GROMACS Documentation
Release 2024.2

GROMACS development team

May 10, 2024

CONTENTS

1 Downloads 2
1.1 Sourcecode e 2
1.2 Regression tests it e e e e e e e e e e e e e e e e 2

2 Installation guide 3
2.1 Installation guide for exotic configurations oo 3

2.1.1 Special instructions for building GROMACS on less-common systems 3
2.2 Introduction to building GROMACS e 5
2.2.1 Quick and dirty installation L. e e 5
2.2.2 Quick and dirty cluster installation Lo 5
223 Typicalinstallation L e 6
224 Buildingolder versionsl oo 6
2.3 PrerequiSites e e e e e e 6
231 Platform 6
232 Compiler e e e e e e e e e e 7
2.3.3 Compiling with parallelization options 8
234 CMaKe i e e e 9
2.3.5 FastFourier Transform library 9
2.3.6 Other optional build components 12
24 Doing abuild of GROMACS e 12
24.1 ConfiguringwithCMake e 13
242 Compilingand linking e 23
243 Installing GROMACS 23
244 Getting access to GROMACS after installation 23
2.4.5 Testing GROMACS for correctness v v v v v v v i i e e e e et e e e o 23
24.6 Testing GROMACS for performance 24
247 Havingdifficulty? e 24
2.5 Special instructions for some platforms Lo Lo oL 25
2.5.1 Buildingon Windows L e e 25
252 BuildingonCray e e e 25
253 Intel XeonPhi. 25
254 NVIDIAGracettt e e 26
2.6 Testedplatforms e e e e e 26
2.7 SUPPOIt . . o o e e e 26
3 User guide 27
3.1 Known issues affecting users of GROMACS 27
3.1.1 Unable to compile with CUDA 11.3 27
3.1.2 The deform option is not suitable forflow L0 27
3.1.3 SYCL build unstable when using oneAPI with LevelZero backend 27
3.1.4 Unable to build with CUDA 11.5-11.6 and GCC 11 on Ubuntu22.04 28
3.1.5 FFT errors with NVIDIA RTX 40xx-series GPUs and CUDA 11.7 orearlier 28
3.1.6 “Cannot find a working standard library” error with ROCm Clang 28
3.1.7 Expanded ensemble does not checkpointcorrectly L. 28

3.2

33

34

35

3.6

3.7

3.8

39

3.10

3.11

3.1.8 Compiling with GCC 12 on POWERSY architectures 28
3.1.9 Launching multiple instances of GROMACS on the same machine with AMD GPUs . . 29

Getting started L L e e e e e e e e e e e 29
321 FlowChart e e 29
3.2.2 Setting up your €nVIroNMeNt v v v ov e e e e e e e e e e e e e e e 31
3.2.3 Flowchart of typical simulation 31
324 Importantfileso e e e e e e e e e e e 31
325 Tutorial material L. L. 32
32.6 Backgroundreading. L e 33
System preparation L Lo e e e e e e 33
33.1 Stepstoconsider L. e e e e 33
332 Tipsandtricks e e e 34
Managing long simulations L e e e e e e 34
34.1 Appendingtooutputfiles 35
342 Backingupyourfiles 35
343 Extendinga.tprfile 35
344 Changing mdp options forarestart 36
3.4.5 Restarts without checkpointfiles o 36
3.4.6 Arecontinuations eXact? Lu e e e e e 36
3477 Reproducibility 36
Answers to frequently asked questions (FAQs) 37
3.5.1 Questions regarding GROMACS installation 37
3.5.2 Questions concerning system preparation and preprocessing 37
3.5.3 Questions regarding simulation methodology 38
3.5.4 Parameterization and Force Fields 39
3.5.5 Analysis and Visualization L. oL L o 39
Force fields in GROMACS e 40
36,1 AMBER 40
3.6.2 CHARMM e e 40
363 GROMOS 41
3.64 OPLS . . . e e 41
Molecular dynamics parameters (.mdp options)o 41
377.1 Generalinformation. 41
Useful mdrun features e 83
3.8.1 Re-running asimulation L. e e e e 83
3.8.2 Running a simulation in reproducible mode 0oL &3
3.8.3 Halting running simulations o 83
3.8.4 Running multi-simulations oL e 83
3.8.5 Controlling the length of the simulation 85
Getting good performance frommdrun L. L L e 85
3.9.1 Hardware background information 0 oL 85
3.9.2 Work distribution by parallelization in GROMACS 86
3.9.3 Parallelization schemes 87
39.4 Running mdrun withinasinglenode 90
3.9.5 Running mdrun on more thanonenode, 94
3.9.6 Avoiding communication for constraints L. oL 96
39.7 Findingouthow torunmdrunbetter oL 96
398 Runningmdrun withGPUs 98
3.9.9 Running the OpenCL versionof mdrun 102
3.9.10 Running SYCL versionof mdrun. 103
3.9.11 Performance checklist e 103
Common errors when using GROMACS 105
3.10.1 Common errors during Usage e e e e e 105
3.10.2 Errorsinpdb2gmx L. e e e e e 105
3.10.3 Errorsin @rompp o oo it e e e e e e e e e e e e e e e 107
3.104 Errorsinmdrun Lo e e e e e 111
Command-linereference e 114
3.11.1 molecular dynamics simulation suiteol 114

3.11.2

3.11.3

3.11.4

3.11.5

3.11.6

3.11.7

3.11.8

3.11.9

3.11.10
3.11.11
3.11.12
3.11.13
3.11.14
3.11.15
3.11.16
3.11.17
3.11.18
3.11.19
3.11.20
3.11.21
3.11.22
3.11.23
3.11.24
3.11.25
3.11.26
3.11.27
3.11.28
3.11.29
3.11.30
3.11.31
3.11.32
3.11.33
3.11.34
3.11.35
3.11.36
3.11.37
3.11.38
3.11.39
3.11.40
3.11.41
3.11.42
3.11.43
3.11.44
3.11.45
3.11.46
3.11.47
3.11.48
3.11.49
3.11.50
3.11.51
3.11.52
3.11.53
3.11.54
3.11.55
3.11.56
3.11.57
3.11.58
3.11.59

EMX ANACIZ . . . o . e e e e e e e e e e e e e 121

gmx analyze e e e e 124
gmxangle e e 127
gmxawh . .o e 129
gmxbar e 130
gmxbundle 132
gmxcheck. o e 133
emX Chi e e 135
gmX CIUSIEr e e 138
gmx clustsize e e e 142
gMX CONfIMS o oo o e e e e e 143
EMX CONVEIT-IPT .+ o o v v v v v e 145
EMX CONVETT-II] . . o v v vttt e e e et e e e e e e e e e e e e e 146
GMX COVAL & . v v v v ettt e e e e e e e e e e e e e e e e e e 147
SMX CUITENL o vttt et e e e e e e e e e e 149
gmx density e e e 151
gmX densmap e e e e e e e 153
gmxdensorder L. e e e 154
gmxdielectric e 156
gmx dipoles e 157
gmx diSre e 160
gmX diStanCe e e e e e e 162
emMX dOS . . .o e e e e e e 164
EMXASSP . . . e e e e e e e e e e e 165
emx dump e e e e e e 168
gmxdyecouplo e 169
gmx editconf 170
EMX ENECONV . o v v v e v v et e e e e e e e e e e e e e e e e e e 173
EMX ENCMAL . . v v v v v v vt e 174
GMX ENEIZY . o v v v e e et e 176
gmx extract-Cluster L e 179
gmx filter 181
gmx freevolume L 182
gMX Zangle e e e e e e e e e e e 184
gmx genconf L e 186
GMX ZENION . . . v v vt i e e e e e e e e e e e e e e e e e 187
GMX GENIESIT ot oL e e e e e e 188
GMX GLOMPP .« v v v v v e v e 189
SMX ZYTALC © v v v v v v e 192
gmx gyrate-legacy L. e e 193
gmxh2order. 195
gmxhbond 196
gmx hbond-legacy 198
gmx helix e 201
gmx helixorient e 203
gmxhelp e 204
gmx hydorder e 204
gmx insert-molecules Lo 205
gmxlie . .. 207
gmxmake_edi L e e 208
gmxmake_ndX e e e e e e e e 211
gmxmdmat e e 212
gmxmdrun e 213
emx mindiSt e e e e e 218
gmxmk_angndX 220
emXMSA . .. e e e e e e e e e e e 221
EMXNMEIZ . . . v v bttt e e e e e e e e e e e e e e e e e 223
CMX NMENS .+« & v v e v e e v v e et e e e e e e e e e e e e e e e e e e e 224

