
StarPU Handbook
for StarPU 1.0.0rc1

Copyright c© 2009–2011 Université de Bordeaux 1

Copyright c© 2010, 2011, 2012 Centre National de la Recherche Scientifique

Copyright c© 2011, 2012 Institut National de Recherche en Informatique et Automatique

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

i

Table of Contents

Preface . 1

1 Introduction to StarPU . 3
1.1 Motivation . 3
1.2 StarPU in a Nutshell . 3

1.2.1 Codelet and Tasks . 3
1.2.2 StarPU Data Management Library . 4
1.2.3 Glossary . 4
1.2.4 Research Papers . 4

2 Installing StarPU . 5
2.1 Downloading StarPU . 5

2.1.1 Getting Sources . 5
2.1.2 Optional dependencies . 6

2.2 Configuration of StarPU . 6
2.2.1 Generating Makefiles and configuration scripts 6
2.2.2 Running the configuration . 6

2.3 Building and Installing StarPU . 6
2.3.1 Building . 6
2.3.2 Sanity Checks . 6
2.3.3 Installing . 6

3 Using StarPU . 7
3.1 Setting flags for compiling and linking applications 7
3.2 Running a basic StarPU application . 7
3.3 Kernel threads started by StarPU . 7
3.4 Enabling OpenCL . 8

4 Basic Examples . 9
4.1 Compiling and linking options . 9
4.2 Hello World . 9

4.2.1 Required Headers . 9
4.2.2 Defining a Codelet . 9
4.2.3 Submitting a Task . 11
4.2.4 Execution of Hello World . 12

4.3 Manipulating Data: Scaling a Vector . 12
4.3.1 Source code of Vector Scaling . 12
4.3.2 Execution of Vector Scaling . 14

4.4 Vector Scaling on an Hybrid CPU/GPU Machine 14
4.4.1 Definition of the CUDA Kernel . 14
4.4.2 Definition of the OpenCL Kernel . 15
4.4.3 Definition of the Main Code . 16
4.4.4 Execution of Hybrid Vector Scaling . 18

ii StarPU Handbook

5 Advanced Examples . 21
5.1 Using multiple implementations of a codelet 21
5.2 Enabling implementation according to capabilities 21
5.3 Task and Worker Profiling . 23
5.4 Partitioning Data . 24
5.5 Performance model example . 25
5.6 Theoretical lower bound on execution time . 27
5.7 Insert Task Utility . 28
5.8 Debugging . 29
5.9 The multiformat interface . 29
5.10 On-GPU rendering . 31
5.11 More examples . 31

6 How to optimize performance with StarPU
. 33

6.1 Data management . 33
6.2 Task submission . 33
6.3 Task priorities . 33
6.4 Task scheduling policy . 34
6.5 Performance model calibration . 34
6.6 Task distribution vs Data transfer . 35
6.7 Data prefetch . 35
6.8 Power-based scheduling . 36
6.9 Profiling . 36
6.10 CUDA-specific optimizations . 36

7 Performance feedback . 39
7.1 On-line performance feedback . 39

7.1.1 Enabling on-line performance monitoring 39
7.1.2 Per-task feedback . 39
7.1.3 Per-codelet feedback . 39
7.1.4 Per-worker feedback . 39
7.1.5 Bus-related feedback . 40
7.1.6 StarPU-Top interface . 40

7.2 Off-line performance feedback . 41
7.2.1 Generating traces with FxT . 41
7.2.2 Creating a Gantt Diagram . 42
7.2.3 Creating a DAG with graphviz . 42
7.2.4 Monitoring activity . 42

7.3 Performance of codelets . 43
7.4 Theoretical lower bound on execution time . 44

8 Tips and Tricks to know about 45
8.1 How to initialize a computation library once for each worker? . . 45

iii

9 StarPU MPI support . 47
9.1 The API . 47

9.1.1 Compilation . 47
9.1.2 Initialisation . 47
9.1.3 Communication . 47

9.2 Simple Example . 49
9.3 MPI Insert Task Utility . 51
9.4 MPI Collective Operations . 53

10 StarPU FFT support . 55
10.0.1 Compilation . 55
10.0.2 Initialisation . 55

11 C Extensions . 57
11.1 Defining Tasks . 57
11.2 Registered Data Buffers . 59
11.3 Using C Extensions Conditionally . 60

12 SOCL OpenCL Extensions 63

13 StarPU Basic API . 65
13.1 Initialization and Termination . 65
13.2 Workers’ Properties . 67
13.3 Data Library . 68

13.3.1 Introduction . 68
13.3.2 Basic Data Library API . 69
13.3.3 Access registered data from the application 71

13.4 Data Interfaces . 72
13.4.1 Registering Data . 72
13.4.2 Accessing Data Interfaces . 73

13.4.2.1 Handle . 74
13.4.2.2 Variable Data Interfaces . 74
13.4.2.3 Vector Data Interfaces . 74
13.4.2.4 Matrix Data Interfaces . 75
13.4.2.5 Block Data Interfaces . 76
13.4.2.6 BCSR Data Interfaces . 77
13.4.2.7 CSR Data Interfaces . 78

13.5 Data Partition . 79
13.5.1 Basic API . 79
13.5.2 Predefined filter functions . 80

13.5.2.1 Partitioning BCSR Data . 81
13.5.2.2 Partitioning BLAS interface . 81
13.5.2.3 Partitioning Vector Data . 81
13.5.2.4 Partitioning Block Data . 82

13.6 Codelets and Tasks . 82
13.7 Explicit Dependencies . 87
13.8 Implicit Data Dependencies . 88

iv StarPU Handbook

13.9 Performance Model API . 89
13.10 Profiling API . 91
13.11 CUDA extensions . 93
13.12 OpenCL extensions . 93

13.12.1 Writing OpenCL kernels . 93
13.12.2 Compiling OpenCL kernels . 94
13.12.3 Loading OpenCL kernels . 94
13.12.4 OpenCL statistics . 94

13.13 Cell extensions . 95
13.14 Miscellaneous helpers . 95

14 StarPU Advanced API . 97
14.1 Defining a new data interface . 97

14.1.1 Data Interface API . 97
14.1.2 An example of data interface . 98

14.2 Multiformat Data Interface . 99
14.3 Task Bundles . 99
14.4 Task Lists . 100
14.5 Defining a new scheduling policy . 101

14.5.1 Scheduling Policy API . 101
14.5.2 Source code . 103

14.6 Expert mode . 103

15 Configuring StarPU . 105
15.1 Compilation configuration . 105

15.1.1 Common configuration . 105
15.1.1.1 --enable-debug . 105
15.1.1.2 --enable-fast . 105
15.1.1.3 --enable-verbose . 105
15.1.1.4 --enable-coverage . 105

