source, meaning you distribute it under
the terms of the GPL. You should clearly annotate such a code as a derivative version of LAMMPS.

(3) If you release any code that includes LAMMPS source code, then it must also be open-sourced, meaning you
distribute it under the terms of the GPL.

(4) If you give LAMMPS files to someone else, the GPL LICENSE file and source file headers (including the
copyright and GPL notices) should remain part of the code.

http://www.ks.uiuc.edu/Research/vmd
http://mt.seas.upenn.edu/Archive/Graphics/A
http://pymol.sourceforge.net
http://www.bmsc.washington.edu/raster3d/raster3d.html
http://www.openrasmol.org
http://www.scripps.edu/brooks
http://amber.scripps.edu
http://www.ks.uiuc.edu/Research/namd/
http://www.emsl.pnl.gov/docs/nwchem/nwchem.html
http://www.cse.clrc.ac.uk/msi/software/DL_POLY
http://dasher.wustl.edu/tinker
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org
http://www.opensource.org

In the spirit of an open-source code, these are various ways you can contribute to making LAMMPS better. You
can send email to the developers on any of these items.

¢ Point prospective users to the LAMMPS WWW Site. Mention it in talks or link to it from your WWW
site.

¢ [f you find an error or omission in this manual or on the LAMMPS WWW Site, or have a suggestion for
something to clarify or include, send an email to the developers.

¢ If you find a bug, Section_errors 2 describes how to report it.

¢ If you publish a paper using LAMMPS results, send the citation (and any cool pictures or movies if you
like) to add to the Publications, Pictures, and Movies pages of the LAMMPS WWW Site, with links and
attributions back to you.

¢ Create a new Makefile.machine that can be added to the src/MAKE directory.

® The tools sub-directory of the LAMMPS distribution has various stand-alone codes for pre- and
post-processing of LAMMPS data. More details are given in Section_tools. If you write a new tool that
users will find useful, it can be added to the LAMMPS distribution.

e LAMMPS is designed to be easy to extend with new code for features like potentials, boundary
conditions, diagnostic computations, etc. This section gives details. If you add a feature of general
interest, it can be added to the LAMMPS distribution.

¢ The Benchmark page of the LAMMPS WWW Site lists LAMMPS performance on various platforms.
The files needed to run the benchmarks are part of the LAMMPS distribution. If your machine is
sufficiently different from those listed, your timing data can be added to the page.

® You can send feedback for the User Comments page of the LAMMPS WWW Site. It might be added to
the page. No promises.

¢ Cash. Small denominations, unmarked bills preferred. Paper sack OK. Leave on desk. VISA also
accepted. Chocolate chip cookies encouraged.

1.5 Acknowledgments and citations

LAMMPS development has been funded by the US Department of Energy (DOE), through its CRADA, LDRD,
ASCI, and Genomes-to-Life programs and its OASCR and OBER offices.

Specifically, work on the latest version was funded in part by the US Department of Energy's Genomics:GTL
program (www.doegenomestolife.org) under the project, "Carbon Sequestration in Synechococcus Sp.: From
Molecular Machines to Hierarchical Modeling".

The following paper describe the basic parallel algorithms used in LAMMPS. If you use LAMMPS results in
your published work, please cite this paper and include a pointer to the LAMMPS WWW Site
(http://lammps.sandia.gov):

S. J. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19
(1995).

Other papers describing specific algorithms used in LAMMPS are listed under the Citing LAMMPS link of the
LAMMPS WWW page.

The Publications link on the LAMMPS WWW page lists papers that have cited LAMMPS. If your paper is not
listed there for some reason, feel free to send us the info. If the simulations in your paper produced cool pictures
or animations, we'll be pleased to add them to the Pictures or Movies pages of the LAMMPS WWW site.

The core group of LAMMPS developers is at Sandia National Labs:

¢ Steve Plimpton, sjplimp at sandia.gov

10

http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.doe.gov
http://www.sc.doe.gov/ascr/home.html
http://www.er.doe.gov/production/ober/ober_top.html
http://www.doegenomestolife.org
http://www.genomes2life.org
http://lammps.sandia.gov
http://lammps.sandia.gov/cite.html
http://lammps.sandia.gov/papers.html
http://lammps.sandia.gov/pictures.html
http://lammps.sandia.gov/movies.html

¢ Aidan Thompson, athomps at sandia.gov
¢ Paul Crozier, pscrozi at sandia.gov

The following folks are responsible for significant contributions to the code, or other aspects of the LAMMPS
development effort. Many of the packages they have written are somewhat unique to LAMMPS and the code
would not be as general-purpose as it is without their expertise and efforts.

¢ Axel Kohlmeyer (Temple U), akohlmey at gmail.com, SVN and Git repositories, indefatigable mail list
responder, USER-CG-CMM and USER-OMP packages

¢ Roy Pollock (LLNL), Ewald and PPPM solvers

¢ Mike Brown (ORNL), brownw at ornl.gov, GPU package

¢ Greg Wagner (Sandia), gjwagne at sandia.gov, MEAM package for MEAM potential

¢ Mike Parks (Sandia), mlparks at sandia.gov, PERI package for Peridynamics

¢ Rudra Mukherjee (JPL), Rudranarayan.M.Mukherjee at jpl.nasa.gov, POEMS package for articulated
rigid body motion

® Reese Jones (Sandia) and collaborators, rjones at sandia.gov, USER-ATC package for atom/continuum
coupling

¢ Jlya Valuev (JIHT), valuev at physik.hu-berlin.de, USER-AWPMD package for wave-packet MD

¢ Christian Trott (U Tech Ilmenau), christian.trott at tu-ilmenau.de, USER-CUDA package

¢ Andres Jaramillo-Botero (Caltech), ajaramil at wag.caltech.edu, USER-EFF package for electron force
field

¢ Pieter in' t Veld (BASF), pieter.intveld at basf.com, USER-EWALDN package for 1/r*N long-range
solvers

¢ Christoph Kloss (JKU), Christoph.Kloss at jku.at, USER-LIGGGHTS package for granular models and
granular/fluid coupling

¢ Metin Aktulga (LBL), hmaktulga at Ibl.gov, USER-REAXC package for C version of ReaxFF

¢ Georg Gunzenmuller (EMI), georg.ganzenmueller at emi.thg.de, USER-SPH package

As discussed in Section_history, LAMMPS originated as a cooperative project between DOE labs and industrial
partners. Folks involved in the design and testing of the original version of LAMMPS were the following:

¢ John Carpenter (Mayo Clinic, formerly at Cray Research)

¢ Terry Stouch (Lexicon Pharmaceuticals, formerly at Bristol Myers Squibb)
¢ Steve Lustig (Dupont)

¢ Jim Belak (LLNL)

11

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

2. Getting Started

This section describes how to build and run LAMMPS, for both new and experienced users.

2.1 What's in the LAMMPS distribution

2.2 Making LAMMPS

2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS via the Make.py script
2.5 Building LAMMPS as a library

2.6 Running LAMMPS

2.7 Command-line options

2.8 Screen output

2.9 Tips for users of previous versions

2.1 What's in the LAMMPS distribution

When you download LAMMPS you will need to unzip and untar the downloaded file with the following
commands, after placing the file in an appropriate directory.

gunzip lammps*.tar.gz
tar xvf lammps*.tar

This will create a LAMMPS directory containing two files and several sub-directories:

README [text file
LICENSE [the GNU General Public License (GPL)

bench benchmark problems

doc documentation

examples [simple test problems
potentials [embedded atom method (EAM) potential files

src source files

tools pre- and post-processing tools

If you download one of the Windows executables from the download page, then you just get a single file:

Imp_windows.exe
Skip to the Running LAMMPS sections for info on how to launch these executables on a Windows box.

The Windows executables for serial or parallel only include certain packages and bug-fixes/upgrades listed on this
page up to a certain date, as stated on the download page. If you want something with more packages or that is
more current, you'll have to download the source tarball and build it yourself from source code using Microsoft
Visual Studio, as described in the next section.

12

http://lammps.sandia.gov
http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov/bug.html

2.2 Making LAMMPS

This section has the following sub-sections:

® Read this first

¢ Steps to build a LAMMPS executable

¢ Common errors that can occur when making LAMMPS
¢ Additional build tips

¢ Building for a Mac

¢ Building for Windows

Read this first:

Building LAMMPS can be non-trivial. You may need to edit a makefile, there are compiler options to consider,
additional libraries can be used (MPI, FFT, JPEG), LAMMPS packages may be included or excluded, some of
these packages use auxiliary libraries which need to be pre-built, etc.

Please read this section carefully. If you are not comfortable with makefiles, or building codes on a Unix
platform, or running an MPI job on your machine, please find a local expert to help you. Many compiling,
linking, and run problems that users have are often not LAMMPS issues - they are peculiar to the user's system,
compilers, libraries, etc. Such questions are better answered by a local expert.

If you have a build problem that you are convinced is a LAMMPS issue (e.g. the compiler complains about a line
of LAMMPS source code), then please post a question to the LAMMPS mail list.

If you succeed in building LAMMPS on a new kind of machine, for which there isn't a similar Makefile for in the
src/MAKE directory, send it to the developers and we can include it in the LAMMPS distribution.

Steps to build a LAMMPS executable:
Step 0

The src directory contains the C++ source and header files for LAMMPS. It also contains a top-level Makefile
and a MAKE sub-directory with low-level Makefile.* files for many machines. From within the src directory,
type "make" or "gmake". You should see a list of available choices. If one of those is the machine and options you
want, you can type a command like:

make linux
or
gmake mac

Note that on a multi-processor or multi-core platform you can launch a parallel make, by using the "-j" switch
with the make command, which will build LAMMPS more quickly.

If you get no errors and an executable like Imp_linux or Imp_mac is produced, you're done; it's your lucky day.

Note that by default only a few of LAMMPS optional packages are installed. To build LAMMPS with optional
packages, see this section below.

Step 1

If Step 0 did not work, you will need to create a low-level Makefile for your machine, like Makefile.foo. You
should make a copy of an existing src/MAKE/Makefile.* as a starting point. The only portions of the file you

13

http://lammps.sandia.gov/mail.html

need to edit are the first line, the "compiler/linker settings" section, and the "LAMMPS-specific settings" section.
Step 2

Change the first line of scc/MAKE/Makefile.foo to list the word "foo" after the "#", and whatever other options it
will set. This is the line you will see if you just type "make".

Step 3

The "compiler/linker settings" section lists compiler and linker settings for your C++ compiler, including
optimization flags. You can use g++, the open-source GNU compiler, which is available on all Unix systems. You
can also use mpicc which will typically be available if MPI is installed on your system, though you should check
which actual compiler it wraps. Vendor compilers often produce faster code. On boxes with Intel CPUs, we
suggest using the commercial Intel icc compiler, which can be downloaded from Intel's compiler site.

If building a C++ code on your machine requires additional libraries, then you should list them as part of the LIB
variable.

The DEPFLAGS setting is what triggers the C++ compiler to create a dependency list for a source file. This
speeds re-compilation when source (*.cpp) or header (*.h) files are edited. Some compilers do not support
dependency file creation, or may use a different switch than -D. GNU g++ works with -D. If your compiler can't
create dependency files, then you'll need to create a Makefile.foo patterned after Makefile.storm, which uses
different rules that do not involve dependency files. Note that when you build LAMMPS for the first time on a
new platform, a long list of *.d files will be printed out rapidly. This is not an error; it is the Makefile doing its
normal creation of dependencies.

Step 4

The "system-specific settings" section has several parts. Note that if you change any -D setting in this section, you
should do a full re-compile, after typing "make clean" (which will describe different clean options).

The LMP_INC variable is used to include options that turn on ifdefs within the LAMMPS code. The options that
are currently recogized are:

¢ -DLAMMPS_GZIP

¢ -DLAMMPS_JPEG

¢ -DLAMMPS_MEMALIGN

¢ -DLAMMPS_XDR

¢ -DLAMMPS_SMALLBIG

s -DLAMMPS_BIGBIG

e -DLAMMPS_SMALLSMALL
¢ -DLAMMPS_LONGLONG_TO_LONG
¢ -DPACK_ARRAY

¢ -DPACK_POINTER

¢ -DPACK_MEMCPY

The read_data and dump commands will read/write gzipped files if you compile with -DLAMMPS_GZIP. It
requires that your Unix support the "popen" command.

If you use -DLAMMPS_JPEG, the dump image command will be able to write out JPEG image files. If not, it

will only be able to write out text-based PPM image files. For JPEG files, you must also link LAMMPS with a
JPEQG library, as described below.

14

http://www.intel.com/software/products/noncom

Using -DLAMMPS_MEMALIGN= enables the use of the posix_memalign() call instead of malloc() when large

chunks or memory are allocated by LAMMPS. This can help to make more efficient use of vector instructions of
modern CPUS, since dynamically allocated memory has to be aligned on larger than default byte boundaries (e.g.
16 bytes instead of 8 bytes on x86 type platforms) for optimal performance.

If you use -DLAMMPS_XDR, the build will include XDR compatibility files for doing particle dumps in XTC
format. This is only necessary if your platform does have its own XDR files available. See the Restrictions section
of the dump command for details.

Use at most one of the -DLAMMPS_SMALLBIG, -DLAMMPS_BIGBIG, -D-DLAMMPS_SMALLSMALL
settings. The default is -DLAMMPS_SMALLBIG. These settings refer to use of 4-byte (small) vs 8-byte (big)
integers within LAMMPS, as specified in src/lmptype.h. The only reason to use the BIGBIG setting is to enable
simulation of huge molecular systems with more than 2 billion atoms or to allow moving atoms to wrap back
through a periodic box more than 512 times. The only reason to use the SMALLSMALL setting is if your
machine does not support 64-bit integers. See the Additional build tips section below for more details.

The -DLAMMPS_LONGLONG_TO_LONG setting may be needed if your system or MPI version does not
recognize "long long" data types. In this case a "long" data type is likely already 64-bits, in which case this setting
will convert to that data type.

Using one of the -DPACK_ARRAY, -DPACK_POINTER, and -DPACK_MEMCPY options can make for faster
parallel FFTs (in the PPPM solver) on some platforms. The -DPACK_ARRAY setting is the default. See the
kspace_style command for info about PPPM. See Step 6 below for info about building LAMMPS with an FFT
library.

Step 5
The 3 MPI variables are used to specify an MPI library to build LAMMPS with.

If you want LAMMPS to run in parallel, you must have an MPI library installed on your platform. If you use an
MPI-wrapped compiler, such as "mpicc” to build LAMMPS, you should be able to leave these 3 variables blank;
the MPI wrapper knows where to find the needed files. If not, and MPI is installed on your system in the usual
place (under /usr/local), you also may not need to specify these 3 variables. On some large parallel machines
which use "modules" for their compile/link environements, you may simply need to include the correct module in
your build environment. Or the parallel machine may have a vendor-provided MPI which the compiler has no
trouble finding.

Failing this, with these 3 variables you can specify where the mpi.h file (MPI_INC) and the MPI library file
(MPI_PATH) are found and the name of the library file (MPI_LIB).

If you are installing MPI yourself, we recommend Argonne's MPICH2 or OpenMPI. MPICH can be downloaded
from the Argonne MPI site. OpenMPI can be downloaded from the OpenMPI site. Other MPI packages should
also work. If you are running on a big parallel platform, your system people or the vendor should have already
installed a version of MPI, which is likely to be faster than a self-installed MPICH or OpenMPI, so find out how
to build and link with it. If you use MPICH or OpenMPI, you will have to configure and build it for your
platform. The MPI configure script should have compiler options to enable you to use the same compiler you are
using for the LAMMPS build, which can avoid problems that can arise when linking LAMMPS to the MPI
library.

If you just want to run LAMMPS on a single processor, you can use the dummy MPI library provided in

src/STUBS, since you don't need a true MPI library installed on your system. See the src/MAKE/Makefile.serial
file for how to specify the 3 MPI variables in this case. You will also need to build the STUBS library for your

15

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.open-mpi.org

platform before making LAMMPS itself. To build from the src directory, type "make stubs"”, or from the STUBS
dir, type "make". This should create a libmpi_stubs.a file suitable for linking to LAMMPS. If the build fails, you
will need to edit the STUBS/Makefile for your platform.

The file STUBS/mpi.cpp provides a CPU timer function called MPI_Wtime() that calls gettimeofday() . If your
system doesn't support gettimeofday() , you'll need to insert code to call another timer. Note that the
ANSI-standard function clock() rolls over after an hour or so, and is therefore insufficient for timing long
LAMMPS simulations.

Step 6

The 3 FFT variables allow you to specify an FFT library which LAMMPS uses (for performing 1d FFTs) when
running the particle-particle particle-mesh (PPPM) option for long-range Coulombics via the kspace_style
command.

LAMMPS supports various open-source or vendor-supplied FFT libraries for this purpose. If you leave these 3
variables blank, LAMMPS will use the open-source KISS FFT library, which is included in the LAMMPS
distribution. This library is portable to all platforms and for typical LAMMPS simulations is almost as fast as
FFTW or vendor optimized libraries. If you are not including the KSPACE package in your build, you can also
leave the 3 variables blank.

Otherwise, select which kinds of FFTs to use as part of the FFT_INC setting by a switch of the form
-DFFT_XXX. Recommended values for XXX are: MKL, SCSL, FFTW2, and FFTW3. Legacy options are:
INTEL, SGI, ACML, and T3E. For backward compatability, using -DFFT_FFTW will use the FFTW?2 library.
Using -DFFT_NONE will use the KISS library described above.

You may also need to set the FFT_INC, FFT_PATH, and FFT_LIB variables, so the compiler and linker can find
the needed FFT header and library files. Note that on some large parallel machines which use "modules" for their
compile/link environements, you may simply need to include the correct module in your build environment. Or
the parallel machine may have a vendor-provided FFT library which the compiler has no trouble finding.

FFTW is a fast, portable library that should also work on any platform. You can download it from www.fftw.org.
Both the legacy version 2.1.X and the newer 3.X versions are supported as -DFFT_FFTW?2 or -DFFT_FFTW3.
Building FFTW for your box should be as simple as ./configure; make. Note that on some platforms FFTW?2 has
been pre-installed, and uses renamed files indicating the precision it was compiled with, e.g. sfftw.h, or dfftw.h
instead of fftw.h. In this case, you can specify an additional define variable for FFT_INC called -DFFTW_SIZE,
which will select the correct include file. In this case, for FFT_LIB you must also manually specify the correct
library, namely -Isfftw or -l1dfftw.

The FFT_INC variable also allows for a -DFFT_SINGLE setting that will use single-precision FFTs with PPPM,
which can speed-up long-range calulations, particularly in parallel or on GPUs. Fourier transform and related
PPPM operations are somewhat insensitive to floating point truncation errors and thus do not always need to be
performed in double precision. Using the -DFFT_SINGLE setting trades off a little accuracy for reduced memory
use and parallel communication costs for transposing 3d FFT data. Note that single precision FFTs have only
been tested with the FFTW3, FFTW2, MKL, and KISS FFT options.

Step 7
The 3 JPG variables allow you to specify a JPEG library which LAMMPS uses when writing out JPEG files via

the dump image command. These can be left blank if you do not use the -DLAMMPS_JPEG switch discussed
above in Step 4, since in that case JPEG output will be disabled.

16

http://kissfft.sf.net
http://www.fftw.org

A standard JPEG library usually goes by the name libjpeg.a and has an associated header file jpeglib.h.
Whichever JPEG library you have on your platform, you'll need to set the appropriate JPG_INC, JPG_PATH, and
JPG_LIB variables, so that the compiler and linker can find it.

As before, if these header and library files are in the usual place on your machine, you may not need to set these
variables.

Step 8

Note that by default only a few of LAMMPS optional packages are installed. To build LAMMPS with optional
packages, see this section below, before proceeding to Step 9.

Step 9

That's it. Once you have a correct Makefile.foo, you have installed the optional LAMMPS packages you want to
include in your build, and you have pre-built any other needed libraries (e.g. MPI, FFT, package libraries), all you
need to do from the src directory is type something like this:

make foo
or
gmake foo

You should get the executable Imp_foo when the build is complete.

Errors that can occur when making LAMMPS:

IMPORTANT NOTE: If an error occurs when building LAMMPS, the compiler or linker will state very explicitly
what the problem is. The error message should give you a hint as to which of the steps above has failed, and what
you need to do in order to fix it. Building a code with a Makefile is a very logical process. The compiler and
linker need to find the appropriate files and those files need to be compatible with LAMMPS source files. When a
make fails, there is usually a very simple reason, which you or a local expert will need to fix.

Here are two non-obvious errors that can occur:

(1) If the make command breaks immediately with errors that indicate it can't find files with a "*" in their names,
this can be because your machine's native make doesn't support wildcard expansion in a makefile. Try gmake
instead of make. If that doesn't work, try using a -f switch with your make command to use a pre-generated
Makefile.list which explicitly lists all the needed files, e.g.

make makelist
make —-f Makefile.list linux
gmake —-f Makefile.list mac

The first "make" command will create a current Makefile.list with all the file names in your src dir. The 2nd
"make" command (make or gmake) will use it to build LAMMPS. Note that you should include/exclude any
desired optional packages before using the "make makelist" command.

(2) If you get an error that says something like 'identifier "atoll" is undefined', then your machine does not support
"long long" integers. Try using the -DLAMMPS_LONGLONG_TO_LONG setting described above in Step 4.

Additional build tips:

(1) Building LAMMPS for multiple platforms.

17

You can make LAMMPS for multiple platforms from the same src directory. Each target creates its own object
sub-directory called Obj_target where it stores the system-specific *.o files.

(2) Cleaning up.

Typing "make clean-all" or "make clean-foo" will delete *.o0 object files created when LAMMPS is built, for
either all builds or for a particular machine.

(3) Changing the LAMMPS size limits via -DLAMMPS_SMALLBIG or -DLAMMPS_BIBIG or
-DLAMMPS_SMALLSMALL

As explained above, any of these 3 settings can be specified on the LMP_INC line in your low-level
src/MAKE/Makefile.foo.

The default is -DLAMMPS_SMALLBIG which allows for systems with up to 2763 atoms and timesteps (about 9
billion billion). The atom limit is for atomic systems that do not require atom IDs. For molecular models, which
require atom IDs, the limit is 2231 atoms (about 2 billion). With this setting, image flags are stored in 32-bit
integers, which means for 3 dimensions that atoms can only wrap around a periodic box at most 512 times. If
atoms move through the periodic box more than this limit, the image flags will "roll over”, e.g. from 511 to -512,
which can cause diagnostics like the mean-squared displacement, as calculated by the compute msd command, to
be faulty.

To allow for larger molecular systems or larger image flags, compile with -DLAMMPS_BIGBIG. This enables
molecular systems with up to 2263 atoms (about 9 billion billion). And image flags will not "roll over" until they
reach 220 = 1048576.

IMPORTANT NOTE: As of 6/2012, the BIGBIG setting does not yet enable molecular systems to grow as large
as 2763. Only the image flag roll over is currently affected by this compile option.

If your system does not support 8-byte integers, you will need to compile with the -DLAMMPS_SMALLSMALL
setting. This will restrict your total number of atoms (for atomic or molecular models) and timesteps to 231
(about 2 billion). Image flags will roll over at 29 = 512.

Note that in src/lmptype.h there are also settings for the MPI data types associated with the integers that store
atom IDs and total system sizes. These need to be consistent with the associated C data types, or else LAMMPS
will generate a run-time error.

In all cases, the size of problem that can be run on a per-processor basis is limited by 4-byte integer storage to
2731 atoms per processor (about 2 billion). This should not normally be a restriction since such a problem would
have a huge per-processor memory footprint due to neighbor lists and would run very slowly in terms of CPU
secs/timestep.

Building for a Mac:

OS Xis BSD Unix, so it should just work. See the src/MAKE/Makefile.mac file.

Building for Windows:

The LAMMPS download page has an option to download both a serial and parallel pre-built Windows exeutable.
See the Running LAMMPS section for instructions for running these executables on a Windows box.

18

The pre-built executables are built with a subset of the available pacakges; see the download page for the list. If
you want a Windows version with specific packages included and excluded, you can build it yourself.

One way to do this is install and use cygwin to build LAMMPS with a standard Linus make, just as you would on
any Linux box; see src/MAKE/Makefile.cygwin.

The other way to do this is using Visual Studio and project files. See the src/WINDOWS directory and its
README.txt file for instructions on both a basic build and a customized build with pacakges you select.

2.3 Making LAMMPS with optional packages
This section has the following sub-sections:

® Package basics

¢ Including/excluding packages

¢ Packages that require extra libraries

¢ Additional Makefile settings for extra libraries

Package basics:

The source code for LAMMPS is structured as a set of core files which are always included, plus optional
packages. Packages are groups of files that enable a specific set of features. For example, force fields for
molecular systems or granular systems are in packages. You can see the list of all packages by typing "make
package" from within the src directory of the LAMMPS distribution.

If you use a command in a LAMMPS input script that is specific to a particular package, you must have built
LAMMPS with that package, else you will get an error that the style is invalid or the command is unknown.
Every command's doc page specfies if it is part of a package. You can also type

lmp_machine -h

to run your executable with the optional -h command-line switch for "help", which will list the styles and
commands known to your executable.

There are two kinds of packages in LAMMPS, standard and user packages. More information about the contents
of standard and user packages is given in Section_packages of the manual. The difference between standard and
user packages is as follows:

Standard packages are supported by the LAMMPS developers and are written in a syntax and style consistent
with the rest of LAMMPS. This means we will answer questions about them, debug and fix them if necessary,
and keep them compatible with future changes to LAMMPS.

User packages have been contributed by users, and always begin with the user prefix. If they are a single
command (single file), they are typically in the user-misc package. Otherwise, they are a a set of files grouped
together which add a specific functionality to the code.

User packages don't necessarily meet the requirements of the standard packages. If you have problems using a
feature provided in a user package, you will likely need to contact the contributor directly to get help. Information
on how to submit additions you make to LAMMPS as a user-contributed package is given in this section of the
documentation.

Including/excluding packages:

19

To use or not use a package you must include or exclude it before building LAMMPS. From the src directory, this
is typically as simple as:

make yes-colloid
make g++

or

make no-manybody
make g++

Some packages have individual files that depend on other packages being included. LAMMPS checks for this and
does the right thing. I.e. individual files are only included if their dependencies are already included. Likewise, if
a package is excluded, other files dependent on that package are also excluded.

The reason to exclude packages is if you will never run certain kinds of simulations. For some packages, this will
keep you from having to build auxiliary libraries (see below), and will also produce a smaller executable which
may run a bit faster.

When you download a LAMMPS tarball, these packages are pre-installed in the src directory: KSPACE,
MANYBODY,MOLECULE. When you download LAMMPS source files from the SVN or Git repositories, no
packages are pre-installed.

Packages are included or excluded by typing "make yes-name" or "make no-name", where "name" is the name of
the package in lower-case, e.g. name = kspace for the KSPACE package or name = user-atc for the USER-ATC
package. You can also type "make yes-standard", "make no-standard", "make yes-user", "make no-user", "make
yes-all" or "make no-all" to include/exclude various sets of packages. Type "make package" to see the all of the

package-related make options.

IMPORTANT NOTE: Inclusion/exclusion of a package works by simply moving files back and forth between the
main src directory and sub-directories with the package name (e.g. srtc/KSPACE, src/USER-ATC), so that the
files are seen or not seen when LAMMPS is built. After you have included or excluded a package, you must
re-build LAMMPS.

Additional package-related make options exist to help manage LAMMPS files that exist in both the src directory
and in package sub-directories. You do not normally need to use these commands unless you are editing
LAMMPS files or have downloaded a patch from the LAMMPS WWW site.

Typing "make package-update" will overwrite src files with files from the package sub-directories if the package
has been included. It should be used after a patch is installed, since patches only update the files in the package
sub-directory, but not the src files. Typing "make package-overwrite" will overwrite files in the package
sub-directories with src files.

Typing "make package-status" will show which packages are currently included. Of those that are included, it will
list files that are different in the src directory and package sub-directory. Typing "make package-diff" lists all
differences between these files. Again, type "make package" to see all of the package-related make options.

Packages that require extra libraries:

A few of the standard and user packages require additional auxiliary libraries to be compiled first. If you get a
LAMMPS build error about a missing library, this is likely the reason. The source code or hooks to these libraries
is included in the LAMMPS distribution under the "lib" directory. Look at the lib/README file for a list of these
or see Section_packages of the doc pages.

20

Each lib directory has a README file (e.g. lib/reax/ README) with instructions on how to build that library.
Typically this is done in this manner:

make —-f Makefile.g++

in the appropriate directory, e.g. in lib/reax. However, some of the libraries do not build this way. Again, see the
libary README file for details.

If you are building the library, you will need to use a Makefile that is a match for your system. If one of the
provided Makefiles is not appropriate for your system you will need to edit or add one. For example, in the case
of Fortran-based libraries, your system must have a Fortran compiler, the settings for which will need to be listed
in the Makefile.

When you have built one of these libraries, there are 2 things to check:

(1) The file libname.a should now exist in lib/name. E.g. lib/reax/libreax.a. This is the library file LAMMPS will
link against. One exception is the lib/cuda library which produces the file liblammpscuda.a, because there is
already a system library libcuda.a.

(2) The file Makefile.lammps should exist in lib/name. E.g. lib/cuda/Makefile.lammps. This file may be
auto-generated by the build of the library, or you may need to make a copy of the appropriate provided file (e.g.
lib/meam/Makefile.lammps.gfortran). Either way you should insure that the settings in this file are appropriate for
your system.

There are typically 3 settings in the Makefile.lammps file (unless some are blank or not needed): a SYSINC,
SYSPATH, and SYSLIB setting, specific to this package. These are settings the LAMMPS build will import
when compiling the LAMMPS package files (not the library files), and linking to the auxiliary library. They
typically list any other system libraries needed to support the package and where to find them. An example is the
BLAS and LAPACK libraries needed by the USER-ATC package. Or the system libraries that support calling
Fortran from C++, as the MEAM and REAX packages do.

(3) One exception to these rules is the lib/linalg directory, which is simply BLAS and LAPACK files used by the
USER-ATC package (and possibly other packages in the future). If you do not have these libraries on your
system, you can use one of the Makefiles in this directory (which you may need to modify) to build a dummy
BLAS and LAPACK library. It can then be included in the lib/atc/Makefile.lammps file as part of the SYSPATH
and SYSLIB lines so that LAMMPS will build properly with the USER-ATC package.

Note that if the Makefile.lammps settings are not correct for your box, the LAMMPS build will likely fail.

There are also a few packages, like KIM and USER-MOLFILE, that use additional auxiliary libraries which are
not provided with LAMMPS. In these cases, there is no corresponding sub-directory under the lib directory. You
are expected to download and install these libraries yourself before building LAMMPS with the package installed,
if they are not already on your system.

However there is still a Makefile.lammps file with settings used when building LAMMPS with the package
installed, as in (2) above. Is is found in the package directory itself, e.g. src/KIM/Makefile.lammps. This file
contains the same 3 settings described above for SYSINC, SYSPATH, and SYSLIB. The Makefile.lammps file
contains instructions on how to specify these settings for your system. You need to specify the settings before
building LAMMPS with one of those packages installed, else the LAMMPS build will likely fail.

21

2.4 Building LAMMPS via the Make.py script

The src directory includes a Make.py script, written in Python, which can be used to automate various steps of the
build process.

You can run the script from the src directory by typing either:

Make.py
python Make.py

which will give you info about the tool. For the former to work, you may need to edit the 1st line of the script to
point to your local Python. And you may need to insure the script is executable:

chmod +x Make.py
The following options are supported as switches:

o -i filel file2 ...

¢ -p packagel package? ...

¢ -u packagel package? ...

¢ -¢ packagel argl arg2 package? ...
e -0 dir

¢ -b machine

o s suffix1 suffix2 ...

e [dir

*-jN

¢ -h switch1 switch2 ...

Help on any switch can be listed by using -h, e.g.
Make.py -h -1 -p

At a hi-level, these are the kinds of package management and build tasks that can be performed easily, using the
Make.py tool:

¢ install/uninstall packages and build the associated external libs (use -p and -u and -e)

¢ install packages needed for one or more input scripts (use -i and -p)

¢ build LAMMPS, either in the src dir or new dir (use -b)

¢ create a new dir with only the source code needed for one or more input scripts (use -i and -0)

The last bullet can be useful when you wish to build a stripped-down version of LAMMPS to run a specific
script(s). Or when you wish to move the minimal amount of files to another platform for a remote LAMMPS
build.

Note that using Make.py is not a substitute for insuring you have a valid src/MAKE/Maketfile.foo for your system,
or that external library Makefiles in any lib/* directories you use are also valid for your system. But once you
have done that, you can use Make.py to quickly include/exclude the packages and external libraries needed by
your input scripts.

22

2.5 Building LAMMPS as a library

LAMMPS can be built as either a static or shared library, which can then be called from another application or a
scripting language. See this section for more info on coupling LAMMPS to other codes. See this section for more
info on wrapping and running LAMMPS from Python.

Static library:

To build LAMMPS as a static library (*.a file on Linux), type

make makelib
make —-f Makefile.lib foo

where foo is the machine name. This kind of library is typically used to statically link a driver application to
LAMMPS, so that you can insure all dependencies are satisfied at compile time. Note that inclusion or exclusion
of any desired optional packages should be done before typing "make makelib". The first "make" command will
create a current Makefile.lib with all the file names in your src dir. The second "make" command will use it to
build LAMMPS as a static library, using the ARCHIVE and ARFLAGS settings in src/MAKE/Makefile.foo. The
build will create the file liblammps_foo.a which another application can link to.

Shared library:

To build LAMMPS as a shared library (*.so file on Linux), which can be dynamically loaded, e.g. from Python,
type

make makeshlib
make —-f Makefile.shlib foo

where foo is the machine name. This kind of library is required when wrapping LAMMPS with Python; see
Section_python for details. Again, note that inclusion or exclusion of any desired optional packages should be
done before typing "make makelib". The first "make" command will create a current Makefile.shlib with all the
file names in your src dir. The second "make" command will use it to build LAMMPS as a shared library, using
the SHFLAGS and SHLIBFLAGS settings in src/MAKE/Makefile.foo. The build will create the file
liblammps_foo.so which another application can link to dyamically. It will also create a soft link liblammps.so,
which the Python wrapper uses by default.

Note that for a shared library to be usable by a calling program, all the auxiliary libraries it depends on must also
exist as shared libraries. This will be the case for libraries included with LAMMPS, such as the dummy MPI
library in src/STUBS or any package libraries in lib/packges, since they are always built as shared libraries with
the -fPIC switch. However, if a library like MPI or FFTW does not exist as a shared library, the second make
command will generate an error. This means you will need to install a shared library version of the package. The
build instructions for the library should tell you how to do this.

As an example, here is how to build and install the MPICH library, a popular open-source version of MPI,
distributed by Argonne National Labs, as a shared library in the default /usr/local/lib location:

./configure --enable-shared
make
make install

You may need to use "sudo make install" in place of the last line if you do not have write privileges for
/usr/local/lib. The end result should be the file /ust/local/lib/libmpich.so.

23

http://www-unix.mcs.anl.gov/mpi

Additional requirement for using a shared library:

The operating system finds shared libraries to load at run-time using the environment variable
LD_LIBRARY_PATH. So you may wish to copy the file src/liblammps.so or src/liblammps_g++.so (for
example) to a place the system can find it by default, such as /ust/local/lib, or you may wish to add the LAMMPS
src directory to LD_LIBRARY_PATH, so that the current version of the shared library is always available to
programs that use it.

For the csh or tcsh shells, you would add something like this to your ~/.cshrc file:
setenv LD_LIBRARY_PATH S$LD_LIBRARY PATH:/home/sjplimp/lammps/src

Calling the LAMMPS library:

Either flavor of library (static or sharedO allows one or more LAMMPS objects to be instantiated from the calling
program.

When used from a C++ program, all of LAMMPS is wrapped in a LAMMPS_NS namespace; you can safely use
any of its classes and methods from within the calling code, as needed.

When used from a C or Fortran program or a scripting language like Python, the library has a simple
function-style interface, provided in src/library.cpp and src/library.h.

See the sample codes in examples/COUPLE/simple for examples of C++ and C and Fortran codes that invoke
LAMMPS thru its library interface. There are other examples as well in the COUPLE directory which are
discussed in Section_howto 10 of the manual. See Section_python of the manual for a description of the Python
wrapper provided with LAMMPS that operates through the LAMMPS library interface.

The files src/library.cpp and library.h define the C-style API for using LAMMPS as a library. See Section_howto
19 of the manual for a description of the interface and how to extend it for your needs.

2.6 Running LAMMPS

By default, LAMMPS runs by reading commands from stdin; e.g. Imp_linux < in.file. This means you first create
an input script (e.g. in.file) containing the desired commands. This section describes how input scripts are
structured and what commands they contain.

You can test LAMMPS on any of the sample inputs provided in the examples or bench directory. Input scripts are
named in.* and sample outputs are named log.*.name.P where name is a machine and P is the number of
processors it was run on.

Here is how you might run a standard Lennard-Jones benchmark on a Linux box, using mpirun to launch a
parallel job:

cd src

make linux

cp lmp_linux ../bench

cd ../bench

mpirun -np 4 lmp_linux <in.1lj

See this page for timings for this and the other benchmarks on various platforms.

On a Windows box, you can skip making LAMMPS and simply download an executable, as described above,
though the pre-packaged executables include only certain packages.

24

http://lammps.sandia.gov/bench.html

To run a LAMMPS executable on a Windows machine, first decide whether you want to download the non-MPI
(serial) or the MPI (parallel) version of the executable. Download and save the version you have chosen.

For the non-MPI version, follow these steps:

¢ Get a command prompt by going to Start->Run... , then typing "cmd".

¢ Move to the directory where you have saved Imp_win_no-mpi.exe (e.g. by typing: cd "Documents").

¢ At the command prompt, type "lmp_win_no-mpi -in in.lj", replacing in.lj with the name of your
LAMMPS input script.

For the MPI version, which allows you to run LAMMPS under Windows on multiple processors, follow these
steps:

¢ Download and install MPICH2 for Windows.

¢ You'll need to use the mpiexec.exe and smpd.exe files from the MPICH2 package. Put them in same
directory (or path) as the LAMMPS Windows executable.

¢ Get a command prompt by going to Start->Run... , then typing "cmd".

¢ Move to the directory where you have saved Imp_win_mpi.exe (e.g. by typing: cd "Documents").

¢ Then type something like this: "mpiexec -np 4 -localonly Imp_win_mpi -in in.]}", replacing in.lj with the
name of your LAMMPS input script.

¢ Note that you may need to provide smpd with a passphrase --- it doesn't matter what you type.

¢ In this mode, output may not immediately show up on the screen, so if your input script takes a long time
to execute, you may need to be patient before the output shows up.

¢ Alternatively, you can still use this executable to run on a single processor by typing something like:
"lmp_win_mpi -in in.]j".

The screen output from LAMMPS is described in the next section. As it runs, LAMMPS also writes a log.lammps
file with the same information.

Note that this sequence of commands copies the LAMMPS executable (Imp_linux) to the directory with the input
files. This may not be necessary, but some versions of MPI reset the working directory to where the executable is,
rather than leave it as the directory where you launch mpirun from (if you launch Imp_linux on its own and not
under mpirun). If that happens, LAMMPS will look for additional input files and write its output files to the
executable directory, rather than your working directory, which is probably not what you want.

If LAMMPS encounters errors in the input script or while running a simulation it will print an ERROR message
and stop or a WARNING message and continue. See Section_errors for a discussion of the various kinds of errors
LAMMPS can or can't detect, a list of all ERROR and WARNING messages, and what to do about them.

LAMMPS can run a problem on any number of processors, including a single processor. In theory you should get
identical answers on any number of processors and on any machine. In practice, numerical round-off can cause
slight differences and eventual divergence of molecular dynamics phase space trajectories.

LAMMPS can run as large a problem as will fit in the physical memory of one or more processors. If you run out
of memory, you must run on more processors or setup a smaller problem.

2.7 Command-line options

At run time, LAMMPS recognizes several optional command-line switches which may be used in any order.
Either the full word or a one-or-two letter abbreviation can be used:

e _c or -cuda

25

http://www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=downloads

® ¢ or -echo

® _j or -in

¢ -h or -help

e -lor-log

® _p or -partition
¢ -pl or -plog

® _ps or -pscreen
® _r or -reorder

® _SC Or -screen
e _sf or -suffix

® -y Oor -var

For example, Imp_ibm might be launched as follows:

mpirun -np 16 lmp_ibm -v £ tmp.out -1 my.log —-sc none <in.alloy
mpirun -np 16 lmp_ibm -var f tmp.out -log my.log —-screen none <in.alloy

Here are the details on the options:
—-cuda on/off

Explicitly enable or disable CUDA support, as provided by the USER-CUDA package. If LAMMPS is built with
this package, as described above in Section 2.3, then by default LAMMPS will run in CUDA mode. If this switch
is set to "off", then it will not, even if it was built with the USER-CUDA package, which means you can run
standard LAMMPS or with the GPU package for testing or benchmarking purposes. The only reason to set the
switch to "on", is to check if LAMMPS was built with the USER-CUDA package, since an error will be generated
if it was not.

—echo style

Set the style of command echoing. The style can be none or screen or log or both. Depending on the style, each
command read from the input script will be echoed to the screen and/or logfile. This can be useful to figure out
which line of your script is causing an input error. The default value is log. The echo style can also be set by using
the echo command in the input script itself.

—-in file

Specify a file to use as an input script. This is an optional switch when running LAMMPS in one-partition mode.
If it is not specified, LAMMPS reads its input script from stdin - e.g. Imp_linux < in.run. This is a required switch
when running LAMMPS in multi-partition mode, since multiple processors cannot all read from stdin.

—help

Print a list of options compiled into this executable for each LAMMPS style (atom_style, fix, compute, pair_style,
bond_style, etc). This can help you know if the command you want to use was included via the appropriate
package. LAMMPS will print the info and immediately exit if this switch is used.

-log file

Specify a log file for LAMMPS to write status information to. In one-partition mode, if the switch is not used,
LAMMPS writes to the file log.lammps. If this switch is used, LAMMPS writes to the specified file. In
multi-partition mode, if the switch is not used, a log.lammps file is created with hi-level status information. Each
partition also writes to a log.lammps.N file where N is the partition ID. If the switch is specified in multi-partition
mode, the hi-level logfile is named "file" and each partition also logs information to a file.N. For both

26

one-partition and multi-partition mode, if the specified file is "none", then no log files are created. Using a log
command in the input script will override this setting. Option -plog will override the name of the partition log
files file.N.

-partition 8x2 4 5

Invoke LAMMPS in multi-partition mode. When LAMMPS is run on P processors and this switch is not used,
LAMMPS runs in one partition, i.e. all P processors run a single simulation. If this switch is used, the P
processors are split into separate partitions and each partition runs its own simulation. The arguments to the
switch specify the number of processors in each partition. Arguments of the form MxN mean M partitions, each
with N processors. Arguments of the form N mean a single partition with N processors. The sum of processors in
all partitions must equal P. Thus the command "-partition 8x2 4 5" has 10 partitions and runs on a total of 25
processors.

Running with multiple partitions can e useful for running multi-replica simulations, where each replica runs on on
one or a few processors. Note that with MPI installed on a machine (e.g. your desktop), you can run on more
(virtual) processors than you have physical processors.

To run multiple independent simulatoins from one input script, using multiple partitions, see Section_howto 4 of
the manual. World- and universe-style variables are useful in this context.

-plog file

Specify the base name for the partition log files, so partition N writes log information to file.N. If file is none,
then no partition log files are created. This overrides the filename specified in the -log command-line option. This
option is useful when working with large numbers of partitions, allowing the partition log files to be suppressed
(-plog none) or placed in a sub-directory (-plog replica_files/log.lammps) If this option is not used the log file for
partition N is log.Jlammps.N or whatever is specified by the -log command-line option.

-pscreen file

Specify the base name for the partition screen file, so partition N writes screen information to file.N. If file is
none, then no partition screen files are created. This overrides the filename specified in the -screen command-line
option. This option is useful when working with large numbers of partitions, allowing the partition screen files to
be suppressed (-pscreen none) or placed in a sub-directory (-pscreen replica_files/screen). If this option is not
used the screen file for partition N is screen.N or whatever is specified by the -screen command-line option.

-reorder nth N
-reorder custom filename

Reorder the processors in the MPI communicator used to instantiate LAMMPS, in one of several ways. The
original MPI communicator ranks all P processors from 0 to P-1. The mapping of these ranks to physical
processors is done by MPI before LAMMPS begins. It may be useful in some cases to alter the rank order. E.g. to
insure that cores within each node are ranked in a desired order. Or when using the run_style verlet/split
command with 2 partitions to insure that a specific Kspace processor (in the 2nd partition) is matched up with a
specific set of processors in the 1st partition. See the Section_accelerate doc pages for more details.

If the keyword nth is used with a setting NV, then it means every Nth processor will be moved to the end of the
ranking. This is useful when using the run_style verlet/split command with 2 partitions via the -partition
command-line switch. The first set of processors will be in the first partition, the 2nd set in the 2nd partition. The
-reorder command-line switch can alter this so that the 1st N procs in the 1st partition and one proc in the 2nd
partition will be ordered consecutively, e.g. as the cores on one physical node. This can boost performance. For
example, if you use "-reorder nth 4" and "-partition 9 3" and you are running on 12 processors, the processors will

27

be reordered from

0123456789 1011

to

012456289103 711

so that the processors in each partition will be

01245618910
37 11

See the "processors” command for how to insure processors from each partition could then be grouped optimally
for quad-core nodes.

If the keyword is custom”, then a file that specifies a permutation of the processor ranks is also specified. The
format of the reorder file is as follows. Any number of initial blank or comment lines (starting with a "#"
character) can be present. These should be followed by P lines of the form:

IJ

where P is the number of processors LAMMPS was launched with. Note that if running in multi-partition mode
(see the -partition switch above) P is the total number of processors in all partitions. The I and J values describe a
permutation of the P processors. Every I and J should be values from O to P-1 inclusive. In the set of P I values,
every proc ID should appear exactly once. Ditto for the set of P J values. A single I,J pairing means that the
physical processor with rank I in the original MPI communicator will have rank J in the reordered communicator.

Note that rank ordering can also be specified by many MPI implementations, either by environment variables that
specify how to order physical processors, or by config files that specify what physical processors to assign to each
MPI rank. The -reorder switch simply gives you a portable way to do this without relying on MPI itself. See the
processors out command for how to output info on the final assignment of physical processors to the LAMMPS
simulation domain.

—-screen file

Specify a file for LAMMPS to write its screen information to. In one-partition mode, if the switch is not used,
LAMMPS writes to the screen. If this switch is used, LAMMPS writes to the specified file instead and you will
see no screen output. In multi-partition mode, if the switch is not used, hi-level status information is written to the
screen. Each partition also writes to a screen.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level screen dump is named "file" and each partition also writes screen information to
a file.N. For both one-partition and multi-partition mode, if the specified file is "none", then no screen output is
performed. Option -pscreen will override the name of the partition screen files file.N.

-suffix style

Use variants of various styles if they exist. The specified style can be opt, omp, gpu, or cuda. These refer to
optional packages that LAMMPS can be built with, as described above in Section 2.3. The "opt" style corrsponds
to the OPT package, the "omp" style to the USER-OMP package, the "gpu" style to the GPU package, and the
"cuda" style to the USER-CUDA package.

As an example, all of the packages provide a pair_style lj/cut variant, with style names lj/cut/opt, lj/cut/omp,
lj/cut/gpu, or lj/cut/cuda. A variant styles can be specified explicitly in your input script, e.g. pair_style lj/cut/gpu.
If the -suffix switch is used, you do not need to modify your input script. The specified suffix (opt,omp,gpu,cuda)

28

is automatically appended whenever your input script command creates a new atom, pair, fix, compute, or run
style. If the variant version does not exist, the standard version is created.

For the GPU package, using this command-line switch also invokes the default GPU settings, as if the command
"package gpu force/neigh 0 0 1" were used at the top of your input script. These settings can be changed by using
the package gpu command in your script if desired.

For the OMP package, using this command-line switch also invokes the default OMP settings, as if the command
"package omp *" were used at the top of your input script. These settings can be changed by using the package
omp command in your script if desired.

The suffix command can also set a suffix and it can also turn off/on any suffix setting made via the command line.

-var name valuel value?2

Specify a variable that will be defined for substitution purposes when the input script is read. "Name" is the
variable name which can be a single character (referenced as $x in the input script) or a full string (referenced as
${abc}). An index-style variable will be created and populated with the subsequent values, e.g. a set of filenames.
Using this command-line option is equivalent to putting the line "variable name index valuel value2 ..." at the
beginning of the input script. Defining an index variable as a command-line argument overrides any setting for
the same index variable in the input script, since index variables cannot be re-defined. See the variable command
for more info on defining index and other kinds of variables and this section for more info on using variables in
input scripts.

NOTE: Currently, the command-line parser looks for arguments that start with "-" to indicate new switches. Thus

non

you cannot specify multiple variable values if any of they start with a "-", e.g. a negative numeric value. It is OK
if the first valuel starts with a "-", since it is automatically skipped.

2.8 LAMMPS screen output

As LAMMPS reads an input script, it prints information to both the screen and a log file about significant actions
it takes to setup a simulation. When the simulation is ready to begin, LAMMPS performs various initializations
and prints the amount of memory (in MBytes per processor) that the simulation requires. It also prints details of
the initial thermodynamic state of the system. During the run itself, thermodynamic information is printed
periodically, every few timesteps. When the run concludes, LAMMPS prints the final thermodynamic state and a
total run time for the simulation. It then appends statistics about the CPU time and storage requirements for the
simulation. An example set of statistics is shown here:

Loop time of 49.002 on 2 procs for 2004 atoms

Pair time (%) = 35.0495 (71.5267)
Bond time (%) = 0.092046 (0.187841)
Kspce time (%) = 6.42073 (13.103)
Neigh time (%) = 2.73485 (5.5811)

Comm time (%) = 1.50291 (3.06703)
Outpt time (%) = 0.013799 (0.0281601)
Other time (%) = 2.13669 (4.36041)
Nlocal: 1002 ave, 1015 max, 989 min
Histogram: 1 0 0 0 0 0 0 0 0 1

Nghost: 8720 ave, 8724 max, 8716 min
Histogram: 1 0 0 0 0 0 0 0 0 1

Neighs: 354141 ave, 361422 max, 346860 min

Histogram: 1 0 0 0 0 0 0 0 0 1

29

Total # of neighbors = 708282

Ave neighs/atom = 353.434

Ave special neighs/atom = 2.34032
Number of reneighborings = 42
Dangerous reneighborings 2

The first section gives the breakdown of the CPU run time (in seconds) into major categories. The second section
lists the number of owned atoms (Nlocal), ghost atoms (Nghost), and pair-wise neighbors stored per processor.
The max and min values give the spread of these values across processors with a 10-bin histogram showing the
distribution. The total number of histogram counts is equal to the number of processors.

The last section gives aggregate statistics for pair-wise neighbors and special neighbors that LAMMPS keeps
track of (see the special_bonds command). The number of times neighbor lists were rebuilt during the run is given
as well as the number of potentially "dangerous" rebuilds. If atom movement triggered neighbor list rebuilding
(see the neigh_modify command), then dangerous reneighborings are those that were triggered on the first
timestep atom movement was checked for. If this count is non-zero you may wish to reduce the delay factor to
insure no force interactions are missed by atoms moving beyond the neighbor skin distance before a rebuild takes
place.

If an energy minimization was performed via the minimize command, additional information is printed, e.g.

Minimization stats:
E initial, next-to-last, final = -0.895962 -2.94193 -2.94342
Gradient 2-norm init/final= 1920.78 20.9992
Gradient inf-norm init/final= 304.283 9.61216
Iterations = 36
Force evaluations = 177

The first line lists the initial and final energy, as well as the energy on the next-to-last iteration. The next 2 lines
give a measure of the gradient of the energy (force on all atoms). The 2-norm is the "length" of this force vector;
the inf-norm is the largest component. The last 2 lines are statistics on how many iterations and force-evaluations
the minimizer required. Multiple force evaluations are typically done at each iteration to perform a 1d line
minimization in the search direction.

If a kspace_style long-range Coulombics solve was performed during the run (PPPM, Ewald), then additional
information is printed, e.g.

FFT time (% of Kspce) = 0.200313 (8.34477)
FFT Gflps 3d ld-only = 2.31074 9.19989

The first line gives the time spent doing 3d FFTs (4 per timestep) and the fraction it represents of the total KSpace
time (listed above). Each 3d FFT requires computation (3 sets of 1d FFTs) and communication (transposes). The
total flops performed is SNlog_2(N), where N is the number of points in the 3d grid. The FFTs are timed with and
without the communication and a Gflop rate is computed. The 3d rate is with communication; the 1d rate is
without (just the 1d FFTs). Thus you can estimate what fraction of your FFT time was spent in communication,
roughly 75% in the example above.

2.9 Tips for users of previous LAMMPS versions

The current C++ began with a complete rewrite of LAMMPS 2001, which was written in F90. Features of earlier
versions of LAMMPS are listed in Section_history. The FO90 and F77 versions (2001 and 99) are also freely
distributed as open-source codes; check the LAMMPS WWW Site for distribution information if you prefer those
versions. The 99 and 2001 versions are no longer under active development; they do not have all the features of
C++ LAMMPS.

30

http://lammps.sandia.gov

If you are a previous user of LAMMPS 2001, these are the most significant changes you will notice in C++
LAMMPS:

(1) The names and arguments of many input script commands have changed. All commands are now a single
word (e.g. read_data instead of read data).

(2) All the functionality of LAMMPS 2001 is included in C++ LAMMPS, but you may need to specify the
relevant commands in different ways.

(3) The format of the data file can be streamlined for some problems. See the read_data command for details. The
data file section "Nonbond Coeff" has been renamed to "Pair Coeff" in C++ LAMMPS.

(4) Binary restart files written by LAMMPS 2001 cannot be read by C++ LAMMPS with a read_restart
command. This is because they were output by FOO which writes in a different binary format than C or C++ writes
or reads. Use the restart2data tool provided with LAMMPS 2001 to convert the 2001 restart file to a text data
file. Then edit the data file as necessary before using the C++ LAMMPS read_data command to read it in.

(5) There are numerous small numerical changes in C++ LAMMPS that mean you will not get identical answers

when comparing to a 2001 run. However, your initial thermodynamic energy and MD trajectory should be close if
you have setup the problem for both codes the same.

31

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

3. Commands

This section describes how a LAMMPS input script is formatted and the input script commands used to define a
LAMMPS simulation.

3.1 LAMMPS input script

3.2 Parsing rules

3.3 Input script structure

3.4 Commands listed by category
3.5 Commands listed alphabetically

3.1 LAMMPS input script

LAMMPS executes by reading commands from a input script (text file), one line at a time. When the input script
ends, LAMMPS exits. Each command causes LAMMPS to take some action. It may set an internal variable, read
in a file, or run a simulation. Most commands have default settings, which means you only need to use the
command if you wish to change the default.

In many cases, the ordering of commands in an input script is not important. However the following rules apply:
(1) LAMMPS does not read your entire input script and then perform a simulation with all the settings. Rather,
the input script is read one line at a time and each command takes effect when it is read. Thus this sequence of

commands:

timestep 0.5
run 100
run 100

does something different than this sequence:

run 100
timestep 0.5
run 100

In the first case, the specified timestep (0.5 fmsec) is used for two simulations of 100 timesteps each. In the 2nd
case, the default timestep (1.0 fmsec) is used for the 1st 100 step simulation and a 0.5 fmsec timestep is used for
the 2nd one.

(2) Some commands are only valid when they follow other commands. For example you cannot set the
temperature of a group of atoms until atoms have been defined and a group command is used to define which
atoms belong to the group.

(3) Sometimes command B will use values that can be set by command A. This means command A must precede
command B in the input script if it is to have the desired effect. For example, the read_data command initializes
the system by setting up the simulation box and assigning atoms to processors. If default values are not desired,
the processors and boundary commands need to be used before read_data to tell LAMMPS how to map
processors to the simulation box.

32

http://lammps.sandia.gov

Many input script errors are detected by LAMMPS and an ERROR or WARNING message is printed. This
section gives more information on what errors mean. The documentation for each command lists restrictions on
how the command can be used.

3.2 Parsing rules

Each non-blank line in the input script is treated as a command. LAMMPS commands are case sensitive.
Command names are lower-case, as are specified command arguments. Upper case letters may be used in file
names or user-chosen ID strings.

Here is how each line in the input script is parsed by LAMMPS:

(1) If the last printable character on the line is a "&" character (with no surrounding quotes), the command is
assumed to continue on the next line. The next line is concatenated to the previous line by removing the "&"
character and newline. This allows long commands to be continued across two or more lines.

(2) All characters from the first "#" character onward are treated as comment and discarded. See an exception in
(6). Note that a comment after a trailing "&" character will prevent the command from continuing on the next
line. Also note that for multi-line commands a single leading "#" will comment out the entire command.

(3) The line is searched repeatedly for $ characters, which indicate variables that are replaced with a text string.
See an exception in (6). If the $ is followed by curly brackets, then the variable name is the text inside the curly
brackets. If no curly brackets follow the $, then the variable name is the single character immediately following
the $. Thus ${myTemp} and $x refer to variable names "myTemp" and "x". See the variable command for details
of how strings are assigned to variables and how they are substituted for in input script commands.

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain
letters, digits, underscores, or punctuation characters.

(5) The first word is the command name. All successive words in the line are arguments.

(6) If you want text with spaces to be treated as a single argument, it can be enclosed in either double or single
quotes. E.g.

print "Volume = $v"
print 'Volume = $v'

The quotes are removed when the single argument is stored internally. See the dump modify format or if
commands for examples. A "#" or "$" character that is between quotes will not be treated as a comment indicator
in (2) or substituted for as a variable in (3).

IMPORTANT NOTE: If the argument is itself a command that requires a quoted argument (e.g. using a print
command as part of an if or run every command), then the double and single quotes can be nested in the usual
manner. See the doc pages for those commands for examples. Only one of level of nesting is allowed, but that
should be sufficient for most use cases.

3.3 Input script structure
This section describes the structure of a typical LAMMPS input script. The "examples" directory in the LAMMPS

distribution contains many sample input scripts; the corresponding problems are discussed in Section_example,
and animated on the LAMMPS WWW Site.

33

http://lammps.sandia.gov

A LAMMPS input script typically has 4 parts:

1. Initialization

2. Atom definition

3. Settings

4. Run a simulation
The last 2 parts can be repeated as many times as desired. I.e. run a simulation, change some settings, run some
more, etc. Each of the 4 parts is now described in more detail. Remember that almost all the commands need only
be used if a non-default value is desired.
(1) Initialization
Set parameters that need to be defined before atoms are created or read-in from a file.

The relevant commands are units, dimension, newton, processors, boundary, atom_style, atom_modify.

If force-field parameters appear in the files that will be read, these commands tell LAMMPS what kinds of force
fields are being used: pair_style, bond_style, angle_style, dihedral_style, improper_style.

(2) Atom definition

There are 3 ways to define atoms in LAMMPS. Read them in from a data or restart file via the read_data or
read_restart commands. These files can contain molecular topology information. Or create atoms on a lattice
(with no molecular topology), using these commands: lattice, region, create_box, create_atoms. The entire set of
atoms can be duplicated to make a larger simulation using the replicate command.

(3) Settings

Once atoms and molecular topology are defined, a variety of settings can be specified: force field coefficients,
simulation parameters, output options, etc.

Force field coefficients are set by these commands (they can also be set in the read-in files): pair_coeff,
bond_coeff, angle_coeff, dihedral_coeff, improper_coeff, kspace_style, dielectric, special_bonds.

Various simulation parameters are set by these commands: neighbor, neigh_modify, group, timestep,
reset_timestep, run_style, min_style, min_modify.

Fixes impose a variety of boundary conditions, time integration, and diagnostic options. The fix command comes
in many flavors.

Various computations can be specified for execution during a simulation using the compute, compute_modity,
and variable commands.

Output options are set by the thermo, dump, and restart commands.
(4) Run a simulation
A molecular dynamics simulation is run using the run command. Energy minimization (molecular statics) is

performed using the minimize command. A parallel tempering (replica-exchange) simulation can be run using the
temper command.

34

3.4 Commands listed by category

This section lists all LAMMPS commands, grouped by category. The next section lists the same commands
alphabetically. Note that some style options for some commands are part of specific LAMMPS packages, which
means they cannot be used unless the package was included when LAMMPS was built. Not all packages are
included in a default LAMMPS build. These dependencies are listed as Restrictions in the command's
documentation.

Initialization:

atom_modify, atom_style, boundary, dimension, newton, processors, units

Atom definition:

create_atoms, create_box, lattice, read_data, read_dump, read_restart, region, replicate

Force fields:

angle_coeff, angle_style, bond_coeff, bond_style, dielectric, dihedral_coeff, dihedral_style, improper_coeff,
improper_style, kspace_modify, kspace_style, pair_coeff, pair_modify, pair_style, pair_write, special_bonds

Settings:

communicate, group, mass, min_modify, min_style, neigh_modify, neighbor, reset_timestep, run_style, set,
timestep, velocity

Fixes:

fix, fix_modify, unfix

Computes:

compute, compute_modify, uncompute

Output:

dump, dump image, dump_modify, restart, thermo, thermo_modify, thermo_style, undump, write_restart
Actions:

delete_atoms, delete_bonds, displace_atoms, change_box, minimize, neb prd, rerun, run, temper
Miscellaneous:

clear, echo, if, include, jump, label, log, next, print, shell, variable

3.5 Individual commands

This section lists all LAMMPS commands alphabetically, with a separate listing below of styles within certain
commands. The previous section lists the same commands, grouped by category. Note that some style options for
some commands are part of specific LAMMPS packages, which means they cannot be used unless the package
was included when LAMMPS was built. Not all packages are included in a default LAMMPS build. These

35

dependencies are listed as Restrictions in the command's documentation.

angle_coeff | angle_style atom_modify | atom_style balance bond_coeff
bond_style boundary box change_box clear communicate
compute |compute_modify| create_atoms | create_box | delete_atoms | delete_bonds
dielectric | dihedral_coeff |dihedral_style | dimension [displace_atoms dump
dump image | dump_modify echo fix fix_modify group
if improper_coeff |improper_style| include jump kspace_modify
kspace_style label lattice log mass minimize
min_modify min_style neb neigh_modify| neighbor newton
next package pair_coeff | pair_modify pair_style pair_write
partition prd print processors quit read_data
read_dump | read_restart region replicate rerun reset_timestep
restart run run_style set shell special_bonds
suffix tad temper thermo |thermo_modify| thermo_style
timestep uncompute undump unfix units variable
velocity write_restart
Fix styles

See the fix command for one-line descriptions of each style or click on the style itself for a full description:

adapt addforce append/atoms aveforce ave/atom ave/correlate ave/histo |ave/spatial
ave/time balance bond/break bond/create bond/swap box/relax deform deposit
drag dt/reset efield enforce2d evaporate external freeze gcme
gravity heat indent langevin lineforce momentum move msst
neb nph nphug nph/asphere nph/sphere npt npt/asphere | npt/sphere
nve nve/asphere |nve/asphere/noforce| nve/limit nve/line nve/noforce nve/sphere | nve/tri
nvt nvt/asphere nvt/sllod nvt/sphere orient/fcc planeforce poems pour
press/berendsen print geg/comb reax/bonds recenter restrain rigid rigid/nph
rigid/npt rigid/nve rigid/nvt setforce shake spring spring/rg |spring/self
srd store/force store/state temp/berendsen| temp/rescale [thermal/conductivity tmd ttm
viscosity viscous wall/colloid wall/gran |wall/harmonic wall/lj126 wall/lj93 |wall/piston
wall/reflect | wall/region wall/srd

These are fix styles contributed by users, which can be used if LAMMPS is built with the appropriate package.

addtorque atc colvars imd langevin/eff| meso
meso/stationary| nph/eff |npt/eff nve/eff nvt/eff |nvt/sllod/eff
geg/reax |reax/c/bonds| smd |temp/rescale/eff

These are accelerated fix styles, which can be used if LAMMPS is built with the appropriate accelerated package.

freeze/cuda addforce/cuda aveforce/cuda enforce2d/cuda gravity/cuda | gravity/omp
npt/cuda nve/cuda nve/sphere/omp nvt/cuda geg/comb/omp [setforce/cuda
shake/cuda [temp/berendsen/cuda |temp/rescale/cuda [temp/rescale/limit/cuda| viscous/cuda

36

Compute styles

See the compute command for one-line descriptions of each style or click on the style itself for a full description:

angle/local | atom/molecule | bond/local centro/atom cluster/atom | cna/atom
com com/molecule | contact/atom coord/atom damage/atom |dihedral/local
displace/atom| erotate/asphere |erotate/sphere|erotate/sphere/atom |event/displace| group/group
gyration |gyration/molecule| heat/flux improper/local ke ke/atom
msd msd/molecule pair pair/local pe pe/atom
pressure property/atom |property/local| property/molecule rdf reduce
reduce/region slice stress/atom temp temp/asphere | temp/com
temp/deform temp/partial temp/profile temp/ramp temp/region | temp/sphere
{1

These are compute styles contributed by users, which can be used if LAMMPS is built with the appropriate
package.

ackland/atom ke/eff ke/atom/eff

temp/deform/eff|temp/region/eff| temp/rotate

These are accelerated compute styles, which can be used if LAMMPS is built with the appropriate accelerated
package.

meso_e/atom [meso_rho/atom |meso_t/atom

temp/eff

|pe/cuda|pressure/cuda temp/cuda |temp/partial/cuda

Pair_style potentials

See the pair_style command for an overview of pair potentials. Click on the style itself for a full description:

none hybrid hybrid/overlay adp
airebo beck bop born
born/coul/long born/coul/wolf brownian brownian/poly
buck buck/coul/cut buck/coul/long colloid
comb coul/cut coul/debye coul/long
coul/wolf dipole/cut dpd dpd/tstat
dsmc eam eam/alloy eam/fs
eim gauss gayberne gran/hertz/history
gran/hooke gran/hooke/history |hbond/dreiding/lj| hbond/dreiding/morse
kim Icbop line/lj lj/charmm/coul/charmm
lj/charmm/coul/charmm/implicit| lj/charmm/coul/long lj/class2 lj/class2/coul/cut
lj/class2/coul/long lj/cut lj/cut/coul/cut lj/cut/coul/debye
lj/cut/coul/long lj/cut/coul/long/tip4p lj/expand lj/gromacs
lj/gromacs/coul/gromacs lj/smooth lj/smooth/linear 1j96/cut
lubricate lubricate/poly lubricateU lubricateU/poly
meam morse peri/lps peri/pmb
reax rebo resquared soft
SW table tersoff tersoff/zbl

37

tri/lj

yukawa

yukawa/colloid

These are pair styles contributed by users, which can be used if LAMMPS is built with the appropriate package.

awpmd/cut | buck/coul coul/diel dipole/sf
eam/cd edip eff/cut gauss/cut
lj/coul lj/sdk lj/sdk/coul/long lj/sf
meam/spline| reax/c |sph/heatconduction sph/idealgas
sph/lj sph/thosum| sph/taitwater |sph/taitwater/morris
tersoff/table
These are accelerated pair styles, which can be used if LAMMPS is built with the appropriate accelerated
package.
adp/omp airebo/omp beck/omp born/coul/long/cuda
born/coul/long/omp born/coul/wolf/omp born/omp brownian/omp
brownian/poly/omp buck/coul/cut/cuda buck/coul/cut/gpu buck/coul/cut/omp
buck/coul/long/cuda buck/coul/long/gpu buck/coul/long/omp buck/coul/omp
buck/cuda buck/gpu buck/omp colloid/omp
comb/omp coul/cut/omp coul/debye/omp coul/long/gpu
coul/long/omp coul/wolf dipole/cut/omp dipole/st/omp
dpd/omp dpd/tstat/omp eam/alloy/cuda eam/alloy/gpu
eam/alloy/omp eam/alloy/opt eam/cd/omp eam/cuda
eam/fs/cuda eam/fs/gpu eam/fs/omp eam/fs/opt
eam/gpu eam/omp eam/opt edip/omp
eim/omp gauss/omp gayberne/gpu gayberne/omp
gran/hertz/history/omp gran/hooke/cuda gran/hooke/history/omp gran/hooke/omp
hbond/dreiding/lj/omp hbond/dreiding/morse/omp line/lj/omp lj/charmm/coul/charmm/c

lj/charmm/coul/charmm/omp

lj/charmm/coul/charmm/implicit/cuda

lj/charmm/coul/charmm/implicit/omp

lj/charmm/coul/long/cuc

lj/charmm/coul/long/gpu

lj/charmm/coul/long/omp

lj/charmm/coul/long/opt

lj/charmm/coul/pppm/on

lj/class2/coul/cut/cuda

lj/class2/coul/cut/omp

lj/class2/coul/long/cuda

lj/class2/coul/long/gpu

lj/class2/coul/pppm/omp lj/class2/coul/long/omp lj/class2/cuda lj/class2/gpu
lj/class2/omp lj/coul/omp lj/cut/coul/cut/cuda lj/cut/coul/cut/gpu
lj/cut/coul/cut/omp lj/cut/coul/debye/cuda lj/cut/coul/debye/omp lj/cut/coul/long/cuda
lj/cut/coul/long/gpu lj/cut/coul/long/omp lj/cut/coul/long/opt lj/cut/coul/long/tip4p/on
lj/cut/coul/long/tip4p/opt lj/cut/coul/pppm/omp lj/cut/coul/pppm/tip4p/omp lj/cut/cuda
lj/cut/experimental/cuda lj/cut/gpu lj/cut/omp lj/cut/opt
lj/expand/cuda lj/expand/gpu lj/expand/omp lj/gromacs/coul/gromacs/c
lj/gromacs/coul/gromacs/omp lj/gromacs/cuda lj/gromacs/omp lj/sdk/gpu
lj/sdk/omp lj/sdk/coul/long/gpu lj/sdk/coul/long/omp lj/st/omp
lj/smooth/cuda lj/smooth/omp lj/smooth/linear/omp 1j96/cut/cuda
1j96/cut/gpu 1j96/cut/omp lubricate/omp lubricate/poly/omp
meam/spline/omp morse/cuda morse/gpu morse/omp
morse/opt peri/lps/omp peri/pmb/omp rebo/omp
resquared/gpu resquared/omp soft/omp sw/cuda
sw/omp table/gpu table/omp tersoff/cuda

38

tersoff/omp

tersoff/table/omp

tersoff/zbl/omp

tri/lj/omp

yukawa/gpu

yukawa/omp

yukawa/colloid/omp

Bond_style potentials

See the bond_style command for an overview of bond potentials. Click on the style itself for a full description:

none hybrid class2 fene
fene/expand harmonic morse nonlinear
quartic table

These are bond styles contributed by users, which can be used if LAMMPS is built with the appropriate package.

These are accelerated bond styles, which can be used if LAMMPS is built with the appropriate accelerated

package.

harmonic/shift |harmonic/shift/cut

class2/omp fene/omp fene/expand/omp | harmonic/omp
harmonic/shift/omp |harmonic/shift/cut/omp| morse/omp nonlinear/omp
quartic/omp table/omp

Angle_style potentials

See the angle_style command for an overview of angle potentials. Click on the style itself for a full description:

none hybrid charmm class2
cosine cosine/delta |cosine/periodic | cosine/squared
harmonic table

These are angle styles contributed by users, which can be used if LAMMPS is built with the appropriate package.

| sdk | cosine/shift|cosine/shift/exp |dipole |

These are accelerated angle styles, which can be used if LAMMPS is built with the appropriate accelerated

package.

charmm/omp class2/omp cosine/omp cosine/delta/omp
cosine/periodic/omp |cosine/shift/omp |cosine/shift/exp/omp |cosine/squared/omp
dipole/ompharmonic/omp| table/omp

Dihedral_style potentials

See the dihedral_style command for an overview of dihedral potentials. Click on the style itself for a full

description:

none

hybrid

charmm

class2

harmonic

helix

multi/harmonic

opls

These are dihedral styles contributed by users, which can be used if LAMMPS is built with the appropriate

package.

cosine/shift/exp |table |

39

These are accelerated dihedral styles, which can be used if LAMMPS is built with the appropriate accelerated
package.

charmm/omp class2/omp cosine/shift/exp/omp | harmonic/omp

helix/omp |multi/harmonic/omp| opls/omptable/omp

Improper_style potentials

See the improper_style command for an overview of improper potentials. Click on the style itself for a full
description:

none hybrid class2 cvff

harmonic umbrella

These are improper styles contributed by users, which can be used if LAMMPS is built with the appropriate
package.

cossq |ring

These are accelerated improper styles, which can be used if LAMMPS is built with the appropriate accelerated
package.

class2/omp cossg/omp cvff/omp harmonic/omp

ring/omp umbrella/omp

Kspace solvers

See the kspace_style command for an overview of Kspace solvers. Click on the style itself for a full description:

ewald | pppm | pppmieg | pppmipp
These are Kspace solvers contributed by users, which can be used if LAMMPS is built with the appropriate
package.

| ewald/n |
These are accelerated Kspace solvers, which can be used if LAMMPS is built with the appropriate accelerated
package.

ewald/omp pppm/cuda pppm/gpu pppm/omp
pppm/cg/omp |pppm/tip4p/omp [pppm/proxy [pppm/tip4dp/proxy

40

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

4. Packages

This section gives a quick overview of the add-on packages that extend LAMMPS functionality.

4.1 Standard packages
4.2 User packages

LAMMPS includes many optional packages, which are groups of files that enable a specific set of features. For
example, force fields for molecular systems or granular systems are in packages. You can see the list of all
packages by typing "make package" from within the src directory of the LAMMPS distribution.

See Section_start 3 of the manual for details on how to include/exclude specific packages as part of the LAMMPS
build process, and for more details about the differences between standard packages and user packages in

LAMMPS.

Below, the packages currently availabe in LAMMPS are listed. For standard packages, just a one-line description
is given. For user packages, more details are provided.

4.1 Standard packages

The current list of standard packages is as follows:

Package Description Author(s) Doc page Example | Library
ASPHERE aspherical particles - Section_howto ellipse -
CLASS2 class 2 force fields - pair_style lj/class2 - -
COLLOID colloidal particles - atom_style colloid | colloid -
C . i pair_style . i
DIPOLE point dipole particles dipole/cut dipole
Fast Lubrication Kumar & Bybee & Higdon pair_style
FLD . ; - -
Dynamics (D) lubricateU
GPU GPU-enabled potentials Mike Brown (ORNL) Section accelerate gpu lib/gpu
GRANULAR granular systems - Section_howto pour -
. Smirichinski & Elliot & . . . -
KIM openKIM potentials Tadmor (3) pair_style kim kim lib/kim
KSPACE long-range Coulombic - kspace_style peptide -
solvers
MANYBODY| many-body potentials - pair_style tersoff | shear -
MEAM modified EAM potential Greg Wagner (Sandia) pair_style meam | meam [lib/meam
MC Monte Carlo options - fix gecmc - -
MOLECULE molecular‘ system force - Section_howto peptide -
fields
OPT optimized pair potentials Fischer & R(lgl ie & Natoli Section accelerate - -
PERI Peridynamics models Mike Parks (Sandia) pair_style peri peri -
POEMS Rudra Mukherjee (JPL) fix poems rigid |[lib/poems

41

http://lammps.sandia.gov

coupled rigid body
motion
REAX ReaxFF potential Aidan Thompson (Sandia) pair_style reax reax lib/reax
REPLICA multi-replica methods - Section_howto tad -
SHOCK shock loading methods - fix msst - -
SRD stochastic rptation i fix srd ord i
dynamics
XTC dumps in XTC format - dump - -

The "Authors" column lists a name(s) if a specific person is responible for creating and maintaining the package.
(1) The FLD package was created by Amit Kumar and Michael Bybee from Jonathan Higdon's group at UIUC.

(2) The OPT package was created by James Fischer (High Performance Technologies), David Richie, and Vincent
Natoli (Stone Ridge Technolgy).

(3) The KIM package was created by Valeriu Smirichinski, Ryan Elliott, and Ellad Tadmor (U Minn).

The "Doc page" column links to either a portion of the Section_howto of the manual, or an input script command
implemented as part of the package.

The "Example" column is a sub-directory in the examples directory of the distribution which has an input script
that uses the package. E.g. "peptide" refers to the examples/peptide directory.

The "Library" column lists an external library which must be built first and which LAMMPS links to when it is
built. These are in the lib directory of the distribution. This section of the manual gives details on the 2-step build
process with external libraries.

4.2 User packages

The current list of user-contributed packages is as follows:

Package Description Author(s) Doc page Example Pic/movie | Library
USER-MISC single-file 15 gk R MISC/README | USER-MISC/README - - -
contributions
USER-ATC atom-to-coptmuum Jone.s & Templeton & fix atc USER/atc atc lib/atc
coupling Zimmerman (2)
USER-AWPMD | wave-packet MD Ilya Valuev (JIHT) pair_style awpmd/cut | USER/awpmd - lib/awpmc
A coarse-graining Axel Kohlmeyer . . i i
USER-CG-CMM model (Temple U) pair_style lj/sdk USER/cg-cmm cg
. . Fiorin & Henin & . .
USER-COLVARS | collective variables fix colvars USER/colvars | colvars [lib/colvart
Kohlmeyer (3)
USER-CUDA | NVIDIAGPU | Christian Trott (UTech | g, 1 yecelerate | USER/cuda . lib/cuda
styles Ilmenau)
USER-EFF | electron force field |\n4res Jaramillo-Botero) - oo 1e e frveut USER/eff eff ;
(Caltech)
USER-EWALDN | Ewald for 1/R*n | Pieter in' t Veld (BASF) kspace_style - - -
USER-MOLFILE dump molfile - - lib/molfile

42

http://lammps.sandia.gov/pictures.html#atc
http://lammps.sandia.gov/pictures.html#cg
http://lammps.sandia.gov/movies.html#eff

VMD molfile Axel Kohlmeyer
plug-ins (Temple U)
USER-OMP OpenMP threaded Axel Kohlmeyer Section accelerate i i
styles (Temple U)
C version of . .
USER-REAXC ReaxFF Metin Aktulga (LBNL) pair_style reaxc reax -
smoothed particle | Georg Ganzenmuller .
USER-SPH hydrodynamics (EMI) userguide.pdf USER/sph sph

The "Authors" column lists a name(s) if a specific person is responible for creating and maintaining the package.
(2) The ATC package was created by Reese Jones, Jeremy Templeton, and Jon Zimmerman (Sandia).