3.12

3160 gMXNMI . . . v v ot s e 225

30161 gmMXNMITA] . . . o v s e 227
3.11.62 gmx nonbonded-benchmark oL o oo 228
3.11.63 gmxorder e e e e 230
3.11.64 gmxpairdiSt e e e 231
311,65 gmx pdb2gmX e e e e e 233
311,66 GMX PME_EITOT + & v v v v v v v e 236
30167 gmx polystato e e e e e e e e e e e e e 237
3.11.68 gmx potential e 238
3.11.69 gmxoprincipalo 240
30170 @MXTama . . . v ov v e 241
3ALT1 gmxrdf . .o e e e e e e e 242
3.11.72 gmxreport-methods L e e e e e e 244
BALT73 @MXTIMS « ¢ v v v ot e e e e e e e e e e e e e e e e e e e 244
30174 gmxrmsdiSt L. oL e e e e e e e e e e e e 247
30175 gmxrmst ..o e e e 248
30176 gmxrotact L e e e e 250
3ALT7 gmXTotmat . . . o v i e 251
30178 gmxsaltbr oL e e e e e e e 252
3.11.79 gmxsans-legacy e e 253
30180 @MX SASA + . . o i e e e e e e e e e e e e e e 255
3.11.81 gmx saxs-legacy e e e e 257
31182 gmX SCATING .« v v v v v e 258
30183 gmxselect L L e e e e e e e e e e 260
30184 gmxsham L oL e e e e 262
31185 @MX SIZEPS . . o o v e e e 264
3.11.86 gmxsolvate e e e e e 266
3187 @mX SOTIENt v ot e e e e e e e e e e e e e e e e e e e 267
30188 gmxspatial L e e e e e e e e e 269
30189 gmx spol e e e e e 270
31190 gmxtcaf e 272
30191 @MXIra] . . o v vt e e e e e e e e e e 273
3.01.92 gmMX trajectory . . o v v v v v i e 276
3193 gmXtrjcat o L e e e e e e e e e e e e e e e 277
30194 gmXtCONV . . o o L i e e e e e e e e e e e e e e e e e 279
3.11.95 gmxtrjorder e e e e e 282
3.11.96 gmX tune_pmel L L e e e e 284
3.11.97 gmxvanhove 289
30198 gmxvelace e e e e e e e e 290
31199 gmx wham L. L e e e e e e e e e e e e 292
3.11.100gmx wheel L e e e e 296
3A1101gmX X2t0P « . . o v o e e e e 297
3.01.102gmX XpM2PS . . L L e 298
3.11.103Command-line interface and conventions 300
3.11.104Commands by name e e e e e e e e e e e 301
3.11.105Commands by tOpic L. e e e e e 304
3.11.106Special topics oL e e 310
3.11.107Command changes between Versionsot 318
Terminology e 323
32,1 Pressure e e e e e 323
3.12.2 Periodic boundary conditions L. e e e e 324
3.123 Thermostats oL e e e e 325
3.12.4 Energy conservationol e e 326
3.12.5 AVerage StruCtlure v v v v v vt e e e e e e e e e e e e e e e 326
3126 BIowIng up o e e e e e e e e e e e e e e e e e 327
3.12.7 Diagnosing an unstable system L e e e e e e e 328
3.12.8 Molecular dynamicso 329
3.129 Forcefield oL e e e 329

3.13 Environment Variables L e e
3.13.1 Output Control o v o e e e e e e e e e e e e
3.13.2 Debugg@ing e e e e e e e e
3.13.3 Performance and Run Control
3.13.4 OpenCL management vt v vt i v et e e e e e e e e
3.13.5 Analysisand Core Functions

3.14 Floating point arithmetic i e e e e e e e e

3.15 Security when using GROMACS e

3.16 Policy for deprecating GROMACS functionality

Short How-To guides

4.1 Beginners e e e e e e
411 RESOUICES . . v v v v i i e e e e e e e e e e e e e e e e e e e

42 AddingaResiduetoaForce Field
421 Addinganewresidue e
422 Modifyingaforcefield e

43 Watersolvationl e e e e e e e e e e

44 Nonwater solvent e e e e
4.4.1 Making anon-aqueous solventboxo

45 Mixedsolvent e e e e

4.6 Making Disulfide Bonds e e e

4.7 Running membrane simulations in GROMACS
4.7.1 Running Membrane Simulations oL oo
4772 Adding waters with genbox L. L
473 External material

4.8 Parameterization of novel molecules L oL
4.8.1 EXOLIC SPECIES . . v v v v i i e e e e e e e e e e e e e

49 Potentialof Mean Force L

4.10 Single-Point Energy e

411 Carbon Nanotube e e e e e e e
4.11.1 RobertJohnson’s Tips o oo i i
4.11.2 Andrea Minoia’s tutorial e

4.12 Visualization Software L e e
4.12.1 Topology bonds vs Renderedbonds,

4.13 Extracting Trajectory Information

4.14 External tools to perform trajectory analysis oo

4.15 PlottingData e e e e e e e e e e e e e e e e
4151 Software e

4.16 Micelle Clustering i i i i e e e e e e e e

Reference Manual

5.1 Prefaceand Disclaimer L
5.1.1 Citation information L e e e e e e
5.1.2 GROMACS is Free Software i i ittt it e

52 Introduction e e e e
5.2.1 Computational Chemistry and Molecular Modeling
5.2.2 Molecular Dynamics Simulations o
5.2.3 Energy Minimization and Search Methods

5.3 Definitionsand Units L L e e e e e e e e e
53.1 Notation e e e e
532 MDuUnitS e e e e e
533 Reduced units L e e e e
5.3.4 Mixed or Double precision e e e e e

54 Algorithms o L e e e e e e
5.4.1 Periodic boundary conditions oL Lo e
542 Thegroup concept o v v i i i i e e e e e e e e e e
543 Molecular Dynamics it e e e e e e e e e e e e e
5.4.4 Shell molecular dynamics o o i e e e e e

338
338
338
338
338
339
339
339
339
340
340
340
340
341
341
341
342
342
343
343
343
343
344
345
345
345
345
346
346

347
347
348
348
349
349
350
352
354
354
354
355
356
357
357
360
361
384

5.5

5.6

5.7

5.8

59

54.5 Constraintalgorithms L 384

5.4.6 Simulated Annealing e e e e e e e e e 387
5.4.7 Stochastic Dynamics e e e e e e e 388
54.8 Brownian Dynamics o e 388
549 Energy Minimization it 389
5.4.10 Normal-Mode Analysis o oottt 390
5.4.11 Freeenergy calculations o i it i e e e e e e 391
5.4.12 Replicaexchange e e e 393
5.4.13 Essential Dynamics sampling Lo e 394
5.4.14 Expanded Ensemble o o 395
5.4.15 Parallelization e 395
5.4.16 Domain decompositionol L e e e e e e 395
Interaction function and force fields o o 401
5.5.1 Non-bonded interactions i e e 401
5.52 Bonded interaCtionsot e e e e e e e e e e e e 406
553 Restraints e e e e 418
554 Polarization e e e 427
5.5.5 Freeenergy interactionS. v v v v v it e e e e e e e e e e e e 428
55.6 Methods e e 435
5.577 Virtual interaction SIesot e e e e e e e e e e e e e e e 436
5.5.8 Long Range Electrostatics i 440
5.5.9 Long Range Van der Waals interactions 443
55.10 Forcefield o o e e 446
Topologies e e e e e e e e e e 449
5.6.1 Particletype e e e e 450
5.6.2 Parameterfiles 452
5.6.3 Molecule definition e 454
5.6.4 Constraintalgorithms L 456
5.6.5 pdb2gmxinputfiles e e e e 457
5.6.6 Fileformats 464
5.6.7 Force field organization Lo oL e 477
Fileformats o e e 479
57.1 Summary of file formats 479
5772 Fileformatdetails 481
Special TOPICS . . . v v v o e e e e e e e e e e e e e e e 494
5.8.1 Free energy implementation e 494
5.8.2 Potential of meanforce 495
5.8.3 Non-equilibriumpulling 496
5.8.4 Collective variables: thepullcode 496
5.8.5 Adaptive biasingwith AWH 501
5.8.6 Enforced Rotation. e 511
5.877 Electricfields e e e 520
5.8.8 Computational Electrophysiology 521
5.8.9 Calculating a PMF using the free-energycode 524
5.8.10 Removing fastest degrees of freedom 524
5.8.11 Viscosity calculation e e e 527
5.8.12 Shear simulations L e e e e e e 528
5.8.13 Tabulated interaction functions 529
5.8.14 Hybrid Quantum-Classical simulations (QM/MM) with CP2K interface 530
5.8.15 MiMiC Hybrid Quantum Mechanical/Molecular Mechanical simulations 533
5.8.16 Using VMD plug-ins for trajectory file /O 537
5.8.17 Interactive Molecular Dynamics o 537
5.8.18 Embedding proteins into the membranes 0oL 538
5.8.19 Applying forces from three-dimensional densities 539
5.8.20 Collective Variable simulations with the Colvars module 542
Run parameters and Programs Lo e 543
5.9.1 Online documentation it vt e e e e e e e e e e e 543
592 Filetypes 543