15.1.2 Configuring workers . 105
15.1.2.1 --enable-maxcpus=<number> . 105
15.1.2.2 --disable-cpu . 105
15.1.2.3 --enable-maxcudadev=<number> 105
15.1.2.4 --disable-cuda . 105
15.1.2.5 --with-cuda-dir=<path> . 105
15.1.2.6 --with-cuda-include-dir=<path> 105
15.1.2.7 --with-cuda-lib-dir=<path> . 106
15.1.2.8 --disable-cuda-memcpy-peer . 106
15.1.2.9 --enable-maxopencldev=<number> 106
15.1.2.10 --disable-opencl . 106
15.1.2.11 --with-opencl-dir=<path> . 106
15.1.2.12 --with-opencl-include-dir=<path> 106
15.1.2.13 --with-opencl-lib-dir=<path> 106
15.1.2.14 --enable-gordon . 106
15.1.2.15 --with-gordon-dir=<path> . 106
15.1.2.16 --enable-maximplementations=<number> 106

15.1.3 Advanced configuration . 106

v

15.1.3.1 --enable-perf-debug . 106
15.1.3.2 --enable-model-debug . 106
15.1.3.3 --enable-stats . 107
15.1.3.4 --enable-maxbuffers=<nbuffers> 107
15.1.3.5 --enable-allocation-cache . 107
15.1.3.6 --enable-opengl-render . 107
15.1.3.7 --enable-blas-lib=<name> . 107
15.1.3.8 --disable-starpufft . 107
15.1.3.9 --with-magma=<path> . 107
15.1.3.10 --with-fxt=<path> . 107
15.1.3.11 --with-perf-model-dir=<dir> 107
15.1.3.12 --with-mpicc=<path to mpicc> 107
15.1.3.13 --with-goto-dir=<dir> . 107
15.1.3.14 --with-atlas-dir=<dir> . 107
15.1.3.15 --with-mkl-cflags=<cflags> 107
15.1.3.16 --with-mkl-ldflags=<ldflags> 108
15.1.3.17 --disable-gcc-extensions . 108
15.1.3.18 --disable-socl . 108

15.2 Execution configuration through environment variables 108
15.2.1 Configuring workers . 108

15.2.1.1 STARPU_NCPUS – Number of CPU workers 108
15.2.1.2 STARPU_NCUDA – Number of CUDA workers 108
15.2.1.3 STARPU_NOPENCL – Number of OpenCL workers 108
15.2.1.4 STARPU_NGORDON – Number of SPU workers (Cell) . . 108
15.2.1.5 STARPU_WORKERS_CPUID – Bind workers to specific

CPUs . 108
15.2.1.6 STARPU_WORKERS_CUDAID – Select specific CUDA

devices . 109
15.2.1.7 STARPU_WORKERS_OPENCLID – Select specific OpenCL

devices . 109
15.2.2 Configuring the Scheduling engine . 109

15.2.2.1 STARPU_SCHED – Scheduling policy 109
15.2.2.2 STARPU_CALIBRATE – Calibrate performance models

. 109
15.2.2.3 STARPU_PREFETCH – Use data prefetch 109
15.2.2.4 STARPU_SCHED_ALPHA – Computation factor 110
15.2.2.5 STARPU_SCHED_BETA – Communication factor 110

15.2.3 Miscellaneous and debug . 110
15.2.3.1 STARPU_SILENT – Disable verbose mode 110
15.2.3.2 STARPU_LOGFILENAME – Select debug file name 110
15.2.3.3 STARPU_FXT_PREFIX – FxT trace location 110
15.2.3.4 STARPU_LIMIT_GPU_MEM – Restrict memory size on the

GPUs . 110
15.2.3.5 STARPU_GENERATE_TRACE – Generate a Paje trace when

StarPU is shut down . 110

vi StarPU Handbook

Appendix A Full source code for the ’Scaling a
Vector’ example . 111

A.1 Main application . 111
A.2 CPU Kernel . 113
A.3 CUDA Kernel . 114
A.4 OpenCL Kernel . 114

A.4.1 Invoking the kernel . 114
A.4.2 Source of the kernel . 115

Appendix B GNU Free Documentation License
. 117

Function Index . 125

Datatype Index . 129

Preface 1

Preface

This manual documents the usage of StarPU version 1.0.0rc1. It was last updated on 25
January 2012.

Chapter 1: Introduction to StarPU 3

1 Introduction to StarPU

1.1 Motivation

The use of specialized hardware such as accelerators or coprocessors offers an interesting
approach to overcome the physical limits encountered by processor architects. As a result,
many machines are now equipped with one or several accelerators (e.g. a GPU), in addition
to the usual processor(s). While a lot of efforts have been devoted to offload computation
onto such accelerators, very little attention as been paid to portability concerns on the one
hand, and to the possibility of having heterogeneous accelerators and processors to interact
on the other hand.

StarPU is a runtime system that offers support for heterogeneous multicore architectures,
it not only offers a unified view of the computational resources (i.e. CPUs and accelerators
at the same time), but it also takes care of efficiently mapping and executing tasks onto an
heterogeneous machine while transparently handling low-level issues such as data transfers
in a portable fashion.

1.2 StarPU in a Nutshell

From a programming point of view, StarPU is not a new language but a library that
executes tasks explicitly submitted by the application. The data that a task manipulates
are automatically transferred onto the accelerator so that the programmer does not have to
take care of complex data movements. StarPU also takes particular care of scheduling those
tasks efficiently and allows scheduling experts to implement custom scheduling policies in a
portable fashion. The target audience is typically developers of compilers or computation
libraries which want to seamlessly extend them to support heterogeneous architectures.

1.2.1 Codelet and Tasks

One of the StarPU primary data structures is the codelet. A codelet describes a computa-
tional kernel that can possibly be implemented on multiple architectures such as a CPU, a
CUDA device or a Cell’s SPU.

Another important data structure is the task. Executing a StarPU task consists in
applying a codelet on a data set, on one of the architectures on which the codelet is imple-
mented. A task thus describes the codelet that it uses, but also which data are accessed,
and how they are accessed during the computation (read and/or write). StarPU tasks are
asynchronous: submitting a task to StarPU is a non-blocking operation. The task struc-
ture can also specify a callback function that is called once StarPU has properly executed
the task. It also contains optional fields that the application may use to give hints to the
scheduler (such as priority levels).

By default, task dependencies are inferred from data dependency (sequential coherence)
by StarPU. The application can however disable sequential coherency for some data, and
dependencies be expressed by hand. A task may be identified by a unique 64-bit number
chosen by the application which we refer as a tag. Task dependencies can be enforced by
hand either by the means of callback functions, by submitting other tasks, or by express-
ing dependencies between tags (which can thus correspond to tasks that have not been
submitted yet).

4 StarPU Handbook

1.2.2 StarPU Data Management Library

Because StarPU schedules tasks at runtime, data transfers have to be done automatically
and “just-in-time” between processing units, relieving the application programmer from
explicit data transfers. Moreover, to avoid unnecessary transfers, StarPU keeps data where
it was last needed, even if was modified there, and it allows multiple copies of the same
data to reside at the same time on several processing units as long as it is not modified.

1.2.3 Glossary

A codelet records pointers to various implementations of the same theoretical function.

A memory node can be either the main RAM or GPU-embedded memory.

A bus is a link between memory nodes.