(3) The COLVARS package was created by Axel Kohlmeyer (Temple U) using the colvars module library written
by Giacomo Fiorin (Temple U) and Jerome Henin (LISM, Marseille, France).

The "Doc page" column links to either a portion of the Section_howto of the manual, or an input script command
implemented as part of the package, or to additional documentation provided witht he package.

The "Example" column is a sub-directory in the examples directory of the distribution which has an input script
that uses the package. E.g. "peptide" refers to the examples/peptide directory. USER/cuda refers to the
examples/USER/cuda directory.

The "Library" column lists an external library which must be built first and which LAMMPS links to when it is
built. These are in the lib directory of the distribution. This section of the manual gives details on the 2-step build
process with external libraries.

More details on each package, from the USER-blah/README file is given below.

USER-MISC package

The files in this package are a potpourri of (mostly) unrelated features contributed to LAMMPS by users. Each
feature is a single pair of files (*.cpp and *.h).

More information about each feature can be found by reading its doc page in the LAMMPS doc directory. The
doc page which lists all LAMMPS input script commands is as follows:

Section_commands
User-contributed features are listed at the bottom of the fix, compute, pair, etc sections.
The list of features and author of each is given in the src/USER-MISC/README file.

You should contact the author directly if you have specific questions about the feature or its coding.

USER-ATC package
This package implements a "fix atc" command which can be used in a LAMMPS input script. This fix can be

employed to either do concurrent coupling of MD with FE-based physics surrogates or on-the-fly post-processing
of atomic information to continuum fields.

43

http://www.ks.uiuc.edu/Research/vmd
http://lammps.sandia.gov/movies.html#sph

See the doc page for the fix atc command to get started. At the bottom of the doc page are many links to
additional documentation contained in the doc/USER/atc directory.

There are example scripts for using this package in examples/USER/atc.

This package uses an external library in lib/atc which must be compiled before making LAMMPS. See the
lib/atc/README file and the LAMMPS manual for information on building LAMMPS with external libraries.

The primary people who created this package are Reese Jones (rjones at sandia.gov), Jeremy Templeton (jatempl
at sandia.gov) and Jon Zimmerman (jzimmer at sandia.gov) at Sandia. Contact them directly if you have
questions.

USER-AWPMD package

This package contains a LAMMPS implementation of the Antisymmetrized Wave Packet Molecular Dynamics
(AWPMD) method.

See the doc page for the pair_style awpmd/cut command to get started.

There are example scripts for using this package in examples/USER/awpmd.

This package uses an external library in lib/awpmd which must be compiled before making LAMMPS. See the
lib/awpmd/README file and the LAMMPS manual for information on building LAMMPS with external

libraries.

The person who created this package is Ilya Valuev at the JIHT in Russia (valuev at physik.hu-berlin.de). Contact
him directly if you have questions.

USER-COLVARS package
This package implements the "fix colvars" command which can be used in a LAMMPS input script.

This fix allows to use "collective variables" to implement Adaptive Biasing Force, Metadynamics, Steered MD,
Umbrella Sampling and Restraints. This code consists of two parts:

e A portable collective variable module library written and maintained by Giacomo Fiorin (ICMS, Temple
University, Philadelphia, PA, USA) and Jerome Henin (LISM, CNRS, Marseille, France). This code is
located in the directory lib/colvars and needs to be compiled first.

® The colvars fix and an interface layer, exchanges information between LAMMPS and the collective
variable module.

See the doc page of fix colvars for more details.

There are example scripts for using this package in examples/USER/colvars

This is a very new interface that does not yet support all features in the module and will see future optimizations
and improvements. The colvars module library is also available in NAMD has been thoroughly used and tested
there. Bugs and problems are likely due to the interface layers code. Thus the current version of this package

should be considered beta quality.

The person who created this package is Axel Kohlmeyer at Temple U (akohlmey at gmail.com). Contact him
directly if you have questions.

44

USER-CG-CMM package
This package implements 3 commands which can be used in a LAMMPS input script:

e pair_style 1j/sdk
e pair_style lj/sdk/coul/long
¢ angle_style sdk

These styles allow coarse grained MD simulations with the parametrization of Shinoda, DeVane, Klein, Mol Sim,
33,27 (2007) (SDK), with extensions to simulate ionic liquids, electrolytes, lipids and charged amino acids.

See the doc pages for these commands for details.
There are example scripts for using this package in examples/USER/cg-cmm.

This is the second generation implementation reducing the the clutter of the previous version. For many systems
with electrostatics, it will be faster to use pair_style hybrid/overlay with 1lj/sdk and coul/long instead of the
combined lj/sdk/coul/long style. since the number of charged atom types is usually small. For any other coulomb
interactions this is now required. To exploit this property, the use of the kspace_style pppm/cg is recommended
over regular pppm. For all new styles, input file backward compatibility is provided. The old implementation is
still available through appending the /old suffix. These will be discontinued and removed after the new
implementation has been fully validated.

The current version of this package should be considered beta quality. The CG potentials work correctly for
"normal" situations, but have not been testing with all kinds of potential parameters and simulation systems.

The person who created this package is Axel Kohlmeyer at Temple U (akohlmey at gmail.com). Contact him
directly if you have questions.

USER-CUDA package

This package provides acceleration of various LAMMPS pair styles, fix styles, compute styles, and long-range
Coulombics via PPPM for NVIDIA GPUs.

See this section of the manual to get started:
Section_accelerate
There are example scripts for using this package in examples/USER/cuda.

This package uses an external library in lib/cuda which must be compiled before making LAMMPS. See the
lib/cuda/README file and the LAMMPS manual for information on building LAMMPS with external libraries.

The person who created this package is Christian Trott at the University of Technology Ilmenau, Germany
(christian.trott at tu-ilmenau.de). Contact him directly if you have questions.

USER-EFF package

This package contains a LAMMPS implementation of the electron Force Field (eFF) currently under development
at Caltech, as described in A. Jaramillo-Botero, J. Su, Q. An, and W.A. Goddard III, JCC, 2010. The eFF potential
was first introduced by Su and Goddard, in 2007.

45

eFF can be viewed as an approximation to QM wave packet dynamics and Fermionic molecular dynamics,
combining the ability of electronic structure methods to describe atomic structure, bonding, and chemistry in
materials, and of plasma methods to describe nonequilibrium dynamics of large systems with a large number of
highly excited electrons. We classify it as a mixed QM-classical approach rather than a conventional force field
method, which introduces QM-based terms (a spin-dependent repulsion term to account for the Pauli exclusion
principle and the electron wavefunction kinetic energy associated with the Heisenberg principle) that reduce,
along with classical electrostatic terms between nuclei and electrons, to the sum of a set of effective pairwise
potentials. This makes eFF uniquely suited to simulate materials over a wide range of temperatures and pressures
where electronically excited and ionized states of matter can occur and coexist.

The necessary customizations to the LAMMPS core are in place to enable the correct handling of explicit electron
properties during minimization and dynamics.

See the doc page for the pair_style eff/cut command to get started.
There are example scripts for using this package in examples/USER/eff.
There are auxiliary tools for using this package in tools/eff.

The person who created this package is Andres Jaramillo-Botero at CalTech (ajaramil at wag.caltech.edu).
Contact him directly if you have questions.

USER-EWALDN package

This package implements 3 commands which can be used in a LAMMPS input script: pair_style lj/coul,
pair_style buck/coul, and kspace_style ewald/n.

The "kspace_style ewald/n" command is similar to standard Ewald for charges, but also enables the
Lennard-Jones interaction, or any 1/r*N interaction to be of infinite extent, instead of being cutoff. LAMMPS pair
potentials for long-range Coulombic interactions, such as lj/cut/coul/long can be used with ewald/n. The two new
pair_style commands provide the modifications for the short-range LJ and Buckingham interactions that can also
be used with ewald/n.

Two other advantages of kspace_style ewald/n are that

a) it can be used with non-orthogonal (triclinic symmetry) simulation boxes

b) it can include long-range summations not just for Coulombic interactions (1/r), but also for dispersion
interactions (1/r"6) and dipole interactions (1/r"3).

Neither of these options is currently possible for other kspace styles such as PPPM and ewald.
See the doc pages for these commands for details.

The person who created these files is Pieter in' t Veld while at Sandia. He is now at BASF (pieter.intveld at
basf.com). Contact him directly if you have questions.

USER-OMP package

This package provides OpenMP multi-threading support and other optimizations of various LAMMPS pair styles,
dihedral styles, and fix styles.

46

See this section of the manual to get started:
Section_accelerate

The person who created this package is Axel Kohlmeyer at Temple U (akohlmey at gmail.com). Contact him
directly if you have questions.

USER-REAXC package

This package contains a implementation for LAMMPS of the ReaxFF force field. ReaxFF uses
distance-dependent bond-order functions to represent the contributions of chemical bonding to the potential
energy. It was originally developed by Adri van Duin and the Goddard group at CalTech.

The USER-REAXC version of ReaxFF (pair_style reax/c), implemented in C, should give identical or very
similar results to pair_style reax, which is a ReaxFF implementation on top of a Fortran library, a version of
which library was originally authored by Adri van Duin.

The reax/c version should be somewhat faster and more scalable, particularly with respect to the charge
equilibration calculation. It should also be easier to build and use since there are no complicating issues with
Fortran memory allocation or linking to a Fortran library.

For technical details about this implemention of ReaxFF, see this paper:

Parallel and Scalable Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques, H. M.
Aktulga, J. C. Fogarty, S. A. Pandit, A. Y. Grama, Parallel Computing, in press (2011).

See the doc page for the pair_style reax/c command for details of how to use it in LAMMPS.

The person who created this package is Hasan Metin Aktulga (hmaktulga at 1bl.gov), while at Purdue University.
Contact him directly, or Aidan Thompson at Sandia (athomps at sandia.gov), if you have questions.

USER-SPH package

This package implements smoothed particle hydrodynamics (SPH) in LAMMPS. Currently, the package has the
following features:

* Tait, ideal gas, Lennard-Jones equation of states, full support for complete (i.e. internal-energy dependent)
equations of state * plain or Monaghans XSPH integration of the equations of motion * density continuity or
density summation to propagate the density field * commands to set internal energy and density of particles from
the input script * output commands to access internal energy and density for dumping and thermo output

See the file doc/USER/sph/SPH_LAMMPS_userguide.pdf to get started.

There are example scripts for using this package in examples/USER/sph.

The person who created this package is Georg Ganzenmuller at the Fraunhofer-Institute for High-Speed

Dynamics, Ernst Mach Institute in Germany (georg.ganzenmueller at emi.thg.de). Contact him directly if you
have questions.

47

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

5. Accelerating LAMMPS performance

This section describes various methods for improving LAMMPS performance for different classes of problems
running on different kinds of machines.

5.1 Measuring performance

5.2 General strategies

5.3 Packages with optimized styles

5.4 OPT package

5.5 USER-OMP package

5.6 GPU package

5.7 USER-CUDA package

5.8 Comparison of GPU and USER-CUDA packages

5.1 Measuring performance

Before trying to make your simulation run faster, you should understand how it currently performs and where the
bottlenecks are.

The best way to do this is run the your system (actual number of atoms) for a modest number of timesteps (say
100, or a few 100 at most) on several different processor counts, including a single processor if possible. Do this
for an equilibrium version of your system, so that the 100-step timings are representative of a much longer run.
There is typically no need to run for 1000s or timesteps to get accurate timings; you can simply extrapolate from
short runs.

For the set of runs, look at the timing data printed to the screen and log file at the end of each LAMMPS run. This
section of the manual has an overview.

Running on one (or a few processors) should give a good estimate of the serial performance and what portions of
the timestep are taking the most time. Running the same problem on a few different processor counts should give
an estimate of parallel scalability. I.e. if the simulation runs 16x faster on 16 processors, its 100% parallel
efficient; if it runs 8x faster on 16 processors, it's 50% efficient.

The most important data to look at in the timing info is the timing breakdown and relative percentages. For
example, trying different options for speeding up the long-range solvers will have little impact if they only
consume 10% of the run time. If the pairwise time is dominating, you may want to look at GPU or OMP versions
of the pair style, as discussed below. Comparing how the percentages change as you increase the processor count
gives you a sense of how different operations within the timestep are scaling. Note that if you are running with a
Kspace solver, there is additional output on the breakdown of the Kspace time. For PPPM, this includes the
fraction spent on FFTs, which can be communication intensive.

Another important detail in the timing info are the histograms of atoms counts and neighbor counts. If these vary
widely across processors, you have a load-imbalance issue. This often results in inaccurate relative timing data,
because processors have to wait when communication occurs for other processors to catch up. Thus the reported
times for "Communication" or "Other" may be higher than they really are, due to load-imbalance. If this is an
issue, you can uncomment the MPI_Barrier() lines in src/timer.cpp, and recompile LAMMPS, to obtain
synchronized timings.

48

http://lammps.sandia.gov

5.2 General strategies
NOTE: this sub-section is still a work in progress

Here is a list of general ideas for improving simulation performance. Most of them are only applicable to certain
models and certain bottlenecks in the current performance, so let the timing data you intially generate be your
guide. It is hard, if not impossible, to predict how much difference these options will make, since it is a function
of your problem and your machine. There is no substitute for simply trying them out.

¢ TRESPA

¢ 2-FFT PPPM

¢ single vs double PPPM

¢ partial charge PPPM

e verlet/split

® processor mapping via processors numa command
¢ Joad-balancing: balance and fix balance

¢ processor command for layout

¢ OMP when lots of cores

5.3 Packages with optimized styles

Accelerated versions of various pair_style, fixes, computes, and other commands have been added to LAMMPS,
which will typically run faster than the standard non-accelerated versions, if you have the appropriate hardware on
your system.

The accelerated styles have the same name as the standard styles, except that a suffix is appended. Otherwise, the
syntax for the command is identical, their functionality is the same, and the numerical results it produces should
also be identical, except for precision and round-off issues.

For example, all of these variants of the basic Lennard-Jones pair style exist in LAMMPS:

® pair_style lj/cut

® pair_style lj/cut/opt
® pair_style lj/cut/omp
e pair_style lj/cut/gpu
e pair_style lj/cut/cuda

Assuming you have built LAMMPS with the appropriate package, these styles can be invoked by specifying them
explicitly in your input script. Or you can use the -suffix command-line switch to invoke the accelerated versions
automatically, without changing your input script. The suffix command allows you to set a suffix explicitly and to
turn off/on the comand-line switch setting, both from within your input script.

Styles with an "opt" suffix are part of the OPT package and typically speed-up the pairwise calculations of your
simulation by 5-25%.

Styles with an "omp" suffix are part of the USER-OMP package and allow a pair-style to be run in multi-threaded
mode using OpenMP. This can be useful on nodes with high-core counts when using less MPI processes than
cores is advantageous, e.g. when running with PPPM so that FFTs are run on fewer MPI processors or when the
many MPI tasks would overload the available bandwidth for communication.

Styles with a "gpu" or "cuda" suffix are part of the GPU or USER-CUDA packages, and can be run on NVIDIA
GPUs associated with your CPUs. The speed-up due to GPU usage depends on a variety of factors, as discussed

49

below.

To see what styles are currently available in each of the accelerated packages, see Section_commands 5 of the
manual. A list of accelerated styles is included in the pair, fix, compute, and kspace sections.

The following sections explain:

¢ what hardware and software the accelerated styles require

¢ how to build LAMMPS with the accelerated packages in place
¢ what changes (if any) are needed in your input scripts

¢ guidelines for best performance

e speed-ups you can expect

The final section compares and contrasts the GPU and USER-CUDA packages, since they are both designed to
use NVIDIA GPU hardware.

5.4 OPT package

The OPT package was developed by James Fischer (High Performance Technologies), David Richie, and Vincent
Natoli (Stone Ridge Technologies). It contains a handful of pair styles whose compute() methods were rewritten
in C++ templated form to reduce the overhead due to if tests and other conditional code.

The procedure for building LAMMPS with the OPT package is simple. It is the same as for any other package
which has no additional library dependencies:

make yes—opt
make machine

If your input script uses one of the OPT pair styles, you can run it as follows:

Imp_machine -sf opt <in.script
mpirun -np 4 lmp_machine -sf opt <in.script

You should see a reduction in the "Pair time" printed out at the end of the run. On most machines and problems,
this will typically be a 5 to 20% savings.

5.5 USER-OMP package

The USER-OMP package was developed by Axel Kohlmeyer at Temple University. It provides multi-threaded
versions of most pair styles, all dihedral styles and a few fixes in LAMMPS. The package currently uses the
OpenMP interface which requires using a specific compiler flag in the makefile to enable multiple threads;
without this flag the corresponding pair styles will still be compiled and work, but do not support multi-threading.

Building LAMMPS with the USER-OMP package:

The procedure for building LAMMPS with the USER-OMP package is simple. You have to edit your machine
specific makefile to add the flag to enable OpenMP support to the CCFLAGS and LINKFLAGS variables. For
the GNU compilers for example this flag is called -fopenmp. Check your compiler documentation to find out
which flag you need to add. The rest of the compilation is the same as for any other package which has no
additional library dependencies:

make yes-user—omp
make machine

50

Please note that this will only install accelerated versions of styles that are already installed, so you want to install
this package as the last package, or else you may be missing some accelerated styles. If you plan to uninstall some
package, you should first uninstall the USER-OMP package then the other package and then re-install
USER-OMP, to make sure that there are no orphaned omp style files present, which would lead to compilation
erTors.

If your input script uses one of regular styles that are also exist as an OpenMP version in the USER-OMP package
you can run it as follows:

env OMP_NUM_THREADS=4 lmp_serial -sf omp -in in.script
env OMP_NUM_THREADS=2 mpirun -np 2 lmp_machine -sf omp -in in.script
mpirun -x OMP_NUM_THREADS=2 -np 2 lmp_machine -sf omp -in in.script

The value of the environment variable OMP_NUM_THREADS determines how many threads per MPI task are
launched. All three examples above use a total of 4 CPU cores. For different MPI implementations the method to
pass the OMP_NUM_THREADS environment variable to all processes is different. Two different variants, one
for MPICH and OpenMP], respectively are shown above. Please check the documentation of your MPI
installation for additional details. Alternatively, the value provided by OMP_NUM_THREADS can be overridded
with the package omp command. Depending on which styles are accelerated in your input, you should see a
reduction in the "Pair time" and/or "Bond time" and "Loop time" printed out at the end of the run. The optimal
ratio of MPI to OpenMP can vary a lot and should always be confirmed through some benchmark runs for the
current system and on the current machine.

Restrictions:

None of the pair styles in the USER-OMP package support the "inner”, "middle", "outer" options for r-RESPA
integration, only the "pair" option is supported.

Parallel efficiency and performance tips:

In most simple cases the MPI parallelization in LAMMPS is more efficient than multi-threading implemented in
the USER-OMP package. Also the parallel efficiency varies between individual styles. On the other hand, in
many cases you still want to use the omp version - even when compiling or running without OpenMP support -
since they all contain optimizations similar to those in the OPT package, which can result in serial speedup.

Using multi-threading is most effective under the following circumstances:

¢ Individual compute nodes have a significant number of CPU cores but the CPU itself has limited memory
bandwidth, e.g. Intel Xeon 53xx (Clovertown) and 54xx (Harpertown) quad core processors. Running one
MPI task per CPU core will result in significant performance degradation, so that running with 4 or even
only 2 MPI tasks per nodes is faster. Running in hybrid MPI+OpenMP mode will reduce the inter-node
communication bandwidth contention in the same way, but offers and additional speedup from utilizing
the otherwise idle CPU cores.

¢ The interconnect used for MPI communication is not able to provide sufficient bandwidth for a large
number of MPI tasks per node. This applies for example to running over gigabit ethernet or on Cray XT4
or XTS5 series supercomputers. Same as in the aforementioned case this effect worsens with using an
increasing number of nodes.

¢ The input is a system that has an inhomogeneous particle density which cannot be mapped well to the
domain decomposition scheme that LAMMPS employs. While this can be to some degree alleviated
through using the processors keyword, multi-threading provides a parallelism that parallelizes over the
number of particles not their distribution in space.

¢ Finally, multi-threaded styles can improve performance when running LAMMPS in "capability mode",
i.e. near the point where the MPI parallelism scales out. This can happen in particular when using as

51

kspace style for long-range electrostatics. Here the scaling of the kspace style is the performance limiting
factor and using multi-threaded styles allows to operate the kspace style at the limit of scaling and then
increase performance parallelizing the real space calculations with hybrid MPI+OpenMP. Sometimes
additional speedup can be achived by increasing the real-space coulomb cutoff and thus reducing the
work in the kspace part.

The best parallel efficiency from omp styles is typically achieved when there is at least one MPI task per physical
processor, i.e. socket or die.

Using threads on hyper-threading enabled cores is usually counterproductive, as the cost in additional memory
bandwidth requirements is not offset by the gain in CPU utilization through hyper-threading.

A description of the multi-threading strategy and some performance examples are presented here

5.6 GPU package

The GPU package was developed by Mike Brown at ORNL. It provides GPU versions of several pair styles and
for long-range Coulombics via the PPPM command. It has the following features:

¢ The package is designed to exploit common GPU hardware configurations where one or more GPUs are
coupled with many cores of a multi-core CPUs, e.g. within a node of a parallel machine.

¢ Atom-based data (e.g. coordinates, forces) moves back-and-forth between the CPU(s) and GPU every
timestep.

¢ Neighbor lists can be constructed on the CPU or on the GPU

¢ The charge assignement and force interpolation portions of PPPM can be run on the GPU. The FFT
portion, which requires MPI communication between processors, runs on the CPU.

¢ Asynchronous force computations can be performed simultaneously on the CPU(s) and GPU.

e L AMMPS-specific code is in the GPU package. It makes calls to a generic GPU library in the lib/gpu
directory. This library provides NVIDIA support as well as more general OpenCL support, so that the
same functionality can eventually be supported on a variety of GPU hardware.

NOTE: discuss 3 precisions if change, also have to re-link with LAMMPS always use newton off expt with
differing numbers of CPUs vs GPU - can't tell what is fastest give command line switches in examples

Hardware and software requirements:

To use this package, you currently need to have specific NVIDIA hardware and install specific NVIDIA CUDA
software on your system:

® Check if you have an NVIDIA card: cat /proc/driver/nvidia/cards/0

¢ Go to http://www.nvidia.com/object/cuda_get.html

¢ Install a driver and toolkit appropriate for your system (SDK is not necessary)

¢ Follow the instructions in lammps/lib/gpu/README to build the library (see below)
¢ Run lammps/lib/gpu/nvc_get_devices to list supported devices and properties

Building LAMMPS with the GPU package:

As with other packages that include a separately compiled library, you need to first build the GPU library, before
building LAMMPS itself. General instructions for doing this are in this section of the manual. For this package,
do the following, using a Makefile in lib/gpu appropriate for your system:

cd lammps/lib/gpu
make —-f Makefile.linux

52

http://sites.google.com/site/akohlmey/software/lammps-icms/lammps-icms-tms2011-talk.pdf?attredirects=0&d=1

(see further instructions in lammps/lib/gpu/README)
If you are successful, you will produce the file lib/libgpu.a.

Now you are ready to build LAMMPS with the GPU package installed:

cd lammps/src
make yes—-gpu
make machine

Note that the lo-level Makefile (e.g. sc/MAKE/Makefile.linux) has these settings: gpu_SYSINC, gpu_SYSLIB,
gpu_SYSPATH. These need to be set appropriately to include the paths and settings for the CUDA system
software on your machine. See src/MAKE/Makefile.g++ for an example.

GPU configuration

When using GPUs, you are restricted to one physical GPU per LAMMPS process, which is an MPI process
running on a single core or processor. Multiple MPI processes (CPU cores) can share a single GPU, and in many
cases it will be more efficient to run this way.

Input script requirements:
Additional input script requirements to run pair or PPPM styles with a gpu suffix are as follows:

¢ To invoke specific styles from the GPU package, you can either append "gpu" to the style name (e.g.
pair_style lj/cut/gpu), or use the -suffix command-line switch, or use the suffix command.

¢ The newton pair setting must be off.

¢ The package gpu command must be used near the beginning of your script to control the GPU selection
and initialization settings. It also has an option to enable asynchronous splitting of force computations
between the CPUs and GPUs.

As an example, if you have two GPUs per node and 8 CPU cores per node, and would like to run on 4 nodes (32
cores) with dynamic balancing of force calculation across CPU and GPU cores, you could specify

package gpu force/neigh 0 1 -1

In this case, all CPU cores and GPU devices on the nodes would be utilized. Each GPU device would be shared
by 4 CPU cores. The CPU cores would perform force calculations for some fraction of the particles at the same
time the GPUs performed force calculation for the other particles.

Timing output:

As described by the package gpu command, GPU accelerated pair styles can perform computations
asynchronously with CPU computations. The "Pair" time reported by LAMMPS will be the maximum of the time
required to complete the CPU pair style computations and the time required to complete the GPU pair style
computations. Any time spent for GPU-enabled pair styles for computations that run simultaneously with bond,
angle, dihedral, improper, and long-range calculations will not be included in the "Pair" time.

When the mode setting for the package gpu command is force/neigh, the time for neighbor list calculations on the
GPU will be added into the "Pair" time, not the "Neigh" time. An additional breakdown of the times required for
various tasks on the GPU (data copy, neighbor calculations, force computations, etc) are output only with the
LAMMPS screen output (not in the log file) at the end of each run. These timings represent total time spent on the
GPU for each routine, regardless of asynchronous CPU calculations.

53

Performance tips:

Generally speaking, for best performance, you should use multiple CPUs per GPU, as provided my most
multi-core CPU/GPU configurations.

Because of the large number of cores within each GPU device, it may be more efficient to run on fewer processes
per GPU when the number of particles per MPI process is small (100's of particles); this can be necessary to keep
the GPU cores busy.

See the lammps/lib/gpu/README file for instructions on how to build the GPU library for single, mixed, or
double precision. The latter requires that your GPU card support double precision.

5.7 USER-CUDA package

The USER-CUDA package was developed by Christian Trott at U Technology Ilmenau in Germany. It provides
NVIDIA GPU versions of many pair styles, many fixes, a few computes, and for long-range Coulombics via the
PPPM command. It has the following features:

¢ The package is designed to allow an entire LAMMPS calculation, for many timesteps, to run entirely on
the GPU (except for inter-processor MPI communication), so that atom-based data (e.g. coordinates,
forces) do not have to move back-and-forth between the CPU and GPU.

¢ The speed-up advantage of this approach is typically better when the number of atoms per GPU is large

¢ Data will stay on the GPU until a timestep where a non-GPU-ized fix or compute is invoked. Whenever a
non-GPU operation occurs (fix, compute, output), data automatically moves back to the CPU as needed.
This may incur a performance penalty, but should otherwise work transparently.

® Neighbor lists for GPU-ized pair styles are constructed on the GPU.

¢ The package only supports use of a single CPU (core) with each GPU.

Hardware and software requirements:

To use this package, you need to have specific NVIDIA hardware and install specific NVIDIA CUDA software
on your system.

Your NVIDIA GPU needs to support Compute Capability 1.3. This list may help you to find out the Compute
Capability of your card:

http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units
Install the Nvidia Cuda Toolkit in version 3.2 or higher and the corresponding GPU drivers. The Nvidia Cuda
SDK is not required for LAMMPSCUDA but we recommend it be installed. You can then make sure that its
sample projects can be compiled without problems.
Building LAMMPS with the USER-CUDA package:
As with other packages that include a separately compiled library, you need to first build the USER-CUDA
library, before building LAMMPS itself. General instructions for doing this are in this section of the manual. For
this package, do the following, using settings in the lib/cuda Makefiles appropriate for your system:

¢ Go to the lammps/lib/cuda directory

¢ [f your CUDA toolkit is not installed in the default system directoy /usr/local/cuda edit the file
lib/cuda/Makefile.common accordingly.

54

¢ Type "make OPTIONS", where OPTIONS are one or more of the following options. The settings will be
written to the lib/cuda/Makefile.defaults and used in the next step.

precision=N to set the precision level

N = 1 for single precision (default)

N = 2 for double precision

N = 3 for positions in double precision

N = 4 for positions and velocities in double precision

arch=M to set GPU compute capability
M = 20 for CC2.0 (GF100/110, e.g. C2050,GTX580,GTX470) (default)
M = 21 for CC2.1 (GF104/114, e.g. GTX560, GTX460, GTX450)
M = 13 for CCl.3 (GF200, e.g. C1060, GTX285)
prec_timer=0/1 to use hi-precision timers
0 = do not use them (default)
1 = use these timers
this is usually only useful for Mac machines
dbg=0/1 to activate debug mode
0 = no debug mode (default)
1 = yes debug mode
this is only useful for developers
cufft=1 to determine usage of CUDA FFT library
0 = no CUFFT support (default)
in the future other CUDA-enabled FFT libraries might be supported

¢ Type "make" to build the library. If you are successful, you will produce the file lib/libcuda.a.

Now you are ready to build LAMMPS with the USER-CUDA package installed:

cd lammps/src
make yes-user—-cuda
make machine

Note that the LAMMPS build references the lib/cuda/Makefile.common file to extract setting specific CUDA
settings. So it is important that you have first built the cuda library (in lib/cuda) using settings appropriate to your
system.

Input script requirements:
Additional input script requirements to run styles with a cuda suffix are as follows:

¢ To invoke specific styles from the USER-CUDA package, you can either append "cuda" to the style name
(e.g. pair_style lj/cut/cuda), or use the -suffix command-line switch, or use the suffix command. One
exception is that the kspace_style pppm/cuda command has to be requested explicitly.

¢ To use the USER-CUDA package with its default settings, no additional command is needed in your
input script. This is because when LAMMPS starts up, it detects if it has been built with the
USER-CUDA package. See the -cuda command-line switch for more details.

¢ To change settings for the USER-CUDA package at run-time, the package cuda command can be used
near the beginning of your input script. See the package command doc page for details.

Performance tips:

The USER-CUDA package offers more speed-up relative to CPU performance when the number of atoms per
GPU is large, e.g. on the order of tens or hundreds of 1000s.

As noted above, this package will continue to run a simulation entirely on the GPU(s) (except for inter-processor
MPI communication), for multiple timesteps, until a CPU calculation is required, either by a fix or compute that is
non-GPU-ized, or until output is performed (thermo or dump snapshot or restart file). The less often this occurs,
the faster your simulation will run.

55

5.8 Comparison of GPU and USER-CUDA packages

Both the GPU and USER-CUDA packages accelerate a LAMMPS calculation using NVIDIA hardware, but they
do it in different ways.

As a consequence, for a particular simulation on specific hardware, one package may be faster than the other. We
give guidelines below, but the best way to determine which package is faster for your input script is to try both of
them on your machine. See the benchmarking section below for examples where this has been done.

Guidelines for using each package optimally:

® The GPU package allows you to assign multiple CPUs (cores) to a single GPU (a common configuration
for "hybrid" nodes that contain multicore CPU(s) and GPU(s)) and works effectively in this mode. The
USER-CUDA package does not allow this; you can only use one CPU per GPU.
® The GPU package moves per-atom data (coordinates, forces) back-and-forth between the CPU and GPU
every timestep. The USER-CUDA package only does this on timesteps when a CPU calculation is
required (e.g. to invoke a fix or compute that is non-GPU-ized). Hence, if you can formulate your input
script to only use GPU-ized fixes and computes, and avoid doing I/O too often (thermo output, dump file
snapshots, restart files), then the data transfer cost of the USER-CUDA package can be very low, causing
it to run faster than the GPU package.
The GPU package is often faster than the USER-CUDA package, if the number of atoms per GPU is
"small". The crossover point, in terms of atoms/GPU at which the USER-CUDA package becomes faster
depends strongly on the pair style. For example, for a simple Lennard Jones system the crossover (in
single precision) is often about S0K-100K atoms per GPU. When performing double precision
calculations the crossover point can be significantly smaller.
Both packages compute bonded interactions (bonds, angles, etc) on the CPU. This means a model with
bonds will force the USER-CUDA package to transfer per-atom data back-and-forth between the CPU
and GPU every timestep. If the GPU package is running with several MPI processes assigned to one
GPU, the cost of computing the bonded interactions is spread across more CPUs and hence the GPU
package can run faster.
® When using the GPU package with multiple CPUs assigned to one GPU, its performance depends to
some extent on high bandwidth between the CPUs and the GPU. Hence its performance is affected if full
16 PCle lanes are not available for each GPU. In HPC environments this can be the case if S2050/70
servers are used, where two devices generally share one PCle 2.0 16x slot. Also many multi-GPU
mainboards do not provide full 16 lanes to each of the PCle 2.0 16x slots.

Differences between the two packages:

® The GPU package accelerates only pair force, neighbor list, and PPPM calculations. The USER-CUDA
package currently supports a wider range of pair styles and can also accelerate many fix styles and some
compute styles, as well as neighbor list and PPPM calculations.

® The USER-CUDA package does not support acceleration for minimization.

e The USER-CUDA package does not support hybrid pair styles.

e The USER-CUDA package can order atoms in the neighbor list differently from run to run resulting in a
different order for force accumulation.

® The USER-CUDA package has a limit on the number of atom types that can be used in a simulation.

® The GPU package requires neighbor lists to be built on the CPU when using exclusion lists or a triclinic
simulation box.

e The GPU package uses more GPU memory than the USER-CUDA package. This is generally not a
problem since typical runs are computation-limited rather than memory-limited.

56

Examples:

The LAMMPS distribution has two directories with sample input scripts for the GPU and USER-CUDA
packages.

¢ lJammps/examples/gpu = GPU package files
¢ lJammps/examples/USER/cuda = USER-CUDA package files

These contain input scripts for identical systems, so they can be used to benchmark the performance of both
packages on your system.

57

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

6. How-to discussions
This section describes how to perform common tasks using LAMMPS.

6.1 Restarting a simulation

6.2 2d simulations

6.3 CHARMM, AMBER, and DREIDING force fields
6.4 Running multiple simulations from one input script
6.5 Multi-replica simulations

6.6 Granular models

6.7 TIP3P water model

6.8 TIP4P water model

6.9 SPC water model

6.10 Coupling LAMMPS to other codes

6.11 Visualizing LAMMPS snapshots

6.12 Triclinic (non-orthogonal) simulation boxes

6.13 NEMD simulations

6.14 Extended spherical and aspherical particles

6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
6.16 Thermostatting, barostatting and computing temperature
6.17 Walls

6.18 Elastic constants

6.19 Library interface to LAMMPS

6.20 Calculating thermal conductivity

6.21 Calculating viscosity

The example input scripts included in the LAMMPS distribution and highlighted in Section_example also show
how to setup and run various kinds of simulations.

6.1 Restarting a simulation

There are 3 ways to continue a long LAMMPS simulation. Multiple run commands can be used in the same input
script. Each run will continue from where the previous run left off. Or binary restart files can be saved to disk
using the restart command. At a later time, these binary files can be read via a read_restart command in a new
script. Or they can be converted to text data files and read by a read_data command in a new script. This section
discusses the restart2data tool that is used to perform the conversion.

Here we give examples of 2 scripts that read either a binary restart file or a converted data file and then issue a
new run command to continue where the previous run left off. They illustrate what settings must be made in the

new script. Details are discussed in the documentation for the read_restart and read_data commands.

Look at the in.chain input script provided in the bench directory of the LAMMPS distribution to see the original
script that these 2 scripts are based on. If that script had the line

restart 50 tmp.restart

added to it, it would produce 2 binary restart files (tmp.restart.50 and tmp.restart.100) as it ran.

58

http://lammps.sandia.gov

This script could be used to read the st restart file and re-run the last 50 timesteps:

read_restart tmp.restart.50

neighbor 0.4 bin

neigh_modify every 1 delay 1

fix 1 all nve

fix 2 all langevin 1.0 1.0 10.0 904297
timestep 0.012

run 50

Note that the following commands do not need to be repeated because their settings are included in the restart file:
units, atom_style, special_bonds, pair_style, bond_style. However these commands do need to be used, since their
settings are not in the restart file: neighbor, fix, timestep.

If you actually use this script to perform a restarted run, you will notice that the thermodynamic data match at step
50 (if you also put a "thermo 50" command in the original script), but do not match at step 100. This is because
the fix langevin command uses random numbers in a way that does not allow for perfect restarts.

As an alternate approach, the restart file could be converted to a data file using this tool:

restart2data tmp.restart.50 tmp.restart.data

Then, this script could be used to re-run the last 50 steps:

units 173
atom_style bond
pair_style 1j/cut 1.12
pair_modify shift yes
bond_style fene

special_bonds 0.0 1.0 1.0

read_data tmp.restart.data

neighbor 0.4 bin

neigh_modify every 1 delay 1

fix 1 all nve

fix 2 all langevin 1.0 1.0 10.0 904297
timestep 0.012

reset_timestep 50
run 50

Note that nearly all the settings specified in the original in.chain script must be repeated, except the pair_coeff
and bond_coeff commands since the new data file lists the force field coefficients. Also, the reset_timestep
command is used to tell LAMMPS the current timestep. This value is stored in restart files, but not in data files.

59

6.2 2d simulations
Use the dimension command to specify a 2d simulation.
Make the simulation box periodic in z via the boundary command. This is the default.

If using the create box command to define a simulation box, set the z dimensions narrow, but finite, so that the
create_atoms command will tile the 3d simulation box with a single z plane of atoms - e.g.

create box 1 -10 10 -10 10 -0.25 0.25

If using the read data command to read in a file of atom coordinates, set the "zlo zhi" values to be finite but
narrow, similar to the create_box command settings just described. For each atom in the file, assign a z coordinate
so it falls inside the z-boundaries of the box - e.g. 0.0.

Use the fix enforce2d command as the last defined fix to insure that the z-components of velocities and forces are
zeroed out every timestep. The reason to make it the last fix is so that any forces induced by other fixes will be
zeroed out.

Many of the example input scripts included in the LAMMPS distribution are for 2d models.
IMPORTANT NOTE: Some models in LAMMPS treat particles as extended spheres, as opposed to point

particles. In 2d, the particles will still be spheres, not disks, meaning their moment of inertia will be the same as in
3d.

6.3 CHARMM, AMBER, and DREIDING force fields

A force field has 2 parts: the formulas that define it and the coefficients used for a particular system. Here we only
discuss formulas implemented in LAMMPS that correspond to formulas commonly used in the CHARMM,
AMBER, and DREIDING force fields. Setting coefficients is done in the input data file via the read_data
command or in the input script with commands like pair_coeff or bond_coeff. See Section_tools for additional
tools that can use CHARMM or AMBER to assign force field coefficients and convert their output into LAMMPS
nput.

See (MacKerell) for a description of the CHARMM force field. See (Cornell) for a description of the AMBER
force field.

These style choices compute force field formulas that are consistent with common options in CHARMM or
AMBER. See each command's documentation for the formula it computes.

¢ bond_style harmonic

¢ angle_style charmm

¢ dihedral_style charmm

e pair_style lj/charmm/coul/charmm

¢ pair_style lj/charmm/coul/charmm/implicit
e pair_style lj/charmm/coul/long

¢ special_bonds charmm
¢ special_bonds amber

DREIDING is a generic force field developed by the Goddard group at Caltech and is useful for predicting

60

http://www.wag.caltech.edu

structures and dynamics of organic, biological and main-group inorganic molecules. The philosophy in
DREIDING is to use general force constants and geometry parameters based on simple hybridization
considerations, rather than individual force constants and geometric parameters that depend on the particular
combinations of atoms involved in the bond, angle, or torsion terms. DREIDING has an explicit hydrogen bond
term to describe interactions involving a hydrogen atom on very electronegative atoms (N, O, F).

See (Mayo) for a description of the DREIDING force field

These style choices compute force field formulas that are consistent with the DREIDING force field. See each
command's documentation for the formula it computes.

¢ bond_style harmonic
¢ bond_style morse

¢ angle_style harmonic
¢ angle_style cosine
¢ angle_style cosine/periodic

¢ dihedral_style charmm
¢ improper_style umbrella

® pair_style buck

® pair_style buck/coul/cut
¢ pair_style buck/coul/long
® pair_style lj/cut

® pair_style lj/cut/coul/cut
® pair_style lj/cut/coul/long

¢ pair_style hbond/dreiding/lj
¢ pair_style hbond/dreiding/morse

¢ special_bonds dreiding

6.4 Running multiple simulations from one input script

This can be done in several ways. See the documentation for individual commands for more details on how these
examples work.

If "multiple simulations" means continue a previous simulation for more timesteps, then you simply use the run
command multiple times. For example, this script

units 17
atom_style atomic
read_data data.lj
run 10000

run 10000

run 10000

run 10000

run 10000

would run 5 successive simulations of the same system for a total of 50,000 timesteps.

61

If you wish to run totally different simulations, one after the other, the clear command can be used in between
them to re-initialize LAMMPS. For example, this script

units 1j

atom_style atomic
read_data data.lj

run 10000

clear

units 1j

atom_style atomic
read_data data.lj.new
run 10000

would run 2 independent simulations, one after the other.

For large numbers of independent simulations, you can use variables and the next and jump commands to loop
over the same input script multiple times with different settings. For example, this script, named in.polymer

variable d index runl run2 run3 run4 run5 run6 run7 run8
shell cd $d

read_data data.polymer

run 10000

shell cd ..

clear

next d

jump in.polymer

would run 8 simulations in different directories, using a data.polymer file in each directory. The same concept
could be used to run the same system at 8 different temperatures, using a temperature variable and storing the
output in different log and dump files, for example

variable a loop 8

variable t index 0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15
log log.$Sa

read data.polymer

velocity all create $t 352839
fix 1 all nvt $t $t 100.0
dump 1 all atom 1000 dump.S$a
run 100000

next t

next a

jump in.polymer

All of the above examples work whether you are running on 1 or multiple processors, but assumed you are
running LAMMPS on a single partition of processors. LAMMPS can be run on multiple partitions via the
"-partition" command-line switch as described in this section of the manual.

In the last 2 examples, if LAMMPS were run on 3 partitions, the same scripts could be used if the "index" and
"loop" variables were replaced with universe-style variables, as described in the variable command. Also, the
"next t" and "next a" commands would need to be replaced with a single "next a t" command. With these
modifications, the 8 simulations of each script would run on the 3 partitions one after the other until all were
finished. Initially, 3 simulations would be started simultaneously, one on each partition. When one finished, that
partition would then start the 4th simulation, and so forth, until all 8 were completed.

62

6.5 Multi-replica simulations

Several commands in LAMMPS run mutli-replica simulations, meaning that multiple instances (replicas) of your
simulation are run simultaneously, with small amounts of data exchanged between replicas periodically.

These are the relevant commands:

¢ neb for nudged elastic band calculations
¢ prd for parallel replica dynamics

¢ tad for temperature accelerated dynamics
¢ temper for parallel tempering

NEB is a method for finding transition states and barrier energies. PRD and TAD are methods for performing
accelerated dynamics to find and perform infrequent events. Parallel tempering or replica exchange runs different
replicas at a series of temperature to facilitate rare-event sampling.

These command can only be used if LAMMPS was built with the "replica” package. See the Making LAMMPS
section for more info on packages.

In all these cases, you must run with one or more processors per replica. The processors assigned to each replica
are determined at run-time by using the -partition command-line switch to launch LAMMPS on multiple
partitions, which in this context are the same as replicas. E.g. these commands:

mpirun -np 16 lmp_linux -partition 8x2 -in in.temper
mpirun -np 8 lmp_linux -partition 8xl -in in.neb

would each run 8 replicas, on either 16 or 8 processors. Note the use of the -in command-line switch to specify the
input script which is required when running in multi-replica mode.

Also note that with MPI installed on a machine (e.g. your desktop), you can run on more (virtual) processors than
you have physical processors. Thus the above commands could be run on a single-processor (or few-processor)
desktop so that you can run a multi-replica simulation on more replicas than you have physical processors.

6.6 Granular models

Granular system are composed of spherical particles with a diameter, as opposed to point particles. This means
they have an angular velocity and torque can be imparted to them to cause them to rotate.

To run a simulation of a granular model, you will want to use the following commands:
e atom_style sphere
¢ fix nve/sphere
o fix gravity
This compute
e compute erotate/sphere

calculates rotational kinetic energy which can be output with thermodynamic info.

Use one of these 3 pair potentials, which compute forces and torques between interacting pairs of particles:

63

® pair_style gran/history
® pair_style gran/no_history
® pair_style gran/hertzian

These commands implement fix options specific to granular systems:
o fix freeze
¢ fix pour
e fix viscous

¢ fix wall/gran

The fix style freeze zeroes both the force and torque of frozen atoms, and should be used for granular system
instead of the fix style setforce.

For computational efficiency, you can eliminate needless pairwise computations between frozen atoms by using
this command:

¢ neigh_modify exclude

6.7 TIP3P water model

The TIP3P water model as implemented in CHARMM (MacKerell) specifies a 3-site rigid water molecule with
charges and Lennard-Jones parameters assigned to each of the 3 atoms. In LAMMPS the fix shake command can
be used to hold the two O-H bonds and the H-O-H angle rigid. A bond style of harmonic and an angle style of
harmonic or charmm should also be used.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a rigid
TIP3P-CHARMM model with a cutoff. The K values can be used if a flexible TIP3P model (without fix shake) is
desired. If the LJ epsilon and sigma for HH and OH are set to 0.0, it corresponds to the original 1983 TIP3P
model (Jorgensen).

O mass = 15.9994
H mass = 1.008

O charge =-0.834
H charge = 0.417

LJ epsilon of OO =0.1521
LJ sigma of OO = 3.1507
LJ epsilon of HH = 0.0460
LJ sigma of HH = 0.4000
LJ epsilon of OH = 0.0836
LJ sigma of OH = 1.7753

K of OH bond =450
10 of OH bond = 0.9572

K of HOH angle = 55
theta of HOH angle = 104.52

64

These are the parameters to use for TIP3P with a long-range Coulombic solver (Ewald or PPPM in LAMMPS),
see (Price) for details:

O mass = 15.9994
H mass = 1.008

O charge =-0.830
H charge =0.415

LJ epsilon of OO =0.102
LJ sigma of OO = 3.188
LJ epsilon, sigma of OH, HH = 0.0

K of OH bond =450
r0 of OH bond = 0.9572

K of HOH angle = 55
theta of HOH angle = 104.52

Wikipedia also has a nice article on water models.

6.8 TIP4P water model

The four-point TIP4P rigid water model extends the traditional three-point TIP3P model by adding an additional
site, usually massless, where the charge associated with the oxygen atom is placed. This site M is located at a
fixed distance away from the oxygen along the bisector of the HOH bond angle. A bond style of harmonic and an
angle style of harmonic or charmm should also be used.

A TIP4P model is run with LAMMPS using two commands:

e pair_style lj/cut/coul/long/tip4p
¢ kspace_style pppm/tip4p

Note that only a TIP4P model with long-range Coulombics is currently implemented. A cutoff version may be
added in the future. for both models, the bond lengths and bond angles should be held fixed using the fix shake
command.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a rigid
TIP4P model with a cutoff (Jorgensen). Note that the OM distance is specified in the pair_style command, not as

part of the pair coefficients.

O mass = 15.9994
H mass = 1.008

O charge =-1.040
H charge = 0.520

r0 of OH bond = 0.9572
theta of HOH angle = 104.52

OM distance = 0.15

65

http://en.wikipedia.org/wiki/Water_model

LJ epsilon of O-O = 0.1550
LJ sigma of O-O =3.1536
LJ epsilon, sigma of OH, HH = 0.0

These are the parameters to use for TIP4P with a long-range Coulombic solver (Ewald or PPPM in LAMMPS):

O mass = 15.9994
H mass = 1.008

O charge =-1.0484
H charge = 0.5242

r0 of OH bond = 0.9572
theta of HOH angle = 104.52

OM distance = 0.1250

LJ epsilon of O-O =0.16275
LJ sigma of O-O = 3.16435
LJ epsilon, sigma of OH, HH = 0.0

Note that the when using the TIP4P pair style, the neighobr list cutoff for Coulomb interactions is effectively
extended by a distance 2 * (OM distance), to account for the offset distance of the fictitious charges on O atoms in
water molecules. Thus it is typically best in an efficiency sense to use a LJ cutoff >= Coulomb cutoff + 2*(OM
distance), to shrink the size of the neighbor list. This leads to slightly larger cost for the long-range calculation, so
you can test the trade-off for your model. The OM distance and the LJ and Coulombic cutoffs are set in the
pair_style lj/cut/coul/long/tip4p command.

Wikipedia also has a nice article on water models.

6.9 SPC water model

The SPC water model specifies a 3-site rigid water molecule with charges and Lennard-Jones parameters assigned
to each of the 3 atoms. In LAMMPS the fix shake command can be used to hold the two O-H bonds and the
H-O-H angle rigid. A bond style of harmonic and an angle style of harmonic or charmm should also be used.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a rigid
SPC model.

O mass = 15.9994
H mass = 1.008

O charge =-0.820
H charge =0.410

LJ epsilon of OO =0.1553
LJ sigma of OO =3.166
LJ epsilon, sigma of OH, HH = 0.0

r0 of OH bond = 1.0
theta of HOH angle = 109.47

66

http://en.wikipedia.org/wiki/Water_model

Note that as originally proposed, the SPC model was run with a 9 Angstrom cutoff for both LJ and Coulommbic
terms. It can also be used with long-range Coulombics (Ewald or PPPM in LAMMPS), without changing any of
the parameters above, though it becomes a different model in that mode of usage.

The SPC/E (extended) water model is the same, except the partial charge assignemnts change:

O charge =-0.8476
H charge = 0.4238

See the (Berendsen) reference for more details on both the SPC and SPC/E models.

Wikipedia also has a nice article on water models.

6.10 Coupling LAMMPS to other codes

LAMMPS is designed to allow it to be coupled to other codes. For example, a quantum mechanics code might
compute forces on a subset of atoms and pass those forces to LAMMPS. Or a continuum finite element (FE)
simulation might use atom positions as boundary conditions on FE nodal points, compute a FE solution, and
return interpolated forces on MD atoms.

LAMMPS can be coupled to other codes in at least 3 ways. Each has advantages and disadvantages, which you'll
have to think about in the context of your application.

(1) Define a new fix command that calls the other code. In this scenario, LAMMPS is the driver code. During its
timestepping, the fix is invoked, and can make library calls to the other code, which has been linked to LAMMPS
as a library. This is the way the POEMS package that performs constrained rigid-body motion on groups of atoms
is hooked to LAMMPS. See the fix_poems command for more details. See this section of the documentation for
info on how to add a new fix to LAMMPS.

(2) Define a new LAMMPS command that calls the other code. This is conceptually similar to method (1), but in
this case LAMMPS and the other code are on a more equal footing. Note that now the other code is not called
during the timestepping of a LAMMPS run, but between runs. The LAMMPS input script can be used to alternate
LAMMPS runs with calls to the other code, invoked via the new command. The run command facilitates this with
its every option, which makes it easy to run a few steps, invoke the command, run a few steps, invoke the
command, etc.

In this scenario, the other code can be called as a library, as in (1), or it could be a stand-alone code, invoked by a
system() call made by the command (assuming your parallel machine allows one or more processors to start up
another program). In the latter case the stand-alone code could communicate with LAMMPS thru files that the
command writes and reads.

See Section_modify of the documentation for how to add a new command to LAMMPS.

(3) Use LAMMPS as a library called by another code. In this case the other code is the driver and calls LAMMPS
as needed. Or a wrapper code could link and call both LAMMPS and another code as libraries. Again, the run
command has options that allow it to be invoked with minimal overhead (no setup or clean-up) if you wish to do

multiple short runs, driven by another program.

Examples of driver codes that call LAMMPS as a library are included in the examples/COUPLE directory of the
LAMMPS distribution; see examples/COUPLE/README for more details:

67

http://en.wikipedia.org/wiki/Water_model
http://www.rpi.edu/~anderk5/lab

¢ simple: simple driver programs in C++ and C which invoke LAMMPS as a library

¢ Jammps_quest: coupling of LAMMPS and Quest, to run classical MD with quantum forces calculated by
a density functional code

¢ lammps_spparks: coupling of LAMMPS and SPPARKS, to couple a kinetic Monte Carlo model for grain
growth using MD to calculate strain induced across grain boundaries

This section of the documentation describes how to build LAMMPS as a library. Once this is done, you can
interface with LAMMPS either via C++, C, Fortran, or Python (or any other language that supports a vanilla
C-like interface). For example, from C++ you could create one (or more) "instances" of LAMMPS, pass it an
input script to process, or execute individual commands, all by invoking the correct class methods in LAMMPS.
From C or Fortran you can make function calls to do the same things. See Section_python of the manual for a
description of the Python wrapper provided with LAMMPS that operates through the LAMMPS library interface.

The files src/library.cpp and library.h contain the C-style interface to LAMMPS. See Section_howto 19 of the
manual for a description of the interface and how to extend it for your needs.

Note that the lammps_open() function that creates an instance of LAMMPS takes an MPI communicator as an
argument. This means that instance of LAMMPS will run on the set of processors in the communicator. Thus the
calling code can run LAMMPS on all or a subset of processors. For example, a wrapper script might decide to
alternate between LAMMPS and another code, allowing them both to run on all the processors. Or it might
allocate half the processors to LAMMPS and half to the other code and run both codes simultaneously before
syncing them up periodically. Or it might instantiate multiple instances of LAMMPS to perform different
calculations.

6.11 Visualizing LAMMPS snapshots

LAMMPS itself does not do visualization, but snapshots from LAMMPS simulations can be visualized (and
analyzed) in a variety of ways.

LAMMPS snapshots are created by the dump command which can create files in several formats. The native
LAMMPS dump format is a text file (see "dump atom" or "dump custom") which can be visualized by the xmovie
program, included with the LAMMPS package. This produces simple, fast 2d projections of 3d systems, and can
be useful for rapid debugging of simulation geometry and atom trajectories.

Several programs included with LAMMPS as auxiliary tools can convert native LAMMPS dump files to other
formats. See the Section_tools doc page for details. The first is the ch2lmp tool, which contains a lammps2pdb
Perl script which converts LAMMPS dump files into PDB files. The second is the Imp2arc tool which converts
LAMMPS dump files into Accelrys' Insight MD program files. The third is the Imp2cfg tool which converts
LAMMPS dump files into CFG files which can be read into the AtomEye visualizer.

A Python-based toolkit distributed by our group can read native LAMMPS dump files, including custom dump
files with additional columns of user-specified atom information, and convert them to various formats or pipe
them into visualization software directly. See the Pizza.py WWW site for details. Specifically, Pizza.py can
convert LAMMPS dump files into PDB, XYZ, Ensight, and VTK formats. Pizza.py can pipe LAMMPS dump
files directly into the Raster3d and RasMol visualization programs. Pizza.py has tools that do interactive 3d
OpenGL visualization and one that creates SVG images of dump file snapshots.

LAMMPS can create XYZ files directly (via "dump xyz") which is a simple text-based file format used by many
visualization programs including VMD.

68

http://dft.sandia.gov/Quest
http://www.sandia.gov/~sjplimp/spparks.html
http://mt.seas.upenn.edu/Archive/Graphics/A
http://www.sandia.gov/~sjplimp/pizza.html
http://www.ensight.com
http://www.ks.uiuc.edu/Research/vmd

LAMMPS can create DCD files directly (via "dump dcd") which can be read by VMD in conjunction with a
CHARMM PSF file. Using this form of output avoids the need to convert LAMMPS snapshots to PDB files. See
the dump command for more information on DCD files.

LAMMPS can create XTC files directly (via "dump xtc") which is GROMACS file format which can also be read
by VMD for visualization. See the dump command for more information on XTC files.

6.12 Triclinic (non-orthogonal) simulation boxes

By default, LAMMPS uses an orthogonal simulation box to encompass the particles. The boundary command sets
the boundary conditions of the box (periodic, non-periodic, etc). The orthogonal box has its "origin" at
(xlo,ylo,zlo) and is defined by 3 edge vectors starting from the origin given by a = (xhi-x10,0,0); b = (0,yhi-ylo,0);
¢ = (0,0,zhi-zlo). The 6 parameters (xlo,xhi,ylo,yhi,zlo,zhi) are defined at the time the simulation box is created,
e.g. by the create_box or read_data or read_restart commands. Additionally, LAMMPS defines box size
parameters Ix,ly,lz where Ix = xhi-xlo, and similarly in the y and z dimensions. The 6 parameters, as well as
Ix,ly,Iz, can be output via the thermo_style custom command.

LAMMPS also allows simulations to be performed in triclinic (non-orthogonal) simulation boxes shaped as a
parallelepiped with triclinic symmetry. The parallelepiped has its "origin" at (xlo,ylo,zlo) and is defined by 3 edge
vectors starting from the origin given by a = (xhi-x10,0,0); b = (xy,yhi-ylo,0); ¢ = (xz,yz,zhi-zlo). xy,xz,yz can be
0.0 or positive or negative values and are called "tilt factors" because they are the amount of displacement applied
to faces of an originally orthogonal box to transform it into the parallelepiped. In LAMMPS the triclinic
simulation box edge vectors a, b, and ¢ cannot be arbitrary vectors. As indicated, a must lie on the positive x axis.
b must lie in the xy plane, with strictly positive y component. ¢ may have any orientation with strictly positive z
component. The requirement that a, b, and ¢ have strictly positive X, y, and z components, respectively, ensures
that a, b, and ¢ form a complete right-handed basis. These restrictions impose no loss of generality, since it is
possible to rotate/invert any set of 3 crystal basis vectors so that they conform to the restrictions.

For example, assume that the 3 vectors A,B,C are the edge vectors of a general parallelepiped, where there is no

restriction on A,B,C other than they form a complete right-handed basis i.e. A x B.. C > 0. The equivalent
LAMMPS a,b,c are a linear rotation of A, B, and C and can be computed as follows:

69

http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd

o
o
U
o
s
|
T
o~

S
I
oy
>
I
oy
2

¢; = |C-(AxB)] = +/C?—c2—¢?

where A = |Al indicates the scalar length of A. The ~ hat symbol indicates the corresponding unit vector. beta and
gamma are angles between the vectors described below. Note that by construction, a, b, and ¢ have strictly
positive X, y, and z components, respectively. If it should happen that A, B, and C form a left-handed basis, then
the above equations are not valid for c. In this case, it is necessary to first apply an inversion. This can be
achieved by interchanging two basis vectors or by changing the sign of one of them.

For consistency, the same rotation/inversion applied to the basis vectors must also be applied to atom positions,
velocities, and any other vector quantities. This can be conveniently achieved by first converting to fractional

coordinates in the old basis and then converting to distance coordinates in the new basis. The transformation is
given by the following equation:

B xC
CxAl]-X
A xB

1
V

X

(a b c)-

where V is the volume of the box, X is the original vector quantity and x is the vector in the LAMMPS basis.

There is no requirement that a triclinic box be periodic in any dimension, though it typically should be in at least
the 2nd dimension of the tilt (y in xy) if you want to enforce a shift in periodic boundary conditions across that

70

boundary. Some commands that work with triclinic boxes, e.g. the fix deform and fix npt commands, require
periodicity or non-shrink-wrap boundary conditions in specific dimensions. See the command doc pages for
details.

The 9 parameters (xlo,xhi,ylo,yhi,zlo,zhi,xy,xz,yz) are defined at the time the simluation box is created. This
happens in one of 3 ways. If the create_box command is used with a region of style prism, then a triclinic box is
setup. See the region command for details. If the read_data command is used to define the simulation box, and the
header of the data file contains a line with the "xy xz yz" keyword, then a triclinic box is setup. See the read_data
command for details. Finally, if the read_restart command reads a restart file which was written from a simulation
using a triclinic box, then a triclinic box will be setup for the restarted simulation.

Note that you can define a triclinic box with all 3 tilt factors = 0.0, so that it is initially orthogonal. This is
necessary if the box will become non-orthogonal, e.g. due to the fix npt or fix deform commands. Alternatively,
you can use the change_box command to convert a simulation box from orthogonal to triclinic and vice versa.

As with orthogonal boxes, LAMMPS defines triclinic box size parameters 1x,ly,1z where 1x = xhi-xlo, and
similarly in the y and z dimensions. The 9 parameters, as well as 1x,ly,1z, can be output via the thermo_style
custom command.

To avoid extremely tilted boxes (which would be computationally inefficient), LAMMPS normally requires that
no tilt factor can skew the box more than half the distance of the parallel box length, which is the 1st dimension in
the tilt factor (x for xz). This is required both when the simulation box is created, e.g. via the create_box or
read_data commands, as well as when the box shape changes dynamically during a simulation, e.g. via the fix
deform or fix npt commands.

For example, if xlo = 2 and xhi = 12, then the x box length is 10 and the xy tilt factor must be between -5 and 5.
Similarly, both xz and yz must be between -(xhi-x10)/2 and +(yhi-ylo)/2. Note that this is not a limitation, since if
the maximum tilt factor is 5 (as in this example), then configurations with tilt = ..., -15, -5, 5, 15, 25, ... are
geometrically all equivalent. If the box tilt exceeds this limit during a dynamics run (e.g. via the fix deform
command), then the box is "flipped" to an equivalent shape with a tilt factor within the bounds, so the run can
continue. See the fix deform doc page for further details.

One exception to this rule is if the 1st dimension in the tilt factor (x for xy) is non-periodic. In that case, the limits
on the tilt factor are not enforced, since flipping the box in that dimension does not change the atom positions due
to non-periodicity. In this mode, if you tilt the system to extreme angles, the simulation will simply become
inefficient, due to the highly skewed simulation box.

The limitation on not creating a simulation box with a tilt factor skewing the box more than half the distance of
the parallel box length can be overridden via the box command. Setting the filt keyword to large allows any tilt
factors to be specified.

Box flips that may occur using the fix deform or fix npt commands can be turned off using the flip no option with
either of the commands.

Note that if a simulation box has a large tilt factor, LAMMPS will run less efficiently, due to the large volume of
communication needed to acquire ghost atoms around a processor's irregular-shaped sub-domain. For extreme
values of tilt, LAMMPS may also lose atoms and generate an error.

Triclinic crystal structures are often defined using three lattice constants a, b, and ¢, and three angles alpha, beta
and gamma. Note that in this nomenclature, the a, b, and c lattice constants are the scalar lengths of the edge
vectors a, b, and ¢ defined above. The relationship between these 6 quantities (a,b,c,alpha,beta,gamma) and the
LAMMPS box sizes (Ix,ly,1z) = (xhi-xlo,yhi-ylo,zhi-zlo) and tilt factors (xy,xz,yz) is as follows:

71

COS (¥
cos 3

COS 7Y

— 1}73 |- K}rz
= 12° + xz* + yZ°
Xy * Xz + 1y * yz

bxc

The inverse relationship can be written as follows:

Ix =

Xy =

(1
bcos~y
ccos 3

2

b* — xy

b * ccos o — Xy * Xz

ly

‘) ¥ ¥
¢ — xz° — yz?

The values of a, b, ¢ , alpha, beta , and gamma can be printed out or accessed by computes using the thermo_style
custom keywords cella, cellb, cellc, cellalpha, cellbeta, cellgamma, respectively.

As discussed on the dump command doc page, when the BOX BOUNDS for a snapshot is written to a dump file

for a triclinic box, an orthogonal bounding box which encloses the triclinic simulation box is output, along with

the 3 tilt factors (xy, xz, yz) of the triclinic box, formatted as follows:

ITEM: BOX BOUNDS xy xz yz
x1lo_bound xhi_bound xy
ylo_bound yhi_bound xz
zlo_bound zhi_bound yz

This bounding box is convenient for many visualization programs and is calculated from the 9 triclinic box

parameters (xlo,xhi,ylo,yhi,zlo,zhi,xy,xz,yz) as follows:

xlo_bound
xhi_bound
ylo_bound

ylo + MIN(0.0,vyz)

xlo + MIN(0.0,xy,xz,Xy+xz)
xhi + MAX (0.0, xy,xz,Xy+xz)

72

yvhi_bound yvhi + MAX(0.0,yz)
zlo_bound zlo
zhi_bound = zhi

These formulas can be inverted if you need to convert the bounding box back into the triclinic box parameters,
e.g. xlo = xlo_bound - MIN(0.0,xy,xz,Xy+Xxz).

One use of triclinic simulation boxes is to model solid-state crystals with triclinic symmetry. The lattice command
can be used with non-orthogonal basis vectors to define a lattice that will tile a triclinic simulation box via the
create_atoms command.

A second use is to run Parinello-Rahman dyanamics via the fix npt command, which will adjust the xy, xz, yz tilt
factors to compensate for off-diagonal components of the pressure tensor. The analalog for an energy
minimization is the fix box/relax command.

A third use is to shear a bulk solid to study the response of the material. The fix deform command can be used for
this purpose. It allows dynamic control of the xy, xz, yz tilt factors as a simulation runs. This is discussed in the
next section on non-equilibrium MD (NEMD) simulations.

6.13 NEMD simulations

Non-equilibrium molecular dynamics or NEMD simulations are typically used to measure a fluid's rheological
properties such as viscosity. In LAMMPS, such simulations can be performed by first setting up a non-orthogonal
simulation box (see the preceding Howto section).

A shear strain can be applied to the simulation box at a desired strain rate by using the fix deform command. The
fix nvt/sllod command can be used to thermostat the sheared fluid and integrate the SLLOD equations of motion
for the system. Fix nvt/sllod uses compute temp/deform to compute a thermal temperature by subtracting out the
streaming velocity of the shearing atoms. The velocity profile or other properties of the fluid can be monitored via
the fix ave/spatial command.

As discussed in the previous section on non-orthogonal simulation boxes, the amount of tilt or skew that can be
applied is limited by LAMMPS for computational efficiency to be 1/2 of the parallel box length. However, fix
deform can continuously strain a box by an arbitrary amount. As discussed in the fix deform command, when the
tilt value reaches a limit, the box is flipped to the opposite limit which is an equivalent tiling of periodic space.
The strain rate can then continue to change as before. In a long NEMD simulation these box re-shaping events
may occur many times.

In a NEMD simulation, the "remap" option of fix deform should be set to "remap v", since that is what fix
nvt/sllod assumes to generate a velocity profile consistent with the applied shear strain rate.

An alternative method for calculating viscosities is provided via the fix viscosity command.

6.14 Extended spherical and aspherical particles

Typical MD models treat atoms or particles as point masses. Sometimes, however, it is desirable to have a model
with finite-size particles such as spheres or aspherical ellipsoids. The difference is that such particles have a
moment of inertia, rotational energy, and angular momentum. Rotation is induced by torque from interactions
with other particles.

73

LAMMPS has several options for running simulations with these kinds of particles. The following aspects are
discussed in turn:

¢ atom styles

® pair potentials

® time integration

¢ computes, thermodynamics, and dump output
¢ rigid bodies composed of extended particles

Atom styles

There are 2 atom styles that allow for definition of finite-size particles: sphere and ellipsoid. The peri atom style
also treats particles as having a volume, but that is internal to the pair_style peri potentials. The dipole atom style
is most often used in conjunction with finite-size particles.

The sphere style defines particles that are spheriods and each particle can have a unique diameter and mass (or
density). These particles store an angular velocity (omega) and can be acted upon by torque. The "set" command
can be used to modify the diameter and mass of individual particles, after then are created.

The ellipsoid style defines particles that are ellipsoids and thus can be aspherical. Each particle has a shape,
specified by 3 diameters, and mass (or density). These particles store an angular momentum and their orientation
(quaternion), and can be acted upon by torque. They do not store an angular velocity (omega), which can be in a
different direction than angular momentum, rather they compute it as needed. The "set" command can be used to
modify the diameter, orientation, and mass of individual particles, after then are created. It also has a brief
explanation of what quaternions are.

The dipole style does not define extended particles, but is often used in conjunction with spherical particles, via a
command like

atom_style hybrid sphere dipole

This is because when dipoles interact with each other, they induce torques, and a particle must be extended (i.e.
have a moment of inertia) in order to respond and rotate. See the atom_style dipole command for details. The
"set" command can be used to modify the orientation and length of the dipole moment of individual particles,
after then are created.

Note that if one of these atom styles is used (or multiple styles via the atom_style hybrid command), not all
particles in the system are required to be finite-size or aspherical. For example, if the 3 shape parameters are set to
the same value, the particle will be a sphere rather than an ellipsoid. If the 3 shape parameters are all set to 0.0 or
if the diameter is set to 0.0, it will be a point particle. If the length of the dipole moment is set to zero, the particle
will not have a point dipole associated with it. The pair styles used to compute pairwise interactions will typically
compute the correct interaction in these simplified (cheaper) cases. Pair_style hybrid can be used to insure the
correct interactions are computed for the appropriate style of interactions. Likewise, using groups to partition
particles (ellipsoids versus spheres versus point particles) will allow you to use the appropriate time integrators
and temperature computations for each class of particles. See the doc pages for various commands for details.

Also note that for 2d simulations, finite-size spheres and ellipsoids are still treated as 3d particles, rather than as

circular disks or ellipses. This means they have the same moment of inertia for a 3d extended object. When their
temperature is coomputed, the correct degrees of freedom are used for rotation in a 2d versus 3d system.

74

Pair potentials

When a system with extended particles is defined, the particles will only rotate and experience torque if the force
field computes such interactions. These are the various pair styles that generate torque:

¢ pair_style gran/history

¢ pair_style gran/hertzian

® pair_style gran/no_history
¢ pair_style dipole/cut

® pair_style gayberne

® pair_style resquared

¢ pair_style lubricate

The granular pair styles are used with spherical particles. The dipole pair style is used with atom_style dipole,
which could be applied to spherical or ellipsoidal particles. The GayBerne and REsquared potentials require
ellipsoidal particles, though they will also work if the 3 shape parameters are the same (a sphere). The lubrication
potential works with spherical particles.

Time integration

There are 3 fixes that perform time integration on extended spherical particles, meaning the integrators update the
rotational orientation and angular velocity or angular momentum of the particles:

¢ fix nve/sphere
¢ fix nvt/sphere
¢ fix npt/sphere

Likewise, there are 3 fixes that perform time integration on ellipsoids as extended aspherical particles:

¢ fix nve/asphere
¢ fix nvt/asphere
¢ fix npt/asphere

The advantage of these fixes is that those which thermostat the particles include the rotational degrees of freedom
in the temperature calculation and thermostatting. Other thermostats can be used with fix nve/sphere or fix
nve/asphere, such as fix langevin or fix temp/berendsen, but those thermostats only operate on the translational
kinetic energy of the extended particles.

Note that for mixtures of point and extended particles, you should only use these integration fixes on groups
which contain extended particles.

Computes, thermodynamics, and dump output

There are 4 computes that calculate the temperature or rotational energy of extended spherical or aspherical
particles (ellipsoids):

¢ compute temp/sphere

¢ compute temp/asphere

¢ compute erotate/sphere
¢ compute erotate/asphere

These include rotational degrees of freedom in their computation. If you wish the thermodynamic output of
temperature or pressure to use one of these computes (e.g. for a system entirely composed of extended particles),

75

then the compute can be defined and the thermo_modify command used. Note that by default thermodynamic
quantities will be calculated with a temperature that only includes translational degrees of freedom. See the
thermo_style command for details.

The dump custom command can output various attributes of extended particles, including the dipole moment
(mu), the angular velocity (omega), the angular momentum (angmom), the quaternion (quat), and the torque (tq)
on the particle.

Rigid bodies composed of extended particles

The fix rigid command treats a collection of particles as a rigid body, computes its inertia tensor, sums the total
force and torque on the rigid body each timestep due to forces on its constituent particles, and integrates the
motion of the rigid body.

If any of the constituent particles of a rigid body are extended particles (spheres or ellipsoids), then their
contribution to the inertia tensor of the body is different than if they were point particles. This means the
rotational dynamics of the rigid body will be different. Thus a model of a dimer is different if the dimer consists
of two point masses versus two extended sphereoids, even if the two particles have the same mass. Extended
particles that experience torque due to their interaction with other particles will also impart that torque to a rigid
body they are part of.

See the "fix rigid" command for example of complex rigid-body models it is possible to define in LAMMPS.

Note that the fix shake command can also be used to treat 2, 3, or 4 particles as a rigid body, but it always
assumes the particles are point masses.

6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
There are four basic kinds of LAMMPS output:

¢ Thermodynamic output, which is a list of quantities printed every few timesteps to the screen and logfile.

¢ Dump files, which contain snapshots of atoms and various per-atom values and are written at a specified
frequency.

¢ Certain fixes can output user-specified quantities to files: fix ave/time for time averaging, fix ave/spatial
for spatial averaging, and fix print for single-line output of variables. Fix print can also output to the
screen.

® Restart files.

A simulation prints one set of thermodynamic output and (optionally) restart files. It can generate any number of
dump files and fix output files, depending on what dump and fix commands you specify.

As discussed below, LAMMPS gives you a variety of ways to determine what quantities are computed and
printed when the thermodynamics, dump, or fix commands listed above perform output. Throughout this
discussion, note that users can also add their own computes and fixes to LAMMPS which can then generate
values that can then be output with these commands.

The following sub-sections discuss different LAMMPS command related to output and the kind of data they
operate on and produce:

¢ Global/per-atom/local data
e Scalar/vector/array data

76

¢ Thermodynamic output

¢ Dump file output

¢ Fixes that write output files

¢ Computes that process output quantities

¢ Fixes that process output quantities

¢ Computes that generate values to output

¢ Fixes that generate values to output

¢ Variables that generate values to output

¢ Summary table of output options and data flow between commands

Global/per-atom/local data

Various output-related commands work with three different styles of data: global, per-atom, or local. A global
datum is one or more system-wide values, e.g. the temperature of the system. A per-atom datum is one or more
values per atom, e.g. the kinetic energy of each atom. Local datums are calculated by each processor based on the
atoms it owns, but there may be zero or more per atom, e.g. a list of bond distances.

Scalar/vector/array data

Global, per-atom, and local datums can each come in three kinds: a single scalar value, a vector of values, or a 2d
array of values. The doc page for a "compute" or "fix" or "variable" that generates data will specify both the style
and kind of data it produces, e.g. a per-atom vector.

When a quantity is accessed, as in many of the output commands discussed below, it can be referenced via the
following bracket notation, where ID in this case is the ID of a compute. The leading "c_" would be replaced by
"f " for a fix, or "v_" for a variable:

c_ID entire scalar, vector, or array

c_ID[I] |one element of vector, one column of array

c_ID[I][J] |one element of array

In other words, using one bracket reduces the dimension of the data once (vector -> scalar, array -> vector). Using
two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar values as input can
typically also process elements of a vector or array.

Thermodynamic output

The frequency and format of thermodynamic output is set by the thermo, thermo_style, and thermo_modify
commands. The thermo_style command also specifies what values are calculated and written out. Pre-defined
keywords can be specified (e.g. press, etotal, etc). Three additional kinds of keywords can also be specified (c_ID,
f_ID, v_name), where a compute or fix or variable provides the value to be output. In each case, the compute, fix,
or variable must generate global values for input to the thermo_style custom command.

Dump file output

Dump file output is specified by the dump and dump_modify commands. There are several pre-defined formats
(dump atom, dump xtc, etc).

There is also a dump custom format where the user specifies what values are output with each atom. Pre-defined
atom attributes can be specified (id, x, fx, etc). Three additional kinds of keywords can also be specified (c_ID,
f_ID, v_name), where a compute or fix or variable provides the values to be output. In each case, the compute,
fix, or variable must generate per-atom values for input to the dump custom command.

77

There is also a dump local format where the user specifies what local values to output. A pre-defined index
keyword can be specified to enumuerate the local values. Two additional kinds of keywords can also be specified
(c_ID, f_ID), where a compute or fix or variable provides the values to be output. In each case, the compute or fix
must generate local values for input to the dump local command.

Fixes that write output files

Sevarl fixes take various quantities as input and can write output files: fix ave/time, fix ave/spatial, fix ave/histo,
fix ave/correlate, and fix print.

The fix ave/time command enables direct output to a file and/or time-averaging of global scalars or vectors. The
user specifies one or more quantities as input. These can be global compute values, global fix values, or variables
of any style except the atom style which produces per-atom values. Since a variable can refer to keywords used by
the thermo_style custom command (like temp or press) and individual per-atom values, a wide variety of
quantities can be time averaged and/or output in this way. If the inputs are one or more scalar values, then the fix
generate a global scalar or vector of output. If the inputs are one or more vector values, then the fix generates a
global vector or array of output. The time-averaged output of this fix can also be used as input to other output
commands.

The fix ave/spatial command enables direct output to a file of spatial-averaged per-atom quantities like those
output in dump files, within 1d layers of the simulation box. The per-atom quantities can be atom density (mass or
number) or atom attributes such as position, velocity, force. They can also be per-atom quantities calculated by a
compute, by a fix, or by an atom-style variable. The spatial-averaged output of this fix can also be used as input to
other output commands.

The fix ave/histo command enables direct output to a file of histogrammed quantities, which can be global or
per-atom or local quantities. The histogram output of this fix can also be used as input to other output commands.

The fix ave/correlate command enables direct output to a file of time-correlated quantities, which can be global
scalars. The correlation matrix output of this fix can also be used as input to other output commands.

The fix print command can generate a line of output written to the screen and log file or to a separate file,
periodically during a running simulation. The line can contain one or more variable values for any style variable
except the atom style). As explained above, variables themselves can contain references to global values
generated by thermodynamic keywords, computes, fixes, or other variables, or to per-atom values for a specific
atom. Thus the fix print command is a means to output a wide variety of quantities separate from normal
thermodynamic or dump file output.

Computes that process output quantities

The compute reduce and compute reduce/region commands take one or more per-atom or local vector quantities
as inputs and "reduce" them (sum, min, max, ave) to scalar quantities. These are produced as output values which
can be used as input to other output commands.

The compute slice command take one or more global vector or array quantities as inputs and extracts a subset of
their values to create a new vector or array. These are produced as output values which can be used as input to
other output commands.

