
Building Products with FreeBSD

Joseph Koshy, The FreeBSD Project <jkoshy@FreeBSD.org>
Revision: 51348

FreeBSD is a registered trademark of the FreeBSD Foundation.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this document, and the FreeBSD
Project was aware of the trademark claim, the designations have been followed by the “™” or
the “®” symbol.

2017-12-30 22:56:56 by eadler.

Abstract
The FreeBSD project is a worldwide, volunteer based, and collaborative project, which devel-
ops a portable and high-quality operating system. The FreeBSD project distributes the source
code for its product under a liberal license, with the intention of encouraging the use of its
code. Collaborating with the FreeBSD project can help organizations reduce their time to mar-
ket, reduce engineering costs and improve their product quality.

This article examines the issues in using FreeBSD code in appliances and software products.
It highlights the characteristics of FreeBSD that make it an excellent substrate for product de-
velopment. The article concludes by suggesting a few “best practices” for organizations col-
laborating with the FreeBSD project.

Table of Contents
1. Introduction . 1
2. FreeBSD as a set of building blocks . 2
3. Collaborating with FreeBSD . 5
4. Conclusion . 8
Bibliography . 8

1. Introduction
FreeBSD today is well-known as a high-performance server operating system. It is deployed on millions of web
servers and internet-facing hosts worldwide. FreeBSD code also forms an integral part of many products, ranging
from appliances such as network routers, firewalls, and storage devices, to personal computers. Portions of FreeBSD
have also been used in commercial shrink-wrapped software (see Section 2, “FreeBSD as a set of building blocks”).

In this article we look at the FreeBSD project as a software engineering resource—as a collection of building blocks
and processes which you can use to build products.

While FreeBSD's source is distributed freely to the public, to fully enjoy the benefits of the project's work, orga-
nizations need to collaborate with the project. In subsequent sections of this article we discuss effective means of
collaboration with the project and the pitfalls that need to be avoided while doing so.

Caveat Reader. The author believes that the characteristics of the FreeBSD Project listed in this article were sub-
stantially true at the time the article was conceived and written (2005). However, the reader should keep in mind
that the practices and processes used by open-source communities can change over time, and that the information
in this article should therefore be taken as indicative rather than normative.

mailto:jkoshy@FreeBSD.org
https://svnweb.freebsd.org/changeset/doc/51348
https://www.FreeBSD.org/

Target Audience

1.1. Target Audience

This document would be of interest to the following broad groups of people:

• Decision makers in product companies looking at ways to improve their product quality, reduce their time to
market and lower engineering costs in the long term.

• Technology consultants looking for best-practices in leveraging “open-source”.

• Industry observers interested in understanding the dynamics of open-source projects.

• Software developers seeking to use FreeBSD and looking for ways to contribute back.

1.2. Article Goals

After reading this article you should have:

• An understanding of the goals of the FreeBSD Project and its organizational structure.

• An understanding of its development model and release engineering processes.

• An understanding of how conventional corporate software development processes differ from that used in the
FreeBSD project.

• Awareness of the communication channels used by the project and the level of transparency you can expect.

• Awareness of optimal ways of working with the project—how best to reduce engineering costs, improve time
to market, manage security vulnerabilities, and preserve future compatibility with your product as the FreeBSD
project evolves.

1.3. Article Structure

The rest of the article is structured as follows:

• Section 2, “FreeBSD as a set of building blocks” introduces the FreeBSD project, explores its organizational struc-
ture, key technologies and release engineering processes.

• Section 3, “Collaborating with FreeBSD” describes ways to collaborate with the FreeBSD project. It examines
common pitfalls encountered by corporates working with voluntary projects like FreeBSD.

• Section 4, “Conclusion” concludes.

2. FreeBSD as a set of building blocks
FreeBSD makes an excellent foundation on which to build products:

• FreeBSD source code is distributed under a liberal BSD license facilitating its adoption in commercial products
[9] with minimum hassle.

• The FreeBSD project has excellent engineering practices that can be leveraged.