A data handle keeps track of replicates of the same data (registered by the application)
over various memory nodes. The data management library manages keeping them coherent.

The home memory node of a data handle is the memory node from which the data was
registered (usually the main memory node).

A task represents a scheduled execution of a codelet on some data handles.

A tag is a rendez-vous point. Tasks typically have their own tag, and can depend on
other tags. The value is chosen by the application.

A worker execute tasks. There is typically one per CPU computation core and one per
accelerator (for which a whole CPU core is dedicated).

A driver drives a given kind of workers. There are currently CPU, CUDA, OpenCL and
Gordon drivers. They usually start several workers to actually drive them.

A performance model is a (dynamic or static) model of the performance of a given
codelet. Codelets can have execution time performance model as well as power consumption
performance models.

A data interface describes the layout of the data: for a vector, a pointer for the start,
the number of elements and the size of elements ; for a matrix, a pointer for the start, the
number of elements per row, the offset between rows, and the size of each element ; etc. To
access their data, codelet functions are given interfaces for the local memory node replicates
of the data handles of the scheduled task.

Partitioning data means dividing the data of a given data handle (called father) into a
series of children data handles which designate various portions of the former.

A filter is the function which computes children data handles from a father data handle,
and thus describes how the partitioning should be done (horizontal, vertical, etc.)

Acquiring a data handle can be done from the main application, to safely access the
data of a data handle from its home node, without having to unregister it.

1.2.4 Research Papers

Research papers about StarPU can be found at

http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html

Notably a good overview in the research report

http://hal.archives-ouvertes.fr/inria-00467677

Chapter 2: Installing StarPU 5

2 Installing StarPU

StarPU can be built and installed by the standard means of the GNU autotools. The
following chapter is intended to briefly remind how these tools can be used to install StarPU.

2.1 Downloading StarPU

2.1.1 Getting Sources

The simplest way to get StarPU sources is to download the latest official release tarball
from https://gforge.inria.fr/frs/?group_id=1570 , or the latest nightly snapshot
from http://starpu.gforge.inria.fr/testing/ . The following documents how to get
the very latest version from the subversion repository itself, it should be needed only if you
need the very latest changes (i.e. less than a day!)

The source code is managed by a Subversion server hosted by the InriaGforge. To get
the source code, you need:

• To install the client side of the software Subversion if it is not already available on
your system. The software can be obtained from http://subversion.tigris.org .
If you are running on Windows, you will probably prefer to use TortoiseSVN from
http://tortoisesvn.tigris.org/ .

• You can check out the project’s SVN repository through anonymous access. This will
provide you with a read access to the repository.

If you need to have write access on the StarPU project, you can also choose
to become a member of the project starpu. For this, you first need to get an
account to the gForge server. You can then send a request to join the project
(https://gforge.inria.fr/project/request.php?group_id=1570).

• More information on how to get a gForge account, to become a mem-
ber of a project, or on any other related task can be obtained from the
InriaGforge at https://gforge.inria.fr/. The most important thing
is to upload your public SSH key on the gForge server (see the FAQ at
http://siteadmin.gforge.inria.fr/FAQ.html#Q6 for instructions).

You can now check out the latest version from the Subversion server:

• using the anonymous access via svn:

% svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk

• using the anonymous access via https:

% svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk

The password is anonsvn.

• using your gForge account

% svn checkout svn+ssh://<login>@scm.gforge.inria.fr/svn/starpu/trunk

The following step requires the availability of autoconf and automake to generate the
./configure script. This is done by calling ./autogen.sh. The required version for
autoconf is 2.60 or higher. You will also need makeinfo.

6 StarPU Handbook

% ./autogen.sh

If the autotools are not available on your machine or not recent enough, you can choose
to download the latest nightly tarball, which is provided with a configure script.

% wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz

2.1.2 Optional dependencies

The topology discovery library, hwloc, is not mandatory to use StarPU but strongly recom-
mended. It allows to increase performance, and to perform some topology aware scheduling.

hwloc is available in major distributions and for most OSes and can be downloaded from
http://www.open-mpi.org/software/hwloc.

2.2 Configuration of StarPU

2.2.1 Generating Makefiles and configuration scripts

This step is not necessary when using the tarball releases of StarPU. If you are using the
source code from the svn repository, you first need to generate the configure scripts and the
Makefiles.

% ./autogen.sh

2.2.2 Running the configuration

% ./configure

Details about options that are useful to give to ./configure are given in Section 15.1
[Compilation configuration], page 105.

2.3 Building and Installing StarPU

2.3.1 Building

% make

2.3.2 Sanity Checks

In order to make sure that StarPU is working properly on the system, it is also possible to
run a test suite.

% make check

2.3.3 Installing

In order to install StarPU at the location that was specified during configuration:

% make install

Libtool interface versioning information are included in libraries names (libstarpu-1.0.so,
libstarpumpi-1.0.so and libstarpufft-1.0.so).

Chapter 3: Using StarPU 7

3 Using StarPU

3.1 Setting flags for compiling and linking applications

Compiling and linking an application against StarPU may require to use specific flags or
libraries (for instance CUDA or libspe2). To this end, it is possible to use the pkg-config

tool.

If StarPU was not installed at some standard location, the path of StarPU’s library must
be specified in the PKG_CONFIG_PATH environment variable so that pkg-config can find it.
For example if StarPU was installed in $prefix_dir:

% PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig

The flags required to compile or link against StarPU are then accessible with the following
commands:

% pkg-config --cflags libstarpu-1.0 # options for the compiler

% pkg-config --libs libstarpu-1.0 # options for the linker

Also pass the --static option if the application is to be linked statically1.

3.2 Running a basic StarPU application

Basic examples using StarPU are built in the directory examples/basic_examples/ (and
installed in $prefix_dir/lib/starpu/examples/). You can for example run the example
vector_scal.

% ./examples/basic_examples/vector_scal

BEFORE : First element was 1.000000

AFTER First element is 3.140000

%

When StarPU is used for the first time, the directory $STARPU_HOME/.starpu/ is created,
performance models will be stored in that directory (STARPU_HOME defaults to $HOME)

Please note that buses are benchmarked when StarPU is launched for the first time.
This may take a few minutes, or less if hwloc is installed. This step is done only once per
user and per machine.

3.3 Kernel threads started by StarPU

StarPU automatically binds one thread per CPU core. It does not use SMT/hyperthreading
because kernels are usually already optimized for using a full core, and using hyperthreading
would make kernel calibration rather random.

Since driving GPUs is a CPU-consuming task, StarPU dedicates one core per GPU

While StarPU tasks are executing, the application is not supposed to do computations
in the threads it starts itself, tasks should be used instead.

TODO: add a StarPU function to bind an application thread (e.g. the main thread) to
a dedicated core (and thus disable the corresponding StarPU CPU worker).

1 It is still possible to use the API provided in the version 0.9 of StarPU by calling pkg-config with the
libstarpu package. Similar packages are provided for libstarpumpi and libstarpufft.