Vi

59.3 RunParameters e e e e e e 543

510 AnalySisS . . . L e e e e e e e e e e e e 544
5.10.1 Using Groups . . . v v v v v o e e e e e e e e e e e e e e e e e e e 544
5.10.2 Looking at your trajectoryttt e e e e e e e 547
5.10.3 General properties L. e e e e e e e e e 547
5.10.4 Radial distribution functions L. oL 547
5.10.5 Correlation functions 549
5.10.6 Curve fittingin GROMACS e 550
5.10.7 Mean Square Displacement oL o 552
5.10.8 Bonds/distances, angles and dihedrals oL oo 552
5.10.9 Radius of gyration and distanceso o 554
5.10.10 Root mean square deviations in StrUCtUIe v v v v v v v v v v e e 555
5.10.11 Covariance analysis v v v v v v i e e e e e e e e e e e e 556
5.10.12 Dihedral principal component analysis oL 557
5.10.13 Hydrogenbonds L e 557
5.10.14 Protein-related items L. L 559
5.10.15 Interface-relateditems 561

5.11 Some implementation details e e e e 562
5.11.1 Single Sum Virial in GROMACS o e 562
5.11.2 Optimizations ot vttt i e e e e e e e 565

5.12 Averages and fluctuations e e 566
5.12.1 Formulae for averaging e 566
5.12.2 Implementation o .. e e e e e e e e e e e e e e e e 567

5.13 Bibliography o L e e e e e e e 570

6 gmxapi Python package 579

6.1 Fullinstallation instructions e e e 579
6.1.1 OVerview e e e e e 580
6.1.2 Background 580
6.1.3 Installing the Pythonpackage 583
6.1.4 Accessing gmxapi documentationo L e 588
6.1.5 Testing e e e e e e e e e e e e e e 589
6.1.6 Troubleshooting e e e e 589

6.2 Usingthe Pythonpackage e 591
6.2.1 Noteson parallelismand MPI oo o 592
6.2.2 Running simple simulations o o o 593
6.2.3 Running ensemble simulations L. L e 593
6.2.4 Input arguments and “ensemble” syntax o e 594
6.2.5 Accessingcommandlinetools oL o 594
6.2.6 Preparing simulations L. L e 595
6.2.7 Using arbitrary Python functions L 595
6.2.8 Subgraphs e e 596
6.2.9 LOoOPING i e e e e e e e e e e e e e e 596
6.2.10 LoggIng e e e e e e e e e 597
6.2.11 More 597

6.3 gmxapi Python module reference L o oo oo, 598
6.3.1 Interfaceconcepts L. 598
6.3.2 gmxapibasicpackage e e e 599
6.3.3 Simulationmodule 602
6.3.4 Utilities e e e 605
6.3.5 Statusmessagesand Logging oL oL 607
6.3.6 Exceptionsmodule e 607
6.3.7 gmx.ersionmodule L e e e e e 608
6.3.8 Core APL e 609

7 NBLIB API 613

7.1 Guide to Writing MD Programs e e e e e 613

7.1.1 Global Definitions 613

vii

8 Developer Guide

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

7.1.2 DefineParticle Data
7.1.3 Defining Coordinates, Velocities and Force Buffers
7.1.4 Writingthe MD Program L
Contribute to GROMACS e
8.1.1 Checklist e e
8.1.2 Preparing code for submissiono e e e
8.1.3 Alternatives e e e e e
8.1.4 Do youhave more questions? e e e
8.1.5 Removing functionality L e e e e
Codebase overview o e
8.2.1 Source code organizationl
8.2.2 Documentation organization o..i e e e e e e e
Build system OVerview L. e e e e e e
8.3.1 Buildtypes e e e e e e e e e e
83.2 CMakecache variables L
8.3.3 Externallibraries e
8.3.4 Special targets e e e e e e e e e e e e
8.3.5 Passing information to sourcecode Lo
Change Management v v it i e e e e e e e e e e e e e e e
8.4.1 Gettingstarted L. e e e e e e e e e e e e e e
842 Labels e
843 CodeReview e e e
8.4.4 More IttiPS L. e e e e e e
Relocatable binaries e e
8.5.1 Finding shared libraries i e e e
8.5.2 Findingdatafiles e e e e
853 Knownissues
Documentation generation oL o e e e e e e e e e
8.6.1 Building the GROMACS documentation
8.6.2 Neededbuildtools e
Style guidelines oL e e e e e e e e e e
8.7.1 Guidelines for code formatting L oo
8.7.2 Guidelines for #include directives oL o
8.7.3 Naming conventions v ittt e e e e e e e
8.7.4 Allowed language features i i e e e e e
8.7.5 Guidelines for creating meaningful issue reports
8.7.6 Guidelines for formatting of gitcommits oL,
877 Errorhandling
Development-time tools e
8.8.1 Using DoXygen o i it e e e e
8.8.2 Automation and Infrastructure L
8.8.3 Release engineering with GitLab
8.8.4 Source tree checker scripts o
8.8.5 Automatic source code formatting oL oL e
8.8.6 Unittesting it e e e e e e e
8.8.7 Physical validation L e e e e
8.8.8 Change management i v v ittt e e e e e
8.8.9 Buildsystem e e e e e
8.8.10 Code formatting and style L
Known issues relevant for developers oL
8.9.1 Issues with GPU timer withOpenCL
89.2 GPUemulationdoesnotwork
8.9.3 OpenCL on NVIDIA Volta and laterbroken
8.9.4 PME decomposition automated task assignment broken

9 Doxygen documentation

620
620
621
622
622
622
622
623
623
625
627
627
628
633
633
634
634
635
636
636
638
640
640
641
642
643
643
644
645
645
646
647
649
653
654
655
657
657
670
680
681
684
689
692
694
695
695
696
697
697
697
697

698

viii

10 C++ API
10.1 Public C++ API . ..
10.1.1 Overview . .

10.1.2 Client build system support L.
10.1.3 gmxapi CMake package e
10.1.4 gromacs (and gromacs$GROMACS_SUFFIX packages)

11 Release notes
11.1 GROMACS 2024 series
11.1.1 Patch releases
11.1.2 Major release
11.2 GROMACS 2023 series
11.2.1 Patch releases
11.2.2 Major release

11.3 Older (unmaintained) GROMACS series i i i it e e e e e e e e e e

11.4 GROMACS 2022 series
11.4.1 Patch releases
11.4.2 Major release

11.5 GROMACS 2021 series
11.5.1 Patch releases
11.5.2 Major release

11.6 GROMACS 2020 series
11.6.1 Patch releases
11.6.2 Major release

11.7 GROMACS 2019 series
11.7.1 Patch releases
11.7.2 Major release

11.8 GROMACS 2018 series
11.8.1 Patch releases
11.8.2 Major release

11.9 GROMACS 2016 series
11.9.1 Patch releases
11.9.2 Major release

Python Module Index

699
699
699
699
700
701

703
703
703
707
714
714
727
734
734
734
747
759
759
770
779
779
792
799
799
810
817
817
833
848
848
865

883

GROMACS Documentation, Release 2024.2

The release notes can be found online at http://manual.gromacs.org/current/release-notes/index.html

CONTENTS 1

http://manual.gromacs.org/current/release-notes/index.html

CHAPTER
ONE

DOWNLOADS

Please reference this documentation as https://doi.org/10.5281/zenodo.11148638.

To cite the source code for this release, please cite https://doi.org/10.5281/zenodo.11148655.

1.1 Source code

* As ftp ftp://ftp.gromacs.org/gromacs/gromacs-2024.2.tar.gz
* As https https://ftp.gromacs.org/gromacs/gromacs-2024.2.tar.gz
¢ (md5sum blcaec2a81e221d68b3a58c53f1add40)

Other source code versions may be found at the web site.