• The project offers exceptional transparency into its workings, allowing organizations using its code to plan
effectively for the future.

• The culture of the FreeBSD project, carried over from the Computer Science Research Group at The University
of California, Berkeley [8], fosters high-quality work. Some features in FreeBSD define the state of the art.

[5] examines the business reasons for using open-source in greater detail. For organizations, the benefits of using
FreeBSD components in their products include a shorter time to market, lower development costs and lower de-
velopment risks.

2

Building Products with FreeBSD

2.1. Building with FreeBSD

Here are a few ways organizations have used FreeBSD:

• As an upstream source for tested code for libraries and utilities.

By being “downstream” of the project, organizations leverage the new features, bug fixes and testing that the
upstream code receives.

• As an embedded OS (for example, for an OEM router and firewall device). In this model, organizations use a
customized FreeBSD kernel and application program set along with a proprietary management layer for their
device. OEMs benefit from new hardware support being added by the FreeBSD project upstream, and from the
testing that the base system receives.

FreeBSD ships with a self-hosting development environment that allows easy creation of such configurations.

• As a Unix compatible environment for the management functions of high-end storage and networking devices,
running on a separate processor “blade”.

FreeBSD provides the tools for creating dedicated OS and application program images. Its implementation of a
BSD unix API is mature and tested. FreeBSD can also provide a stable cross-development environment for the
other components of the high-end device.

• As a vehicle to get widespread testing and support from a worldwide team of developers for non-critical “intel-
lectual property”.

In this model, organizations contribute useful infrastructural frameworks to the FreeBSD project (for example,
see netgraph(3)). The widespread exposure that the code gets helps to quickly identify performance issues and
bugs. The involvement of top-notch developers also leads to useful extensions to the infrastructure that the
contributing organization also benefits from.

• As a development environment supporting cross-development for embedded OSes like RTEMS and eCOS.

There are many full-edged development environments in the 24,000-strong collection of applications ported
and packaged with FreeBSD.

• As a way to support a Unix-like API in an otherwise proprietary OS, increasing its palatability for application
developers.

Here parts of FreeBSD's kernel and application programs are “ported” to run alongside other tasks in the pro-
prietary OS. The availability of a stable and well tested Unix™ API implementation can reduce the effort needed
to port popular applications to the proprietary OS. As FreeBSD ships with high-quality documentation for its
internals and has effective vulnerability management and release engineering processes, the costs of keeping
upto-date are kept low.

2.2. Technologies

There are a large number of technologies supported by the FreeBSD project. A selection of these are listed below:

• A complete system that can cross-host itself for many architectures:

• A modular symmetric multiprocessing capable kernel, with loadable kernel modules and a flexible and easy to
use configuration system.

• Support for emulation of Linux™ and SVR4 binaries at near machine speeds. Support for binary Windows™
(NDIS) network drivers.

• Libraries for many programming tasks: archivers, FTP and HTTP support, thread support, in addition to a full
POSIX™ like programming environment.

3

https://www.FreeBSD.org/cgi/man.cgi?query=netgraph&sektion=3&manpath=freebsd-release-ports
http://www.rtems.com/
http://ecos.sourceware.org/
https://www.FreeBSD.org/platforms/

Organizational Structure

• Security features: Mandatory Access Control (mac(9)), jails (jail(2)), ACLs, and in-kernel cryptographic device
support.

• Networking features: firewall-ing, QoS management, high-performance TCP/IP networking with support for
many extensions.

FreeBSD's in-kernel Netgraph (netgraph(4)) framework allows kernel networking modules to be connected to-
gether in flexible ways.

• Support for storage technologies: Fibre Channel, SCSI, software and hardware RAID, ATA and SATA.

FreeBSD supports a number of filesystems, and its native UFS2 filesystem supports soft updates, snapshots and
very large filesystem sizes (16TB per filesystem) [7].

FreeBSD's in-kernel GEOM (geom(4)) framework allows kernel storage modules to be composed in flexible ways.