8 StarPU Handbook

3.4 Enabling OpenCL

When both CUDA and OpenCL drivers are enabled, StarPU will launch an OpenCL worker
for NVIDIA GPUs only if CUDA is not already running on them. This design choice was
necessary as OpenCL and CUDA can not run at the same time on the same NVIDIA GPU,
as there is currently no interoperability between them.

To enable OpenCL, you need either to disable CUDA when configuring StarPU:

% ./configure --disable-cuda

or when running applications:

% STARPU_NCUDA=0 ./application

OpenCL will automatically be started on any device not yet used by CUDA. So on
a machine running 4 GPUS, it is therefore possible to enable CUDA on 2 devices, and
OpenCL on the 2 other devices by doing so:

% STARPU_NCUDA=2 ./application

Chapter 4: Basic Examples 9

4 Basic Examples

4.1 Compiling and linking options

Let’s suppose StarPU has been installed in the directory $STARPU_DIR. As explained in
Section 3.1 [Setting flags for compiling and linking applications], page 7, the variable PKG_
CONFIG_PATH needs to be set. It is also necessary to set the variable LD_LIBRARY_PATH to
locate dynamic libraries at runtime.

% PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH

% LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH

The Makefile could for instance contain the following lines to define which options must
be given to the compiler and to the linker:� �
CFLAGS += $$(pkg-config --cflags libstarpu-1.0)

LDFLAGS += $$(pkg-config --libs libstarpu-1.0)
 	
Also pass the --static option if the application is to be linked statically.

4.2 Hello World

In this section, we show how to implement a simple program that submits a task to StarPU.

4.2.1 Required Headers

The starpu.h header should be included in any code using StarPU.� �
#include <starpu.h>
 	
4.2.2 Defining a Codelet� �
struct params {

int i;

float f;

};

void cpu_func(void *buffers[], void *cl_arg)

{

struct params *params = cl_arg;

printf("Hello world (params = {%i, %f})\n", params->i, params->f);

}

struct starpu_codelet cl =

{

.where = STARPU_CPU,

.cpu_funcs = { cpu_func, NULL },

.nbuffers = 0

};
 	

10 StarPU Handbook

A codelet is a structure that represents a computational kernel. Such a codelet may
contain an implementation of the same kernel on different architectures (e.g. CUDA, Cell’s
SPU, x86, ...).

The nbuffers field specifies the number of data buffers that are manipulated by the
codelet: here the codelet does not access or modify any data that is controlled by our data
management library. Note that the argument passed to the codelet (the cl_arg field of
the starpu_task structure) does not count as a buffer since it is not managed by our data
management library, but just contain trivial parameters.

We create a codelet which may only be executed on the CPUs. The where field is
a bitmask that defines where the codelet may be executed. Here, the STARPU_CPU value
means that only CPUs can execute this codelet (see Section 13.6 [Codelets and Tasks],
page 82 for more details on this field). Note that the where field is optional, when unset
its value is automatically set based on the availability of the different XXX_funcs fields.
When a CPU core executes a codelet, it calls the cpu_func function, which must have the
following prototype:

void (*cpu_func)(void *buffers[], void *cl_arg);

In this example, we can ignore the first argument of this function which gives a descrip-
tion of the input and output buffers (e.g. the size and the location of the matrices) since
there is none. The second argument is a pointer to a buffer passed as an argument to the
codelet by the means of the cl_arg field of the starpu_task structure.

Be aware that this may be a pointer to a copy of the actual buffer, and not the pointer
given by the programmer: if the codelet modifies this buffer, there is no guarantee that the
initial buffer will be modified as well: this for instance implies that the buffer cannot be
used as a synchronization medium. If synchronization is needed, data has to be registered
to StarPU, see Section 4.3 [Scaling a Vector], page 12.

Chapter 4: Basic Examples 11

4.2.3 Submitting a Task� �
void callback_func(void *callback_arg)

{

printf("Callback function (arg %x)\n", callback_arg);

}

int main(int argc, char **argv)

{

/* initialize StarPU */

starpu_init(NULL);

struct starpu_task *task = starpu_task_create();

task->cl = &cl; /* Pointer to the codelet defined above */

struct params params = { 1, 2.0f };

task->cl_arg = ¶ms;

task->cl_arg_size = sizeof(params);

task->callback_func = callback_func;

task->callback_arg = 0x42;

/* starpu task submit will be a blocking call */

task->synchronous = 1;

/* submit the task to StarPU */

starpu_task_submit(task);

/* terminate StarPU */

starpu_shutdown();

return 0;

}
 	
Before submitting any tasks to StarPU, starpu_init must be called. The NULL ar-

gument specifies that we use default configuration. Tasks cannot be submitted after the
termination of StarPU by a call to starpu_shutdown.

In the example above, a task structure is allocated by a call to starpu_task_create.
This function only allocates and fills the corresponding structure with the default settings
(see Section 13.6 [Codelets and Tasks], page 82), but it does not submit the task to StarPU.

The cl field is a pointer to the codelet which the task will execute: in other words, the
codelet structure describes which computational kernel should be offloaded on the different
architectures, and the task structure is a wrapper containing a codelet and the piece of data
on which the codelet should operate.

The optional cl_arg field is a pointer to a buffer (of size cl_arg_size) with some
parameters for the kernel described by the codelet. For instance, if a codelet implements a
computational kernel that multiplies its input vector by a constant, the constant could be
specified by the means of this buffer, instead of registering it as a StarPU data. It must
however be noted that StarPU avoids making copy whenever possible and rather passes
the pointer as such, so the buffer which is pointed at must kept allocated until the task

12 StarPU Handbook

terminates, and if several tasks are submitted with various parameters, each of them must
be given a pointer to their own buffer.

Once a task has been executed, an optional callback function is be called. While the
computational kernel could be offloaded on various architectures, the callback function is
always executed on a CPU. The callback_arg pointer is passed as an argument of the
callback. The prototype of a callback function must be:

void (*callback_function)(void *);

If the synchronous field is non-zero, task submission will be synchronous: the starpu_
task_submit function will not return until the task was executed. Note that the starpu_

shutdown method does not guarantee that asynchronous tasks have been executed before it
returns, starpu_task_wait_for_all can be used to that effect, or data can be unregistered
(starpu_data_unregister(vector_handle);), which will implicitly wait for all the tasks
scheduled to work on it, unless explicitly disabled thanks to starpu_data_set_default_

sequential_consistency_flag or starpu_data_set_sequential_consistency_flag.

4.2.4 Execution of Hello World
% make hello_world

cc $(pkg-config --cflags libstarpu-1.0) $(pkg-config --libs libstarpu-1.0) hello_world.c -o hello_world

% ./hello_world

Hello world (params = {1, 2.000000})

Callback function (arg 42)

4.3 Manipulating Data: Scaling a Vector

The previous example has shown how to submit tasks. In this section, we show how StarPU
tasks can manipulate data. The full source code for this example is given in Appendix A
[Full source code for the ’Scaling a Vector’ example], page 111.