The compute property/atom command takes a list of one or more pre-defined atom attributes (id, x, fx, etc) and

stores the values in a per-atom vector or array. These are produced as output values which can be used as input to
other output commands. The list of atom attributes is the same as for the dump custom command.

78

The compute property/local command takes a list of one or more pre-defined local attributes (bond info, angle
info, etc) and stores the values in a local vector or array. These are produced as output values which can be used
as input to other output commands.

The compute atom/molecule command takes a list of one or more per-atom quantities (from a compute, fix,
per-atom variable) and sums the quantities on a per-molecule basis. It produces a global vector or array as output
values which can be used as input to other output commands.

Fixes that process output quantities

The fix ave/atom command performs time-averaging of per-atom vectors. The per-atom quantities can be atom
attributes such as position, velocity, force. They can also be per-atom quantities calculated by a compute, by a fix,
or by an atom-style variable. The time-averaged per-atom output of this fix can be used as input to other output
commands.

The fix store/state command can archive one or more per-atom attributes at a particular time, so that the old
values can be used in a future calculation or output. The list of atom attributes is the same as for the dump custom
command, including per-atom quantities calculated by a compute, by a fix, or by an atom-style variable. The
output of this fix can be used as input to other output commands.

Computes that generate values to output

Every compute in LAMMPS produces either global or per-atom or local values. The values can be scalars or
vectors or arrays of data. These values can be output using the other commands described in this section. The doc
page for each compute command describes what it produces. Computes that produce per-atom or local values
have the word "atom" or "local" in their style name. Computes without the word "atom" or "local" produce global
values.

Fixes that generate values to output

Some fixes in LAMMPS produces either global or per-atom or local values which can be accessed by other
commands. The values can be scalars or vectors or arrays of data. These values can be output using the other
commands described in this section. The doc page for each fix command tells whether it produces any output
quantities and describes them.

Variables that generate values to output

Every variables defined in an input script generates either a global scalar value or a per-atom vector (only
atom-style variables) when it is accessed. The formulas used to define equal- and atom-style variables can contain
references to the thermodynamic keywords and to global and per-atom data generated by computes, fixes, and
other variables. The values generated by variables can be output using the other commands described in this
section.

Summary table of output options and data flow between commands

This table summarizes the various commands that can be used for generating output from LAMMPS. Each
command produces output data of some kind and/or writes data to a file. Most of the commands can take data
from other commands as input. Thus you can link many of these commands together in pipeline form, where data
produced by one command is used as input to another command and eventually written to the screen or to a file.
Note that to hook two commands together the output and input data types must match, e.g. global/per-atom/local
data and scalar/vector/array data.

79

Also note that, as described above, when a command takes a scalar as input, that could be an element of a vector
or array. Likewise a vector input could be a column of an array.

Command

Input

Output

thermo_style custom

global scalars

screen, log file

dump custom per-atom vectors dump file

dump local local vectors dump file

fix print global scalar from variable screen, file

print global scalar from variable screen

computes N/A global/per-atom/local scalar/vector/array
fixes N/A global/per-atom/local scalar/vector/array
variables global scalars, per-atom vectors global scalar, per-atom vector

compute reduce

per-atom/local vectors

global scalar/vector

compute slice

global vectors/arrays

global vector/array

compute property/atom

per-atom vectors

per-atom vector/array

compute property/local

local vectors

local vector/array

compute atom/molecule

per-atom vectors

global vector/array

fix ave/atom

per-atom vectors

per-atom vector/array

fix ave/time

global scalars/vectors

global scalar/vector/array, file

fix ave/spatial per-atom vectors global array, file

fix ave/histo global/per-atom/local scalars and vectors |global array, file

fix ave/correlate global scalars global array, file

fix store/state per-atom vectors per-atom vector/array

6.16 Thermostatting, barostatting, and computing temperature

Thermostatting means controlling the temperature of particles in an MD simulation. Barostatting means
controlling the pressure. Since the pressure includes a kinetic component due to particle velocities, both these
operations require calculation of the temperature. Typically a target temperature (T) and/or pressure (P) is
specified by the user, and the thermostat or barostat attempts to equilibrate the system to the requested T and/or P.

Temperature is computed as kinetic energy divided by some number of degrees of freedom (and the Boltzmann
constant). Since kinetic energy is a function of particle velocity, there is often a need to distinguish between a
particle's advection velocity (due to some aggregate motiion of particles) and its thermal velocity. The sum of the
two is the particle's total velocity, but the latter is often what is wanted to compute a temperature.

LAMMPS has several options for computing temperatures, any of which can be used in thermostatting and
barostatting. These compute commands calculate temperature, and the compute pressure command calculates
pressure.

® compute temp

e compute temp/sphere
® compute temp/asphere
e compute temp/com

e compute temp/deform
e compute temp/partial
e compute temp/profile

80

e compute temp/ramp
¢ compute temp/region

All but the first 3 calculate velocity biases (i.e. advection velocities) that are removed when computing the
thermal temperature. Compute temp/sphere and compute temp/asphere compute kinetic energy for extended
particles that includes rotational degrees of freedom. They both allow, as an extra argument, which is another
temperature compute that subtracts a velocity bias. This allows the translational velocity of extended spherical or
aspherical particles to be adjusted in prescribed ways.

Thermostatting in LAMMPS is performed by fixes, or in one case by a pair style. Four thermostatting fixes are
currently available: Nose-Hoover (nvt), Berendsen, Langevin, and direct rescaling (temp/rescale). Dissipative
particle dynamics (DPD) thermostatting can be invoked via the dpd/tstat pair style:

o fix nvt

¢ fix nvt/sphere

¢ fix nvt/asphere

¢ fix nvt/sllod

¢ fix temp/berendsen
¢ fix langevin

¢ fix temp/rescale

¢ pair_style dpd/tstat

Fix nvt only thermostats the translational velocity of particles. Fix nvt/sllod also does this, except that it subtracts
out a velocity bias due to a deforming box and integrates the SLLOD equations of motion. See the NEMD
simulations section of this page for further details. Fix nvt/sphere and fix nvt/asphere thermostat not only
translation velocities but also rotational velocities for spherical and aspherical particles.

DPD thermostatting alters pairwise interactions in a manner analagous to the per-particle thermostatting of fix
langevin.

Any of the thermostatting fixes can use temperature computes that remove bias for two purposes: (a) computing
the current temperature to compare to the requested target temperature, and (b) adjusting only the thermal
temperature component of the particle's velocities. See the doc pages for the individual fixes and for the
fix_modify command for instructions on how to assign a temperature compute to a thermostatting fix. For
example, you can apply a thermostat to only the x and z components of velocity by using it in conjunction with
compute temp/partial.

IMPORTANT NOTE: Only the nvt fixes perform time integration, meaning they update the velocities and
positions of particles due to forces and velocities respectively. The other thermostat fixes only adjust velocities;
they do NOT perform time integration updates. Thus they should be used in conjunction with a constant NVE
integration fix such as these:

¢ fix nve
¢ fix nve/sphere
¢ fix nve/asphere

Barostatting in LAMMPS is also performed by fixes. Two barosttating methods are currently available:
Nose-Hoover (npt and nph) and Berendsen:

¢ fix npt

¢ fix npt/sphere
¢ fix npt/asphere

81

¢ fix nph
¢ fix press/berendsen

The fix npt commands include a Nose-Hoover thermostat and barostat. Fix nph is just a Nose/Hoover barostat; it
does no thermostatting. Both fix nph and fix press/bernendsen can be used in conjunction with any of the
thermostatting fixes.

As with the thermostats, fix npt and fix nph only use translational motion of the particles in computing T and P
and performing thermo/barostatting. Fix npt/sphere and fix npt/asphere thermo/barostat using not only translation
velocities but also rotational velocities for spherical and aspherical particles.

All of the barostatting fixes use the compute pressure compute to calculate a current pressure. By default, this
compute is created with a simple compute temp (see the last argument of the compute pressure command), which
is used to calculated the kinetic componenet of the pressure. The barostatting fixes can also use temperature
computes that remove bias for the purpose of computing the kinetic componenet which contributes to the current
pressure. See the doc pages for the individual fixes and for the fix_modify command for instructions on how to
assign a temperature or pressure compute to a barostatting fix.

IMPORTANT NOTE: As with the thermostats, the Nose/Hoover methods (fix npt and fix nph) perform time
integration. Fix press/berendsen does NOT, so it should be used with one of the constant NVE fixes or with one
of the NVT fixes.

Finally, thermodynamic output, which can be setup via the thermo_style command, often includes temperature
and pressure values. As explained on the doc page for the thermo_style command, the default T and P are setup
by the thermo command itself. They are NOT the ones associated with any thermostatting or barostatting fix you
have defined or with any compute that calculates a temperature or pressure. Thus if you want to view these values
of T and P, you need to specify them explicitly via a thermo_style custom command. Or you can use the
thermo_modify command to re-define what temperature or pressure compute is used for default thermodynamic
output.

6.17 Walls
Walls in an MD simulation are typically used to bound particle motion, i.e. to serve as a boundary condition.

Walls in LAMMPS can be of rough (made of particles) or idealized surfaces. Ideal walls can be smooth,
generating forces only in the normal direction, or frictional, generating forces also in the tangential direction.

Rough walls, built of particles, can be created in various ways. The particles themselves can be generated like any
other particle, via the lattice and create_atoms commands, or read in via the read_data command.

Their motion can be constrained by many different commands, so that they do not move at all, move together as a
group at constant velocity or in response to a net force acting on them, move in a prescribed fashion (e.g. rotate
around a point), etc. Note that if a time integration fix like fix nve or fix nvt is not used with the group that
contains wall particles, their positions and velocities will not be updated.

¢ fix aveforce - set force on particles to average value, so they move together

¢ fix setforce - set force on particles to a value, e.g. 0.0

¢ fix freeze - freeze particles for use as granular walls

¢ fix nve/noforce - advect particles by their velocity, but without force

¢ fix move - prescribe motion of particles by a linear velocity, oscillation, rotation, variable

82

The fix move command offers the most generality, since the motion of individual particles can be specified with
variable formula which depends on time and/or the particle position.

For rough walls, it may be useful to turn off pairwise interactions between wall particles via the neigh_modify
exclude command.

Rough walls can also be created by specifying frozen particles that do not move and do not interact with mobile
particles, and then tethering other particles to the fixed particles, via a bond. The bonded particles do interact with
other mobile particles.

Idealized walls can be specified via several fix commands. Fix wall/gran creates frictional walls for use with
granular particles; all the other commands create smooth walls.

o fix wall/reflect - reflective flat walls

o fix wall/lj93 - flat walls, with Lennard-Jones 9/3 potential

o fix wall/lj126 - flat walls, with Lennard-Jones 12/6 potential

¢ fix wall/colloid - flat walls, with pair_style colloid potential

¢ fix wall/harmonic - flat walls, with repulsive harmonic spring potential
¢ fix wall/region - use region surface as wall

¢ fix wall/gran - flat or curved walls with pair_style granular potential

The [j93, [j126, colloid, and harmonic styles all allow the flat walls to move with a constant velocity, or oscillate
in time. The fix wall/region command offers the most generality, since the region surface is treated as a wall, and
the geometry of the region can be a simple primitive volume (e.g. a sphere, or cube, or plane), or a complex
volume made from the union and intersection of primitive volumes. Regions can also specify a volume "interior"
or "exterior" to the specified primitive shape or union or intersection. Regions can also be "dynamic" meaning
they move with constant velocity, oscillate, or rotate.

The only frictional idealized walls currently in LAMMPS are flat or curved surfaces specified by the fix wall/gran
command. At some point we plan to allow regoin surfaces to be used as frictional walls, as well as triangulated
surfaces.

6.18 Elastic constants

Elastic constants characterize the stiffness of a material. The formal definition is provided by the linear relation
that holds between the stress and strain tensors in the limit of infinitesimal deformation. In tensor notation, this is
expressed as s_ij = C_ijkl * e_kl, where the repeated indices imply summation. s_ij are the elements of the
symmetric stress tensor. e_kl are the elements of the symmetric strain tensor. C_ijkl are the elements of the fourth
rank tensor of elastic constants. In three dimensions, this tensor has 374=81 elements. Using Voigt notation, the
tensor can be written as a 6x6 matrix, where C_ij is now the derivative of s_i w.r.t. e_j. Because s_i is itself a
derivative w.r.t. e_i, it follows that C_ij is also symmetric, with at most 7*6/2 = 21 distinct elements.

At zero temperature, it is easy to estimate these derivatives by deforming the simulation box in one of the six
directions using the change_box command and measuring the change in the stress tensor. A general-purpose
script that does this is given in the examples/elastic directory described in this section.

Calculating elastic constants at finite temperature is more challenging, because it is necessary to run a simulation
that perfoms time averages of differential properties. One way to do this is to measure the change in average

stress tensor in an NVT simulations when the cell volume undergoes a finite deformation. In order to balance the
systematic and statistical errors in this method, the magnitude of the deformation must be chosen judiciously, and
care must be taken to fully equilibrate the deformed cell before sampling the stress tensor. Another approach is to

83

sample the triclinic cell fluctuations that occur in an NPT simulation. This method can also be slow to converge
and requires careful post-processing (Shinoda)

6.19 Library interface to LAMMPS

As described in Section_start 4, LAMMPS can be built as a library, so that it can be called by another code, used
in a coupled manner with other codes, or driven through a Python interface.

All of these methodologies use a C-style interface to LAMMPS that is provided in the files src/library.cpp and
src/library.h. The functions therein have a C-style argument list, but contain C++ code you could write yourself in
a C++ application that was invoking LAMMPS directly. The C++ code in the functions illustrates how to invoke
internal LAMMPS operations. Note that LAMMPS classes are defined within a LAMMPS namespace
(LAMMPS_NYS) if you use them from another C++ application.

Library.cpp contains these 4 functions:

void lammps_open (int, char **, MPI_Comm, void **);
void lammps_close (void *);

void lammps_file(void *, char *);

char *lammps_command (void *, char *);

The lammps_open() function is used to initialize LAMMPS, passing in a list of strings as if they were
command-line arguments when LAMMPS is run in stand-alone mode from the command line, and a MPI
communicator for LAMMPS to run under. It returns a ptr to the LAMMPS object that is created, and which is
used in subsequent library calls. The lammps_open() function can be called multiple times, to create multiple
instances of LAMMPS.

LAMMPS will run on the set of processors in the communicator. This means the calling code can run LAMMPS
on all or a subset of processors. For example, a wrapper script might decide to alternate between LAMMPS and
another code, allowing them both to run on all the processors. Or it might allocate half the processors to
LAMMPS and half to the other code and run both codes simultaneously before syncing them up periodically. Or
it might instantiate multiple instances of LAMMPS to perform different calculations.

The lammps_close() function is used to shut down an instance of LAMMPS and free all its memory.

The lammps_file() and lammps_command() functions are used to pass a file or string to LAMMPS as if it were an
input script or single command in an input script. Thus the calling code can read or generate a series of LAMMPS
commands one line at a time and pass it thru the library interface to setup a problem and then run it, interleaving
the lammps_command() calls with other calls to extract information from LAMMPS, perform its own operations,
or call another code's library.

Other useful functions are also included in library.cpp. For example:

void *lammps_extract_global (void *, char ¥*)

void *lammps_extract_atom(void *, char ¥*)

void *lammps_extract_compute (void *, char *, int, int)

void *lammps_extract_fix(void *, char *, int, int, int, int)
void *lammps_extract_variable(void *, char *, char *)

int lammps_get_natoms (void *)

void lammps_get_coords (void *, double *)

void lammps_put_coords (void *, double *)

These can extract various global or per-atom quantities from LAMMPS as well as values calculated by a

84

compute, fix, or variable. The "get" and "put" operations can retrieve and reset atom coordinates. See the
library.cpp file and its associated header file library.h for details.

The key idea of the library interface is that you can write any functions you wish to define how your code talks to
LAMMPS and add them to src/library.cpp and src/library.h, as well as to the Python interface. The routines you
add can access or change any LAMMPS data you wish. The examples/COUPLE and python directories have
example C++ and C and Python codes which show how a driver code can link to LAMMPS as a library, run
LAMMPS on a subset of processors, grab data from LAMMPS, change it, and put it back into LAMMPS.

6.20 Calculating thermal conductivity

The thermal conductivity kappa of a material can be measured in at least 3 ways using various options in
LAMMPS. (See this section of the manual for an analogous discussion for viscosity). The thermal conducitivity
tensor kappa is a measure of the propensity of a material to transmit heat energy in a diffusive manner as given by
Fourier's law

J = -kappa grad(T)

where J is the heat flux in units of energy per area per time and grad(T) is the spatial gradient of temperature. The
thermal conductivity thus has units of energy per distance per time per degree K and is often approximated as an
isotropic quantity, i.e. as a scalar.

The first method is to setup two thermostatted regions at opposite ends of a simulation box, or one in the middle
and one at the end of a periodic box. By holding the two regions at different temperatures with a thermostatting
fix, the energy added to the hot region should equal the energy subtracted from the cold region and be
proportional to the heat flux moving between the regions. See the paper by Ikeshoji and Hafskjold for details of
this idea. Note that thermostatting fixes such as fix nvt, fix langevin, and fix temp/rescale store the cumulative
energy they add/subtract. Alternatively, the fix heat command can used in place of thermostats on each of two
regions, and the resulting temperatures of the two regions monitored with the "compute temp/region" command or
the temperature profile of the intermediate region monitored with the fix ave/spatial and compute ke/atom
commands.

The second method is to perform a reverse non-equilibrium MD simulation using the fix thermal/conductivity
command which implements the INEMD algorithm of Muller-Plathe. Kinetic energy is swapped between atoms
in two different layers of the simulation box. This induces a temperature gradient between the two layers which
can be monitored with the fix ave/spatial and compute ke/atom commands. The fix tallies the cumulative energy
transfer that it performs. See the fix thermal/conductivity command for details.

The third method is based on the Green-Kubo (GK) formula which relates the ensemble average of the
auto-correlation of the heat flux to kappa. The heat flux can be calculated from the fluctuations of per-atom
potential and kinetic energies and per-atom stress tensor in a steady-state equilibrated simulation. This is in
contrast to the two preceding non-equilibrium methods, where energy flows continuously between hot and cold
regions of the simulation box.

The compute heat/flux command can calculate the needed heat flux and describes how to implement the
Green_Kubo formalism using additional LAMMPS commands, such as the fix ave/correlate command to
calculate the needed auto-correlation. See the doc page for the compute heat/flux command for an example input
script that calculates the thermal conductivity of solid Ar via the GK formalism.

85

6.21 Calculating viscosity

The shear viscosity eta of a fluid can be measured in at least 3 ways using various options in LAMMPS. (See this
section of the manual for an analogous discussion for thermal conductivity). Eta is a measure of the propensity of
a fluid to transmit momentum in a direction perpendicular to the direction of velocity or momentum flow.
Alternatively it is the resistance the fluid has to being sheared. It is given by

J = -eta grad(Vstream)

where J is the momentum flux in units of momentum per area per time. and grad(Vstream) is the spatial gradient
of the velocity of the fluid moving in another direction, normal to the area through which the momentum flows.
Viscosity thus has units of pressure-time.

The first method is to perform a non-equlibrium MD (NEMD) simulation by shearing the simulation box via the
fix deform command, and using the fix nvt/sllod command to thermostat the fluid via the SLLOD equations of
motion. The velocity profile setup in the fluid by this procedure can be monitored by the fix ave/spatial command,
which determines grad(Vstream) in the equation above. E.g. the derivative in the y-direction of the Vx component
of fluid motion or grad(Vstream) = dVx/dy. In this case, the Pxy off-diagonal component of the pressure or stress
tensor, as calculated by the compute pressure command, can also be monitored, which is the J term in the
equation above. See this section of the manual for details on NEMD simulations.

The second method is to perform a reverse non-equilibrium MD simulation using the fix viscosity command
which implements the INEMD algorithm of Muller-Plathe. Momentum in one dimension is swapped between
atoms in two different layers of the simulation box in a different dimension. This induces a velocity gradient
which can be monitored with the fix ave/spatial command. The fix tallies the cuammulative momentum transfer
that it performs. See the fix viscosity command for details.

The third method is based on the Green-Kubo (GK) formula which relates the ensemble average of the
auto-correlation of the stress/pressure tensor to eta. This can be done in a steady-state equilibrated simulation
which is in contrast to the two preceding non-equilibrium methods, where momentum flows continuously through
the simulation box.

Here is an example input script that calculates the viscosity of liquid Ar via the GK formalism:

Sample LAMMPS input script for viscosity of liquid Ar

units real

variable T equal 86.4956

variable V equal vol

variable dt equal 4.0

variable p equal 400 # correlation length
variable s equal 5 # sample interval
variable d equal $p*$s # dump interval

convert from LAMMPS real units to SI

variable kB equal 1.3806504e-23 # [J/K/ Boltzmann

variable atm2Pa equal 101325.0

variable A2m equal 1.0e-10

variable fs2s equal 1.0e-15

variable convert equal ${atm2Pa}*${atm2Pa}*S${fs2s}*${A2m}*S${A2m}*${A2m}

setup problem

dimension 3
boundary pPpPpP

86

lattice fcc 5.376 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1

region box block 0 4 0 4 0 4
create_box 1 box

create_atoms 1 box

mass 1 39.948

pair_style 1j/cut 13.0
pair_coeff * * (0.2381 3.405
timestep S{dt}

thermo $d

equilibration and thermalization

velocity all create $T 102486 mom yes rot yes dist gaussian
fix NVT all nvt temp $T $T 10 drag 0.2
run 8000

viscosity calculation, switch to NVE if desired

#unfix NVT
#fix NVE all nve

reset_timestep 0

variable pxy equal pxy
variable pxz equal pxz
variable pyz equal pyz
fix SS all ave/correlate $s $p $d &

V_pxy V_pxz v_pyz type auto file SO0St.dat ave running
variable scale equal S${convert}/ (${kB}*S$T)*SV*S$s*s{dt}
variable vll equal trap(f_SS[3/)*${scale}
variable v22 equal trap(f_SS[4/)*${scale}
variable v33 equal trap(f_SS[5/)*${scale}

thermo_style custom step temp press v_pxy Vv_pxz v_pyz v_vll v_v22 v_v33
run 100000

variable v equal (v_vll+v_v22+v_v33)/3.0
variable ndens equal count (all)/vol
print "average viscosity: $v [Pa.s/ @ ST K, ${ndens} /A"3"

(Berendsen) Berendsen, Grigera, Straatsma, J Phys Chem, 91, 6269-6271 (1987).

(Cornell) Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman, JACS 117,
5179-5197 (1995).

(Horn) Horn, Swope, Pitera, Madura, Dick, Hura, and Head-Gordon, J] Chem Phys, 120, 9665 (2004).

(Ikeshoji) Ikeshoji and Hafskjold, Molecular Physics, 81, 251-261 (1994).

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

(Mayo) Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909 (1990).

87

(Jorgensen) Jorgensen, Chandrasekhar, Madura, Impey, Klein, J Chem Phys, 79, 926 (1983).

(Price) Price and Brooks, J Chem Phys, 121, 10096 (2004).

(Shinoda) Shinoda, Shiga, and Mikami, Phys Rev B, 69, 134103 (2004).

88

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

7. Example problems

The LAMMPS distribution includes an examples sub-directory with several sample problems. Each problem is in
a sub-directory of its own. Most are 2d models so that they run quickly, requiring at most a couple of minutes to

run on a desktop machine. Each problem has an input script (in.*) and produces a log file (log.*) and dump file
(dump.*) when it runs. Some use a data file (data.*) of initial coordinates as additional input. A few sample log

file outputs on different machines and different numbers of processors are included in the directories to compare

your answers to. E.g. a log file like log.crack.foo.P means it ran on P processors of machine "foo".

The dump files produced by the example runs can be animated using the xmovie tool described in the Additional

Tools section of the LAMMPS documentation. Animations of many of these examples can be viewed on the

Movies section of the LAMMPS WWW Site.

These are the sample problems in the examples sub-directories:

colloid

big colloid particles in a small particle solvent, 2d system

comb

models using the COMB potential

crack

crack propagation in a 2d solid

point dipolar particles, 2d system

dipole

€im

NaCl using the EIM potential

ellipse

ellipsoidal particles in spherical solvent, 2d system

flow

Couette and Poiseuille flow in a 2d channel

friction

frictional contact of spherical asperities between 2d surfaces

indent

spherical indenter into a 2d solid

meam

MEAM test for SiC and shear (same as shear examples)

melt

rapid melt of 3d L] system

micelle

self-assembly of small lipid-like molecules into 2d bilayers

min

energy minimization of 2d LJ melt

msst

MSST shock dynamics

neb

nudged elastic band (NEB) calculation for barrier finding

nemd

non-equilibrium MD of 2d sheared system

obstacle

flow around two voids in a 2d channel

peptide

dynamics of a small solvated peptide chain (5-mer)

peri

Peridynamic model of cylinder impacted by indenter

pour

pouring of granular particles into a 3d box, then chute flow

prd

parallel replica dynamics of a vacancy diffusion in bulk Si

reax

RDX and TATB models using the ReaxFF

rigid

rigid bodies modeled as independent or coupled

shear

sideways shear applied to 2d solid, with and without a void

srd

stochastic rotation dynamics (SRD) particles as solvent

Here is how you might run and visualize one of the sample problems:

cd indent
cp ../../src/lmp_linux .
lmp_linux <in.indent

copy LAMMPS executable to this dir
run the problem

89

http://lammps.sandia.gov
http://lammps.sandia.gov

Running the simulation produces the files dump.indent and log.lammps. You can visualize the dump file as
follows:

../../tools/xmovie/xmovie -scale dump.indent

There is also an ELASTIC directory with an example script for computing elastic constants, using a zero
temperature Si example. See the in.elastic file for more info.

There is also a USER directory which contains subdirectories of user-provided examples for user packages. See

the README files in those directories for more info. See the doc/Section_start.html file for more info about user
packages.

90

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

8. Performance & scalability

LAMMPS performance on several prototypical benchmarks and machines is discussed on the Benchmarks page
of the LAMMPS WWW Site where CPU timings and parallel efficiencies are listed. Here, the benchmarks are
described briefly and some useful rules of thumb about their performance are highlighted.

These are the 5 benchmark problems:

1. LJ = atomic fluid, Lennard-Jones potential with 2.5 sigma cutoff (55 neighbors per atom), NVE
integration

2. Chain = bead-spring polymer melt of 100-mer chains, FENE bonds and LJ pairwise interactions with a
27(1/6) sigma cutoff (5 neighbors per atom), NVE integration

3. EAM = metallic solid, Cu EAM potential with 4.95 Angstrom cutoff (45 neighbors per atom), NVE
integration

4. Chute = granular chute flow, frictional history potential with 1.1 sigma cutoff (7 neighbors per atom),
NVE integration

5. Rhodo = rhodopsin protein in solvated lipid bilayer, CHARMM force field with a 10 Angstrom LJ cutoff
(440 neighbors per atom), particle-particle particle-mesh (PPPM) for long-range Coulombics, NPT
integration

The input files for running the benchmarks are included in the LAMMPS distribution, as are sample output files.
Each of the 5 problems has 32,000 atoms and runs for 100 timesteps. Each can be run as a serial benchmarks (on
one processor) or in parallel. In parallel, each benchmark can be run as a fixed-size or scaled-size problem. For
fixed-size benchmarking, the same 32K atom problem is run on various numbers of processors. For scaled-size
benchmarking, the model size is increased with the number of processors. E.g. on 8 processors, a 256K-atom
problem is run; on 1024 processors, a 32-million atom problem is run, etc.

A useful metric from the benchmarks is the CPU cost per atom per timestep. Since LAMMPS performance scales
roughly linearly with problem size and timesteps, the run time of any problem using the same model (atom style,
force field, cutoff, etc) can then be estimated. For example, on a 1.7 GHz Pentium desktop machine (Intel icc
compiler under Red Hat Linux), the CPU run-time in seconds/atom/timestep for the 5 problems is

Problem:| LJ Chain | EAM | Chute |Rhodopsin
CPU/atom/step:[4.55E-6 [2.18E-6 [9.38E-6 |2.18E-6 | 1.11E-4

Ratioto LJ:[1.0 0.48 2.06 0.48 24.5

The ratios mean that if the atomic LJ system has a normalized cost of 1.0, the bead-spring chains and granular
systems run 2x faster, while the EAM metal and solvated protein models run 2x and 25x slower respectively. The
bulk of these cost differences is due to the expense of computing a particular pairwise force field for a given
number of neighbors per atom.

Performance on a parallel machine can also be predicted from the one-processor timings if the parallel efficiency
can be estimated. The communication bandwidth and latency of a particular parallel machine affects the
efficiency. On most machines LAMMPS will give fixed-size parallel efficiencies on these benchmarks above
50% so long as the atoms/processor count is a few 100 or greater - i.e. on 64 to 128 processors. Likewise,
scaled-size parallel efficiencies will typically be 80% or greater up to very large processor counts. The benchmark
data on the LAMMPS WWW Site gives specific examples on some different machines, including a run of 3/4 of a
billion LJ atoms on 1500 processors that ran at 85% parallel efficiency.

91

http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

9. Additional tools

LAMMPS is designed to be a computational kernel for performing molecular dynamics computations. Additional
pre- and post-processing steps are often necessary to setup and analyze a simulation. A few additional tools are
provided with the LAMMPS distribution and are described in this section.

Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing setup,
analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in Python and is available for
download from the Pizza.py WWW site.

Note that many users write their own setup or analysis tools or use other existing codes and convert their output to
a LAMMPS input format or vice versa. The tools listed here are included in the LAMMPS distribution as
examples of auxiliary tools. Some of them are not actively supported by Sandia, as they were contributed by
LAMMPS users. If you have problems using them, we can direct you to the authors.

The source code for each of these codes is in the tools sub-directory of the LAMMPS distribution. There is a
Makefile (which you may need to edit for your platform) which will build several of the tools which reside in that
directory. Some of them are larger packages in their own sub-directories with their own Makefiles.

e amber2lmp

® binary2txt

e ch2Imp

¢ chain

® createatoms
e data2xmovie
® eam database
® cam generate
o eff

® emacs

® ipp

® Imp2arc

® Imp2cfg

¢ Imp2vmd

¢ matlab

® micelle2d

* msi2lmp

¢ pymol_asphere
¢ python

® reax

e restart2data
¢ thermo_extract
® vim

® xmovie

amber2imp tool

The amber2lmp sub-directory contains two Python scripts for converting files back-and-forth between the
AMBER MD code and LAMMPS. See the README file in amber2lmp for more information.

92

http://lammps.sandia.gov
http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html

These tools were written by Keir Novik while he was at Queen Mary University of London. Keir is no longer
there and cannot support these tools which are out-of-date with respect to the current LAMMPS version (and
maybe with respect to AMBER as well). Since we don't use these tools at Sandia, you'll need to experiment with
them and make necessary modifications yourself.

binary2txt tool

The file binary2txt.cpp converts one or more binary LAMMPS dump file into ASCII text files. The syntax for
running the tool is

binary2txt filel file2 ...

which creates filel.txt, file2.txt, etc. This tool must be compiled on a platform that can read the binary file created
by a LAMMPS run, since binary files are not compatible across all platforms.

ch2Iimp tool

The ch2lmp sub-directory contains tools for converting files back-and-forth between the CHARMM MD code
and LAMMPS.

They are intended to make it easy to use CHARMM as a builder and as a post-processor for LAMMPS. Using
charmm2lammps.pl, you can convert an ensemble built in CHARMM into its LAMMPS equivalent. Using
lammps2pdb.pl you can convert LAMMPS atom dumps into pdb files.

See the README file in the ch2lmp sub-directory for more information.

These tools were created by Pieter in't Veld (pjintve at sandia.gov) and Paul Crozier (pscrozi at sandia.gov) at
Sandia.

chain tool

The file chain.f creates a LAMMPS data file containing bead-spring polymer chains and/or monomer solvent
atoms. It uses a text file containing chain definition parameters as an input. The created chains and solvent atoms
can strongly overlap, so LAMMPS needs to run the system initially with a "soft" pair potential to un-overlap it.
The syntax for running the tool is

chain <def.chain > data.file

See the def.chain or def.chain.ab files in the tools directory for examples of definition files. This tool was used to
create the system for the chain benchmark.

createatoms tool

The tools/createatoms directory contains a Fortran program called create Atoms.f which can generate a variety of
interesting crystal structures and geometries and output the resulting list of atom coordinates in LAMMPS or
other formats.

See the included Manual.pdf for details.

The tool is authored by Xiaowang Zhou (Sandia), xzhou at sandia.gov.

93

data2xmovie tool

The file data2xmovie.c converts a LAMMPS data file into a snapshot suitable for visualizing with the xmovie
tool, as if it had been output with a dump command from LAMMPS itself. The syntax for running the tool is

data2xmovie options <infile > outfile

See the top of the data2xmovie.c file for a discussion of the options.

eam database tool

The tools/eam_database directory contains a Fortran program that will generate EAM alloy setfl potential files for

any combination of 16 elements: Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, Zr. The files can
then be used with the pair_style eam/alloy command.

The tool is authored by Xiaowang Zhou (Sandia), xzhou at sandia.gov, and is based on his paper:

X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, Phys. Rev. B, 69, 144113 (2004).

eam generate tool
The tools/eam_generate directory contains several one-file C programs that convert an analytic formula into a
tabulated embedded atom method (EAM) setfl potential file. The potentials they produce are in the potentials

directory, and can be used with the pair_style eam/alloy command.

The source files and potentials were provided by Gerolf Ziegenhain (gerolf at ziegenhain.com).

eff tool

The tools/eff directory contains various scripts for generating structures and post-processing output for
simulations using the electron force field (eFF).

These tools were provided by Andres Jaramillo-Botero at CalTech (ajaramil at wag.caltech.edu).

emacs tool

The tools/emacs directory contains a Lips add-on file for Emacs that enables a lammps-mode for editing of input

scripts when using Emacs, with various highlighting options setup.

These tools were provided by Aidan Thompson at Sandia (athomps at sandia.gov).

ipp tool

The tools/ipp directory contains a Perl script ipp which can be used to facilitate the creation of a complicated file

(say, a lammps input script or tools/createatoms input file) using a template file.
ipp was created and is maintained by Reese Jones (Sandia), rjones at sandia.gov.

See two examples in the tools/ipp directory. One of them is for the tools/createatoms tool's input file.

94

Imp2arc tool

The ImpZ2arc sub-directory contains a tool for converting LAMMPS output files to the format for Accelrys' Insight
MD code (formerly MSI/Biosym and its Discover MD code). See the README file for more information.

This tool was written by John Carpenter (Cray), Michael Peachey (Cray), and Steve Lustig (Dupont). John is now
at the Mayo Clinic (jec at mayo.edu), but still fields questions about the tool.

This tool was updated for the current LAMMPS C++ version by Jeff Greathouse at Sandia (jagreat at sandia.gov).

Imp2cfg tool

The Imp2cfg sub-directory contains a tool for converting LAMMPS output files into a series of *.cfg files which
can be read into the AtomEye visualizer. See the README file for more information.

This tool was written by Ara Kooser at Sandia (askoose at sandia.gov).

Imp2vmd tool

The Imp2vmd sub-directory contains a README.txt file that describes details of scripts and plugin support
within the VMD package for visualizing LAMMPS dump files.

The VMD plugins and other supporting scripts were written by Axel Kohlmeyer (akohlmey at
cmm.chem.upenn.edu) at U Penn.

matlab tool

The matlab sub-directory contains several MATLAB scripts for post-processing LAMMPS output. The scripts
include readers for log and dump files, a reader for EAM potential files, and a converter that reads LAMMPS
dump files and produces CFG files that can be visualized with the AtomEye visualizer.

See the README.pdf file for more information.

These scripts were written by Arun Subramaniyan at Purdue Univ (asubrama at purdue.edu).

micelle2d tool

The file micelle2d.f creates a LAMMPS data file containing short lipid chains in a monomer solution. It uses a
text file containing lipid definition parameters as an input. The created molecules and solvent atoms can strongly
overlap, so LAMMPS needs to run the system initially with a "soft" pair potential to un-overlap it. The syntax for
running the tool is

micelle2d <def.micelle2d > data.file

See the def.micelle2d file in the tools directory for an example of a definition file. This tool was used to create the
system for the micelle example.

msi2lmp tool

The msi2lmp sub-directory contains a tool for creating LAMMPS input data files from Accelrys' Insight MD code
(formerly MSI/Biosym and its Discover MD code). See the README file for more information.

95

http://mt.seas.upenn.edu/Archive/Graphics/A
http://www.ks.uiuc.edu/Research/vmd
http://www.mathworks.com
http://mt.seas.upenn.edu/Archive/Graphics/A

This tool was written by John Carpenter (Cray), Michael Peachey (Cray), and Steve Lustig (Dupont). John is now
at the Mayo Clinic (jec at mayo.edu), but still fields questions about the tool.

This tool may be out-of-date with respect to the current LAMMPS and Insight versions. Since we don't use it at
Sandia, you'll need to experiment with it yourself.

pymol_asphere tool

The pymol_asphere sub-directory contains a tool for converting a LAMMPS dump file that contains orientation
info for ellipsoidal particles into an input file for the PyMol visualization package.

Specifically, the tool triangulates the ellipsoids so they can be viewed as true ellipsoidal particles within PyMol.
See the README and examples directory within pymol_asphere for more information.

This tool was written by Mike Brown at Sandia.

python tool

The python sub-directory contains several Python scripts that perform common LAMMPS post-processing tasks,
such as:

e extract thermodynamic info from a log file as columns of numbers

¢ plot two columns of thermodynamic info from a log file using GnuPlot

e sort the snapshots in a dump file by atom ID

¢ convert multiple NEB dump files into one dump file for viz

e convert dump files into XYZ, CFG, or PDB format for viz by other packages

These are simple scripts built on Pizza.py modules. See the README for more info on Pizza.py and how to use
these scripts.

reax tool

The reax sub-directory contains stand-alond codes that can post-process the output of the fix reax/bonds command
from a LAMMPS simulation using ReaxFF. See the README.txt file for more info.

These tools were written by Aidan Thompson at Sandia.

restart2data tool

The file restart2data.cpp converts a binary LAMMPS restart file into an ASCII data file. The syntax for running
the tool is

restart2data restart-file data-file (input-file)

Input-file is optional and if specified will contain LAMMPS input commands for the masses and force field
parameters, instead of putting those in the data-file. Only a few force field styles currently support this option.

This tool must be compiled on a platform that can read the binary file created by a LAMMPS run, since binary
files are not compatible across all platforms.

Note that a text data file has less precision than a binary restart file. Hence, continuing a run from a converted data
file will typically not conform as closely to a previous run as will restarting from a binary restart file.

96

http://pymol.sourceforge.net
http://www.sandia.gov/~sjplimp/pizza.html

If a "%" appears in the specified restart-file, the tool expects a set of multiple files to exist. See the restart and
write_restart commands for info on how such sets of files are written by LAMMPS, and how the files are named.

thermo_extract tool
The thermo_extract tool reads one of more LAMMPS log files and extracts a thermodynamic value (e.g. Temp,
Press). It spits out the time,value as 2 columns of numbers so the tool can be used as a quick way to plot some

quantity of interest. See the header of the thermo_extract.c file for the syntax of how to run it and other details.

This tool was written by Vikas Varshney at Wright Patterson AFB (vikas.varshney at gmail.com).

vim tool

The files in the tools/vim directory are add-ons to the VIM editor that allow easier editing of LAMMPS input
scripts. See the README.txt file for details.

These files were provided by Gerolf Ziegenhain (gerolf at ziegenhain.com)

xmovie tool

The xmovie tool is an X-based visualization package that can read LAMMPS dump files and animate them. It is
in its own sub-directory with the tools directory. You may need to modify its Makefile so that it can find the
appropriate X libraries to link against.

The syntax for running xmovie is

xmovie options dump.filel dump.file2 ...

If you just type "xmovie" you will see a list of options. Note that by default, LAMMPS dump files are in scaled
coordinates, so you typically need to use the -scale option with xmovie. When xmovie runs it opens a
visualization window and a control window. The control options are straightforward to use.

Xmovie was mostly written by Mike Uttormark (U Wisconsin) while he spent a summer at Sandia. It displays 2d
projections of a 3d domain. While simple in design, it is an amazingly fast program that can render large numbers
of atoms very quickly. It's a useful tool for debugging LAMMPS input and output and making sure your
simulation is doing what you think it should. The animations on the Examples page of the LAMMPS WWW site
were created with xmovie.

I've lost contact with Mike, so I hope he's comfortable with us distributing his great tool!

97

http://lammps.sandia.gov

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

10. Modifying & extending LAMMPS

This section describes how to customize LAMMPS by modifying and extending its source code.

10.1 Atom styles

10.2 Bond, angle, dihedral, improper potentials

10.3 Compute styles

10.4 Dump styles

10.5 Dump custom output options

10.6 Fix styles which include integrators, temperature and pressure control, force constraints, boundary
conditions, diagnostic output, etc

10.7 Input script commands

10.8 Kspace computations

10.9 Minimization styles

10.10 Pairwise potentials

10.11 Region styles

10.12 Thermodynamic output options

10.13 Variable options

10.14 Submitting new features for inclusion in LAMMPS

LAMMPS is designed in a modular fashion so as to be easy to modify and extend with new functionality. In fact,
about 75% of its source code is files added in this fashion.

In this section, changes and additions users can make are listed along with minimal instructions. If you add a new
feature to LAMMPS and think it will be of interest to general users, we encourage you to submit it to the
developers for inclusion in the released version of LAMMPS. Information about how to do this is provided below.

The best way to add a new feature is to find a similar feature in LAMMPS and look at the corresponding source
and header files to figure out what it does. You will need some knowledge of C++ to be able to understand the
hi-level structure of LAMMPS and its class organization, but functions (class methods) that do actual
computations are written in vanilla C-style code and operate on simple C-style data structures (vectors and
arrays).

Most of the new features described in this section require you to write a new C++ derived class (except for
exceptions described below, where you can make small edits to existing files). Creating a new class requires 2
files, a source code file (*.cpp) and a header file (*.h). The derived class must provide certain methods to work as
a new option. Depending on how different your new feature is compared to existing features, you can either
derive from the base class itself, or from a derived class that already exists. Enabling LAMMPS to invoke the new
class is as simple as putting the two source files in the src dir and re-building LAMMPS.

The advantage of C++ and its object-orientation is that all the code and variables needed to define the new feature
are in the 2 files you write, and thus shouldn't make the rest of LAMMPS more complex or cause side-effect bugs.

Here is a concrete example. Suppose you write 2 files pair_foo.cpp and pair_foo.h that define a new class PairFoo

that computes pairwise potentials described in the classic 1997 paper by Foo, et al. If you wish to invoke those
potentials in a LAMMPS input script with a command like

pair_style foo 0.1 3.5

then your pair_foo.h file should be structured as follows:

98

http://lammps.sandia.gov

#ifdef PAIR_CLASS
PairStyle (foo,PairFoo)
#else

(class definition for PairFoo)

#endif

where "foo" is the style keyword in the pair_style command, and PairFoo is the class name defined in your

pair_foo.cpp and pair_foo.h files.

When you re-build LAMMPS, your new pairwise potential becomes part of the executable and can be invoked

with a pair_style command like the example above. Arguments like 0.1 and 3.5 can be defined and processed by

your new class.

As illustrated by this pairwise example, many kinds of options are referred to in the LAMMPS documentation as
the "style" of a particular command.

The instructions below give the header file for the base class that these styles are derived from. Public variables in

that file are ones used and set by the derived classes which are also used by the base class. Sometimes they are
also used by the rest of LAMMPS. Virtual functions in the base class header file which are set = 0 are ones you

must define in your new derived class to give it the functionality LAMMPS expects. Virtual functions that are not
set to 0 are functions you can optionally define.

Additionally, new output options can be added directly to the thermo.cpp, dump_custom.cpp, and variable.cpp

files as explained below.

Here are additional guidelines for modifying LAMMPS and adding new functionality:

¢ Think about whether what you want to do would be better as a pre- or post-processing step. Many

computations are more easily and more quickly done that way.

¢ Don't do anything within the timestepping of a run that isn't parallel. E.g. don't accumulate a bunch of

data on a single processor and analyze it. You run the risk of seriously degrading the parallel efficiency.

¢ If your new feature reads arguments or writes output, make sure you follow the unit conventions

discussed by the units command.

¢ [f you add something you think is truly useful and doesn't impact LAMMPS performance when it isn't

used, send an email to the developers. We might be interested in adding it to the LAMMPS distribution.
See further details on this at the bottom of this page.

10.1 Atom styles

Classes that define an atom style are derived from the AtomVec class and managed by the Atom class. The atom

style determines what quantities are associated with an atom. A new atom style can be created if one of the
existing atom styles does not define all the arrays you need to store and communicate with atoms.

Atom_vec_atomic.cpp is a simple example of an atom style.

Here is a brief description of methods you define in your new derived class. See atom_vec.h for details.

init

one time setup (optional)

grow

re-allocate atom arrays to longer lengths (required)

99

http://lammps.sandia.gov/authors.html

grow_reset make array pointers in Atom and AtomVec classes consistent (required)

copy copy info for one atom to another atom's array locations (required)
pack_comm store an atom's info in a buffer communicated every timestep (required)
pack_comm_vel add velocity info to communication buffer (required)
pack_comm_hybrid store extra info unique to this atom style (optional)

unpack_comm retrieve an atom's info from the buffer (required)

unpack_comm_vel also retrieve velocity info (required)

unpack_comm_hybrid |retreive extra info unique to this atom style (optional)

pack_reverse store an atom's info in a buffer communicating partial forces (required)

pack_reverse_hybrid |[store extra info unique to this atom style (optional)

unpack_reverse retrieve an atom's info from the buffer (required)

unpack_reverse_hybrid |retreive extra info unique to this atom style (optional)

pack_border store an atom's info in a buffer communicated on neighbor re-builds (required)
pack_border_vel add velocity info to buffer (required)

pack_border_hybrid [store extra info unique to this atom style (optional)

unpack_border retrieve an atom's info from the buffer (required)

unpack_border_vel also retrieve velocity info (required)

unpack_border_hybrid |retreive extra info unique to this atom style (optional)

pack_exchange store all an atom's info to migrate to another processor (required)
unpack_exchange retrieve an atom's info from the buffer (required)

size_restart number of restart quantities associated with proc's atoms (required)
pack_restart pack atom quantities into a buffer (required)

unpack_restart unpack atom quantities from a buffer (required)

create_atom create an individual atom of this style (required)

data_atom parse an atom line from the data file (required)
data_atom_hybrid parse additional atom info unique to this atom style (optional)
data_vel parse one line of velocity information from data file (optional)
data_vel_hybrid parse additional velocity data unique to this atom style (optional)
memory_usage tally memory allocated by atom arrays (required)

The constructor of the derived class sets values for several variables that you must set when defining a new atom
style, which are documented in atom_vec.h. New atom arrays are defined in atom.cpp. Search for the word
"customize" and you will find locations you will need to modify.

10.2 Bond, angle, dihedral, improper potentials

Classes that compute molecular interactions are derived from the Bond, Angle, Dihedral, and Improper classes.
New styles can be created to add new potentials to LAMMPS.

Bond_harmonic.cpp is the simplest example of a bond style. Ditto for the harmonic forms of the angle, dihedral,
and improper style commands.

Here is a brief description of common methods you define in your new derived class. See bond.h, angle.h,
dihedral.h, and improper.h for details and specific additional methods.

100

init check if all coefficients are set, calls init_style (optional)
init_style check if style specific conditions are met (optional)
compute compute the molecular interactions (required)

settings apply global settings for all types (optional)

coeff set coefficients for one type (required)

equilibrium_distance

length of bond, used by SHAKE (required, bond only)

equilibrium_angle

opening of angle, used by SHAKE (required, angle only)

write & read_restart

writes/reads coeffs to restart files (required)

single

force and energy of a single bond or angle (required, bond or angle only)

memory_usage

tally memory allocated by the style (optional)

10.3 Compute styles

Classes that compute scalar and vector quantities like temperature and the pressure tensor, as well as classes that

compute per-atom quantities like kinetic energy and the centro-symmetry parameter are derived from the

Compute class. New styles can be created to add new calculations to LAMMPS.

Compute_temp.cpp is a simple example of computing a scalar temperature. Compute_ke_atom.cpp is a simple
example of computing per-atom kinetic energy.

Here is a brief description of methods you define in your new derived class. See compute.h for details.

nit

perform one time setup (required)

init_list

neighbor list setup, if needed (optional)

compute_scalar |compute a scalar quantity (optional)

compute_vector |compute a vector of quantities (optional)

compute_peratom |[compute one or more quantities per atom (optional)

compute_local

compute one or more quantities per processor (optional)

pack_comm

pack a buffer with items to communicate (optional)

unpack_comm

unpack the buffer (optional)

pack_reverse

pack a buffer with items to reverse communicate (optional)

unpack_reverse |unpack the buffer (optional)

remove_bias

remove velocity bias from one atom (optional)

remove_bias_all [remove velocity bias from all atoms in group (optional)

restore_bias

restore velocity bias for one atom after remove_bias (optional)

restore_bias_all |same as before, but for all atoms in group (optional)

memory_usage |tally memory usage (optional)

10.4 Dump styles

101

10.5 Dump custom output options

Classes that dump per-atom info to files are derived from the Dump class. To dump new quantities or in a new
format, a new derived dump class can be added, but it is typically simpler to modify the DumpCustom class
contained in the dump_custom.cpp file.

Dump_atom.cpp is a simple example of a derived dump class.

Here is a brief description of methods you define in your new derived class. See dump.h for details.

write_header |write the header section of a snapshot of atoms

count count the number of lines a processor will output
pack pack a proc's output data into a buffer
write_data |write a proc's data to a file

See the dump command and its custom style for a list of keywords for atom information that can already be
dumped by DumpCustom. It includes options to dump per-atom info from Compute classes, so adding a new
derived Compute class is one way to calculate new quantities to dump.

Alternatively, you can add new keywords to the dump custom command. Search for the word "customize" in
dump_custom.cpp to see the half-dozen or so locations where code will need to be added.

10.6 Fix styles

In LAMMPS, a "fix" is any operation that is computed during timestepping that alters some property of the
system. Essentially everything that happens during a simulation besides force computation, neighbor list
construction, and output, is a "fix". This includes time integration (update of coordinates and velocities), force
constraints or boundary conditions (SHAKE or walls), and diagnostics (compute a diffusion coefficient). New
styles can be created to add new options to LAMMPS.

Fix_setforce.cpp is a simple example of setting forces on atoms to prescribed values. There are dozens of fix
options already in LAMMPS; choose one as a template that is similar to what you want to implement.

Here is a brief description of methods you can define in your new derived class. See fix.h for details.

setmask

determines when the fix is called during the timestep (required)

init

initialization before a run (optional)

setup_pre_exchange

called before atom exchange in setup (optional)

setup_pre_force

called before force computation in setup (optional)

setup

called immediately before the 1st timestep and after forces are computed (optional)

min_setup_pre_force

like setup_pre_force, but for minimizations instead of MD runs (optional)

min_setup

like setup, but for minimizations instead of MD runs (optional)

initial_integrate

called at very beginning of each timestep (optional)

pre_exchange

called before atom exchange on re-neighboring steps (optional)

pre_neighbor

called before neighbor list build (optional)

pre_force

called after pair & molecular forces are computed (optional)

post_force

called after pair & molecular forces are computed and communicated (optional)

final_integrate

called at end of each timestep (optional)

102

end_of_step

called at very end of timestep (optional)

write_restart

dumps fix info to restart file (optional)

restart

uses info from restart file to re-initialize the fix (optional)

grow_arrays

allocate memory for atom-based arrays used by fix (optional)

copy_arrays

copy atom info when an atom migrates to a new processor (optional)

pack_exchange

store atom's data in a buffer (optional)

unpack_exchange

retrieve atom's data from a buffer (optional)

pack_restart

store atom's data for writing to restart file (optional)

unpack_restart

retrieve atom's data from a restart file buffer (optional)

size_restart

size of atom's data (optional)

maxsize_restart

max size of atom's data (optional)

setup_pre_force_respa

same as setup_pre_force, but for rRESPA (optional)

initial_integrate_respa

same as initial_integrate, but for rRESPA (optional)

post_integrate_respa

called after the first half integration step is done in rRESPA (optional)

pre_force_respa

same as pre_force, but for rRESPA (optional)

post_force_respa

same as post_force, but for rRESPA (optional)

final_integrate_respa

same as final_integrate, but for rRESPA (optional)

min_pre_force

called after pair & molecular forces are computed in minimizer (optional)

min_post_force

called after pair & molecular forces are computed and communicated in minmizer
(optional)

min_store

store extra data for linesearch based minimization on a LIFO stack (optional)

min_pushstore

push the minimization LIFO stack one element down (optional)

min_popstore

pop the minimization LIFO stack one element up (optional)

min_clearstore

clear minimization LIFO stack (optional)

min_step reset or move forward on line search minimization (optional)
min_dof report number of degrees of freedom added by this fix in minimization (optional)
max_alpha report maximum allowed step size during linesearch minimization (optional)

pack_comm

pack a buffer to communicate a per-atom quantity (optional)

unpack_comm

unpack a buffer to communicate a per-atom quantity (optional)

pack_reverse_comm

pack a buffer to reverse communicate a per-atom quantity (optional)

unpack_reverse_comm

unpack a buffer to reverse communicate a per-atom quantity (optional)

dof

report number of degrees of freedom removed by this fix during MD (optional)

compute_scalar

return a global scalar property that the fix computes (optional)

compute_vector

return a component of a vector property that the fix computes (optional)

compute_array

return a component of an array property that the fix computes (optional)

deform

called when the box size is changed (optional)

reset_target

called when a change of the target temperature is requested during a run (optional)

reset_dt

is called when a change of the time step is requested during a run (optional)

modify_param

called when a fix_modify request is executed (optional)

memory_usage

report memory used by fix (optional)

thermo

compute quantities for thermodynamic output (optional)

Typically, only a small fraction of these methods are defined for a particular fix. Setmask is mandatory, as it

determines when the fix will be invoked during the timestep. Fixes that perform time integration (nve, nvt, npt)

103

implement initial_integrate() and final_integrate() to perform velocity Verlet updates. Fixes that constrain forces
implement post_force().

Fixes that perform diagnostics typically implement end_of_step(). For an end_of_step fix, one of your fix
arguments must be the variable "nevery" which is used to determine when to call the fix and you must set this
variable in the constructor of your fix. By convention, this is the first argument the fix defines (after the ID,
group-ID, style).

If the fix needs to store information for each atom that persists from timestep to timestep, it can manage that
memory and migrate the info with the atoms as they move from processors to processor by implementing the
grow_arrays, copy_arrays, pack_exchange, and unpack_exchange methods. Similarly, the pack_restart and
unpack_restart methods can be implemented to store information about the fix in restart files. If you wish an
integrator or force constraint fix to work with rRESPA (see the run_style command), the initial_integrate,
post_force_integrate, and final_integrate_respa methods can be implemented. The thermo method enables a fix to
contribute values to thermodynamic output, as printed quantities and/or to be summed to the potential energy of
the system.

10.7 Input script commands

New commands can be added to LAMMPS input scripts by adding new classes that have a "command" method.
For example, the create_atoms, read_data, velocity, and run commands are all implemented in this fashion. When
such a command is encountered in the LAMMPS input script, LAMMPS simply creates a class with the
corresponding name, invokes the "command" method of the class, and passes it the arguments from the input
script. The command method can perform whatever operations it wishes on LAMMPS data structures.

The single method your new class must define is as follows:

|command |operations performed by the new command
Of course, the new class can define other methods and variables as needed.

10.8 Kspace computations

Classes that compute long-range Coulombic interactions via K-space representations (Ewald, PPPM) are derived
from the KSpace class. New styles can be created to add new K-space options to LAMMPS.

Ewald.cpp is an example of computing K-space interactions.

Here is a brief description of methods you define in your new derived class. See kspace.h for details.

init initialize the calculation before a run

setup computation before the 1st timestep of a run
compute every-timestep computation

memory_usage [tally of memory usage

10.9 Minimization styles

Classes that perform energy minimization derived from the Min class. New styles can be created to add new
minimization algorithms to LAMMPS.

104

Min_cg.cpp is an example of conjugate gradient minimization.

Here is a brief description of methods you define in your new derived class. See min.h for details.

init

initialize the minimization before a run

run

perform the minimization

memory_usage |tally of memory usage

10.10 Pairwise potentials

Classes that compute pairwise interactions are derived from the Pair class. In LAMMPS, pairwise calculation
include manybody potentials such as EAM or Tersoff where particles interact without a static bond topology.

New styles can be created to add new pair potentials to LAMMPS.

Pair_lj_cut.cpp is a simple example of a Pair class, though it includes some optional methods to enable its use

with rRESPA.

Here is a brief description of the class methods in pair.h:

compute workhorse routine that computes pairwise interactions
settings reads the input script line with arguments you define
coeff set coefficients for one i,j type pair

init_one perform initialization for one i,j type pair

init_style initialization specific to this pair style

write & read_restart

write/read i,j pair coeffs to restart files

write & read_restart_settings

write/read global settings to restart files

single

force and energy of a single pairwise interaction between 2 atoms

compute_inner/middle/outer

versions of compute used by rRESPA

The inner/middle/outer routines are optional.

10.11 Region styles

Classes that define geometric regions are derived from the Region class. Regions are used elsewhere in LAMMPS
to group atoms, delete atoms to create a void, insert atoms in a specified region, etc. New styles can be created to
add new region shapes to LAMMPS.

Region_sphere.cpp is an example of a spherical region.

Here is a brief description of methods you define in your new derived class. See region.h for details.

match

determine whether a point is in the
region

105

10.12 Thermodynamic output options

There is one class that computes and prints thermodynamic information to the screen and log file; see the file
thermo.cpp.

There are two styles defined in thermo.cpp: "one" and "multi". There is also a flexible "custom" style which
allows the user to explicitly list keywords for quantities to print when thermodynamic info is output. See the
thermo_style command for a list of defined quantities.

The thermo styles (one, multi, etc) are simply lists of keywords. Adding a new style thus only requires defining a
new list of keywords. Search for the word "customize" with references to "thermo style" in thermo.cpp to see the
two locations where code will need to be added.

New keywords can also be added to thermo.cpp to compute new quantities for output. Search for the word
"customize" with references to "keyword" in thermo.cpp to see the several locations where code will need to be
added.

Note that the thermo_style custom command already allows for thermo output of quantities calculated by fixes,
computes, and variables. Thus, it may be simpler to compute what you wish via one of those constructs, than by
adding a new keyword to the thermo command.

10.13 Variable options

There is one class that computes and stores variable information in LAMMPS; see the file variable.cpp. The value
associated with a variable can be periodically printed to the screen via the print, fix print, or thermo_style custom
commands. Variables of style "equal”" can compute complex equations that involve the following types of
arguments:

thermo keywords = ke, vol, atoms, ... other variables = v_a, v_myvar, ... math functions = div(x,y), mult(x,y),
add(x,y), ... group functions = mass(group), xcm(group,x), ... atom values = x123, y3, vx34, ... compute values =
c_mytemp0, c_thermo_press3, ...

Adding keywords for the thermo_style custom command (which can then be accessed by variables) was discussed
here on this page.

Adding a new math function of one or two arguments can be done by editing one section of the
Variable::evaulate() method. Search for the word "customize" to find the appropriate location.

Adding a new group function can be done by editing one section of the Variable::evaulate() method. Search for
the word "customize" to find the appropriate location. You may need to add a new method to the Group class as
well (see the group.cpp file).

Accessing a new atom-based vector can be done by editing one section of the Variable::evaulate() method. Search
for the word "customize" to find the appropriate location.

Adding new compute styles (whose calculated values can then be accessed by variables) was discussed here on
this page.

106

10.14 Submitting new features for inclusion in LAMMPS

We encourage users to submit new features that they add to LAMMPS to the developers, especially if you think
the features will be of interest to other users. If they are broadly useful we may add them as core files to
LAMMPS or as part of a standard package. Else we will add them as a user-contributed package or file. Examples
of user packages are in src sub-directories that start with USER. The USER-MISC package is simply a collection
of (mostly) unrelated single files, which is the simplest way to have your contribution quickly added to the
LAMMPS distribution. You can see a list of the both standard and user packages by typing "make package" in the
LAMMPS src directory.

With user packages and files, all we are really providing (aside from the fame and fortune that accompanies
having your name in the source code and on the Authors page of the LAMMPS WWW site), is a means for you to
distribute your work to the LAMMPS user community and a mechanism for others to easily try out your new
feature. This may help you find bugs or make contact with new collaborators. Note that you're also implicitly
agreeing to support your code which means answer questions, fix bugs, and maintain it if LAMMPS changes.

The previous sections of this doc page describe how to add new features of various kinds to LAMMPS. Packages
are simply collections of one or more new class files which are invoked as a new "style" within a LAMMPS input
script. If designed correctly, these additions do not require changes to the main core of LAMMPS; they are simply
add-on files. If you think your new feature requires non-trivial changes in core LAMMPS files, you'll need to
communicate with the developers, since we may or may not want to make those changes. An example of a trivial
change is making a parent-class method "virtual" when you derive a new child class from it.

Here is what you need to do to submit a user package or single file for our consideration. Following these steps
will save time for both you and us. See existing package files for examples.

¢ All source files you provide must compile with the most current version of LAMMPS.

¢ [f your contribution is a single file (actually a *.cpp and *.h file) it can most rapidly be added to the
USER-MISC directory. Send us the one-line entry to add to the USER-MISC/README file in that dir,
along with the 2 source files. You can do this multiple times if you wish to contribute several individual
features.

¢ If your contribution is several related featues, it is probably best to make it a user package directory with
a name like USER-FOO. In addition to your new files, the directory should contain a README, and
Install.csh file. The README text file should contain your name and contact information and a brief
description of what your new package does. The Install.csh file enables LAMMPS to include and exclude
your package. See other README and Install.sh files in other USER directories as examples. Send us a
tarball of this USER-FOQ directory.

® Your new source files need to have the LAMMPS copyright, GPL notice, and your name at the top, like
other LAMMPS source files. They need to create a class that is inside the LAMMPS namespace. Other
than that, your files can do whatever is necessary to implement the new features. They don't have to be
written in the same stylistic format and syntax as other LAMMPS files, though that would be nice.

¢ Finally, you must also send a documentation file for each new command or style you are adding to
LAMMPS. This will be one file for a single-file feature. For a package, it might be several files. These
are simple text files which we will convert to HTML. They must be in the same format as other *.txt files
in the lammps/doc directory for similar commands and styles. The "Restrictions” section of the doc page
should indicate that your command is only available if LAMMPS is built with the appropriate
USER-MISC or USER-FOO package. See other user package doc files for an example of how to do this.
The txt2html tool we use to do the conversion can be downloaded from this site, so you can perform the
HTML conversion yourself to proofread your doc page.

Note that the more clear and self-explanatory you make your doc and README files, the more likely it is that
users will try out your new feature.

107

http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html
http://www.sandia.gov/~sjplimp/download.html

(Foo) Foo, Morefoo, and Maxfoo, J of Classic Potentials, 75, 345 (1997).

108

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

11. Python interface to LAMMPS

This section describes how to build and use LAMMPS via a Python interface.

¢ 11.1 Building LAMMPS as a shared library

¢ 11.2 Installing the Python wrapper into Python

¢ 11.3 Extending Python with MPI to run in parallel
® 11.4 Testing the Python-LAMMPS interface

¢ 11.5 Using LAMMPS from Python

¢ 11.6 Example Python scripts that use LAMMPS

The LAMMPS distribution includes the file python/lammps.py which wraps the library interface to LAMMPS.
This file makes it is possible to run LAMMPS, invoke LAMMPS commands or give it an input script, extract
LAMMPS results, an modify internal LAMMPS variables, either from a Python script or interactively from a
Python prompt. You can do the former in serial or parallel. Running Python interactively in parallel does not
generally work, unless you have a package installed that extends your Python to enable multiple instances of
Python to read what you type.

Python is a powerful scripting and programming language which can be used to wrap software like LAMMPS and
other packages. It can be used to glue multiple pieces of software together, e.g. to run a coupled or multiscale
model. See Section section of the manual and the couple directory of the distribution for more ideas about
coupling LAMMPS to other codes. See Section_start 4 about how to build LAMMPS as a library, and
Section_howto 19 for a description of the library interface provided in src/library.cpp and src/library.h and how to
extend it for your needs. As described below, that interface is what is exposed to Python. It is designed to be easy
to add functions to. This can easily extend the Python inteface as well. See details below.

By using the Python interface, LAMMPS can also be coupled with a GUI or other visualization tools that display
graphs or animations in real time as LAMMPS runs. Examples of such scripts are inlcluded in the python
directory.

Two advantages of using Python are how concise the language is, and that it can be run interactively, enabling
rapid development and debugging of programs. If you use it to mostly invoke costly operations within LAMMPS,
such as running a simulation for a reasonable number of timesteps, then the overhead cost of invoking LAMMPS
thru Python will be negligible.

Before using LAMMPS from a Python script, you need to do two things. You need to build LAMMPS as a
dynamic shared library, so it can be loaded by Python. And you need to tell Python how to find the library and the
Python wrapper file python/lammps.py. Both these steps are discussed below. If you wish to run LAMMPS in
parallel from Python, you also need to extend your Python with MPI. This is also discussed below.

The Python wrapper for LAMMPS uses the amazing and magical (to me) "ctypes" package in Python, which
auto-generates the interface code needed between Python and a set of C interface routines for a library. Ctypes is
part of standard Python for versions 2.5 and later. You can check which version of Python you have installed, by
simply typing "python" at a shell prompt.

109

http://lammps.sandia.gov
http://www.python.org

11.1 Building LAMMPS as a shared library

Instructions on how to build LAMMPS as a shared library are given in Section_start 5. A shared library is one
that is dynamically loadable, which is what Python requires. On Linux this is a library file that ends in ".so", not

a.

From the src directory, type

make makeshlib
make —-f Makefile.shlib foo

where foo is the machine target name, such as linux or g++ or serial. This should create the file liblammps_foo.so
in the src directory, as well as a soft link liblammps.so, which is what the Python wrapper will load by default.
Note that if you are building multiple machine versions of the shared library, the soft link is always set to the most
recently built version.

If this fails, see Section_start 5 for more details, especially if your LAMMPS build uses auxiliary libraries like
MPI or FFTW which may not be built as shared libraries on your system.

11.2 Installing the Python wrapper into Python
For Python to invoke LAMMPS, there are 2 files it needs to know about:

¢ python/lammps.py
¢ src/liblammps.so

Lammps.py is the Python wrapper on the LAMMPS library interface. Liblammps.so is the shared LAMMPS
library that Python loads, as described above.

You can insure Python can find these files in one of two ways:

® set two environment variables
¢ run the python/install.py script

If you set the paths to these files as environment variables, you only have to do it once. For the csh or tcsh shells,
add something like this to your ~/.cshrc file, one line for each of the two files:

setenv PYTHONPATH $PYTHONPATH:/home/sjplimp/lammps/python
setenv LD_LIBRARY_PATH $LD_LIBRARY PATH:/home/sjplimp/lammps/src

If you use the python/install.py script, you need to invoke it every time you rebuild LAMMPS (as a shared
library) or make changes to the python/lammps.py file.

You can invoke install.py from the python directory as
% python install.py [libdir] [pydir]
The optional libdir is where to copy the LAMMPS shared library to; the default is /usr/local/lib. The optional

pydir is where to copy the lammps.py file to; the default is the site-packages directory of the version of Python
that is running the install script.

110

Note that libdir must be a location that is in your default LD_ILIBRARY_PATH, like /usr/local/lib or /usr/lib. And
pydir must be a location that Python looks in by default for imported modules, like its site-packages dir. If you
want to copy these files to non-standard locations, such as within your own user space, you will need to set your
PYTHONPATH and LD_LIBRARY_PATH environment variables accordingly, as above.

If the install.py script does not allow you to copy files into system directories, prefix the python command with
"sudo". If you do this, make sure that the Python that root runs is the same as the Python you run. E.g. you may
need to do something like

% sudo /usr/local/bin/python install.py [libdir] [pydir]
You can also invoke install.py from the make command in the src directory as
% make install-python

In this mode you cannot append optional arguments. Again, you may need to prefix this with "sudo". In this mode
you cannot control which Python is invoked by root.

Note that if you want Python to be able to load different versions of the LAMMPS shared library (see this section
below), you will need to manually copy files like Implammps_g++.so into the appropriate system directory. This
is not needed if you set the LD_LIBRARY_PATH environment variable as described above.

11.3 Extending Python with MPI to run in parallel

If you wish to run LAMMPS in parallel from Python, you need to extend your Python with an interface to MPI.
This also allows you to make MPI calls directly from Python in your script, if you desire.

There are several Python packages available that purport to wrap MPI as a library and allow MPI functions to be
called from Python.

These include

* pyMPI

® maroonmpi
* mpidpy

e myMPI

® Pypar

All of these except pyMPI work by wrapping the MPI library and exposing (some portion of) its interface to your
Python script. This means Python cannot be used interactively in parallel, since they do not address the issue of
interactive input to multiple instances of Python running on different processors. The one exception is pyMPI,
which alters the Python interpreter to address this issue, and (I believe) creates a new alternate executable (in
place of "python" itself) as a result.

In principle any of these Python/MPI packages should work to invoke LAMMPS in parallel and MPI calls
themselves from a Python script which is itself running in parallel. However, when I downloaded and looked at a
few of them, their documentation was incomplete and I had trouble with their installation. It's not clear if some of
the packages are still being actively developed and supported.

The one I recommend, since I have successfully used it with LAMMPS, is Pypar. Pypar requires the ubiquitous
Numpy package be installed in your Python. After launching python, type

111

http://pympi.sourceforge.net/
http://code.google.com/p/maroonmpi/
http://code.google.com/p/mpi4py/
http://nbcr.sdsc.edu/forum/viewtopic.php?t=89&sid=c997fefc3933bd66204875b436940f16
http://code.google.com/p/pypar
http://numpy.scipy.org

import numpy

to see if it is installed. If not, here is how to install it (version 1.3.0b1 as of April 2009). Unpack the numpy tarball
and from its top-level directory, type

python setup.py build
sudo python setup.py install

The "sudo" is only needed if required to copy Numpy files into your Python distribution's site-packages directory.

To install Pypar (version pypar-2.1.4_94 as of Aug 2012), unpack it and from its "source" directory, type

python setup.py build
sudo python setup.py install

Again, the "sudo" is only needed if required to copy Pypar files into your Python distribution's site-packages
directory.

If you have successully installed Pypar, you should be able to run Python and type
import pypar

without error. You should also be able to run python in parallel on a simple test script
% mpirun -np 4 python test.py

where test.py contains the lines

import pypar
print "Proc %d out of %d procs" % (pypar.rank(),pypar.size())

and see one line of output for each processor you run on.

IMPORTANT NOTE: To use Pypar and LAMMPS in parallel from Python, you must insure both are using the
same version of MPL. If you only have one MPI installed on your system, this is not an issue, but it can be if you
have multiple MPIs. Your LAMMPS build is explicit about which MPI it is using, since you specify the details in
your lo-level scc/MAKE/Makefile.foo file. Pypar uses the "mpicc” command to find information about the MPI it
uses to build against. And it tries to load "libmpi.so" from the LD_LIBRARY_PATH. This may or may not find
the MPI library that LAMMPS is using. If you have problems running both Pypar and LAMMPS together, this is
an issue you may need to address, e.g. by moving other MPI installations so that Pypar finds the right one.

11.4 Testing the Python-LAMMPS interface

To test if LAMMPS is callable from Python, launch Python interactively and type:

>>> from lammps import lammps
>>> 1lmp = lammps ()

If you get no errors, you're ready to use LAMMPS from Python. If the 2nd command fails, the most common
error to see is

OSError: Could not load LAMMPS dynamic library

112

which means Python was unable to load the LAMMPS shared library. This typically occurs if the system can't
find the LAMMPS shared library or one of the auxiliary shared libraries it depends on, or if something about the
library is incompatible with your Python. The error message should give you an indication of what went wrong.

You can also test the load directly in Python as follows, without first importing from the lammps.py file:

>>> from ctypes import CDLL
>>> CDLL("liblammps.so")

If an error occurs, carefully go thru the steps in Section_start 5 and above about building a shared library and
about insuring Python can find the necessary two files it needs.

Test LAMMPS and Python in serial:

To run a LAMMPS test in serial, type these lines into Python interactively from the bench directory:

>>> from lammps import lammps
>>> Imp = lammps ()
>>> Imp.file("in.13")

Or put the same lines in the file test.py and run it as

)

% python test.py

Either way, you should see the results of running the in.lj benchmark on a single processor appear on the screen,
the same as if you had typed something like:

Imp_g++ <in.l]

Test LAMMPS and Python in parallel:

To run LAMMPS in parallel, assuming you have installed the Pypar package as discussed above, create a test.py
file containing these lines:

import pypar

from lammps import lammps

Imp = lammps ()

Imp.file("in.13")

print "Proc %d out of %d procs has" % (pypar.rank(),pypar.size()),lmp
pypar.finalize ()

You can then run it in parallel as:

)

% mpirun -np 4 python test.py

and you should see the same output as if you had typed

% mpirun -np 4 lmp_g++ <in.lj

Note that if you leave out the 3 lines from test.py that specify Pypar commands you will instantiate and run
LAMMPS independently on each of the P processors specified in the mpirun command. In this case you should
get 4 sets of output, each showing that a LAMMPS run was made on a single processor, instead of one set of
output showing that LAMMPS ran on 4 processors. If the 1-processor outputs occur, it means that Pypar is not
working correctly.

113

http://datamining.anu.edu.au/~ole/pypar

Also note that once you import the PyPar module, Pypar initializes MPI for you, and you can use MPI calls
directly in your Python script, as described in the Pypar documentation. The last line of your Python script should
be pypar.finalize(), to insure MPI is shut down correctly.

Running Python scripts:

Note that any Python script (not just for LAMMPS) can be invoked in one of several ways:

o°

python foo.script
python -i foo.script
foo.script

o°

o°

The last command requires that the first line of the script be something like this:

#!/usr/local/bin/python
#!/usr/local/bin/python -i

where the path points to where you have Python installed, and that you have made the script file executable:

)

% chmod +x foo.script

Without the "-i" flag, Python will exit when the script finishes. With the "-i" flag, you will be left in the Python
interpreter when the script finishes, so you can type subsequent commands. As mentioned above, you can only
run Python interactively when running Python on a single processor, not in parallel.

11.5 Using LAMMPS from Python

The Python interface to LAMMPS consists of a Python "lammps" module, the source code for which is in
python/lammps.py, which creates a "lammps" object, with a set of methods that can be invoked on that object.
The sample Python code below assumes you have first imported the "lammps" module in your Python script, as
follows:

from lammps import lammps

These are the methods defined by the lammps module. If you look at the file src/library.cpp you will see that they
correspond one-to-one with calls you can make to the LAMMPS library from a C++ or C or Fortran program.

lmp = lammps () # create a LAMMPS object using the default liblammps.so library
lmp = lammps ("g++") # create a LAMMPS object using the liblammps_g++.so library

Ilmp = lammps("",list) # ditto, with command-line args, e.g. list = ["-echo","screen"]
Imp = lammps ("g++",list)

Ilmp.close () # destroy a LAMMPS object

Imp.file(file) # run an entire input script, file = "in.13"

lmp.command (cmd) # invoke a single LAMMPS command, cmd = "run 100"

xlo = lmp.extract_global (name,type) # extract a global quantity

name = "boxxlo", "nlocal", etc
type = 0 = int
1 = double
coords = lmp.extract_atom(name, type) # extract a per—atom quantity
name = "x", "type", etc

114

= vector of ints
= array of ints
vector of doubles
= array of doubles

type =

L
w N R o
I

eng = lmp.extract_compute (id,style, type)
v3 = lmp.extract_fix(id, style, type,i, J)

extract value(s) from a compute

extract value(s) from a fix

id = ID of compute or fix

style = 0 = global data

1 = per—atom data

2 = local data

0 = scalar

1 = vector

2 = array

i,j = indices of value in global vector or array

type =

S o e S S S e 3 S o

var = lmp.extract_variable (name,group, flag) extract value(s) from a variable
name = name of variable
group = group ID (ignored for equal-style variables)
flag = 0 = equal-style variable
1

= atom-style variable

He o W

total # of atoms as int

return atom attribute of all atoms gathered into data, o
name = "x", "charge", "type", etc

count = # of per-atom values, 1 or 3, etc

scatter atom attribute of all atoms from data, ordered Db
name = "x", "charge", "type", etc

count = # of per-atom values, 1 or 3, etc

natoms = lmp.get_natoms ()
data = lmp.gather_atoms (name, type, count)

Ilmp.scatter_atoms (name, type, count,data)

B e

IMPORTANT NOTE: Currently, the creation of a LAMMPS object from within lammps.py does not take an MPI
communicator as an argument. There should be a way to do this, so that the LAMMPS instance runs on a subset
of processors if desired, but I don't know how to do it from Pypar. So for now, it runs with
MPI_COMM_WORLD, which is all the processors. If someone figures out how to do this with one or more of the
Python wrappers for MPI, like Pypar, please let us know and we will amend these doc pages.

Note that you can create multiple LAMMPS objects in your Python script, and coordinate and run multiple
simulations, e.g.

from lammps import lammps
Impl = lammps ()

Ilmp2 = lammps ()
Impl.file("in.filel")
Imp2.file("in.file2")

The file() and command() methods allow an input script or single commands to be invoked.

The extract_global(), extract_atom(), extract_compute(), extract_fix(), and extract_variable() methods return
values or pointers to data structures internal to LAMMPS.

For extract_global() see the src/library.cpp file for the list of valid names. New names could easily be added. A
double or integer is returned. You need to specify the appropriate data type via the type argument.

For extract_atom(), a pointer to internal LAMMPS atom-based data is returned, which you can use via normal
Python subscripting. See the extract() method in the src/atom.cpp file for a list of valid names. Again, new names
could easily be added. A pointer to a vector of doubles or integers, or a pointer to an array of doubles (double **)
or integers (int **) is returned. You need to specify the appropriate data type via the type argument.