1.2 Regression tests

* https://ftp.gromacs.org/regressiontests/regressiontests-2024.2.tar.gz

* (mdSsum c640de481d78b6c4c418663af94{65ee)

https://doi.org/10.5281/zenodo.11148638
https://doi.org/10.5281/zenodo.11148655
ftp://ftp.gromacs.org/gromacs/gromacs-2024.2.tar.gz
https://ftp.gromacs.org/gromacs/gromacs-2024.2.tar.gz
https://manual.gromacs.org/
https://ftp.gromacs.org/regressiontests/regressiontests-2024.2.tar.gz

CHAPTER
TWO

INSTALLATION GUIDE

2.1 Installation guide for exotic configurations

2.1.1 Special instructions for building GROMACS on less-common systems
These instructions pertain to building GROMACS 2024.2. This document is complementary to the up-to-date
installation instructions instructions.

The configurations listed here are expected to work, but are not recommended for typical users.

SYCL GPU acceleration for AMD and NVIDIA GPUs using Intel oneAPI DPC++

AMD and NVIDIA GPUs can also be used with Intel oneAPI BaseKit and Codeplay oneAPI plugins.

For most users, we recommend using CUDA (page 16) for NVIDIA GPUs and AdaptiveCpp (page 18) for AMD
GPUs instead.

With some versions of oneAPI, you might receive “The compiler you are using does not support OpenMP paral-
lelism” error from CMake. In this case, please add the following options to your CMake command:

e For oneAPI 2024.x: -DCMAKE_C_FLAGS="-isystem /opt/intel/oneapi/compiler/
latest/opt/compiler/include" -DCMAKE_CXX_ FLAGS="-isystem /opt/intel/
oneapi/compiler/latest/opt/compiler/include"

e For oneAPI 2023.x: -DCMAKE_C_FLAGS="-isystem /opt/intel/oneapi/compiler/
latest/linux/compiler/include" -DCMAKE_CXX_FLAGS="-isystem /opt/intel/
oneapi/compiler/latest/linux/compiler/include"

AMD GPUs

After installing Intel one API toolkit 2023.0 or newer, a compatible ROCm version, and the Codeplay plugin, set up
the environment by running source /opt/intel/oneapi/setvars.sh --include-intel-1lvm
or loading an appropriate module load on an HPC system.

Then, configure GROMACS using the following command (replace g£xXYZ with the target architecture):

cmake .. -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ \
-DGMX_GPU=SYCL -DGMX_SYCL=DPCPP \
-DGMX_GPU_NB_CLUSTER_SIZE=8 -DGMX_GPU_FFT_LIBRARY=vkfft \
—-DSYCL_CXX_FLAGS_EXTRA='-fsycl-targets=amdgcn-amd-amdhsa; -Xsycl—
—~target-backend; ——offload-arch=gfxXYZz'

https://manual.gromacs.org/documentation/current/install-guide/index.html
https://manual.gromacs.org/documentation/current/install-guide/index.html
https://developer.codeplay.com/products/oneapi/amd/home/

GROMACS Documentation, Release 2024.2

NVIDIA GPUs

After installing Intel one API toolkit 2023.0 or newer, a compatible CUDA version, and the Codeplay plugin, set up
the environment by running source /opt/intel/oneapi/setvars.sh -—-include-intel-1lvm
or loading an appropriate module load on an HPC system.

Then, configure GROMACS using the following command:

cmake .. -DCMAKE_C_COMPILER=clang —-DCMAKE_CXX_COMPILER=clang++ \
-DGMX_GPU=SYCL —-DGMX_SYCL=DPCPP \
-DGMX_GPU_NB_CLUSTER_SIZE=8 -DGMX_GPU_FFT_LIBRARY=vkfft \
-DSYCL_CXX_FLAGS_EXTRA=-fsycl-targets=nvptx64-nvidia-cuda

SYCL GPU acceleration for NVIDIA GPUs using AdaptiveCpp (hipSYCL)

For most users, we recommend using CUDA (page 16) for NVIDIA GPUs.

Build and install AdaptiveCpp with CUDA backend (we recommend using the mainline Clang, not the ROCm-
bundled one).

Then, use the following command to build GROMACS (make sure to use the same compiler and set target GPU
architecture instead of sm_XY):

cmake .. -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ \
—-DGMX_GPU=SYCL -DGMX_SYCL=ACPP -DHIPSYCL_TARGETS='cuda:sm_ XY'

Static linking

Dynamic linking of the GROMACS executables will lead to a smaller disk footprint when installed, and so is the
default on platforms where we believe it has been tested repeatedly and found to work. In general, this includes
Linux, Windows, Mac OS X and BSD systems. Static binaries take more space, but on some hardware and/or
under some conditions they are recommended or even necessary, most commonly when you are running large
parallel simulation using MPI libraries (e.g. Cray).

* To link GROMACS binaries statically against the internal GROMACS libraries, set -DBUILD_SHARED_—
LIBS=0FF.

e To link statically against external (non-system) libraries as well, set —-DGMX_PREFER_STATIC_-
LIBS=ON. Note, that in general cmake picks up whatever is available, so this option only instructs cmake
to prefer static libraries when both static and shared are available. If no static version of an external library
is available, even when the aforementioned option is ON, the shared library will be used. Also note that the
resulting binaries will still be dynamically linked against system libraries on platforms where that is the de-
fault. To use static system libraries, additional compiler/linker flags are necessary, e.g. —static-1libgcc
—-static-libstdc++.

* To attempt to link a fully static binary set -DGMX_BUILD_SHARED_EXE=OFF. This will prevent CMake
from explicitly setting any dynamic linking flags. This option also sets -DBUILD_SHARED_LIBS=0FF
and —-DGMX_PREFER_STATIC_LIBS=ON by default, but the above caveats apply. For compilers
which don’t default to static linking, the required flags have to be specified. On Linux, this is usually
CFLAGS=-static CXXFLAGS=-static.

2.1. Installation guide for exotic configurations 4

https://developer.codeplay.com/products/oneapi/nvidia/home/
https://github.com/AdaptiveCpp/AdaptiveCpp

GROMACS Documentation, Release 2024.2

Building on Solaris

The built-in GROMACS processor detection does not work on Solaris, so it is strongly recommended that you
build GROMACS with ~-DGMX_HWLOC=on and ensure that the CMAKE_PREFIX_PATH includes the path where
the hwloc headers and libraries can be found. At least version 1.11.8 of hwloc is recommended.

2.2 Introduction to building GROMACS

These instructions pertain to building GROMACS 2024.2. You might also want to check the up-to-date installation
instructions.

2.2.1 Quick and dirty installation

1. Get the latest version of your C and C++ compilers.

Check that you have CMake version 3.18.4 or later.

Get and unpack the latest version of the GROMACS tarball.
Make a separate build directory and change to it.

Run cmake with the path to the source as an argument

Run make, make check,andmake install

NS A »N

Source GMXRC to get access to GROMACS
Or, as a sequence of commands to execute:

tar xfz gromacs-2024.2.tar.gz

cd gromacs-2024.2

mkdir build

cd build

cmake .. —-DGMX_BUILD_OWN_FFTW=ON -DREGRESSIONTEST_DOWNLOAD=ON
make

make check

sudo make install

source /usr/local/gromacs/bin/GMXRC

This will download and build first the prerequisite FFT library followed by GROMACS. If you already have
FFTW installed, you can remove that argument to cmake. Overall, this build of GROMACS will be correct and
reasonably fast on the machine upon which cmake ran. On another machine, it may not run, or may not run fast.
If you want to get the maximum value for your hardware with GROMACS, you will have to read further. Sadly,
the interactions of hardware, libraries, and compilers are only going to continue to get more complex.

2.2.2 Quick and dirty cluster installation

On a cluster where users are expected to be running across multiple nodes using MPI, make one installation
similar to the above, and another using ~-DGMX_MPI=on. The latter will install binaries and libraries named
using a default suffix of _mpi ie gmx_mpi. Hence it is safe and common practice to install this into the same
location where the non-MPI build is installed.

2.2. Introduction to building GROMACS 5

https://manual.gromacs.org/documentation/current/install-guide/index.html
https://manual.gromacs.org/documentation/current/install-guide/index.html

GROMACS Documentation, Release 2024.2

2.2.3 Typical installation
As above, and with further details below, but you should consider using the following CMake options (page 14)
with the appropriate value instead of xxx :

e -DCMAKE_C_COMPILER=xxx equal to the name of the C99 Compiler (page 7) you wish to use (or the
environment variable CC)

* -DCMAKE_CXX_COMPILER=xxx equal to the name of the C++17 compiler (page 7) you wish to use (or
the environment variable CXX)

e —DGMX_MP I=on to build using MPI support (page 8)

e —DGMX_GPU=CUDA to build with NVIDIA CUDA support enabled.

* —-DGMX_GPU=0penCL to build with OpenCL support enabled.

e —DGMX_GPU=SYCL to build with SYCL support enabled (using Intel oneAPI DPC++ by default).

e —DGMX_SYCL=ACPP to build with SYCL support using AdaptiveCpp (hipSYCL), requires ~DGMX_—
GPU=SYCL.