4.3.1 Source code of Vector Scaling

Programmers can describe the data layout of their application so that StarPU is responsi-
ble for enforcing data coherency and availability across the machine. Instead of handling
complex (and non-portable) mechanisms to perform data movements, programmers only
declare which piece of data is accessed and/or modified by a task, and StarPU makes sure
that when a computational kernel starts somewhere (e.g. on a GPU), its data are available
locally.

Before submitting those tasks, the programmer first needs to declare the different pieces
of data to StarPU using the starpu_*_data_register functions. To ease the development
of applications for StarPU, it is possible to describe multiple types of data layout. A type
of data layout is called an interface. There are different predefined interfaces available in
StarPU: here we will consider the vector interface.

The following lines show how to declare an array of NX elements of type float using the
vector interface:

Chapter 4: Basic Examples 13

� �
float vector[NX];

starpu_data_handle_t vector_handle;

starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,

sizeof(vector[0]));
 	
The first argument, called the data handle, is an opaque pointer which designates the

array in StarPU. This is also the structure which is used to describe which data is used by
a task. The second argument is the node number where the data originally resides. Here it
is 0 since the vector array is in the main memory. Then comes the pointer vector where
the data can be found in main memory, the number of elements in the vector and the size
of each element. The following shows how to construct a StarPU task that will manipulate
the vector and a constant factor.� �
float factor = 3.14;

struct starpu_task *task = starpu_task_create();

task->cl = &cl; /* Pointer to the codelet defined below */

task->handles[0] = vector_handle; /* First parameter of the codelet */

task->cl_arg = &factor;

task->cl_arg_size = sizeof(factor);

task->synchronous = 1;

starpu_task_submit(task);
 	
Since the factor is a mere constant float value parameter, it does not need a preliminary

registration, and can just be passed through the cl_arg pointer like in the previous example.
The vector parameter is described by its handle. There are two fields in each element of
the buffers array. handle is the handle of the data, and mode specifies how the kernel will
access the data (STARPU_R for read-only, STARPU_W for write-only and STARPU_RW for read
and write access).

The definition of the codelet can be written as follows:� �
void scal_cpu_func(void *buffers[], void *cl_arg)

{

unsigned i;

float *factor = cl_arg;

/* length of the vector */

unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);

/* CPU copy of the vector pointer */

float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);

for (i = 0; i < n; i++)

val[i] *= *factor;

}

struct starpu_codelet cl = {

.where = STARPU_CPU,

.cpu_funcs = { scal_cpu_func, NULL },

.nbuffers = 1,

.modes = { STARPU_RW }

};
 	

14 StarPU Handbook

The first argument is an array that gives a description of all the buffers passed in the
task->handles array. The size of this array is given by the nbuffers field of the codelet
structure. For the sake of genericity, this array contains pointers to the different interfaces
describing each buffer. In the case of the vector interface, the location of the vector (resp.
its length) is accessible in the ptr (resp. nx) of this array. Since the vector is accessed in a
read-write fashion, any modification will automatically affect future accesses to this vector
made by other tasks.

The second argument of the scal_cpu_func function contains a pointer to the parame-
ters of the codelet (given in task->cl_arg), so that we read the constant factor from this
pointer.

4.3.2 Execution of Vector Scaling
% make vector_scal

cc $(pkg-config --cflags libstarpu-1.0) $(pkg-config --libs libstarpu-1.0) vector_scal.c -o vector_scal

% ./vector_scal

0.000000 3.000000 6.000000 9.000000 12.000000

4.4 Vector Scaling on an Hybrid CPU/GPU Machine

Contrary to the previous examples, the task submitted in this example may not only be
executed by the CPUs, but also by a CUDA device.

4.4.1 Definition of the CUDA Kernel

The CUDA implementation can be written as follows. It needs to be compiled with a
CUDA compiler such as nvcc, the NVIDIA CUDA compiler driver. It must be noted that
the vector pointer returned by STARPU VECTOR GET PTR is here a pointer in GPU
memory, so that it can be passed as such to the vector_mult_cuda kernel call.

Chapter 4: Basic Examples 15

� �
#include <starpu.h>

#include <starpu_cuda.h>

static __global__ void vector_mult_cuda(float *val, unsigned n,

float factor)

{

unsigned i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n)

val[i] *= factor;

}

extern "C" void scal_cuda_func(void *buffers[], void *_args)

{

float *factor = (float *)_args;

/* length of the vector */

unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);

/* CUDA copy of the vector pointer */

float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);

unsigned threads_per_block = 64;

unsigned nblocks = (n + threads_per_block-1) / threads_per_block;

vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *fac-

tor);

cudaStreamSynchronize(starpu_cuda_get_local_stream());

}
 	

4.4.2 Definition of the OpenCL Kernel

The OpenCL implementation can be written as follows. StarPU provides tools to compile
a OpenCL kernel stored in a file.� �
__kernel void vector_mult_opencl(__global float* val, int nx, float factor)

{

const int i = get_global_id(0);

if (i < nx) {

val[i] *= factor;

}

}
 	

Contrary to CUDA and CPU, STARPU_VECTOR_GET_DEV_HANDLE has to be used, which
returns a cl_mem (which is not a device pointer, but an OpenCL handle), which can be
passed as such to the OpenCL kernel. The difference is important when using partitioning,
see Section 5.4 [Partitioning Data], page 24.

16 StarPU Handbook

� �
#include <starpu.h>

#include <starpu_opencl.h>

extern struct starpu_opencl_program programs;

void scal_opencl_func(void *buffers[], void *_args)

{

float *factor = _args;

int id, devid, err;

cl_kernel kernel;

cl_command_queue queue;

cl_event event;

/* length of the vector */

unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);

/* OpenCL copy of the vector pointer */

cl_mem val = (cl_mem) STARPU_VECTOR_GET_DEV_HANDLE(buffers[0]);

id = starpu_worker_get_id();

devid = starpu_worker_get_devid(id);

err = starpu_opencl_load_kernel(&kernel, &queue, &programs,

"vector_mult_opencl", devid); /* Name of the codelet defined above */

if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);

err = clSetKernelArg(kernel, 0, sizeof(val), &val);

err |= clSetKernelArg(kernel, 1, sizeof(n), &n);

err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);

if (err) STARPU_OPENCL_REPORT_ERROR(err);

{

size_t global=1;

size_t local=1;

err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);

if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);

}

clFinish(queue);

starpu_opencl_collect_stats(event);

clReleaseEvent(event);

starpu_opencl_release_kernel(kernel);

}
 	

4.4.3 Definition of the Main Code

The CPU implementation is the same as in the previous section.

Here is the source of the main application. You can notice the value of the field where for
the codelet. We specify STARPU_CPU|STARPU_CUDA|STARPU_OPENCL to indicate to StarPU
that the codelet can be executed either on a CPU or on a CUDA or an OpenCL device.