115

For extract_compute() and extract_fix(), the global, per-atom, or local data calulated by the compute or fix can be
accessed. What is returned depends on whether the compute or fix calculates a scalar or vector or array. For a
scalar, a single double value is returned. If the compute or fix calculates a vector or array, a pointer to the internal
LAMMPS data is returned, which you can use via normal Python subscripting. The one exception is that for a fix
that calculates a global vector or array, a single double value from the vector or array is returned, indexed by I
(vector) or I and J (array). IJ are zero-based indices. The I,J arguments can be left out if not needed. See
Section_howto 15 of the manual for a discussion of global, per-atom, and local data, and of scalar, vector, and
array data types. See the doc pages for individual computes and fixes for a description of what they calculate and
store.

For extract_variable(), an equal-style or atom-style variable is evaluated and its result returned.

For equal-style variables a single double value is returned and the group argument is ignored. For atom-style
variables, a vector of doubles is returned, one value per atom, which you can use via normal Python subscripting.
The values will be zero for atoms not in the specified group.

The get_natoms() method returns the total number of atoms in the simulation, as an int.

The gather_atoms() method returns a ctypes vector of ints or doubles as specified by type, of length
count*natoms, for the property of all the atoms in the simulation specified by name, ordered by count and then by
atom ID. The vector can be used via normal Python subscripting. If atom IDs are not consecutively ordered within
LAMMPS, a None is returned as indication of an error.

Note that the data structure gather_atoms("x") returns is different from the data structure returned by
extract_atom("x") in four ways. (1) Gather_atoms() returns a vector which you index as x[i]; extract_atom()
returns an array which you index as x[i][j]. (2) Gather_atoms() orders the atoms by atom ID while extract_atom()
does not. (3) Gathert_atoms() returns a list of all atoms in the simulation; extract_atoms() returns just the atoms
local to each processor. (4) Finally, the gather_atoms() data structure is a copy of the atom coords stored
internally in LAMMPS, whereas extract_atom() returns an array that effectively points directly to the internal
data. This means you can change values inside LAMMPS from Python by assigning a new values to the
extract_atom() array. To do this with the gather_atoms() vector, you need to change values in the vector, then
invoke the scatter_atoms() method.

The scatter_atoms() method takes a vector of ints or doubles as specified by type, of length count*natoms, for the
property of all the atoms in the simulation specified by name, ordered by bount and then by atom ID. It uses the
vector of data to overwrite the corresponding properties for each atom inside LAMMPS. This requires LAMMPS
to have its "map" option enabled; see the atom_modify command for details. If it is not, or if atom IDs are not
consecutively ordered, no coordinates are reset.

The array of coordinates passed to scatter_atoms() must be a ctypes vector of ints or doubles, allocated and
initialized something like this:

from ctypes import *

natoms = lmp.get_natoms ()

n3 = 3*natoms

x = (n3*c_double) ()

x0 = x coord of atom with ID 1

x1l = y coord of atom with ID 1

x2 = z coord of atom with ID 1

x3 = x coord of atom with ID 2

xn3-1 = z coord of atom with ID natoms

lmp.scatter_coords ("x",1, 3, x)

116

Alternatively, you can just change values in the vector returned by gather_atoms("x",1,3), since it is a ctypes
vector of doubles.

As noted above, these Python class methods correspond one-to-one with the functions in the LAMMPS library
interface in src/library.cpp and library.h. This means you can extend the Python wrapper via the following steps:

¢ Add a new interface function to src/library.cpp and src/library.h.

¢ Rebuild LAMMPS as a shared library.

¢ Add a wrapper method to python/lammps.py for this interface function.

¢ You should now be able to invoke the new interface function from a Python script. Isn't ctypes amazing?

11.6 Example Python scripts that use LAMMPS

These are the Python scripts included as demos in the python/examples directory of the LAMMPS distribution, to
illustrate the kinds of things that are possible when Python wraps LAMMPS. If you create your own scripts, send
them to us and we can include them in the LAMMPS distribution.

trivial.py read/run a LAMMPS input script thru Python

demo.py invoke various LAMMPS library interface routines
simple.py mimic operation of couple/simple/simple.cpp in Python
gui.py GUI go/stop/temperature-slider to control LAMMPS
plot.py real-time temeperature plot with GnuPlot via Pizza.py
viz_tool.py real-time viz via some viz package

vizplotgui_tool.py [combination of viz_tool.py and plot.py and gui.py

For the viz_tool.py and vizplotgui_tool.py commands, replace "tool" with "gl" or "atomeye" or "pymol" or
"vmmd", depending on what visualization package you have installed.

Note that for GL, you need to be able to run the Pizza.py GL tool, which is included in the pizza sub-directory.
See the Pizza.py doc pages for more info:

Note that for AtomEye, you need version 3, and there is a line in the scripts that specifies the path and name of the
executable. See the AtomEye WWW pages here or here for more details:

http://mt.seas.upenn.edu/Archive/Graphics/A
http://mt.seas.upenn.edu/Archive/Graphics/A3/A3.html

The latter link is to AtomEye 3 which has the scriping capability needed by these Python scripts.

Note that for PyMol, you need to have built and installed the open-source version of PyMol in your Python, so
that you can import it from a Python script. See the PyMol WWW pages here or here for more details:

http://www.pymol.org
http://sourceforge.net/scm/?2type=svn&group_id=4546

The latter link is to the open-source version.

Note that for VMD, you need a fairly current version (1.8.7 works for me) and there are some lines in the
pizza/vmd.py script for 4 PIZZA variables that have to match the VMD installation on your system.

117

http://www.sandia.gov/~sjplimp/pizza.html
http://mt.seas.upenn.edu/Archive/Graphics/A
http://mt.seas.upenn.edu/Archive/Graphics/A3/A3.html
http://www.pymol.org
http://sourceforge.net/scm/?type=svn&group_id=4546

See the python/README file for instructions on how to run them and the source code for individual scripts for
comments about what they do.

Here are screenshots of the vizplotgui_tool.py script in action for different visualization package options. Click to
see larger images:

118

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

12. Errors

This section describes the errors you can encounter when using LAMMPS, either conceptually, or as printed out
by the program.

12.1 Common problems
12.2 Reporting bugs
12.3 Error & warning messages

12.1 Common problems

If two LAMMPS runs do not produce the same answer on different machines or different numbers of processors,
this is typically not a bug. In theory you should get identical answers on any number of processors and on any
machine. In practice, numerical round-off can cause slight differences and eventual divergence of molecular
dynamics phase space trajectories within a few 100s or few 1000s of timesteps. However, the statistical properties
of the two runs (e.g. average energy or temperature) should still be the same.

If the velocity command is used to set initial atom velocities, a particular atom can be assigned a different velocity
when the problem is run on a different number of processors or on different machines. If this happens, the phase
space trajectories of the two simulations will rapidly diverge. See the discussion of the loop option in the velocity
command for details and options that avoid this issue.

Similarly, the create_atoms command generates a lattice of atoms. For the same physical system, the ordering and
numbering of atoms by atom ID may be different depending on the number of processors.

Some commands use random number generators which may be setup to produce different random number streams
on each processor and hence will produce different effects when run on different numbers of processors. A
commonly-used example is the fix langevin command for thermostatting.

A LAMMPS simulation typically has two stages, setup and run. Most LAMMPS errors are detected at setup time;
others like a bond stretching too far may not occur until the middle of a run.

LAMMPS tries to flag errors and print informative error messages so you can fix the problem. Of course,
LAMMPS cannot figure out your physics or numerical mistakes, like choosing too big a timestep, specifying
erroneous force field coefficients, or putting 2 atoms on top of each other! If you run into errors that LAMMPS
doesn't catch that you think it should flag, please send an email to the developers.

If you get an error message about an invalid command in your input script, you can determine what command is
causing the problem by looking in the log.lammps file or using the echo command to see it on the screen. For a
given command, LAMMPS expects certain arguments in a specified order. If you mess this up, LAMMPS will
often flag the error, but it may read a bogus argument and assign a value that is valid, but not what you wanted.
E.g. trying to read the string "abc" as an integer value and assigning the associated variable a value of 0.

Generally, LAMMPS will print a message to the screen and logfile and exit gracefully when it encounters a fatal
error. Sometimes it will print a WARNING to the screen and logfile and continue on; you can decide if the
WARNING is important or not. A WARNING message that is generated in the middle of a run is only printed to
the screen, not to the logfile, to avoid cluttering up thermodynamic output. If LAMMPS crashes or hangs without
spitting out an error message first then it could be a bug (see this section) or one of the following cases:

119

http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html

LAMMPS runs in the available memory a processor allows to be allocated. Most reasonable MD runs are
compute limited, not memory limited, so this shouldn't be a bottleneck on most platforms. Almost all large
memory allocations in the code are done via C-style malloc's which will generate an error message if you run out
of memory. Smaller chunks of memory are allocated via C++ "new" statements. If you are unlucky you could run
out of memory just when one of these small requests is made, in which case the code will crash or hang (in
parallel), since LAMMPS doesn't trap on those errors.

Illegal arithmetic can cause LAMMPS to run slow or crash. This is typically due to invalid physics and numerics
that your simulation is computing. If you see wild thermodynamic values or NaN values in your LAMMPS
output, something is wrong with your simulation. If you suspect this is happening, it is a good idea to print out
thermodynamic info frequently (e.g. every timestep) via the thermo so you can monitor what is happening.
Visualizing the atom movement is also a good idea to insure your model is behaving as you expect.

In parallel, one way LAMMPS can hang is due to how different MPI implementations handle buffering of
messages. If the code hangs without an error message, it may be that you need to specify an MPI setting or two
(usually via an environment variable) to enable buffering or boost the sizes of messages that can be buffered.

12.2 Reporting bugs
If you are confident that you have found a bug in LAMMPS, follow these steps.

Check the New features and bug fixes section of the LAMMPS WWW gite to see if the bug has already been
reported or fixed or the Unfixed bug to see if a fix is pending.

Check the mailing list to see if it has been discussed before.

If not, send an email to the mailing list describing the problem with any ideas you have as to what is causing it or
where in the code the problem might be. The developers will ask for more info if needed, such as an input script
or data files.

The most useful thing you can do to help us fix the bug is to isolate the problem. Run it on the smallest number of
atoms and fewest number of processors and with the simplest input script that reproduces the bug and try to

identify what command or combination of commands is causing the problem.

As a last resort, you can send an email directly to the developers.

12.3 Error & warning messages

These are two alphabetic lists of the ERROR and WARNING messages LAMMPS prints out and the reason why.
If the explanation here is not sufficient, the documentation for the offending command may help. Error and
warning messages also list the source file and line number where the error was generated. For example, this
message

ERROR: Illegal velocity command (velocity.cpp:78)

means that line #78 in the file src/velocity.cpp generated the error. Looking in the source code may help you
figure out what went wrong.

Note that error messages from user-contributed packages are not listed here. If such an error occurs and is not
self-explanatory, you'll need to look in the source code or contact the author of the package.

120

http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov
http://lammps.sandia.gov/unbug.html
http://lammps.sandia.gov/mail.html
http://lammps.sandia.gov/authors.html

Errors:

1-3 bond count is inconsistent
An inconsistency was detected when computing the number of 1-3 neighbors for each atom. This likely
means something is wrong with the bond topologies you have defined.

1-4 bond count is inconsistent
An inconsistency was detected when computing the number of 1-4 neighbors for each atom. This likely
means something is wrong with the bond topologies you have defined.

64-bit atom IDs are not yet supported
See description of this data type in src/lmptype.h.

Accelerator sharing is not currently supported on system
Multiple MPI processes cannot share the accelerator on your system. For NVIDIA GPUs, see the
nvidia-smi command to change this setting.

All angle coeffs are not set
All angle coefficients must be set in the data file or by the angle_coeff command before running a
simulation.

All bond coeffs are not set
All bond coefficients must be set in the data file or by the bond_coeff command before running a
simulation.

All dihedral coeffs are not set
All dihedral coefficients must be set in the data file or by the dihedral_coeff command before running a
simulation.

All improper coeffs are not set
All improper coefficients must be set in the data file or by the improper_coeff command before running a
simulation.

All masses are not set
For atom styles that define masses for each atom type, all masses must be set in the data file or by the
mass command before running a simulation. They must also be set before using the velocity command.

All pair coeffs are not set
All pair coefficients must be set in the data file or by the pair_coeff command before running a
simulation.

All read_dump x,y,z fields must be specified for scaled, triclinic coords
For triclinic boxes and scaled coordinates you must specify all 3 of the x,y,z fields, else LAMMPS cannot
reconstruct the unscaled coordinates.

All universe/uloop variables must have same # of values
Self-explanatory.

All variables in next command must be same style
Self-explanatory.

Angle atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular angle on a particular processor.
The pairwise cutoff is too short or the atoms are too far apart to make a valid angle.

Angle atom missing in set command
The set command cannot find one or more atoms in a particular angle on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid angle.

Angle atoms %d %d %d missing on proc %d at step %ld
One or more of 3 atoms needed to compute a particular angle are missing on this processor. Typically this
is because the pairwise cutoff is set too short or the angle has blown apart and an atom is too far away.

Angle coeff for hybrid has invalid style
Angle style hybrid uses another angle style as one of its coefficients. The angle style used in the
angle_coeff command or read from a restart file is not recognized.

Angle coeffs are not set
No angle coefficients have been assigned in the data file or via the angle_coeff command.

121

Angle potential must be defined for SHAKE
When shaking angles, an angle_style potential must be used.
Angle style hybrid cannot have hybrid as an argument
Self-explanatory.
Angle style hybrid cannot have none as an argument
Self-explanatory.
Angle style hybrid cannot use same pair style twice
Self-explanatory.
Angle table must range from 0 to 180 degrees
Self-explanatory.
Angle table parameters did not set N
List of angle table parameters must include N setting.
Angle_coeff command before angle_style is defined
Coefficients cannot be set in the data file or via the angle_coeff command until an angle_style has been
assigned.
Angle_coeff command before simulation box is defined
The angle_coeff command cannot be used before a read_data, read_restart, or create_box command.
Angle_coeff command when no angles allowed
The chosen atom style does not allow for angles to be defined.
Angle_style command when no angles allowed
The chosen atom style does not allow for angles to be defined.
Angles assigned incorrectly
Angles read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.
Angles defined but no angle types
The data file header lists angles but no angle types.
Another input script is already being processed
Cannot attempt to open a 2nd input script, when the original file is still being processed.
Append boundary must be shrink/minimum
The boundary style of the face where atoms are added must be of type m (shrink/minimum).
Arccos of invalid value in variable formula
Argument of arccos() must be between -1 and 1.
Arcsin of invalid value in variable formula
Argument of arcsin() must be between -1 and 1.
Assigning ellipsoid parameters to non-ellipsoid atom
Self-explanatory.
Assigning line parameters to non-line atom
Self-explanatory.
Assigning tri parameters to non-tri atom
Self-explanatory.
Atom IDs must be consecutive for velocity create loop all
Self-explanatory.
Atom count changed in fix neb
This is not allowed in a NEB calculation.
Atom count is inconsistent, cannot write restart file
Sum of atoms across processors does not equal initial total count. This is probably because you have lost
some atoms.
Atom in too many rigid bodies - boost MAXBODY
Fix poems has a parameter MAXBODY (in fix_poems.cpp) which determines the maximum number of
rigid bodies a single atom can belong to (i.e. a multibody joint). The bodies you have defined exceed this
limit.
Atom sort did not operate correctly

122

This is an internal LAMMPS error. Please report it to the developers.
Atom sorting has bin size = 0.0
The neighbor cutoff is being used as the bin size, but it is zero. Thus you must explicitly list a bin size in
the atom_modify sort command or turn off sorting.
Atom style hybrid cannot have hybrid as an argument
Self-explanatory.
Atom style hybrid cannot use same atom style twice
Self-explanatory.
Atom vector in equal-style variable formula
Atom vectors generate one value per atom which is not allowed in an equal-style variable.
Atom-style variable in equal-style variable formula
Atom-style variables generate one value per atom which is not allowed in an equal-style variable.
Atom_modify map command after simulation box is defined
The atom_modify map command cannot be used after a read_data, read_restart, or create_box command.
Atom_modify sort and first options cannot be used together
Self-explanatory.
Atom_style command after simulation box is defined
The atom_style command cannot be used after a read_data, read_restart, or create_box command.
Atom_style line can only be used in 2d simulations
Self-explanatory.
Atom_style tri can only be used in 3d simulations
Self-explanatory.
Attempt to pop empty stack in fix box/relax
Internal LAMMPS error. Please report it to the developers.
Attempt to push beyond stack limit in fix box/relax
Internal LAMMPS error. Please report it to the developers.
Attempting to rescale a 0.0 temperature
Cannot rescale a temperature that is already 0.0.
Bad FENE bond
Two atoms in a FENE bond have become so far apart that the bond cannot be computed.
Bad TIP4P angle type for PPPM/TIP4P
Specified angle type is not valid.
Bad TIP4P bond type for PPPM/TIP4P
Specified bond type is not valid.
Bad fix ID in fix append/atoms command
The value of the fix_id for keyword spatial must start with the suffix f_.
Bad grid of processors
The 3d grid of processors defined by the processors command does not match the number of processors
LAMMPS is being run on.
Bad kspace_modify slab parameter
Kspace_modify value for the slab/volume keyword must be >=2.0.
Bad matrix inversion in mldivide3
This error should not occur unless the matrix is badly formed.
Bad principal moments
Fix rigid did not compute the principal moments of inertia of a rigid group of atoms correctly.
Bad quadratic solve for particle/line collision
This is an internal error. It should nornally not occur.
Bad quadratic solve for particle/tri collision
This is an internal error. It should nornally not occur.
Balance command before simulation box is defined
The balance command cannot be used before a read_data, read_restart, or create_box command.
Balance dynamic string is invalid

123

nenonon n_n

The string can only contain the characters "x", "y", or "z".
Balance produced bad splits
This should not occur. It means two or more cutting plane locations are on top of each other or out of
order. Report the problem to the developers.
Bias compute does not calculate a velocity bias
The specified compute must compute a bias for temperature.
Bias compute does not calculate temperature
The specified compute must compute temperature.
Bias compute group does not match compute group
The specified compute must operate on the same group as the parent compute.
Big particle in fix srd cannot be point particle
Big particles must be extended spheriods or ellipsoids.
Bigint setting in Imptype.h is invalid
Size of bigint is less than size of tagint.
Bigint setting in Imptype.h is not compatible
Bigint stored in restart file is not consistent with LAMMPS version you are running.
Bitmapped lookup tables require int/float be same size
Cannot use pair tables on this machine, because of word sizes. Use the pair_modify command with table
0 instead.
Bitmapped table in file does not match requested table
Setting for bitmapped table in pair_coeff command must match table in file exactly.
Bitmapped table is incorrect length in table file
Number of table entries is not a correct power of 2.
Bond and angle potentials must be defined for TIP4P
Cannot use TIP4P pair potential unless bond and angle potentials are defined.
Bond atom missing in box size check
The 2nd atoms needed to compute a particular bond is missing on this processor. Typically this is because
the pairwise cutoff is set too short or the bond has blown apart and an atom is too far away.
Bond atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular bond on a particular processor.
The pairwise cutoff is too short or the atoms are too far apart to make a valid bond.
Bond atom missing in set command
The set command cannot find one or more atoms in a particular bond on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid bond.
Bond atoms %d %d missing on proc %d at step %ld
One or both of 2 atoms needed to compute a particular bond are missing on this processor. Typically this
is because the pairwise cutoff is set too short or the bond has blown apart and an atom is too far away.
Bond coeff for hybrid has invalid style
Bond style hybrid uses another bond style as one of its coefficients. The bond style used in the
bond_coeff command or read from a restart file is not recognized.
Bond coeffs are not set
No bond coefficients have been assigned in the data file or via the bond_coeff command.
Bond potential must be defined for SHAKE
Cannot use fix shake unless bond potential is defined.
Bond style hybrid cannot have hybrid as an argument
Self-explanatory.
Bond style hybrid cannot have none as an argument
Self-explanatory.
Bond style hybrid cannot use same pair style twice
Self-explanatory.
Bond style quartic cannot be used with 3,4-body interactions
No angle, dihedral, or improper styles can be defined when using bond style quartic.

124

Bond style quartic requires special_bonds = 1,1,1
This is a restriction of the current bond quartic implementation.
Bond table parameters did not set N
List of bond table parameters must include N setting.
Bond table values are not increasing
The values in the tabulated file must be monotonically increasing.
Bond/angle/dihedral extent > half of periodic box length
This is a restriction because LAMMPS can be confused about which image of an atom in the bonded
interaction is the correct one to use. "Extent" in this context means the maximum end-to-end length of the
bond/angle/dihedral. LAMMPS computes this by taking the maximum bond length, multiplying by the
number of bonds in the interaction (e.g. 3 for a dihedral) and adding a small amount of stretch.
Bond_coeff command before bond_style is defined
Coefficients cannot be set in the data file or via the bond_coeff command until an bond_style has been
assigned.
Bond_coeff command before simulation box is defined
The bond_coeff command cannot be used before a read_data, read_restart, or create_box command.
Bond_coeff command when no bonds allowed
The chosen atom style does not allow for bonds to be defined.
Bond_style command when no bonds allowed
The chosen atom style does not allow for bonds to be defined.
Bonds assigned incorrectly
Bonds read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.
Bonds defined but no bond types
The data file header lists bonds but no bond types.
Both sides of boundary must be periodic
Cannot specify a boundary as periodic only on the lo or hi side. Must be periodic on both sides.
Boundary command after simulation box is defined
The boundary command cannot be used after a read_data, read_restart, or create_box command.
Box bounds are invalid
The box boundaries specified in the read_data file are invalid. The lo value must be less than the hi value
for all 3 dimensions.
Can not specify Pxy/Pxz/Pyz in fix box/relax with non-triclinic box
Only triclinic boxes can be used with off-diagonal pressure components. See the region prism command
for details.
Can not specify Pxy/Pxz/Pyz in fix nvt/npt/nph with non-triclinic box
Only triclinic boxes can be used with off-diagonal pressure components. See the region prism command
for details.
Can only use -plog with multiple partitions
Self-explanatory. See doc page discussion of command-line switches.
Can only use -pscreen with multiple partitions
Self-explanatory. See doc page discussion of command-line switches.
Can only use NEB with I-processor replicas
This is current restriction for NEB as implemented in LAMMPS.
Can only use TAD with I-processor replicas for NEB
This is current restriction for NEB as implemented in LAMMPS.
Cannot (yet) use K-space slab correction with compute group/group
This option is not yet supported.
Cannot (yet) use Kspace slab correction with compute group/group
This option is not yet supported.
Cannot (yet) use PPPM with triclinic box
This feature is not yet supported.

125

Cannot add atoms to fix move variable
Atoms can not be added afterwards to this fix option.
Cannot append atoms to a triclinic box
The simulation box must be defined with edges alligned with the Cartesian axes.
Cannot balance in 7 dimension for 2d simulation
Self-explanatory.
Cannot change box ortho/triclinic with certain fixes defined
This is because those fixes store the shape of the box. You need to use unfix to discard the fix, change the
box, then redefine a new fix.
Cannot change box ortho/triclinic with dumps defined
This is because some dumps store the shape of the box. You need to use undump to discard the dump,
change the box, then redefine a new dump.
Cannot change box tilt factors for orthogonal box
Cannot use tilt factors unless the simulation box is non-orthogonal.
Cannot change box to orthogonal when tilt is non-zero
Self-explanatory.
Cannot change box z boundary to nonperiodic for a 2d simulation
Self-explanatory.
Cannot change dump_modify every for dump dcd
The frequency of writing dump dcd snapshots cannot be changed.
Cannot change dump_modify every for dump xtc
The frequency of writing dump xtc snapshots cannot be changed.
Cannot change timestep once fix srd is setup
This is because various SRD properties depend on the timestep size.
Cannot change timestep with fix pour
This fix pre-computes some values based on the timestep, so it cannot be changed during a simulation
run.
Cannot change_box after reading restart file with per-atom info
This is because the restart file info cannot be migrated with the atoms. You can get around this by
performing a O-timestep run which will assign the restart file info to actual atoms.
Cannot change_box in xz or yz for 2d simulation
Self-explanatory.
Cannot change_box in 7 dimension for 2d simulation
Self-explanatory.
Cannot compute PPPM G
LAMMPS failed to compute a valid approximation for the PPPM g_ewald factor that partitions the
computation between real space and k-space.
Cannot create an atom map unless atoms have IDs
The simulation requires a mapping from global atom IDs to local atoms, but the atoms that have been
defined have no IDs.
Cannot create atoms with undefined lattice
Must use the lattice command before using the create_atoms command.
Cannot create/grow a vector/array of pointers for %s
LAMMPS code is making an illegal call to the templated memory allocaters, to create a vector or array of
pointers.
Cannot create_atoms after reading restart file with per-atom info
The per-atom info was stored to be used when by a fix that you may re-define. If you add atoms before
re-defining the fix, then there will not be a correct amount of per-atom info.
Cannot create_box after simulation box is defined
The create_box command cannot be used after a read_data, read_restart, or create_box command.
Cannot currently use pair reax with pair hybrid
This is not yet supported.

126

Cannot delete group all
Self-explanatory.
Cannot delete group currently used by a compute
Self-explanatory.
Cannot delete group currently used by a dump
Self-explanatory.
Cannot delete group currently used by a fix
Self-explanatory.
Cannot delete group currently used by atom_modify first
Self-explanatory.
Cannot displace_atoms after reading restart file with per-atom info
This is because the restart file info cannot be migrated with the atoms. You can get around this by
performing a O-timestep run which will assign the restart file info to actual atoms.
Cannot do GCMC on atoms in atom_modify first group
This is a restriction due to the way atoms are organized in a list to enable the atom_modify first
command.
Cannot dump JPG file
LAMMPS was not built with the -DLAMMPS_JPEG switch in the Makefile.
Cannot dump sort on atom IDs with no atom IDs defined
Self-explanatory.
Cannot evaporate atoms in atom_modify first group
This is a restriction due to the way atoms are organized in a list to enable the atom_modify first
command.
Cannot find delete_bonds group 1D
Group ID used in the delete_bonds command does not exist.
Cannot have both pair_modify shift and tail set to yes
These 2 options are contradictory.
Cannot open -reorder file
Self-explanatory.
Cannot open ADP potential file %os
The specified ADP potential file cannot be opened. Check that the path and name are correct.
Cannot open AIREBO potential file %s
The specified AIREBO potential file cannot be opened. Check that the path and name are correct.
Cannot open BOP potential file %os
The specified BOP potential file cannot be opened. Check that the path and name are correct.
Cannot open COMB potential file %os
The specified COMB potential file cannot be opened. Check that the path and name are correct.
Cannot open EAM potential file %s
The specified EAM potential file cannot be opened. Check that the path and name are correct.
Cannot open EIM potential file %os
The specified EIM potential file cannot be opened. Check that the path and name are correct.
Cannot open LCBOP potential file %s
The specified LCBOP potential file cannot be opened. Check that the path and name are correct.
Cannot open MEAM potential file %s
The specified MEAM potential file cannot be opened. Check that the path and name are correct.
Cannot open Stillinger-Weber potential file %s
The specified SW potential file cannot be opened. Check that the path and name are correct.
Cannot open Tersoff potential file Yos
The specified Tersoff potential file cannot be opened. Check that the path and name are correct.
Cannot open balance output file
Self-explanatory.
Cannot open custom file

127

Self-explanatory.
Cannot open dir to search for restart file
Using a "*" in the name of the restart file will open the current directory to search for matching file
names.
Cannot open dump file
The output file for the dump command cannot be opened. Check that the path and name are correct.
Cannot open file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix ave/correlate file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix ave/histo file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix ave/spatial file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix ave/time file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix balance output file
Self-explanatory.
Cannot open fix poems file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix print file %s
The output file generated by the fix print command cannot be opened
Cannot open fix qeq/comb file Yos
The output file for the fix geq/combs command cannot be opened. Check that the path and name are
correct.
Cannot open fix reax/bonds file %s
The output file for the fix reax/bonds command cannot be opened. Check that the path and name are
correct.
Cannot open fix rigid infile %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix tmd file %s
The output file for the fix tmd command cannot be opened. Check that the path and name are correct.
Cannot open fix ttm file %s
The output file for the fix ttm command cannot be opened. Check that the path and name are correct.
Cannot open gzipped file
LAMMPS is attempting to open a gzipped version of the specified file but was unsuccessful. Check that
the path and name are correct.
Cannot open input script %s
Self-explanatory.
Cannot open log.lammps
The default LAMMPS log file cannot be opened. Check that the directory you are running in allows for
files to be created.
Cannot open logfile
The LAMMPS log file named in a command-line argument cannot be opened. Check that the path and
name are correct.
Cannot open logfile %s
The LAMMPS log file specified in the input script cannot be opened. Check that the path and name are
correct.
Cannot open pair_write file
The specified output file for pair energies and forces cannot be opened. Check that the path and name are
correct.
Cannot open processors output file

128

Self-explanatory.
Cannot open restart file %s
Self-explanatory.
Cannot open screen file
The screen file specified as a command-line argument cannot be opened. Check that the directory you are
running in allows for files to be created.
Cannot open universe log file
For a multi-partition run, the master log file cannot be opened. Check that the directory you are running in
allows for files to be created.
Cannot open universe screen file
For a multi-partition run, the master screen file cannot be opened. Check that the directory you are
running in allows for files to be created.
Cannot read_data after simulation box is defined
The read_data command cannot be used after a read_data, read_restart, or create_box command.
Cannot read_restart after simulation box is defined
The read_restart command cannot be used after a read_data, read_restart, or create_box command.
Cannot redefine variable as a different style
An equal-style variable can be re-defined but only if it was originally an equal-style variable.
Cannot replicate 2d simulation in 7 dimension
The replicate command cannot replicate a 2d simulation in the z dimension.
Cannot replicate with fixes that store atom quantities
Either fixes are defined that create and store atom-based vectors or a restart file was read which included
atom-based vectors for fixes. The replicate command cannot duplicate that information for new atoms.
You should use the replicate command before fixes are applied to the system.
Cannot reset timestep with a dynamic region defined
Dynamic regions (see the region command) have a time dependence. Thus you cannot change the
timestep when one or more of these are defined.
Cannot reset timestep with a time-dependent fix defined
You cannot reset the timestep when a fix that keeps track of elapsed time is in place.
Cannot restart fix rigid/nvt with different # of chains
This is because the restart file contains per-chain info.
Cannot run 2d simulation with nonperiodic Z dimension
Use the boundary command to make the z dimension periodic in order to run a 2d simulation.
Cannot set both respa pair and inner/middle/outer
In the rRESPA integrator, you must compute pairwise potentials either all together (pair), or in pieces
(inner/middle/outer). You can't do both.
Cannot set dump_modify flush for dump xtc
Self-explanatory.
Cannot set mass for this atom style
This atom style does not support mass settings for each atom type. Instead they are defined on a per-atom
basis in the data file.
Cannot set meso_rho for this atom style
Self-explanatory.
Cannot set non-zero image flag for non-periodic dimension
Self-explanatory.
Cannot set non-zero z velocity for 2d simulation
Self-explanatory.
Cannot set quaternion for atom that has none
Self-explanatory.
Cannot set respa middle without inner/outer
In the rRESPA integrator, you must define both a inner and outer setting in order to use a middle setting.
Cannot set theta for atom that is not a line

129

Self-explanatory.
Cannot set this attribute for this atom style
The attribute being set does not exist for the defined atom style.
Cannot set variable z velocity for 2d simulation
Self-explanatory.
Cannot skew triclinic box in z for 2d simulation
Self-explanatory.
Cannot use -cuda on without USER-CUDA installed
The USER-CUDA package must be installed via "make yes-user-cuda" before LAMMPS is built.
Cannot use -reorder after -partition
Self-explanatory. See doc page discussion of command-line switches.
Cannot use Ewald with 2d simulation
The kspace style ewald cannot be used in 2d simulations. You can use 2d Ewald in a 3d simulation; see
the kspace_modify command.
Cannot use Ewald with triclinic box
This feature is not yet supported.
Cannot use NEB unless atom map exists
Use the atom_modify command to create an atom map.
Cannot use NEB with a single replica
Self-explanatory.
Cannot use NEB with atom_modify sort enabled
This is current restriction for NEB implemented in LAMMPS.
Cannot use PPPM with 2d simulation
The kspace style pppm cannot be used in 2d simulations. You can use 2d PPPM in a 3d simulation; see
the kspace_modify command.
Cannot use PRD with a time-dependent fix defined
PRD alters the timestep in ways that will mess up these fixes.
Cannot use PRD with a time-dependent region defined
PRD alters the timestep in ways that will mess up these regions.
Cannot use PRD with atom_modify sort enabled
This is a current restriction of PRD. You must turn off sorting, which is enabled by default, via the
atom_modify command.
Cannot use PRD with multi-processor replicas unless atom map exists
Use the atom_modify command to create an atom map.
Cannot use TAD unless atom map exists for NEB
See atom_modify map command to set this.
Cannot use TAD with a single replica for NEB
NEB requires multiple replicas.
Cannot use TAD with atom_modify sort enabled for NEB
This is a current restriction of NEB.
Cannot use a damped dynamics min style with fix box/relax
This is a current restriction in LAMMPS. Use another minimizer style.
Cannot use a damped dynamics min style with per-atom DOF
This is a current restriction in LAMMPS. Use another minimizer style.
Cannot use append/atoms in periodic dimension
The boundary style of the face where atoms are added can not be of type p (periodic).
Cannot use compute cluster/atom unless atoms have IDs
Atom IDs are used to identify clusters.
Cannot use cwiggle in variable formula between runs
This is a function of elapsed time.
Cannot use delete_atoms unless atoms have IDs
Your atoms do not have IDs, so the delete_atoms command cannot be used.

130

Cannot use delete_bonds with non-molecular system
Your choice of atom style does not have bonds.
Cannot use fix GPU with USER-CUDA mode enabled
You cannot use both the GPU and USER-CUDA packages together. Use one or the other.
Cannot use fix TMD unless atom map exists
Using this fix requires the ability to lookup an atom index, which is provided by an atom map. An atom
map does not exist (by default) for non-molecular problems. Using the atom_modify map command will
force an atom map to be created.
Cannot use fix ave/spatial 7 for 2 dimensional model
Self-explanatory.
Cannot use fix bond/break with non-molecular systems
Self-explanatory.
Cannot use fix bond/create with non-molecular systems
Self-explanatory.
Cannot use fix box/relax on a 2nd non-periodic dimension
When specifying an off-diagonal pressure component, the 2nd of the two dimensions must be periodic.
E.g. if the xy component is specified, then the y dimension must be periodic.
Cannot use fix box/relax on a non-periodic dimension
When specifying a diagonal pressure component, the dimension must be periodic.
Cannot use fix deform on a shrink-wrapped boundary
The x, y, z options cannot be applied to shrink-wrapped dimensions.
Cannot use fix deform tilt on a shrink-wrapped 2nd dim
This is because the shrink-wrapping will change the value of the strain implied by the tilt factor.
Cannot use fix deform trate on a box with zero tilt
The trate style alters the current strain.
Cannot use fix enforce2d with 3d simulation
Self-explanatory.
Cannot use fix msst without per-type mass defined
Self-explanatory.
Cannot use fix npt and fix deform on same component of stress tensor
This would be changing the same box dimension twice.
Cannot use fix nvt/npt/nph on a 2nd non-periodic dimension
When specifying an off-diagonal pressure component, the 2nd of the two dimensions must be periodic.
E.g. if the xy component is specified, then the y dimension must be periodic.
Cannot use fix nvt/npt/nph on a non-periodic dimension
When specifying a diagonal pressure component, the dimension must be periodic.
Cannot use fix nvt/npt/nph with both xy dynamics and xy scaling
Self-explanatory.
Cannot use fix nvt/npt/nph with both xz dynamics and xz scaling
Self-explanatory.
Cannot use fix nvt/npt/nph with both yz dynamics and yz scaling
Self-explanatory.
Cannot use fix nvt/npt/nph with xy dynamics when y is non-periodic dimension
The 2nd dimension in the barostatted tilt factor must be periodic.
Cannot use fix nvt/npt/nph with xz dynamics when 7 is non-periodic dimension
The 2nd dimension in the barostatted tilt factor must be periodic.
Cannot use fix nvt/npt/nph with yz dynamics when 7 is non-periodic dimension
The 2nd dimension in the barostatted tilt factor must be periodic.
Cannot use fix pour with triclinic box
This feature is not yet supported.
Cannot use fix press/berendsen and fix deform on same component of stress tensor
These commands both change the box size/shape, so you cannot use both together.

131

Cannot use fix press/berendsen on a non-periodic dimension
Self-explanatory.
Cannot use fix press/berendsen with triclinic box
Self-explanatory.
Cannot use fix reax/bonds without pair_style reax
Self-explantory.
Cannot use fix shake with non-molecular system
Your choice of atom style does not have bonds.
Cannot use fix ttm with 2d simulation
This is a current restriction of this fix due to the grid it creates.
Cannot use fix ttm with triclinic box
This is a current restriction of this fix due to the grid it creates.
Cannot use fix wall in periodic dimension
Self-explanatory.
Cannot use fix wall zlo/zhi for a 2d simulation
Self-explanatory.
Cannot use fix wall/reflect in periodic dimension
Self-explanatory.
Cannot use fix wall/reflect zlo/zhi for a 2d simulation
Self-explanatory.
Cannot use fix wall/srd in periodic dimension
Self-explanatory.
Cannot use fix wall/srd more than once
Nor is their a need to since multiple walls can be specified in one command.
Cannot use fix wall/srd without fix srd
Self-explanatory.
Cannot use fix wall/srd zlo/zhi for a 2d simulation
Self-explanatory.
Cannot use force/hybrid_neigh with triclinic box
Self-explanatory.
Cannot use force/neigh with triclinic box
This is a current limitation of the GPU implementation in LAMMPS.
Cannot use kspace solver on system with no charge
No atoms in system have a non-zero charge.
Cannot use lines with fix srd unless overlap is set
This is because line segements are connected to each other.
Cannot use neigh_modify exclude with GPU neighbor builds
This is a current limitation of the GPU implementation in LAMMPS.
Cannot use neighbor bins - box size << cutoff
Too many neighbor bins will be created. This typically happens when the simulation box is very small in
some dimension, compared to the neighbor cutoff. Use the "nsq" style instead of "bin" style.
Cannot use newton pair with buck/coul/cut/gpu pair style
Self-explanatory.
Cannot use newton pair with buck/coul/long/gpu pair style
Self-explanatory.
Cannot use newton pair with buck/gpu pair style
Self-explanatory.
Cannot use newton pair with coul/long/gpu pair style
Self-explanatory.
Cannot use newton pair with eam/gpu pair style
Self-explanatory.
Cannot use newton pair with gayberne/gpu pair style

132

Self-explanatory.
Cannot use newton pair with lj/charmm/coul/long/gpu pair style

Self-explanatory.

Cannot use newton pair with lj/class2/coul/long/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/class2/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cut/coul/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cut/coul/long/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/expand/gpu pair style
Self-explanatory.

Cannot use newton pair with [j96/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with morse/gpu pair style
Self-explanatory.

Cannot use newton pair with resquared/gpu pair style
Self-explanatory.

Cannot use newton pair with table/gpu pair style
Self-explanatory.

Cannot use newton pair with yukawa/gpu pair style
Self-explanatory.

Cannot use non-zero forces in an energy minimization
Fix setforce cannot be used in this manner. Use fix addforce instead.
Cannot use nonperiodic boundares with fix ttm
This fix requires a fully periodic simulation box.
Cannot use nonperiodic boundaries with Ewald
For kspace style ewald, all 3 dimensions must have periodic boundaries unless you use the
kspace_modify command to define a 2d slab with a non-periodic z dimension.
Cannot use nonperiodic boundaries with PPPM
For kspace style pppm, all 3 dimensions must have periodic boundaries unless you use the kspace_modify
command to define a 2d slab with a non-periodic z dimension.
Cannot use order greater than 8 with pppm/gpu.
Self-explanatory.
Cannot use pair hybrid with GPU neighbor builds
See documentation for fix gpu.
Cannot use pair tail corrections with 2d simulations
The correction factors are only currently defined for 3d systems.
Cannot use processors part command without using partitions
See the command-line -partition switch.
Cannot use ramp in variable formula between runs
This is because the ramp() function is time dependent.
Cannot use region INF or EDGE when box does not exist
Regions that extend to the box boundaries can only be used after the create_box command has been used.
Cannot use set atom with no atom IDs defined
Atom IDs are not defined, so they cannot be used to identify an atom.
Cannot use set mol with no molecule IDs defined
Self-explanatory.
Cannot use swiggle in variable formula between runs

133

This is a function of elapsed time.
Cannot use tris with fix srd unless overlap is set
This is because triangles are connected to each other.
Cannot use variable energy with constant force in fix addforce
This is because for constant force, LAMMPS can compute the change in energy directly.
Cannot use variable every setting for dump dcd
The format of DCD dump files requires snapshots be output at a constant frequency.
Cannot use variable every setting for dump xtc
The format of this file requires snapshots at regular intervals.
Cannot use vdisplace in variable formula between runs
This is a function of elapsed time.
Cannot use velocity create loop all unless atoms have IDs
Atoms in the simulation to do not have IDs, so this style of velocity creation cannot be performed.
Cannot use wall in periodic dimension
Self-explanatory.
Cannot wiggle and shear fix wall/gran
Cannot specify both options at the same time.
Cannot yet use fix balance with PPPM
This is a current limitation of LAMMPS.
Cannot zero Langevin force of 0 atoms
The group has zero atoms, so you cannot request its force be zeroed.
Cannot zero momentum of 0 atoms
The collection of atoms for which momentum is being computed has no atoms.
Change_box command before simulation box is defined
Self-explanatory.
Change_box volume used incorrectly
The "dim volume" option must be used immediately following one or two settings for "dim1 ..." (and
optionally "dim?2 ...") and must be for a different dimension, i.e. dim != dim1 and dim != dim?2.
Communicate group != atom_modify first group

Self-explanatory.

Compute ID for compute atom/molecule does not exist
Self-explanatory.

Compute ID for compute reduce does not exist
Self-explanatory.

Compute ID for compute slice does not exist
Self-explanatory.

Compute ID for fix ave/atom does not exist
Self-explanatory.

Compute ID for fix ave/correlate does not exist
Self-explanatory.

Compute ID for fix ave/histo does not exist
Self-explanatory.

Compute ID for fix ave/spatial does not exist
Self-explanatory.

Compute ID for fix ave/time does not exist
Self-explanatory.

Compute ID for fix store/state does not exist
Self-explanatory.

Compute ID must be alphanumeric or underscore characters
Self-explanatory.

Compute angle/local used when angles are not allowed
The atom style does not support angles.

134

Compute atom/molecule compute array is accessed out-of-range
Self-explanatory.

Compute atom/molecule compute does not calculate a per-atom array
Self-explanatory.

Compute atom/molecule compute does not calculate a per-atom vector
Self-explanatory.

Compute atom/molecule compute does not calculate per-atom values
Self-explanatory.

Compute atom/molecule fix array is accessed out-of-range
Self-explanatory.

Compute atom/molecule fix does not calculate a per-atom array
Self-explanatory.

Compute atom/molecule fix does not calculate a per-atom vector
Self-explanatory.

Compute atom/molecule fix does not calculate per-atom values
Self-explanatory.

Compute atom/molecule requires molecular atom style
Self-explanatory.

Compute atom/molecule variable is not atom-style variable
Self-explanatory.

Compute bond/local used when bonds are not allowed
The atom style does not support bonds.

Compute centro/atom requires a pair style be defined
This is because the computation of the centro-symmetry values uses a pairwise neighbor list.

Compute cluster/atom cutoff is longer than pairwise cutoff
Cannot identify clusters beyond cutoff.

Compute cluster/atom requires a pair style be defined
This is so that the pair style defines a cutoff distance which is used to find clusters.

Compute cna/atom cutoff is longer than pairwise cutoff
Self-explantory.

Compute cna/atom requires a pair style be defined
Self-explantory.

Compute com/molecule requires molecular atom style
Self-explanatory.

Compute coord/atom cutoff is longer than pairwise cutoff
Cannot compute coordination at distances longer than the pair cutoff, since those atoms are not in the
neighbor list.

Compute coord/atom requires a pair style be defined
Self-explantory.

Compute damage/atom requires peridynamic potential
Damage is a Peridynamic-specific metric. It requires you to be running a Peridynamics simulation.

Compute dihedral/local used when dihedrals are not allowed
The atom style does not support dihedrals.

Compute does not allow an extra compute or fix to be reset
This is an internal LAMMPS error. Please report it to the developers.

Compute erotate/asphere requires atom style ellipsoid or line or tri
Self-explanatory.

Compute erotate/asphere requires extended particles
This compute cannot be used with point paritlces.

Compute erotate/sphere requires atom style sphere
Self-explanatory.

Compute event/displace has invalid fix event assigned

135

This is an internal LAMMPS error. Please report it to the developers.

Compute group/group group ID does not exist
Self-explanatory.

Compute gyration/molecule requires molecular atom style
Self-explanatory.

Compute heat/flux compute ID does not compute ke/atom
Self-explanatory.

Compute heat/flux compute ID does not compute pe/atom
Self-explanatory.

Compute heat/flux compute ID does not compute stress/atom
Self-explanatory.

Compute improper/local used when impropers are not allowed
The atom style does not support impropers.

Compute msd/molecule requires molecular atom style
Self-explanatory.

Compute nve/asphere requires atom style ellipsoid
Self-explanatory.

Compute nvt/nph/npt asphere requires atom style ellipsoid
Self-explanatory.

Compute pair must use group all
Pair styles accumlate energy on all atoms.

Compute pe must use group all

Energies computed by potentials (pair, bond, etc) are computed on all atoms.

Compute pressure must use group all

Virial contributions computed by potentials (pair, bond, etc) are computed on all atoms.

Compute pressure temperature ID does not compute temperature

The compute ID assigned to a pressure computation must compute temperature.

Compute property/atom for atom property that isn't allocated
Self-explanatory.
Compute property/local cannot use these inputs together

Only inputs that generate the same number of datums can be used togther. E.g. bond and angle quantities

cannot be mixed.

Compute property/local for property that isn't allocated
Self-explanatory.

Compute property/molecule requires molecular atom style
Self-explanatory.

Compute rdf requires a pair style be defined
Self-explanatory.

Compute reduce compute array is accessed out-of-range
An index for the array is out of bounds.

Compute reduce compute calculates global values

A compute that calculates peratom or local values is required.

Compute reduce compute does not calculate a local array
Self-explanatory.

Compute reduce compute does not calculate a local vector
Self-explanatory.

Compute reduce compute does not calculate a per-atom array
Self-explanatory.

Compute reduce compute does not calculate a per-atom vector
Self-explanatory.

Compute reduce fix array is accessed out-of-range
An index for the array is out of bounds.

136

Compute reduce fix calculates global values
A fix that calculates peratom or local values is required.

Compute reduce fix does not calculate a local array
Self-explanatory.

Compute reduce fix does not calculate a local vector
Self-explanatory.

Compute reduce fix does not calculate a per-atom array
Self-explanatory.

Compute reduce fix does not calculate a per-atom vector
Self-explanatory.

Compute reduce replace requires min or max mode
Self-explanatory.

Compute reduce variable is not atom-style variable
Self-explanatory.

Compute slice compute array is accessed out-of-range
An index for the array is out of bounds.

Compute slice compute does not calculate a global array
Self-explanatory.

Compute slice compute does not calculate a global vector
Self-explanatory.

Compute slice compute does not calculate global vector or array
Self-explanatory.

Compute slice compute vector is accessed out-of-range
The index for the vector is out of bounds.

Compute slice fix array is accessed out-of-range
An index for the array is out of bounds.

Compute slice fix does not calculate a global array
Self-explanatory.

Compute slice fix does not calculate a global vector
Self-explanatory.

Compute slice fix does not calculate global vector or array
Self-explanatory.

Compute slice fix vector is accessed out-of-range
The index for the vector is out of bounds.

Compute temp/asphere requires atom style ellipsoid
Self-explanatory.

Compute temp/asphere requires extended particles
This compute cannot be used with point paritlces.

Compute temp/partial cannot use vz for 2d systemx
Self-explanatory.

Compute temp/profile cannot bin 7 for 2d systems
Self-explanatory.

Compute temp/profile cannot use vz for 2d systemx
Self-explanatory.

Compute temp/sphere requires atom style sphere
Self-explanatory.

Compute ti kspace style does not exist
Self-explanatory.

Compute ti pair style does not exist
Self-explanatory.

Compute ti tail when pair style does not compute tail corrections
Self-explanatory.

137

Compute used in variable between runs is not current
Computes cannot be invoked by a variable in between runs. Thus they must have been evaluated on the
last timestep of the previous run in order for their value(s) to be accessed. See the doc page for the
variable command for more info.
Compute used in variable thermo keyword between runs is not current
Some thermo keywords rely on a compute to calculate their value(s). Computes cannot be invoked by a
variable in between runs. Thus they must have been evaluated on the last timestep of the previous run in
order for their value(s) to be accessed. See the doc page for the variable command for more info.
Computed temperature for fix temp/berendsen cannot be 0.0
Self-explanatory.
Computed temperature for fix temp/rescale cannot be 0.0
Cannot rescale the temperature to a new value if the current temperature is 0.0.
Could not count initial bonds in fix bond/create
Could not find one of the atoms in a bond on this processor.
Could not create 3d FFT plan
The FFT setup in pppm failed.
Could not create 3d grid of processors
The specified constraints did not allow a Px by Py by Pz grid to be created where Px * Py * Pz = P = total
number of processors.
Could not create 3d remap plan
The FFT setup in pppm failed.
Could not create numa grid of processors
The specified constraints did not allow this style of grid to be created. Usually this is because the total
processor count is not a multiple of the cores/node or the user specified processor count is > 1 in one of
the dimensions.
Could not create twolevel 3d grid of processors
The specified constraints did not allow this style of grid to be created.
Could not find atom_modify first group ID
Self-explanatory.
Could not find change_box group ID
Group ID used in the change_box command does not exist.
Could not find compute ID for PRD
Self-explanatory.
Could not find compute ID for TAD
Self-explanatory.
Could not find compute ID for temperature bias
Self-explanatory.
Could not find compute ID to delete
Self-explanatory.
Could not find compute displace/atom fix ID
Self-explanatory.
Could not find compute event/displace fix ID
Self-explanatory.
Could not find compute group ID
Self-explanatory.
Could not find compute heat/flux compute ID
Self-explanatory.
Could not find compute msd fix ID
Self-explanatory.
Could not find compute pressure temperature ID
The compute ID for calculating temperature does not exist.
Could not find compute_modify ID

138

Self-explanatory.
Could not find delete_atoms group ID

Group ID used in the delete_atoms command does not exist.
Could not find delete_atoms region ID

Region ID used in the delete_atoms command does not exist.
Could not find displace_atoms group 1D

Group ID used in the displace_atoms command does not exist.
Could not find dump custom compute 1D

The compute ID needed by dump custom to compute a per-atom quantity does not exist.

Could not find dump custom fix ID

Self-explanatory.
Could not find dump custom variable name

Self-explanatory.
Could not find dump group ID

A group ID used in the dump command does not exist.
Could not find dump local compute ID

Self-explanatory.
Could not find dump local fix ID

Self-explanatory.
Could not find dump modify compute ID

Self-explanatory.
Could not find dump modify fix ID

Self-explanatory.
Could not find dump modify variable name

Self-explanatory.
Could not find fix ID to delete

Self-explanatory.
Could not find fix group ID

A group ID used in the fix command does not exist.
Could not find fix msst compute ID

Self-explanatory.
Could not find fix poems group 1D

A group ID used in the fix poems command does not exist.
Could not find fix recenter group ID

A group ID used in the fix recenter command does not exist.
Could not find fix rigid group ID

A group ID used in the fix rigid command does not exist.
Could not find fix srd group ID

Self-explanatory.
Could not find fix_modify 1D

A fix ID used in the fix_modify command does not exist.
Could not find fix_modify pressure ID

The compute ID for computing pressure does not exist.
Could not find fix_modify temperature ID

The compute ID for computing temperature does not exist.
Could not find group delete group ID

Self-explanatory.
Could not find set group ID

Group ID specified in set command does not exist.
Could not find thermo compute ID

Compute ID specified in thermo_style command does not exist.

Could not find thermo custom compute 1D

139

The compute ID needed by thermo style custom to compute a requested quantity does not exist.
Could not find thermo custom fix ID

The fix ID needed by thermo style custom to compute a requested quantity does not exist.
Could not find thermo custom variable name

Self-explanatory.
Could not find thermo fix ID

Fix ID specified in thermo_style command does not exist.
Could not find thermo variable name

Self-explanatory.
Could not find thermo_modify pressure 1D

The compute ID needed by thermo style custom to compute pressure does not exist.
Could not find thermo_modify temperature ID

The compute ID needed by thermo style custom to compute temperature does not exist.
Could not find undump 1D

A dump ID used in the undump command does not exist.
Could not find velocity group ID

A group ID used in the velocity command does not exist.
Could not find velocity temperature ID

The compute ID needed by the velocity command to compute temperature does not exist.
Could not find/initialize a specified accelerator device

Could not initialize at least one of the devices specified for the gpu package
Could not grab element entry from EIM potential file

Self-explanatory
Could not grab global entry from EIM potential file

Self-explanatory.
Could not grab pair entry from EIM potential file

Self-explanatory.
Coulomb cutoffs of pair hybrid sub-styles do not match

If using a Kspace solver, all Coulomb cutoffs of long pair styles must be the same.
Cound not find dump_modify ID

Self-explanatory.
Create_atoms command before simulation box is defined

The create_atoms command cannot be used before a read_data, read_restart, or create_box command.
Create_atoms region ID does not exist

A region ID used in the create_atoms command does not exist.
Create_box region ID does not exist

A region ID used in the create_box command does not exist.
Create_box region does not support a bounding box

Not all regions represent bounded volumes. You cannot use such a region with the create_box command.
Cyclic loop in joint connections

Fix poems cannot (yet) work with coupled bodies whose joints connect the bodies in a ring (or cycle).
Degenerate lattice primitive vectors

Invalid set of 3 lattice vectors for lattice command.
Delete region ID does not exist

Self-explanatory.
Delete_atoms command before simulation box is defined

The delete_atoms command cannot be used before a read_data, read_restart, or create_box command.
Delete_atoms cutoff > neighbor cutoff

Cannot delete atoms further away than a processor knows about.
Delete_atoms requires a pair style be defined

This is because atom deletion within a cutoff uses a pairwise neighbor list.
Delete_bonds command before simulation box is defined

140

The delete_bonds command cannot be used before a read_data, read_restart, or create_box command.
Delete_bonds command with no atoms existing
No atoms are yet defined so the delete_bonds command cannot be used.
Deposition region extends outside simulation box
Self-explanatory.
Did not assign all atoms correctly
Atoms read in from a data file were not assigned correctly to processors. This is likely due to some atom
coordinates being outside a non-periodic simulation box.
Did not find all elements in MEAM library file
The requested elements were not found in the MEAM file.
Did not find fix shake partner info
Could not find bond partners implied by fix shake command. This error can be triggered if the
delete_bonds command was used before fix shake, and it removed bonds without resetting the 1-2, 1-3,
1-4 weighting list via the special keyword.
Did not find keyword in table file
Keyword used in pair_coeff command was not found in table file.
Did not set temp for fix rigid/nvt
The temp keyword must be used.
Dihedral atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular dihedral on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid dihedral.
Dihedral atom missing in set command
The set command cannot find one or more atoms in a particular dihedral on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid dihedral.
Dihedral atoms %d %d %d Yod missing on proc %d at step %ld
One or more of 4 atoms needed to compute a particular dihedral are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the dihedral has blown apart and an atom is too far
away.
Dihedral charmm is incompatible with Pair style
Dihedral style charmm must be used with a pair style charmm in order for the 1-4 epsilon/sigma
parameters to be defined.
Dihedral coeff for hybrid has invalid style
Dihedral style hybrid uses another dihedral style as one of its coefficients. The dihedral style used in the
dihedral_coeff command or read from a restart file is not recognized.
Dihedral coeffs are not set
No dihedral coefficients have been assigned in the data file or via the dihedral_coeff command.
Dihedral style hybrid cannot have hybrid as an argument
Self-explanatory.
Dihedral style hybrid cannot have none as an argument
Self-explanatory.
Dihedral style hybrid cannot use same dihedral style twice
Self-explanatory.
Dihedral_coeff command before dihedral_style is defined
Coefficients cannot be set in the data file or via the dihedral_coeff command until an dihedral_style has
been assigned.
Dihedral_coeff command before simulation box is defined
The dihedral_coeff command cannot be used before a read_data, read_restart, or create_box command.
Dihedral_coeff command when no dihedrals allowed
The chosen atom style does not allow for dihedrals to be defined.
Dihedral_style command when no dihedrals allowed
The chosen atom style does not allow for dihedrals to be defined.
Dihedrals assigned incorrectly

141

Dihedrals read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.
Dihedrals defined but no dihedral types
The data file header lists dihedrals but no dihedral types.
Dimension command after simulation box is defined
The dimension command cannot be used after a read_data, read_restart, or create_box command.
Displace_atoms command before simulation box is defined
The displace_atoms command cannot be used before a read_data, read_restart, or create_box command.
Distance must be > 0 for compute event/displace
Self-explanatory.
Divide by 0 in influence function of pair peri/lps
This should not normally occur. It is likely a problem with your model.
Divide by 0 in variable formula
Self-explanatory.
Domain too large for neighbor bins
The domain has become extremely large so that neighbor bins cannot be used. Most likely, one or more
atoms have been blown out of the simulation box to a great distance.
Double precision is not supported on this accelerator
Self-explanatory
Dump cfg arguments can not mix xslyslzs with xsulysulzsu
Self-explanatory.
Dump cfg arguments must start with 'id type xs ys zs' or 'id type xsu ysu zsu'
This is a requirement of the CFG output format.
Dump cfg requires one snapshot per file
Use the wildcard "*" character in the filename.
Dump custom and fix not computed at compatible times
The fix must produce per-atom quantities on timesteps that dump custom needs them.
Dump custom compute does not calculate per-atom array
Self-explanatory.
Dump custom compute does not calculate per-atom vector
Self-explanatory.
Dump custom compute does not compute per-atom info
Self-explanatory.
Dump custom compute vector is accessed out-of-range
Self-explanatory.
Dump custom fix does not compute per-atom array
Self-explanatory.
Dump custom fix does not compute per-atom info
Self-explanatory.
Dump custom fix does not compute per-atom vector
Self-explanatory.
Dump custom fix vector is accessed out-of-range
Self-explanatory.
Dump custom variable is not atom-style variable
Only atom-style variables generate per-atom quantities, needed for dump output.
Dump dcd of non-matching # of atoms
Every snapshot written by dump dcd must contain the same # of atoms.
Dump dcd requires sorting by atom ID
Use the dump_modify sort command to enable this.
Dump every variable returned a bad timestep
The variable must return a timestep greater than the current timestep.
Dump file does not contain requested snapshot

142

Self-explanatory.

Dump file is incorrectly formatted
No atoms were found in file.

Dump image bond not allowed with no bond types
Self-explanatory.

Dump image cannot perform sorting
Self-explanatory.

Dump image persp option is not yet supported
Self-explanatory.

Dump image requires one snapshot per file
Use a "*" in the filename.

Dump local and fix not computed at compatible times

The fix must produce per-atom quantities on timesteps that dump local needs them.

Dump local attributes contain no compute or fix
Self-explanatory.
Dump local cannot sort by atom ID

This is because dump local does not really dump per-atom info.

Dump local compute does not calculate local array
Self-explanatory.

Dump local compute does not calculate local vector
Self-explanatory.

Dump local compute does not compute local info
Self-explanatory.

Dump local compute vector is accessed out-of-range
Self-explanatory.

Dump local count is not consistent across input fields
Every column of output must be the same length.

Dump local fix does not compute local array
Self-explanatory.

Dump local fix does not compute local info
Self-explanatory.

Dump local fix does not compute local vector
Self-explanatory.

Dump local fix vector is accessed out-of-range
Self-explanatory.

Dump modify bcolor not allowed with no bond types
Self-explanatory.

Dump modify bdiam not allowed with no bond types
Self-explanatory.

Dump modify compute ID does not compute per-atom array
Self-explanatory.

Dump modify compute ID does not compute per-atom info
Self-explanatory.

Dump modify compute ID does not compute per-atom vector
Self-explanatory.

Dump modify compute ID vector is not large enough
Self-explanatory.

Dump modify element names do not match atom types

Number of element names must equal number of atom types.

Dump modify fix ID does not compute per-atom array
Self-explanatory.
Dump modify fix ID does not compute per-atom info

143

Self-explanatory.
Dump modify fix ID does not compute per-atom vector
Self-explanatory.
Dump modify fix ID vector is not large enough
Self-explanatory.
Dump modify variable is not atom-style variable
Self-explanatory.
Dump sort column is invalid
Self-explanatory.
Dump xtc requires sorting by atom ID
Use the dump_modify sort command to enable this.
Dump_modify region ID does not exist
Self-explanatory.
Dumping an atom property that isn't allocated
The chosen atom style does not define the per-atom quantity being dumped.
Dumping an atom quantity that isn't allocated
Only per-atom quantities that are defined for the atom style being used are allowed.
Duplicate fields in read_dump command
Self-explanatory.
Duplicate particle in PeriDynamic bond - simulation box is too small
This is likely because your box length is shorter than 2 times the bond length.
Electronic temperature dropped below zero
Something has gone wrong with the fix ttm electron temperature model.
Empty brackets in variable
There is no variable syntax that uses empty brackets. Check the variable doc page.
Energy was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied energy, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.
Expected floating point parameter in input script or data file
The quantity being read is an integer on non-numeric value.
Expected floating point parameter in variable definition
The quantity being read is a non-numeric value.
Expected integer parameter in input script or data file
The quantity being read is a floating point or non-numeric value.
Expected integer parameter in variable definition
The quantity being read is a floating point or non-numeric value.
Failed to allocate %ld bytes for array %s
Your LAMMPS simulation has run out of memory. You need to run a smaller simulation or on more
processors.
Failed to reallocate %ld bytes for array %s
Your LAMMPS simulation has run out of memory. You need to run a smaller simulation or on more
processors.
Fewer SRD bins than processors in some dimension
This is not allowed. Make your SRD bin size smaller.
Final box dimension due to fix deform is < 0.0
Self-explanatory.
Fix GCMC incompatible with given pair_style
Some pair_styles do not provide single-atom energies, which are needed by fix GCMC.
Fix GCMC molecule command requires atom attribute molecule
Should not choose the GCMC molecule feature if no molecules are being simulated. The general
molecule flag is off, but GCMC's molecule flag is on.
Fix GCMC molecule feature does not yet work

144

Fix GCMC cannot (yet) be used to exchange molecules, only atoms.
Fix GPU split must be positive for hybrid pair styles

Self-explanatory.

Fix ID for compute atom/molecule does not exist
Self-explanatory.

Fix ID for compute reduce does not exist
Self-explanatory.

Fix ID for compute slice does not exist
Self-explanatory.

Fix ID for fix ave/atom does not exist
Self-explanatory.

Fix ID for fix ave/correlate does not exist
Self-explanatory.

Fix ID for fix ave/histo does not exist
Self-explanatory.

Fix ID for fix ave/spatial does not exist
Self-explanatory.

Fix ID for fix ave/time does not exist
Self-explanatory.

Fix ID for fix store/state does not exist
Self-explanatory

Fix ID for read_data does not exist
Self-explanatory.

Fix ID must be alphanumeric or underscore characters
Self-explanatory.

Fix SRD no-slip requires atom attribute torque
This is because the SRD collisions will impart torque to the solute particles.
Fix SRD: bad bin assignment for SRD advection
Something has gone wrong in your SRD model; try using more conservative settings.
Fix SRD: bad search bin assignment
Something has gone wrong in your SRD model; try using more conservative settings.
Fix SRD: bad stencil bin for big particle
Something has gone wrong in your SRD model; try using more conservative settings.
Fix SRD: too many big particles in bin
Reset the ATOMPERBIN parameter at the top of fix_srd.cpp to a larger value, and re-compile the code.
Fix SRD: too many walls in bin
This should not happen unless your system has been setup incorrectly.
Fix adapt kspace style does not exist
Self-explanatory.
Fix adapt pair style does not exist
Self-explanatory
Fix adapt pair style param not supported
The pair style does not know about the parameter you specified.
Fix adapt requires atom attribute diameter
The atom style being used does not specify an atom diameter.
Fix adapt type pair range is not valid for pair hybrid sub-style
Self-explanatory.
Fix ave/atom compute array is accessed out-of-range
Self-explanatory.
Fix ave/atom compute does not calculate a per-atom array
Self-explanatory.
Fix ave/atom compute does not calculate a per-atom vector

145

A compute used by fix ave/atom must generate per-atom values.
Fix ave/atom compute does not calculate per-atom values

A compute used by fix ave/atom must generate per-atom values.
Fix ave/atom fix array is accessed out-of-range

Self-explanatory.
Fix ave/atom fix does not calculate a per-atom array

Self-explanatory.
Fix ave/atom fix does not calculate a per-atom vector

A fix used by fix ave/atom must generate per-atom values.
Fix ave/atom fix does not calculate per-atom values

A fix used by fix ave/atom must generate per-atom values.
Fix ave/atom missed timestep

You cannot reset the timestep to a value beyond where the fix expects to next perform averaging.

Fix ave/atom variable is not atom-style variable
A variable used by fix ave/atom must generate per-atom values.

Fix ave/correlate compute does not calculate a scalar
Self-explanatory.

Fix ave/correlate compute does not calculate a vector
Self-explanatory.

Fix ave/correlate compute vector is accessed out-of-range
The index for the vector is out of bounds.

Fix ave/correlate fix does not calculate a scalar
Self-explanatory.

Fix ave/correlate fix does not calculate a vector
Self-explanatory.

Fix ave/correlate fix vector is accessed out-of-range
The index for the vector is out of bounds.

Fix ave/correlate missed timestep

You cannot reset the timestep to a value beyond where the fix expects to next perform averaging.

Fix ave/correlate variable is not equal-style variable

Self-explanatory.

Fix ave/histo cannot input local values in scalar mode
Self-explanatory.

Fix ave/histo cannot input per-atom values in scalar mode
Self-explanatory.

Fix ave/histo compute array is accessed out-of-range
Self-explanatory.

Fix ave/histo compute does not calculate a global array
Self-explanatory.

Fix ave/histo compute does not calculate a global scalar
Self-explanatory.

Fix ave/histo compute does not calculate a global vector
Self-explanatory.

Fix ave/histo compute does not calculate a local array
Self-explanatory.

Fix ave/histo compute does not calculate a local vector
Self-explanatory.

Fix ave/histo compute does not calculate a per-atom array
Self-explanatory.

Fix ave/histo compute does not calculate a per-atom vector
Self-explanatory.

Fix ave/histo compute does not calculate local values

146

Self-explanatory.

Fix ave/histo compute does not calculate per-atom values
Self-explanatory.

Fix ave/histo compute vector is accessed out-of-range
Self-explanatory.

Fix ave/histo fix array is accessed out-of-range
Self-explanatory.

Fix ave/histo fix does not calculate a global array
Self-explanatory.

Fix ave/histo fix does not calculate a global scalar
Self-explanatory.

Fix ave/histo fix does not calculate a global vector
Self-explanatory.

Fix ave/histo fix does not calculate a local array
Self-explanatory.

Fix ave/histo fix does not calculate a local vector
Self-explanatory.

Fix ave/histo fix does not calculate a per-atom array
Self-explanatory.

Fix ave/histo fix does not calculate a per-atom vector
Self-explanatory.

Fix ave/histo fix does not calculate local values
Self-explanatory.

Fix ave/histo fix does not calculate per-atom values
Self-explanatory.

Fix ave/histo fix vector is accessed out-of-range
Self-explanatory.

Fix ave/histo input is invalid compute
Self-explanatory.

Fix ave/histo input is invalid fix
Self-explanatory.

Fix ave/histo input is invalid variable
Self-explanatory.

Fix ave/histo inputs are not all global, peratom, or local
All inputs in a single fix ave/histo command must be of the same style.

Fix ave/histo missed timestep

You cannot reset the timestep to a value beyond where the fix expects to next perform averaging.

Fix ave/spatial compute does not calculate a per-atom array
Self-explanatory.
Fix ave/spatial compute does not calculate a per-atom vector
A compute used by fix ave/spatial must generate per-atom values.
Fix ave/spatial compute does not calculate per-atom values
A compute used by fix ave/spatial must generate per-atom values.
Fix ave/spatial compute vector is accessed out-of-range
The index for the vector is out of bounds.
Fix ave/spatial fix does not calculate a per-atom array
Self-explanatory.
Fix ave/spatial fix does not calculate a per-atom vector
A fix used by fix ave/spatial must generate per-atom values.
Fix ave/spatial fix does not calculate per-atom values
A fix used by fix ave/spatial must generate per-atom values.
Fix ave/spatial fix vector is accessed out-of-range

147

The index for the vector is out of bounds.

Fix ave/spatial for triclinic boxes requires units reduced
Self-explanatory.

Fix ave/spatial missed timestep

You cannot reset the timestep to a value beyond where the fix expects to next perform averaging.

Fix ave/spatial settings invalid with changing box

If the ave setting is "running" or "window" and the box size/shape changes during the simulation, then the

units setting must be "reduced", else the number of bins may change.
Fix ave/spatial variable is not atom-style variable

A variable used by fix ave/spatial must generate per-atom values.
Fix ave/time cannot set output array intensive/extensive from these inputs

One of more of the vector inputs has individual elements which are flagged as intensive or extensive.
Such an input cannot be flagged as all intensive/extensive when turned into an array by fix ave/time.

Fix ave/time cannot use variable with vector mode
Variables produce scalar values.

Fix ave/time columns are inconsistent lengths
Self-explanatory.

Fix ave/time compute array is accessed out-of-range
An index for the array is out of bounds.

Fix ave/time compute does not calculate a scalar
Self-explantory.

Fix ave/time compute does not calculate a vector
Self-explantory.

Fix ave/time compute does not calculate an array
Self-explanatory.

Fix ave/time compute vector is accessed out-of-range
The index for the vector is out of bounds.

Fix ave/time fix array is accessed out-of-range
An index for the array is out of bounds.

Fix ave/time fix does not calculate a scalar
Self-explanatory.

Fix ave/time fix does not calculate a vector
Self-explanatory.

Fix ave/time fix does not calculate an array
Self-explanatory.

Fix ave/time fix vector is accessed out-of-range
The index for the vector is out of bounds.

Fix ave/time missed timestep

You cannot reset the timestep to a value beyond where the fix expects to next perform averaging.

Fix ave/time variable is not equal-style variable
Self-explanatory.
Fix balance string is invalid
The string can only contain the characters "x", "y", or "z".
Fix balance string is invalid for 2d simulation
The string cannot contain the letter "z".
Fix bond/break requires special_bonds = 0,1,1
This is a restriction of the current fix bond/break implementation.
Fix bond/create cutoff is longer than pairwise cutoff

This is not allowed because bond creation is done using the pairwise neighbor list.

Fix bond/create requires special_bonds coul = 0,1,1
Self-explanatory.
Fix bond/create requires special_bonds lj = 0,1,1

148

Self-explanatory.
Fix bond/swap cannot use dihedral or improper styles
These styles cannot be defined when using this fix.
Fix bond/swap requires pair and bond styles
Self-explanatory.
Fix bond/swap requires special_bonds = 0,1,1
Self-explanatory.
Fix box/relax generated negative box length
The pressure being applied is likely too large. Try applying it incrementally, to build to the high pressure.
Fix command before simulation box is defined
The fix command cannot be used before a read_data, read_restart, or create_box command.
Fix deform cannot use yz variable with xy
The yz setting cannot be a variable if xy deformation is also specified. This is because LAMMPS cannot
determine if the yz setting will induce a box flip which would be invalid if xy is also changing.
Fix deform is changing yz too much with xy
When both yz and xy are changing, it induces changes in xz if the box must flip from one tilt extreme to
another. Thus it is not allowed for yz to grow so much that a flip is induced.
Fix deform tilt factors require triclinic box
Cannot deform the tilt factors of a simulation box unless it is a triclinic (non-orthogonal) box.
Fix deform volume setting is invalid
Cannot use volume style unless other dimensions are being controlled.
Fix deposit region cannot be dynamic
Only static regions can be used with fix deposit.
Fix deposit region does not support a bounding box
Not all regions represent bounded volumes. You cannot use such a region with the fix deposit command.
Fix efield requires atom attribute q
Self-explanatory.
Fix evaporate molecule requires atom attribute molecule
The atom style being used does not define a molecule ID.
Fix external callback function not set
This must be done by an external program in order to use this fix.
Fix for fix ave/atom not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/atom is requesting a value on a non-allowed
timestep.
Fix for fix ave/correlate not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/correlate is requesting a value on a non-allowed
timestep.
Fix for fix ave/histo not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/histo is requesting a value on a non-allowed
timestep.
Fix for fix ave/spatial not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/spatial is requesting a value on a non-allowed
timestep.
Fix for fix ave/time not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/time is requesting a value on a non-allowed
timestep.
Fix for fix store/state not computed at compatible time
Fixes generate their values on specific timesteps. Fix store/state is requesting a value on a non-allowed
timestep.
Fix freeze requires atom attribute torque
The atom style defined does not have this attribute.
Fix heat group has no atoms

149

Self-explanatory.
Fix heat kinetic energy went negative

This will cause the velocity rescaling about to be performed by fix heat to be invalid.
Fix in variable not computed at compatible time

Fixes generate their values on specific timesteps. The variable is requesting the values on a non-allowed

timestep.
Fix langevin angmom requires atom style ellipsoid
Self-explanatory.
Fix langevin angmom requires extended particles
This fix option cannot be used with point paritlces.
Fix langevin omega requires atom style sphere
Self-explanatory.
Fix langevin omega requires extended particles
One of the particles has radius 0.0.
Fix langevin period must be > 0.0
The time window for temperature relaxation must be > 0
Fix langevin variable returned negative temperature

Self-explanatory.

Fix momentum group has no atoms
Self-explanatory.

Fix move cannot define z or vz variable for 2d problem
Self-explanatory.

Fix move cannot have 0 length rotation vector
Self-explanatory.

Fix move cannot rotate aroung non z-axis for 2d problem
Self-explanatory.

Fix move cannot set linear z motion for 2d problem
Self-explanatory.

Fix move cannot set wiggle 7 motion for 2d problem
Self-explanatory.

Fix msst compute ID does not compute potential energy
Self-explanatory.

Fix msst compute ID does not compute pressure
Self-explanatory.

Fix msst compute ID does not compute temperature
Self-explanatory.

Fix msst requires a periodic box
Self-explanatory.

Fix msst tscale must satisfy 0 <= tscale < 1
Self-explanatory.

Fix npt/nph has tilted box too far in one step - periodic cell is too far from equilibrium state
Self-explanatory. The change in the box tilt is too extreme on a short timescale.
Fix nve/asphere requires extended particles
This fix can only be used for particles with a shape setting.
Fix nve/asphere/noforce requires atom style ellipsoid
Self-explanatory.
Fix nve/asphere/noforce requires extended particles
One of the particles is not an ellipsoid.
Fix nve/line can only be used for 2d simulations
Self-explanatory.
Fix nve/line requires atom style line
Self-explanatory.

150

Fix nve/line requires line particles
Self-explanatory.
Fix nve/sphere requires atom attribute mu
An atom style with this attribute is needed.
Fix nve/sphere requires atom style sphere
Self-explanatory.
Fix nve/sphere requires extended particles
This fix can only be used for particles of a finite size.
Fix nve/tri can only be used for 3d simulations
Self-explanatory.
Fix nve/tri requires atom style tri
Self-explanatory.
Fix nve/tri requires tri particles
Self-explanatory.
Fix nvt/nph/npt asphere requires extended particles
The shape setting for a particle in the fix group has shape = 0.0, which means it is a point particle.
Fix nvt/nph/npt sphere requires atom style sphere
Self-explanatory.
Fix nvt/npt/nph damping parameters must be > 0.0
Self-explanatory.
Fix nvt/npt/nph dilate group ID does not exist
Self-explanatory.
Fix nvt/sphere requires extended particles
This fix can only be used for particles of a finite size.
Fix orient/fcc file open failed
The fix orient/fcc command could not open a specified file.
Fix orient/fcc file read failed
The fix orient/fcc command could not read the needed parameters from a specified file.
Fix orient/fcc found self twice
The neighbor lists used by fix orient/fcc are messed up. If this error occurs, it is likely a bug, so send an
email to the developers.
Fix peri neigh does not exist
Somehow a fix that the pair style defines has been deleted.
Fix pour region ID does not exist
Self-explanatory.
Fix pour region cannot be dynamic
Only static regions can be used with fix pour.
Fix pour region does not support a bounding box
Not all regions represent bounded volumes. You cannot use such a region with the fix pour command.
Fix pour requires atom attributes radius, rmass
The atom style defined does not have these attributes.
Fix press/berendsen damping parameters must be > 0.0
Self-explanatory.
Fix geq/comb group has no atoms
Self-explanatory.
Fix geq/comb requires atom attribute q
An atom style with charge must be used to perform charge equilibration.
Fix reax/bonds numbonds > nsbmax_most
The limit of the number of bonds expected by the ReaxFF force field was exceeded.
Fix recenter group has no atoms
Self-explanatory.
Fix restrain requires an atom map, see atom_modify

151

http://lammps.sandia.gov/authors.html

Self-explanatory.

Fix rigid atom has non-zero image flag in a non-periodic dimension
You cannot set image flags for non-periodic dimensions.

Fix rigid langevin period must be > 0.0
Self-explanatory.

Fix rigid molecule requires atom attribute molecule
Self-explanatory.

Fix rigid xy torque cannot be on for 2d simulation
Self-explanatory.