• Over 24,000 ported applications, both commercial and open-source, managed via the FreeBSD ports collection.

2.3. Organizational Structure

FreeBSD's organizational structure is non-hierarchical.

There are essentially two kinds of contributors to FreeBSD, general users of FreeBSD, and developers with write
access (known as committers in the jargon) to the source base.

There are many thousands of contributors in the rst group; the vast majority of contributions to FreeBSD come
from individuals in this group. Commit rights (write access) to the repository are granted to individuals who con-
tribute consistently to the project. Commit rights come with additional responsibilities, and new committers are
assigned mentors to help them learn the ropes.

Figure 1. FreeBSD Organization

Conflict resolution is performed by a nine member “Core Team” that is elected from the group of committers.

FreeBSD does not have “corporate” committers. Individual committers are required to take responsibility for the
changes they introduce to the code. The FreeBSD Committer's guide [3] documents the rules and responsibilities
for committers.

FreeBSD's project model is examined in detail in [10].

2.4. FreeBSD Release Engineering Processes

FreeBSD's release engineering processes play a major role in ensuring that its released versions are of a high quality.
At any point of time, FreeBSD's volunteers support multiple code lines (Figure 2, “FreeBSD Release Branches”):

4

https://www.FreeBSD.org/cgi/man.cgi?query=mac&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=jail&sektion=2&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=netgraph&sektion=4&manpath=freebsd-release-ports
https://www.FreeBSD.org/cgi/man.cgi?query=geom&sektion=4&manpath=freebsd-release-ports
https://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/committers-guide

Building Products with FreeBSD

• New features and disruptive code enters on the development branch, also known as the -CURRENT branch.

• -STABLE branches are code lines that are branched from HEAD at regular intervals. Only tested code is allowed
onto a -STABLE branch. New features are allowed once they have been tested and stabilized in the -CURRENT
branch.

• -RELEASE branches are maintained by the FreeBSD security team. Only bug fixes for critical issues are permitted
onto -RELEASE branches.

Figure 2. FreeBSD Release Branches

Code lines are kept alive for as long as there is user and developer interest in them.

Machine architectures are grouped into “tiers”; Tier 1 architectures are fully supported by the project's release
engineering and security teams, Tier 2 architectures are supported on a best effort basis, and experimental archi-
tectures comprise Tier 3. The list of supported architectures is part of the FreeBSD documentation collection.

The release engineering team publishes a road map for future releases of FreeBSD on the project's web site. The
dates laid down in the road map are not deadlines; FreeBSD is released when its code and documentation are ready.

FreeBSD's release engineering processes are described in [14].

3. Collaborating with FreeBSD
Open-source projects like FreeBSD offer finished code of a very high quality [4]. Previous studies have examined
the effect of source code availability on software development [2].

While access to quality source code can reduce the cost of initial development, in the long-term the costs of man-
aging change begin to dominate. As computing environments change over the years and new security vulnerabil-
ities are discovered, your product too needs to change and adapt. Using open-source code is best viewed not as a
one-o activity, but as an ongoing process. The best projects to collaborate with are the ones that are live; i.e., with
an active community, clear goals and a transparent working style.

• FreeBSD has an active developer community around it. At the time of writing there are many thousands of
contributors from every populated continent in the world and over 300 individuals with write access to the
project's source repositories.

• The goals of the FreeBSD project are [6]:
• To develop a high-quality operating system for popular computer hardware, and,
• To make our work available to all under a liberal license.

• FreeBSD enjoys an open and transparent working culture. Nearly all discussion in the project happens by email,
on public mailing lists that are also archived for posterity. The project's policies are documented and maintained
under revision control. Participation in the project is open to all.

3.1. Understanding FreeBSD culture

To be able to work effectively with the FreeBSD project, you need to understand the project's culture.

Volunteer driven projects operate under different rules than for-profit corporates. A common mistake that com-
panies make when venturing into the open-source world is that of underplaying these differences.