Chapter 4: Basic Examples 17

� �
#include <starpu.h>

#define NX 2048

extern void scal_cuda_func(void *buffers[], void *_args);

extern void scal_cpu_func(void *buffers[], void *_args);

extern void scal_opencl_func(void *buffers[], void *_args);

/* Definition of the codelet */

static struct starpu_codelet cl = {

.where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* It can be executed on a CPU, */

/* on a CUDA device, or on an OpenCL device */

.cuda_funcs = { scal_cuda_func, NULL},

.cpu_funcs = {scal_cpu_func, NULL },

.opencl_funcs = { scal_opencl_func, NULL },

.nbuffers = 1,

.modes = { STARPU_RW }

}

#ifdef STARPU_USE_OPENCL

/* The compiled version of the OpenCL program */

struct starpu_opencl_program programs;

#endif

int main(int argc, char **argv)

{

float *vector;

int i, ret;

float factor=3.0;

struct starpu_task *task;

starpu_data_handle_t vector_handle;

starpu_init(NULL); /* Initialising StarPU */

#ifdef STARPU_USE_OPENCL

starpu_opencl_load_opencl_from_file(

"examples/basic_examples/vector_scal_opencl_codelet.cl",

&programs, NULL);

#endif

vector = malloc(NX*sizeof(vector[0]));

assert(vector);

for(i=0 ; i<NX ; i++) vector[i] = i;
 	� �
/* Registering data within StarPU */

starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,

NX, sizeof(vector[0]));

/* Definition of the task */

task = starpu_task_create();

task->cl = &cl;

task->handles[0] = vector_handle;

task->cl_arg = &factor;

task->cl_arg_size = sizeof(factor);
 	

18 StarPU Handbook

� �
/* Submitting the task */

ret = starpu_task_submit(task);

if (ret == -ENODEV) {

fprintf(stderr, "No worker may execute this task\n");

return 1;

}

/* Waiting for its termination */

starpu_task_wait_for_all();

/* Update the vector in RAM */

starpu_data_acquire(vector_handle, STARPU_R);
 	� �
/* Access the data */

for(i=0 ; i<NX; i++) {

fprintf(stderr, "%f ", vector[i]);

}

fprintf(stderr, "\n");

/* Release the RAM view of the data before unregistering it and shutting down StarPU */

starpu_data_release(vector_handle);

starpu_data_unregister(vector_handle);

starpu_shutdown();

return 0;

}
 	
4.4.4 Execution of Hybrid Vector Scaling

The Makefile given at the beginning of the section must be extended to give the rules to
compile the CUDA source code. Note that the source file of the OpenCL kernel does not
need to be compiled now, it will be compiled at run-time when calling the function starpu_

opencl_load_opencl_from_file() (see [starpu opencl load opencl from file], page 94).� �
CFLAGS += $(shell pkg-config --cflags libstarpu-1.0)

LDFLAGS += $(shell pkg-config --libs libstarpu-1.0)

CC = gcc

vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o

%.o: %.cu

nvcc $(CFLAGS) $< -c $

clean:

rm -f vector_scal *.o
 	
% make

and to execute it, with the default configuration:

% ./vector_scal

0.000000 3.000000 6.000000 9.000000 12.000000

or for example, by disabling CPU devices:

% STARPU_NCPUS=0 ./vector_scal

0.000000 3.000000 6.000000 9.000000 12.000000

Chapter 4: Basic Examples 19

or by disabling CUDA devices (which may permit to enable the use of OpenCL, see
Section 3.4 [Enabling OpenCL], page 8):

% STARPU_NCUDA=0 ./vector_scal

0.000000 3.000000 6.000000 9.000000 12.000000

Chapter 5: Advanced Examples 21

5 Advanced Examples

5.1 Using multiple implementations of a codelet

One may want to write multiple implementations of a codelet for a single type of device
and let StarPU choose which one to run. As an example, we will show how to use SSE to
scale a vector. The codelet can be written as follows :� �
#include <xmmintrin.h>

void scal_sse_func(void *buffers[], void *cl_arg)

{

float *vector = (float *) STARPU_VECTOR_GET_PTR(buffers[0]);

unsigned int n = STARPU_VECTOR_GET_NX(buffers[0]);

unsigned int n_iterations = n/4;

if (n % 4 != 0)

n_iterations++;

__m128 *VECTOR = (__m128*) vector;

__m128 factor __attribute__((aligned(16)));

factor = _mm_set1_ps(*(float *) cl_arg);

unsigned int i;

for (i = 0; i < n_iterations; i++)

VECTOR[i] = _mm_mul_ps(factor, VECTOR[i]);

}
 	� �
struct starpu_codelet cl = {

.where = STARPU_CPU,

.cpu_funcs = { scal_cpu_func, scal_sse_func, NULL },

.nbuffers = 1,

.modes = { STARPU_RW }

};
 	
Schedulers which are multi-implementation aware (only dmda, heft and pheft for now)

will use the performance models of all the implementations it was given, and pick the one
that seems to be the fastest.

5.2 Enabling implementation according to capabilities

Some implementations may not run on some devices. For instance, some CUDA devices do
not support double floating point precision, and thus the kernel execution would just fail;
or the device may not have enough shared memory for the implementation being used. The
can_execute field of the struct starpu_codelet structure permits to express this. For
instance:

22 StarPU Handbook

� �
static int can_execute(unsigned workerid, struct starpu_task *task, unsigned nimpl)

{

const struct cudaDeviceProp *props;

if (starpu_worker_get_type(workerid) == STARPU_CPU_WORKER)

return 1;

/* Cuda device */

props = starpu_cuda_get_device_properties(workerid);

if (props->major >= 2 || props->minor >= 3)

/* At least compute capability 1.3, supports doubles */

return 1;

/* Old card, does not support doubles */

return 0;

}

struct starpu_codelet cl = {

.where = STARPU_CPU|STARPU_CUDA,

.can_execute = can_execute,

.cpu_funcs = {cpu_func, NULL },

.cuda_funcs = { gpu_func, NULL }

.nbuffers = 1,

.modes = { STARPU_RW }

};
 	

This can be essential e.g. when running on a machine which mixes various models of
CUDA devices, to take benefit from the new models without crashing on old models.

Note: the can_execute function is called by the scheduler each time it tries to match
a task with a worker, and should thus be very fast. The starpu_cuda_get_device_

properties provides a quick access to CUDA properties of CUDA devices to achieve such
efficiency.

Another example is compiling CUDA code for various compute capabilities, resulting
with two CUDA functions, e.g. scal_gpu_13 for compute capability 1.3, and scal_gpu_20

for compute capability 2.0. Both functions can be provided to StarPU by using cuda_funcs,
and can_execute can then be used to rule out the scal_gpu_20 variant on a CUDA device
which will not be able to execute it:

Chapter 5: Advanced Examples 23

� �
static int can_execute(unsigned workerid, struct starpu_task *task, unsigned nimpl)

{

const struct cudaDeviceProp *props;

if (starpu_worker_get_type(workerid) == STARPU_CPU_WORKER)

return 1;

/* Cuda device */

if (nimpl == 0)

/* Trying to execute the 1.3 capability variant, we assume it is ok in all cases. */

return 1;

/* Trying to execute the 2.0 capability variant, check that the card can do it. */

props = starpu_cuda_get_device_properties(workerid);

if (props->major >= 2 || props->minor >= 0)

/* At least compute capability 2.0, can run it */

return 1;

/* Old card, does not support 2.0, will not be able to execute the 2.0 variant. */

return 0;

}

struct starpu_codelet cl = {

.where = STARPU_CPU|STARPU_CUDA,

.can_execute = can_execute,

.cpu_funcs = { cpu_func, NULL },

.cuda_funcs = { scal_gpu_13, scal_gpu_20, NULL },

.nbuffers = 1,

.modes = { STARPU_RW }

};
 	
Note: the most generic variant should be provided first, as some schedulers are not able

to try the different variants.