Fix rigid z force cannot be on for 2d simulation
Self-explanatory.

Fix rigid/nvt period must be > 0.0
Self-explanatory

Fix rigid: Bad principal moments

The principal moments of inertia computed for a rigid body are not within the required tolerances.

Fix shake cannot be used with minimization

Cannot use fix shake while doing an energy minimization since it turns off bonds that should contribute to

the energy.

Fix spring couple group ID does not exist
Self-explanatory.

Fix srd lamda must be >= 0.6 of SRD grid size
This is a requirement for accuracy reasons.

Fix srd requires SRD particles all have same mass
Self-explanatory.

Fix srd requires ghost atoms store velocity
Use the communicate vel yes command to enable this.

Fix srd requires newton pair on
Self-explanatory.

Fix store/state compute array is accessed out-of-range
Self-explanatory.

Fix store/state compute does not calculate a per-atom array
The compute calculates a per-atom vector.

Fix store/state compute does not calculate a per-atom vector
The compute calculates a per-atom vector.

Fix store/state compute does not calculate per-atom values

Computes that calculate global or local quantities cannot be used with fix store/state.

Fix store/state fix array is accessed out-of-range
Self-explanatory.
Fix store/state fix does not calculate a per-atom array
The fix calculates a per-atom vector.
Fix store/state fix does not calculate a per-atom vector
The fix calculates a per-atom array.
Fix store/state fix does not calculate per-atom values
Fixes that calculate global or local quantities cannot be used with fix store/state.
Fix store/state for atom property that isn't allocated
Self-explanatory.
Fix store/state variable is not atom-style variable
Only atom-style variables calculate per-atom quantities.
Fix temp/berendsen period must be > 0.0
Self-explanatory.
Fix temp/berendsen variable returned negative temperature
Self-explanatory.

152

Fix temp/rescale variable returned negative temperature
Self-explanatory.
Fix thermal/conductivity swap value must be positive
Self-explanatory.
Fix tmd must come after integration fixes
Any fix tmd command must appear in the input script after all time integration fixes (nve, nvt, npt). See
the fix tmd documentation for details.
Fix ttm electron temperatures must be > 0.0
Self-explanatory.
Fix ttm electronic_density must be > 0.0
Self-explanatory.
Fix ttm electronic_specific_heat must be > 0.0
Self-explanatory.
Fix ttm electronic_thermal_conductivity must be >= 0.0
Self-explanatory.
Fix ttm gamma_p must be > 0.0
Self-explanatory.
Fix ttm gamma_s must be >= 0.0
Self-explanatory.
Fix ttm number of nodes must be > 0
Self-explanatory.
Fix ttm v_0 must be >= 0.0
Self-explanatory.
Fix used in compute atom/molecule not computed at compatible time
The fix must produce per-atom quantities on timesteps that the compute needs them.
Fix used in compute reduce not computed at compatible time
Fixes generate their values on specific timesteps. Compute reduce is requesting a value on a non-allowed
timestep.
Fix used in compute slice not computed at compatible time
Fixes generate their values on specific timesteps. Compute slice is requesting a value on a non-allowed
timestep.
Fix viscosity swap value must be positive
Self-explanatory.
Fix viscosity vtarget value must be positive
Self-explanatory.
Fix wall cutoff <= 0.0
Self-explanatory.
Fix wall/colloid requires atom style sphere
Self-explanatory.
Fix wall/colloid requires extended particles
One of the particles has radius 0.0.
Fix wall/gran is incompatible with Pair style
Must use a granular pair style to define the parameters needed for this fix.
Fix wall/gran requires atom style sphere
Self-explanatory.
Fix wall/piston command only available at zlo
The face keyword must be zlo.
Fix wall/region colloid requires atom style sphere
Self-explanatory.
Fix wall/region colloid requires extended particles
One of the particles has radius 0.0.
Fix wall/region cutoff <= 0.0

153

Self-explanatory.
Fix_modify order must be 3 or 5
Self-explanatory.
Fix_modify pressure ID does not compute pressure
The compute ID assigned to the fix must compute pressure.
Fix_modify temperature ID does not compute temperature
The compute ID assigned to the fix must compute temperature.
For triclinic deformation, specified target stress must be hydrostatic
Triclinic pressure control is allowed using the tri keyword, but non-hydrostatic pressure control can not
be used in this case.
Found no restart file matching pattern
When using a "*" in the restart file name, no matching file was found.
GPU library not compiled for this accelerator
Self-explanatory.
GPU particle split must be set to 1 for this pair style.
For this pair style, you cannot run part of the force calculation on the host. See the package command.
Gmask function in equal-style variable formula
Gmask is per-atom operation.
Gravity changed since fix pour was created
Gravity must be static and not dynamic for use with fix pour.
Gravity must point in -y to use with fix pour in 2d
Gravity must be pointing "down" in a 2d box.
Gravity must point in -z to use with fix pour in 3d
Gravity must be pointing "down" in a 3d box, i.e. theta = 180.0.
Grmask function in equal-style variable formula
Grmask is per-atom operation.
Group ID does not exist
A group ID used in the group command does not exist.
Group ID in variable formula does not exist
Self-explanatory.
Group command before simulation box is defined
The group command cannot be used before a read_data, read_restart, or create_box command.
Group region ID does not exist
A region ID used in the group command does not exist.
If read_dump purges it cannot replace or trim
These operations are not compatible. See the read_dump doc page for details.
lllegal ... command
Self-explanatory. Check the input script syntax and compare to the documentation for the command. You
can use -echo screen as a command-line option when running LAMMPS to see the offending line.
lllegal COMB parameter
One or more of the coefficients defined in the potential file is invalid.
lllegal Stillinger-Weber parameter
One or more of the coefficients defined in the potential file is invalid.
lllegal Tersoff parameter
One or more of the coefficients defined in the potential file is invalid.
lllegal fix wall/piston velocity
The piston velocity must be positive.
lllegal integrate style
Self-explanatory.
lllegal number of angle table entries
There must be at least 2 table entries.
lllegal number of bond table entries

154

There must be at least 2 table entries.
lllegal number of pair table entries
There must be at least 2 table entries.
lllegal simulation box
The lower bound of the simulation box is greater than the upper bound.
Improper atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular improper on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid improper.
Improper atom missing in set command
The set command cannot find one or more atoms in a particular improper on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid improper.
Improper atoms %d %d %d %d missing on proc %d at step %ld
One or more of 4 atoms needed to compute a particular improper are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the improper has blown apart and an atom is too far
away.
Improper coeff for hybrid has invalid style
Improper style hybrid uses another improper style as one of its coefficients. The improper style used in
the improper_coeff command or read from a restart file is not recognized.
Improper coeffs are not set
No improper coefficients have been assigned in the data file or via the improper_coeff command.
Improper style hybrid cannot have hybrid as an argument
Self-explanatory.
Improper style hybrid cannot have none as an argument
Self-explanatory.
Improper style hybrid cannot use same improper style twice
Self-explanatory.
Improper_coeff command before improper_style is defined
Coefficients cannot be set in the data file or via the improper_coeff command until an improper_style has
been assigned.
Improper_coeff command before simulation box is defined
The improper_coeff command cannot be used before a read_data, read_restart, or create_box command.
Improper_coeff command when no impropers allowed
The chosen atom style does not allow for impropers to be defined.
Improper_style command when no impropers allowed
The chosen atom style does not allow for impropers to be defined.
Impropers assigned incorrectly
Impropers read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.
Impropers defined but no improper types
The data file header lists improper but no improper types.
Inconsistent iparam/jparam values in fix bond/create command
If itype and jtype are the same, then their maxbond and newtype settings must also be the same.
Inconsistent line segment in data file
The end points of the line segment are not equal distances from the center point which is the atom
coordinate.
Inconsistent triangle in data file
The centroid of the triangle as defined by the corner points is not the atom coordinate.
Incorrect args for angle coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for bond coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for dihedral coefficients

155

Self-explanatory. Check the input script or data file.
Incorrect args for improper coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for pair coefficients
Self-explanatory. Check the input script or data file.
Incorrect args in pair_style command
Self-explanatory.
Incorrect atom format in data file
Number of values per atom line in the data file is not consistent with the atom style.
Incorrect bonus data format in data file
See the read_data doc page for a description of how various kinds of bonus data must be formatted for
certain atom styles.
Incorrect boundaries with slab Ewald
Must have periodic X,y dimensions and non-periodic z dimension to use 2d slab option with Ewald.
Incorrect boundaries with slab PPPM
Must have periodic X,y dimensions and non-periodic z dimension to use 2d slab option with PPPM.
Incorrect element names in ADP potential file
The element names in the ADP file do not match those requested.
Incorrect element names in EAM potential file
The element names in the EAM file do not match those requested.
Incorrect format in COMB potential file
Incorrect number of words per line in the potential file.
Incorrect format in MEAM potential file
Incorrect number of words per line in the potential file.
Incorrect format in NEB coordinate file
Self-explanatory.
Incorrect format in Stillinger-Weber potential file
Incorrect number of words per line in the potential file.
Incorrect format in TMD target file
Format of file read by fix tmd command is incorrect.
Incorrect format in Tersoff potential file
Incorrect number of words per line in the potential file.
Incorrect multiplicity arg for dihedral coefficients
Self-explanatory. Check the input script or data file.
Incorrect rigid body format in fix rigid file
The number of fields per line is not what expected.
Incorrect sign arg for dihedral coefficients
Self-explanatory. Check the input script or data file.
Incorrect velocity format in data file
Each atom style defines a format for the Velocity section of the data file. The read-in lines do not match.
Incorrect weight arg for dihedral coefficients
Self-explanatory. Check the input script or data file.
Index between variable brackets must be positive
Self-explanatory.
Indexed per-atom vector in variable formula without atom map
Accessing a value from an atom vector requires the ability to lookup an atom index, which is provided by
an atom map. An atom map does not exist (by default) for non-molecular problems. Using the
atom_modify map command will force an atom map to be created.
Initial temperatures not all set in fix ttm
Self-explantory.
Input line quote not followed by whitespace
An end quote must be followed by whitespace.

156

Input line too long after variable substitution
This is a hard (very large) limit defined in the input.cpp file.
Input line too long: %s
This is a hard (very large) limit defined in the input.cpp file.
Insertion region extends outside simulation box
Region specified with fix pour command extends outside the global simulation box.
Insufficient Jacobi rotations for POEMS body
Eigensolve for rigid body was not sufficiently accurate.
Insufficient Jacobi rotations for rigid body
Eigensolve for rigid body was not sufficiently accurate.
Insufficient Jacobi rotations for triangle
The calculation of the intertia tensor of the triangle failed. This should not happen if it is a reasonably
shaped triangle.
Insufficient memory on accelerator
There is insufficient memory on one of the devices specified for the gpu package
Invalid -reorder N value
Self-explanatory.
Invalid Boolean syntax in if command
Self-explanatory.
Invalid REAX atom type
There is a mis-match between LAMMPS atom types and the elements listed in the ReaxFF force field
file.
Invalid angle style
The choice of angle style is unknown.
Invalid angle table length
Length must be 2 or greater.
Invalid angle type in Angles section of data file
Angle type must be positive integer and within range of specified angle types.
Invalid angle type index for fix shake
Self-explanatory.
Invalid atom ID in Angles section of data file
Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Atoms section of data file
Atom IDs must be positive integers.
Invalid atom ID in Bonds section of data file
Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Bonus section of data file
Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Dihedrals section of data file
Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Impropers section of data file
Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Velocities section of data file
Atom IDs must be positive integers and within range of defined atoms.
Invalid atom mass for fix shake
Mass specified in fix shake command must be > 0.0.
Invalid atom style
The choice of atom style is unknown.
Invalid atom type in Atoms section of data file
Atom types must range from 1 to specified # of types.
Invalid atom type in create_atoms command
The create_box command specified the range of valid atom types. An invalid type is being requested.

157

Invalid atom type in fix GCMC command
The atom type specified in the GCMC command does not exist.
Invalid atom type in fix bond/create command
Self-explanatory.
Invalid atom type in neighbor exclusion list
Atom types must range from 1 to Ntypes inclusive.
Invalid atom type index for fix shake
Atom types must range from 1 to Ntypes inclusive.
Invalid atom types in pair_write command
Atom types must range from 1 to Ntypes inclusive.
Invalid atom vector in variable formula
The atom vector is not recognized.
Invalid attribute in dump custom command
Self-explantory.
Invalid attribute in dump local command
Self-explantory.
Invalid attribute in dump modify command
Self-explantory.
Invalid bond style
The choice of bond style is unknown.
Invalid bond table length
Length must be 2 or greater.
Invalid bond type in Bonds section of data file
Bond type must be positive integer and within range of specified bond types.
Invalid bond type in fix bond/break command
Self-explanatory.
Invalid bond type in fix bond/create command
Self-explanatory.
Invalid bond type index for fix shake
Self-explanatory. Check the fix shake command in the input script.
Invalid coeffs for this dihedral style
Cannot set class 2 coeffs in data file for this dihedral style.
Invalid color in dump_modify command
The specified color name was not in the list of recognized colors. See the dump_modify doc page.
Invalid command-line argument
One or more command-line arguments is invalid. Check the syntax of the command you are using to
launch LAMMPS.
Invalid compute ID in variable formula
The compute is not recognized.
Invalid compute style
Self-explanatory.
Invalid cutoff in communicate command
Specified cutoff must be >= 0.0.
Invalid cutoffs in pair_write command
Inner cutoff must be larger than 0.0 and less than outer cutoff.
Invalid dI or d2 value for pair colloid coeff
Neither d1 or d2 can be < 0.
Invalid data file section: Angle Coeffs
Atom style does not allow angles.
Invalid data file section: AngleAngle Coeffs
Atom style does not allow impropers.
Invalid data file section: AngleAngleTorsion Coeffs

158

Atom style does not allow dihedrals.
Invalid data file section: AngleTorsion Coeffs

Atom style does not allow dihedrals.
Invalid data file section: Angles

Atom style does not allow angles.
Invalid data file section: Bond Coeffs

Atom style does not allow bonds.
Invalid data file section: BondAngle Coelffs

Atom style does not allow angles.
Invalid data file section: BondBond Coeffs

Atom style does not allow angles.
Invalid data file section: BondBondl13 Coeffs

Atom style does not allow dihedrals.
Invalid data file section: Bonds

Atom style does not allow bonds.
Invalid data file section: Dihedral Coeffs

Atom style does not allow dihedrals.
Invalid data file section: Dihedrals

Atom style does not allow dihedrals.
Invalid data file section: Ellipsoids

Atom style does not allow ellipsoids.
Invalid data file section: EndBondTorsion Coeffs

Atom style does not allow dihedrals.
Invalid data file section: Improper Coeffs

Atom style does not allow impropers.
Invalid data file section: Impropers

Atom style does not allow impropers.
Invalid data file section: Lines

Atom style does not allow lines.
Invalid data file section: MiddleBondTorsion Coeffs

Atom style does not allow dihedrals.
Invalid data file section: Triangles

Atom style does not allow triangles.
Invalid delta_conf in tad command

The value must be between 0 and 1 inclusive.
Invalid density in Atoms section of data file

Density value cannot be <= 0.0.
Invalid diameter in set command

Self-explanatory.
Invalid dihedral style

The choice of dihedral style is unknown.
Invalid dihedral type in Dihedrals section of data file

Dihedral type must be positive integer and within range of specified dihedral types.
Invalid dipole length in set command

Self-explanatory.
Invalid dump dcd filename

Filenames used with the dump dcd style cannot be binary or compressed or cause multiple files to be

written.
Invalid dump frequency

Dump frequency must be 1 or greater.
Invalid dump image element name

The specified element name was not in the standard list of elements. See the dump_modify doc page.

159

Invalid dump image filename
The file produced by dump image cannot be binary and must be for a single processor.
Invalid dump image persp value
Persp value must be >= 0.0.
Invalid dump image theta value
Theta must be between 0.0 and 180.0 inclusive.
Invalid dump image zoom value
Zoom value must be > 0.0.
Invalid dump reader style
Self-explanatory.
Invalid dump style
The choice of dump style is unknown.
Invalid dump xtc filename
Filenames used with the dump xtc style cannot be binary or compressed or cause multiple files to be
written.
Invalid dump xyz filename
Filenames used with the dump xyz style cannot be binary or cause files to be written by each processor.
Invalid dump_modify threshhold operator
Operator keyword used for threshold specification in not recognized.
Invalid entry in -reorder file
Self-explanatory.
Invalid fix ID in variable formula
The fix is not recognized.
Invalid fix ave/time off column
Self-explantory.
Invalid fix box/relax command for a 2d simulation
Fix box/relax styles involving the z dimension cannot be used in a 2d simulation.
Invalid fix box/relax command pressure settings
If multiple dimensions are coupled, those dimensions must be specified.
Invalid fix box/relax pressure settings
Settings for coupled dimensions must be the same.
Invalid fix nvt/npt/nph command for a 2d simulation
Cannot control z dimension in a 2d model.
Invalid fix nvt/npt/nph command pressure settings
If multiple dimensions are coupled, those dimensions must be specified.
Invalid fix nvt/npt/nph pressure settings
Settings for coupled dimensions must be the same.
Invalid fix press/berendsen for a 2d simulation
The z component of pressure cannot be controlled for a 2d model.
Invalid fix press/berendsen pressure settings
Settings for coupled dimensions must be the same.
Invalid fix style
The choice of fix style is unknown.
Invalid flag in force field section of restart file
Unrecognized entry in restart file.
Invalid flag in header section of restart file
Unrecognized entry in restart file.
Invalid flag in type arrays section of restart file
Unrecognized entry in restart file.
Invalid frequency in temper command
Nevery must be > 0.
Invalid group ID in neigh_modify command

160

A group ID used in the neigh_modify command does not exist.
Invalid group function in variable formula

Group function is not recognized.
Invalid group in communicate command

Self-explanatory.
Invalid image color range

The lo value in the range is larger than the hi value.
Invalid image up vector

Up vector cannot be (0,0,0).
Invalid improper style

The choice of improper style is unknown.
Invalid improper type in Impropers section of data file

Improper type must be positive integer and within range of specified improper types.

Invalid keyword in angle table parameters
Self-explanatory.

Invalid keyword in bond table parameters
Self-explanatory.

Invalid keyword in compute angle/local command
Self-explanatory.

Invalid keyword in compute bond/local command
Self-explanatory.

Invalid keyword in compute dihedral/local command
Self-explanatory.

Invalid keyword in compute improper/local command
Self-explanatory.

Invalid keyword in compute pair/local command
Self-explanatory.

Invalid keyword in compute property/atom command
Self-explanatory.

Invalid keyword in compute property/local command
Self-explanatory.

Invalid keyword in compute property/molecule command
Self-explanatory.

Invalid keyword in dump cfg command
Self-explanatory.

Invalid keyword in pair table parameters
Keyword used in list of table parameters is not recognized.

Invalid keyword in thermo_style custom command
One or more specified keywords are not recognized.

Invalid kspace style
The choice of kspace style is unknown.

Invalid length in set command
Self-explanatory.

Invalid mass in set command
Self-explanatory.

Invalid mass line in data file
Self-explanatory.

Invalid mass value
Self-explanatory.

Invalid math function in variable formula
Self-explanatory.

Invalid math/group/special function in variable formula

161

Self-explanatory.
Invalid option in lattice command for non-custom style
Certain lattice keywords are not supported unless the lattice style is "custom".
Invalid order of forces within respa levels
For respa, ordering of force computations within respa levels must obey certain rules. E.g. bonds cannot
be compute less frequently than angles, pairwise forces cannot be computed less frequently than kspace,
etc.
Invalid pair style
The choice of pair style is unknown.
Invalid pair table cutoff
Cutoffs in pair_coeff command are not valid with read-in pair table.
Invalid pair table length
Length of read-in pair table is invalid
Invalid partitions in processors part command
Valid partitions are numbered 1 to N and the sender and receiver cannot be the same partition.
Invalid radius in Atoms section of data file
Radius must be >= 0.0.
Invalid random number seed in fix ttm command
Random number seed must be > 0.
Invalid random number seed in set command
Random number seed must be > 0.
Invalid region style
The choice of region style is unknown.
Invalid replace values in compute reduce
Self-explanatory.
Invalid rigid body ID in fix rigid file
The ID does not match the number or an existing ID of rigid bodies that are defined by the fix rigid
command.
Invalid run command N value
The number of timesteps must fit in a 32-bit integer. If you want to run for more steps than this, perform
multiple shorter runs.
Invalid run command start/stop value
Self-explanatory.
Invalid run command upto value
Self-explanatory.
Invalid seed for Marsaglia random # generator
The initial seed for this random number generator must be a positive integer less than or equal to 900
million.
Invalid seed for Park random # generator
The initial seed for this random number generator must be a positive integer.
Invalid shape in Ellipsoids section of data file
Self-explanatory.
Invalid shape in Triangles section of data file
Two or more of the triangle corners are duplicate points.
Invalid shape in set command
Self-explanatory.
Invalid shear direction for fix wall/gran
Self-explanatory.
Invalid special function in variable formula
Self-explanatory.
Invalid style in pair_write command
Self-explanatory. Check the input script.

162

Invalid syntax in variable formula
Self-explanatory.
Invalid t_event in prd command
Self-explanatory.
Invalid t_event in tad command
The value must be greater than 0.
Invalid thermo keyword in variable formula
The keyword is not recognized.
Invalid tmax in tad command
The value must be greater than 0.0.
Invalid type for mass set
Mass command must set a type from 1-N where N is the number of atom types.
Invalid value in set command
The value specified for the setting is invalid, likely because it is too small or too large.
Invalid variable evaluation in variable formula
A variable used in a formula could not be evaluated.
Invalid variable in next command
Self-explanatory.
Invalid variable name
Variable name used in an input script line is invalid.
Invalid variable name in variable formula
Variable name is not recognized.
Invalid variable style with next command
Variable styles equal and world cannot be used in a next command.
Invalid wiggle direction for fix wall/gran
Self-explanatory.
Invoked angle equil angle on angle style none
Self-explanatory.
Invoked angle single on angle style none
Self-explanatory.
Invoked bond equil distance on bond style none
Self-explanatory.
Invoked bond single on bond style none
Self-explanatory.
Invoked pair single on pair style none
A command (e.g. a dump) attempted to invoke the single() function on a pair style none, which is illegal.
You are probably attempting to compute per-atom quantities with an undefined pair style.
KIM initialization failed
This is an error generated by the KIM library.
KIM neighbor iterator exceeded range
This should not happen. It likely indicates a bug in the KIM implementation of the interatomic potential
where it is requesting neighbors incorrectly.
KIM _DIR environment variable is unset
This environment variable must be set to use pair_style kim. See the doc page for pair_style kim.
KSpace accuracy too large to estimate G vector
Paul will doc this.
KSpace style has not yet been set
Cannot use kspace_modify command until a kspace style is set.
KSpace style is incompatible with Pair style
Setting a kspace style requires that a pair style with a long-range Coulombic component be selected.
Keyword %s in MEAM parameter file not recognized
Self-explanatory.

163

Kspace style does not support compute group/group
Self-explanatory.
Kspace style pppm/tip4p requires newton on
Self-explanatory.
Kspace style requires atom attribute q
The atom style defined does not have these attributes.
Label wasn't found in input script
Self-explanatory.
Lattice orient vectors are not orthogonal
The three specified lattice orientation vectors must be mutually orthogonal.
Lattice orient vectors are not right-handed
The three specified lattice orientation vectors must create a right-handed coordinate system such that al
cross a2 = a3.
Lattice primitive vectors are collinear
The specified lattice primitive vectors do not for a unit cell with non-zero volume.
Lattice settings are not compatible with 2d simulation
One or more of the specified lattice vectors has a non-zero z component.
Lattice spacings are invalid
Each x,y,z spacing must be > 0.
Lattice style incompatible with simulation dimension
2d simulation can use sq, sq2, or hex lattice. 3d simulation can use sc, bcc, or fcc lattice.
Log of zero/negative value in variable formula
Self-explanatory.
Lost atoms via balance: original %ld current %ld
This should not occur. Report the problem to the developers.
Lost atoms: original %ld current %ld
Lost atoms are checked for each time thermo output is done. See the thermo_modify lost command for
options. Lost atoms usually indicate bad dynamics, e.g. atoms have been blown far out of the simulation
box, or moved futher than one processor's sub-domain away before reneighboring.
MEAM library error %d
A call to the MEAM Fortran library returned an error.
MPI_LMP_BIGINT and bigint in Imptype.h are not compatible
The size of the MPI datatype does not match the size of a bigint.
MPI_LMP_TAGINT and tagint in Imptype.h are not compatible
The size of the MPI datatype does not match the size of a tagint.
Mass command before simulation box is defined
The mass command cannot be used before a read_data, read_restart, or create_box command.
Min_style command before simulation box is defined
The min_style command cannot be used before a read_data, read_restart, or create_box command.
Minimization could not find thermo_pe compute
This compute is created by the thermo command. It must have been explicitly deleted by a uncompute
command.
Minimize command before simulation box is defined
The minimize command cannot be used before a read_data, read_restart, or create_box command.
Mismatched brackets in variable
Self-explanatory.
Mismatched compute in variable formula
A compute is referenced incorrectly or a compute that produces per-atom values is used in an equal-style
variable formula.
Mismatched fix in variable formula
A fix is referenced incorrectly or a fix that produces per-atom values is used in an equal-style variable
formula.

164

Mismatched variable in variable formula
A variable is referenced incorrectly or an atom-style variable that produces per-atom values is used in an
equal-style variable formula.
Molecular data file has too many atoms
These kids of data files are currently limited to a number of atoms that fits in a 32-bit integer.
Molecule count changed in compute atom/molecule
Number of molecules must remain constant over time.
Molecule count changed in compute com/molecule
Number of molecules must remain constant over time.
Molecule count changed in compute gyration/molecule
Number of molecules must remain constant over time.
Molecule count changed in compute msd/molecule
Number of molecules must remain constant over time.
Molecule count changed in compute property/molecule
Number of molecules must remain constant over time.
More than one fix deform
Only one fix deform can be defined at a time.
More than one fix freeze
Only one of these fixes can be defined, since the granular pair potentials access it.
More than one fix shake
Only one fix shake can be defined.
Must define angle_style before Angle Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.
Must define angle_style before BondAngle Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.
Must define angle_style before BondBond Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.
Must define bond_style before Bond Coeffs
Must use a bond_style command before reading a data file that defines Bond Coeffs.
Must define dihedral_style before AngleAngleTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines AngleAngleTorsion Coeffs.
Must define dihedral_style before AngleTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines AngleTorsion Coeffs.
Must define dihedral_style before BondBondl3 Coeffs
Must use a dihedral_style command before reading a data file that defines BondBond13 Coeffs.
Must define dihedral_style before Dihedral Coeffs
Must use a dihedral_style command before reading a data file that defines Dihedral Coeffs.
Must define dihedral_style before EndBondTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines EndBondTorsion Coeffs.
Must define dihedral_style before MiddleBondTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines MiddleBondTorsion Coeffs.
Must define improper_style before AngleAngle Coeffs
Must use an improper_style command before reading a data file that defines AngleAngle Coeffs.
Must define improper_style before Improper Coeffs
Must use an improper_style command before reading a data file that defines Improper Coeffs.
Must define lattice to append/atoms
A lattice must be defined before using this fix.
Must define pair_style before Pair Coeffs
Must use a pair_style command before reading a data file that defines Pair Coeffs.
Must have more than one processor partition to temper
Cannot use the temper command with only one processor partition. Use the -partition command-line
option.

165

Must read Atoms before Angles
The Atoms section of a data file must come before an Angles section.
Must read Atoms before Bonds
The Atoms section of a data file must come before a Bonds section.
Must read Atoms before Dihedrals
The Atoms section of a data file must come before a Dihedrals section.
Must read Atoms before Ellipsoids
The Atoms section of a data file must come before a Ellipsoids section.
Must read Atoms before Impropers
The Atoms section of a data file must come before an Impropers section.
Must read Atoms before Lines
The Atoms section of a data file must come before a Lines section.
Must read Atoms before Triangles
The Atoms section of a data file must come before a Triangles section.
Must read Atoms before Velocities
The Atoms section of a data file must come before a Velocities section.
Must set both respa inner and outer
Cannot use just the inner or outer option with respa without using the other.
Must shrink-wrap piston boundary
The boundary style of the face where the piston is applied must be of type s (shrink-wrapped).
Must specify a region in fix deposit
The region keyword must be specified with this fix.
Must specify a region in fix pour
The region keyword must be specified with this fix.
Must use -in switch with multiple partitions
A multi-partition simulation cannot read the input script from stdin. The -in command-line option must be
used to specify a file.
Must use a block or cylinder region with fix pour
Self-explanatory.
Must use a block region with fix pour for 2d simulations
Self-explanatory.
Must use a bond style with TIP4P potential
TIP4P potentials assume bond lengths in water are constrained by a fix shake command.
Must use a molecular atom style with fix poems molecule
Self-explanatory.
Must use a z-axis cylinder with fix pour
The axis of the cylinder region used with the fix pour command must be oriented along the z dimension.
Must use an angle style with TIP4P potential
TIPAP potentials assume angles in water are constrained by a fix shake command.
Must use atom style with molecule IDs with fix bond/swap
Self-explanatory.
Must use pair_style comb with fix geq/comb
Self-explanatory.
Must use variable energy with fix addforce
Must define an energy vartiable when applyting a dynamic force during minimization.
NEB command before simulation box is defined
Self-explanatory.
NEB requires damped dynamics minimizer
Use a different minimization style.
NEB requires use of fix neb
Self-explanatory.
NL ramp in wall/piston only implemented in zlo for now

166

The ramp keyword can only be used for piston applied to face zlo.
Needed bonus data not in data file
Some atom styles require bonus data. See the read_data doc page for details.
Needed topology not in data file
The header of the data file indicated that bonds or angles or dihedrals or impropers would be included, but
they were not present.
Neigh_modify exclude molecule requires atom attribute molecule
Self-explanatory.
Neigh_modify include group != atom_modify first group
Self-explanatory.
Neighbor delay must be 0 or multiple of every setting
The delay and every parameters set via the neigh_modify command are inconsistent. If the delay setting is
non-zero, then it must be a multiple of the every setting.
Neighbor include group not allowed with ghost neighbors
This is a current restriction within LAMMPS.
Neighbor list overflow, boost neigh_modify one
There are too many neighbors of a single atom. Use the neigh_modify command to increase the max
number of neighbors allowed for one atom. You may also want to boost the page size.
Neighbor list overflow, boost neigh_modify one or page
There are too many neighbors of a single atom. Use the neigh_modify command to increase the neighbor
page size and the max number of neighbors allowed for one atom.
Neighbor multi not yet enabled for ghost neighbors
This is a current restriction within LAMMPS.
Neighbor multi not yet enabled for granular
Self-explanatory.
Neighbor multi not yet enabled for rRESPA
Self-explanatory.
Neighbor page size must be >= 10x the one atom setting
This is required to prevent wasting too much memory.
New bond exceeded bonds per atom in fix bond/create
See the read_data command for info on setting the "extra bond per atom" header value to allow for
additional bonds to be formed.
New bond exceeded special list size in fix bond/create
See the special_bonds extra command for info on how to leave space in the special bonds list to allow for
additional bonds to be formed.
Newton bond change after simulation box is defined
The newton command cannot be used to change the newton bond value after a read_data, read_restart, or
create_box command.
No Kspace style defined for compute group/group
Self-explanatory.
No OpenMP support compiled in
An OpenMP flag is set, but LAMMPS was not built with OpenMP support.
No angle style is defined for compute angle/local
Self-explanatory.
No angles allowed with this atom style
Self-explanatory. Check data file.
No atoms in data file
The header of the data file indicated that atoms would be included, but they were not present.
No basis atoms in lattice
Basis atoms must be defined for lattice style user.
No bond style is defined for compute bond/local
Self-explanatory.

167

No bonds allowed with this atom style
Self-explanatory. Check data file.
No box information in dump. You have to use 'box no'
Self-explanatory.
No dihedral style is defined for compute dihedral/local
Self-explanatory.
No dihedrals allowed with this atom style
Self-explanatory. Check data file.
No dump custom arguments specified
The dump custom command requires that atom quantities be specified to output to dump file.
No dump local arguments specified
Self-explanatory.
No ellipsoids allowed with this atom style
Self-explanatory. Check data file.
No fix gravity defined for fix pour
Cannot add poured particles without gravity to move them.
No improper style is defined for compute improper/local
Self-explanatory.
No impropers allowed with this atom style
Self-explanatory. Check data file.
No lines allowed with this atom style
Self-explanatory. Check data file.
No matching element in ADP potential file
The ADP potential file does not contain elements that match the requested elements.
No matching element in EAM potential file
The EAM potential file does not contain elements that match the requested elements.
No overlap of box and region for create_atoms
Self-explanatory.
No pair hbond/dreiding coefficients set
Self-explanatory.
No pair style defined for compute group/group
Cannot calculate group interactions without a pair style defined.
No pair style is defined for compute pair/local
Self-explanatory.
No pair style is defined for compute property/local
Self-explanatory.
No rigid bodies defined
The fix specification did not end up defining any rigid bodies.
No triangles allowed with this atom style
Self-explanatory. Check data file.
Non digit character between brackets in variable
Self-explantory.
Non integer # of swaps in temper command
Swap frequency in temper command must evenly divide the total # of timesteps.
Nprocs not a multiple of N for -reorder
Self-explanatory.
Numeric index is out of bounds
A command with an argument that specifies an integer or range of integers is using a value that is less
than 1 or greater than the maximum allowed limit.
One or more atoms belong to multiple rigid bodies
Two or more rigid bodies defined by the fix rigid command cannot contain the same atom.
One or zero atoms in rigid body

168

Any rigid body defined by the fix rigid command must contain 2 or more atoms.
Only zhi currently implemented for fix append/atoms
Self-explanatory.
Out of range atoms - cannot compute PPPM
One or more atoms are attempting to map their charge to a PPPM grid point that is not owned by a
processor. This is likely for one of two reasons, both of them bad. First, it may mean that an atom near the
boundary of a processor's sub-domain has moved more than 1/2 the neighbor skin distance without
neighbor lists being rebuilt and atoms being migrated to new processors. This also means you may be
missing pairwise interactions that need to be computed. The solution is to change the re-neighboring
criteria via the neigh_modify command. The safest settings are "delay O every 1 check yes". Second, it
may mean that an atom has moved far outside a processor's sub-domain or even the entire simulation box.
This indicates bad physics, e.g. due to highly overlapping atoms, too large a timestep, etc.
Overlapping large/large in pair colloid
This potential is infinite when there is an overlap.
Overlapping small/large in pair colloid
This potential is inifinte when there is an overlap.
POEMS fix must come before NPT/NPH fix
NPT/NPH fix must be defined in input script after all poems fixes, else the fix contribution to the pressure
virial is incorrect.
PPPM grid is too large
The global PPPM grid is larger than OFFSET in one or more dimensions. OFFSET is currently set to
4096. You likely need to decrease the requested accuracy.
PPPM order cannot be < 2 or > than %d
This is a limitation of the PPPM implementation in LAMMPS.
PPPM order has been reduced to 0
LAMMPS has attempted to reduce the PPPM order to enable the simulation to run, but can reduce the
order no further. Try increasing the accuracy of PPPM by reducing the tolerance size, thus inducing a
larger PPPM grid.
PRD command before simulation box is defined
The prd command cannot be used before a read_data, read_restart, or create_box command.
PRD nsteps must be multiple of t_event
Self-explanatory.
PRD t_corr must be multiple of t_event
Self-explanatory.
PWD environment variable is unset
This environment variable must be set to use pair_style kim. See the doc page for pair_style kim.
Package command after simulation box is defined
The package command cannot be used afer a read_data, read_restart, or create_box command.
Package cuda command without USER-CUDA installed
The USER-CUDA package must be installed via "make yes-user-cuda" before LAMMPS is built.
Pair brownian requires atom style sphere
Self-explanatory.
Pair brownian requires extended particles
One of the particles has radius 0.0.
Pair brownian requires monodisperse particles
All particles must be the same finite size.
Pair brownian/poly requires atom style sphere
Self-explanatory.
Pair brownian/poly requires extended particles
One of the particles has radius 0.0.
Pair brownian/poly requires newton pair off
Self-explanatory.

169

Pair coeff for hybrid has invalid style

Style in pair coeff must have been listed in pair_style command.
FPair coul/wolf requires atom attribute q

The atom style defined does not have this attribute.
Pair cutoff < Respa interior cutoff

One or more pairwise cutoffs are too short to use with the specified rRESPA cutoffs.
Fair dipole/cut requires atom attributes g, mu, torque

The atom style defined does not have these attributes.
Pair distance < table inner cutoff

Two atoms are closer together than the pairwise table allows.
Pair distance > table outer cutoff

Two atoms are further apart than the pairwise table allows.
Pair dpd requires ghost atoms store velocity

Use the communicate vel yes command to enable this.
Pair gayberne epsilon a,b,c coeffs are not all set

Each atom type involved in pair_style gayberne must have these 3 coefficients set at least once.

Pair gayberne requires atom style ellipsoid
Self-explanatory.

FPair gayberne requires atoms with same type have same shape
Self-explanatory.

FPair gayberne/gpu requires atom style ellipsoid
Self-explanatory.

FPair gayberne/gpu requires atoms with same type have same shape
Self-explanatory.

Pair granular requires atom style sphere
Self-explanatory.

FPair granular requires ghost atoms store velocity
Use the communicate vel yes command to enable this.

FPair granular with shear history requires newton pair off

This is a current restriction of the implementation of pair granular styles with history.

Pair hybrid sub-style does not support single call
You are attempting to invoke a single() call on a pair style that doesn't support it.
Pair hybrid sub-style is not used
No pair_coeff command used a sub-style specified in the pair_style command.
Pair inner cutoff < Respa interior cutoff
One or more pairwise cutoffs are too short to use with the specified rRESPA cutoffs.
Pair inner cutoff >= Pair outer cutoff
The specified cutoffs for the pair style are inconsistent.
Fair line/lj requires atom style line
Self-explanatory.
Pair lubricate requires atom style sphere
Self-explanatory.
Pair lubricate requires ghost atoms store velocity
Use the communicate vel yes command to enable this.
Pair lubricate requires monodisperse particles
All particles must be the same finite size.
Fair lubricate/poly requires atom style sphere
Self-explanatory.
Fair lubricate/poly requires extended particles
One of the particles has radius 0.0.
Fair lubricate/poly requires ghost atoms store velocity
Use the communicate vel yes command to enable this.

170

Fair lubricate/poly requires newton pair off
Self-explanatory.
Fair lubricateU requires atom style sphere
Self-explanatory.
Fair lubricateU requires ghost atoms store velocity
Use the communicate vel yes command to enable this.
Fair lubricateU requires monodisperse particles
All particles must be the same finite size.
Fair lubricateU/poly requires ghost atoms store velocity
Use the communicate vel yes command to enable this.
Fair lubricateU/poly requires newton pair off
Self-explanatory.
Pair peri lattice is not identical in x, y, and z
The lattice defined by the lattice command must be cubic.
Pair peri requires a lattice be defined
Use the lattice command for this purpose.
Pair peri requires an atom map, see atom_modify
Even for atomic systems, an atom map is required to find Peridynamic bonds. Use the atom_modify
command to define one.
Pair resquared epsilon a,b,c coeffs are not all set

Self-explanatory.

Pair resquared epsilon and sigma coeffs are not all set
Self-explanatory.

Pair resquared requires atom style ellipsoid
Self-explanatory.

FPair resquared requires atoms with same type have same shape
Self-explanatory.

FPair resquared/gpu requires atom style ellipsoid
Self-explanatory.

FPair resquared/gpu requires atoms with same type have same shape
Self-explanatory.

Fair style AIREBO requires atom IDs

This is a requirement to use the AIREBO potential.
Fair style AIREBO requires newton pair on

See the newton command. This is a restriction to use the AIREBO potential.
Fair style BOP requires atom IDs

This is a requirement to use the BOP potential.
Fair style BOP requires newton pair on

See the newton command. This is a restriction to use the BOP potential.
Fair style COMB requires atom IDs

This is a requirement to use the AIREBO potential.
Fair style COMB requires atom attribute q

Self-explanatory.
FPair style COMB requires newton pair on

See the newton command. This is a restriction to use the COMB potential.
Fair style LCBOP requires atom IDs

This is a requirement to use the LCBOP potential.
Fair style LCBOP requires newton pair on

See the newton command. This is a restriction to use the LCBOP potential.
Fair style MEAM requires newton pair on

See the newton command. This is a restriction to use the MEAM potential.
Fair style Stillinger-Weber requires atom IDs

171

This is a requirement to use the SW potential.
Fair style Stillinger-Weber requires newton pair on
See the newton command. This is a restriction to use the SW potential.
Pair style Tersoff requires atom IDs
This is a requirement to use the Tersoff potential.
Fair style Tersoff requires newton pair on
See the newton command. This is a restriction to use the Tersoff potential.
Pair style bop requires comm ghost cutoff at least 3x larger than %g
Use the communicate ghost command to set this. See the pair bop doc page for more details.
Fair style born/coul/long requires atom attribute q
An atom style that defines this attribute must be used.
Fair style born/coul/wolf requires atom attribute g
The atom style defined does not have this attribute.
Fair style buck/coul/cut requires atom attribute q
The atom style defined does not have this attribute.
Fair style buck/coul/long requires atom attribute q
The atom style defined does not have these attributes.
Fair style buck/coul/long/gpu requires atom attribute q
The atom style defined does not have this attribute.
Fair style coul/cut requires atom attribute q
The atom style defined does not have these attributes.
Fair style coul/long/gpu requires atom attribute q
The atom style defined does not have these attributes.
Fair style does not have extra field requested by compute pair/local
The pair style does not support the pN value requested by the compute pair/local command.
Pair style does not support bond_style quartic
The pair style does not have a single() function, so it can not be invoked by bond_style quartic.
Fair style does not support compute group/group
The pair_style does not have a single() function, so it cannot be invokded by the compute group/group
command.
Fair style does not support compute pair/local
The pair style does not have a single() function, so it can not be invoked by compute pair/local.
Fair style does not support compute property/local
The pair style does not have a single() function, so it can not be invoked by fix bond/swap.
Fair style does not support fix bond/swap
The pair style does not have a single() function, so it can not be invoked by fix bond/swap.
Fair style does not support pair_write
The pair style does not have a single() function, so it can not be invoked by pair write.
Fair style does not support rRESPA inner/middle/outer
You are attempting to use rRESPA options with a pair style that does not support them.
Fair style granular with history requires atoms have IDs
Atoms in the simulation do not have IDs, so history effects cannot be tracked by the granular pair
potential.
Fair style hbond/dreiding requires an atom map, see atom_modify
Self-explanatory.
Fair style hbond/dreiding requires atom IDs
Self-explanatory.
Fair style hbond/dreiding requires molecular system
Self-explanatory.
Fair style hbond/dreiding requires newton pair on
See the newton command for details.
Fair style hybrid cannot have hybrid as an argument

172

Self-explanatory.
Fair style hybrid cannot have none as an argument

Self-explanatory.
Fair style is incompatible with KSpace style

If a pair style with a long-range Coulombic component is selected, then a kspace style must also be used.
Pair style kim requires newton pair off

This is a current restriction of the KIM library.
Fair style lj/charmm/coul/charmm requires atom attribute q

The atom style defined does not have these attributes.
Fair style lj/charmm/coul/long requires atom attribute q

The atom style defined does not have these attributes.
Fair style lj/charmm/coul/long/gpu requires atom attribute q

The atom style defined does not have this attribute.
Fair style lj/class2/coul/cut requires atom attribute q

The atom style defined does not have this attribute.
Fair style lj/class2/coul/long requires atom attribute q

The atom style defined does not have this attribute.
Fair style lj/class2/coul/long/gpu requires atom attribute q

The atom style defined does not have this attribute.
Fair style lj/cut/coul/cut requires atom attribute q

The atom style defined does not have this attribute.
Fair style lj/cut/coul/cut/gpu requires atom attribute q

The atom style defined does not have this attribute.
Fair style lj/cut/coul/long requires atom attribute q

The atom style defined does not have this attribute.
Fair style lj/cut/coul/long/gpu requires atom attribute q

The atom style defined does not have this attribute.
Fair style lj/cut/coul/long/tip4p requires atom IDs

There are no atom IDs defined in the system and the TIP4P potential requires them to find O,H atoms

with a water molecule.
Fair style lj/cut/coul/long/tip4p requires atom attribute q

The atom style defined does not have these attributes.
Fair style lj/cut/coul/long/tip4p requires newton pair on

This is because the computation of constraint forces within a water molecule adds forces to atoms owned

by other processors.
Fair style lj/gromacs/coul/gromacs requires atom attribute q

An atom_style with this attribute is needed.
Pair style peri requires atom style peri

Self-explanatory.
Pair style reax requires atom IDs

This is a requirement to use the ReaxFF potential.
Fair style reax requires newton pair on

This is a requirement to use the ReaxFF potential.
Fair table cutoffs must all be equal to use with KSpace

When using pair style table with a long-range KSpace solver, the cutoffs for all atom type pairs must all

be the same, since the long-range solver starts at that cutoff.
Pair table parameters did not set N

List of pair table parameters must include N setting.
Fair tersoff/zbl requires metal or real units

This is a current restriction of this pair potential.
Fair tri/lj requires atom style tri

Self-explanatory.

173

FPair yukawa/colloid requires atom style sphere
Self-explantory.
Pair yukawa/colloid requires atoms with same type have same radius
Self-explantory.
Pair_coeff command before pair_style is defined
Self-explanatory.
Pair_coeff command before simulation box is defined
The pair_coeff command cannot be used before a read_data, read_restart, or create_box command.
Pair_modify command before pair_style is defined
Self-explanatory.
Pair_write command before pair_style is defined
Self-explanatory.
Farticle on or inside fix wall surface
Particles must be "exterior" to the wall in order for energy/force to be calculated.
Farticle on or inside surface of region used in fix wall/region
Particles must be "exterior" to the region surface in order for energy/force to be calculated.
Per-atom compute in equal-style variable formula
Equal-style variables cannot use per-atom quantities.
Per-atom energy was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied energy, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.
Per-atom fix in equal-style variable formula
Equal-style variables cannot use per-atom quantities.
Per-atom virial was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied the virial, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.
Per-processor system is too big
The number of owned atoms plus ghost atoms on a single processor must fit in 32-bit integer.
Potential energy ID for fix neb does not exist
Self-explanatory.
Potential energy ID for fix nvt/nph/npt does not exist
A compute for potential energy must be defined.
Potential file has duplicate entry
The potential file for a SW or Tersoff potential has more than one entry for the same 3 ordered elements.
Potential file is missing an entry
The potential file for a SW or Tersoff potential does not have a needed entry.
Power by 0 in variable formula
Self-explanatory.
Pressure ID for fix box/relax does not exist
The compute ID needed to compute pressure for the fix does not exist.
Pressure ID for fix modify does not exist
Self-explanatory.
Pressure ID for fix npt/nph does not exist
Self-explanatory.
Pressure ID for fix press/berendsen does not exist
The compute ID needed to compute pressure for the fix does not exist.
Pressure ID for thermo does not exist
The compute ID needed to compute pressure for thermodynamics does not exist.
Pressure control can not be used with fix nvt
Self-explanatory.
Pressure control can not be used with fix nvt/asphere
Self-explanatory.

174

Pressure control can not be used with fix nvt/sllod
Self-explanatory.
Pressure control can not be used with fix nvt/sphere
Self-explanatory.
Pressure control must be used with fix nph
Self-explanatory.
Pressure control must be used with fix nph/asphere
Self-explanatory.
Pressure control must be used with fix nph/sphere
Self-explanatory.
Pressure control must be used with fix nphug
A pressure control keyword (iso, aniso, tri, X, y, or z) must be provided.
Pressure control must be used with fix npt
Self-explanatory.
Pressure control must be used with fix npt/asphere
Self-explanatory.
Pressure control must be used with fix npt/sphere
Self-explanatory.
Processor count in z must be 1 for 2d simulation
Self-explanatory.
Processor partitions are inconsistent
The total number of processors in all partitions must match the number of processors LAMMPS is
running on.
Processors command after simulation box is defined
The processors command cannot be used after a read_data, read_restart, or create_box command.
Processors custom grid file is inconsistent
The vales in the custom file are not consistent with the number of processors you are running on or the
Px,Py,Pz settings of the processors command. Or there was not a setting for every processor.
Processors grid numa and map style are incompatible
Using numa for gstyle in the processors command requires using cart for the map option.
Processors part option and grid style are incompatible
Cannot use gstyle numa or custom with the part option.
Processors twogrid requires proc count be a multiple of core count
Self-explanatory.
Pstart and Pstop must have the same value
Self-explanatory.
RO < O for fix spring command
Equilibrium spring length is invalid.
Read_dump field not found in dump file
Self-explanatory.
Read_dump triclinic status does not match simulation
Both the dump snapshot and the current LAMMPS simulation must be using either an orthogonal or
triclinic box.
Read_dump x,y,z fields do not have consistent scaling
Self-explanatory.
Reax_defs.h setting for NATDEF is too small
Edit the setting in the ReaxFF library and re-compile the library and re-build LAMMPS.
Reax_defs.h setting for NNEIGHMAXDEF is too small
Edit the setting in the ReaxFF library and re-compile the library and re-build LAMMPS.
Receiving partition in processors part command is already a receiver
Cannot specify a partition to be a receiver twice.
Region ID for compute reduce/region does not exist

175

Self-explanatory.
Region ID for compute temp/region does not exist

Self-explanatory.

Region ID for dump custom does not exist
Self-explanatory.

Region ID for fix addforce does not exist
Self-explanatory.

Region ID for fix ave/spatial does not exist
Self-explanatory.

Region ID for fix aveforce does not exist
Self-explanatory.

Region ID for fix deposit does not exist
Self-explanatory.

Region ID for fix evaporate does not exist
Self-explanatory.

Region ID for fix heat does not exist
Self-explanatory.

Region ID for fix setforce does not exist
Self-explanatory.

Region ID for fix wall/region does not exist
Self-explanatory.

Region ID in variable formula does not exist
Self-explanatory.

Region cannot have 0 length rotation vector
Self-explanatory.

Region intersect region ID does not exist
Self-explanatory.

Region union or intersect cannot be dynamic
The sub-regions can be dynamic, but not the combined region.
Region union region ID does not exist
One or more of the region IDs specified by the region union command does not exist.
Replacing a fix, but new style != old style
A fix ID can be used a 2nd time, but only if the style matches the previous fix. In this case it is assumed
you with to reset a fix's parameters. This error may mean you are mistakenly re-using a fix ID when you
do not intend to.
Replicate command before simulation box is defined
The replicate command cannot be used before a read_data, read_restart, or create_box command.
Replicate did not assign all atoms correctly
Atoms replicated by the replicate command were not assigned correctly to processors. This is likely due
to some atom coordinates being outside a non-periodic simulation box.
Replicated molecular system atom IDs are too big
See the setting for the allowed atom ID size in the src/Imptype.h file.
Replicated system is too big
See the setting for bigint in the src/Imptype.h file.
Rerun command before simulation box is defined
The rerun command cannot be used before a read_data, read_restart, or create_box command.
Rerun dump file does not contain requested snapshot
Self-explanatory.
Resetting timestep is not allowed with fix move
This is because fix move is moving atoms based on elapsed time.
Respa inner cutoffs are invalid
The first cutoff must be <= the second cutoff.

176

Respa levels must be >= 1
Self-explanatory.
Respa middle cutoffs are invalid
The first cutoff must be <= the second cutoff.
Restart variable returned a bad timestep
The variable must return a timestep greater than the current timestep.
Restrain atoms %d %d %d %d missing on proc %d at step %ld
The 4 atoms in a restrain dihedral specified by the fix restrain command are not all accessible to a
processor. This probably means an atom has moved too far.
Restrain atoms %d %d %d missing on proc %d at step %ld
The 3 atoms in a restrain angle specified by the fix restrain command are not all accessible to a processor.
This probably means an atom has moved too far.
Restrain atoms %d %d missing on proc %d at step %ld
The 2 atoms in a restrain bond specified by the fix restrain command are not all accessible to a processor.
This probably means an atom has moved too far.
Reuse of compute 1D
A compute ID cannot be used twice.
Reuse of dump ID
A dump ID cannot be used twice.
Reuse of region ID
A region ID cannot be used twice.
Rigid body has degenerate moment of inertia
Fix poems will only work with bodies (collections of atoms) that have non-zero principal moments of
inertia. This means they must be 3 or more non-collinear atoms, even with joint atoms removed.
Rigid fix must come before NPT/NPH fix
NPT/NPH fix must be defined in input script after all rigid fixes, else the rigid fix contribution to the
pressure virial is incorrect.
Rmask function in equal-style variable formula
Rmask is per-atom operation.
Run command before simulation box is defined
The run command cannot be used before a read_data, read_restart, or create_box command.
Run command start value is after start of run
Self-explanatory.
Run command stop value is before end of run
Self-explanatory.
Run_style command before simulation box is defined
The run_style command cannot be used before a read_data, read_restart, or create_box command.
SRD bin size for fix srd differs from user request
Fix SRD had to adjust the bin size to fit the simulation box. See the cubic keyword if you want this
message to be an error vs warning.
SRD bins for fix srd are not cubic enough
The bin shape is not within tolerance of cubic. See the cubic keyword if you want this message to be an
error vs warning.
SRD particle %d started inside big particle %d on step %ld bounce %d
See the inside keyword if you want this message to be an error vs warning.
Same dimension twice in fix ave/spatial
Self-explanatory.
Sending partition in processors part command is already a sender
Cannot specify a partition to be a sender twice.
Set command before simulation box is defined
The set command cannot be used before a read_data, read_restart, or create_box command.
Set command with no atoms existing

177

No atoms are yet defined so the set command cannot be used.
Set region ID does not exist
Region ID specified in set command does not exist.
Shake angles have different bond types
All 3-atom angle-constrained SHAKE clusters specified by the fix shake command that are the same
angle type, must also have the same bond types for the 2 bonds in the angle.
Shake atoms %d %d Y%0d %od missing on proc %d at step %ld
The 4 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.
Shake atoms %d %d %d missing on proc %d at step %ld
The 3 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.
Shake atoms %d %d missing on proc %d at step %ld
The 2 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.
Shake cluster of more than 4 atoms
A single cluster specified by the fix shake command can have no more than 4 atoms.
Shake clusters are connected
A single cluster specified by the fix shake command must have a single central atom with up to 3 other
atoms bonded to it.
Shake determinant = 0.0
The determinant of the matrix being solved for a single cluster specified by the fix shake command is
numerically invalid.
Shake fix must come before NPT/NPH fix
NPT fix must be defined in input script after SHAKE fix, else the SHAKE fix contribution to the pressure
virial is incorrect.
Small, tag, big integers are not sized correctly
See description of these 3 data types in src/lmptype.h.
Smallint setting in Imptype.h is invalid
It has to be the size of an integer.
Smallint setting in Imptype.h is not compatible
Smallint stored in restart file is not consistent with LAMMPS version you are running.
Specified processors != physical processors
The 3d grid of processors defined by the processors command does not match the number of processors
LAMMPS is being run on.
Specified target stress must be uniaxial or hydrostatic
Self-explanatory.
Sqrt of negative value in variable formula
Self-explanatory.
Substitution for illegal variable
Input script line contained a variable that could not be substituted for.
System in data file is too big
See the setting for bigint in the src/Imptype.h file.
TAD nsteps must be multiple of t_event
Self-explanatory.
TIP4P hydrogen has incorrect atom type
The TIP4P pairwise computation found an H atom whose type does not agree with the specified H type.
TIP4P hydrogen is missing
The TIP4P pairwise computation failed to find the correct H atom within a water molecule.
TMD target file did not list all group atoms
The target file for the fix tmd command did not list all atoms in the fix group.
Tad command before simulation box is defined

178

Self-explanatory.

Tagint setting in Imptype.h is invalid
Tagint must be as large or larger than smallint.

Tagint setting in Imptype.h is not compatible
Smallint stored in restart file is not consistent with LAMMPS version you are running.

Target temperature for fix nvt/npt/nph cannot be 0.0
Self-explanatory.

Target temperature for fix rigid/nvt cannot be 0.0
Self-explanatory.

Temper command before simulation box is defined
The temper command cannot be used before a read_data, read_restart, or create_box command.

Temperature ID for fix bond/swap does not exist
Self-explanatory.

Temperature ID for fix box/relax does not exist
Self-explanatory.

Temperature ID for fix nvt/nph/npt does not exist
Self-explanatory.

Temperature ID for fix press/berendsen does not exist
Self-explanatory.

Temperature ID for fix temp/berendsen does not exist
Self-explanatory.

Temperature ID for fix temp/rescale does not exist
Self-explanatory.

Temperature control can not be used with fix nph
Self-explanatory.

Temperature control can not be used with fix nph/asphere
Self-explanatory.

Temperature control can not be used with fix nph/sphere
Self-explanatory.

Temperature control must be used with fix nphug
The temp keyword must be provided.

Temperature control must be used with fix npt
Self-explanatory.

Temperature control must be used with fix npt/asphere
Self-explanatory.

Temperature control must be used with fix npt/sphere
Self-explanatory.

Temperature control must be used with fix nvt
Self-explanatory.

Temperature control must be used with fix nvt/asphere
Self-explanatory.

Temperature control must be used with fix nvt/sllod
Self-explanatory.

Temperature control must be used with fix nvt/sphere
Self-explanatory.

Temperature for fix nvt/sllod does not have a bias
The specified compute must compute temperature with a bias.

Tempering could not find thermo_pe compute
This compute is created by the thermo command. It must have been explicitly deleted by a uncompute
command.

Tempering fix ID is not defined
The fix ID specified by the temper command does not exist.

179

Tempering temperature fix is not valid
The fix specified by the temper command is not one that controls temperature (nvt or langevin).
The package gpu command is required for gpu styles
Self-explanatory.
Thermo and fix not computed at compatible times
Fixes generate values on specific timesteps. The thermo output does not match these timesteps.
Thermo compute array is accessed out-of-range
Self-explanatory.
Thermo compute does not compute array
Self-explanatory.
Thermo compute does not compute scalar
Self-explanatory.
Thermo compute does not compute vector
Self-explanatory.
Thermo compute vector is accessed out-of-range
Self-explanatory.
Thermo custom variable cannot be indexed
Self-explanatory.
Thermo custom variable is not equal-style variable
Only equal-style variables can be output with thermodynamics, not atom-style variables.
Thermo every variable returned a bad timestep
The variable must return a timestep greater than the current timestep.
Thermo fix array is accessed out-of-range
Self-explanatory.
Thermo fix does not compute array
Self-explanatory.
Thermo fix does not compute scalar
Self-explanatory.
Thermo fix does not compute vector
Self-explanatory.
Thermo fix vector is accessed out-of-range
Self-explanatory.
Thermo keyword in variable requires lattice be defined
The xlat, ylat, zlat keywords refer to lattice properties.
Thermo keyword in variable requires thermo to use/init pe
You are using a thermo keyword in a variable that requires potential energy to be calculated, but your
thermo output does not use it. Add it to your thermo output.
Thermo keyword in variable requires thermo to use/init press
You are using a thermo keyword in a variable that requires pressure to be calculated, but your thermo
output does not use it. Add it to your thermo output.
Thermo keyword in variable requires thermo to use/init temp
You are using a thermo keyword in a variable that requires temperature to be calculated, but your thermo
output does not use it. Add it to your thermo output.
Thermo keyword requires lattice be defined
The xlat, ylat, zlat keywords refer to lattice properties.
Thermo style does not use press
Cannot use thermo_modify to set this parameter since the thermo_style is not computing this quantity.
Thermo style does not use temp
Cannot use thermo_modify to set this parameter since the thermo_style is not computing this quantity.
Thermo_modify int format does not contain d character
Self-explanatory.
Thermo_modify pressure ID does not compute pressure

180

The specified compute ID does not compute pressure.
Thermo_modify temperature ID does not compute temperature
The specified compute ID does not compute temperature.
Thermo_style command before simulation box is defined
The thermo_style command cannot be used before a read_data, read_restart, or create_box command.
This variable thermo keyword cannot be used between runs
Keywords that refer to time (such as cpu, elapsed) do not make sense in between runs.
Threshhold for an atom property that isn't allocated
A dump threshhold has been requested on a quantity that is not defined by the atom style used in this
simulation.
Timestep must be >= 0
Specified timestep is invalid.
Too big a problem to use velocity create loop all
The system size must fit in a 32-bit integer to use this option.
Too big a timestep
Specified timestep is too large.
Too big a timestep for dump dcd
The timestep must fit in a 32-bit integer to use this dump style.
Too big a timestep for dump xtc
The timestep must fit in a 32-bit integer to use this dump style.
Too few bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.
Too many atom pairs for pair bop
The number of atomic pairs exceeds the expected number. Check your atomic structure to ensure that it is
realistic.
Too many atom sorting bins
This is likely due to an immense simulation box that has blown up to a large size.
Too many atom triplets for pair bop
The number of three atom groups for angle determinations exceeds the expected number. Check your
atomic structrure to ensure that it is realistic.
Too many atoms for dump dcd
The system size must fit in a 32-bit integer to use this dump style.
Too many atoms for dump xtc
The system size must fit in a 32-bit integer to use this dump style.
Too many atoms to dump sort
Cannot sort when running with more than 2*31 atoms.
Too many exponent bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.
Too many groups
The maximum number of atom groups (including the "all" group) is given by MAX_GROUP in
group.cpp and is 32.
Too many iterations
You must use a number of iterations that fit in a 32-bit integer for minimization.
Too many local+ghost atoms for neighbor list
The number of nlocal + nghost atoms on a processor is limited by the size of a 32-bit integer with 2 bits
removed for masking 1-2, 1-3, 1-4 neighbors.
Too many mantissa bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.
Too many masses for fix shake

181

The fix shake command cannot list more masses than there are atom types.
Too many neighbor bins
This is likely due to an immense simulation box that has blown up to a large size.
Too many timesteps
The cummulative timesteps must fit in a 64-bit integer.
Too many timesteps for NEB
You must use a number of timesteps that fit in a 32-bit integer for NEB.
Too many total atoms
See the setting for bigint in the src/Imptype.h file.
Too many total bits for bitmapped lookup table
Table size specified via pair_modify command is too large. Note that a value of N generates a 2N size
table.
Too many touching neighbors - boost MAXTOUCH
A granular simulation has too many neighbors touching one atom. The MAXTOUCH parameter in
fix_shear_history.cpp must be set larger and LAMMPS must be re-built.
Too much per-proc info for dump
Number of local atoms times number of columns must fit in a 32-bit integer for dump.
Tree structure in joint connections
Fix poems cannot (yet) work with coupled bodies whose joints connect the bodies in a tree structure.
Triclinic box skew is too large
The displacement in a skewed direction must be less than half the box length in that dimension. E.g. the
xy tilt must be between -half and +half of the x box length.
Tried to convert a double to int, but input_double > INT_MAX
Self-explanatory.
Two groups cannot be the same in fix spring couple
Self-explanatory.
USER-CUDA mode requires CUDA variant of min style
CUDA mode is enabled, so the min style must include a cuda suffix.
USER-CUDA mode requires CUDA variant of run style
CUDA mode is enabled, so the run style must include a cuda suffix.
USER-CUDA package requires a cuda enabled atom_style
Self-explanatory.
Unable to initialize accelerator for use
There was a problem initializing an accelerator for the gpu package
Unbalanced quotes in input line
No matching end double quote was found following a leading double quote.
Unexpected end of -reorder file
Self-explanatory.
Unexpected end of custom file
Self-explanatory.
Unexpected end of data file
LAMMPS hit the end of the data file while attempting to read a section. Something is wrong with the
format of the data file.
Unexpected end of dump file
A read operation from the file failed.
Unexpected end of fix rigid file
A read operation from the file failed.
Units command after simulation box is defined
The units command cannot be used after a read_data, read_restart, or create_box command.
Universe/uloop variable count < # of partitions
A universe or uloop style variable must specify a number of values >= to the number of processor
partitions.

182

Unknown command: %s
The command is not known to LAMMPS. Check the input script.
Unknown error in GPU library
Self-explanatory.
Unknown identifier in data file: %s
A section of the data file cannot be read by LAMMPS.
Unknown table style in angle style table
Self-explanatory.
Unknown table style in bond style table
Self-explanatory.
Unknown table style in pair_style command
Style of table is invalid for use with pair_style table command.
Unrecognized lattice type in MEAM file 1
The lattice type in an entry of the MEAM library file is not valid.
Unrecognized lattice type in MEAM file 2
The lattice type in an entry of the MEAM parameter file is not valid.
Unrecognized pair style in compute pair command
Self-explanatory.
Use of change_box with undefined lattice
Must use lattice command with displace_box command if units option is set to lattice.
Use of compute temp/ramp with undefined lattice
Must use lattice command with compute temp/ramp command if units option is set to lattice.
Use of displace_atoms with undefined lattice
Must use lattice command with displace_atoms command if units option is set to lattice.
Use of fix append/atoms with undefined lattice
A lattice must be defined before using this fix.
Use of fix ave/spatial with undefined lattice
A lattice must be defined to use fix ave/spatial with units = lattice.
Use of fix deform with undefined lattice
A lattice must be defined to use fix deform with units = lattice.
Use of fix deposit with undefined lattice
Must use lattice command with compute fix deposit command if units option is set to lattice.
Use of fix dt/reset with undefined lattice
Must use lattice command with fix dt/reset command if units option is set to lattice.
Use of fix indent with undefined lattice
The lattice command must be used to define a lattice before using the fix indent command.
Use of fix move with undefined lattice
Must use lattice command with fix move command if units option is set to lattice.
Use of fix recenter with undefined lattice
Must use lattice command with fix recenter command if units option is set to lattice.
Use of fix wall with undefined lattice
Must use lattice command with fix wall command if units option is set to lattice.
Use of fix wall/piston with undefined lattice
A lattice must be defined before using this fix.
Use of region with undefined lattice
If units = lattice (the default) for the region command, then a lattice must first be defined via the lattice
command.
Use of velocity with undefined lattice
If units = lattice (the default) for the velocity set or velocity ramp command, then a lattice must first be
defined via the lattice command.
Using fix nvt/sllod with inconsistent fix deform remap option
Fix nvt/sllod requires that deforming atoms have a velocity profile provided by "remap v" as a fix deform

183

option.
Using fix nvt/sllod with no fix deform defined
Self-explanatory.

Using fix srd with inconsistent fix deform remap option

When shearing the box in an SRD simulation, the remap v option for fix deform needs to be used.
Using pair lubricate with inconsistent fix deform remap option

Must use remap v option with fix deform with this pair style.
Using pair lubricate/poly with inconsistent fix deform remap option

If fix deform is used, the remap v option is required.

Variable evaluation before simulation box is defined

Cannot evaluate a compute or fix or atom-based value in a variable before the simulation has been setup.

Variable for compute ti is invalid style
Self-explanatory.
Variable for dump every is invalid style
Only equal-style variables can be used.
Variable for dump image center is invalid style
Must be an equal-style variable.
Variable for dump image persp is invalid style
Must be an equal-style variable.
Variable for dump image phi is invalid style
Must be an equal-style variable.
Variable for dump image theta is invalid style
Must be an equal-style variable.
Variable for dump image zoom is invalid style
Must be an equal-style variable.
Variable for fix adapt is invalid style
Only equal-style variables can be used.
Variable for fix addforce is invalid style
Self-explanatory.
Variable for fix aveforce is invalid style
Only equal-style variables can be used.
Variable for fix deform is invalid style

The variable must be an equal-style variable.

Variable for fix efield is invalid style

Only equal-style variables can be used.
Variable for fix gravity is invalid style

Only equal-style variables can be used.
Variable for fix indent is invalid style

Only equal-style variables can be used.
Variable for fix indent is not equal style

Only equal-style variables can be used.
Variable for fix langevin is invalid style

It must be an equal-style variable.
Variable for fix move is invalid style

Only equal-style variables can be used.
Variable for fix setforce is invalid style

Only equal-style variables can be used.
Variable for fix temp/berendsen is invalid style

Only equal-style variables can be used.
Variable for fix temp/rescale is invalid style

Only equal-style variables can be used.
Variable for fix wall is invalid style

184

Only equal-style variables can be used.
Variable for fix wall/reflect is invalid style

Only equal-style variables can be used.
Variable for fix wall/srd is invalid style

Only equal-style variables can be used.
Variable for region is invalid style

Only equal-style variables can be used.
Variable for region is not equal style

Self-explanatory.
Variable for restart is invalid style

Only equal-style variables can be used.
Variable for thermo every is invalid style

Only equal-style variables can be used.
Variable for velocity set is invalid style

Only atom-style variables can be used.

Variable formula compute array is accessed out-of-range

Self-explanatory.

Variable formula compute vector is accessed out-of-range
Self-explanatory.

Variable formula fix array is accessed out-of-range
Self-explanatory.

Variable formula fix vector is accessed out-of-range
Self-explanatory.

Variable name for compute atom/molecule does not exist
Self-explanatory.

Variable name for compute reduce does not exist
Self-explanatory.

Variable name for compute ti does not exist
Self-explanatory.

Variable name for dump every does not exist
Self-explanatory.

Variable name for dump image center does not exist
Self-explanatory.

Variable name for dump image persp does not exist
Self-explanatory.

Variable name for dump image phi does not exist
Self-explanatory.

Variable name for dump image theta does not exist
Self-explanatory.

Variable name for dump image zoom does not exist
Self-explanatory.

Variable name for fix adapt does not exist
Self-explanatory.

Variable name for fix addforce does not exist
Self-explanatory.

Variable name for fix ave/atom does not exist
Self-explanatory.

Variable name for fix ave/correlate does not exist
Self-explanatory.

Variable name for fix ave/histo does not exist
Self-explanatory.

Variable name for fix ave/spatial does not exist

185

Self-explanatory.

Variable name for fix ave/time does not exist
Self-explanatory.

Variable name for fix aveforce does not exist
Self-explanatory.

Variable name for fix deform does not exist
Self-explantory.

Variable name for fix efield does not exist
Self-explanatory.

Variable name for fix gravity does not exist
Self-explanatory.

Variable name for fix indent does not exist
Self-explanatory.

Variable name for fix langevin does not exist
Self-explanatory.

Variable name for fix move does not exist
Self-explanatory.

Variable name for fix setforce does not exist
Self-explanatory.

Variable name for fix store/state does not exist
Self-explanatory.

Variable name for fix temp/berendsen does not exist
Self-explanatory.

Variable name for fix temp/rescale does not exist
Self-explanatory.

Variable name for fix wall does not exist
Self-explanatory.

Variable name for fix wall/reflect does not exist
Self-explanatory.

Variable name for fix wall/srd does not exist
Self-explanatory.

Variable name for region does not exist
Self-explanatory.

Variable name for restart does not exist
Self-explanatory.

Variable name for thermo every does not exist
Self-explanatory.

Variable name for velocity set does not exist
Self-explanatory.

Variable name must be alphanumeric or underscore characters
Self-explanatory.

Velocity command before simulation box is defined

The velocity command cannot be used before a read_data, read_restart, or create_box command.

Velocity command with no atoms existing
A velocity command has been used, but no atoms yet exist.
Velocity ramp in z for a 2d problem
Self-explanatory.
Velocity temperature ID does not compute temperature
The compute ID given to the velocity command must compute temperature.
Verlet/split requires 2 partitions
See the -partition command-line switch.
Verlet/split requires Rspace partition layout be multiple of Kspace partition layout in each dim

186

This is controlled by the processors command.
Verlet/split requires Rspace partition size be multiple of Kspace partition size
This is so there is an equal number of Rspace processors for every Kspace processor.
Virial was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied the virial, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.
Wall defined twice in fix wall command
Self-explanatory.
Wall defined twice in fix wall/reflect command
Self-explanatory.
Wall defined twice in fix wall/srd command
Self-explanatory.
Water H epsilon must be 0.0 for pair style lj/cut/coul/long/tip4p
This is because LAMMPS does not compute the Lennard-Jones interactions with these particles for
efficiency reasons.
World variable count doesn't match # of partitions
A world-style variable must specify a number of values equal to the number of processor partitions.
Write_restart command before simulation box is defined
The write_restart command cannot be used before a read_data, read_restart, or create_box command.
Zero-length lattice orient vector
Self-explanatory.

Warnings:

Atom with molecule ID = 0 included in compute molecule group
The group used in a compute command that operates on moleclues includes atoms with no molecule ID.
This is probably not what you want.
Both groups in compute group/group have a net charge; the Kspace boundary correction to energy will be
non-zero
Self-explantory.
Broken bonds will not alter angles, dihedrals, or impropers
See the doc page for fix bond/break for more info on this restriction.
Building an occasional neighobr list when atoms may have moved too far
This can cause LAMMPS to crash when the neighbor list is built. The solution is to check for building the
regular neighbor lists more frequently.
Cannot include log terms without 1/r terms, setting flagHI to 1
Self-explanatory.
Cannot include log terms without 1/r terms, setting flagHI to 1.
Self-explanatory.
Compute cna/atom cutoff may be too large to find ghost atom neighbors
The neighbor cutoff used may not encompass enough ghost atoms to perform this operation correctly.
Computing temperature of portions of rigid bodies
The group defined by the temperature compute does not encompass all the atoms in one or more rigid
bodies, so the change in degrees-of-freedom for the atoms in those partial rigid bodies will not be
accounted for.
Created bonds will not create angles, dihedrals, or impropers
See the doc page for fix bond/create for more info on this restriction.
Dihedral problem: %d %ld %d %od Yod %od
Conformation of the 4 listed dihedral atoms is extreme; you may want to check your simulation geometry.
Dump dcd/xtc timestamp may be wrong with fix dt/reset
If the fix changes the timestep, the dump dcd file will not reflect the change.
FENE bond too long: %ld %d %d %g

187

A FENE bond has stretched dangerously far. It's interaction strength will be truncated to attempt to
prevent the bond from blowing up.

FENE bond too long: %ld %g
A FENE bond has stretched dangerously far. It's interaction strength will be truncated to attempt to
prevent the bond from blowing up.

Fix GCMC may delete atom with non-zero molecule ID
This is probably an error, since you should not delete only one atom of a molecule. The GCMC molecule
exchange feature does not yet work.

Fix SRD walls overlap but fix srd overlap not set
You likely want to set this in your input script.

Fix bond/swap will ignore defined angles
See the doc page for fix bond/swap for more info on this restriction.

Fix evaporate may delete atom with non-zero molecule 1D
This is probably an error, since you should not delete only one atom of a molecule.

Fix move does not update angular momentum
Atoms store this quantity, but fix move does not (yet) update it.

Fix move does not update quaternions
Atoms store this quantity, but fix move does not (yet) update it.

Fix recenter should come after all other integration fixes
Other fixes may change the position of the center-of-mass, so fix recenter should come last.

Fix shake with rRESPA computes invalid pressures
This is a known bug in LAMMPS that has not yet been fixed. If you use SHAKE with rRESPA and
perform a constant volume simulation (e.g. using fix npt) this only affects the output pressure, not the
dynamics of the simulation. If you use SHAKE with rRESPA and perform a constant pressure simulation
(e.g. using fix npt) then you will be equilibrating to the wrong volume.

Fix srd SRD moves may trigger frequent reneighboring
This is because the SRD particles may move long distances.

Fix srd grid size > 1/4 of big particle diameter
This may cause accuracy problems.

Fix srd particle moved outside valid domain
This may indicate a problem with your simulation parameters.

Fix srd particles may move > big particle diameter
This may cause accuracy problems.

Fix srd viscosity < 0.0 due to low SRD density
This may cause accuracy problems.

Fix thermal/conductivity comes before fix ave/spatial
The order of these 2 fixes in your input script is such that fix thermal/conductivity comes first. If you are
using fix ave/spatial to measure the temperature profile induced by fix viscosity, then this may cause a
glitch in the profile since you are averaging immediately after swaps have occurred. Flipping the order of
the 2 fixes typically helps.

Fix viscosity comes before fix ave/spatial
The order of these 2 fixes in your input script is such that fix viscosity comes first. If you are using fix
ave/spatial to measure the velocity profile induced by fix viscosity, then this may cause a glitch in the
profile since you are averaging immediately after swaps have occurred. Flipping the order of the 2 fixes
typically helps.

Group for fix_modify temp != fix group
The fix_modify command is specifying a temperature computation that computes a temperature on a
different group of atoms than the fix itself operates on. This is probably not what you want to do.

Improper problem: Yod %ld %d %d Yod Yod
Conformation of the 4 listed improper atoms is extreme; you may want to check your simulation
geometry.

Kspace_modify slab param < 2.0 may cause unphysical behavior

188

The kspace_modify slab parameter should be larger to insure periodic grids padded with empty space do
not overlap.
Less insertions than requested
Less atom insertions occurred on this timestep due to the fix pour command than were scheduled. This is
probably because there were too many overlaps detected.
Lost atoms via change_box: original %ld current %ld
The command options you have used caused atoms to be lost.
Lost atoms via displace_atoms: original %ld current %ld
The command options you have used caused atoms to be lost.
Lost atoms: original %ld current %ld
Lost atoms are checked for each time thermo output is done. See the thermo_modify lost command for
options. Lost atoms usually indicate bad dynamics, e.g. atoms have been blown far out of the simulation
box, or moved futher than one processor's sub-domain away before reneighboring.
Mismatch between velocity and compute groups
The temperature computation used by the velocity command will not be on the same group of atoms that
velocities are being set for.
More than one compute centro/atom
It is not efficient to use compute centro/atom more than once.
More than one compute cluster/atom
It is not efficient to use compute cluster/atom more than once.
More than one compute cna/atom defined
It is not efficient to use compute cna/atom more than once.
More than one compute coord/atom
It is not efficient to use compute coord/atom more than once.
More than one compute damage/atom
It is not efficient to use compute ke/atom more than once.
More than one compute ke/atom
It is not efficient to use compute ke/atom more than once.
More than one fix poems
It is not efficient to use fix poems more than once.
More than one fix rigid
It is not efficient to use fix rigid more than once.
New thermo_style command, previous thermo_modify settings will be lost
If a thermo_style command is used after a thermo_modify command, the settings changed by the
thermo_modify command will be reset to their default values. This is because the thermo_modify
commmand acts on the currently defined thermo style, and a thermo_style command creates a new style.
No Kspace calculation with verlet/split
The 2nd partition performs a kspace calculation so the kspace_style command must be used.
No fixes defined, atoms won't move
If you are not using a fix like nve, nvt, npt then atom velocities and coordinates will not be updated
during timestepping.
No joints between rigid bodies, use fix rigid instead
The bodies defined by fix poems are not connected by joints. POEMS will integrate the body motion, but
it would be more efficient to use fix rigid.
Not using real units with pair reax
This is most likely an error, unless you have created your own ReaxFF parameter file in a different set of
units.
One or more atoms are time integrated more than once
This is probably an error since you typically do not want to advance the positions or velocities of an atom
more than once per timestep.
One or more compute molecules has atoms not in group
The group used in a compute command that operates on moleclues does not include all the atoms in some

189

molecules. This is probably not what you want.