* —DGMX_SIMD=xxx to specify the level of SIMD support (page 14) of the node on which GROMACS will
run

e —DGMX_DOUBLE=0n to build GROMACS in double precision (slower, and not normally useful)

e -DCMAKE_PREFIX_PATH=xxx to add a non-standard location for CMake to search for libraries, headers
or programs (page 16)

¢ —DCMAKE_INSTALL_PREFIX=xxx to install GROMACS to a non-standard location (page 14) (default
/usr/local/gromacs)

e —DBUILD_SHARED_LIBS=0off to turn off the building of shared libraries to help with szatic linking
(page 4)

e -DGMX_FFT_LIBRARY=xxx to select whether to use fftw3, mk1 or fftpack libraries for FFT sup-
port (page 9)

e -DCMAKE_BUILD_TYPE=Debug to build GROMACS in debug mode

2.2.4 Building older versions

Installation instructions for old GROMACS versions can be found at the GROMACS documentation page.

2.3 Prerequisites

2.3.1 Platform

GROMACS can be compiled for many operating systems and architectures. These include any distribution
of Linux, macOS or Windows, and architectures including x86, AMD64/x86-64, several PowerPC including
POWERY9, ARM v8, and RISC-V.

2.3. Prerequisites 6

https://www.khronos.org/opencl/
https://www.khronos.org/sycl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.khronos.org/sycl/
https://github.com/AdaptiveCpp/AdaptiveCpp
http://manual.gromacs.org/documentation

GROMACS Documentation, Release 2024.2

2.3.2 Compiler

GROMACS can be compiled on any platform with ANSI C99 and C++17 compilers, and their respective standard
C/C++ libraries. Good performance on an OS and architecture requires choosing a good compiler. We recommend
gcc, because it is free, widely available and frequently provides the best performance.

You should strive to use the most recent version of your compiler. Since we require full C++17 support the
minimum compiler versions supported by the GROMACS team are

* GNU (gec/libstdc++) 9
e LLVM (clang/libc++) 7
¢ Microsoft (MSVC) 2019

Other compilers may work (Cray, Pathscale, older clang) but do not offer competitive performance. We recom-
mend against PGI because the performance with C++ is very bad.

The Intel classic compiler (icc/icpe) is no longer supported in GROMACS. Use Intel’s newer clang-based compiler
from oneAPI, or gcc.

The xlc compiler is not supported and version 16.1 does not compile on POWER architectures for GROMACS-
2024.2. We recommend to use the GCC compiler, version 9.x to 11.x. Note: there are known issues (page 27)
with GCC 12 and newer.

You may also need the most recent version of other compiler toolchain components beside the compiler itself (e.g.
assembler or linker); these are often shipped by your OS distribution’s binutils package.

C++17 support requires adequate support in both the compiler and the C++ library. The gcc and MSVC compilers
include their own standard libraries and require no further configuration. If your vendor’s compiler also manages
the standard library library via compiler flags, these will be honored. For configuration of other compilers, read
on.

On Linux, the clang compilers typically use for their C++ library the libstdc++ which comes with g++. For
GROMACS, we require the compiler to support libstc++ version 7.1 or higher. To select a particular libstdc++
library for a compiler whose default standard library does not work, provide the path to g++ with ~-DGMX_—
GPLUSPLUS_PATH=/path/to/g++. Note that if you then build a further project that depends on GROMACS
you will need to arrange to use the same compiler and libstdc++.

To build with clang and llvm’s libcxx standard library, use ~-DCMAKE_CXX_FLAGS=-stdlib=libc++.

If you are running on Mac OS X, Apple has unfortunately explicitly disabled OpenMP support in their Clang-based
compiler, and running without OpenMP support means you would need to use thread-MPI for any parallelism -
which is the reason the GROMACS configuration script now stops rather than just issues a warning you might
miss. Instead of turning off OpenMP, you can try to download the unsupported libomp distributed by the R project
or compile your own version - but this will likely have to be updated any time you upgrade the major Mac OS
version. Alternatively, you can download a version of gcc; just make sure you actually use your downloaded gcc
version, since Apple by default links /ust/bin/gcc to their own compiler.

For all non-x86 platforms, your best option is typically to use gcc or the vendor’s default or recommended com-
piler, and check for specialized information below.

For updated versions of gcc to add to your Linux OS, see
e Ubuntu: Ubuntu toolchain ppa page
* RHEL/CentOS: EPEL page or the RedHat Developer Toolset

2.3. Prerequisites 7

https://mac.r-project.org/openmp/
https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/test
https://fedoraproject.org/wiki/EPEL

GROMACS Documentation, Release 2024.2

2.3.3 Compiling with parallelization options

For maximum performance you will need to examine how you will use GROMACS and what hardware you plan
to run on. Often OpenMP parallelism is an advantage for GROMACS, but support for this is generally built into
your compiler and detected automatically.

GPU support

GROMACS has excellent support for NVIDIA GPUs supported via CUDA. On Linux, NVIDIA CUDA toolkit
with minimum version 11.0 is required, and the latest version is strongly encouraged. NVIDIA GPUs with at least
NVIDIA compute capability 3.5 are required. You are strongly recommended to get the latest CUDA version and
driver that supports your hardware, but beware of possible performance regressions in newer CUDA versions on
older hardware. While some CUDA compilers (nvcc) might not officially support recent versions of gcc as the
back-end compiler, we still recommend that you at least use a gcc version recent enough to get the best SIMD
support for your CPU, since GROMACS always runs some code on the CPU. It is most reliable to use the same
C++ compiler version for GROMACS code as used as the host compiler for nvcc.

To make it possible to use other accelerators, GROMACS also includes OpenCL support as a portable GPU
backend. The minimum OpenCL version required is unknown and only 64-bit implementations are supported.
The current OpenCL implementation is recommended for use with GCN-based AMD GPUs, and on Linux we
recommend the ROCm runtime. Intel integrated GPUs are supported with the Neo drivers. OpenCL is also
supported with NVIDIA GPUs, but using the latest NVIDIA driver (which includes the NVIDIA OpenCL runtime)
is recommended. Also note that there are performance limitations (inherent to the NVIDIA OpenCL runtime). It
is not possible to support both Intel and other vendors’ GPUs with OpenCL. A 64-bit implementation of OpenCL
is required and therefore OpenCL is only supported on 64-bit platforms.

Please note that OpenCL backend does not support the following GPUs:
* NVIDIA Volta (CC 7.0, e.g., Tesla V100 or GTX 1630) or newer,
* AMD RDNA1/2/3 (Navi 1/2X,3X, e.g., RX 5500 or RX6900).

Since GROMACS 2021, SYCL support has been added. Since GROMACS 2023 the SYCL backend has matured
to have near feature parity with the CUDA backend as well as broad platform support in both aspects more versatile
than the OpenCL backend (notable exception is the Apple Silicon GPU which is only supported in OpenCL). The
current SYCL implementation can be compiled either with Intel oneAPI DPC++ compiler for Intel GPUs, or
with AdaptiveCpp compiler and ROCm runtime for AMD GPUs (GFX9, CDNA 1/2, and RDNA1/2/3). Using
other devices supported by these compilers is possible, but not recommended. Notably, SSCP/generic mode of
AdaptiveCpp is not supported.

It is not possible to configure several GPU backends in the same build of GROMACS.

MPI support

GROMACS can run in parallel on multiple cores of a single workstation using its built-in thread-MPI. No user
action is required in order to enable this.

If you wish to run in parallel on multiple machines across a network, you will need to have an MPI library
installed that supports the MPI 2.0 standard. That’s true for any MPI library version released since about 2009,
but the GROMACS team recommends the latest version (for best performance) of either your vendor’s library,
OpenMPI or MPICH.

To compile with MPI set your compiler to the normal (non-MPI) compiler and add ~-DGMX_MP I=on to the cmake
options. Itis possible to set the compiler to the MPI compiler wrapper but it is neither necessary nor recommended.

2.3. Prerequisites 8

http://en.wikipedia.org/wiki/OpenMP
https://developer.nvidia.com/cuda-zone
https://www.khronos.org/opencl/
https://www.khronos.org/sycl/
https://www.khronos.org/sycl/
https://www.khronos.org/opencl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://github.com/AdaptiveCpp/AdaptiveCpp
https://github.com/AdaptiveCpp/AdaptiveCpp
http://www.open-mpi.org
http://www.mpich.org

GROMACS Documentation, Release 2024.2

GPU-aware MPI support

In simulations using multiple GPUs, an MPI implementation with GPU support allows communication to be per-
formed directly between the distinct GPU memory spaces without staging through CPU memory, often resulting
in higher bandwidth and lower latency communication. The only current support for this in GROMACS is with
a CUDA build targeting Nvidia GPUs using “CUDA-aware” MPI libraries. For more details, see Introduction to
CUDA-aware MPI.