5.3 Task and Worker Profiling

A full example showing how to use the profiling API is available in the StarPU sources in
the directory examples/profiling/.� �
struct starpu_task *task = starpu_task_create();

task->cl = &cl;

task->synchronous = 1;

/* We will destroy the task structure by hand so that we can

* query the profiling info before the task is destroyed. */

task->destroy = 0;

/* Submit and wait for completion (since synchronous was set to 1) */

starpu_task_submit(task);

/* The task is finished, get profiling information */

struct starpu_task_profiling_info *info = task->profiling_info;

/* How much time did it take before the task started ? */

double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);

/* How long was the task execution ? */

double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);

/* We don’t need the task structure anymore */

starpu_task_destroy(task);
 	

24 StarPU Handbook

� �
/* Display the occupancy of all workers during the test */

int worker;

for (worker = 0; worker < starpu_worker_get_count(); worker++)

{

struct starpu_worker_profiling_info worker_info;

int ret = starpu_worker_get_profiling_info(worker, &worker_info);

STARPU_ASSERT(!ret);

double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);

double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);

double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);

float executing_ratio = 100.0*executing_time/total_time;

float sleeping_ratio = 100.0*sleeping_time/total_time;

char workername[128];

starpu_worker_get_name(worker, workername, 128);

fprintf(stderr, "Worker %s:\n", workername);

fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);

fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,

executing_ratio);

fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,

sleeping_ratio);

}
 	

5.4 Partitioning Data

An existing piece of data can be partitioned in sub parts to be used by different tasks, for
instance:� �
int vector[NX];

starpu_data_handle_t handle;

/* Declare data to StarPU */

starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));

/* Partition the vector in PARTS sub-vectors */

starpu_filter f =

{

.filter_func = starpu_block_filter_func_vector,

.nchildren = PARTS

};

starpu_data_partition(handle, &f);
 	

The task submission then uses starpu_data_get_sub_data to retrive the sub-handles
to be passed as tasks parameters.

Chapter 5: Advanced Examples 25

� �
/* Submit a task on each sub-vector */

for (i=0; i<starpu_data_get_nb_children(handle); i++) {

/* Get subdata number i (there is only 1 dimension) */

starpu_data_handle_t sub_handle = starpu_data_get_sub_data(handle, 1, i);

struct starpu_task *task = starpu_task_create();

task->handles[0] = sub_handle;

task->cl = &cl;

task->synchronous = 1;

task->cl_arg = &factor;

task->cl_arg_size = sizeof(factor);

starpu_task_submit(task);

}
 	
Partitioning can be applied several times, see examples/basic_examples/mult.c and

examples/filters/.

Wherever the whole piece of data is already available, the partitioning will be done
in-place, i.e. without allocating new buffers but just using pointers inside the existing
copy. This is particularly important to be aware of when using OpenCL, wherethe kernel
parameters are not pointers, but handles. The kernel thus needs to be also passed the offset
within the OpenCL buffer:� �
void opencl_func(void *buffers[], void *cl_arg)

{

cl_mem vector = (cl_mem) STARPU_VECTOR_GET_DEV_HANDLE(buffers[0]);

unsigned offset = STARPU_BLOCK_GET_OFFSET(buffers[0]);

...

clSetKernelArg(kernel, 0, sizeof(vector), &vector);

clSetKernelArg(kernel, 1, sizeof(offset), &offset);

...

}
 	
And the kernel has to shift from the pointer passed by the OpenCL driver:� �

__kernel void opencl_kernel(__global int *vector, unsigned offset)

{

block = (__global void *)block + offset;

...

}
 	
5.5 Performance model example

To achieve good scheduling, StarPU scheduling policies need to be able to estimate in
advance the duration of a task. This is done by giving to codelets a performance model, by
defining a starpu_perfmodel structure and providing its address in the model field of the
struct starpu_codelet structure. The symbol and type fields of starpu_perfmodel are
mandatory, to give a name to the model, and the type of the model, since there are several
kinds of performance models.

• Measured at runtime (STARPU_HISTORY_BASED model type). This assumes that for a
given set of data input/output sizes, the performance will always be about the same.

26 StarPU Handbook

This is very true for regular kernels on GPUs for instance (<0.1% error), and just a
bit less true on CPUs (~=1% error). This also assumes that there are few different
sets of data input/output sizes. StarPU will then keep record of the average time
of previous executions on the various processing units, and use it as an estimation.
History is done per task size, by using a hash of the input and ouput sizes as an
index. It will also save it in ~/.starpu/sampling/codelets for further executions,
and can be observed by using the starpu_perfmodel_display command, or drawn
by using thestarpu_perfmodel_plot. The models are indexed by machine name.
To share the models between machines (e.g. for a homogeneous cluster), use export

STARPU_HOSTNAME=some_global_name. Measurements are only done when using a task
scheduler which makes use of it, such as heft or dmda.

The following is a small code example.

If e.g. the code is recompiled with other compilation options, or several variants of the
code are used, the symbol string should be changed to reflect that, in order to recalibrate
a new model from zero. The symbol string can even be constructed dynamically at
execution time, as long as this is done before submitting any task using it.� �
static struct starpu_perfmodel mult_perf_model = {

.type = STARPU_HISTORY_BASED,

.symbol = "mult_perf_model"

};

struct starpu_codelet cl = {

.where = STARPU_CPU,

.cpu_funcs = { cpu_mult, NULL },

.nbuffers = 3,

.modes = { STARPU_R, STARPU_R, STARPU_W },

/* for the scheduling policy to be able to use performance models */

.model = &mult_perf_model

};
 	
• Measured at runtime and refined by regression (STARPU_*REGRESSION_BASED

model type). This still assumes performance regularity, but can work with
various data input sizes, by applying regression over observed execution
times. STARPU REGRESSION BASED uses an a*n^b regression form,
STARPU NL REGRESSION BASED uses an a*n^b+c (more precise than
STARPU REGRESSION BASED, but costs a lot more to compute). For instance,
tests/perfmodels/regression_based.c uses a regression-based performance model
for the memset operation. Of course, the application has to issue tasks with varying
size so that the regression can be computed. StarPU will not trust the regression
unless there is at least 10% difference between the minimum and maximum observed
input size. For non-linear regression, since computing it is quite expensive, it is only
done at termination of the application. This means that the first execution uses
history-based performance model to perform scheduling.

• Provided as an estimation from the application itself (STARPU_COMMON model type
and cost_function field), see for instance examples/common/blas_model.h and
examples/common/blas_model.c.