One or more respa levels compute no forces
This is computationally inefficient.

Pair COMB charge %.10f with force %.10f hit max barrier
Something is possibly wrong with your model.

Pair COMB charge %.10f with force %.10f hit min barrier
Something is possibly wrong with your model.

Pair brownian needs newton pair on for momentum conservation
Self-explanatory.

Fair dpd needs newton pair on for momentum conservation
Self-explanatory.

Pair dsmc: num_of_collisions > number_of_A
Collision model in DSMC is breaking down.

Pair dsmc: num_of_collisions > number_of B
Collision model in DSMC is breaking down.

Particle deposition was unsuccessful
The fix deposit command was not able to insert as many atoms as needed. The requested volume fraction
may be too high, or other atoms may be in the insertion region.

Reducing PPPM order b/c stencil extends beyond neighbor processor
LAMMPS is attempting this in order to allow the simulation to run. It should not effect the PPPM
accuracy.

Replacing a fix, but new group != old group
The ID and style of a fix match for a fix you are changing with a fix command, but the new group you are
specifying does not match the old group.

Replicating in a non-periodic dimension
The parameters for a replicate command will cause a non-periodic dimension to be replicated; this may
cause unwanted behavior.

Resetting reneighboring criteria during PRD
A PRD simulation requires that neigh_modify settings be delay = 0, every = 1, check = yes. Since these
settings were not in place, LAMMPS changed them and will restore them to their original values after the
PRD simulation.

Resetting reneighboring criteria during TAD
A TAD simulation requires that neigh_modify settings be delay = 0, every = 1, check = yes. Since these
settings were not in place, LAMMPS changed them and will restore them to their original values after the
PRD simulation.

Resetting reneighboring criteria during minimization
Minimization requires that neigh_modify settings be delay = 0, every = 1, check = yes. Since these
settings were not in place, LAMMPS changed them and will restore them to their original values after the
minimization.

Restart file used different # of processors
The restart file was written out by a LAMMPS simulation running on a different number of processors.
Due to round-off, the trajectories of your restarted simulation may diverge a little more quickly than if
you ran on the same # of processors.

Restart file used different 3d processor grid
The restart file was written out by a LAMMPS simulation running on a different 3d grid of processors.
Due to round-off, the trajectories of your restarted simulation may diverge a little more quickly than if
you ran on the same # of processors.

Restart file used different boundary settings, using restart file values
Your input script cannot change these restart file settings.

Restart file used different newton bond setting, using restart file value
The restart file value will override the setting in the input script.

Restart file used different newton pair setting, using input script value

190

The input script value will override the setting in the restart file.
Restart file version does not match LAMMPS version
This may cause problems when reading the restart file.
Restrain problem: %d %ld %d %d %d %d
Conformation of the 4 listed dihedral atoms is extreme; you may want to check your simulation geometry.
Running PRD with only one replica
This is allowed, but you will get no parallel speed-up.
SRD bin shifting turned on due to small lamda
This is done to try to preserve accuracy.
SRD bin size for fix srd differs from user request
Fix SRD had to adjust the bin size to fit the simulation box. See the cubic keyword if you want this
message to be an error vs warning.
SRD bins for fix srd are not cubic enough
The bin shape is not within tolerance of cubic. See the cubic keyword if you want this message to be an
error vs warning.
SRD particle %d started inside big particle %d on step %ld bounce %d
See the inside keyword if you want this message to be an error vs warning.
Shake determinant < 0.0
The determinant of the quadratic equation being solved for a single cluster specified by the fix shake
command is numerically suspect. LAMMPS will set it to 0.0 and continue.
Should not allow rigid bodies to bounce off relecting walls
LAMMPS allows this, but their dynamics are not computed correctly.
System is not charge neutral, net charge = %g
The total charge on all atoms on the system is not 0.0, which is not valid for Ewald or PPPM.
Table inner cutoff >= outer cutoff
You specified an inner cutoff for a Coulombic table that is longer than the global cutoff. Probably not
what you wanted.
Temperature for MSST is not for group all
User-assigned temperature to MSST fix does not compute temperature for all atoms. Since MSST
computes a global pressure, the kinetic energy contribution from the temperature is assumed to also be for
all atoms. Thus the pressure used by MSST could be inaccurate.
Temperature for NPT is not for group all
User-assigned temperature to NPT fix does not compute temperature for all atoms. Since NPT computes a
global pressure, the kinetic energy contribution from the temperature is assumed to also be for all atoms.
Thus the pressure used by NPT could be inaccurate.
Temperature for fix modify is not for group all
The temperature compute is being used with a pressure calculation which does operate on group all, so
this may be inconsistent.
Temperature for thermo pressure is not for group all
User-assigned temperature to thermo via the thermo_modify command does not compute temperature for
all atoms. Since thermo computes a global pressure, the kinetic energy contribution from the temperature
is assumed to also be for all atoms. Thus the pressure printed by thermo could be inaccurate.
Too many common neighbors in CNA %d times
More than the maximum # of neighbors was found multiple times. This was unexpected.
Too many inner timesteps in fix ttm
Self-explanatory.
Too many neighbors in CNA for %d atoms
More than the maximum # of neighbors was found multiple times. This was unexpected.
Use special bonds = 0,1,1 with bond style fene
Most FENE models need this setting for the special_bonds command.
Use special bonds = 0,1,1 with bond style fene/expand
Most FENE models need this setting for the special_bonds command.

191

Using compute temp/deform with inconsistent fix deform remap option
Fix nvt/sllod assumes deforming atoms have a velocity profile provided by "remap v" or "remap none" as
a fix deform option.

Using compute temp/deform with no fix deform defined
This is probably an error, since it makes little sense to use compute temp/deform in this case.

Using fix srd with box deformation but no SRD thermostat
The deformation will heat the SRD particles so this can be dangerous.

Using pair tail corrections with nonperiodic system
This is probably a bogus thing to do, since tail corrections are computed by integrating the density of a
periodic system out to infinity.

192

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

13. Future and history

This section lists features we plan to add to LAMMPS, features of previous versions of LAMMPS, and features of
other parallel molecular dynamics codes our group has distributed.

13.1 Coming attractions
13.2 Past versions

13.1 Coming attractions
The Wish list link on the LAMMPS WWW page gives a list of features we are hoping to add to LAMMPS in the
future, including contact names of individuals you can email if you are interested in contributing to the

developement or would be a future user of that feature.

You can also send email to the developers if you want to add your wish to the list.

13.2 Past versions

LAMMPS development began in the mid 1990s under a cooperative research & development agreement
(CRADA) between two DOE labs (Sandia and LLNL) and 3 companies (Cray, Bristol Myers Squibb, and
Dupont). The goal was to develop a large-scale parallel classical MD code; the coding effort was led by Steve
Plimpton at Sandia.

After the CRADA ended, a final F77 version, LAMMPS 99, was released. As development of LAMMPS
continued at Sandia, its memory management was converted to F90; a final FO0 version was released as
LAMMPS 2001.

The current LAMMPS is a rewrite in C++ and was first publicly released as an open source code in 2004. It
includes many new features beyond those in LAMMPS 99 or 2001. It also includes features from older parallel
MD codes written at Sandia, namely ParaDyn, Warp, and GranFlow (see below).

In late 2006 we began merging new capabilities into LAMMPS that were developed by Aidan Thompson at
Sandia for his MD code GRASP, which has a parallel framework similar to LAMMPS. Most notably, these have
included many-body potentials - Stillinger-Weber, Tersoff, ReaxFF - and the associated charge-equilibration
routines needed for ReaxFF.

The History link on the LAMMPS WWW page gives a timeline of features added to the C++ open-source version
of LAMMPS over the last several years.

These older codes are available for download from the LAMMPS WWW site, except for Warp & GranFlow
which were primarily used internally. A brief listing of their features is given here.

LAMMPS 2001
¢ F90 + MPI
¢ dynamic memory

e spatial-decomposition parallelism
e NVE, NVT, NPT, NPH, rRESPA integrators

193

http://lammps.sandia.gov
http://lammps.sandia.gov/future.html
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov/history.html
http://lammps.sandia.gov

¢ L.J and Coulombic pairwise force fields

¢ all-atom, united-atom, bead-spring polymer force fields
¢ CHARMM-compatible force fields

o class 2 force fields

¢ 3d/2d Ewald & PPPM

¢ various force and temperature constraints

e SHAKE

¢ Hessian-free truncated-Newton minimizer

¢ user-defined diagnostics

LAMMPS 99

e F77 + MPI

¢ static memory allocation

¢ spatial-decomposition parallelism

¢ most of the LAMMPS 2001 features with a few exceptions
¢ no 2d Ewald & PPPM

¢ molecular force fields are missing a few CHARMM terms
¢ no SHAKE

¢ F90 + MPI

¢ spatial-decomposition parallelism

¢ embedded atom method (EAM) metal potentials + LJ

¢ lattice and grain-boundary atom creation

¢ NVE, NVT integrators

¢ boundary conditions for applying shear stresses

¢ temperature controls for actively sheared systems

e per-atom energy and centro-symmetry computation and output

ParaDyn

e F77 + MPI

¢ atom- and force-decomposition parallelism

¢ embedded atom method (EAM) metal potentials

e Jattice atom creation

¢ NVE, NVT, NPT integrators

e all serial DYNAMO features for controls and constraints

GranFlow

¢ F90 + MPI

¢ spatial-decomposition parallelism

¢ frictional granular potentials

¢ NVE integrator

¢ boundary conditions for granular flow and packing and walls
¢ particle insertion

194

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style charmm command

angle_style charmm/omp command
Syntax:

angle_style charmm

Examples:

angle_style charmm
angle_coeff 1 300.0 107.0 50.0 3.0

Description:

The charmm angle style uses the potential
-~ 2 - - e 2
FEF=K (9—00) —|—1&UB(‘I = ’L-"B)

with an additional Urey_Bradley term based on the distance r between the 1st and 3rd atoms in the angle. K,
thetaO, Kub, and Rub are coefficients defined for each angle type.

See (MacKerell) for a description of the CHARMM force field.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy/radian’2)

¢ thetaO (degrees)

¢ K_ub (energy/distance”2)
¢ r_ub (distance)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the

-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input
script.

195

http://lammps.sandia.gov

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
angle_coeff

Default: none

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

196

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style class2 command

angle_style class2/omp command
Syntax:

angle_style class2

Examples:

angle_style class?2

angle_coeff * 75.0

angle_coeff 1 bb 10.5872 1.0119 1.5228
angle_coeff * ba 3.6551 24.895 1.0119 1.5228

Description:

The class2 angle style uses the potential

E = E,+ Ep+ Epg

E, = Ky —00)%+ K3(0—00)° + K40 — 6p)*
E{;.b = JI(I” — T"l)(?"jk o ?'g)
Epy = Nl(?"z'j —11)(0 — 6g) + Ny ("".jh‘ —12)(0 — 6p)

where Ea is the angle term, Ebb is a bond-bond term, and Eba is a bond-angle term. Theta0 is the equilibrium
angle and r1 and r2 are the equilibrium bond lengths.

See (Sun) for a description of the COMPASS class2 force field.

Coefficients for the Ea, Ebb, and Eba formulas must be defined for each angle type via the bond_coeff command
as in the example above, or in the data file or restart files read by the read_data or read_restart commands.

These are the 4 coefficients for the Ea formula:

¢ thetaO (degrees)

¢ K2 (energy/radian”2)
¢ K3 (energy/radian”3)
¢ K4 (energy/radian™4)

ThetaO is specified in degrees, but LAMMPS converts it to radians internally; hence the units of the various K are
in per-radian.

For the Ebb formula, each line in a bond_coeff command in the input script lists 4 coefficients, the first of which
is "bb" to indicate they are BondBond coefficients. In a data file, these coefficients should be listed under a
"BondBond Coeffs" heading and you must leave out the "bb", i.e. only list 3 coefficients after the angle type.

197

http://lammps.sandia.gov

* bb

® M (energy/distance”2)
¢ r1 (distance)

¢ 2 (distance)

For the Eba formula, each line in a bond_coeff command in the input script lists 5 coefficients, the first of which
is "ba" to indicate they are BondAngle coefficients. In a data file, these coefficients should be listed under a
"BondAngle Coeffs" heading and you must leave out the "ba", i.e. only list 4 coefficients after the angle type.

® ba

® N1 (energy/distance”2)
® N2 (energy/distance”2)
¢ r1 (distance)

e 2 (distance)

The thetaO value in the Eba formula is not specified, since it is the same value from the Ea formula.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the CLASS2 package. See the Making LAMMPS
section for more info on packages.

Related commands:
angle_coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

198

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_coeff command

Syntax:
angle_coeff N args

¢ N = angle type (see asterisk form below)
e args = coefficients for one or more angle types

Examples:

angle_coeff 1 300.0 107.0
angle_coeff * 5.0
angle_coeff 2*10 5.0

Description:

Specify the angle force field coefficients for one or more angle types. The number and meaning of the coefficients
depends on the angle style. Angle coefficients can also be set in the data file read by the read_data command or in
a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or a
wild-card asterisk can be used to set the coefficients for multiple angle types. This takes the form "*" or "*n" or
"n*" or "m*n". If N = the number of angle types, then an asterisk with no numeric values means all types from 1
to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types from n to N
(inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using an angle_coeff command can override a previous setting for the same angle type. For example,
these commands set the coeffs for all angle types, then overwrite the coeffs for just angle type 2:

angle_coeff * 200.0 107.0 1.2
angle_coeff 2 50.0 107.0

A line in a data file that specifies angle coefficients uses the exact same format as the arguments of the
angle_coeff command in an input script, except that wild-card asterisks should not be used since coefficients for
all N types must be listed in the file. For example, under the "Angle Coeffs" section of a data file, the line that
corresponds to the 1st example above would be listed as

1 300.0 107.0

The angle_style class2 is an exception to this rule, in that an additional argument is used in the input script to
allow specification of the cross-term coefficients. See its doc page for details.

Here is an alphabetic list of angle styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated angle_coeff command.

Note that there are also additional angle styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the angle section of this page.

¢ angle_style none - turn off angle interactions
e angle_style hybrid - define multiple styles of angle interactions

199

http://lammps.sandia.gov

¢ angle_style charmm - CHARMM angle

¢ angle_style class2 - COMPASS (class 2) angle

¢ angle_style cosine - cosine angle potential

¢ angle_style cosine/delta - difference of cosines angle potential
¢ angle_style cosine/periodic - DREIDING angle

¢ angle_style cosine/squared - cosine squared angle potential

¢ angle_style harmonic - harmonic angle

¢ angle_style table - tabulated by angle

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

An angle style must be defined before any angle coefficients are set, either in the input script or in a data file.
Related commands:
angle_style

Default: none

200

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine command

angle_style cosine/omp command
Syntax:

angle_style cosine

Examples:

angle_style cosine
angle_coeff * 75.0

Description:

The cosine angle style uses the potential
E = K|[1 + cos(6)]

where K is defined for each angle type.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

201

http://lammps.sandia.gov

angle_coeff

Default: none

202

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/delta command

angle_style cosine/delta/omp command
Syntax:

angle_style cosine/delta

Examples:

angle_style cosine/delta
angle_coeff 2*4 75.0 100.0

Description:

The cosine/delta angle style uses the potential
E = K[1 — cos(0 — 6,)]
where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is included

in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy)
¢ thetaO (degrees)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

203

http://lammps.sandia.gov

Related commands:
angle_coeff, angle_style cosine/squared

Default: none

204

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/periodic command

angle_style cosine/periodic/omp command
Syntax:

angle_style cosine/periodic

Examples:

angle_style cosine/periodic
angle_coeff * 75.0 1 6

Description:
The cosine/periodic angle style uses the following potential, which is commonly used in the DREIDING force

field, particularly for organometallic systems where n = 4 might be used for an octahedral complex and n = 3
might be used for a trigonal center:

E=C|[l1- B(—=1)"cos (nf)]

where C, B and n are coefficients defined for each angle type.
See (Mayo) for a description of the DREIDING force field

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ C (energy)
eB=1or-1
en=1,2,3,4,5 or 6 for periodicity

Note that the prefactor C is specified and not the overall force constant K=C /n*2. When B =1, it leads to a
minimum for the linear geometry. When B = -1, it leads to a maximum for the linear geometry.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input
script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

205

http://lammps.sandia.gov

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
angle_coeff

Default: none

(Mayo) Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909 (1990).

206

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/shift command

angle_style cosine/shift/omp command
Syntax:

angle_style cosine/shift

Examples:

angle_style cosine/shift
angle_coeff * 10.0 45.0

Description:

The cosine/shift angle style uses the potential

e _# [1+ Cos(0 — 6p)]

where theta0 is the equilibrium angle. The potential is bounded between -Umin and zero. In the neighborhood of
the minimum E=- Umin + Umin/4(theta-theta0)"2 hence the spring constant is umin/2.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ umin (energy)
¢ theta (angle)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

207

http://lammps.sandia.gov

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:
angle_coeff, angle_cosineshiftexp

Default: none

208

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/shift/exp command

angle_style cosine/shift/exp/omp command
Syntax:
angle_style cosine/shift/exp

Examples:

angle_style cosine/shift/exp
angle_coeff * 10.0 45.0 2.0

Description:

The cosine/shift/exp angle style uses the potential

e —al(0,00) _ 1

E=—U_y., ; with U(6,6y) = —0.5 (1 + cos(0 — b))
pie—

where Umin, theta, and a are defined for each angle type.

The potential is bounded between [-Umin:0] and the minimum is located at the angle theta0. The a parameter can
be both positive or negative and is used to control the spring constant at the equilibrium.

The spring constant is given by k = A exp(A) Umin / [2 (Exp(a)-1)]. For a > 3, k/Umin = a/2 to better than 5%
relative error. For negative values of the a parameter, the spring constant is essentially zero, and anharmonic
terms takes over. The potential is furthermore well behaved in the limit a -> 0, where it has been implemented to
linear order in a for a < 0.001. In this limit the potential reduces to the cosineshifted potential.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ umin (energy)
¢ theta (angle)
¢ A (real number)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the

209

http://lammps.sandia.gov

-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input
script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:
angle_coeff, angle_cosineshift, dihedral_cosineshift

Default: none

210

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/squared command

angle_style cosine/squared/omp command
Syntax:

angle_style cosine/squared

Examples:

angle_style cosine/squared
angle_coeff 2*4 75.0 100.0

Description:

The cosine/squared angle style uses the potential
- 2
E = K|cos(6) — cos(6)]

where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is included
in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy)
¢ thetaO (degrees)

ThetaO is specified in degrees, but LAMMPS converts it to radians internally.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

211

http://lammps.sandia.gov

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
angle_coeff

Default: none

212

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style dipole command

angle_style dipole/omp command
Syntax:

angle_style dipole

Examples:

angle_style dipole
angle_coeff 6 2.1 180.0

Description:

The dipole angle style is used to control the orientation of a dipolar atom within a molecule (Orsi). Specifically,
the dipole angle style restrains the orientation of a point dipole mu_j (embedded in atom 'j') with respect to a
reference (bond) vector r_ij =r_i - r_j, where '1' is another atom of the same molecule (typically, 'i' and 'j' are also

covalently bonded).

It is convenient to define an angle gamma between the 'free' vector mu_j and the reference (bond) vector r_ij:

_ Ei® Ty

15 Tij

(_‘(_) S A,r'l

The dipole angle style uses the potential:

E = K(cosvy — cos~p)?

— ATD " (™ " 0

where K is a rigidity constant and gamma0 is an equilibrium (reference) angle.

The torque on the dipole can be obtained by differentiating the potential using the 'chain rule' as in appendix C.3
of (Allen):

2K (cosvy — cos)

5 Tig

T; =

iz X [

Example: if gammad is set to O degrees, the torque generated by the potential will tend to align the dipole along
the reference direction defined by the (bond) vector r_ij (in other words, mu_j is restrained to point towards atom

).

213

http://lammps.sandia.gov

Note that the angle dipole potential does not give rise to any force, because it does not depend on the distance
between i and j (it only depends on the angle between mu_j and r_ij).

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy)
¢ gamma((degrees)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input
script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

IMPORTANT NOTE: In the "Angles" section of the data file, the atom ID 'j' corresponding to the dipole to
restrain must come before the atom ID of the reference atom 'i'. A third atom ID k' must also be provided,
although 'k' is just a 'dummy"' atom which can be any atom; it may be useful to choose a convention (e.g., 'k'="1")
and adhere to it. For example, if ID=1 for the dipolar atom to restrain, and ID=2 for the reference atom, the
corresponding line in the "Angles" section of the data file would read: X X 1 2 2

The "newton" command for intramolecular interactions must be "on" (which is the default).

This angle style should not be used with SHAKE.

Related commands:

angle_coeff, angle_hybrid

Default: none

(Orsi) Orsi & Essex, The ELBA force field for coarse-grain modeling of lipid membranes, PloS ONE 6(12):
e28637, 2011.

(Allen) Allen & Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.

214

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style harmonic command

angle_style harmonic/omp command
Syntax:

angle_style harmonic

Examples:

angle_style harmonic
angle_coeff 1 300.0 107.0

Description:

The harmonic angle style uses the potential
2
E=K(@0-6)
where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is included

in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy/radian”2)
¢ thetaO (degrees)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions: none

215

http://lammps.sandia.gov

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
angle_coeff

Default: none

216

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style hybrid command

Syntax:
angle_style hybrid stylel style2 ...
e stylel,style2 = list of one or more angle styles

Examples:

angle_style hybrid harmonic cosine
angle_coeff 1 harmonic 80.0 30.0
angle_coeff 2* cosine 50.0

Description:

The hybrid style enables the use of multiple angle styles in one simulation. An angle style is assigned to each
angle type. For example, angles in a polymer flow (of angle type 1) could be computed with a harmonic potential
and angles in the wall boundary (of angle type 2) could be computed with a cosine potential. The assignment of
angle type to style is made via the angle_coeff command or in the data file.

In the angle_coeff commands, the name of an angle style must be added after the angle type, with the remaining
coefficients being those appropriate to that style. In the example above, the 2 angle_coeff commands set angles of
angle type 1 to be computed with a harmonic potential with coefficients 80.0, 30.0 for K, theta0. All other angle
types (2-N) are computed with a cosine potential with coefficient 50.0 for K.

If angle coefficients are specified in the data file read via the read_data command, then the same rule applies. E.g.
"harmonic" or "cosine", must be added after the angle type, for each line in the "Angle Coeffs" section, e.g.

Angle Coeffs
1 harmonic 80.0 30.0

2 cosine 50.0

If class2 is one of the angle hybrid styles, the same rule holds for specifying additional BondBond (and
BondAngle) coefficients either via the input script or in the data file. L.e. class2 must be added to each line after
the angle type. For lines in the BondBond (or BondAngle) section of the data file for angle types that are not
class2, you must use an angle style of skip as a placeholder, e.g.

BondBond Coeffs
1 skip

2 class2 3.6512 1.0119 1.0119

Note that it is not necessary to use the angle style skip in the input script, since BondBond (or BondAngle)
coefficients need not be specified at all for angle types that are not class?2.

An angle style of none with no additional coefficients can be used in place of an angle style, either in a input
script angle_coeff command or in the data file, if you desire to turn off interactions for specific angle types.

217

http://lammps.sandia.gov

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Unlike other angle styles, the hybrid angle style does not store angle coefficient info for individual sub-styles in a
binary restart files. Thus when retarting a simulation from a restart file, you need to re-specify angle_coeff
commands.

Related commands:

angle_coeff

Default: none

218

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style none command

Syntax:

angle_style none

Examples:

angle_style none
Description:

Using an angle style of none means angle forces are not computed, even if triplets of angle atoms were listed in
the data file read by the read_data command.

Restrictions: none
Related commands: none

Default: none

219

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style sdk command

Syntax:
angle_style sdk

angle_style sdk/omp
Examples:

angle_style sdk
angle_coeff 1 300.0 107.0

Description:

The sdk angle style is a combination of the harmonic angle potential,
2
E=K(®6 -6

where theta(is the equilibrium value of the angle and K a prefactor, with the repulsive part of the non-bonded
lji/sdk pair style between the atoms 1 and 3. This angle potential is intended for coarse grained MD simulations
with the CMM parametrization using the pair_style 1j/sdk. Relative to the pair_style [j/sdk, however, the energy is
shifted by epsilon, to avoid sudden jumps. Note that the usual 1/2 factor is included in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above:

¢ K (energy/radian”2)
¢ thetaO (degrees)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2. The also required /j/sdk parameters will be extracted automatically from the pair_style.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-CG-CMM package. See the Making
LAMMPS section for more info on packages.

Related commands:
angle_coeff, angle_style harmonic, pair_style 1j/sdk, pair_style lj/sdk/coul/long

Default: none

220

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style command
Syntax:
angle_style style
e style = none or hybrid or charmm or class2 or cosine or cosine/squared or harmonic
Examples:

angle_style harmonic
angle_style charmm
angle_style hybrid harmonic cosine

Description:

Set the formula(s) LAMMPS uses to compute angle interactions between triplets of atoms, which remain in force
for the duration of the simulation. The list of angle triplets is read in by a read_data or read_restart command from
a data or restart file.

Hybrid models where angles are computed using different angle potentials can be setup using the hybrid angle
style.

The coefficients associated with a angle style can be specified in a data or restart file or via the angle_coeff
command.

All angle potentials store their coefficient data in binary restart files which means angle_style and angle_coeff
commands do not need to be re-specified in an input script that restarts a simulation. See the read_restart
command for details on how to do this. The one exception is that angle_style hybrid only stores the list of
sub-styles in the restart file; angle coefficients need to be re-specified.

IMPORTANT NOTE: When both an angle and pair style is defined, the special_bonds command often needs to
be used to turn off (or weight) the pairwise interaction that would otherwise exist between 3 bonded atoms.

In the formulas listed for each angle style, theta is the angle between the 3 atoms in the angle.

Here is an alphabetic list of angle styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated angle_coeff command.

Note that there are also additional angle styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the angle section of this page.

¢ angle_style none - turn off angle interactions
¢ angle_style hybrid - define multiple styles of angle interactions

¢ angle_style charmm - CHARMM angle

¢ angle_style class2 - COMPASS (class 2) angle

¢ angle_style cosine - cosine angle potential

¢ angle_style cosine/delta - difference of cosines angle potential
e angle_style cosine/periodic - DREIDING angle

¢ angle_style cosine/squared - cosine squared angle potential

221

http://lammps.sandia.gov

¢ angle_style harmonic - harmonic angle
¢ angle_style table - tabulated by angle

Restrictions:

Angle styles can only be set for atom_styles that allow angles to be defined.

Most angle styles are part of the MOLECULAR package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info on packages. The doc pages for individual bond
potentials tell if it is part of a package.

Related commands:

angle_coeff

Default:

angle_style none

222

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style table command

angle_style table/omp command

Syntax:
angle_style table style N

e style = linear or spline = method of interpolation
e N =use N values in table

Examples:

angle_style table linear 1000
angle_coeff 3 file.table ENTRYL

Description:

Style table creates interpolation tables of length N from angle potential and derivative values listed in a file(s) as a
function of angle The files are read by the angle_coeff command.

The interpolation tables are created by fitting cubic splines to the file values and interpolating energy and
derivative values at each of N angles. During a simulation, these tables are used to interpolate energy and force
values on individual atoms as needed. The interpolation is done in one of 2 styles: linear or spline.

For the linear style, the angle is used to find 2 surrounding table values from which an energy or its derivative is
computed by linear interpolation.

For the spline style, a cubic spline coefficients are computed and stored at each of the N values in the table. The
angle is used to find the appropriate set of coefficients which are used to evaluate a cubic polynomial which
computes the energy or derivative.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above.

¢ filename
® keyword

The filename specifies a file containing tabulated energy and derivative values. The keyword specifies a section
of the file. The format of this file is described below.

The format of a tabulated file is as follows (without the parenthesized comments):
Angle potential for harmonic (one or more comment or blank lines)

HAM
N 181 FP 0 0 EQ 90.0

(keyword is the first text on line)
(N, FP, EQ parameters)

(blank line)
(
(

=
=
©
i

FP 0 O N, FP parameters)

index, angle, energy, derivative)

N -
= O
o O
=N
o O
0 O
o Ul

223

http://lammps.sandia.gov

181 180.0 0.0 0.0

A section begins with a non-blank line whose 1st character is not a "#"; blank lines or lines starting with "#" can
be used as comments between sections. The first line begins with a keyword which identifies the section. The line
can contain additional text, but the initial text must match the argument specified in the angle_coeff command.
The next line lists (in any order) one or more parameters for the table. Each parameter is a keyword followed by
one or more numeric values.

The parameter "N" is required and its value is the number of table entries that follow. Note that this may be
different than the N specified in the angle_style table command. Let Ntable = N in the angle_style command, and
Nfile = "N" in the tabulated file. What LAMMPS does is a preliminary interpolation by creating splines using the
Nfile tabulated values as nodal points. It uses these to interpolate as needed to generate energy and derivative
values at Ntable different points. The resulting tables of length Ntable are then used as described above, when
computing energy and force for individual angles and their atoms. This means that if you want the interpolation
tables of length Ntable to match exactly what is in the tabulated file (with effectively no preliminary
interpolation), you should set Ntable = Nfile.

The "FP" parameter is optional. If used, it is followed by two values fplo and fphi, which are the 2nd derivatives
at the innermost and outermost angle settings. These values are needed by the spline construction routines. If not
specified by the "FP" parameter, they are estimated (less accurately) by the first two and last two derivative values
in the table.

The "EQ" parameter is also optional. If used, it is followed by a the equilibrium angle value, which is used, for
example, by the fix shake command. If not used, the equilibrium angle is set to 180.0.

Following a blank line, the next N lines list the tabulated values. On each line, the 1st value is the index from 1 to
N, the 2nd value is the angle value (in degrees), the 3rd value is the energy (in energy units), and the 4th is
-dE/d(theta) (also in energy units). The 3rd term is the energy of the 3-atom configuration for the specified angle.
The last term is the derivative of the energy with respect to the angle (in degrees, not radians). Thus the units of
the last term are still energy, not force. The angle values must increase from one line to the next. The angle values
must also begin with 0.0 and end with 180.0, i.e. span the full range of possible angles.

Note that one file can contain many sections, each with a tabulated potential. LAMMPS reads the file section by
section until it finds one that matches the specified keyword.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

224

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
angle_coeff

Default: none

225

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

atom_modify command

Syntax:

atom_modify keyword wvalues

¢ one or more keyword/value pairs may be appended
¢ keyword = map or first or sort

map value = array or hash
first value = group-ID = group whose atoms will appear first in internal atom lists
sort values = Nfreq binsize
Nfreqg = sort atoms spatially every this many time steps
binsize = bin size for spatial sorting (distance units)

Examples:

atom_modify map hash
atom_modify map array sort 10000 2.0
atom_modify first colloid

Description:
Modify properties of the atom style selected within LAMMPS.

The map keyword determines how atom ID lookup is done for molecular problems. Lookups are performed by
bond (angle, etc) routines in LAMMPS to find the local atom index associated with a global atom ID. When the
array value is used, each processor stores a lookup table of length N, where N is the total # of atoms in the
system. This is the fastest method for most simulations, but a processor can run out of memory to store the table
for very large simulations. The hash value uses a hash table to perform the lookups. This method can be slightly
slower than the array method, but its memory cost is proportional to N/P on each processor, where P is the total
number of processors running the simulation.

The first keyword allows a group to be specified whose atoms will be maintained as the first atoms in each
processor's list of owned atoms. This in only useful when the specified group is a small fraction of all the atoms,
and there are other operations LAMMPS is performing that will be sped-up significantly by being able to loop
over the smaller set of atoms. Otherwise the reordering required by this option will be a net slow-down. The
neigh_modify include and communicate group commands are two examples of commands that require this setting
to work efficiently. Several fixes, most notably time integration fixes like fix nve, also take advantage of this
setting if the group they operate on is the group specified by this command. Note that specifying "all" as the
group-ID effectively turns off the first option.

It is OK to use the first keyword with a group that has not yet been defined, e.g. to use the atom_modify first
command at the beginning of your input script. LAMMPS does not use the group until a simullation is run.

The sort keyword turns on a spatial sorting or reordering of atoms within each processor's sub-domain every
Nfreg timesteps. If Nfreq is set to 0, then sorting is turned off. Sorting can improve cache performance and thus
speed-up a LAMMPS simulation, as discussed in a paper by (Meloni). Its efficacy depends on the problem size
(atoms/processor), how quickly the system becomes disordered, and various other factors. As a general rule,
sorting is typically more effective at speeding up simulations of liquids as opposed to solids. In tests we have
done, the speed-up can range from zero to 3-4x.

226

http://lammps.sandia.gov

Reordering is peformed every Nfreq timesteps during a dynamics run or iterations during a minimization. More
precisely, reordering occurs at the first reneighboring that occurs after the target timestep. The reordering is
performed locally by each processor, using bins of the specified binsize. If binsize is set to 0.0, then a binsize
equal to half the neighbor cutoff distance (force cutoff plus skin distance) is used, which is a reasonable value.
After the atoms have been binned, they are reordered so that atoms in the same bin are adjacent to each other in
the processor's 1d list of atoms.

The goal of this procedure is for atoms to put atoms close to each other in the processor's one-dimensional list of
atoms that are also near to each other spatially. This can improve cache performance when pairwise intereractions
and neighbor lists are computed. Note that if bins are too small, there will be few atoms/bin. Likewise if bins are
too large, there will be many atoms/bin. In both cases, the goal of cache locality will be undermined.

IMPORTANT NOTE: Running a simulation with sorting on versus off should not change the simulation results in
a statistical sense. However, a different ordering will induce round-off differences, which will lead to diverging
trajectories over time when comparing two simluations. Various commands, particularly those which use random
numbers (e.g. velocity create, and fix langevin), may generate (statistically identical) results which depend on the
order in which atoms are processed. The order of atoms in a dump file will also typically change if sorting is
enabled.

Restrictions:
The map keyword can only be used before the simulation box is defined by a read_data or create_box command.

The first and sort options cannot be used together. Since sorting is on by default, it will be turned off if the first
keyword is used with a group-ID that is not "all".

Related commands: none
Default:
By default, atomic (non-molecular) problems do not allocate maps. For molecular problems, the option default is

map = array. By default, a "first" group is not defined. By default, sorting is enabled with a frequency of 1000 and
a binsize of 0.0, which means the neighbor cutoff will be used to set the bin size.

(Meloni) Meloni, Rosati and Colombo, J Chem Phys, 126, 121102 (2007).

227

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

atom_style command
Syntax:
atom_style style args

e style = angle or atomic or bond or charge or dipole or electron or ellipsoid or full or line or meso or
molecular or peri or sphere or tri or hybrid

args = none for any style except hybrid
hybrid args = list of one or more sub-styles
Examples:

atom_style atomic

atom_style bond

atom_style full

atom_style hybrid charge bond

Description:

Define what style of atoms to use in a simulation. This determines what attributes are associated with the atoms.
This command must be used before a simulation is setup via a read_data, read_restart, or create_box command.

Once a style is assigned, it cannot be changed, so use a style general enough to encompass all attributes. E.g. with
style bond, angular terms cannot be used or added later to the model. It is OK to use a style more general than
needed, though it may be slightly inefficient.

The choice of style affects what quantities are stored by each atom, what quantities are communicated between
processors to enable forces to be computed, and what quantities are listed in the data file read by the read_data
command.

These are the additional attributes of each style and the typical kinds of physical systems they are used to model.
All styles store coordinates, velocities, atom IDs and types. See the read_data, create_atoms, and set commands
for info on how to set these various quantities.

angle bonds and angles bead-spring polymers with stiffness
atomic only the default values coarse-grain liquids, solids, metals
bond bonds bead-spring polymers

charge charge atomic system with charges

dipole charge and dipole moment system with dipolar particles
electron charge and spin and eradius electronic force field

ellipsoid |shape, quaternion for particle orientation, angular momentum |extended aspherical particles

full molecular + charge bio-molecules

line end points, angular velocity rigid bodies

meso rho, e, cv SPH particles

molecular |bonds, angles, dihedrals, impropers uncharged molecules

peri mass, volume mesocopic Peridynamic models

228

http://lammps.sandia.gov

sphere diameter, mass, angular velocity granular models

tri corner points, angular momentum rigid bodies

wavepacket |charge, spin, eradius, etag, cs_re, cs_im AWPMD
All of the styles assign mass to particles on a per-type basis, using the mass command, except for the finite-size
particle styles discussed below. They assign mass on a per-atom basis.

All of the styles define point particles, except the sphere, ellipsoid, electron, peri, wavepacket, line, and tri styles,
which define finite-size particles.

For the sphere style, the particles are spheres and each stores a per-particle diameter and mass. If the diameter >
0.0, the particle is a finite-size sphere. If the diameter = 0.0, it is a point particle.

For the ellipsoid style, the particles are ellipsoids and each stores a flag which indicates whether it is a finite-size
ellipsoid or a point particle. If it is an ellipsoid, it also stores a shape vector with the 3 diamters of the ellipsoid
and a quaternion 4-vector with its orientation.

For the electron style, the particles representing electrons are 3d Gaussians with a specified position and
bandwidth or uncertainty in position, which is represented by the eradius = electron size.

For the peri style, the particles are spherical and each stores a per-particle mass and volume.

The meso style is for smoothed particle hydrodynamics (SPH) particles which store a density (rho), energy (e),
and heat capacity (cv).

The wavepacket style is similar to electron, but the electrons may consist of several Gaussian wave packets,
summed up with coefficients cs= (cs_re,cs_im). Each of the wave packets is treated as a separate particle in
LAMMPS, wave packets belonging to the same electron must have identical efag values.

For the line style, the particles are idealized line segments and each stores a per-particle mass and length and
orientation (i.e. the end points of the line segment).

For the tri style, the particles are planar triangles and each stores a per-particle mass and size and orientation (i.e.
the corner points of the triangle).

Typically, simulations require only a single (non-hybrid) atom style. If some atoms in the simulation do not have
all the properties defined by a particular style, use the simplest style that defines all the needed properties by any
atom. For example, if some atoms in a simulation are charged, but others are not, use the charge style. If some
atoms have bonds, but others do not, use the bond style.

The only scenario where the hybrid style is needed is if there is no single style which defines all needed properties
of all atoms. For example, if you want dipolar particles which will be torqued and rotate, you would need to use
"atom_style hybrid sphere dipole". When a hybrid style is used, atoms store and communicate the union of all
quantities implied by the individual styles.

LAMMPS can be extended with new atom styles; see this section.

Restrictions:

This command cannot be used after the simulation box is defined by a read_data or create_box command.

The angle, bond, full, and molecular styles are part of the MOLECULAR package. The dipole style is part of the
"dipole" package. The peri style is part of the PERI package for Peridynamics. The electron style is part of the

229

USER-EFF package for electronic force fields. The meso style is part of the USER-SPH package for smoothed
particle hydrodyanmics (SPH). See this PDF guide to using SPH in LAMMPS. The wavepacket style is part of the
USER-AWPMD package for the antisymmetrized wave packet MD method. They are only enabled if LAMMPS
was built with that package. See the Making LAMMPS section for more info.

Related commands:

read_data, pair_style

Default:

atom_style atomic

230

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

balance command
Syntax:
balance keyword args

® one or more keyword/arg pairs may be appended
® keyword = x or y or z or dynamic or out

x args = uniform or Px-1 numbers between 0 and 1
uniform = evenly spaced cuts between processors in x dimension
numbers = Px-1 ascending values between 0 and 1, Px - # of processors in x dimension
y args = uniform or Py-1 numbers between 0 and 1
uniform = evenly spaced cuts between processors in y dimension
numbers = Py-1 ascending values between 0 and 1, Py - # of processors in y dimension
z args = uniform or Pz-1 numbers between 0 and 1
uniform = evenly spaced cuts between processors in z dimension
numbers = Pz-1 ascending values between 0 and 1, Pz - # of processors in z dimension
dynamic args = dimstr Niter thresh
dimstr = sequence of letters containing "x" or "y" or "z", each not more than once
Niter = # of times to iterate within each dimension of dimstr sequence
thresh = stop balancing when this imbalance threshhold is reached
out arg = filename
filename = output file to write each processor's sub-domain to
Examples:

balance x uniform y 0.4 0.5 0.6
balance dynamic xz 5 1.1
balance dynamic x 20 1.0 out tmp.balance

Description:

This command adjusts the size of processor sub-domains within the simulation box, to attempt to balance the
number of particles and thus the computational cost (load) evenly across processors. The load balancing is "static'
in the sense that this command performs the balancing once, before or between simulations. The processor
sub-domains will then remain static during the subsequent run. To perform "dynamic" balancing, see the fix
balance command, which can adjust processor sub-domain sizes on-the-fly during a run.

Load-balancing is only useful if the particles in the simulation box have a spatially-varying density distribution.
E.g. a model of a vapor/liquid interface, or a solid with an irregular-shaped geometry containing void regions. In
this case, the LAMMPS default of dividing the simulation box volume into a regular-spaced grid of processor
sub-domain, with one equal-volume sub-domain per procesor, may assign very different numbers of particles per
processor. This can lead to poor performance in a scalability sense, when the simulation is run in parallel.

Note that the processors command gives you control over how the box volume is split across processors.
Specifically, for a Px by Py by Pz grid of processors, it chooses or lets you choose Px, Py, and Pz, subject to the
constraint that Px * Py * Pz = P, the total number of processors. This is sufficient to achieve good load-balance
for many models on many processor counts. However, all the processor sub-domains will still be the same shape
and have the same volume.

This command does not alter the topology of the Px by Py by Pz grid or processors. But it shifts the cutting planes
between processors (in 3d, or lines in 2d), which adjusts the volume (area in 2d) assigned to each processor, as in

231

http://lammps.sandia.gov

the following 2d diagram. The left diagram is the default partitioning of the simulation box across processors (one
sub-box for each of 16 processors); the right diagram is after balancing.

% e¢_o %o

- @ PRt
X @ Fa W LL o
e®eo o0 & e®e o0

When the balance command completes, it prints out the final positions of all cutting planes in each of the 3
dimensions (as fractions of the box length). It also prints statistics about its results, including the change in
"imbalance factor". This factor is defined as the maximum number of particles owned by any processor, divided
by the average number of particles per processor. Thus an imbalance factor of 1.0 is perfect balance. For 10000
particles running on 10 processors, if the most heavily loaded processor has 1200 particles, then the factor is 1.2,
meaning there is a 20% imbalance. The change in the maximum number of particles (on any processor) is also
printed.

IMPORTANT NOTE: This command attempts to minimize the imbalance factor, as defined above. But because
of the topology constraint that only the cutting planes (lines) between processors are moved, there are many
irregular distributions of particles, where this factor cannot be shrunk to 1.0, particuarly in 3d. Also,
computational cost is not strictly proportional to particle count, and changing the relative size and shape of
processor sub-domains may lead to additional computational and communication overheads, e.g. in the PPPM
solver used via the kspace_style command. Thus you should benchmark the run times of your simulation before
and after balancing.

The x, y, and z keywords adjust the position of cutting planes between processor sub-domains in a specific
dimension. The uniform argument spaces the planes evenly, as in the left diagram above. The numeric argument
requires you to list Ps-1 numbers that specify the position of the cutting planes. This requires that you know Ps =
Px or Py or Pz = the number of processors assigned by LAMMPS to the relevant dimension. This assignment is
made (and the Px, Py, Pz values printed out) when the simulation box is created by the "create_box" or
"read_data" or "read_restart" command and is influenced by the settings of the "processors" command.

Each of the numeric values must be between 0 and 1, and they must be listed in ascending order. They represent
the fractional position of the cutting place. The left (or lower) edge of the box is 0.0, and the right (or upper) edge
is 1.0. Neither of these values is specified. Only the interior Ps-1 positions are specified. Thus is there are 2
procesors in the x dimension, you specify a single value such as 0.75, which would make the left processor's
sub-domain 3x larger than the right processor's sub-domain.

The dynamic keyword changes the cutting planes between processors in an iterative fashion, seeking to reduce the
imbalance factor, similar to how the fix balance command operates. Note that this keyword begins its operation
from the current processor partitioning, which could be uniform or the result of a previous balance command.

non non n_n

The dimstr argument is a string of characters, each of which must be an "x" or "y" or "z". Eacn character can

232

appear zero or one time, since there is no advantage to balancing on a dimension more than once. You should
normally only list dimensions where you expect there to be a density variation in the particles.

Balancing proceeds by adjusting the cutting planes in each of the dimensions listed in dimstr, one dimension at a
time. For a single dimension, the balancing operation (described below) is iterated on up to Niter times. After
each dimension finishes, the imbalance factor is re-computed, and the balancing operation halts if the thresh
criterion is met.

A rebalance operation in a single dimension is performed using a recursive multisectioning algorithm, where the
position of each cutting plane (line in 2d) in the dimension is adjusted independently. This is similar to a recursive
bisectioning (RCB) for a single value, except that the bounds used for each bisectioning take advantage of
information from neighboring cuts if possible. At each iteration, the count of particles on either side of each plane
is tallied. If the counts do not match the target value for the plane, the position of the cut is adjusted to be halfway
between a low and high bound. The low and high bounds are adjusted on each iteration, using new count
information, so that they become closer together over time. Thus as the recustion progresses, the count of particles
on either side of the plane gets closer to the target value.

Once the rebalancing is complete and final processor sub-domains assigned, particles are migrated to their new
owning processor, and the balance procedure ends.

IMPORTANT NOTE: At each rebalance operation, the RCB for each cutting plane (line in 2d) typcially starts
with low and high bounds separated by the extent of a processor's sub-domain in one dimension. The size of this
bracketing region shrinks by 1/2 every iteration. Thus if Niter is specified as 10, the cutting plane will typically be
positioned to 1 part in 1000 accuracy (relative to the perfect target position). For Niter = 20, it will be accurate to
1 part in a million. Tus there is no need ot set Niter to a large value. LAMMPS will check if the threshold
accuracy is reached (in a dimension) is less iterations than Niter and exit early. However, Niter should also not be
set too small, since it will take roughly the same number of iterations to converge even if the cutting plane is
initially close to the target value.

IMPORTANT NOTE: If a portion of your system is a perfect lattice, e.g. the intiial system is generated by the
create_atoms command, then the balancer may be unable to achieve exact balance. I.e. entire lattice planes will be
owned or not owned by a single processor. So you you should not expect to achieve perfect balance in this case.

The out keyword writes a text file to the specified filename with the results of the balancing operation. The file
contains the bounds of the sub-domain for each processor after the balancing operation completes. The format of
the file is compatible with the Pizza.py mdump tool which has support for manipulating and visualizing mesh
files. An example is shown here for a balancing by 4 processors for a 2d problem:

ITEM: TIMESTEP

0

ITEM: NUMBER OF SQUARES
4

ITEM: SQUARES
11127%
222387
333498

4 4 45 10 9

ITEM: TIMESTEP

0

ITEM: NUMBER OF NODES
10

ITEM: BOX BOUNDS
-153.919 184.703

0 15.3919
-0.769595 0.769595
ITEM: NODES

233

-153.919 0 0
7.45545 0 O
14.7305 0 O

22.667 0 0

184.703 0 O
-153.919 15.3919 0
7.45545 15.3919 0
14.7305 15.3919 0
22.667 15.3919 0

0 1 184.703 15.3919 0

I e T T T = SN S SR Y

The "SQUARES" lists the node IDs of the 4 vertices in a rectangle for each processor (1 to 4). The first SQUARE
1 (for processor 0) is a rectangle of type 1 (equal to SQUARE ID) and contains vertices 1,2,7,6. The coordinates
of all the vertices are listed in the NODES section. Note that the 4 sub-domains share vertices, so there are only
10 unique vertices in total.

For a 3d problem, the syntax is similar with "SQUARES" replaced by "CUBES", and 8 vertices listed for each
processor, instead of 4.

Restrictions:

The dynamic keyword cannot be used with the x, y, or z arguments.

For 2d simulations, the z keyword cannot be used. Nor can a "z" appear in dimstr for the dynamic keyword.
Related commands:

processors, fix balance

Default: none

234

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style class2 command

bond_style class2/omp command
Syntax:
bond_style class2

Examples:

bond_style class2
bond_coeff 1 1.0 100.0 80.0 80.0

Description:

The class2 bond style uses the potential
Y Tifin . Y2 R iR)3 Rl PR Y
E —]\2(/ —10) +1&3(/ _'U) ’i"[\‘;(l —10)

where 10 is the equilibrium bond distance.
See (Sun) for a description of the COMPASS class2 force field.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

e RO (distance)

e K2 (energy/distance”2)
¢ K3 (energy/distance”3)
¢ K4 (energy/distance”4)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

235

http://lammps.sandia.gov

This bond style can only be used if LAMMPS was built with the CLASS2 package. See the Making LAMMPS
section for more info on packages.

Related commands:
bond_coeff, delete_bonds

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

236

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_coeff command

Syntax:
bond_coeff N args

¢ N = bond type (see asterisk form below)
e args = coefficients for one or more bond types

Examples:

bond_coeff 5 80.0 1.2

bond_coeff * 30.0 1.5 1
bond_coeff 1*4 30.0 1.5
bond_coeff 1 harmonic 2

0 1.
1.0
0.0

e o

.0
0 .0

Description:

Specify the bond force field coefficients for one or more bond types. The number and meaning of the coefficients
depends on the bond style. Bond coefficients can also be set in the data file read by the read_data command or in
a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or a
wild-card asterisk can be used to set the coefficients for multiple bond types. This takes the form "*" or "*n" or
"n*" or "m*n". If N = the number of bond types, then an asterisk with no numeric values means all types from 1
to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types from n to N
(inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using a bond_coeff command can override a previous setting for the same bond type. For example,
these commands set the coeffs for all bond types, then overwrite the coeffs for just bond type 2:

bond_coeff * 100.0 1.2
bond_coeff 2 200.0 1.2

A line in a data file that specifies bond coefficients uses the exact same format as the arguments of the bond_coeff
command in an input script, except that wild-card asterisks should not be used since coefficients for all N types
must be listed in the file. For example, under the "Bond Coeffs" section of a data file, the line that corresponds to
the 1st example above would be listed as

580.0 1.2

Here is an alphabetic list of bond styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated bond_coeff command.

Note that here are also additional bond styles submitted by users which are included in the LAMMPS distribution.
The list of these with links to the individual styles are given in the bond section of this page.

¢ bond_style none - turn off bonded interactions
® bond_style hybrid - define multiple styles of bond interactions

¢ bond_style class2 - COMPASS (class 2) bond

237

http://lammps.sandia.gov

¢ bond_style fene - FENE (finite-extensible non-linear elastic) bond
¢ bond_style fene/expand - FENE bonds with variable size particles
¢ bond_style harmonic - harmonic bond

¢ bond_style morse - Morse bond

¢ bond_style nonlinear - nonlinear bond

¢ bond_style quartic - breakable quartic bond

¢ bond_style table - tabulated by bond length

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

A bond style must be defined before any bond coefficients are set, either in the input script or in a data file.
Related commands:
bond_style

Default: none

238

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style fene command

bond_style fene/omp command
Syntax:

bond_style fene

Examples:

bond_style fene
bond_coeff 1 30.0 1.5 1.0 1.0

Description:

The fene bond style uses the potential

N2 12 6
Ez—llﬁffﬁgln l_(g;_) + 4e (g) —(E) + €

0 T

to define a finite extensible nonlinear elastic (FENE) potential (Kremer), used for bead-spring polymer models.
The first term is attractive, the 2nd Lennard-Jones term is repulsive. The first term extends to RO, the maximum
extent of the bond. The 2nd term is cutoff at 2°(1/6) sigma, the minimum of the LJ potential.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy/distance”2)
¢ RO (distance)

e epsilon (energy)

® sigma (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

239

http://lammps.sandia.gov

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

You typically should specify special_bonds fene or special_bonds lj/coul 0 1 1 to use this bond style. LAMMPS
will issue a warning it that's not the case.

Related commands:
bond_coeff, delete_bonds

Default: none

(Kremer) Kremer, Grest,] Chem Phys, 92, 5057 (1990).

240

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style fene/expand command

bond_style fene/expand/omp command

Syntax:

bond_style fene/expand

Examples:

bond_style fene/expand
bond_coeff 1 30.0 1.5 1.0 1.0 0.5

Description:

The fene/expand bond style uses the potential

. A)\2 12
Ej_______l _F 4f: ____Ei____ L il

E=—05KRIn |1— S —
25 M Ry (r—A) (r—A4A)

to define a finite extensible nonlinear elastic (FENE) potential (Kremer), used for bead-spring polymer models.
The first term is attractive, the 2nd Lennard-Jones term is repulsive.

The fene/expand bond style is similar to fene except that an extra shift factor of delta (positive or negative) is
added to r to effectively change the bead size of the bonded atoms. The first term now extends to RO + delta and
the 2nd term is cutoff at 2”(1/6) sigma + delta.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy/distance”2)
¢ RO (distance)

e epsilon (energy)

¢ sigma (distance)

e delta (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

241

http://lammps.sandia.gov

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input
script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

You typically should specify special_bonds fene or special_bonds lj/coul 0 1 1 to use this bond style. LAMMPS
will issue a warning it that's not the case.

Related commands:
bond_coeff, delete_bonds

Default: none

(Kremer) Kremer, Grest,] Chem Phys, 92, 5057 (1990).

242

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style harmonic command

bond_style harmonic/omp command
Syntax:
bond_style harmonic

Examples:

bond_style harmonic
bond_coeff 5 80.0 1.2

Description:

The harmonic bond style uses the potential

2
E = K(r —)
where 10 is the equilibrium bond distance. Note that the usual 1/2 factor is included in K.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy/distance”?2)
¢ 10 (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

243

http://lammps.sandia.gov

bond_coeff, delete_bonds

Default: none

244

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style harmonic/shift command

bond_style harmonic/shift/omp command
Syntax:
bond_style harmonic/shift

Examples:

bond_style harmonic/shift
bond_coeff 5 10.0 0.5 1.0

Description:

The harmonic/shift bond style is a shifted harmonic bond that uses the potential

Umain " 9
B = UM~ (rem o]

(ro— 1)

where r0 is the equilibrium bond distance, and rc the critical distance. The potential is -Umin at rQ and zero at rc.
The spring constant is k = Umin / [2 (rO-rc)*2].

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ Umin (energy)
¢ 10 (distance)

¢ rc (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

245

http://lammps.sandia.gov

This bond style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:
bond_coeff, delete_bonds, bond_harmonic

Default: none

246

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style harmonic/shift/cut command

bond_style harmonic/shift/cut/omp command
Syntax:
bond_style harmonic/shift/cut

Examples:

bond_style harmonic/shift/cut
bond_coeff 5 10.0 0.5 1.0

Description:
The harmonic/shift/cut bond style is a shifted harmonic bond that uses the potential
Uman

b (ro — 1c)? [(' —10)” — (re — 7'0)2]

where r0 is the equilibrium bond distance, and rc the critical distance. The bond potential is zero for distances r >
rc. The potential is -Umin at r0 and zero at rc. The spring constant is k = Umin / [2 (10-rc)"2].

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ Umin (energy)
¢ 10 (distance)
e rc (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

247

http://lammps.sandia.gov

This bond style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:
bond_coeff, delete_bonds, bond_harmonic, bond_harmonicshift

Default: none

248

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style hybrid command

Syntax:
bond_style hybrid stylel style2 ...
e stylel,style2 = list of one or more bond styles

Examples:

bond_style hybrid harmonic fene
bond_coeff 1 harmonic 80.0 1.2
bond_coeff 2* fene 30.0 1.5 1.0 1.0

Description:

The hybrid style enables the use of multiple bond styles in one simulation. A bond style is assigned to each bond
type. For example, bonds in a polymer flow (of bond type 1) could be computed with a fene potential and bonds
in the wall boundary (of bond type 2) could be computed with a harmonic potential. The assignment of bond type
to style is made via the bond_coeff command or in the data file.

In the bond_coeff commands, the name of a bond style must be added after the bond type, with the remaining
coefficients being those appropriate to that style. In the example above, the 2 bond_coeff commands set bonds of
bond type 1 to be computed with a harmonic potential with coefficients 80.0, 1.2 for K, r0. All other bond types
(2-N) are computed with a fene potential with coefficients 30.0, 1.5, 1.0, 1.0 for K, RO, epsilon, sigma.

If bond coefficients are specified in the data file read via the read_data command, then the same rule applies. E.g.
"harmonic" or "fene" must be added after the bond type, for each line in the "Bond Coeffs" section, e.g.

Bond Coeffs

1 harmonic 80.

0 2
2 fene 30.0 1.5 0

1.
1.0 1.0

A bond style of none with no additional coefficients can be used in place of a bond style, either in a input script
bond_coeff command or in the data file, if you desire to turn off interactions for specific bond types.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Unlike other bond styles, the hybrid bond style does not store bond coefficient info for individual sub-styles in a
binary restart files. Thus when retarting a simulation from a restart file, you need to re-specify bond_coeff
commands.

Related commands:

bond_coeff, delete_bonds

249

http://lammps.sandia.gov

Default: none

250

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style morse command

bond_style morse/omp command
Syntax:
bond_style morse

Examples:

bond_style morse
bond_coeff 5 1.0 2.0 1.2

Description:

The morse bond style uses the potential

BE=D|1— e—a(r—ro) 2

where 10 is the equilibrium bond distance, alpha is a stiffness parameter, and D determines the depth of the
potential well.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ D (energy)
¢ alpha (inverse distance)
¢ 10 (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

251

http://lammps.sandia.gov

Related commands:
bond_coeff, delete_bonds

Default: none

252

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style nhone command
Syntax:

bond_style none

Examples:

bond_style none

Description:

Using a bond style of none means bond forces are not computed, even if pairs of bonded atoms were listed in the
data file read by the read_data command.

Restrictions: none
Related commands: none

Default: none

253

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style nonlinear command

bond_style nonlinear/omp command
Syntax:
bond_style nonlinear

Examples:

bond_style nonlinear
bond_coeff 2 100.0 1.1 1.4

Description:

The nonlinear bond style uses the potential

e(r —rg)?

[A2— (17— 70)?]

T

to define an anharmonic spring (Rector) of equilibrium length r0 and maximum extension lamda.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

e epsilon (energy)
¢ 10 (distance)
¢ Jamda (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

254

http://lammps.sandia.gov

Related commands:
bond_coeff, delete_bonds

Default: none

(Rector) Rector, Van Swol, Henderson, Molecular Physics, 82, 1009 (1994).

255

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style quartic command

bond_style quartic/omp command

Syntax:
bond_style quartic
Examples:

bond_style quartic
bond_coeff 2 1200 -0.55 0.25 1.3 34.6878

Description:

The qguartic bond style uses the potential

9 a 12 o §]
E = K(r— R)r - Re— B)(r — B — Ba) +Uo+4¢ | (2) "= (2) | +

r r

to define a bond that can be broken as the simulation proceeds (e.g. due to a polymer being stretched). The sigma
and epsilon used in the LJ portion of the formula are both set equal to 1.0 by LAMMPS.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy/distance”2)
¢ B1 (distance)

¢ B2 (distance)

¢ Rc (distance)

¢ UO (energy)

This potential was constructed to mimic the FENE bond potential for coarse-grained polymer chains. When
monomers with sigma = epsilon = 1.0 are used, the following choice of parameters gives a quartic potential that
looks nearly like the FENE potential: K = 1200, B1 =-0.55, B2 = 0.25, Rc = 1.3, and UO = 34.6878. Different
parameters can be specified using the bond_coeff command, but you will need to choose them carefully so they
form a suitable bond potential.

Rc is the cutoff length at which the bond potential goes smoothly to a local maximum. If a bond length ever
becomes > Rc, LAMMPS "breaks" the bond, which means two things. First, the bond potential is turned off by
setting its type to 0, and is no longer computed. Second, a pairwise interaction between the two atoms is turned
on, since they are no longer bonded.

LAMMPS does the second task via a computational sleight-of-hand. It subtracts the pairwise interaction as part of
the bond computation. When the bond breaks, the subtraction stops. For this to work, the pairwise interaction
must always be computed by the pair_style command, whether the bond is broken or not. This means that
special_bonds must be set to 1,1,1, as indicated as a restriction below.

256

http://lammps.sandia.gov

Note that when bonds are dumped to a file via the dump local command, bonds with type O are not included. The
delete_bonds command can also be used to query the status of broken bonds or permanently delete them, e.g.:

delete_bonds all stats
delete_bonds all bond 0 remove

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

The quartic style requires that special_bonds parameters be set to 1,1,1. Three- and four-body interactions (angle,
dihedral, etc) cannot be used with guartic bonds.

Related commands:
bond_coeff, delete_bonds

Default: none

257

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style command
Syntax:
bond_style style args

e style = none or hybrid or class2 or fene or fene/expand or harmonic or morse or nonlinear or quartic

args = none for any style except hybrid
hybrid args = list of one or more styles
Examples:

bond_style harmonic
bond_style fene
bond_style hybrid harmonic fene

Description:

Set the formula(s) LAMMPS uses to compute bond interactions between pairs of atoms. In LAMMPS, a bond
differs from a pairwise interaction, which are set via the pair_style command. Bonds are defined between
specified pairs of atoms and remain in force for the duration of the simulation (unless the bond breaks which is
possible in some bond potentials). The list of bonded atoms is read in by a read_data or read_restart command
from a data or restart file. By contrast, pair potentials are typically defined between all pairs of atoms within a
cutoff distance and the set of active interactions changes over time.

Hybrid models where bonds are computed using different bond potentials can be setup using the hybrid bond
style.

The coefficients associated with a bond style can be specified in a data or restart file or via the bond_coeff
command.

All bond potentials store their coefficient data in binary restart files which means bond_style and bond_coeff
commands do not need to be re-specified in an input script that restarts a simulation. See the read_restart
command for details on how to do this. The one exception is that bond_style sybrid only stores the list of
sub-styles in the restart file; bond coefficients need to be re-specified.

IMPORTANT NOTE: When both a bond and pair style is defined, the special_bonds command often needs to be
used to turn off (or weight) the pairwise interaction that would otherwise exist between 2 bonded atoms.

In the formulas listed for each bond style, r is the distance between the 2 atoms in the bond.

Here is an alphabetic list of bond styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated bond_coeff command.

Note that there are also additional bond styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the bond section of this page.

¢ bond_style none - turn off bonded interactions
® bond_style hybrid - define multiple styles of bond interactions

258

http://lammps.sandia.gov

¢ bond_style class2 - COMPASS (class 2) bond

¢ bond_style fene - FENE (finite-extensible non-linear elastic) bond
¢ bond_style fene/expand - FENE bonds with variable size particles
¢ bond_style harmonic - harmonic bond

¢ bond_style morse - Morse bond

¢ bond_style nonlinear - nonlinear bond

¢ bond_style quartic - breakable quartic bond

¢ bond_style table - tabulated by bond length

Restrictions:

Bond styles can only be set for atom styles that allow bonds to be defined.

Most bond styles are part of the MOLECULAR package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info on packages. The doc pages for individual bond
potentials tell if it is part of a package.

Related commands:

bond_coeff, delete_bonds

Default:

bond_style none

259

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style table command

bond_style table/omp command

Syntax:
bond_style table style N

e style = linear or spline = method of interpolation
e N =use N values in table

Examples:

bond_style table linear 1000
bond_coeff 1 file.table ENTRY1

Description:

Style table creates interpolation tables of length N from bond potential and force values listed in a file(s) as a
function of bond length. The files are read by the bond_coeff command.

The interpolation tables are created by fitting cubic splines to the file values and interpolating energy and force
values at each of N distances. During a simulation, these tables are used to interpolate energy and force values as
needed. The interpolation is done in one of 2 styles: linear or spline.

For the linear style, the bond length is used to find 2 surrounding table values from which an energy or force is
computed by linear interpolation.

For the spline style, a cubic spline coefficients are computed and stored at each of the N values in the table. The
bond length is used to find the appropriate set of coefficients which are used to evaluate a cubic polynomial which
computes the energy or force.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above.

¢ filename
® keyword

The filename specifies a file containing tabulated energy and force values. The keyword specifies a section of the
file. The format of this file is described below.

The format of a tabulated file is as follows (without the parenthesized comments):
Bond potential for harmonic (one or more comment or blank lines)

HAM
N 101 FP 0 0 EQ 0.5

keyword is the first text on line)
N, FP, EQ parameters)

blank line)

index, bond-length, energy, force)

1 0.00 338.0000 1352.0000
2 0.01 324.6152 1324.9600

101 1.00 338.0000 -1352.0000

260

http://lammps.sandia.gov

A section begins with a non-blank line whose 1st character is not a "#"; blank lines or lines starting with "#" can
be used as comments between sections. The first line begins with a keyword which identifies the section. The line
can contain additional text, but the initial text must match the argument specified in the bond_coeff command.
The next line lists (in any order) one or more parameters for the table. Each parameter is a keyword followed by
one or more numeric values.

The parameter "N" is required and its value is the number of table entries that follow. Note that this may be
different than the N specified in the bond_style table command. Let Ntable = NV in the bond_style command, and
Nfile = "N" in the tabulated file. What LAMMPS does is a preliminary interpolation by creating splines using the
Nfile tabulated values as nodal points. It uses these to interpolate as needed to generate energy and force values at
Ntable different points. The resulting tables of length Ntable are then used as described above, when computing
energy and force for individual bond lengths. This means that if you want the interpolation tables of length Ntable
to match exactly what is in the tabulated file (with effectively no preliminary interpolation), you should set Ntable
= Nfile.

The "FP" parameter is optional. If used, it is followed by two values fplo and fphi, which are the derivatives of the
force at the innermost and outermost bond lengths. These values are needed by the spline construction routines. If
not specified by the "FP" parameter, they are estimated (less accurately) by the first two and last two force values
in the table.

The "EQ" parameter is also optional. If used, it is followed by a the equilibrium bond length, which is used, for
example, by the fix shake command. If not used, the equilibrium bond length is set to 0.0.

Following a blank line, the next N lines list the tabulated values. On each line, the 1st value is the index from 1 to
N, the 2nd value is the bond length r (in distance units), the 3rd value is the energy (in energy units), and the 4th is
the force (in force units). The bond lengths must range from a LO value to a HI value, and increase from one line
to the next. If the actual bond length is ever smaller than the LO value or larger than the HI value, then the bond
energy and force is evaluated as if the bond were the LO or HI length.

Note that one file can contain many sections, each with a tabulated potential. LAMMPS reads the file section by
section until it finds one that matches the specified keyword.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

261

bond_coeff, delete_bonds

Default: none

262

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

boundary command

Syntax:
boundary x y z
® X,y,Z =p or s or f or m, one or two letters

p 1s periodic
f is non-periodic and fixed
s is non-periodic and shrink-wrapped
m is non-periodic and shrink-wrapped with a minimum value

Examples:

boundary p p f
boundary p fs p
boundary s f fm

Description:

Set the style of boundaries for the global simulation box in each dimension. A single letter assigns the same style
to both the lower and upper face of the box. Two letters assigns the first style to the lower face and the second
style to the upper face. The initial size of the simulation box is set by the read_data, read_restart, or create_box
commands.

The style p means the box is periodic, so that particles interact across the boundary, and they can exit one end of
the box and re-enter the other end. A periodic dimension can change in size due to constant pressure boundary
conditions or box deformation (see the fix npt and fix deform commands). The p style must be applied to both
faces of a dimension.

The styles f, s, and m mean the box is non-periodic, so that particles do not interact across the boundary and do
not move from one side of the box to the other. For style f, the position of the face is fixed. If an atom moves
outside the face it may be lost. For style s, the position of the face is set so as to encompass the atoms in that
dimension (shrink-wrapping), no matter how far they move. For style m, shrink-wrapping occurs, but is bounded
by the value specified in the data or restart file or set by the create_box command. For example, if the upper z
face has a value of 50.0 in the data file, the face will always be positioned at 50.0 or above, even if the maximum
z-extent of all the atoms becomes less than 50.0.

For triclinic (non-orthogonal) simulation boxes, if the 2nd dimension of a tilt factor (e.g. y for xy) is periodic, then
the periodicity is enforced with the tilt factor offset. If the 1st dimension is shrink-wrapped, then the shrink
wrapping is applied to the tilted box face, to encompass the atoms. E.g. for a positive xy tilt, the xlo and xhi faces
of the box are planes tilting in the +y direction as y increases. These tilted planes are shrink-wrapped around the
atoms to determine the x extent of the box.

See Section_howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by LAMMPS,
and how to transform these parameters to and from other commonly used triclinic representations.

Restrictions:

This command cannot be used after the simulation box is defined by a read_data or create_box command or

263

http://lammps.sandia.gov

read_restart command. See the change_box command for how to change the simulation box boundaries after it
has been defined.

For 2d simulations, the z dimension must be periodic.
Related commands:

See the thermo_modify command for a discussion of lost atoms.

Default:

boundary p p p

264

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

box command
Syntax:
box keyword value ...

¢ one or more keyword/value pairs may be appended
¢ keyword = tilt

tilt value = small or large
Examples:

box tilt large
box tilt small

Description:

Set attributes of the simulation box.

For triclinic (non-orthogonal) simulation boxes, the tilt keyword allows simulation domains to be created with
arbitrary tilt factors, e.g. via the create_box or read_data commands. Tilt factors determine how skewed the
triclinic box is; see this section of the manual for a discussion of triclinic boxes in LAMMPS.

LAMMPS normally requires that no tilt factor can skew the box more than half the distance of the parallel box
length, which is the 1st dimension in the tilt factor (x for xz). If #ilt is set to small, which is the default, then an
error will be generated if a box is created which exceeds this limit. If #i/ is set to large, then no limit is enforced.
You can create a box with any tilt factors you wish.

Note that if a simulation box has a large tilt factor, LAMMPS will run less efficiently, due to the large volume of
communication needed to acquire ghost atoms around a processor's irregular-shaped sub-domain. For extreme
values of tilt, LAMMPS may also lose atoms and generate an error.

Restrictions:

This command cannot be used after the simulation box is defined by a read_data or create_box command or
read_restart command.

Related commands: none
Default:

The default value is tilt = small.

265

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

change_box command
Syntax:
change_box group-ID parameter args ... keyword args

¢ group-ID = ID of group of atoms to (optionally) displace
® one or more parameter/arg pairs may be appended

parameter = X Or y Or z Or Xy Or Xz Or yz Or boundary or ortho or triclinic or set or remap
X, y, z args = style value(s)
style = final or delta or scale or volume
final values = lo hi
lo hi = box boundaries after displacement (distance units)
delta values = dlo dhi
dlo dhi = change in box boundaries after displacement (distance units)
scale values = factor
factor = multiplicative factor for change in box length after displacement
volume value = none = adjust this dim to preserve volume of system
Xy, Xz, yz args = style value
style = final or delta
final value = tilt
tilt = tilt factor after displacement (distance units)
delta value = dtilt
dtilt = change in tilt factor after displacement (distance units)
boundary args = X y z
X,y,z = p or s or £ or m, one or two letters

p 1s periodic
f is non-periodic and fixed
s is non-periodic and shrink-wrapped
m is non-periodic and shrink-wrapped with a minimum value
ortho args = none = change box to orthogonal
triclinic args = none = change box to triclinic
set args = none = store state of current box
remap args = none = remap atom coords from last saved state to current box

¢ zero or more keyword/value pairs may be appended
e keyword = units

units value = lattice or box
lattice = distances are defined in lattice units
box = distances are defined in simulation box units
Examples:

change_box all xy final -2.0 z final 0.0 5.0 boundary p p f remap units box
change_box all x scale 1.1 y volume z volume remap

Description:

Change the volume and/or shape and/or boundary conditions for the simulation box. Orthogonal simulation boxes
have 3 adjustable size parameters (x,y,z). Triclinic (non-orthogonal) simulation boxes have 6 adjustable
size/shape parameters (X,y,z,Xy,Xz,yz). Any or all of them can be adjusted independently by this command. Thus
it can be used to expand or contract a box, or to apply a shear strain to a non-orthogonal box. It can also be used to
change the boundary conditions for the simulation box, similar to the boundary command.

266

http://lammps.sandia.gov

The size and shape of the initial simulation box are specified by the create_box or read_data or read_restart
command used to setup the simulation. The size and shape may be altered by subsequent runs, e.g. by use of the
fix npt or fix deform commands. The create_box, read data, and read_restart commands also determine whether
the simulation box is orthogonal or triclinic and their doc pages explain the meaning of the xy,xz,yz tilt factors.

See Section_howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by LAMMPS,
and how to transform these parameters to and from other commonly used triclinic representations.

The keywords used in this command are applied sequentially to the simulation box and the atoms in it, in the
order specified.

Before the sequence of keywords are invoked, the current box size/shape is stored, in case a remap keyword is
used to map the atom coordinates from a previously stored box size/shape to the current one.

After all the keywords have been processed, any shrink-wrap boundary conditions are invoked (see the boundary
command) which may change simulation box boundaries, and atoms are migrated to new owning processors.

IMPORTANT NOTE: Unlike the earlier "displace_box" version of this command, atom remapping is NOT
performed by default. This command allows remapping to be done in a more general way, exactly when you
specify it (zero or more times) in the sequence of transformations. Thus if you do not use the remap keyword,
atom coordinates will not be changed even if the box size/shape changes. If a uniformly strained state is desired,
the remap keyword should be specified.

IMPORTANT NOTE: It is possible to lose atoms with this command. E.g. by changing the box without
remapping the atoms, and having atoms end up outside of non-periodic boundaries. It is also possible to alter
bonds between atoms straddling a boundary in bad ways. E.g. by converting a boundary from periodic to
non-periodic. It is also possible when remapping atoms to put them (nearly) on top of each other. E.g. by
converting a boundary from non-periodic to periodic. All of these will typically lead to bad dynamics and/or
generate error messages.

IMPORTANT NOTE: The simulation box size/shape can be changed by arbitrarily large amounts by this
command. This is not a problem, except that the mapping of processors to the simulation box is not changed from
its initial 3d configuration; see the processors command. Thus, if the box size/shape changes dramatically, the
mapping of processors to the simulation box may not end up as optimal as the initial mapping attempted to be.

IMPORTANT NOTE: Because the keywords used in this command are applied one at a time to the simulation
box and the atoms in it, care must be taken with triclinic cells to avoid exceeding the limits on skew after each
transformation in the sequence. If skew is exceeded before the final transformation this can be avoided by
changing the order of the sequence, or breaking the transformation into two or more smaller transformations. For
more information on the allowed limits for box skew see the discussion on triclinic boxes on this page.

For the x, y, and z parameters, this is the meaning of their styles and values.

For style final, the final lo and hi box boundaries of a dimension are specified. The values can be in lattice or box
distance units. See the discussion of the units keyword below.

For style delta, plus or minus changes in the lo/hi box boundaries of a dimension are specified. The values can be
in lattice or box distance units. See the discussion of the units keyword below.

For style scale, a multiplicative factor to apply to the box length of a dimension is specified. For example, if the

initial box length is 10, and the factor is 1.1, then the final box length will be 11. A factor less than 1.0 means
compression.

267

The volume style changes the specified dimension in such a way that the overall box volume remains constant
with respect to the operation performed by the preceding keyword. The volume style can only be used following a
keyword that changed the volume, which is any of the x, y, z keywords. If the preceding keyword "key" had a
volume style, then both it and the current keyword apply to the keyword preceding "key". L.e. this sequence of
keywords is allowed:

change_box all x scale 1.1 y volume z volume

The volume style changes the associated dimension so that the overall box volume is unchanged relative to its
value before the preceding keyword was invoked.

If the following command is used, then the z box length will shrink by the same 1.1 factor the x box length was
increased by:

change_box all x scale 1.1 z volume

If the following command is used, then the y,z box lengths will each shrink by sqrt(1.1) to keep the volume
constant. In this case, the y,z box lengths shrink so as to keep their relative aspect ratio constant:

change_box all"x scale 1.1 y volume z volume

If the following command is used, then the final box will be a factor of 10% larger in x and y, and a factor of 21%
smaller in z, so as to keep the volume constant:

change_box all x scale 1.1 z volume y scale 1.1 z volume

IMPORTANT NOTE: For solids or liquids, when one dimension of the box is expanded, it may be physically
undesirable to hold the other 2 box lengths constant since that implies a density change. For solids, adjusting the
other dimensions via the volume style may make physical sense (just as for a liquid), but may not be correct for
materials and potentials whose Poisson ratio is not 0.5.

For the scale and volume styles, the box length is expanded or compressed around its mid point.

For the xy, xz, and yz parameters, this is the meaning of their styles and values. Note that changing the tilt factors
of a triclinic box does not change its volume.

For style final, the final tilt factor is specified. The value can be in lattice or box distance units. See the discussion
of the units keyword below.

For style delta, a plus or minus change in the tilt factor is specified. The value can be in lattice or box distance
units. See the discussion of the units keyword below.

All of these styles change the xy, xz, yz tilt factors. In LAMMPS, tilt factors (xy,xz,yz) for triclinic boxes are
required to be no more than half the distance of the parallel box length. For example, if xlo = 2 and xhi = 12, then
the x box length is 10 and the xy tilt factor must be between -5 and 5. Similarly, both xz and yz must be between
-(xhi-xlo)/2 and +(yhi-ylo)/2. Note that this is not a limitation, since if the maximum tilt factor is 5 (as in this
example), then configurations with tilt = ..., -15, -5, 5, 15, 25, ... are all equivalent. Any tilt factor specified by this
command must be within these limits.