5

https://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/committers-guide/archs.html
https://www.FreeBSD.org/releng/
http://lists.FreeBSD.org/mailman/listinfo
https://www.FreeBSD.org/internal/policies.html

Best Practices for collaborating with the FreeBSD
project

Motivation. Most contributions to FreeBSD are done voluntarily without monetary rewards entering the picture.
The factors that motivate individuals are complex, ranging from altruism, to an interest in solving the kinds of
problems that FreeBSD attempts to solve. In this environment, “elegance is never optional” [11].

The Long Term View. FreeBSD traces its roots back nearly twenty years to the work of the Computer Science
Research Group at the University of California Berkeley.1 A number of the original CSRG developers remain asso-
ciated with the project.

The project values long-term perspectives [12]. A frequent acronym encountered in the project is DTRT, which
stands for “Do The Right Thing”.

Development Processes. Computer programs are tools for communication: at one level programmers communi-
cate their intentions using a precise notation to a tool (a compiler) that translates their instructions to executable
code. At another level, the same notation is used for communication of intent between two programmers.

Formal specifications and design documents are seldom used in the project. Clear and well-written code and well-
written change logs (Figure 3, “A sample change log entry”) are used in their place. FreeBSD development happens
by “rough consensus and running code” [1].

r151864 | bde | 2005-10-29 09:34:50 -0700 (Sat, 29 Oct 2005) | 13 lines
Changed paths:
 M /head/lib/msun/src/e_rem_pio2f.c

Use double precision to simplify and optimize arg reduction for small
and medium size args too: instead of conditionally subtracting a float
17+24, 17+17+24 or 17+17+17+24 bit approximation to pi/2, always
subtract a double 33+53 bit one. The float version is now closer to
the double version than to old versions of itself -- it uses the same
33+53 bit approximation as the simplest cases in the double version,
and where the float version had to switch to the slow general case at
|x| == 2^7*pi/2, it now switches at |x| == 2^19*pi/2 the same as the
double version.

This speeds up arg reduction by a factor of 2 for |x| between 3*pi/4 and
2^7*pi/4, and by a factor of 7 for |x| between 2^7*pi/4 and 2^19*pi/4.

Figure 3. A sample change log entry

Communication between programmers is enhanced by the use of a common coding standard style(9).

Communication Channels. FreeBSD's contributors are spread across the world. Email (and to a lesser extent, IRC)
is the preferred means of communication in the project.

3.2. Best Practices for collaborating with the FreeBSD project

We now look at a few best practices for making the best use of FreeBSD in product development.

Plan for the long term
Setup processes that help in tracking the development of FreeBSD. For example:

Track FreeBSD source code. The project makes it easy to mirror its SVN repository using svnsync. Having
the complete history of the source is useful when debugging complex problems and offers valuable insight
into the intentions of the original developers. Use a capable source control system that allows you to easily
merge changes between the upstream FreeBSD code base and your own in-house code.

1FreeBSD's source repository contains a history of the project since its inception, and there are CDROMs available that contain earlier code

from the CSRG.

6

https://www.FreeBSD.org/cgi/man.cgi?query=style&sektion=9&manpath=freebsd-release-ports
https://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/committers-guide/article.html#svn-advanced-use-setting-up-svnsync
https://svnweb.freebsd.org/
http://www.mckusick.com/csrg/

Building Products with FreeBSD

Figure 4, “An annotated source listing generated using svn blame ” shows a portion of an annotated listing
of the le referenced by the change log in Figure 3, “A sample change log entry”. The ancestry of each line
of the source is clearly visible. Annotated listings showing the history of every le that is part of FreeBSD are
available on the web.