To use CUDA-aware MPI for direct GPU communication we recommend using the latest OpenMPI version
(>=4.1.0) with the latest UCX version (>=1.10), since most GROMACS internal testing on CUDA-aware sup-
port has been performed using these versions. OpenMPI with CUDA-aware support can be built following the
procedure in these OpenMPI build instructions.

For GPU-aware MPI support of Intel GPUs, use Intel MPI no earlier than version 2018.8. Such a version is
found in the oneAPI SDKs starting from version 2023.0. At runtime, the LevelZero SYCL backend must be used
(setting environment variable ONEAPI_DEVICE_SELECTOR=level_zero:gpu will typically suffice) and
GPU-aware support in the MPI runtime selected.

For GPU-aware MPI support on AMD GPUs, several MPI implementations with UCX support can work, we
recommend the latest OpenMPI version (>=4.1.4) with the latest UCX (>=1.13) since most of our testing was
done using these version. Other MPI flavors such as Cray MPICH are also GPU-aware and compatible with
ROCm.

With GMX_MP I=0ON, GROMACS attempts to automatically detect GPU support in the underlying MPI library
at compile time, and enables direct GPU communication when this is detected. However, there are some cases
when GROMACS may fail to detect existing GPU-aware MPI support, in which case it can be manually enabled
by setting environment variable GMX_FORCE_GPU_AWARE_MPI=1 at runtime (although such cases still lack
substantial testing, so we urge the user to carefully check correctness of results against those using default build
options, and report any issues).

2.3.4 CMake

GROMACS builds with the CMake build system, requiring at least version 3.18.4. You can check whether CMake
is installed, and what version it is, with cmake —--version. If you need to install CMake, then first check
whether your platform’s package management system provides a suitable version, or visit the CMake installation
page for pre-compiled binaries, source code and installation instructions. The GROMACS team recommends you
install the most recent version of CMake you can.

2.3.5 Fast Fourier Transform library

Many simulations in GROMACS make extensive use of fast Fourier transforms, and a software library to perform
these is always required. We recommend FFTW (version 3 or higher only) or Intel MKL. The choice of library can
be set with cmake —-DGMX_FFT_LIBRARY=<name>, where <name> is one of £ftw3, mkl, or fftpack.
FFTPACK is bundled with GROMACS as a fallback, and is acceptable if simulation performance is not a priority.
When choosing MKL, GROMACS will also use MKL for BLAS and LAPACK (see linear algebra libraries
(page 20)). Generally, there is no advantage in using MKL with GROMACS, and FFTW is often faster. With
PME GPU offload support using CUDA, a GPU-based FFT library is required. The CUDA-based GPU FFT
library cuFFT is part of the CUDA toolkit (required for all CUDA builds) and therefore no additional software
component is needed when building with CUDA GPU acceleration.

2.3. Prerequisites 9

https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://www.open-mpi.org/faq/?category=buildcuda
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/gpu-support.html
http://www.cmake.org/install/
http://www.cmake.org/install/
http://www.fftw.org
https://software.intel.com/en-us/intel-mkl

GROMACS Documentation, Release 2024.2

Using FFTW

FFTW is likely to be available for your platform via its package management system, but there can be compatibility
and significant performance issues associated with these packages. In particular, GROMACS simulations are
normally run in “mixed” floating-point precision, which is suited for the use of single precision in FFTW. The
default FFTW package is normally in double precision, and good compiler options to use for FFTW when linked
to GROMACS may not have been used. Accordingly, the GROMACS team recommends either

* that you permit the GROMACS installation to download and build FFTW from source automatically for
you (use cmake -DGMX_BUILD_OWN_FFEFTW=O0N), or

* that you build FFTW from the source code.

If you build FFTW from source yourself, get the most recent version and follow the FFTW installation guide.
Choose the precision for FFTW (i.e. single/float vs. double) to match whether you will later use mixed or double
precision for GROMACS. There is no need to compile FFTW with threading or MPI support, but it does no harm.
On x86 hardware, compile with all of ——enable-sse2, ——enable-avx, and ——enable-avx2 flags. On
Intel processors supporting 512-wide AVX, including KNL, add ——enable-avx512 too. FFTW will create a
fat library with codelets for all different instruction sets, and pick the fastest supported one at runtime. On ARM
architectures with SIMD support use ——enable—-neon flag; on IBM Power8 and later, use ——enable-vsx
flag. If you are using a Cray, there is a special modified (commercial) version of FFTs using the FFTW interface
which can be slightly faster.

Relying on ~-DGMX_BUILD_OWN_FFTW=0N works well in typical situations, but does not work on Windows,
when using nin Jja build system, when cross-compiling, with custom toolchain configurations, etc. In such cases,
please build FFTW manually.

Using MKL

To target either Intel CPUs or GPUs, use OneAPI MKL (>=2021.3) by setting up the environment,
e.g., through source /opt/intel/oneapi/setvars.sh or source /opt/intel/oneapi/mkl/
latest/env/vars. sh or manually setting environment variable MKLROOT=/full/path/to/mkl. Then
run CMake with setting -DGMX_FFT_LIBRARY=mk1 and/or -DGMX_GPU_FFT_LIBRARY=mk1.

Using double-batched FFT library

Generally MKL will provide better performance on Intel GPUs, however this alternative open-source library from
Intel (https://github.com/intel/double-batched-fft-library) is useful for very large FFT sizes in GROMACS.

cmake -DGMX_GPU_FFT_LIBRARY=BBFFT -DCMAKE_PREFIX_PATH=SPATH_ TO BBFET_
—INSTALL

Note: in GROMACS 2023, the option was called DBFFT.

Using ARM Performance Libraries

The ARM Performance Libraries provides FFT transforms implementation for ARM architectures. Preliminary
support is provided for ARMPL in GROMACS through its FFTW-compatible API. Assuming that the ARM HPC
toolchain environment including the ARMPL paths are set up (e.g. through loading the appropriate modules like
module load Module-Prefix/arm-hpc-compiler—-X.Y/armpl/X.Y)use the following cmake op-
tions:

cmake -DGMX_FFT_LIBRARY=fftw3 \
-DFFTWF_LIBRARY="S5{ARMPL_DIR}/1lib/libarmpl_1lp64.so" \
-DFFTWF_INCLUDE_DIR=5{ARMPL _DIR}/include

2.3. Prerequisites 10

http://www.fftw.org
http://www.fftw.org/doc/Installation-and-Customization.html#Installation-and-Customization
https://github.com/intel/double-batched-fft-library

GROMACS Documentation, Release 2024.2

Using cuFFTMp

Decomposition of PME work to multiple GPUs is supported with NVIDIA GPUs when using a CUDA build.
This requires building GROMACS with the NVIDIA cuFFTMp (cuFFT Multi-process) library, shipped with
the NVIDIA HPC SDK, which provides distributed FFTs including across multiple compute nodes. To enable
cuFFTMp support use the following cmake options:

cmake -DGMX_USE_CUFFTMP=ON \
—-DcuFFTMp_ROOT=<path to NVIDIA HPC SDK math_libs folder>

Please make sure cuFFTMp’s hardware and software requirements are met before trying to use GPU PME de-
composition feature. In particular, cuFFTMp internally uses NVSHMEM, and it is vital that the NVSHMEM
and cuFFTMp versions in use are compatible. Some versions of the NVIDIA HPC SDK include two versions
of NVSHMEM, where the cuFFTMp compatible variant can be found at Linux_x86_64/<SDK_version>/
comm_1libs/<CUDA_version>/nvshmem_cufftmp_compat. If that directory does not exist in the SDK,
then there only exists a single (compatible) version at Linux_x86_64/<SDK_version>/comm_libs/
<CUDA_version>/nvshmem. The version can be selected by, prior to both compilation and running, updating
the LD_LIBRARY_PATH environment variable as follows:

export LD _LIBRARY_ PATH=<path to compatible NVSHMEM folder>/lib:S$LD_LIBRARY
—PATH

It is advisable to refer to the NVSHMEM FAQ page for any issues faced at runtime.