The boundary keyword takes arguments that have exactly the same meaning as they do for the boundary
command. In each dimension, a single letter assigns the same style to both the lower and upper face of the box.
Two letters assigns the first style to the lower face and the second style to the upper face.

268

The style p means the box is periodic; the other styles mean non-periodic. For style f, the position of the face is
fixed. For style s, the position of the face is set so as to encompass the atoms in that dimension (shrink-wrapping),
no matter how far they move. For style m, shrink-wrapping occurs, but is bounded by the current box edge in that
dimension, so that the box will become no smaller. See the boundary command for more explanation of these
style options.

Note that the "boundary” command itself can only be used before the simulation box is defined via a read_data or
create_box or read_restart command. This command allows the boundary conditions to be changed later in your
input script. Also note that the read_restart will change boundary conditions to match what is stored in the restart
file. So if you wish to change them, you should use the change_box command after the read_restart command.

The ortho and triclinic keywords convert the simulation box to be orthogonal or triclinic (non-orthongonal). See
this section for a discussion of how non-orthongal boxes are represented in LAMMPS.

The simulation box is defined as either orthogonal or triclinic when it is created via the create_box, read_data, or
read_restart commands.

These keywords allow you to toggle the existing simulation box from orthogonal to triclinic and vice versa. For
example, an initial equilibration simulation can be run in an orthogonal box, the box can be toggled to triclinic,
and then a non-equilibrium MD (NEMD) simulation can be run with deformation via the fix deform command.

If the simulation box is currently triclinic and has non-zero tilt in xy, yz, or Xz, then it cannot be converted to an
orthogonal box.

The set keyword saves the current box size/shape. This can be useful if you wish to use the remap keyword more
than once or if you wish it to be applied to an intermediate box size/shape in a sequence of keyword operations.
Note that the box size/shape is saved before any of the keywords are processed, i.e. the box size/shape at the time
the create_box command is encountered in the input script.

The remap keyword remaps atom coordinates from the last saved box size/shape to the current box state. For
example, if you stretch the box in the x dimension or tilt it in the Xy plane via the x and xy keywords, then the
remap commmand will dilate or tilt the atoms to conform to the new box size/shape, as if the atoms moved with
the box as it deformed.

Note that this operation is performed without regard to periodic boundaries. Also, any shrink-wrapping of
non-periodic boundaries (see the boundary command) occurs after all keywords, including this one, have been

processed.

Only atoms in the specified group are remapped.

The units keyword determines the meaning of the distance units used to define various arguments. A box value
selects standard distance units as defined by the units command, e.g. Angstroms for units = real or metal. A lattice
value means the distance units are in lattice spacings. The lattice command must have been previously used to
define the lattice spacing.

Restrictions:

If you use the ortho or triclinic keywords, then at the point in the input script when this command is issued, no
dumps can be active, nor can a fix ave/spatial or fix deform be active. This is because these commands test
whether the simulation box is orthogonal when they are first issued. Note that these commands can be used in
your script before a change_box command is issued, so long as an undump or unfix command is also used to turn
them off.

269

Related commands:
fix deform, boundary
Default:

The option default is units = lattice.

270

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

clear command
Syntax:
clear

Examples:

(commands for 1lst simulation)
clear
(commands for 2nd simulation)

Description:
This command deletes all atoms, restores all settings to their default values, and frees all memory allocated by
LAMMPS. Once a clear command has been executed, it is as if LAMMPS were starting over, with only the

exceptions noted below. This command enables multiple jobs to be run sequentially from one input script.

These settings are not affected by a clear command: the working directory (shell command), log file status (log
command), echo status (echo command), and input script variables (variable command).

Restrictions: none
Related commands: none

Default: none

271

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

communicate command

Syntax:

communicate style keyword value ...

e style = single or multi
¢ zero or more keyword/value pairs may be appended
¢ keyword = cutoff or group or vel

cutoff value = Rcut (distance units) = communicate atoms from this far away
group value = group—-ID = only communicate atoms in the group
vel value = yes or no = do or do not communicate velocity info with ghost atoms
Examples:

communicate multi

communicate multi group solvent
communicate single vel yes
communicate single cutoff 5.0 vel yes

Description:

This command sets the style of inter-processor communication that occurs each timestep as atom coordinates and
other properties are exchanged between neighboring processors and stored as properties of ghost atoms.

The default style is single which means each processor acquires information for ghost atoms that are within a
single distance from its sub-domain. The distance is the maximum of the neighbor cutoff for all atom type pairs.

For many systems this is an efficient algorithm, but for systems with widely varying cutoffs for different type
pairs, the multi style can be faster. In this case, each atom type is assigned its own distance cutoff for
communication purposes, and fewer atoms will be communicated. See the neighbor multi command for a
neighbor list construction option that may also be beneficial for simulations of this kind.

The cutoff option allows you to set a ghost cutoff distance, which is the distance from the borders of a processor's
sub-domain at which ghost atoms are acquired from other processors. By default the ghost cutoff = neighbor
cutoff = pairwise force cutoff + neighbor skin. See the neighbor command for more information about the skin
distance. If the specified Rcut is greater than the neighbor cutoff, then extra ghost atoms will be acquired. If it is
smaller, the ghost cutoff is set to the neighbor cutoff.

These are simulation scenarios in which it may be useful to set a ghost cutoff > neighbor cutoff:

¢ a single polymer chain with bond interactions, but no pairwise interactions
¢ bonded interactions (e.g. dihedrals) extend further than the pairwise cutoff
¢ ghost atoms beyond the pairwise cutoff are needed for some computation

In the first scenario, a pairwise potential may not be defined. Thus the pairwise neighbor cutoff will be 0.0. But
ghost atoms are still needed for computing bond, angle, etc interactions between atoms on different processors.
The appropriate ghost cutoff depends on the newton bond setting. For newton bond off, the distance needs to be
the furthest distance between any two atoms in the bond, angle, etc. E.g. the distance between 1-4 atoms in a
dihedral. For newton bond on, the distance between the central atom in the bond, angle, etc and any other atom is

272

http://lammps.sandia.gov

sufficient. E.g. the distance between 2-4 atoms in a dihedral.

In the second scenario, a pairwise potential is defined, but its neighbor cutoff is not sufficiently long enough to
enable bond, angle, etc terms to be computed. As in the previous scenario, an appropriate ghost cutoff should be
set.

In the last scenario, a fix or compute or pairwise potential needs to calculate with ghost atoms beyond the normal
pairwise cutoff for some computation it performs (e.g. locate neighbors of ghost atoms in a multibody pair
potential). Setting the ghost cutoff appropriately can insure it will find the needed atoms.

The group option will limit communication to atoms in the specified group. This can be useful for models where
no ghost atoms are needed for some kinds of particles. All atoms (not just those in the specified group) will still
migrate to new processors as they move. The group specified with this option must also be specified via the
atom_modify first command.

The vel option enables velocity information to be communicated with ghost particles. Depending on the
atom_style, velocity info includes the translational velocity, angular velocity, and angular momentum of a
particle. If the vel option is set to yes, then ghost atoms store these quantities; if no then they do not. The yes
setting is needed by some pair styles which require the velocity state of both the I and J particles to compute a
pairwise I,J interaction.

Note that if the fix deform command is being used with its "remap v" option enabled, then the velocities for ghost
atoms (in the fix deform group) mirrored across a periodic boundary will also include components due to any
velocity shift that occurs across that boundary (e.g. due to dilation or shear).

Restrictions: none

Related commands:

neighbor

Default:

The default settings are style = single, group = all, cutoff = 0.0, vel = no. The cutoff default of 0.0 means that
ghost cutoff = neighbor cutoff = pairwise force cutoff + neighbor skin.

273

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute command

Syntax:

compute ID group—-ID style args

¢ ID = user-assigned name for the computation

¢ group-ID = ID of the group of atoms to perform the computation on
¢ style = one of a list of possible style names (see below)

e args = arguments used by a particular style

Examples:

compute 1 all temp
compute newtemp flow temp/partial 1 1 0
compute 3 all ke/atom

Description:

Define a computation that will be performed on a group of atoms. Quantities calculated by a compute are
instantaneous values, meaning they are calculated from information about atoms on the current timestep or
iteration, though a compute may internally store some information about a previous state of the system. Defining
a compute does not perform a computation. Instead computes are invoked by other LAMMPS commands as
needed, e.g. to calculate a temperature needed for a thermostat fix or to generate thermodynamic or dump file
output. See this howto section for a summary of various LAMMPS output options, many of which involve
computes.

The ID of a compute can only contain alphanumeric characters and underscores.

Computes calculate one of three styles of quantities: global, per-atom, or local. A global quantity is one or more
system-wide values, e.g. the temperature of the system. A per-atom quantity is one or more values per atom, e.g.
the kinetic energy of each atom. Per-atom values are set to 0.0 for atoms not in the specified compute group.
Local quantities are calculated by each processor based on the atoms it owns, but there may be zero or more per
atom, e.g. a list of bond distances. Computes that produce per-atom quantities have the word "atom" in their style,
e.g. ke/atom. Computes that produce local quantities have the word "local" in their style, e.g. bond/local. Styles
with neither "atom" or "local" in their style produce global quantities.

Note that a single compute produces either global or per-atom or local quantities, but never more than one of
these.

Global, per-atom, and local quantities each come in three kinds: a single scalar value, a vector of values, or a 2d
array of values. The doc page for each compute describes the style and kind of values it produces, e.g. a per-atom
vector. Some computes produce more than one kind of a single style, e.g. a global scalar and a global vector.

When a compute quantity is accessed, as in many of the output commands discussed below, it can be referenced
via the following bracket notation, where ID is the ID of the compute:

c_ID entire scalar, vector, or array

c_ID[I] |one element of vector, one column of array

c_ID[I][J] |one element of array

274

http://lammps.sandia.gov

In other words, using one bracket reduces the dimension of the quantity once (vector -> scalar, array -> vector).
Using two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar compute
values as input can also process elements of a vector or array.

Note that commands and variables which use compute quantities typically do not allow for all kinds, e.g. a
command may require a vector of values, not a scalar. This means there is no ambiguity about referring to a
compute quantity as c_ID even if it produces, for example, both a scalar and vector. The doc pages for various
commands explain the details.

In LAMMPS, the values generated by a compute can be used in several ways:

¢ The results of computes that calculate a global temperature or pressure can be used by fixes that do
thermostatting or barostatting or when atom velocities are created.

¢ Global values can be output via the thermo_style custom or fix ave/time command. Or the values can be
referenced in a variable equal or variable atom command.

¢ Per-atom values can be output via the dump custom command or the fix ave/spatial command. Or they
can be time-averaged via the fix ave/atom command or reduced by the compute reduce command. Or the
per-atom values can be referenced in an atom-style variable.

® Local values can be reduced by the compute reduce command, or histogrammed by the fix ave/histo
command, or output by the dump local command.

The results of computes that calculate global quantities can be either "intensive" or "extensive" values. Intensive
means the value is independent of the number of atoms in the simulation, e.g. temperature. Extensive means the
value scales with the number of atoms in the simulation, e.g. total rotational kinetic energy. Thermodynamic
output will normalize extensive values by the number of atoms in the system, depending on the "thermo_modify
norm" setting. It will not normalize intensive values. If a compute value is accessed in another way, e.g. by a
variable, you may want to know whether it is an intensive or extensive value. See the doc page for individual
computes for further info.

LAMMPS creates its own computes internally for thermodynamic output. Three computes are always created,

non

named "thermo_temp", "thermo_press", and "thermo_pe", as if these commands had been invoked in the input
script:

compute thermo_temp all temp
compute thermo_press all pressure thermo_temp
compute thermo_pe all pe

Additional computes for other quantities are created if the thermo style requires it. See the documentation for the
thermo_style command.

Fixes that calculate temperature or pressure, i.e. for thermostatting or barostatting, may also create computes.
These are discussed in the documentation for specific fix commands.

In all these cases, the default computes LAMMPS creates can be replaced by computes defined by the user in the
input script, as described by the thermo_modify and fix modify commands.

Properties of either a default or user-defined compute can be modified via the compute_modify command.
Computes can be deleted with the uncompute command.

Code for new computes can be added to LAMMPS (see this section of the manual) and the results of their
calculations accessed in the various ways described above.

275

Each compute style has its own doc page which describes its arguments and what it does. Here is an alphabetic
list of compute styles available in LAMMPS:

¢ angle/local - theta and energy of each angle

¢ atom/molecule - sum per-atom properties for each molecule

¢ bond/local - distance and energy of each bond

e centro/atom - centro-symmetry parameter for each atom

e cluster/atom - cluster ID for each atom

® cna/atom - common neighbor analysis (CNA) for each atom

® com - center-of-mass of group of atoms

¢ com/molecule - center-of-mass for each molecule

® contact/atom - contact count for each spherical particle

® coord/atom - coordination number for each atom

¢ damage/atom - Peridynamic damage for each atom

e dihedral/local - angle of each dihedral

e displace/atom - displacement of each atom

e crotate/asphere - rotational energy of aspherical particles

e crotate/sphere - rotational energy of spherical particles

e crotate/sphere/atom - rotational energy for each spherical particle
e event/displace - detect event on atom displacement

e group/group - energy/force between two groups of atoms

e gyration - radius of gyration of group of atoms

¢ gyration/molecule - radius of gyration for each molecule

¢ heat/flux - heat flux through a group of atoms

¢ improper/local - angle of each improper

e ke - translational kinetic energy

® ke/atom - kinetic energy for each atom

* msd - mean-squared displacement of group of atoms

¢ msd/molecule - mean-squared displacement for each molecule

® pair - values computed by a pair style

e pair/local - distance/energy/force of each pairwise interaction

® pe - potential energy

® pe/atom - potential energy for each atom

e pressure - total pressure and pressure tensor

® property/atom - convert atom attributes to per-atom vectors/arrays
e property/local - convert local attributes to localvectors/arrays

e property/molecule - convert molecule attributes to localvectors/arrays
¢ rdf - radial distribution function g(r) histogram of group of atoms
¢ reduce - combine per-atom quantities into a single global value

¢ reduce/region - same as compute reduce, within a region

e slice - extract values from global vector or array

e stress/atom - stress tensor for each atom

¢ temp - temperature of group of atoms

¢ temp/asphere - temperature of aspherical particles

¢ temp/com - temperature after subtracting center-of-mass velocity
¢ temp/deform - temperature excluding box deformation velocity

¢ temp/partial - temperature excluding one or more dimensions of velocity
¢ temp/profile - temperature excluding a binned velocity profile

¢ temp/ramp - temperature excluding ramped velocity component
¢ temp/region - temperature of a region of atoms

¢ temp/sphere - temperature of spherical particles

276

¢ ti - thermodyanmic integration free energy values

There are also additional compute styles submitted by users which are included in the LAMMPS distribution. The
list of these with links to the individual styles are given in the compute section of this page.

There are also additional accelerated compute styles included in the LAMMPS distribution for faster performance
on CPUs and GPUs. The list of these with links to the individual styles are given in the pair section of this page.

Restrictions: none
Related commands:
uncompute, compute_modify, fix ave/atom, fix ave/spatial, fix ave/time, fix ave/histo

Default: none

277

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ackland/atom command
Syntax:
compute ID group-ID ackland/atom

¢ ID, group-ID are documented in compute command
¢ ackland/atom = style name of this compute command

Examples:

compute 1 all ackland/atom

Description:

Defines a computation that calculates the local lattice structure according to the formulation given in (Ackland).
In contrast to the centro-symmetry parameter this method is stable against temperature boost, because it is based
not on the distance between particles but the angles. Therefore statistical fluctuations are averaged out a little
more. A comparison with the Common Neighbor Analysis metric is made in the paper.

The result is a number which is mapped to the following different lattice structures:

¢ 0 = UNKNOWN

e 1 =BCC
2 =FCC
¢ 3 =HCP
*4=1CO

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e. each
time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too frequently or to
have multiple compute/dump commands, each of which computes this quantity.-

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

Restrictions:

This compute is part of the USER-MISC package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

The per-atom vector values will be unitless since they are the integers defined above.
Related commands:
compute centro/atom

Default: none

278

http://lammps.sandia.gov

(Ackland) Ackland, Jones, Phys Rev B, 73, 054104 (2006).

279

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute angle/local command

Syntax:
compute ID group-ID angle/local inputl input2 ...

¢ ID, group-ID are documented in compute command
¢ angle/local = style name of this compute command
¢ zero or more keywords may be appended

¢ keyword = theta or eng

theta = tabulate angles
eng = tabulate angle energies

Examples:

compute 1 all angle/local theta
compute 1 all angle/local eng theta

Description:

Define a computation that calculates properties of individual angle interactions. The number of datums generated,
aggregated across all processors, equals the number of angles in the system.

The local data stored by this command is generated by looping over all the atoms owned on a processor and their
angles. An angle will only be included if all 3 atoms in the angle are in the specified compute group. Any angles
that have been broken (see the angle_style command) by setting their angle type to O are not included. Angles that
have been turned off (see the fix shake or delete_bonds commands) by setting their angle type negative are
written into the file, but their energy will be 0.0.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries within
the local vector or array from one timestep to the next. The only consistency that is guaranteed is that the ordering
on a particular timestep will be the same for local vectors or arrays generated by other compute commands. For
example, angle output from the compute property/local command can be combined with data from this command
and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of angles. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns = the
number of keywords. The vector or array can be accessed by any command that uses local values from a compute
as input. See this section for an overview of LAMMPS output options.

The output for theta will be in degrees. The output for eng will be in energy units.

Restrictions: none

Related commands:

dump local, compute property/local

280

http://lammps.sandia.gov

Default: none

281

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute atom/molecule command

Syntax:
compute ID group-ID atom/molecule inputl input2

¢ ID, group-ID are documented in compute command

¢ atom/molecule = style name of this compute command
® one or more inputs can be listed

¢ input = c_ID, c_ID[N], f_ID, f_ID[N], v_name

c_ID = per—-atom vector calculated by a compute with ID

c_ID[I] = Ith column of per-atom array calculated by a compute with ID

f_ID = per-atom vector calculated by a fix with ID

f_ID[I] = Ith column of per-atom array calculated by a fix with ID

v_name = per-atom vector calculated by an atom-style variable with name
Examples:

compute 1 all atom/molecule c_ke c_pe
compute 1 top atom/molecule v_myFormula c_stress3

Description:

Define a calculation that sums per-atom values on a per-molecule basis, one per listed input. The inputs can
computes, fixes, or variables that generate per-atom quantities. Note that attributes stored by atoms, such as mass
or force, can also be summed on a per-molecule basis, by accessing these quantities via the compute
property/atom command.

Each listed input is operated on independently. Only atoms within the specified group contribute to the
per-molecule sum. Note that compute or fix inputs define their own group which may affect the quantities they
return. For example, if a compute is used as an input which generates a per-atom vector, it will generate values of
0.0 for atoms that are not in the group specified for that compute.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

If an input begins with "c_", a compute ID must follow which has been previously defined in the input script and
which generates per-atom quantities. See the individual compute doc page for details. If no bracketed integer is
appended, the vector calculated by the compute is used. If a bracketed integer is appended, the Ith column of the
array calculated by the compute is used. Users can also write code for their own compute styles and add them to
LAMMPS.

If an input begins with "f_", a fix ID must follow which has been previously defined in the input script and which
generates per-atom quantities. See the individual fix doc page for details. Note that some fixes only produce their
values on certain timesteps, which must be compatible with when compute atom/molecule references the values,
else an error results. If no bracketed integer is appended, the vector calculated by the fix is used. If a bracketed
integer is appended, the Ith column of the array calculated by the fix is used. Users can also write code for their
own fix style and add them to LAMMPS.

282

http://lammps.sandia.gov

If an input begins with "v_", a variable name must follow which has been previously defined in the input script. It
must be an atom-style variable. Atom-style variables can reference thermodynamic keywords and various
per-atom attributes, or invoke other computes, fixes, or variables when they are evaluated, so this is a very general
means of generating per-atom quantities to sum on a per-molecule basis.

Output info:

This compute calculates a global vector or global array depending on the number of input values. The length of
the vector or number of rows in the array is the number of molecules. If a single input is specified, a global vector
is produced. If two or more inputs are specified, a global array is produced where the number of columns = the
number of inputs. The vector or array can be accessed by any command that uses global values from a compute as
input. See this section for an overview of LAMMPS output options.

All the vector or array values calculated by this compute are "extensive".

The vector or array values will be in whatever units the input quantities are in.

Restrictions: none

Related commands:

compute, fix, variable

Default: none

283

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute bond/local command

Syntax:
compute ID group-ID bond/local inputl input2

¢ ID, group-ID are documented in compute command
¢ bond/local = style name of this compute command
¢ zero or more keywords may be appended

¢ keyword = dist or eng

dist = tabulate bond distances
eng = tablutate bond energies

Examples:

compute 1 all bond/local eng
compute 1 all bond/local dist eng

Description:

Define a computation that calculates properties of individual bond interactions. The number of datums generated,
aggregated across all processors, equals the number of bonds in the system.

The local data stored by this command is generated by looping over all the atoms owned on a processor and their

bonds. A bond will only be included if both atoms in the bond are in the specified compute group. Any bonds that
have been broken (see the bond_style command) by setting their bond type to 0 are not included. Bonds that have
been turned off (see the fix shake or delete_bonds commands) by setting their bond type negative are written into

the file, but their energy will be 0.0.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries within
the local vector or array from one timestep to the next. The only consistency that is guaranteed is that the ordering
on a particular timestep will be the same for local vectors or arrays generated by other compute commands. For
example, bond output from the compute property/local command can be combined with data from this command
and output by the dump local command in a consistent way.

Here is an example of how to do this:

compute 1 all property/local batoml batom2 btype
compute 2 all bond/local dist eng
dump 1 all local 1000 tmp.dump index c_11 c_12 c_13 c_21 c_22

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of bonds. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns = the
number of keywords. The vector or array can be accessed by any command that uses local values from a compute

as input. See this section for an overview of LAMMPS output options.

The output for dist will be in distance units. The output for eng will be in energy units.

284

http://lammps.sandia.gov

Restrictions: none
Related commands:
dump local, compute property/local

Default: none

285

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute centro/atom command

Syntax:
compute ID group-ID centro/atom lattice

¢ ID, group-ID are documented in compute command
e centro/atom = style name of this compute command
e Jattice = fcc or bee or N = # of neighbors per atom to include

Examples:
compute 1 all centro/atom fcc

compute 1 all centro/atom 8
Description:

Define a computation that calculates the centro-symmetry parameter for each atom in the group. In solid-state
systems the centro-symmetry parameter is a useful measure of the local lattice disorder around an atom and can
be used to characterize whether the atom is part of a perfect lattice, a local defect (e.g. a dislocation or stacking
fault), or at a surface.

The value of the centro-symmetry parameter will be 0.0 for atoms not in the specified compute group.

This parameter is computed using the following formula from (Kelchner)

N/2

CS = Z |§z . ﬁi+;\’;‘2|2

=1

where the N nearest neighbors or each atom are identified and Ri and Ri+N/2 are vectors from the central atom to
a particular pair of nearest neighbors. There are N*(N-1)/2 possible neighbor pairs that can contribute to this
formula. The quantity in the sum is computed for each, and the N/2 smallest are used. This will typically be for
pairs of atoms in symmetrically opposite positions with respect to the central atom; hence the i+N/2 notation.

N is an input parameter, which should be set to correspond to the number of nearest neighbors in the underlying
lattice of atoms. If the keyword fcc or bec is used, N is set to 12 and 8 respectively. More generally, N can be set
to a positive, even integer.

For an atom on a lattice site, surrounded by atoms on a perfect lattice, the centro-symmetry parameter will be 0. It
will be near 0 for small thermal perturbations of a perfect lattice. If a point defect exists, the symmetry is broken,
and the parameter will be a larger positive value. An atom at a surface will have a large positive parameter. If the
atom does not have N neighbors (within the potential cutoff), then its centro-symmetry parameter is set to 0.0.

Only atoms within the cutoff of the pairwise neighbor list are considered as possible neighbors. Atoms not in the
compute group are included in the N neighbors used in this calculation.

286

http://lammps.sandia.gov

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (e.g. each
time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too frequently or to
have multiple compute/dump commands, each with a centro/atom style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values are unitless values >= 0.0. Their magnitude depends on the lattice style due to the
number of contibuting neighbor pairs in the summation in the formula above. And it depends on the local defects
surrounding the central atom, as described above.

Here are typical centro-symmetry values, from a a nanoindentation simulation into gold (FCC). These were
provided by Jon Zimmerman (Sandia):

Bulk lattice = 0

Dislocation core ~ 1.0 (0.5 to 1.25)
Stacking faults ~ 5.0 (4.0 to 6.0)
Free surface ~ 23.0

These values are *not* normalized by the square of the lattice parameter. If they were, normalized values would
be:

Bulk lattice = 0

Dislocation core ~ 0.06 (0.03 to 0.075)
Stacking faults ~ 0.3 (0.24 to 0.36)
Free surface ~ 1.38

For BCC materials, the values for dislocation cores and free surfaces would be somewhat different, due to their
being only 8 neighbors instead of 12.

Restrictions: none
Related commands:
compute cna/atom

Default: none

(Kelchner) Kelchner, Plimpton, Hamilton, Phys Rev B, 58, 11085 (1998).

287

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute cluster/atom command

Syntax:

compute ID group-ID cluster/atom cutoff
¢ ID, group-ID are documented in compute command
e cluster/atom = style name of this compute command

e cutoff = distance within which to label atoms as part of same cluster (distance units)

Examples:

compute 1 all cluster/atom 1.0

Description:

Define a computation that assigns each atom a cluster ID.

A cluster is defined as a set of atoms, each of which is within the cutoff distance from one or more other atoms in
the cluster. If an atom has no neighbors within the cutoff distance, then it is a 1-atom cluster. The ID of every

atom in the cluster will be the smallest atom ID of any atom in the cluster.

Only atoms in the compute group are clustered and assigned cluster IDs. Atoms not in the compute group are
assigned a cluster ID = 0.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e. each
time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too frequently or to
have multiple compute/dump commands, each of a clsuter/atom style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be an ID > 0, as explained above.
Restrictions: none

Related commands:

compute coord/atom

Default: none

288

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute cnha/atom command

Syntax:

compute ID group-ID cna/atom cutoff
¢ ID, group-ID are documented in compute command

® cna/atom = style name of this compute command
e cutoff = cutoff distance for nearest neighbors (distance units)

Examples:

compute 1 all cna/atom 3.08

Description:

Define a computation that calculates the CNA (Common Neighbor Analysis) pattern for each atom in the group.
In solid-state systems the CNA pattern is a useful measure of the local crystal structure around an atom. The CNA

methodology is described in (Faken) and (Tsuzuki).

Currently, there are five kinds of CNA patterns LAMMPS recognizes:

efcc=1
shcp=2
ebcc=3

® jcosohedral = 4
e unknown =5

The value of the CNA pattern will be O for atoms not in the specified compute group. Note that normally a CNA
calculation should only be performed on mono-component systems.

The CNA calculation can be sensitive to the specified cutoff value. You should insure the appropriate nearest
neighbors of an atom are found within the cutoff distance for the presumed crystal strucure. E.g. 12 nearest
neighbor for perfect FCC and HCP crystals, 14 nearest neighbors for perfect BCC crystals. These formulas can be
used to obtain a good cutoff distance:

/32

2

r'\llfcc —
Fe

+1]a=~0.8536a

bS] =

1
re = —(vV241)a~1.207a

¢ 9
1
Whep o ’
! . — a ol

289

http://lammps.sandia.gov

where a is the lattice constant for the crystal structure concerned and in the HCP case, x = (c/a) / 1.633, where
1.633 is the ideal c/a for HCP crystals.

Also note that since the CNA calculation in LAMMPS uses the neighbors of an owned atom to find the nearest
neighbors of a ghost atom, the following relation should also be satisfied:

Re + Rs > 2 % cutoff

where Rc is the cutoff distance of the potential, Rs is the skin distance as specified by the neighbor command, and
cutoff is the argument used with the compute cna/atom command. LAMMPS will issue a warning if this is not the
case.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (e.g. each
time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too frequently or to
have multiple compute/dump commands, each with a cna/atom style.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be a number from 0 to 5, as explained above.
Restrictions: none

Related commands:

compute centro/atom

Default: none

(Faken) Faken, Jonsson, Comput Mater Sci, 2, 279 (1994).

(Tsuzuki) Tsuzuki, Branicio, Rino, Comput Phys Comm, 177, 518 (2007).

290

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute com command
Syntax:
compute ID group—-ID com

¢ ID, group-ID are documented in compute command
¢ com = style name of this compute command

Examples:
compute 1 all com
Description:

Define a computation that calculates the center-of-mass of the group of atoms, including all effects due to atoms
passing thru periodic boundaries.

A vector of three quantites is calculated by this compute, which are the x,y,z coordinates of the center of mass.
IMPORTANT NOTE: The coordinates of an atom contribute to the center-of-mass in "unwrapped" form, by
using the image flags associated with each atom. See the dump custom command for a discussion of "unwrapped"
coordinates. See the Atoms section of the read_data command for a discussion of image flags and how they are
set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image
command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags are
altered, and its contribution to the center-of-mass may not reflect its true contribution. See the fix rigid command
for details. Thus, to compute the center-of-mass of rigid bodies as they cross periodic boundaries, you will need to
post-process a dump file containing coordinates of the atoms in the bodies.

Output info:

This compute calculates a global vector of length 3, which can be accessed by indices 1-3 by any command that
uses global vector values from a compute as input. See this section for an overview of LAMMPS output options.

The vector values are "intensive". The vector values will be in distance units.
Restrictions: none

Related commands:

compute com/molecule

Default: none

291

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute com/molecule command

Syntax:
compute ID group-ID com/molecule

¢ ID, group-ID are documented in compute command
¢ com/molecule = style name of this compute command

Examples:
compute 1 fluid com/molecule
Description:

Define a computation that calculates the center-of-mass of individual molecules. The calculation includes all
effects due to atoms passing thru periodic boundaries.

The x,y,z coordinates of the center-of-mass for a particular molecule are only computed if one or more of its
atoms are in the specified group. Normally all atoms in the molecule should be in the group, however this is not
required. LAMMPS will warn you if this is not the case. Only atoms in the group contribute to the center-of-mass
calculation for the molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The coordinates of an atom contribute to the molecule's center-of-mass in "unwrapped"
form, by using the image flags associated with each atom. See the dump custom command for a discussion of
"unwrapped" coordinates. See the Atoms section of the read_data command for a discussion of image flags and
how they are set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by using
the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags are
altered, and its contribution to the center-of-mass may not reflect its true contribution. See the fix rigid command
for details. Thus, to compute the center-of-mass of rigid bodies as they cross periodic boundaries, you will need to
post-process a dump file containing coordinates of the atoms in the bodies.

Output info:

This compute calculates a global array where the number of rows = Nmolecules and the number of columns = 3
for the x,y,z center-of-mass coordinates of each molecule. These values can be accessed by any command that
uses global array values from a compute as input. See Section_howto 15 for an overview of LAMMPS output
options.

The array values are "intensive". The array values will be in distance units.

Restrictions: none

Related commands:

292

http://lammps.sandia.gov

compute com

Default: none

293

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute contact/atom command
Syntax:
compute ID group-ID contact/atom

¢ ID, group-ID are documented in compute command
¢ contact/atom = style name of this compute command

Examples:

compute 1 all contact/atom

Description:

Define a computation that calculates the number of contacts for each atom in a group.

The contact number is defined for finite-size spherical particles as the number of neighbor atoms which overlap
the central particle, meaning that their distance of separation is less than or equal to the sum of the radii of the two
particles.

The value of the contact number will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, whose values can be accessed by any command that uses per-atom
values from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be a number >= 0.0, as explained above.

Restrictions:

This compute requires that atoms store a radius as defined by the atom_style sphere command.
Related commands:

compute coord/atom

Default: none

294

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute coord/atom command

Syntax:
compute ID group-ID coord/atom cutoff typel type2 ...

¢ ID, group-ID are documented in compute command

® coord/atom = style name of this compute command

e cutoff = distance within which to count coordination neighbors (distance units)
¢ typeN = atom type for Nth coordination count (see asterisk form below)

Examples:

compute 1 all coord/atom 2.0
compute 1 all coord/atom 6.0 1 2
compute 1 all coord/atom 6.0 2*4 5*8 *

Description:

Define a computation that calculates one or more coordination numbers for each atom in a group.

A coordination number is defined as the number of neighbor atoms with specified atom type(s) that are within the
specified cutoff distance from the central atom. Atoms not in the group are included in a coordination number of
atoms in the group.

The typeN keywords allow you to specify which atom types contribute to each coordination number. One
coordination number is computed for each of the typeN keywords listed. If no typeN keywords are listed, a single
coordination number is calculated, which includes atoms of all types (same as the "*" format, see below).

The typeN keywords can be specified in one of two ways. An explicit numeric value can be used, as in the 2nd
example above. Or a wild-card asterisk can be used to specify a range of atom types. This takes the form "*" or
"*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values means all types
from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types from n
to N (inclusive). A middle asterisk means all types from m to n (inclusive).

The value of all coordination numbers will be 0.0 for atoms not in the specified compute group.

The neighbor list needed to compute this quantity is constructed each time the calculation is performed (i.e. each
time a snapshot of atoms is dumped). Thus it can be inefficient to compute/dump this quantity too frequently.

Output info:

If single typel keyword is specified (or if none are specified), this compute calculates a per-atom vector. If
multiple frypeN keywords are specified, this compute calculates a per-atom array, with N columns. These values
can be accessed by any command that uses per-atom values from a compute as input. See Section_howto 15 for
an overview of LAMMPS output options.

The per-atom vector or array values will be a number >= 0.0, as explained above.

Restrictions: none

295

http://lammps.sandia.gov

Related commands:
compute cluster/atom

Default: none

296

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute damage/atom command
Syntax:
compute ID group-ID damage/atom

¢ ID, group-ID are documented in compute command
¢ damage/atom = style name of this compute command

Examples:

compute 1 all damage/atom

Description:

Define a computation that calculates the per-atom damage for each atom in a group. Please see the PDLAMMPS
user guide for a formal definition of "damage" and more details about Peridynamics as it is implemented in
LAMMPS.

The value of the damage will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be a number >= 0.0, as explained above.
Restrictions:

This compute is part of the PERI package. It is only enabled if LAMMPS was built with that package. See the
Making LAMMPS section for more info.

Related commands:
dump custom

Default: none

297

http://lammps.sandia.gov
http://www.sandia.gov/~mlparks/papers/PDLAMMPS.pdf
http://www.sandia.gov/~mlparks/papers/PDLAMMPS.pdf

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute dihedral/local command

Syntax:
compute ID group-ID dihedral/local inputl input2 ...

¢ ID, group-ID are documented in compute command

e dihedral/local = style name of this compute command
¢ zero or more keywords may be appended

¢ keyword = phi

phi = tabulate dihedral angles
Examples:
compute 1 all dihedral/local phi
Description:

Define a computation that calculates properties of individual dihedral interactions. The number of datums
generated, aggregated across all processors, equals the number of angles in the system.

The local data stored by this command is generated by looping over all the atoms owned on a processor and their
dihedrals. A dihedral will only be included if all 4 atoms in the dihedral are in the specified compute group.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries within
the local vector or array from one timestep to the next. The only consistency that is guaranteed is that the ordering
on a particular timestep will be the same for local vectors or arrays generated by other compute commands. For
example, dihedral output from the compute property/local command can be combined with data from this
command and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of dihedrals. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns = the
number of keywords. The vector or array can be accessed by any command that uses local values from a compute
as input. See this section for an overview of LAMMPS output options.

The output for phi will be in degrees.

Restrictions: none

Related commands:

dump local, compute property/local

Default: none

298

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute displace/atom command

Syntax:
compute ID group-ID displace/atom

¢ ID, group-ID are documented in compute command
e displace/atom = style name of this compute command

Examples:
compute 1 all displace/atom
Description:

Define a computation that calculates the current displacement of each atom in the group from its original
coordinates, including all effects due to atoms passing thru periodic boundaries.

A vector of four quantites per atom is calculated by this compute. The first 3 elements of the vector are the
dx,dy,dz displacements. The 4th component is the total displacement, i.e. sqrt(dx*dx + dy*dy + dz*dz).

The displacement of an atom is from its original position at the time the compute command was issued. To store
the original coordinates, the compute creates its own fix of style "store/state", as if this command had been issued:

fix compute-ID_store_state group-ID store/state xu yu zu

See the fix store/state command for details. Note that the ID of the new fix is the compute-ID + underscore +
"store/state", and the group for the new fix is the same as the compute group.

The value of the displacement will be 0.0 for atoms not in the specified compute group.

IMPORTANT NOTE: Fix store/state stores the initial coordinates in "unwrapped" form, by using the image flags
associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates. See the
Atoms section of the read_data command for a discussion of image flags and how they are set for each atom. You
can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags are
altered, and the computed displacement may not reflect its true displacement. See the fix rigid command for
details. Thus, to compute the displacement of rigid bodies as they cross periodic boundaries, you will need to
post-process a dump file containing coordinates of the atoms in the bodies.

IMPORTANT NOTE: If you want the quantities calculated by this compute to be continuous when running from
a restart file, then you should use the same ID for this compute, as in the original run. This is so that the created
fix will also have the same ID, and thus be initialized correctly with atom coordinates from the restart file.
Output info:

This compute calculates a per-atom array with 4 columns, which can be accessed by indices 1-4 by any command

that uses per-atom values from a compute as input. See Section_howto 15 for an overview of LAMMPS output
options.

299

http://lammps.sandia.gov

The per-atom array values will be in distance units.

Restrictions: none
Related commands:
compute msd, dump custom, fix store/state

Default: none

300

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute erotate/asphere command
Syntax:
compute ID group-ID erotate/asphere

¢ ID, group-ID are documented in compute command
e erotate/asphere = style name of this compute command

Examples:

compute 1 all erotate/asphere

Description:

Define a computation that calculates the rotational kinetic energy of a group of aspherical particles. The
aspherical particles can be ellipsoids, or line segments, or triangles. See the atom_style and read_data commands

for descriptions of these options.

For all 3 types of particles, the rotational kinetic energy is computed as 1/2 I w2, where I is the inertia tensor for
the aspherical particle and w is its angular velocity, which is computed from its angular momentum if needed.

IMPORTANT NOTE: For 2d models, ellipsoidal particles are treated as ellipsoids, not ellipses, meaning their
moments of inertia will be the same as in 3d.

Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions:

This compute requires that ellipsoidal particles atoms store a shape and quaternion orientation and angular
momentum as defined by the atom_style ellipsoid command.

This compute requires that line segment particles atoms store a length and orientation and angular velocity as
defined by the atom_style line command.

This compute requires that triangular particles atoms store a size and shape and quaternion orientation and angular
momentum as defined by the atom_style tri command.

All particles in the group must be finite-size. They cannot be point particles.
Related commands: none
compute erotate/sphere

Default: none

301

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute erotate/sphere command
Syntax:
compute ID group-ID erotate/sphere

¢ ID, group-ID are documented in compute command
e erotate/sphere = style name of this compute command

Examples:

compute 1 all erotate/sphere

Description:

Define a computation that calculates the rotational kinetic energy of a group of spherical particles.

The rotational energy is computed as 1/2 I w*2, where I is the moment of inertia for a sphere and w is the
particle's angular velocity.

IMPORTANT NOTE: For 2d models, particles are treated as spheres, not disks, meaning their moment of inertia
will be the same as in 3d.

Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions:

This compute requires that atoms store a radius and angular velocity (omega) as defined by the atom_style sphere
command.

All particles in the group must be finite-size spheres or point particles. They cannot be aspherical. Point particles
will not contribute to the rotational energy.

Related commands:
compute erotate/asphere

Default: none

302

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute erotate/sphere/atom command
Syntax:
compute ID group-ID erotate/sphere/atom

¢ ID, group-ID are documented in compute command
e erotate/sphere/atom = style name of this compute command

Examples:

compute 1 all erotate/sphere/atom

Description:

Define a computation that calculates the rotational kinetic energy for each particle in a group.

The rotational energy is computed as 1/2 I w*2, where I is the moment of inertia for a sphere and w is the
particle's angular velocity.

IMPORTANT NOTE: For 2d models, particles are treated as spheres, not disks, meaning their moment of inertia
will be the same as in 3d.

The value of the rotational kinetic energy will be 0.0 for atoms not in the specified compute group or for point
particles with a radius = 0.0.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in energy units.
Restrictions: none

Related commands:

dump custom

Default: none

303

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute event/displace command
Syntax:
compute ID group-ID event/displace threshold

¢ ID, group-ID are documented in compute command

¢ event/displace = style name of this compute command

¢ threshold = minimum distance anyparticle must move to trigger an event (distance units)
Examples:
compute 1 all event/displace 0.5
Description:
Define a computation that flags an "event" if any particle in the group has moved a distance greater than the
specified threshold distance when compared to a previously stored reference state (i.e. the previous event). This
compute is typically used in conjunction with the prd and tad commands, to detect if a transition to a new

minimum energy basin has occurred.

This value calculated by the compute is equal to O if no particle has moved far enough, and equal to 1 if one or
more particles have moved further than the threshold distance.

NOTE: If the system is undergoing significant center-of-mass motion, due to thermal motion, an external force, or
an initial net momentum, then this compute will not be able to distinguish that motion from local atom
displacements and may generate "false postives."

Output info:

This compute calculates a global scalar (the flag). This value can be used by any command that uses a global
scalar value from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The scalar value will be a 0 or 1 as explained above.
Restrictions:

This command can only be used if LAMMPS was built with the REPLICA package. See the Making LAMMPS
section for more info on packages.

Related commands:
prd, tad

Default: none

304

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute group/group command

Syntax:
compute ID group-ID group/group group2-ID keyword value ...

¢ ID, group-ID are documented in compute command
¢ group/group = style name of this compute command
¢ group2-ID = group ID of second (or same) group

¢ zero or more keyword/value pairs may be appended
¢ keyword = pair or kspace or boundary

pair value = yes or no
kspace value = yes or no
boundary value = yes or no
Examples:

compute 1 lower group/group upper
compute 1 lower group/group upper kspace yes
compute mine fluid group/group wall

Description:

Define a computation that calculates the total energy and force interaction between two groups of atoms: the
compute group and the specified group2. The two groups can be the same.

If the pair keyword is set to yes, which is the default, then the the interaction energy will include a pair
component which is defined as the pairwise energy between all pairs of atoms where one atom in the pair is in the
first group and the other is in the second group. Likewise, the interaction force calculated by this compute will
include the force on the compute group atoms due to pairwise interactions with atoms in the specified group?2.

If the kspace keyword is set to yes, which is not the default, and if a kspace_style is defined, then the interaction
energy will include a Kspace component which is the long-range Coulombic energy between all the atoms in the
first group and all the atoms in the 2nd group. Likewise, the interaction force calculated by this compute will
include the force on the compute group atoms due to long-range Coulombic interactions with atoms in the
specified group?2.

Normally the long-range Coulombic energy converges only when the net charge of the unit cell is zero. However,
one can assume the net charge of the system is neutralized by a uniform background plasma, and a correction to
the system energy can be applied to reduce artifacts. For more information see (Bogusz). If the boundary keyword
is set to yes, which is the default, and kspace contributions are included, then this energy correction term will be
added to the total group-group energy. This correction term does not affect the force calculation and will be zero
if one or both of the groups are charge neutral. This energy correction term is the same as that included in the
regular Ewald and PPPM routines.

This compute does not calculate any bond or angle or dihedral or improper interactions between atoms in the two
groups.

The pairwise contributions to the group-group interactions are calculated by looping over a neighbor list. The
Kspace contribution to the group-group interactions require essentially the same amount of work (FFTs, Ewald

305

http://lammps.sandia.gov

summation) as computing long-range forces for the entire system. Thus it can be costly to invoke this compute too
frequently.

If you desire a breakdown of the interactions into a pairwise and Kspace component, simply invoke the compute
twice with the appropriate yes/no settings for the pair and kspace keywords. This is no more costly than using a
single compute with both keywords set to yes. The individual contributions can be summed in a variable if
desired.

This document describes how the long-range group-group calculations are performed.

Output info:
This compute calculates a global scalar (the energy) and a global vector of length 3 (force), which can be accessed
by indices 1-3. These values can be used by any command that uses global scalar or vector values from a compute

as input. See this section for an overview of LAMMPS output options.

Both the scalar and vector values calculated by this compute are "extensive". The scalar value will be in energy
units. The vector values will be in force units.

Restrictions:

Not all pair styles can be evaluated in a pairwise mode as required by this compute. For example, 3-body and
other many-body potentials, such as Tersoff and Stillinger-Weber cannot be used. EAM potentials only include
the pair potential portion of the EAM interaction when used by this compute, not the embedding term.

Not all Kspace styles support calculation of group/group interactions. The ewald and pppm styles do.

Related commands: none

Default:

The option defaults are pair = yes, kspace = no, and boundary = yes.

Bogusz et al, J Chem Phys, 108, 7070 (1998)

306

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute gyration command
Syntax:
compute ID group-ID gyration

¢ ID, group-ID are documented in compute command
¢ gyration = style name of this compute command

Examples:
compute 1 molecule gyration
Description:

Define a computation that calculates the radius of gyration Rg of the group of atoms, including all effects due to
atoms passing thru periodic boundaries.

Rg is a measure of the size of the group of atoms, and is computed by this formula

1 ‘

2 2

Rg e .”f«-i(i’i 7 fcm)
M 4

where M is the total mass of the group, Rcm is the center-of-mass position of the group, and the sum is over all
atoms in the group.

A Rg tensor, stored as a 6-element vector, is also calculated by this compute. The formula for the components of
the tensor is the same as the above formula, except that (Ri - Rcm)”2 is replaced by (Rix - Remx) * (Riy - Rcmy)
for the Xy component, etc. The 6 components of the vector are ordered xX, yy, zz, Xy, Xz, yZ.

IMPORTANT NOTE: The coordinates of an atom contribute to Rg in "unwrapped" form, by using the image
flags associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates.
See the Atoms section of the read_data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.
Output info:

This compute calculates a global scalar (Rg) and a global vector of length 6 (Rg tensor), which can be accessed by
indices 1-6. These values can be used by any command that uses a global scalar value or vector values from a

compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The scalar and vector values calculated by this compute are "intensive". The scalar and vector values will be in
distance units.

Restrictions: none

Related commands:

307

http://lammps.sandia.gov

compute gyration/molecule

Default: none

308

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute gyration/molecule command

Syntax:

compute ID group-ID gyration/molecule keyword value ...

¢ ID, group-ID are documented in compute command

¢ gyration/molecule = style name of this compute command
¢ zero or more keyword/value pairs may be appended

¢ keyword = tensor

tensor value = none
Examples:

compute 1 molecule gyration/molecule
compute 2 molecule gyration/molecule tensor

Description:

Define a computation that calculates the radius of gyration Rg of individual molecules. The calculation includes
all effects due to atoms passing thru periodic boundaries.

Rg is a measure of the size of a molecule, and is computed by this formula

1 ‘

2 2

Rg e .”f«-i(i’i 7 fcm)
M 4

where M is the total mass of the molecule, Rcm is the center-of-mass position of the molecule, and the sum is
over all atoms in the molecule and in the group.

If the tensor keyword is specified, then the scalar Rg value is not calculated, but an Rg tensor is instead calculated
for each molecule. The formula for the components of the tensor is the same as the above formula, except that (Ri
- Rem)”2 is replaced by (Rix - Remx) * (Riy - Remy) for the Xy component, etc. The 6 components of the tensor
are ordered xx, yy, zzZ, Xy, XZ, yZ.

Rg for a particular molecule is only computed if one or more of its atoms are in the specified group. Normally all
atoms in the molecule should be in the group, however this is not required. LAMMPS will warn you if this is not
the case. Only atoms in the group contribute to the Rg calculation for the molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The coordinates of an atom contribute to Rg in "unwrapped" form, by using the image

flags associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates.
See the Atoms section of the read_data command for a discussion of image flags and how they are set for each
atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

309

http://lammps.sandia.gov

Output info:

This compute calculates a global vector if the tensor keyword is not specified and a global array if it is. The
length of the vector or number of rows in the array is the number of molecules. If the tensor keyword is specified,
the global array has 6 columns. The vector or array can be accessed by any command that uses global values from

a compute as input. See this section for an overview of LAMMPS output options.

All the vector or array values calculated by this compute are "intensive". The vector or array values will be in
distance units.

Restrictions: none
Related commands: none
compute gyration

Default: none

310

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute heat/flux command

Syntax:

compute ID group-ID heat/flux ke-ID pe-ID stress-ID

¢ ID, group-ID are documented in compute command

¢ heat/flux = style name of this compute command

¢ ke-ID = ID of a compute that calculates per-atom kinetic energy

¢ pe-ID = ID of a compute that calculates per-atom potential energy
e stress-ID = ID of a compute that calculates per-atom stress

Examples:

compute myFlux all heat/flux myKE myPE myStress

Description:

Define a computation that calculates the heat flux vector based on contributions from atoms in the specified
group. This can be used by itself to measure the heat flux into or out of a reservoir of atoms, or to calculate a
thermal conductivity using the Green-Kubo formalism.

See the fix thermal/conductivity command for details on how to compute thermal conductivity in an alternate
way, via the Muller-Plathe method. See the fix heat command for a way to control the heat added or subtracted to
a group of atoms.

The compute takes three arguments which are IDs of other computes. One calculates per-atom kinetic energy
(ke-1D), one calculates per-atom potential energy (pe-ID), and the third calcualtes per-atom stress (stress-ID).

These should be defined for the same group used by compute heat/flux, though LAMMPS does not check for this.

The Green-Kubo formulas relate the ensemble average of the auto-correlation of the heat flux J to the thermal
conductivity kappa:

T
4 = % Zf'fiVi—Z.SiVi

1 s,
= % Z E;V; Z (fij g v.'f) Xij

i<j

I 1
= 7 [Dewit 3 Xl (it vi)x

311

http://lammps.sandia.gov

Voo Voo
= [{50007 H:—../ J(0) - J(£)) dt
K=, eOL0) dt = g [0 3(1)

Ei in the first term of the equation for J is the per-atom energy (potential and kinetic). This is calculated by the
computes ke-ID and pe-ID. Si in the second term of the equation for J is the per-atom stress tensor calculated by
the compute stress-ID. The tensor multiplies Vi as a 3x3 matrix-vector multiply to yield a vector. Note that as
discussed below, the 1/V scaling factor in the equation for J is NOT included in the calculation performed by this
compute; you need to add it for a volume appropriate to the atoms included in the calculation.

IMPORTANT NOTE: The compute pe/atom and compute stress/atom commands have options for which terms to
include in their calculation (pair, bond, etc). The heat flux calculation will thus include exactly the same terms.
Normally you should use compute stress/atom virial so as not to include a kinetic energy term in the heat flux.

This compute calculates 6 quantities and stores them in a 6-component vector. The first 3 components are the x, y,
z components of the full heat flux vector, i.e. (Jx, Jy, Jz). The next 3 components are the x, y, z components of
just the convective portion of the flux, i.e. the first term in the equation for J above.

The heat flux can be output every so many timesteps (e.g. via the thermo_style custom command). Then as a
post-processing operation, an autocorrelation can be performed, its integral estimated, and the Green-Kubo
formula above evaluated.

The fix ave/correlate command can calclate the autocorrelation. The trap() function in the variable command can
calculate the integral.

An example LAMMPS input script for solid Ar is appended below. The result should be: average conductivity
~0.29 in W/mK.

Output info:

This compute calculates a global vector of length 6 (total heat flux vector, followed by conductive heat flux
vector), which can be accessed by indices 1-6. These values can be used by any command that uses global vector
values from a compute as input. See this section for an overview of LAMMPS output options.

The vector values calculated by this compute are "extensive", meaning they scale with the number of atoms in the
simulation. They can be divided by the appropriate volume to get a flux, which would then be an "intensive"
value, meaning independent of the number of atoms in the simulation. Note that if the compute is "all", then the
appropriate volume to divide by is the simulation box volume. However, if a sub-group is used, it should be the

volume containing those atoms.

The vector values will be in energy*velocity units. Once divided by a volume the units will be that of flux,
namely energy/area/time units

Restrictions: none
Related commands:
fix thermal/conductivity, fix ave/correlate, variable

Default: none

312

Sample LAMMPS input script for thermal conductivity of solid Ar

units real

variable T equal 70

variable V equal vol

variable dt equal 4.0

variable p equal 200 # correlation length
variable s equal 10 # sample interval
variable d equal $p*$s # dump interval

convert from LAMMPS real units to SI

variable kB equal 1.3806504e-23 # [J/K] Boltzmann
variable kCal2J equal 4186.0/6.02214e23

variable A2m equal 1.0e-10

variable fs2s equal 1.0e-15

variable convert equal ${kCal2J}*${kCal2Jd}/${fs2s}/S${A2m}

setup problem

dimension 3

boundary P PP

lattice fcc 5.376 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1
region box block 0 4 0 4 0 4

create_box 1 box

create_atoms 1 box

mass 1 39.948
pair_style 1j/cut 13.0
pair_coeff * * 0.2381 3.405
timestep S{dt}

thermo el

equilibration and thermalization

velocity all create $T 102486 mom yes rot yes dist gaussian
fix NVT all nvt temp $T $T 10 drag 0.2
run 8000

thermal conductivity calculation, switch to NVE if desired

#funfix NVT
#fix NVE all nve

reset_timestep 0

compute myKE all ke/atom
compute myPE all pe/atom
compute myStress all stress/atom virial
compute flux all heat/flux myKE myPE myStress
variable Jx equal c_flux[1l]/vol
variable Jy equal c_flux[2]/vol
variable Jz equal c_flux[3]/vol
fix JJ all ave/correlate $s S$p $d &
c_flux[1l] c_flux[2] c_flux[3] type auto file J0Jt.dat ave running
variable scale equal ${convert}/${kB}/S$T/ST/$V*$s*${dt}
variable k1l equal trap(f_JJ[3])*${scale}
variable k22 equal trap(f_JJ[4])*${scale}
variable k33 equal trap(f_JJ[5])*${scale}
thermo_style custom step temp v_Jx v_Jy v_Jz v_kll v_k22 v_k33
run 100000
variable k equal (v_kll+v_k22+v_k33)/3.0
variable ndens equal count (all)/vol

313

print "average conductivity: $k[W/mK] @ $T K, ${ndens} /A"3"

314

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute improper/local command

Syntax:
compute ID group-ID improper/local inputl input2 ...

¢ ID, group-ID are documented in compute command

¢ improper/local = style name of this compute command
¢ zero or more keywords may be appended

® keyword = chi

chi = tabulate improper angles
Examples:
compute 1 all improper/local chi
Description:

Define a computation that calculates properties of individual improper interactions. The number of datums
generated, aggregated across all processors, equals the number of impropers in the system.

The local data stored by this command is generated by looping over all the atoms owned on a processor and their
impropers. An improper will only be included if all 4 atoms in the improper are in the specified compute group.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries within
the local vector or array from one timestep to the next. The only consistency that is guaranteed is that the ordering
on a particular timestep will be the same for local vectors or arrays generated by other compute commands. For
example, improper output from the compute property/local command can be combined with data from this
command and output by the dump local command in a consistent way.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of impropers. If a single keyword is specified, a local vector
is produced. If two or more keywords are specified, a local array is produced where the number of columns = the
number of keywords. The vector or array can be accessed by any command that uses local values from a compute
as input. See this section for an overview of LAMMPS output options.

The output for chi will be in degrees.

Restrictions: none

Related commands:

dump local, compute property/local

Default: none

315

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ke command
Syntax:
compute ID group-ID ke

¢ ID, group-ID are documented in compute command
¢ ke = style name of this compute command

Examples:

compute 1 all ke

Description:

Define a computation that calculates the translational kinetic energy of a group of particles.

The kinetic energy or each particle is computed as 1/2 m v*2, where m and v are the mass and velocity of the
particle.

There is a subtle difference between the quantity calculated by this compute and the kinetic energy calculated by
the ke or etotal keyword used in thermodynamic output, as specified by the thermo_style command. For this
compute, kinetic energy is "translational" kinetic energy, calculated by the simple formula above. For
thermodynamic output, the ke keyword infers kinetic energy from the temperature of the system with 1/2 Kb T of
energy for each degree of freedom. For the default temperature computation via the compute temp command,
these are the same. But different computes that calculate temperature can subtract out different non-thermal
components of velocity and/or include different degrees of freedom (translational, rotational, etc).

Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions: none

Related commands:

compute erotate/sphere

Default: none

316

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ke/atom command
Syntax:
compute ID group-ID ke/atom

¢ ID, group-ID are documented in compute command
¢ ke/atom = style name of this compute command

Examples:

compute 1 all ke/atom

Description:

Define a computation that calculates the per-atom translational kinetic energy for each atom in a group.
The kinetic energy is simply 1/2 m v*2, where m is the mass and v is the velocity of each atom.

The value of the kinetic energy will be 0.0 for atoms not in the specified compute group.

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in energy units.
Restrictions: none

Related commands:

dump custom

Default: none

317

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ke/atom/eff command

Syntax:
compute ID group-ID ke/atom/eff

¢ ID, group-ID are documented in compute command
¢ ke/atom/eff = style name of this compute command

Examples:
compute 1 all ke/atom/eff
Description:

Define a computation that calculates the per-atom translational (nuclei and electrons) and radial kinetic energy
(electron only) in a group. The particles are assumed to be nuclei and electrons modeled with the electronic force
field.

The kinetic energy for each nucleus is computed as 1/2 m v”2, where m corresponds to the corresponding nuclear
mass, and the kinetic energy for each electron is computed as 1/2 (me v"2 + 3/4 me s"2), where me and v
correspond to the mass and translational velocity of each electron, and s to its radial velocity, respectively.

There is a subtle difference between the quantity calculated by this compute and the kinetic energy calculated by
the ke or etotal keyword used in thermodynamic output, as specified by the thermo_style command. For this
compute, kinetic energy is "translational" plus electronic "radial" kinetic energy, calculated by the simple formula
above. For thermodynamic output, the ke keyword infers kinetic energy from the temperature of the system with
1/2 Kb T of energy for each (nuclear-only) degree of freedom in eFF.

IMPORTANT NOTE: The temperature in eFF should be monitored via the compute temp/eff command, which
can be printed with thermodynamic output by using the thermo_modify command, as shown in the following

example:

compute effTemp all temp/eff
thermo_style custom step etotal pe ke temp press
thermo_modify temp effTemp

The value of the kinetic energy will be 0.0 for atoms (nuclei or electrons) not in the specified compute group.
Output info:

This compute calculates a scalar quantity for each atom, which can be accessed by any command that uses
per-atom computes as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in energy units.
Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

318

http://lammps.sandia.gov

Related commands:
dump custom

Default: none

319

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ke/eff command

Syntax:
compute ID group-ID ke/eff

¢ ID, group-ID are documented in compute command
o ke/eff = style name of this compute command

Examples:
compute 1 all ke/eff
Description:

Define a computation that calculates the kinetic energy of motion of a group of eFF particles (nuclei and
electrons), as modeled with the electronic force field.

The kinetic energy for each nucleus is computed as 1/2 m v”2 and the kinetic energy for each electron is
computed as 1/2(me v*2 + 3/4 me s"2), where m corresponds to the nuclear mass, me to the electron mass, v to
the translational velocity of each particle, and s to the radial velocity of the electron, respectively.

There is a subtle difference between the quantity calculated by this compute and the kinetic energy calculated by
the ke or etotal keyword used in thermodynamic output, as specified by the thermo_style command. For this
compute, kinetic energy is "translational" and "radial" (only for electrons) kinetic energy, calculated by the simple
formula above. For thermodynamic output, the ke keyword infers kinetic energy from the temperature of the
system with 1/2 Kb T of energy for each degree of freedom. For the eFF temperature computation via the
compute temp_eff command, these are the same. But different computes that calculate temperature can subtract
out different non-thermal components of velocity and/or include other degrees of freedom.

IMPRORTANT NOTE: The temperature in eFF models should be monitored via the compute temp/eff command,
which can be printed with thermodynamic output by using the thermo_modify command, as shown in the

following example:

compute effTemp all temp/eff
thermo_style custom step etotal pe ke temp press
thermo_modify temp effTemp

See compute temp/eff.
Output info:

This compute calculates a global scalar (the KE). This value can be used by any command that uses a global
scalar value from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

320

http://lammps.sandia.gov

Related commands: none

Default: none

321

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute meso_e/atom command
Syntax:
compute ID group-ID meso_e/atom

¢ ID, group-ID are documented in compute command
® meso_e/atom = style name of this compute command

Examples:

compute 1 all meso_e/atom

Description:

Define a computation that calculates the per-atom internal energy for each atom in a group.

The internal energy is the energy associated with the internal degrees of freedom of a mesoscopic particles, e.g. a
Smooth-Particle Hydrodynamics particle.

See this PDF guide to using SPH in LAMMPS.
The value of the internal energy will be 0.0 for atoms not in the specified compute group.
Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in energy units.
Restrictions:

This compute is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:
dump custom

Default: none

322

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute meso_rho/atom command
Syntax:
compute ID group-ID meso_rho/atom

¢ ID, group-ID are documented in compute command
® meso_rho/atom = style name of this compute command

Examples:

compute 1 all meso_rho/atom

Description:

Define a computation that calculates the per-atom mesoscopic density for each atom in a group.

The mesoscopic density is the mass density of a mesoscopic particle, calculated by kernel function interpolation
using "pair style sph/thosum".

See this PDF guide to using SPH in LAMMPS.
The value of the mesoscopic density will be 0.0 for atoms not in the specified compute group.
Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in mass/volume units.
Restrictions:

This compute is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:
dump custom

Default: none

323

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute meso_t/atom command
Syntax:
compute ID group-ID meso_t/atom

¢ ID, group-ID are documented in compute command
® meso_t/atom = style name of this compute command

Examples:

compute 1 all meso_t/atom

Description:

Define a computation that calculates the per-atom internal temperature for each atom in a group.

The internal temperature is the ratio of internal energy over the heat capacity associated with the internal degrees
of freedom of a mesoscopic particles, e.g. a Smooth-Particle Hydrodynamics particle.

T int=E int/C_V, int

See this PDF guide to using SPH in LAMMPS.

The value of the internal energy will be 0.0 for atoms not in the specified compute group.
Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in temperature units.
Restrictions:

This compute is part of the USER-SPH package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:
dump custom

Default: none

324

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute_modify command

Syntax:
compute_modify compute-ID keyword value ...

e compute-ID = ID of the compute to modify
¢ one or more keyword/value pairs may be listed
® keyword = extra or dynamic

extra value = N
N = # of extra degrees of freedom to subtract
dynamic value = yes or no
yes/no = do or do not recompute the number of atoms contributing to the temperature
thermo value = yes or no
yes/no = do or do not add contributions from fixes to the potential energy
Examples:

compute_modify myTemp extra O
compute_modify newtemp dynamic yes extra 600

Description:
Modify one or more parameters of a previously defined compute. Not all compute styles support all parameters.

The extra keyword refers to how many degrees-of-freedom are subtracted (typically from 3N) as a normalizing
factor in a temperature computation. Only computes that compute a temperature use this option. The default is 2
or 3 for 2d or 3d systems which is a correction factor for an ensemble of velocities with zero total linear
momentum. You can use a negative number for the extra parameter if you need to add degrees-of-freedom. See
the compute temp/asphere command for an example.

The dynamic keyword determines whether the number of atoms N in the compute group is re-computed each time
a temperature is computed. Only compute styles that compute a temperature use this option. By default, N is
assumed to be constant. If you are adding atoms to the system (see the fix pour or fix deposit commands) or
expect atoms to be lost (e.g. due to evaporation), then this option can be used to insure the temperature is correctly
normalized.

The thermo keyword determines whether the potential energy contribution calculated by some fixes is added to
the potential energy calculated by the compute. Currently, only the compute of style pe uses this option. See the
doc pages for individual fixes for details.

Restrictions: none

Related commands:

compute

Default:

The option defaults are extra = 2 or 3 for 2d or 3d systems and dynamic = no. Thermo is yes if the compute of
style pe was defined with no extra keywords; otherwise it is no.

325

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute msd command

Syntax:

compute ID group—-ID msd keyword values

¢ ID, group-ID are documented in compute command
® msd = style name of this compute command

¢ zero or more keyword/value pairs may be appended
¢ keyword = com

com value = yes or no
Examples:

compute 1 all msd
compute 1 upper msd com yes

Description:

Define a computation that calculates the mean-squared displacement (MSD) of the group of atoms, including all
effects due to atoms passing thru periodic boundaries.

A vector of four quantites is calculated by this compute. The first 3 elements of the vector are the squared
dx,dy,dz displacements, summed and averaged over atoms in the group. The 4th component is the total squared
displacement, i.e. (dx*dx + dy*dy + dz*dz), summed and averaged over atoms in the group.

The slope of the mean-squared displacement (MSD) versus time is proportional to the diffusion coefficient of the
diffusing atoms.

The displacement of an atom is from its original position at the time the compute command was issued. To store
the original coordinates, the compute creates its own fix of style "store/state", as if this command had been issued:

fix compute-ID_store_state group-ID store/state xu yu zu

See the fix store/state command for details. Note that the ID of the new fix is the compute-ID + underscore +
"store_state", and the group for the new fix is the same as the compute group.

If the com option is set to yes then the effect of any drift in the center-of-mass of the group of atoms is subtracted
out before the displacment of each atom is calcluated. The com option is also passed to the created fix store/state.

IMPORTANT NOTE: Fix store/state stores the initial coordinates in "unwrapped" form, by using the image flags
associated with each atom. See the dump custom command for a discussion of "unwrapped" coordinates. See the
Atoms section of the read_data command for a discussion of image flags and how they are set for each atom. You
can reset the image flags (e.g. to 0) before invoking this compute by using the set image command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags are
altered, and its contribution to the MSD may not reflect its true contribution. See the fix rigid command for
details. Thus, to compute the MSD of rigid bodies as they cross periodic boundaries, you will need to post-process
a dump file containing coordinates of the atoms in the bodies.

326

http://lammps.sandia.gov

IMPORTANT NOTE: If you want the quantities calculated by this compute to be continuous when running from
a restart file, then you should use the same ID for this compute, as in the original run. This is so that the created
fix will also have the same ID, and thus be initialized correctly with atom coordinates from the restart file.

Output info:

This compute calculates a global vector of length 4, which can be accessed by indices 1-4 by any command that
uses global vector values from a compute as input. See this section for an overview of LAMMPS output options.

The vector values are "intensive". The vector values will be in distance”2 units.
Restrictions: none

Related commands:

compute displace_atom, fix store/state, compute msd/molecule

Default:

The option default is com = no.

327

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute msd/molecule command

Syntax:
compute ID group-ID msd/molecule

¢ ID, group-ID are documented in compute command
¢ msd/molecule = style name of this compute command

Examples:
compute 1 all msd/molecule
Description:

Define a computation that calculates the mean-squared displacement (MSD) of individual molecules. The
calculation includes all effects due to atoms passing thru periodic boundaries.

Four quantites are calculated by this compute for each molecule. The first 3 quantities are the squared dx,dy,dz
displacements of the center-of-mass. The 4th component is the total squared displacement, i.e. (dx*dx + dy*dy +
dz*dz) of the center-of-mass.

The slope of the mean-squared displacement (MSD) versus time is proportional to the diffusion coefficient of the
diffusing molecules.

The displacement of the center-of-mass of the molecule is from its original center-of-mass position at the time the
compute command was issued.

The MSD for a particular molecule is only computed if one or more of its atoms are in the specified group.
Normally all atoms in the molecule should be in the group, however this is not required. LAMMPS will warn you
if this is not the case. Only atoms in the group contribute to the center-of-mass calculation for the molecule, which
is used to caculate its initial and current position.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

IMPORTANT NOTE: The initial coordinates of each molecule are stored in "unwrapped" form, by using the
image flags associated with each atom. See the dump custom command for a discussion of "unwrapped"
coordinates. See the Atoms section of the read_data command for a discussion of image flags and how they are
set for each atom. You can reset the image flags (e.g. to 0) before invoking this compute by using the set image
command.

IMPORTANT NOTE: If an atom is part of a rigid body (see the fix rigid command), it's periodic image flags are
altered, and its contribution to the MSD may not reflect its true contribution. See the fix rigid command for
details. Thus, to compute the MSD of rigid bodies as they cross periodic boundaries, you will need to post-process
a dump file containing coordinates of the atoms in the bodies.

IMPORTANT NOTE: Unlike the compute msd command, this compute does not store the initial center-of-mass
coorindates of its molecules in a restart file. Thus you cannot continue the MSD per molecule calculation of this

328

http://lammps.sandia.gov

compute when running from a restart file.

Output info:

This compute calculates a global array where the number of rows = Nmolecules and the number of columns = 4
for dx,dy,dz and the total displacement. These values can be accessed by any command that uses global array
values from a compute as input. See this section for an overview of LAMMPS output options.

The array values are "intensive". The array values will be in distance”2 units.

Restrictions: none

Related commands:

compute msd

Default: none

329

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pair command

Syntax:
compute ID group-I1D pair pstyle evalue

¢ ID, group-ID are documented in compute command

¢ pair = style name of this compute command

¢ pstyle = style name of a pair style that calculates additional values
e evalue = epair or evdwl or ecoul or blank (optional setting)

Examples:

compute 1 all pair gauss
compute 1 all pair l1j/cut/coul/cut ecoul
compute 1 all pair reax

Description:

Define a computation that extracts additional values calculated by a pair style, sums them across processors, and
makes them accessible for output or further processing by other commands. The group specified for this
command is ignored.

The specified pstyle must be a pair style used in your simulation either by itself or as a sub-style in a pair_style
hybrid or hybrid/overlay command.

The evalue setting is optional; it may be left off the command. All pair styles tally a potential energy epair which
may be broken into two parts: evdwl and ecoul such that epair = evdwl + ecoul. If the pair style calculates
Coulombic interactions, their energy will be tallied in ecoul. Everything else (whether it is a Lennard-Jones style
van der Waals interaction or not) is tallied in evdwl. If evalue is specified as epair or left out, then epair is stored
as a global scalar by this compute. This is useful when using pair_style hybrid if you want to know the portion of
the total energy contributed by one sub-style. If evalue is specfied as evdwl or ecoul, then just that portion of the
energy is stored as a global scalar.

Some pair styles tally additional quantities, e.g. a breakdown of potential energy into a dozen or so components is
tallied by the pair_style reax commmand. These values (1 or more) are stored as a global vector by this compute.
See the doc page for individual pair styles for info on these values.

Output info:

This compute calculates a global scalar which is epair or evdwl or ecoul. If the pair style supports it, it also
calculates a global vector of length >= 1, as determined by the pair style. These values can be used by any
command that uses global scalar or vector values from a compute as input. See this section for an overview of
LAMMPS output options.

The scalar and vector values calculated by this compute are "extensive".

The scalar value will be in energy units. The vector values will typically also be in energy units, but see the doc
page for the pair style for details.

Restrictions: none

330

http://lammps.sandia.gov

Related commands:
compute pe
Default:

The default for evalue is epair.

331

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pair/local command

Syntax:
compute ID group-ID pair/local inputl input?2

¢ ID, group-ID are documented in compute command
¢ pair/local = style name of this compute command

¢ zero or more keywords may be appended

¢ keyword = dist or eng or force or fx or fy or fz or pN

dist = pairwise distance
eng = pairwise energy
force = pairwise force
fx, fy, fz = components of pairwise force
pN = pair style specific quantities for allowed N values

Examples:

compute 1 all pair/local eng

compute 1 all pair/local dist eng force

compute 1 all pair/local dist eng fx fy fz
compute 1 all pair/local dist fx fy fz pl p2 p3
Description:

Define a computation that calculates properties of individual pairwise interactions. The number of datums
generated, aggregated across all processors, equals the number of pairwise interactions in the system.

The local data stored by this command is generated by looping over the pairwise neighbor list. Info about an
individual pairwise interaction will only be included if both atoms in the pair are in the specified compute group,
and if the current pairwise distance is less than the force cutoff distance for that interaction, as defined by the
pair_style and pair_coeff commands.

The output dist is the distance bewteen the pair of atoms.
The output eng is the interaction energy for the pair of atoms.

The output force is the force acting between the pair of atoms, which is positive for a repulsive force and negative
for an attractive force. The outputs fx, fy, and fz are the xyz components of force on atom 1.

A pair style may define additional pairwise quantities which can be accessed as p/ to pN, where N is defined by
the pair style. Most pair styles do not define any additional quantities, so N = 0. An example of ones that do are
the granular pair styles which calculate the tangential force between two particles and return its components and
magnitude acting on atom I for N = 1,2,3,4. See individual pair styles for detils.

The output dist will be in distance units. The output eng will be in energy units. The outputs force, fx, fy, and fz
will be in force units. The output pN will be in whatever units the pair style defines.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries within

the local vector or array from one timestep to the next. The only consistency that is guaranteed is that the ordering
on a particular timestep will be the same for local vectors or arrays generated by other compute commands. For

332

http://lammps.sandia.gov

example, pair output from the compute property/local command can be combined with data from this command
and output by the dump local command in a consistent way.

IMPORTANT NOTE: For pairs, if two atoms I,J are involved in 1-2, 1-3, 1-4 interactions within the molecular
topology, their pairwise interaction may be turned off, and thus they may not appear in the neighbor list, and will
not be part of the local data created by this command. More specifically, this may be true of I,J pairs with a
weighting factor of 0.0; pairs with a non-zero weighting factor are included. The weighting factors for 1-2, 1-3,
and 1-4 pairwise interactions are set by the special_bonds command.

Output info:

This compute calculates a local vector or local array depending on the number of keywords. The length of the
vector or number of rows in the array is the number of pairs. If a single keyword is specified, a local vector is
produced. If two or more keywords are specified, a local array is produced where the number of columns = the
number of keywords. The vector or array can be accessed by any command that uses local values from a compute

as input. See this section for an overview of LAMMPS output options.

The output for dist will be in distance units. The output for eng will be in energy units. The output for force will
be in force units.

Restrictions: none
Related commands:
dump local, compute property/local

Default: none

333

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pe command

compute pe/cuda command

Syntax:
compute ID group-ID pe keyword ...

¢ ID, group-ID are documented in compute command

® pe = style name of this compute command

¢ zero or more keywords may be appended

¢ keyword = pair or bond or angle or dihedral or improper or kspace

Examples:

compute 1 all pe
compute molPE all pe bond angle dihedral improper

Description:

Define a computation that calculates the potential energy of the entire system of atoms. The specified group must
be "all". See the compute pe/atom command if you want per-atom energies. These per-atom values could be
summed for a group of atoms via the compute reduce command.

The energy is calculated by the various pair, bond, etc potentials defined for the simulation. If no extra keywords
are listed, then the potential energy is the sum of pair, bond, angle, dihedral, improper, and kspace (long-range)
energy. If any extra keywords are listed, then only those components are summed to compute the potential
energy.

The Kspace contribution requires 1 extra FFT each timestep the energy is calculated, if using the PPPM solver via
the kspace_style pppm command. Thus it can increase the cost of the PPPM calculation if it is needed on a large
fraction of the simulation timesteps.

Various fixes can contribute to the total potential energy of the system. See the doc pages for individual fixes for
details. The thermo option of the compute_modify command determines whether these contributions are added
into the computed potential energy. If no keywords are specified the default is yes. If any keywords are specified,
the default is no.

A compute of this style with the ID of "thermo_pe" is created when LAMMPS starts up, as if this command were
in the input script:

compute thermo_pe all pe

See the "thermo_style" command for more details.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the manual.
The accelerated styles take the same arguments and should produce the same results, except for round-off and
precision issues.

334

http://lammps.sandia.gov

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built with
that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Output info:

This compute calculates a global scalar (the potential energy). This value can be used by any command that uses a
global scalar value from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The scalar value calculated by this compute is "extensive". The scalar value will be in energy units.
Restrictions: none

Related commands:

compute pe/atom

Default: none

335

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pe/atom command

Syntax:
compute ID group-ID pe/atom keyword ...

¢ ID, group-ID are documented in compute command

® pe/atom = style name of this compute command

¢ zero or more keywords may be appended

¢ keyword = pair or bond or angle or dihedral or improper or kspace

Examples:

compute 1 all pe/atom
compute 1 all pe/atom pair
compute 1 all pe/atom pair bond

Description:

Define a computation that computes the per-atom potential energy for each atom in a group. See the compute pe
command if you want the potential energy of the entire system.

The per-atom energy is calculated by the various pair, bond, etc potentials defined for the simulation. If no extra
keywords are listed, then the potential energy is the sum of pair, bond, angle, dihedral,improper, and kspace
energy. If any extra keywords are listed, then only those components are summed to compute the potential
energy.

Note that the energy of each atom is due to its interaction with all other atoms in the simulation, not just with
other atoms in the group.

For an energy contribution produced by a small set of atoms (e.g. 4 atoms in a dihedral or 3 atoms in a Tersoff
3-body interaction), that energy is assigned in equal portions to each atom in the set. E.g. 1/4 of the dihedral
energy to each of the 4 atoms.

The dihedral_style charmm style calculates pairwise interactions between 1-4 atoms. The energy contribution of
these terms is included in the pair energy, not the dihedral energy.

The KSpace contribution is calculated using the method in (Heyes) for the Ewald method and a related method
for PPPM, as specified by the kspace_style pppm command. For PPPM, the calcluation requires 1 extra FFT each
timestep that per-atom energy is calculated. Thie document describes how the long-range per-atom energy
calculation is performed.

As an example of per-atom potential energy compared to total potential energy, these lines in an input script
should yield the same result in the last 2 columns of thermo output:

compute peratom all pe/atom
compute pe all reduce sum c_peratom
thermo_style custom step temp etotal press pe c_pe

IMPORTANT NOTE: The per-atom energy does not any Lennard-Jones tail corrections invoked by the
pair_modify tail yes command, since those are global contributions to the system energy.