#REV #WHO #DATE #TEXT

176410 bde 2008-02-19 07:42:46 -0800 (Tue, 19 Feb 2008) #include <sys/cdefs.h>
176410 bde 2008-02-19 07:42:46 -0800 (Tue, 19 Feb 2008) __FBSDID("$FreeBSD: ↺
head/en_US.ISO8859-1/articles/building-products/article.xml 51348 2017-12-30 ↺
22:56:56Z eadler $");
 2116 jkh 1994-08-19 02:40:01 -0700 (Fri, 19 Aug 1994)
 2116 jkh 1994-08-19 02:40:01 -0700 (Fri, 19 Aug 1994) /* __ieee754_rem_pio2f↺
(x,y)
 8870 rgrimes 1995-05-29 22:51:47 -0700 (Mon, 29 May 1995) *
176552 bde 2008-02-25 05:33:20 -0800 (Mon, 25 Feb 2008) * return the ↺
remainder of x rem pi/2 in *y
176552 bde 2008-02-25 05:33:20 -0800 (Mon, 25 Feb 2008) * use double ↺
precision for everything except passing x
152535 bde 2005-11-16 18:20:04 -0800 (Wed, 16 Nov 2005) * use ↺
__kernel_rem_pio2() for large x
 2116 jkh 1994-08-19 02:40:01 -0700 (Fri, 19 Aug 1994) */
 2116 jkh 1994-08-19 02:40:01 -0700 (Fri, 19 Aug 1994)
176465 bde 2008-02-22 07:55:14 -0800 (Fri, 22 Feb 2008) #include <float.h>
176465 bde 2008-02-22 07:55:14 -0800 (Fri, 22 Feb 2008)
 2116 jkh 1994-08-19 02:40:01 -0700 (Fri, 19 Aug 1994) #include "math.h"

Figure 4. An annotated source listing generated using svn blame

Use a gatekeeper. Appoint a gatekeeper to monitor FreeBSD development, to keep an eye out for changes
that could potentially impact your products.

Report bugs upstream. If you notice bug in the FreeBSD code that you are using, le a bug report. This step
helps ensure that you do not have to x the bug the next time you take a code drop from upstream.

Leverage FreeBSD's release engineering efforts
Use code from a -STABLE development branch of FreeBSD. These development branches are formally support-
ed by FreeBSD's release engineering and security teams and comprise of tested code.

Donate code to reduce costs
A major proportion of the costs associated with developing products is that of doing maintenance. By donating
non-critical code to the project, you benefit by having your code see much wider exposure than it would
otherwise get. This in turn leads to more bugs and security vulnerabilities being ushed out and performance
anomalies being identified and xed.

Get support effectively
For products with tight deadlines, it is recommended that you hire or enter into a consulting agreement with a
developer or rm with FreeBSD experience. The FreeBSD related employment mailing list is a useful commu-
nication channel to nd talent. The FreeBSD project maintains a gallery of consultants and consulting rms
undertaking FreeBSD work. The BSD Certification Group offers certification for all the major BSD derived OSes.

For less critical needs, you can ask for help on the project mailing lists. A useful guide to follow when asking
for help is given in [13].

Publicize your involvement
You are not required to publicize your use of FreeBSD, but doing so helps both your effort as well as that of
the project.

7

https://svnweb.freebsd.org/
https://www.FreeBSD.org/support/bugreports.html
http://lists.FreeBSD.org/mailman/listinfo/freebsd-jobs
https://www.FreeBSD.org/commercial/consult_bycat.html
http://www.bsdcertification.org/
http://lists.FreeBSD.org/mailman/listinfo

Conclusion

Letting the FreeBSD community know that your company uses FreeBSD helps improve your chances of at-
tracting high quality talent. A large roster of support for FreeBSD also means more mind share for it among
developers. This in turn yields a healthier foundation for your future.

Support FreeBSD developers
Sometimes the most direct way to get a desired feature into FreeBSD is to support a developer who is already
looking at a related problem. Help can range from hardware donations to direct financial assistance. In some
countries, donations to the FreeBSD project enjoy tax benefits. The project has a dedicated donations liaison
to assist donors. The project also maintains a web page where developers list their needs.

As a policy the FreeBSD project acknowledges all contributions received on its web site.