Using heFFTe

Decomposition of PME work to multiple GPUs is supported with PME offloaded to any vendor’s GPU when
building GROMACS linked to the heFFTe library. HeFFTe uses GPU-aware MPI to provide distributed FFTs
including across multiple compute nodes. It requires a CUDA build to target NVIDIA GPUs and a SYCL build to
target Intel or AMD GPUs. To enable heFFTe support, use the following cmake options:

cmake -DGMX_USE_HEFFTE=O0ON \
—-DHeffte_ ROOT=<path to heFFTe folder>

You will need an installation of heFFTe configured to use the same GPU-aware MPI library that will be used by
GROMACS, and with support that matches the intended GROMACS build. It is best to use the same C++ compiler
and standard library also. When targeting Intel GPUs, add ~-DHeffte_ENABLE_ONEAPI=ON -DHeffte_-
ONEMKL_ROOT=<path to oneMKL folder>. When targeting AMD GPUs, add -DHeffte_ENABLE_-
ROCM=ON -DHeffte ROCM_ROOT=<path to ROCm folder>.

Using VKFFT

VKFFT is a multi-backend GPU-accelerated multidimensional Fast Fourier Transform library which aims to pro-
vide an open-source alternative to vendor libraries.

GROMACS includes VKFFT support with two goals: portability across GPU platforms and performance improve-
ments. VKFFT can be used with OpenCL and SYCL backends:

e For SYCL builds, VKFFT provides a portable backend which currently can be used on AMD and NVIDIA
GPUs with AdaptiveCpp and Intel oneAPI DPC++; it generally outperforms rocFFT hence it is recom-
mended as default on AMD. Note that VKFFT is not supported with PME decomposition (which requires
HeFFTe) since HeFFTe does not have a VKFFT backend.

 For OpenCL builds, VKFFT provides an alternative to CIFFT. It is the default on macOS and when building
with Visual Studio. On other platforms it is not extensively tested, but it likely outperforms CIFFT and can
be enabled during cmake configuration.

To enable VKFFT support, use the following CMake option:

2.3. Prerequisites 11

https://docs.nvidia.com/hpc-sdk/cufftmp
https://docs.nvidia.com/hpc-sdk/cufftmp/usage/requirements.html
https://developer.nvidia.com/nvshmem
https://docs.nvidia.com/hpc-sdk/nvshmem/api/faq.html#general-faqs
https://icl.utk.edu/fft/
https://github.com/DTolm/VkFFT
https://github.com/AdaptiveCpp/AdaptiveCpp
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html

GROMACS Documentation, Release 2024.2

cmake -DGMX_GPU_FFT_LIBRARY=VKFFT

GROMACS bundles VKFFT with its source code, but an external VKFFT can also be used (e.g. to benefit from
improvements in VKFFT releases more recent than the bundled version) in the following manner:

cmake -DGMX_GPU_FFT_LIBRARY=VKFFT \
—DGMX_EXTERNAL_VKFFT=ON -DVKFFT_INCLUDE_DIR=<path to VkKFFT directory>

2.3.6 Other optional build components

* Run-time detection of hardware capabilities can be improved by linking with hwloc. By default this is
turned off since it might not be supported everywhere, but if you have hwloc installed it should work by just
setting ~-DGMX_ HWLOC=0ON

* Hardware-optimized BLAS and LAPACK libraries are useful for a few of the GROMACS utilities focused
on normal modes and matrix manipulation, but they do not provide any benefits for normal simulations.
Configuring these is discussed at linear algebra libraries (page 20).

e An external TNG library for trajectory-file handling can be used by setting —-DGMX_EXTERNAL_ -
TNG=yes, but TNG 1.7.10 is bundled in the GROMACS source already.

e The Imfit library for Levenberg-Marquardt curve fitting is used in GROMACS. Only Imfit 7.0 is supported.
A reduced version of that library is bundled in the GROMACS distribution, and the default build uses
it. That default may be explicitly enabled with ~-DGMX_USE_LMFIT=internal. To use an external
Imfit library, set -DGMX_USE_LMFIT=external, and adjust CMAKE_PREFIX_PATH as needed. Imfit
support can be disabled with -DGMX_USE_LMFIT=none.

¢ zIib is used by TNG for compressing some kinds of trajectory data

* Building the GROMACS documentation is optional, and requires and other software. Refer to https:
//manual.gromacs.org/current/dev-manual/documentation- generation.html or the docs/dev-manual/
documentation—-generation.rst file in the sources.

* The GROMACS utility programs often write data files in formats suitable for the Grace plotting tool, but it
is straightforward to use these files in other plotting programs, too.

e Set -DGMX_PYTHON_PACKAGE=0ON when configuring GROMACS with CMake to enable additional
CMake targets for the gmxapi Python package and sample_restraint package from the main GROMACS
CMake build. This supports additional testing and documentation generation.

2.4 Doing a build of GROMACS

This section will cover a general build of GROMACS with CMake (page 9), but it is not an exhaustive discussion
of how to use CMake. There are many resources available on the web, which we suggest you search for when
you encounter problems not covered here. The material below applies specifically to builds on Unix-like systems,
including Linux, and Mac OS X. For other platforms, see the specialist instructions below.

2.4. Doing a build of GROMACS 12

https://manual.gromacs.org/current/dev-manual/documentation-generation.html
https://manual.gromacs.org/current/dev-manual/documentation-generation.html

GROMACS Documentation, Release 2024.2

2.4.1 Configuring with CMake

CMake will run many tests on your system and do its best to work out how to build GROMACS for you. If your
build machine is the same as your target machine, then you can be sure that the defaults and detection will be
pretty good. However, if you want to control aspects of the build, or you are compiling on a cluster head node for
back-end nodes with a different architecture, there are a few things you should consider specifying.

The best way to use CMake to configure GROMACS is to do an “out-of-source” build, by making another directory
from which you will run CMake. This can be outside the source directory, or a subdirectory of it. It also means
you can never corrupt your source code by trying to build it! So, the only required argument on the CMake
command line is the name of the directory containing the CMakeLists.txt file of the code you want to build.
For example, download the source tarball and use

tar xfz gromacs-2024.2.tgz
cd gromacs—-2024.2

mkdir build-gromacs

cd build-gromacs

cmake

You will see cmake report a sequence of results of tests and detections done by the GROMACS build system.
These are written to the cmake cache, kept in CMakeCache . txt. You can edit this file by hand, but this is not
recommended because you could make a mistake. You should not attempt to move or copy this file to do another
build, because file paths are hard-coded within it. If you mess things up, just delete this file and start again with
cmake.

If there is a serious problem detected at this stage, then you will see a fatal error and some suggestions for how
to overcome it. If you are not sure how to deal with that, please start by searching on the web (most computer
problems already have known solutions!) and then consult the user discussion forum. There are also informational
warnings that you might like to take on board or not. Piping the output of cmake through less or tee can be
useful, too.

Once cmake returns, you can see all the settings that were chosen and information about them by using e.g. the
curses interface

ccmake

You can actually use ccmake (available on most Unix platforms) directly in the first step, but then most of the
status messages will merely blink in the lower part of the terminal rather than be written to standard output. Most
platforms including Linux, Windows, and Mac OS X even have native graphical user interfaces for cmake, and it
can create project files for almost any build environment you want (including Visual Studio or Xcode). Check out
running CMake for general advice on what you are seeing and how to navigate and change things. The settings
you might normally want to change are already presented. You may make changes, then re-configure (using c),
so that it gets a chance to make changes that depend on yours and perform more checking. It may take several
configuration passes to reach the desired configuration, in particular if you need to resolve errors.

When you have reached the desired configuration with ccmake, the build system can be generated by pressing
g. This requires that the previous configuration pass did not reveal any additional settings (if it did, you need to
configure once more with c). With cmake, the build system is generated after each pass that does not produce
errors.

You cannot attempt to change compilers after the initial run of cmake. If you need to change, clean up, and start
again.

2.4. Doing a build of GROMACS 13

https://gromacs.bioexcel.eu/c/gromacs-user-forum/5
http://www.cmake.org/runningcmake/

GROMACS Documentation, Release 2024.2

Where to install GROMACS

GROMACS is installed in the directory to which CMAKE_INSTALL_PREFIX points. It may not be the source
directory or the build directory. You require write permissions to this directory. Thus, without super-user privi-
leges, CMAKE_INSTALL_PREFIX will have to be within your home directory. Even if you do have super-user
privileges, you should use them only for the installation phase, and never for configuring, building, or running
GROMACS!

Using CMake command-line options

Once you become comfortable with setting and changing options, you may know in advance how you will con-
figure GROMACS. If so, you can speed things up by invoking cmake and passing the various options at once on
the command line. This can be done by setting cache variable at the cmake invocation using -DOPTION=VALUE.
Note that some environment variables are also taken into account, in particular variables like CC and CXX.