336

http://lammps.sandia.gov

Output info:

This compute calculates a per-atom vector, which can be accessed by any command that uses per-atom values
from a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The per-atom vector values will be in energy units.
Restrictions:

Related commands:

compute pe, compute stress/atom

Default: none

(Heyes) Heyes, Phys Rev B 49, 755 (1994),

337

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute pressure command

compute pressure/cuda command

Syntax:
compute ID group—-ID pressure temp—-ID keyword ...

¢ ID, group-ID are documented in compute command

e pressure = style name of this compute command

¢ temp-ID = ID of compute that calculates temperature

¢ zero or more keywords may be appended

¢ keyword = ke or pair or bond or angle or dihedral or improper or kspace or fix or virial

Examples:

compute 1 all pressure myTemp
compute 1 all pressure thermo_temp pair bond

Description:
Define a computation that calculates the pressure of the entire system of atoms. The specified group must be "all".
See the compute stress/atom command if you want per-atom pressure (stress). These per-atom values could be

summed for a group of atoms via the compute reduce command.

The pressure is computed by the formula

NkgT Nopef;
. DISE _I_Zz o fi

P
% dV

where N is the number of atoms in the system (see discussion of DOF below), Kb is the Boltzmann constant, T is
the temperature, d is the dimensionality of the system (2 or 3 for 2d/3d), V is the system volume (or area in 2d),
and the second term is the virial, computed within LAMMPS for all pairwise as well as 2-body, 3-body, and
4-body, and long-range interactions. Fixes that impose constraints (e.g. the fix shake command) also contribute to
the virial term.

A symmetric pressure tensor, stored as a 6-element vector, is also calculated by this compute. The 6 components
of the vector are ordered xx, yy, 7z, Xy, Xz, yz. The equation for the I,J components (where I and J = x,y,z) is
similar to the above formula, except that the first term uses components of the kinetic energy tensor and the
second term uses components of the virial tensor:

_ﬂl\" 34 ; : J\r e
> MUk, Uk, n Dk TkrJky

Pri =
1J V v

338

http://lammps.sandia.gov

If no extra keywords are listed, the entire equations above are calculated which include a kinetic energy
(temperature) term and the virial as the sum of pair, bond, angle, dihedral, improper, kspace (long-range), and fix
contributions to the force on each atom. If any extra keywords are listed, then only those components are summed
to compute temperature or ke and/or the virial. The virial keyword means include all terms except the kinetic
energy ke.

The temperature and kinetic energy tensor is not calculated by this compute, but rather by the temperature
compute specified with the command. Normally this compute should calculate the temperature of all atoms for
consistency with the virial term, but any compute style that calculates temperature can be used, e.g. one that
excludes frozen atoms or other degrees of freedom.

Note that the N in the first formula above is really degrees-of-freedom divided by d = dimensionality, where the
DOF value is calcluated by the temperature compute. See the various compute temperature styles for details.

A compute of this style with the ID of "thermo_press" is created when LAMMPS starts up, as if this command
were in the input script:

compute thermo_press all pressure thermo_temp

where "thermo_temp" is the ID of a similarly defined compute of style "temp". See the "thermo_style" command
for more details.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the manual.
The accelerated styles take the same arguments and should produce the same results, except for round-off and
precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built with
that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Output info:
This compute calculates a global scalar (the pressure) and a global vector of length 6 (pressure tensor), which can
be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector values

from a compute as input. See this section for an overview of LAMMPS output options.

The scalar and vector values calculated by this compute are "intensive". The scalar and vector values will be in
pressure units.

Restrictions: none
Related commands:
compute temp, compute stress/atom, thermo_style,

Default: none

339

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute property/atom command

Syntax:
compute ID group-ID property/atom inputl input2
¢ ID, group-ID are documented in compute command
® property/atom = style name of this compute command

® input = one or more atom attributes

possible attributes = id, mol, type, mass,

X, Yy, 2z, XS, ys, zs, xu, yu, zu, ix, iy, iz,

vx, vy, vz, fx, fy, fz,

g, mux, muy, muz, mu,

radius, diameter, omegax, omegay,
angmomx, angmomy, angmomz,
shapex, shapey, shapez,

omegaz,

quatw, quati, quatj, quatk, tagx, tqy, tqgz,

spin, eradius, ervel, erforce

endlx, endly, endlz, end2x, end2y, end2z,
cornerlx, cornerly, cornerlz,
corner2x, corner2y, corner2z,
corner3x, corner3y, corner3z
id = atom ID
mol = molecule ID
type = atom type
mass = atom mass
X,y,z = unscaled atom coordinates
Xs,ys,zs = scaled atom coordinates
Xu,yu,zu = unwrapped atom coordinates
ix,iy,iz = box image that the atom is in
vx,vy,vz = atom velocities
fx,fy,fz = forces on atoms
g = atom charge
mux,muy,muz = orientation of dipole moment of atom
mu = magnitude of dipole moment of atom
radius,diameter = radius,diameter of spherical particle
omegax, omegay,omegaz = angular velocity of extended particle
angmomx, angmomy, angmomz = angular momentum of extended particle
shapex, shapey, shapez = 3 diameters of aspherical particle
quatw, quati, quatj,quatk = quaternion components for aspherical particles
tagx,tqy,tgz = torque on extended particles
spin = electron spin
eradius = electron radius
ervel = electron radial velocity
erforce = electron radial force
endl2x, endl2y, endl2z = end points of line segment
conerl23x, cornerl23y, cornerl23z = corner points of triangle

Examples:

compute 1 all property/atom xs vx fx mux
compute 2 all property/atom type
compute 1 all property/atom ix iy iz

Description:

340

http://lammps.sandia.gov

Define a computation that simply stores atom attributes for each atom in the group. This is useful so that the
values can be used by other output commands that take computes as inputs. See for example, the compute reduce,
fix ave/atom, fix ave/histo, fix ave/spatial, and atom-style variable commands.

The list of possible attributes is the same as that used by the dump custom command, which describes their
meaning, with some additional quantities that are only defined for certain atom styles. Basically, this list gives
your input script access to any per-atom quantity stored by LAMMPS.

The values are stored in a per-atom vector or array as discussed below. Zeroes are stored for atoms not in the
specified group or for quantities that are not defined for a particular particle in the group (e.g. shapex if the

particle is not an ellipsoid).

The additional quantities only accessible via this command, and not directly via the dump custom command, are
as follows.

Shapex, shapey, and shapez are defined for ellipsoidal particles and define the 3d shape of each particle. Quatw,
quati, quatj, and quatk are also defined for ellipsoidal particles and store the 4-vector quaternion representing the

orientation of each particle. See the set command for an explanation of the quaternion vector.

Endlix, endly, endlz, end2x, end2y, end2z, are defined for line segment particles and define the end points of each
line segment.

Cornerlx, cornerly, cornerlz, corner2x, corner2y, corner2z, corner3x, corner3y, corner3z, are defined for
triangular particles and define the corner points of each triangle.

Output info:

This compute calculates a per-atom vector or per-atom array depending on the number of input values. If a single
input is specified, a per-atom vector is produced. If two or more inputs are specified, a per-atom array is produced
where the number of columns = the number of inputs. The vector or array can be accessed by any command that

uses per-atom values from a compute as input. See this section for an overview of LAMMPS output options.

The vector or array values will be in whatever units the corresponding attribute is in, e.g. velocity units for vx,
charge units for g, etc.

Restrictions: none
Related commands:
dump custom, compute reduce, fix ave/atom, fix ave/spatial

Default: none

341

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute property/local command

Syntax:

compute ID group-ID property/local inputl input?2

¢ ID, group-ID are documented in compute command
e property/local = style name of this compute command
® input = one or more attributes

possible attributes = natoml natom2 ntypel ntype2
patoml patom2 ptypel ptype2
batoml batom2 btype
aatoml aatom2 aatom3 atype
datoml datom2 datom3 dtype
iatoml iatom2 iatom3 itype

natoml, natom2 = IDs of 2 atoms in each pair (within neighbor cutoff)
ntypel, ntype2 = type of 2 atoms in each pair (within neighbor cutoff)
patoml, patom2 = IDs of 2 atoms in each pair (within force cutoff)
ptypel, ptype2 = type of 2 atoms in each pair (within force cutoff)
batoml, batom2 = IDs of 2 atoms in each bond

btype = bond type of each bond

aatoml, aatom2, aatom3 = IDs of 3 atoms in each angle

atype = angle type of each angle

datoml, datom2, datom3, datom4 = IDs of 4 atoms in each dihedral
dtype = dihedral type of each dihedral

iatoml, iatom2, iatom3, iatom4 = IDs of 4 atoms in each improper
itype = improper type of each improper

Examples:

compute 1 all property/local btype batoml batom?2
compute 1 all property/local atype aatom?2

Description:

Define a computation that stores the specified attributes as local data so it can be accessed by other output
commands. If the input attributes refer to bond information, then the number of datums generated, aggregated
across all processors, equals the number of bonds in the system. Ditto for pairs, angles, etc.

If multiple input attributes are specified then they must all generate the same amount of information, so that the
resulting local array has the same number of rows for each column. This means that only bond attributes can be
specified together, or angle attributes, etc. Bond and angle attributes can not be mixed in the same compute
property/local command.

If the inputs are pair attributes, the local data is generated by looping over the pairwise neighbor list. Info about an
individual pairwise interaction will only be included if both atoms in the pair are in the specified compute group.
For natom1 and natom?2, all atom pairs in the neighbor list are considered (out to the neighbor cutoff = force
cutoff + neighbor skin). For patoml and patom?2, the distance between the atoms must be less than the force cutoff
distance for that pair to be included, as defined by the pair_style and pair_coeff commands.

If the inputs are bond, angle, etc attributes, the local data is generated by looping over all the atoms owned on a
processor and extracting bond, angle, etc info. For bonds, info about an individual bond will only be included if

342

http://lammps.sandia.gov

both atoms in the bond are in the specified compute group. Likewise for angles, dihedrals, etc.

Note that as atoms migrate from processor to processor, there will be no consistent ordering of the entries within
the local vector or array from one timestep to the next. The only consistency that is guaranteed is that the ordering
on a particular timestep will be the same for local vectors or arrays generated by other compute commands. For
example, output from the compute bond/local command can be combined with bond atom indices from this
command and output by the dump local command in a consistent way.

The natoml and natom?2, or patoml and patom?2 attributes refer to the atom IDs of the 2 atoms in each pairwise
interaction computed by the pair_style command. The ntypel and ntype2, or ptypel and ptype?2 attributes refer to
the atom types of the 2 atoms in each pairwise interaction.

IMPORTANT NOTE: For pairs, if two atoms I,J are involved in 1-2, 1-3, 1-4 interactions within the molecular
topology, their pairwise interaction may be turned off, and thus they may not appear in the neighbor list, and will
not be part of the local data created by this command. More specifically, this may be true of I,J pairs with a
weighting factor of 0.0; pairs with a non-zero weighting factor are included. The weighting factors for 1-2, 1-3,
and 1-4 pairwise interactions are set by the special_bonds command.

The batoml and batom?2 attributes refer to the atom IDs of the 2 atoms in each bond. The btype attribute refers to
the type of the bond, from 1 to Nbtypes = # of bond types. The number of bond types is defined in the data file
read by the read_data command.

The attributes that start with "a", "d", "i", refer to similar values for angles, dihedrals, and impropers.

Output info:

This compute calculates a local vector or local array depending on the number of input values. The length of the
vector or number of rows in the array is the number of bonds, angles, etc. If a single input is specified, a local
vector is produced. If two or more inputs are specified, a local array is produced where the number of columns =
the number of inputs. The vector or array can be accessed by any command that uses local values from a compute
as input. See this section for an overview of LAMMPS output options.

The vector or array values will be integers that correspond to the specified attribute.

Restrictions: none

Related commands:

dump local, compute reduce

Default: none

343

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute property/molecule command

Syntax:
compute ID group-ID property/molecule inputl input2

¢ ID, group-ID are documented in compute command
e property/molecule = style name of this compute command
® input = one or more attributes

possible attributes = mol cout
mol = molecule ID
count = # of atoms in molecule
Examples:

compute 1 all property/molecule mol

Description:

Define a computation that stores the specified attributes as global data so it can be accessed by other output
commands and used in conjunction with other commands that generate per-molecule data, such as compute
com/molecule and compute msd/molecule.

The ordering of per-molecule quantities produced by this compute is consistent with the ordering produced by
other compute commands that generate per-molecule datums. Conceptually, them molecule IDs will be in
ascending order for any molecule with one or more of its atoms in the specified group.

The mol attribute is the molecule ID. This attribute can be used to produce molecule IDs as labels for
per-molecule datums generated by other computes or fixes when they are output to a file, e.g. by the fix ave/time
command.

The count attribute is the number of atoms in the molecule.

Output info:

This compute calculates a global vector or global array depending on the number of input values. The length of
the vector or number of rows in the array is the number of molecules. If a single input is specified, a global vector
is produced. If two or more inputs are specified, a global array is produced where the number of columns = the
number of inputs. The vector or array can be accessed by any command that uses global values from a compute as
input. See this section for an overview of LAMMPS output options.

The vector or array values will be integers that correspond to the specified attribute.

Restrictions: none

Related commands: none

Default: none

344

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute rdf command

Syntax:
compute ID group-ID rdf Nbin itypel Jjtypel itype2 jtype2 ...

¢ ID, group-ID are documented in compute command

¢ rdf = style name of this compute command

¢ Nbin = number of RDF bins

¢ itypeN = central atom type for Nth RDF histogram (see asterisk form below)

¢ jtypeN = distribution atom type for Nth RDF histogram (see asterisk form below)

Examples:

compute 1 all rdf 100

compute 1 all rdf 100 1 1

compute 1 all rdf 100 * 3

compute 1 fluid rdf 500 1 1 1 2 2 1 2 2
compute 1 fluid rdf 500 1*3 2 5 *10
Description:

Define a computation that calculates the radial distribution function (RDF), also called g(r), and the coordination
number for a group of particles. Both are calculated in histogram form by binning pairwise distances into Nbin
bins from 0.0 to the maximum force cutoff defined by the pair_style command. The bins are of uniform size in
radial distance. Thus a single bin encompasses a thin shell of distances in 3d and a thin ring of distances in 2d.

The itypeN and jtypeN arguments are optional. These arguments must come in pairs. If no pairs are listed, then a
single histogram is computed for g(r) between all atom types. If one or more pairs are listed, then a separate
histogram is generated for each itype,jtype pair.

The itypeN and jtypeN settings can be specified in one of two ways. An explicit numeric value can be used, as in
the 4th example above. Or a wild-card asterisk can be used to specify a range of atom types. This takes the form
" or "*n" or "n*" or "m*n". If N = the number of atom types, then an asterisk with no numeric values means all
types from 1 to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types
from n to N (inclusive). A middle asterisk means all types from m to n (inclusive).

If both ifypeN and jtypeN are single values, as in the 4th example above, this means that a g(r) is computed where
atoms of type itypeN are the central atom, and atoms of type jtypeN are the distribution atom. If either itypeN and
JjtypeN represent a range of values via the wild-card asterisk, as in the 5th example above, this means that a g(r) is
computed where atoms of any of the range of types represented by itypeN are the central atom, and atoms of any
of the range of types represented by jtypeN are the distribution atom.

Pairwise distances are generated by looping over a pairwise neighbor list, just as they would be in a pair_style
computation. The distance between two atoms I and J is included in a specific histogram if the following criteria
are met:

e atoms [,J are both in the specified compute group

¢ the distance between atoms LJ is less than the maximum force cutoff
¢ the type of the I atom matches itypeN (one or a range of types)

¢ the type of the J atom matches jtypeN (one or a range of types)

345

http://lammps.sandia.gov

It is OK if a particular pairwise distance is included in more than one individual histogram, due to the way the
itypeN and jtypeN arguments are specified.

The g(r) value for a bin is calculated from the histogram count by scaling it by the idealized number of how many
counts there would be if atoms of type jrypeN were uniformly distributed. Thus it involves the count of itypeN

atoms, the count of jfypeN atoms, the volume of the entire simulation box, and the volume of the bin's thin shell in
3d (or the area of the bin's thin ring in 2d).

A coordination number coord(r) is also calculated, which is the sum of g(r) values for all bins up to and including
the current bin.

The simplest way to output the results of the compute rdf calculation to a file is to use the fix ave/time command,
for example:

compute myRDF all rdf 50
fix 1 all ave/time 100 1 100 c_myRDF file tmp.rdf mode vector

Output info:

This compute calculates a global array with the number of rows = Nbins, and the number of columns =1 +
2*Npairs, where Npairs is the number of I,J pairings specified. The first column has the bin coordinate (center of
the bin), Each successive set of 2 columns has the g(r) and coord(r) values for a specific set of itypeN versus
JjtypeN interactions, as described above. These values can be used by any command that uses a global values from
a compute as input. See Section_howto 15 for an overview of LAMMPS output options.

The array values calculated by this compute are all "intensive".

The first column of array values will be in distance units. The g(r) columns of array values are normalized
numbers >= 0.0. The coordination number columns of array values are also numbers >= 0.0.

Restrictions:

The RDF is not computed for distances longer than the force cutoff, since processors (in parallel) don't know
about atom coordinates for atoms further away than that distance. If you want an RDF for larger distances, you
can use the rerun command to post-process a dump file.

Related commands:

fix ave/time

Default: none

346

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute reduce command

compute reduce/region command
Syntax:
compute ID group-ID style arg mode inputl input2 ... keyword args

¢ ID, group-ID are documented in compute command
e style = reduce or reduce/region

reduce arg = none
reduce/region arg = region-ID
region-ID = ID of region to use for choosing atoms

® mode = sum or min or max or ave
® one or more inputs can be listed
® input =X, y, zZ, VX, vy, vz, fx, fy, fz, c_ID, c_ID[N], f_ID, f_ID[N], v_name

X,v,2,vx,vy,vz,fx,fy,fz = atom attribute (position, velocity, force component)
c_ID = per—-atom or local vector calculated by a compute with ID

c_ID[I] = Ith column of per-atom or local array calculated by a compute with ID
f_ID = per-atom or local vector calculated by a fix with ID

f_ID[I] = Ith column of per—-atom or local array calculated by a fix with ID
v_name = per-atom vector calculated by an atom-style variable with name

¢ zero or more keyword/args pairs may be appended
e keyword = replace

replace args = vecl vec2
vecl = reduced value from this input vector will be replaced
vec2 = replace it with vecl[N] where N is index of max/min value from vec2
Examples:

compute 1 all reduce sum c_force

compute 1 all reduce/region subbox sum c_force

compute 2 all reduce min c_press2 f_ave v_myKE

compute 3 fluid reduce max c_indexl c_index2 c_dist replace 1 3 replace 2 3

Description:

Define a calculation that "reduces" one or more vector inputs into scalar values, one per listed input. The inputs
can be per-atom or local quantities; they cannot be global quantities. Atom attributes are per-atom quantities,
computes and fixes may generate any of the three kinds of quantities, and atom-style variables generate per-atom
quantities. See the variable command and its special functions which can perform the same operations as the
compute reduce command on global vectors.

The reduction operation is specified by the mode setting. The sum option adds the values in the vector into a
global total. The min or max options find the minimum or maximum value across all vector values. The ave
setting adds the vector values into a global total, then divides by the number of values in the vector.

Each listed input is operated on independently. For per-atom inputs, the group specified with this command

means only atoms within the group contribute to the result. For per-atom inputs, if the compute reduce/region
command is used, the atoms must also currently be within the region. Note that an input that produces per-atom

347

http://lammps.sandia.gov

quantities may define its own group which affects the quantities it returns. For example, if a compute is used as an
input which generates a per-atom vector, it will generate values of 0.0 for atoms that are not in the group specified
for that compute.

Each listed input can be an atom attribute (position, velocity, force component) or can be the result of a compute
or fix or the evaluation of an atom-style variable.

The atom attribute values (x,y,z,vx,vy,vzfx,fy,fz) are self-explanatory. Note that other atom attributes can be used
as inputs to this fix by using the compute property/atom command and then specifying an input value from that
compute.

If a value begins with "c_", a compute ID must follow which has been previously defined in the input script.
Computes can generate per-atom or local quantities. See the individual compute doc page for details. If no
bracketed integer is appended, the vector calculated by the compute is used. If a bracketed integer is appended,
the Ith column of the array calculated by the compute is used. Users can also write code for their own compute
styles and add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script. Fixes can
generate per-atom or local quantities. See the individual fix doc page for details. Note that some fixes only
produce their values on certain timesteps, which must be compatible with when compute reduce references the
values, else an error results. If no bracketed integer is appended, the vector calculated by the fix is used. If a
bracketed integer is appended, the Ith column of the array calculated by the fix is used. Users can also write code
for their own fix style and add them to LAMMPS.

If a value begins with "v_", a variable name must follow which has been previously defined in the input script. It
must be an atom-style variable. Atom-style variables can reference thermodynamic keywords and various
per-atom attributes, or invoke other computes, fixes, or variables when they are evaluated, so this is a very general
means of generating per-atom quantities to reduce.

If the replace keyword is used, two indices vecl and vec?2 are specified, where each index ranges from 1 to the #
of input values. The replace keyword can only be used if the mode is min or max. It works as follows. A min/max
is computed as usual on the vec2 input vector. The index N of that value within vec? is also stored. Then, instead
of performing a min/max on the vec/ input vector, the stored index is used to select the Nth element of the vecl
vector.

Thus, for example, if you wish to use this compute to find the bond with maximum stretch, you can do it as
follows:

compute 1 all property/local batoml batom?2

compute 2 all bond/local dist

compute 3 all reduce max c_1[1] c_1[2] c_2 replace 1 3 replace 2 3
thermo_style custom step temp c_3[1] c_3[2] c_3[3]

The first two input values in the compute reduce command are vectors with the IDs of the 2 atoms in each bond,
using the compute property/local command. The last input value is bond distance, using the compute bond/local
command. Instead of taking the max of the two atom ID vectors, which does not yield useful information in this
context, the replace keywords will extract the atom IDs for the two atoms in the bond of maximum stretch. These
atom IDs and the bond stretch will be printed with thermodynamic output.

If a single input is specified this compute produces a global scalar value. If multiple inputs are specified, this
compute produces a global vector of values, the length of which is equal to the number of inputs specified.

348

As discussed below, for sum mode, the value(s) produced by this compute are all "extensive", meaning their value
scales linearly with the number of atoms involved. If normalized values are desired, this compute can be accessed
by the thermo_style custom command with thermo_modify norm yes set as an option. Or it can be accessed by a
variable that divides by the appropriate atom count.

Output info:

This compute calculates a global scalar if a single input value is specified or a global vector of length N where N
is the number of inputs, and which can be accessed by indices 1 to N. These values can be used by any command
that uses global scalar or vector values from a compute as input. See Section_howto 15 for an overview of
LAMMPS output options.

All the scalar or vector values calculated by this compute are "intensive", except when the sum mode is used on
per-atom or local vectors, in which case the calculated values are "extensive".

The scalar or vector values will be in whatever units the quantities being reduced are in.
Restrictions: none

Related commands:

compute, fix, variable

Default: none

349

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute slice command

Syntax:

compute ID group-ID slice Nstart Nstop Nskip inputl input?2

¢ ID, group-ID are documented in compute command

¢ slice = style name of this compute command

e Nstart = starting index within input vector(s)

¢ Nstop = stopping index within input vector(s)

¢ Nskip = extract every Nskip elements from input vector(s)
e input = c_ID, c_ID[N], f_ID, f_ID[N]

c_ID = global vector calculated by a compute with ID

c_ID[I] = Ith column of global array calculated by a compute with ID

f_ID = global vector calculated by a fix with ID

f_ID[I] = Ith column of global array calculated by a fix with ID
Examples:

compute 1 all slice 1 100 10 c_msdmol[4]
compute 1 all slice 301 400 1 c_msdmol([4]

Description:

Define a calculation that "slices" one or more vector inputs into smaller vectors, one per listed input. The inputs
can be global quantities; they cannot be per-atom or local quantities. Computes and fixes may generate any of the
three kinds of quantities. Variables do not generate global vectors. The group specified with this command is
ignored.

The values extracted from the input vector(s) are determined by the Nstart, Nstop, and Nskip parameters. The
elements of an input vector of length N are indexed from 1 to N. Starting at element Nstart, every Mth element is
extracted, where M = Nskip, until element Nstop is reached. The extracted quantities are stored as a vector, which
is typically shorter than the input vector.

Each listed input is operated on independently to produce one output vector. Each listed input must be a global
vector or column of a global array calculated by another compute or fix.

If an input value begins with "c_", a compute ID must follow which has been previously defined in the input
script and which generates a global vector or array. See the individual compute doc page for details. If no
bracketed integer is appended, the vector calculated by the compute is used. If a bracketed integer is appended,
the Ith column of the array calculated by the compute is used. Users can also write code for their own compute
styles and add them to LAMMPS.

If a value begins with "f_", a fix ID must follow which has been previously defined in the input script and which
generates a global vector or array. See the individual fix doc page for details. Note that some fixes only produce
their values on certain timesteps, which must be compatible with when compute slice references the values, else
an error results. If no bracketed integer is appended, the vector calculated by the fix is used. If a bracketed integer
is appended, the Ith column of the array calculated by the fix is used. Users can also write code for their own fix
style and add them to LAMMPS.

350

http://lammps.sandia.gov

If a single input is specified this compute produces a global vector, even if the length of the vector is 1. If multiple
inputs are specified, then a global array of values is produced, with the number of columns equal to the number of
inputs specified.

Output info:

This compute calculates a global vector if a single input value is specified or a global array with N columns where
N is the number of inputs. The length of the vector or the number of rows in the array is equal to the number of
values extracted from each input vector. These values can be used by any command that uses global vector or
array values from a compute as input. See this section for an overview of LAMMPS output options.

The vector or array values calculated by this compute are simply copies of values generated by computes or fixes
that are input vectors to this compute. If there is a single input vector of intensive and/or extensive values, then
each value in the vector of values calculated by this compute will be "intensive" or "extensive", depending on the
corresponding input value. If there are multiple input vectors, and all the values in them are intensive, then the
array values calculated by this compute are "intensive". If there are multiple input vectors, and any value in them
is extensive, then the array values calculated by this compute are "extensive".

The vector or array values will be in whatever units the input quantities are in.

Restrictions: none

Related commands:

compute, fix, compute reduce

Default: none

351

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute stress/atom command

Syntax:

compute ID group-ID stress/atom keyword ...

¢ ID, group-ID are documented in compute command

e stress/atom = style name of this compute command

¢ zero or more keywords may be appended

® keyword = ke or pair or bond or angle or dihedral or improper or kspace or fix or virial

Examples:

compute 1 mobile stress/atom
compute 1 all stress/atom pair bond

Description:
Define a computation that computes the symmetric per-atom stress tensor for each atom in a group. The tensor for
each atom has 6 components and is stored as a 6-element vector in the following order: xx, yy, zz, Xy, Xz, yz. See

the compute pressure command if you want the stress tensor (pressure) of the entire system.

The stress tensor for atom / is given by the following formula, where a and b take on values x,y,z to generate the
6 components of the symmetric tensor:

Np
Ss = — |muvyvp %Z (ry, F1, + 12, F5,) éZ(rl Fy, + 1o F3,)1
=1 = =1
1 N N,
J (anlh o P2y + T3, F: ZULnFLh o, Fo, +ra, Ba, 4 74, Fa)4
Ni Ny
e Z r1, 8, + 12, Fo, + 13, F3, + 14, Fy,) + Kspace(r;,, F; Z i Py,

The first term is a kinetic energy contribution for atom /. The second term is a pairwise energy contribution where
n loops over the Np neighbors of atom /, r/ and r2 are the positions of the 2 atoms in the pairwise interaction, and
F1 and F2 are the forces on the 2 atoms resulting from the pairwise interaction. The third term is a bond
contribution of similar form for the Nb bonds which atom [is part of. There are similar terms for the Na angle, Nd
dihedral, and Ni improper interactions atom / is part of. There is also a term for the KSpace contribution from
long-range Coulombic interactions, if defined. Finally, there is a term for the Nf fixes that apply internal
constraint forces to atom /. Currently, only the fix shake and fix rigid commands contribute to this term.

As the coefficients in the formula imply, a virial contribution produced by a small set of atoms (e.g. 4 atoms in a

dihedral or 3 atoms in a Tersoff 3-body interaction) is assigned in equal portions to each atom in the set. E.g. 1/4
of the dihedral virial to each of the 4 atoms, or 1/3 of the fix virial due to SHAKE constraints applied to atoms in

352

http://lammps.sandia.gov

a a water molecule via the fix shake command.

If no extra keywords are listed, all of the terms in this formula are included in the per-atom stress tensor. If any
extra keywords are listed, only those terms are summed to compute the tensor. The virial keyword means include
all terms except the kinetic energy ke.

Note that the stress for each atom is due to its interaction with all other atoms in the simulation, not just with other
atoms in the group.

The dihedral_style charmm style calculates pairwise interactions between 1-4 atoms. The virial contribution of
these terms is included in the pair virial, not the dihedral virial.

The KSpace contribution is calculated using the method in (Heyes) for the Ewald method and a related method
for PPPM, as specified by the kspace_style pppm command. For PPPM, the calcluation requires 6 extra FFTs
each timestep that per-atom stress is calculated. Thus it can significantly increase the cost of the PPPM
calculation if it is needed on a large fraction of the simulation timesteps.

Note that as defined in the formula, per-atom stress is the negative of the per-atom pressure tensor. It is also really
a stress*volume formulation, meaning the computed quantity is in units of pressure*volume. It would need to be
divided by a per-atom volume to have units of stress (pressure), but an individual atom's volume is not well
defined or easy to compute in a deformed solid or a liquid. Thus, if the diagonal components of the per-atom
stress tensor are summed for all atoms in the system and the sum is divided by dV, where d = dimension and V is
the volume of the system, the result should be -P, where P is the total pressure of the system.

These lines in an input script for a 3d system should yield that result. I.e. the last 2 columns of thermo output will
be the same:

compute peratom all stress/atom

compute p all reduce sum c_peratom[l] c_peratom[2] c_peratom[3]
variable press equal —-(c_pl[ll+c_pl2]+c_pl3]1)/(3*vol)
thermo_style custom step temp etotal press v_press

Output info:

This compute calculates a per-atom array with 6 columns, which can be accessed by indices 1-6 by any command
that uses per-atom values from a compute as input. See Section_howto 15 for an overview of LAMMPS output
options.

The per-atom array values will be in pressure*volume units as discussed above.

Restrictions: none

Related commands:

compute pe, compute pressure

Default: none

(Heyes) Heyes, Phys Rev B 49, 755 (1994),

353

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp command

compute temp/cuda command

Syntax:
compute ID group—-ID temp

¢ ID, group-ID are documented in compute command
¢ temp = style name of this compute command

Examples:

compute 1 all temp
compute myTemp mobile temp

Description:

Define a computation that calculates the temperature of a group of atoms. A compute of this style can be used by
any command that computes a temperature, e.g. thermo_modify, fix temp/rescale, fix npt, etc.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of
atoms (sum of 1/2 m v*2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k =
Boltzmann constant, and T = temperature.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the computation
of a pressure tensor. The formula for the components of the tensor is the same as the above formula, except that
vA2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are ordered xx, yy, zz, Xy,

XZ, yZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the
dynamic option of the compute_modify command if this is not the case.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the
compute_modify command.

A compute of this style with the ID of "thermo_temp" is created when LAMMPS starts up, as if this command
were in the input script:

compute thermo_temp all temp
See the "thermo_style" command for more details.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the manual.

354

http://lammps.sandia.gov

The accelerated styles take the same arguments and should produce the same results, except for round-off and
precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built with
that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp/partial, compute temp/region, compute pressure

Default: none

355

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/asphere command

Syntax:
compute ID group-ID temp/asphere keyword value ...

¢ ID, group-ID are documented in compute command
¢ temp/asphere = style name of this compute command
¢ zero or more keyword/value pairs may be appended
¢ keyword = bias or dof

bias value = bias-IDuniform or gaussian
bias-ID = ID of a temperature compute that removes a velocity bias
dof value = all or rotate
all = compute temperature of translational and rotational degrees of freedom
rotate = compute temperature of just rotational degrees of freedom
Examples:

compute 1 all temp/asphere
compute myTemp mobile temp/asphere bias tempCOM
compute myTemp mobile temp/asphere dof rotate

Description:

Define a computation that calculates the temperature of a group of aspherical particles, including a contribution
from both their translational and rotational kinetic energy. This differs from the usual compute temp command,
which assumes point particles with only translational kinetic energy.

Only finite-size particles (aspherical or spherical) can be included in the group. For 3d finite-size particles, each
has 6 degrees of freedom (3 translational, 3 rotational). For 2d finite-size particles, each has 3 degrees of freedom
(2 translational, 1 rotational).

IMPORTANT NOTE: This choice for degrees of freedom (dof) assumes that all finite-size aspherical or spherical
particles in your model will freely rotate, sampling all their rotational dof. It is possible to use a combination of
interaction potentials and fixes that induce no torque or otherwise constrain some of all of your particles so that
this is not the case. Then there are less dof and you should use the compute_modify extra command to adjust the
dof accordingly.

For example, an aspherical particle with all three of its shape parameters the same is a sphere. If it does not rotate,
then it should have 3 dof instead of 6 in 3d (or 2 instead of 3 in 2d). A uniaxial aspherical particle has two of its
three shape parameters the same. If it does not rotate around the axis perpendicular to its circular cross section,
then it should have 5 dof instead of 6 in 3d.

The translational kinetic energy is computed the same as is described by the compute temp command. The
rotational kinetic energy is computed as 1/2 I w”2, where I is the inertia tensor for the aspherical particle and w is

its angular velocity, which is computed from its angular momentum.

IMPORTANT NOTE: For 2d models, particles are treated as ellipsoids, not ellipses, meaning their moments of
inertia will be the same as in 3d.

356

http://lammps.sandia.gov

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute. The formula for the
components of the tensor is the same as the above formula, except that vA2 and w”2 are replaced by vx*vy and
wx*wy for the Xy component, and the appropriate elements of the inertia tensor are used. The 6 components of
the vector are ordered xX, yy, 7z, Xy, Xz, yZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the
dynamic option of the compute_modify command if this is not the case.

This compute subtracts out translational degrees-of-freedom due to fixes that constrain molecular motion, such as
fix shake and fix rigid. This means the temperature of groups of atoms that include these constraints will be
computed correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

The keyword/value option pairs are used in the following ways.

For the bias keyword, bias-ID refers to the ID of a temperature compute that removes a "bias" velocity from each
atom. This allows compute temp/sphere to compute its thermal temperature after the translational kinetic energy
components have been altered in a prescribed way, e.g. to remove a velocity profile. Thermostats that use this
compute will work with this bias term. See the doc pages for individual computes that calculate a temperature and
the doc pages for fixes that perform thermostatting for more details.

For the dof keyword, a setting of all calculates a temperature that includes both translational and rotational
degrees of freedom. A setting of rotate calculates a temperature that includes only rotational degrees of freedom.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

This compute is part of the ASPHERE package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

This compute requires that atoms store angular momementum and a quaternion as defined by the atom_style
ellipsoid command.

All particles in the group must be finite-size. They cannot be point particles, but they can be aspherical or
spherical as defined by their shape attribute.

Related commands:

compute temp

357

Default: none

358

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/com command

Syntax:
compute ID group-ID temp/com

¢ ID, group-ID are documented in compute command
¢ temp/com = style name of this compute command

Examples:

compute 1 all temp/com
compute myTemp mobile temp/com

Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out the center-of-mass
velocity of the group. This is useful if the group is expected to have a non-zero net velocity for some reason. A
compute of this style can be used by any command that computes a temperature, e.g. thermo_modify, fix
temp/rescale, fix npt, etc.

After the center-of-mass velocity has been subtracted from each atom, the temperature is calculated by the
formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m v*2), dim =2 or
3 = dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant, and T =
temperature.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the computation
of a pressure tensor. The formula for the components of the tensor is the same as the above formula, except that
v/A2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are ordered xx, yy, zz, Xy,

XZ, yZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the
dynamic option of the compute_modify command if this is not the case.

The removal of the center-of-mass velocity by this fix is essentially computing the temperature after a "bias" has
been removed from the velocity of the atoms. If this compute is used with a fix command that performs
thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining thermal velocity
will be performed, and the bias will be added back in. Thermostatting fixes that work in this way include fix nvt,
fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the

compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

359

http://lammps.sandia.gov

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp

Default: none

360

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/deform command

Syntax:
compute ID group-ID temp/deform

¢ ID, group-ID are documented in compute command
¢ temp/deform = style name of this compute command

Examples:
compute myTemp all temp/deform
Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out a streaming
velocity induced by the simulation box changing size and/or shape, for example in a non-equilibrium MD
(NEMD) simulation. The size/shape change is induced by use of the fix deform command. A compute of this
style is created by the fix nvt/sllod command to compute the thermal temperature of atoms for thermostatting
purposes. A compute of this style can also be used by any command that computes a temperature, e.g.
thermo_modify, fix temp/rescale, fix npt, etc.

The deformation fix changes the box size and/or shape over time, so each atom in the simulation box can be
thought of as having a "streaming" velocity. For example, if the box is being sheared in x, relative to y, then
atoms at the bottom of the box (low y) have a small x velocity, while atoms at the top of the box (hi y) have a
large x velocity. This position-dependent streaming velocity is subtracted from each atom's actual velocity to
yield a thermal velocity which is used to compute the temperature.

IMPORTANT NOTE: Fix deform has an option for remapping either atom coordinates or velocities to the
changing simulation box. When using this compute in conjunction with a deforming box, fix deform should NOT
remap atom positions, but rather should let atoms respond to the changing box by adjusting their own velocities
(or let fix deform remap the atom velocities, see it's remap option). If fix deform does remap atom positions, then
they appear to move with the box but their velocity is not changed, and thus they do NOT have the streaming
velocity assumed by this compute. LAMMPS will warn you if fix deform is defined and its remap setting is not
consistent with this compute.

After the streaming velocity has been subtracted from each atom, the temperature is calculated by the formula KE
=dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m v*2), dim=2or 3 =
dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant, and T =
temperature. Note that v in the kinetic energy formula is the atom's thermal velocity.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the computation
of a pressure tensor. The formula for the components of the tensor is the same as the above formula, except that
vA2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are ordered xx, yy, zz, Xy,

XZ, yZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the
dynamic option of the compute_modify command if this is not the case.

361

http://lammps.sandia.gov

The removal of the box deformation velocity component by this fix is essentially computing the temperature after
a "bias" has been removed from the velocity of the atoms. If this compute is used with a fix command that
performs thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining thermal
velocity will be performed, and the bias will be added back in. Thermostatting fixes that work in this way include
fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp/ramp, compute temp/profile, fix deform, fix nvt/sllod

Default: none

362

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/deform/eff command
Syntax:
compute ID group-ID temp/deform/eff

¢ ID, group-ID are documented in compute command
¢ temp/deform/eff = style name of this compute command

Examples:

compute myTemp all temp/deform/eff

Description:

Define a computation that calculates the temperature of a group of nuclei and electrons in the electron force field
model, after subtracting out a streaming velocity induced by the simulation box changing size and/or shape, for
example in a non-equilibrium MD (NEMD) simulation. The size/shape change is induced by use of the fix
deform/eff command. A compute of this style is created by the fix nvt/sllod/eff command to compute the thermal
temperature of atoms for thermostatting purposes. A compute of this style can also be used by any command that
computes a temperature, e.g. thermo_modify, fix npt/eff, etc.

The calculation performed by this compute is exactly like that described by the compute temp/deform command,
except that the formula for the temperature includes the radial electron velocity contributions, as discussed by the
compute temp/eff command. Note that only the translational degrees of freedom for each nuclei or electron are
affected by the streaming velocity adjustment. The radial velocity component of the electrons is not affected.
Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:
compute temp/ramp, fix deform/eff, fix nvt/sllod/eff

Default: none

363

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/eff command

Syntax:
compute ID group-ID temp/eff

¢ ID, group-ID are documented in compute command
¢ temp/eff = style name of this compute command

Examples:

compute 1 all temp/eff
compute myTemp mobile temp/eff

Description:

Define a computation that calculates the temperature of a group of nuclei and electrons in the electron force field
model. A compute of this style can be used by commands that compute a temperature, e.g. thermo_modify, fix
npt/eff, etc.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of
atoms (sum of 1/2 m v”2 for nuclei and sum of 1/2 (m v*2 + 3/4 m s"2) for electrons, where s includes the radial
electron velocity contributions), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms (only total
number of nuclei in the eFF (see the pair_eff command) in the group, k = Boltzmann constant, and T =
temperature. This expression is summed over all nuclear and electronic degrees of freedom, essentially by setting
the kinetic contribution to the heat capacity to 3/2k (where only nuclei contribute). This subtlety is valid for
temperatures well below the Fermi temperature, which for densities two to five times the density of liquid H2
ranges from 86,000 to 170,000 K.

IMPORTANT NOTE: For eFF models, in order to override the default temperature reported by LAMMPS in the
thermodynamic quantities reported via the thermo command, the user should apply a thermo_modify command,
as shown in the following example:

compute effTemp all temp/eff
thermo_style custom step etotal pe ke temp press
thermo_modify temp effTemp

A 6-component kinetic energy tensor is also calculated by this compute for use in the computation of a pressure
tensor. The formula for the components of the tensor is the same as the above formula, except that v/2 is replaced
by vx * vy for the xy component, etc. For the eFF, again, the radial electronic velocities are also considered.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the
dynamic option of the compute_modify command if this is not the case.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

364

http://lammps.sandia.gov

Output info:

The scalar value calculated by this compute is "intensive", meaning it is independent of the number of atoms in
the simulation. The vector values are "extensive", meaning they scale with the number of atoms in the simulation.

Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:
compute temp/partial, compute temp/region, compute pressure

Default: none

365

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/partial command

compute temp/partial/cuda command

Syntax:
compute ID group-ID temp/partial xflag yflag zflag

¢ [D, group-ID are documented in compute command
¢ temp/partial = style name of this compute command
o xflag,yflag,zflag = 0/1 for whether to exclude/include this dimension

Examples:
compute newT flow temp/partial 1 1 0
Description:

Define a computation that calculates the temperature of a group of atoms, after excluding one or more velocity
components. A compute of this style can be used by any command that computes a temperature, e.g.
thermo_modify, fix temp/rescale, fix npt, etc.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of
atoms (sum of 1/2 m v*2), dim = dimensionality of the simulation, N = number of atoms in the group, k =
Boltzmann constant, and T = temperature. The calculation of KE excludes the x, y, or z dimensions if xflag, yflag,
or zflag = 0. The dim parameter is adjusted to give the correct number of degrees of freedom.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the calculation
of a pressure tensor. The formula for the components of the tensor is the same as the above formula, except that
v/A2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are ordered xx, yy, zz, Xy,
XZ, yZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the
dynamic option of the compute_modify command if this is not the case.

The removal of velocity components by this fix is essentially computing the temperature after a "bias" has been
removed from the velocity of the atoms. If this compute is used with a fix command that performs thermostatting
then this bias will be subtracted from each atom, thermostatting of the remaining thermal velocity will be
performed, and the bias will be added back in. Thermostatting fixes that work in this way include fix nvt, fix
temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

366

http://lammps.sandia.gov

Styles with a cuda suffix are functionally the same as the corresponding style without the suffix. They have been
optimized to run faster, depending on your available hardware, as discussed in Section_accelerate of the manual.
The accelerated styles take the same arguments and should produce the same results, except for round-off and
precision issues.

These accelerated styles are part of the USER-CUDA package. They are only enabled if LAMMPS was built with
that package. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp, compute temp/region, compute pressure

Default: none

367

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/profile command

Syntax:
compute ID group-ID temp/profile xflag yflag zflag binstyle args

¢ [D, group-ID are documented in compute command

e temp/profile = style name of this compute command

o xflag,yflag,zflag = 0/1 for whether to exclude/include this dimension
® binstyle = x or y or z or xy Or yZ Or Xz Or xyz

x arg = Nx
y arg = Ny
z arg = Nz

Xy args = Nx Ny
vz args = Ny Nz

xz args = Nx Nz
Xxyz args = Nx Ny Nz
Nx,Ny,Nz = number of velocity bins in x,y,z dimensions
Examples:

compute myTemp flow temp/profile 1 1 1 x 10
compute myTemp flow temp/profile 0 1 1 xyz 20 20 20

Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out a
spatially-averaged velocity field, before computing the kinetic energy. This can be useful for thermostatting a
collection of atoms undergoing a complex flow, e.g. via a profile-unbiased thermostat (PUT) as described in
(Evans). A compute of this style can be used by any command that computes a temperature, e.g. thermo_modify,
fix temp/rescale, fix npt, etc.

The xflag, yflag, zflag settings determine which components of average velocity are subtracted out.

The binstyle setting and its Nx, Ny, Nz arguments determine how bins are setup to perform spatial averaging.
"Bins" can be 1d slabs, 2d pencils, or 3d bricks depending on which binstyle is used. The simulation box is
partitioned conceptually into Nx by Ny by Nz bins. Depending on the binstyle, you may only specify one or two of
these values; the others are effectively set to 1 (no binning in that dimension). For non-orthogonal (triclinic)
simulation boxes, the bins are "tilted" slabs or pencils or bricks that are parallel to the tilted faces of the box. See
the region prism command for a discussion of the geometry of tilted boxes in LAMMPS.

When a temperature is computed, the velocity for the set of atoms that are both in the compute group and in the
same spatial bin is summed to compute an average velocity for the bin. This bias velocity is then subtracted from
the velocities of individual atoms in the bin to yield a thermal velocity for each atom. Note that if there is only one
atom in the bin, it's thermal velocity will thus be 0.0.

After the spatially-averaged velocity field has been subtracted from each atom, the temperature is calculated by
the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m v*2), dim =
2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant, and T =
temperature.

368

http://lammps.sandia.gov

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the computation
of a pressure tensor. The formula for the components of the tensor is the same as the above formula, except that
vA2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are ordered xx, yy, zz, Xy,

XZ, YZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the
dynamic option of the compute_modify command if this is not the case.

The removal of the spatially-averaged velocity field by this fix is essentially computing the temperature after a
"bias" has been removed from the velocity of the atoms. If this compute is used with a fix command that performs
thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining thermal velocity
will be performed, and the bias will be added back in. Thermostatting fixes that work in this way include fix nvt,
fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting. Using this compute in conjunction with a thermostatting fix, as explained there, will effectively
implement a profile-unbiased thermostat (PUT), as described in (Evans).

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

You should not use too large a velocity-binning grid, especially in 3d. In the current implementation, the binned
velocity averages are summed across all processors, so this will be inefficient if the grid is too large, and the
operation is performed every timestep, as it will be for most thermostats.

Related commands:

compute temp, compute temp/ramp, compute temp/deform, compute pressure

Default:

The option default is units = lattice.

(Evans) Evans and Morriss, Phys Rev Lett, 56, 2172-2175 (1986).

369

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/ramp command

Syntax:
compute ID group-ID temp/ramp vdim vlo vhi dim clo chi keyword value ...

¢ ID, group-ID are documented in compute command

¢ temp/ramp = style name of this compute command

e vdim = vx or vy or vz

¢ vlo,vhi = subtract velocities between vlo and vhi (velocity units)
edim=xoryorz

¢ clo,chi = lower and upper bound of domain to subtract from (distance units)
¢ zero or more keyword/value pairs may be appended

¢ keyword = units

units value = lattice or box

Examples:

compute 2nd middle temp/ramp vx 0 8 y 2 12 units lattice
Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out an ramped velocity
profile before computing the kinetic energy. A compute of this style can be used by any command that computes
a temperature, e.g. thermo_modify, fix temp/rescale, fix npt, etc.

The meaning of the arguments for this command which define the velocity ramp are the same as for the velocity
ramp command which was presumably used to impose the velocity.

After the ramp velocity has been subtracted from the specified dimension for each atom, the temperature is
calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m
vA2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant,
and T = temperature.

The units keyword determines the meaning of the distance units used for coordinates (c1,c2) and velocities
(vlo,vhi). A box value selects standard distance units as defined by the units command, e.g. Angstroms for units =
real or metal. A lattice value means the distance units are in lattice spacings; e.g. velocity = lattice spacings / tau.
The lattice command must have been previously used to define the lattice spacing.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the computation
of a pressure tensor. The formula for the components of the tensor is the same as the above formula, except that
vA2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are ordered xx, yy, zz, Xy,

XZ, yZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the
dynamic option of the compute_modify command if this is not the case.

The removal of the ramped velocity component by this fix is essentially computing the temperature after a "bias"
has been removed from the velocity of the atoms. If this compute is used with a fix command that performs

370

http://lammps.sandia.gov

thermostatting then this bias will be subtracted from each atom, thermostatting of the remaining thermal velocity
will be performed, and the bias will be added back in. Thermostatting fixes that work in this way include fix nvt,
fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp, compute temp/profie, compute temp/deform, compute pressure

Default:

The option default is units = lattice.

371

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/region command

Syntax:
compute ID group-ID temp/region region-ID

¢ ID, group-ID are documented in compute command
¢ temp/region = style name of this compute command
e region-ID = ID of region to use for choosing atoms

Examples:
compute mine flow temp/region boundary
Description:

Define a computation that calculates the temperature of a group of atoms in a geometric region. This can be useful
for thermostatting one portion of the simulation box. E.g. a McDLT simulation where one side is cooled, and the
other side is heated. A compute of this style can be used by any command that computes a temperature, e.g.
thermo_modify, fix temp/rescale, etc.

Note that a region-style temperature can be used to thermostat with fix temp/rescale or fix langevin, but should
probably not be used with Nose/Hoover style fixes (fix nvt, fix npt, or fix nph), if the degrees-of-freedom
included in the computed T varies with time.

The temperature is calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of
atoms (sum of 1/2 m v*2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in both the
group and region, k = Boltzmann constant, and T = temperature.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the computation
of a pressure tensor. The formula for the components of the tensor is the same as the above formula, except that
v/A2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are ordered xx, yy, zz, Xy,

XZ, yZ.

The number of atoms contributing to the temperature is compute each time the temperature is evaluated since it is
assumed atoms can enter/leave the region. Thus there is no need to use the dynamic option of the
compute_modify command for this compute style.

The removal of atoms outside the region by this fix is essentially computing the temperature after a "bias" has
been removed, which in this case is the velocity of any atoms outside the region. If this compute is used with a fix
command that performs thermostatting then this bias will be subtracted from each atom, thermostatting of the
remaining thermal velocity will be performed, and the bias will be added back in. Thermostatting fixes that work
in this way include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin. This means any of the
thermostatting fixes can operate on a geometric region of atoms, as defined by this compute.

Unlike other compute styles that calculate temperature, this compute does not subtract out degrees-of-freedom
due to fixes that constrain molecular motion, such as fix shake and fix rigid. This is because those degrees of
freedom (e.g. a constrained bond) can straddle the region boundary, and hence the concept is somewhat
ill-defined. If needed the number of subtracted degrees-of-freedom can be set explicitly using the extra option of
the compute_modify command.

372

http://lammps.sandia.gov

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions: none

Related commands:

compute temp, compute pressure

Default: none

373

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/region/eff command
Syntax:
compute ID group-ID temp/region/eff region-ID

¢ ID, group-ID are documented in compute command

¢ temp/region/eff = style name of this compute command

e region-ID = ID of region to use for choosing atoms
Examples:
compute mine flow temp/region/eff boundary
Description:
Define a computation that calculates the temperature of a group of nuclei and electrons in the electron force field
model, within a geometric region using the electron force field. A compute of this style can be used by commands
that compute a temperature, e.g. thermo_modify.
The operation of this compute is exactly like that described by the compute temp/region command, except that the
formula for the temperature itself includes the radial electron velocity contributions, as discussed by the compute
temp/eff command.
Output info:
This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.
The scalar value calculated by this compute is "intensive". The vector values are "extensive".
The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

This compute is part of the USER-EFF package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:
compute temp/region, compute temp/eff, compute pressure

Default: none

374

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/rotate command

Syntax:
compute ID group-ID temp/rotate

¢ ID, group-ID are documented in compute command
¢ temp/rotate = style name of this compute command

Examples:
compute Tbead bead temp/rotate
Description:

Define a computation that calculates the temperature of a group of atoms, after subtracting out the center-of-mass
velocity and angular velocity of the group. This is useful if the group is expected to have a non-zero net velocity
and/or global rotation motion for some reason. A compute of this style can be used by any command that
computes a temperature, e.g. thermo_modify, fix temp/rescale, fix npt, etc.

After the center-of-mass velocity and angular velocity has been subtracted from each atom, the temperature is
calculated by the formula KE = dim/2 N k T, where KE = total kinetic energy of the group of atoms (sum of 1/2 m
vA2), dim = 2 or 3 = dimensionality of the simulation, N = number of atoms in the group, k = Boltzmann constant,
and T = temperature.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute for use in the computation
of a pressure tensor. The formula for the components of the tensor is the same as the above formula, except that
v/A2 is replaced by vx*vy for the xy component, etc. The 6 components of the vector are ordered xx, yy, zz, Xy,

XZ, yZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the
dynamic option of the compute_modify command if this is not the case.

The removal of the center-of-mass velocity and angular velocity by this fix is essentially computing the
temperature after a "bias" has been removed from the velocity of the atoms. If this compute is used with a fix
command that performs thermostatting then this bias will be subtracted from each atom, thermostatting of the
remaining thermal velocity will be performed, and the bias will be added back in. Thermostatting fixes that work
in this way include fix nvt, fix temp/rescale, fix temp/berendsen, and fix langevin.

This compute subtracts out degrees-of-freedom due to fixes that constrain molecular motion, such as fix shake
and fix rigid. This means the temperature of groups of atoms that include these constraints will be computed
correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the

compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

Output info:

375

http://lammps.sandia.gov

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

This compute is part of the USER-MISC package. It is only enabled if LAMMPS was built with that package. See
the Making LAMMPS section for more info.

Related commands:
compute temp

Default: none

376

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute temp/sphere command

Syntax:
compute ID group-ID temp/sphere keyword value ...

¢ ID, group-ID are documented in compute command
e temp/sphere = style name of this compute command
¢ zero or more keyword/value pairs may be appended
¢ keyword = bias or dof

bias value = bias-IDuniform or gaussian
bias-ID = ID of a temperature compute that removes a velocity bias
dof value = all or rotate
all = compute temperature of translational and rotational degrees of freedom
rotate = compute temperature of just rotational degrees of freedom
Examples:

compute 1 all temp/sphere
compute myTemp mobile temp/sphere bias tempCOM
compute myTemp mobile temp/sphere dof rotate

Description:

Define a computation that calculates the temperature of a group of spherical particles, including a contribution
from both their translational and rotational kinetic energy. This differs from the usual compute temp command,
which assumes point particles with only translational kinetic energy.

Both point and finite-size particles can be included in the group. Point particles do not rotate, so they have only 3
translational degrees of freedom. For 3d spherical particles, each has 6 degrees of freedom (3 translational, 3
rotational). For 2d spherical particles, each has 3 degrees of freedom (2 translational, 1 rotational).

IMPORTANT NOTE: This choice for degrees of freedom (dof) assumes that all finite-size spherical particles in
your model will freely rotate, sampling all their rotational dof. It is possible to use a combination of interaction
potentials and fixes that induce no torque or otherwise constrain some of all of your particles so that this is not the
case. Then there are less dof and you should use the compute_modify extra command to adjust the dof
accordingly.

The translational kinetic energy is computed the same as is described by the compute temp command. The
rotational kinetic energy is computed as 1/2 I w~2, where I is the moment of inertia for a sphere and w is the
particle's angular velocity.

IMPORTANT NOTE: For 2d models, particles are treated as spheres, not disks, meaning their moment of inertia
will be the same as in 3d.

A kinetic energy tensor, stored as a 6-element vector, is also calculated by this compute. The formula for the
components of the tensor is the same as the above formulas, except that v*2 and w2 are replaced by vx*vy and
wx*wy for the Xy component. The 6 components of the vector are ordered xX, yy, zz, Xy, Xz, yZ.

The number of atoms contributing to the temperature is assumed to be constant for the duration of the run; use the
dynamic option of the compute_modify command if this is not the case.

377

http://lammps.sandia.gov

This compute subtracts out translational degrees-of-freedom due to fixes that constrain molecular motion, such as
fix shake and fix rigid. This means the temperature of groups of atoms that include these constraints will be
computed correctly. If needed, the subtracted degrees-of-freedom can be altered using the extra option of the
compute_modify command.

See this howto section of the manual for a discussion of different ways to compute temperature and perform
thermostatting.

The keyword/value option pairs are used in the following ways.

For the bias keyword, bias-ID refers to the ID of a temperature compute that removes a "bias" velocity from each
atom. This allows compute temp/sphere to compute its thermal temperature after the translational kinetic energy
components have been altered in a prescribed way, e.g. to remove a velocity profile. Thermostats that use this
compute will work with this bias term. See the doc pages for individual computes that calculate a temperature and
the doc pages for fixes that perform thermostatting for more details.

For the dof keyword, a setting of all calculates a temperature that includes both translational and rotational
degrees of freedom. A setting of rotate calculates a temperature that includes only rotational degrees of freedom.

Output info:

This compute calculates a global scalar (the temperature) and a global vector of length 6 (KE tensor), which can
be accessed by indices 1-6. These values can be used by any command that uses global scalar or vector values
from a compute as input. See this section for an overview of LAMMPS output options.

The scalar value calculated by this compute is "intensive". The vector values are "extensive".

The scalar value will be in temperature units. The vector values will be in energy units.

Restrictions:

This fix requires that atoms store torque and angular velocity (omega) and a radius as defined by the atom_style
sphere command.

All particles in the group must be finite-size spheres, or point particles with radius = 0.0.
Related commands:

compute temp, compute temp/asphere

Default:

The option defaults are no bias and dof = all.

378

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

compute ti command

Syntax:
compute ID group ti keyword args

¢ ID, group-ID are documented in compute command

¢ ti = style name of this compute command

¢ one or more attribute/arg pairs may be appended

¢ keyword = pair style (lj/cut, gauss, born, etc) or tail or kspace

pair style args = v_namel v_name2
v_namel = variable with namel that is energy scale factor and function of lambda
v_name2 = variable with name2 that is derivative of v_namel with respect to lambda
tail args = v_namel v_name2
v_namel = variable with namel that is energy tail correction scale factor and function of
v_name2 = variable with name2 that is derivative of v_namel with respect to lambda
kspace args = v_namel v_name2
v_namel = variable with namel that is K-Space scale factor and function of lambda
v_name2 = variable with name2 that is derivative of v_namel with respect to lambda

Examples:
compute 1 all ti 1j/cut v_13j v_dlj coul/long v_c v_dc kspace v_ks v_dks
Description:

Define a computation that calculates the derivative of the interaction potential with respect to lambda, the
coupling parameter used in a thermodynamic integration. This derivative can be used to infer a free energy
difference resulting from an alchemical simulation, as described in Eike.

Typically this compute will be used in conjunction with the fix adapt command which can perform alchemical
transformations by adusting the strength of an interaction potential as a simulation runs, as defined by one or more
pair_style or kspace_style commands. This scaling is done via a prefactor on the energy, forces, virial calculated
by the pair or K-Space style. The prefactor is often a function of a lambda parameter which may be adjusted from
0to 1 (or vice versa) over the course of a run. The time-dependent adjustment is what the fix adapt command
does.

Assume that the unscaled energy of a pair_style or kspace_style is given by U. Then the scaled energy is

Us = f(lambda) U

where f() is some function of lambda. What this compute calculates is

dUs / d(lambda) = U df (lambda)/dlambda = Us / f(lambda) df (lambda)/dlambda

which is the derivative of the system's scaled potential energy Us with respect to lambda.

To do this calculation, you provide two functions, as equal-style variables. The first is specified as v_namel,
where namel is the name of the variable, and is f(lambda) in the notation above. The second is specified as

v_name2, where name?2 is the name of the variable, and is df(lambda) / dlambda in the notation above. lL.e. it is the
analytic derivative of f() with respect to lambda. Note that the name variable is also typically given as an

379

http://lammps.sandia.gov

argument to the fix adapt command.

An alchemical simulation may use several pair potentials together, invoked via the pair_style hybrid or
hybrid/overlay command. The total dUs/dlambda for the overall system is calculated as the sum of each
contributing term as listed by the keywords in the compute ti command. Individual pair potentials can be listed,
which will be sub-styles in the hybrid case. You can also include a K-space term via the kspace keyword. You can
also include a pairwise long-range tail correction to the energy via the tail keyword.

For each term you can specify a different (or the same) scale factor by the two variables that you list. Again, these
will typically correspond toe the scale factors applied to these various potentials and the K-Space contribution via
the fix_adapt command.

More details about the exact functional forms for the computation of du/dl can be found in the paper by Eike.
Output info:

This compute calculates a global scalar, namely dUs/dlambda. This value can be used by any command that uses
a global scalar value from a compute as input. See Section_howto 15 for an overview of LAMMPS output
options.

The scalar value calculated by this compute is "extensive".

The scalar value will be in energy units.

Restrictions: none

Related commands:

fix adapt

Default: none

(Eike) Eike and Maginn, Journal of Chemical Physics, 124, 164503 (2006).

380

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

create_atoms command
Syntax:
create_atoms type style args keyword values

e type = atom type (1-Ntypes) of atoms to create
e style = box or region or single or random

box args = none

region args = region-ID
region-ID = atoms will only be created if contained in the region

single args = x y z
X,y,z = coordinates of a single atom (distance units)

random args = N seed region-ID
N = number of atoms to create
seed = random # seed (positive integer)
region-ID = create atoms within this region, use NULL for entire simulation box

¢ zero or more keyword/value pairs may be appended
¢ keyword = basis or remap or units

basis values = M itype

M = which basis atom
itype = atom type (1-N) to assign to this basis atom
remap value = yes or no
units value = lattice or box
lattice = the geometry is defined in lattice units
box = the geometry is defined in simulation box units

Examples:

create_atoms 1 box
create_atoms 3 region regsphere basis 2 3
create_atoms 3 single 0 0 5

Description:

This command creates atoms on a lattice, or a single atom, or a random collection of atoms, as an alternative to
reading in their coordinates explicitly via a read_data or read_restart command. A simulation box must already
exist, which is typically created via the create_box command. Before using this command, a lattice must also be
defined using the lattice command. The only exceptions are for the single style with units = box or the random
style.

For the box style, the create_atoms command fills the entire simulation box with atoms on the lattice. If your
simulation box is periodic, you should insure its size is a multiple of the lattice spacings, to avoid unwanted atom
overlaps at the box boundaries. If your box is periodic and a multiple of the lattice spacing in a particular
dimension, LAMMPS is careful to put exactly one atom at the boundary (on either side of the box), not zero or
two.

For the region style, the geometric volume is filled that is inside the simulation box and is also consistent with the
region volume. See the region command for details. Note that a region can be specified so that its "volume" is
either inside or outside a geometric boundary. Also note that if your region is the same size as a periodic
simulation box (in some dimension), LAMMPS does not implement the same logic as with the box style, to insure
exactly one atom at the boundary. if this is what you desire, you should either use the box style, or tweak the

381

http://lammps.sandia.gov

region size to get precisely the atoms you want.

For the single style, a single atom is added to the system at the specified coordinates. This can be useful for
debugging purposes or to create a tiny system with a handful of atoms at specified positions.

For the random style, N atoms are added to the system at randomly generated coordinates, which can be useful for
generating an amorphous system. The atoms are created one by one using the speficied random number seed,
resulting in the same set of atom coordinates, independent of how many processors are being used in the
simulation. If the region-ID argument is specified as NULL, then the created atoms will be anywhere in the
simulation box. If a region-ID is specified, a geometric volume is filled that is inside the simulation box and is
also consistent with the region volume. See the region command for details. Note that a region can be specified so
that its "volume" is either inside or outside a geometric boundary.

IMPORTANT NOTE: The atoms generated by the random style will typically be highly overlapped which will
cause many interatomic potentials to compute large energies and forces. Thus you should either perform an
energy minimization or run dynamics with fix nve/limit to equilibrate such a system, before running normal
dynamics.

The basis keyword specifies an atom type that will be assigned to specific basis atoms as they are created. See the
lattice command for specifics on how basis atoms are defined for the unit cell of the lattice. By default, all created
atoms are assigned the argument fype as their atom type.

The remap keyword only applies to the single style. If it is set to yes, then if the specified position is outside the
simulation box, it will mapped back into the box, assuming the relevant dimensions are periodic. If it is set to no,
no remapping is done and no atom is created if its position is outside the box.

The units keyword determines the meaning of the distance units used to specify the coordinates of the one atom
created by the single style. A box value selects standard distance units as defined by the units command, e.g.
Angstroms for units = real or metal. A lattice value means the distance units are in lattice spacings.

Note that this command adds atoms to those that already exist. By using the create_atoms command multiple
times, multiple sets of atoms can be added to the simulation. For example, interleaving create_atoms with lattice
commands specifying different orientations, grain boundaries can be created. By using the create_atoms
command in conjunction with the delete_atoms command, reasonably complex geometries can be created. The
create_atoms command can also be used to add atoms to a system previously read in from a data or restart file. In
all these cases, care should be taken to insure that new atoms do not overlap existing atoms inappropriately. The
delete_atoms command can be used to handle overlaps.

Atom IDs are assigned to created atoms in the following way. The collection of created atoms are assigned
consecutive IDs that start immediately following the largest atom ID existing before the create_atoms command
was invoked. When a simulation is performed on different numbers of processors, there is no guarantee a
particular created atom will be assigned the same ID.

Aside from their ID, atom type, and xyz position, other properties of created atoms are set to default values,
depending on which quantities are defined by the chosen atom style. See the atom style command for more
details. See the set and velocity commands for info on how to change these values.

¢ charge =0.0

¢ dipole moment magnitude = 0.0
¢ diameter = 1.0

® shape =0.00.0 0.0

¢ density = 1.0

382

¢ volume = 1.0

¢ velocity = 0.0 0.0 0.0

¢ angular velocity = 0.0 0.0 0.0

¢ angular momentum = 0.0 0.0 0.0

¢ quaternion = (1,0,0,0)

¢ bonds, angles, dihedrals, impropers = none

Note that the sphere atom style sets the default particle diameter to 1.0 as well as the density. This means the mass
for the particle is not 1.0, but is PI/6 * diameter"3 = 0.5236.

Note that the ellipsoid atom style sets the default particle shape to (0.0 0.0 0.0) and the density to 1.0 which means
it is a point particle, not an ellipsoid, and has a mass of 1.0.

Note that the peri style sets the default volume and density to 1.0 and thus also set the mass for the particle to 1.0.
The set command can be used to override many of these default settings.

Restrictions:

An atom_style must be previously defined to use this command.

Related commands:

lattice, region, create_box, read_data, read_restart

Default:

The default for the basis keyword is that all created atoms are assigned the argument fype as their atom type. The
default for remap = no and for units = lattice.

383

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

create_box command

Syntax:
create_box N region-ID

¢ N = # of atom types to use in this simulation
¢ region-ID = ID of region to use as simulation domain

Examples:
create_box 2 mybox
Description:

This command creates a simulation box based on the specified region. Thus a region command must first be used
to define a geometric domain.

The argument N is the number of atom types that will be used in the simulation.

If the region is not of style prism, then LAMMPS encloses the region (block, sphere, etc) with an axis-aligned
orthogonal bounding box which becomes the simulation domain.

If the region is of style prism, LAMMPS creates a non-orthogonal simulation domain shaped as a parallelepiped
with triclinic symmetry. As defined by the region prism command, the parallelepiped has its "origin" at
(xlo,ylo,zlo) and is defined by 3 edge vectors starting from the origin given by A = (xhi-x10,0,0); B =
(xy,yhi-ylo,0); C = (xz,yz,zhi-zlo). Xy,xz,yz can be 0.0 or positive or negative values and are called "tilt factors"
because they are the amount of displacement applied to faces of an originally orthogonal box to transform it into
the parallelipiped.

A prism region used with the create_box command must have tilt factors (xy,xz,yz) that do not skew the box more
than half the distance of the parallel box length. For example, if xlo = 2 and xhi = 12, then the x box length is 10
and the xy tilt factor must be between -5 and 5. Similarly, both xz and yz must be between -(xhi-xlo)/2 and
+(yhi-ylo)/2. Note that this is not a limitation, since if the maximum tilt factor is 5 (as in this example), then
configurations with tilt = ..., -15, -5, 5, 15, 25, ... are all geometrically equivalent.

See Section_howto 12 of the doc pages for a geometric description of triclinic boxes, as defined by LAMMPS,
and how to transform these parameters to and from other commonly used triclinic representations.

When a prism region is used, the simulation domain must be periodic in any dimensions with a non-zero tilt
factor, as defined by the boundary command. L.e. if the xy tilt factor is non-zero, then both the x and y dimensions
must be periodic. Similarly, x and z must be periodic if xz is non-zero and y and z must be periodic if yz is
non-zero. Also note that if your simulation will tilt the box, e.g. via the fix deform command, the simulation box
must be defined as triclinic, even if the tilt factors are initially 0.0.

IMPORTANT NOTE: If the system is non-periodic (in a dimension), then you should not make the lo/hi box
dimensions (as defined in your region command) radically smaller/larger than the extent of the atoms you
eventually plan to create, e.g. via the create_atoms command. For example, if your atoms extend from O to 50,
you should not specify the box bounds as -10000 and 10000. This is because LAMMPS uses the specified box
size to layout the 3d grid of processors. A huge (mostly empty) box will be sub-optimal for performance when

384

http://lammps.sandia.gov

using "fixed" boundary conditions (see the boundary command). When using "shrink-wrap" boundary conditions
(see the boundary command), a huge (mostly empty) box may cause a parallel simulation to lose atoms the first
time that LAMMPS shrink-wraps the box around the atoms.

Restrictions:

An atom_style and region must have been previously defined to use this command.

Related commands:

create_atoms, region

Default: none

385

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

delete_atoms command
Syntax:
delete_atoms style args keyword value

® style = group or region or overlap or porosity

group args = group-—ID

region args = region-ID
overlap args = cutoff groupl-ID group2-ID
cutoff = delete one atom from pairs of atoms within the cutoff (distance units)
groupl-ID = one atom in pair must be in this group
group2-ID = other atom in pair must be in this group
porosity args = region-ID fraction seed
region-ID = region within which to perform deletions
fraction = delete this fraction of atoms
seed = random number seed (positive integer)

¢ zero or more keyword/value pairs may be appended
¢ keyword = compress

compress value = no or yes

Examples:

delete_atoms group edge

delete_atoms region sphere compress no
delete_atoms overlap 0.3 all all
delete_atoms overlap 0.5 solvent colloid
delete_atoms porosity cube 0.1 482793

Description:

Delete the specified atoms. This command can be used to carve out voids from a block of material or to delete
created atoms that are too close to each other (e.g. at a grain boundary).

For style group, all atoms belonging to the group are deleted.
For style region, all atoms in the region volume are deleted.

For style overlap pairs of atoms whose distance of separation is within the specified cutoff distance are searched
for, and one of the 2 atoms is deleted. Only pairs where one of the two atoms is in the first group specified and the
other atom is in the second group are considered. The atom that is in the first group is the one that is deleted.

Note that it is OK for the two group IDs to be the same (e.g. group all), or for some atoms to be members of both
groups. In these cases, either atom in the pair may be deleted. Also note that if there are atoms which are members
of both groups, the only guarantee is that at the end of the deletion operation, enough deletions will have occurred
that no atom pairs within the cutoff will remain (subject to the group restriction). There is no guarantee that the
minimum number of atoms will be deleted, or that the same atoms will be deleted when running on different
numbers of processors.

For style porosity a specified fraction of atoms are deleted within the specified region. For example, if fraction is
0.1, then 10% of the atoms will be deleted. The atoms to delete are chosen randomly. There is no guarantee that

386

http://lammps.sandia.gov

the exact fraction of atoms will be deleted, or that the same atoms will be deleted when running on different
numbers of processors.

If the compress keyword is set to yes, then after atoms are deleted, then atom IDs are re-assigned so that they run
from 1 to the number of atoms in the system. This is not done for molecular systems (see the atom_style
command), regardless of the compress setting, since it would foul up the bond connectivity that has already been
assigned.

Restrictions:

The overlap styles requires inter-processor communication to acquire ghost atoms and build a neighbor list. This
means that your system must be ready to perform a simulation before using this command (force fields setup,
atom masses set, etc). Since a neighbor list is used to find overlapping atom pairs, it also means that you must
define a pair style with force cutoffs greater than or equal to the desired overlap cutoff between pairs of relevant
atom types, even though the pair potential will not be evaluated.

If the special_bonds command is used with a setting of 0, then a pair of bonded atoms (1-2, 1-3, or 1-4) will not
appear in the neighbor list, and thus will not be considered for deletion by the overlap styles. You probably don't
want to be deleting one atom in a bonded pair anyway.

Related commands:

create_atoms

Default:

The option defaults are compress = yes.

387

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

delete_bonds command
Syntax:
delete_bonds group—-ID style args keyword ...

e group-ID = group ID
e style = multi or atom or bond or angle or dihedral or improper or stats

multi args = none
atom args = an atom type
bond args = a bond type
angle args = an angle type
dihedral args = a dihedral type
improper args = an improper type
stats args = none

¢ zero or more keywords may be appended
¢ keyword = any or undo or remove or special

Examples:

delete_bonds frozen multi remove
delete_bonds all atom 4 special
delete_bonds all stats

Description:

Turn off (or on) molecular topology interactions, i.e. bonds, angles, dihedrals, impropers. This command is useful
for deleting interactions that have been previously turned off by bond-breaking potentials. It is also useful for
turning off topology interactions between frozen or rigid atoms. Pairwise interactions can be turned off via the
neigh_modify exclude command. The fix shake command also effectively turns off certain bond and angle
interactions.

For all styles, an interaction is only turned off (or on) if all the atoms involved are in the specified group. For style
multi this is the only criterion applied - all types of bonds, angles, dihedrals, impropers in the group turned off.

For style atom, one or more of the atoms involved must also be of the specified type.

For style bond, only bonds are candidates for turn-off, and the bond must also be of the specified type. Styles
angle, dihedral, and improper are treated similarly.

For style bond, you can set the type to 0 to delete bonds that have been previously broken by a bond-breaking
potential (which sets the bond type to O when a bond is broken); e.g. see the bond_style quartic command.

For style stats no interactions are turned off (or on); the status of all interactions in the specified group is simply
reported. This is useful for diagnostic purposes if bonds have been turned off by a bond-breaking potential during
a previous run.

The default behavior of the delete_bonds command is to turn off interactions by toggling their type to a negative

value, but not to permanently remove the interaction. E.g. a bond_type of 2 is set to -2. The neighbor list creation
routines will not include such an interaction in their interaction lists. The default is also to not alter the list of 1-2,
1-3, 1-4 neighbors computed by the special_bonds command and used to weight pairwise force and energy

388

http://lammps.sandia.gov

calculations. This means that pairwise computations will proceed as if the bond (or angle, etc) were still turned
on.

Several keywords can be appended to the argument list to alter the default behavior.

The any keyword changes the requirement that all atoms in the bond (angle, etc) must be in the specified group in
order to turn-off the interaction. If any of the atoms in the interaction are in the specified group, it will be turned
off (or on if the undo keyword is used).

The undo keyword inverts the delete_bonds command so that the specified bonds, angles, etc are turned on if they
are currently turned off. This means a negative value is toggled to positive. Note that the fix shake command also
sets bond and angle types negative, so this option should not be used on those interactions.

The remove keyword is invoked at the end of the delete_bonds operation. It causes turned-off bonds (angles, etc)
to be removed from each atom's data structure and then adjusts the global bond (angle, etc) counts accordingly.
Removal is a permanent change; removed bonds cannot be turned back on via the undo keyword. Removal does
not alter the pairwise 1-2, 1-3, 1-4 weighting list.

The special keyword is invoked at the end of the delete_bonds operation, after (optional) removal. It re-computes
the pairwise 1-2, 1-3, 1-4 weighting list. The weighting list computation treats turned-off bonds the same as

turned-on. Thus, turned-off bonds must be removed if you wish to change the weighting list.

Note that the choice of remove and special options affects how 1-2, 1-3, 1-4 pairwise interactions will be
computed across bonds that have been modified by the delete_bonds command.

Restrictions:

This command requires inter-processor communication to coordinate the deleting of bonds. This means that your
system must be ready to perform a simulation before using this command (force fields setup, atom masses set,
etc).

If deleted bonds (angles, etc) are removed but the 1-2, 1-3, 1-4 weighting list is not recomputed, this can cause a
later fix shake command to fail due to an atom's bonds being inconsistent with the weighting list. This should only
happen if the group used in the fix command includes both atoms in the bond, in which case you probably should
be recomputing the weighting list.

Related commands:

neigh_modify exclude, special_bonds, fix shake

Default: none

389

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dielectric command

Syntax:
dielectric value
e value = dielectric constant

Examples:

dielectric 2.0

Description:

Set the dielectric constant for Coulombic interactions (pairwise and long-range) to this value. The constant is
unitless, since it is used to reduce the strength of the interactions. The value is used in the denominator of the
formulas for Coulombic interactions - e.g. a value of 4.0 reduces the Coulombic interactions to 25% of their
default strength. See the pair_style command for more details.

Restrictions: none

Related commands:

pair_style

Default:

dielectric 1.0

390

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

dihedral_style charmm command

dihedral_style charmm/omp command

Syntax:

dihedral_style charmm

Examples:

dihedral_style charmm
dihedral_coeff 1 120.0 1 60 0.5

Description:

The charmm dihedral style uses the potential
E = K[1 + cos(n¢ — d)]

See (MacKerell) for a description of the CHARMM force field. This dihedral style can also be used for the
AMBER force field (see comment on weighting factors below). See (Cornell) for a description of the AMBER
force field.

The following coefficients must be defined for each dihedral type via the dihedral_coeff command as in the
example above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy)

¢ n (integer >= 0)

¢ d (integer value of degrees)
¢ weighting factor (0.0 to 1.0)

The weighting factor is applied to pairwise interaction between the 1st and 4th atoms in the dihedral, which