4. Conclusion
The FreeBSD project's goals are to create and give away the source code for a high-quality operating system. By
working with the FreeBSD project you can reduce development costs and improve your time to market in a number
of product development scenarios.

We examined the characteristics of the FreeBSD project that make it an excellent choice for being part of an orga-
nization's product strategy. We then looked at the prevailing culture of the project and examined effective ways
of interacting with its developers. The article concluded with a list of best-practices that could help organizations
collaborating with the project.

Bibliography
[1] The Architectural Principles of the Internet. B. Carpenter. Copyright © 1996.

[2] How is Open-Source Affecting Software Development?. Diomidis Spinellis and Clemens Szyperski. IEEE Computer. Copy-
right © Jan/Feb 2004. IEEE Computer Society.

[3] Committer's Guide. . Copyright © 2005.

[4] Coverity study on kernel security holes in Linux and FreeBSD. . Copyright © 2005.

[5] Innovation Happens Elsewhere: Open Source as Business Strategy. Ron Goldman and Richard Gabriel. Copyright ©
2005. ISBN 1558608893. Morgan-Kaufmann.

[6] Contributing to the FreeBSD Project. Jordan Hubbard. Copyright © 1994—2005. The FreeBSD Project.

[7] Soft Updates: A Technique for Eliminating Most Synchronous Writes in the Fast Filesystem. Kirk McKusick and Gregory
Ganger. USENIX Annual Technical Conference. . Copyright © 1999.

[8] Twenty Years of Berkeley Unix: From AT&T-Owned to Freely Redistributable. Marshall Kirk McKusick. Open Sources:
Voices from the Open Source Revolution. ISBN 1-56592-582-3. O'Reilly Inc.. Copyright © 1993.

[9] Why you should use a BSD style license for your Open Source Project. Bruce Montague. The FreeBSD Project. Copyright
© 2005.

[10] A project model for the FreeBSD Project. Niklas Saers. Copyright © 2005. The FreeBSD Project.

[11] Tutorial on Good Lisp Programming Style. Peter Norvig and Kent Pitman. Copyright © 1993.

[12] Teach Yourself Programming in Ten Years. Peter Norvig. Copyright © 2001.

[13] How to ask questions the smart way. Eric Steven Raymond. Copyright © 2004.

[14] FreeBSD Release Engineering. Murray Stokely. Copyright © 2001. The FreeBSD Project.

8

https://www.FreeBSD.org/donations/
https://www.FreeBSD.org/donations/wantlist.html
https://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/contributors
http://www.ietf.org/rfc/rfc1958.txt
http://csdl.computer.org/comp/mags/so/2004/01/s1028.pdf
https://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/committers-guide
http://www.coverity.com/news/nf_news_06_27_05_story_9.html
http://dreamsongs.com/IHE/IHE.html
https://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/contributing
http://www.usenix.org/publications/library/proceedings/usenix99/mckusick.html
http://www.oreilly.com/catalog/opensources/book/kirkmck.html
http://www.oreilly.com/catalog/opensources/book/toc.html
http://www.oreilly.com/catalog/opensources/book/toc.html
https://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/bsdl-gpl/article.html
https://www.FreeBSD.org/doc/en_US.ISO8859-1/books/dev-model/book.html
http://www.norvig.com/luv-slides.ps
http://www.norvig.com/21-days.html
http://www.catb.org/~esr/faqs/smart-questions.html
https://www.FreeBSD.org/doc/en_US.ISO8859-1/articles/releng

	Building Products with FreeBSD
	Table of Contents
	1. Introduction
	1.1. Target Audience
	1.2. Article Goals
	1.3. Article Structure

	2. FreeBSD as a set of building blocks
	2.1. Building with FreeBSD
	2.2. Technologies
	2.3. Organizational Structure
	2.4. FreeBSD Release Engineering Processes

	3. Collaborating with FreeBSD
	3.1. Understanding FreeBSD culture
	3.2. Best Practices for collaborating with the FreeBSD project

	4. Conclusion
	Bibliography