For example, the following command line

cmake .. —-DGMX_GPU=CUDA -DGMX_MPI=ON —-DCMAKE_INSTALL_PREFIX=/home/marydoe/
—programs

can be used to build with CUDA GPUs, MPI and install in a custom location. You can even save that in a shell
script to make it even easier next time. You can also do this kind of thing with ccmake, but you should avoid
this, because the options set with —D will not be able to be changed interactively in that run of ccmake.

SIMD support

GROMACS has extensive support for detecting and using the SIMD capabilities of many modern HPC CPU
architectures. If you are building GROMACS on the same hardware you will run it on, then you don’t need to read
more about this, unless you are getting configuration warnings you do not understand. By default, the GROMACS
build system will detect the SIMD instruction set supported by the CPU architecture (on which the configuring is
done), and thus pick the best available SIMD parallelization supported by GROMACS. The build system will also
check that the compiler and linker used also support the selected SIMD instruction set and issue a fatal error if
they do not.

Valid values are listed below, and the applicable value with the largest number in the list is generally the one
you should choose. In most cases, choosing an inappropriate higher number will lead to compiling a binary that
will not run. However, on a number of processor architectures choosing the highest supported value can lead to
performance loss, e.g. on Intel Skylake-X/SP and AMD Zen (first generation).

1. None For use only on an architecture either lacking SIMD, or to which GROMACS has not yet been ported
and none of the options below are applicable.

2. SSE2 This SIMD instruction set was introduced in Intel processors in 2001, and AMD in 2003. Essentially
all x86 machines in existence have this, so it might be a good choice if you need to support dinosaur x86
computers too.

3. SSE4.1 Presentin all Intel core processors since 2007, but notably not in AMD Magny-Cours. Still, almost
all recent processors support this, so this can also be considered a good baseline if you are content with slow
simulations and prefer portability between reasonably modern processors.

4. AvX_128_FMA AMD Bulldozer, Piledriver (and later Family 15h) processors have this but it is NOT
supported on any AMD processors since Zenl.

5. AVX_256 Intel processors since Sandy Bridge (2011). While this code will work on the AMD Bulldozer
and Piledriver processors, it is significantly less efficient than the AVX_128_FMA choice above - do not be
fooled to assume that 256 is better than 128 in this case.

6. AVX2_128 AMD Zen/Zen2 and Hygon Dhyana microarchitecture processors; it will enable AVX?2 with 3-
way fused multiply-add instructions. While these microarchitectures do support 256-bit AVX2 instructions,
hence AVX2_256 is also supported, 128-bit will generally be faster, in particular when the non-bonded

2.4. Doing a build of GROMACS 14

GROMACS Documentation, Release 2024.2

tasks run on the CPU — hence the default AvX2_128. With GPU offload however AVX2_ 256 can be faster
on Zen processors.

7. AVX2_256 Present on Intel Haswell (and later) processors (2013) and AMD Zen3 and later (2020); it will
also enable 3-way fused multiply-add instructions.

8. AVX_512 Skylake-X desktop and Skylake-SP Xeon processors (2017) and AMD Zen4 (2022); on Intel it
will generally be fastest on the higher-end desktop and server processors with two 512-bit fused multiply-
add units (e.g. Core 19 and Xeon Gold). However, certain desktop and server models (e.g. Xeon Bronze
and Silver) come with only one AVX512 FMA unit and therefore on these processors AVX2_256 is faster
(compile- and runtime checks try to inform about such cases). On AMD it is beneficial to use starting with
Zen4. Additionally, with GPU accelerated runs AVX2_256 can also be faster on high-end Skylake CPUs
with both 512-bit FMA units enabled.

9. AVX_512_KNL Knights Landing Xeon Phi processors.
10. IBM_VSX Power7, Power8, Power9 and later have this.

11. ARM_NEON_ASIMD 64-bit ARMvS and later. For maximum performance on NVIDIA Grace (ARMv9),
we strongly suggest at least GNU >= 13, LLVM >= 16.

12. ARM_SVE 64-bit ARMvVS and later with the Scalable Vector Extensions (SVE). The SVE vector length
is fixed at CMake configure time. The default vector length is automatically detected, and this can be
changed via the GMX_SIMD_ARM_SVE_LENGTH CMake variable. If compiling for a different target ar-
chitecture than the compilation machine, GMX_SIMD_ARM_SVE_LENGTH should be set to the hardware
vector length implemented by the target machine. There is no expected performance benefit from setting
a smaller value than the implemented vector length, and setting a larger length can lead to unexpected
crashes. Minimum required compiler versions are GNU >= 10, LLVM >=13, or ARM >= 21.1. For maxi-
mum performance we strongly suggest the latest gcc compilers, or at least LLVM 14 or ARM 22.0. Lower
performance has been observed with LLVM 13 and Arm compiler 21.1.

The CMake configure system will check that the compiler you have chosen can target the architecture you have
chosen. mdrun will check further at runtime, so if in doubt, choose the lowest number you think might work, and
see what mdrun says. The configure system also works around many known issues in many versions of common
HPC compilers.

A further GMX_SIMD=Reference option exists, which is a special SIMD-like implementation written in plain
C that developers can use when developing support in GROMACS for new SIMD architectures. It is not designed
for use in production simulations, but if you are using an architecture with SIMD support to which GROMACS
has not yet been ported, you may wish to try this option instead of the default GMX_SIMD=None, as it can often
out-perform this when the auto-vectorization in your compiler does a good job. And post on the GROMACS user
discussion forum, because GROMACS can probably be ported for new SIMD architectures in a few days.

CMake advanced options

The options that are displayed in the default view of ccmake are ones that we think a reasonable number of
users might want to consider changing. There are a lot more options available, which you can see by toggling the
advanced mode in ccmake on and off with t. Even there, most of the variables that you might want to change
have a CMAKE__ or GMX__ prefix. There are also some options that will be visible or not according to whether their
preconditions are satisfied.

2.4. Doing a build of GROMACS 15

https://gromacs.bioexcel.eu/c/gromacs-user-forum/5
https://gromacs.bioexcel.eu/c/gromacs-user-forum/5

GROMACS Documentation, Release 2024.2

Helping CMake find the right libraries, headers, or programs

If libraries are installed in non-default locations their location can be specified using the following variables:
¢ CMAKE_INCLUDE_PATH for header files
e CMAKE_LIBRARY_PATH for libraries
* CMAKE_PREFIX_PATH for header, libraries and binaries (e.g. /usr/local).

The respective include, 1ib, or bin is appended to the path. For each of these variables, a list of paths can be

IR

specified (on Unix, separated with “:””). These can be set as environment variables like:

CMAKE_PREFIX PATH=/opt/fftw:/opt/cuda cmake

(assuming bash shell). Alternatively, these variables are also cmake options, so they can be set like -DCMAKE_ —
PREFIX_PATH=/opt/fftw:/opt/cuda.

The CC and CXX environment variables are also useful for indicating to cmake which compilers to use. Similarly,
CFLAGS/CXXFLAGS can be used to pass compiler options, but note that these will be appended to those set by
GROMACS for your build platform and build type. You can customize some of this with advanced CMake options
such as CMAKE_C_FLAGS and its relatives.

See also the page on CMake environment variables.

CUDA GPU acceleration

If you have the CUDA Toolkit installed, you can use cmake with:

cmake .. —-DGMX_GPU=CUDA -DCUDA_TOOLKIT_ _ROOT_DIR=/usr/local/cuda

(or whichever path has your installation). In some cases, you might need to specify manually which of your C++
compilers should be used, e.g. with the advanced option CUDA_HOST_COMPILER.

By default, code will be generated for the most common CUDA architectures. However, to reduce build time
and binary size we do not generate code for every single possible architecture, which in rare cases (say, Tegra
systems) can result in the default build not being able to use some GPUs. If this happens, or if you want to remove
some architectures to reduce binary size and build time, you can alter the target CUDA architectures. This can
be done either with the GMX_CUDA_TARGET_ SM or GMX_CUDA_TARGET_COMPUTE CMake variables, which
take a semicolon delimited string with the two digit suffixes of CUDA (virtual) architectures names, for instance
“60;75;86”. For details, see the “Options for steering GPU code generation” section of the nvcc documentation /
man page.

The GPU acceleration has been tested on AMD64/x86-64 platforms with Linux, Mac OS X and Windows oper-
ating systems, but Linux is the best-tested and supported of these. Linux running on POWER 8/9 and ARM v8
CPUs also works well.

Experimental support is available for compiling CUDA code, both for host and device, using clang (version 6.0
or later). A CUDA toolkit is still required but it is used only for GPU device code generation and to link against
the CUDA runtime library. The clang CUDA support simplifies compilation and provides bene