• Provided explicitly by the application (STARPU_PER_ARCH model type): the .per_

Chapter 5: Advanced Examples 27

arch[arch][nimpl].cost_function fields have to be filled with pointers to functions
which return the expected duration of the task in micro-seconds, one per architecture.

For the STARPU_HISTORY_BASED and STARPU_*REGRESSION_BASE, the total size of task
data (both input and output) is used as an index by default. The size_base field of struct
starpu_perfmodel however permits the application to override that, when for instance some
of the data do not matter for task cost (e.g. mere reference table), or when using sparse
structures (in which case it is the number of non-zeros which matter), or when there is some
hidden parameter such as the number of iterations, etc.

How to use schedulers which can benefit from such performance model is explained in
Section 6.4 [Task scheduling policy], page 34.

The same can be done for task power consumption estimation, by setting the power_

model field the same way as the model field. Note: for now, the application has to give to
the power consumption performance model a name which is different from the execution
time performance model.

The application can request time estimations from the StarPU performance models by
filling a task structure as usual without actually submitting it. The data handles can be
created by calling starpu_data_register functions with a NULL pointer (and need to be
unregistered as usual) and the desired data sizes. The starpu_task_expected_length and
starpu_task_expected_power functions can then be called to get an estimation of the task
duration on a given arch. starpu_task_destroy needs to be called to destroy the dummy
task afterwards. See tests/perfmodels/regression_based.c for an example.

5.6 Theoretical lower bound on execution time

For kernels with history-based performance models, StarPU can very easily provide a the-
oretical lower bound for the execution time of a whole set of tasks. See for instance
examples/lu/lu_example.c: before submitting tasks, call starpu_bound_start, and after
complete execution, call starpu_bound_stop. starpu_bound_print_lp or starpu_bound_
print_mps can then be used to output a Linear Programming problem corresponding to the
schedule of your tasks. Run it through lp_solve or any other linear programming solver,
and that will give you a lower bound for the total execution time of your tasks. If StarPU
was compiled with the glpk library installed, starpu_bound_compute can be used to solve
it immediately and get the optimized minimum, in ms. Its integer parameter allows to
decide whether integer resolution should be computed and returned too.

The deps parameter tells StarPU whether to take tasks and implicit data dependencies
into account. It must be understood that the linear programming problem size is quadratic
with the number of tasks and thus the time to solve it will be very long, it could be minutes
for just a few dozen tasks. You should probably use lp_solve -timeout 1 test.pl -wmps

test.mps to convert the problem to MPS format and then use a better solver, glpsol might
be better than lp_solve for instance (the --pcost option may be useful), but sometimes
doesn’t manage to converge. cbc might look slower, but it is parallel. Be sure to try at least
all the -B options of lp_solve. For instance, we often just use lp_solve -cc -B1 -Bb -Bg

-Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi , and the -gr option can also be quite useful.

Setting deps to 0 will only take into account the actual computations on processing
units. It however still properly takes into account the varying performances of kernels and

28 StarPU Handbook

processing units, which is quite more accurate than just comparing StarPU performances
with the fastest of the kernels being used.

The prio parameter tells StarPU whether to simulate taking into account the priorities
as the StarPU scheduler would, i.e. schedule prioritized tasks before less prioritized tasks,
to check to which extend this results to a less optimal solution. This increases even more
computation time.

Note that for simplicity, all this however doesn’t take into account data transfers, which
are assumed to be completely overlapped.

5.7 Insert Task Utility

StarPU provides the wrapper function starpu_insert_task to ease the creation and sub-
mission of tasks.

[Function]int starpu_insert_task (struct starpu codelet *cl , ...)
Create and submit a task corresponding to cl with the following arguments. The
argument list must be zero-terminated.

The arguments following the codelets can be of the following types:

• STARPU_R, STARPU_W, STARPU_RW, STARPU_SCRATCH, STARPU_REDUX an access
mode followed by a data handle;

• STARPU_VALUE followed by a pointer to a constant value and the size of the
constant;

• STARPU_CALLBACK followed by a pointer to a callback function;

• STARPU_CALLBACK_ARG followed by a pointer to be given as an argument to the
callback function;

• STARPU_CALLBACK_WITH_ARG followed by two pointers: one to a callback func-
tion, and the other to be given as an argument to the callback function; this is
equivalent to using both STARPU_CALLBACK and STARPU_CALLBACK_WITH_ARG

• STARPU_PRIORITY followed by a integer defining a priority level.

Parameters to be passed to the codelet implementation are defined through the type
STARPU_VALUE. The function starpu_unpack_cl_args must be called within the
codelet implementation to retrieve them.

Here the implementation of the codelet:
void func_cpu(void *descr[], void *_args)

{

int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);

float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);

int ifactor;

float ffactor;

starpu_unpack_cl_args(_args, &ifactor, &ffactor);

*x0 = *x0 * ifactor;

*x1 = *x1 * ffactor;

}

struct starpu_codelet mycodelet = {

.where = STARPU_CPU,

Chapter 5: Advanced Examples 29

.cpu_funcs = { func_cpu, NULL },

.nbuffers = 2,

.modes = { STARPU_RW, STARPU_RW }

};

And the call to the starpu_insert_task wrapper:
starpu_insert_task(&mycodelet,

STARPU_VALUE, &ifactor, sizeof(ifactor),

STARPU_VALUE, &ffactor, sizeof(ffactor),

STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],

0);

The call to starpu_insert_task is equivalent to the following code:
struct starpu_task *task = starpu_task_create();

task->cl = &mycodelet;

task->handles[0] = data_handles[0];

task->handles[1] = data_handles[1];

char *arg_buffer;

size_t arg_buffer_size;

starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,

STARPU_VALUE, &ifactor, sizeof(ifactor),

STARPU_VALUE, &ffactor, sizeof(ffactor),

0);

task->cl_arg = arg_buffer;

task->cl_arg_size = arg_buffer_size;

int ret = starpu_task_submit(task);

If some part of the task insertion depends on the value of some computation, the STARPU_
DATA_ACQUIRE_CB macro can be very convenient. For instance, assuming that the index
variable i was registered as handle i_handle:

/* Compute which portion we will work on, e.g. pivot */

starpu_insert_task(&which_index, STARPU_W, i_handle, 0);

/* And submit the corresponding task */

STARPU_DATA_ACQUIRE_CB(i_handle, STARPU_R, starpu_insert_task(&work, STARPU_RW, A_handle[i], 0));

The STARPU_DATA_ACQUIRE_CB macro submits an asynchronous request for acquiring
data i for the main application, and will execute the code given as third parameter when it
is acquired. In other words, as soon as the value of i computed by the which_index codelet
can be read, the portion of code passed as third parameter of STARPU_DATA_ACQUIRE_CB
will be executed, and is allowed to read from i to use it e.g. as an index. Note that this
macro is only avaible when compiling StarPU with the compiler gcc.

5.8 Debugging

StarPU provides several tools to help debugging aplications. Execution traces can be gen-
erated and displayed graphically, see Section 7.2.1 [Generating traces], page 41. Some gdb
helpers are also provided to show the whole StarPU state:

(gdb) source tools/gdbinit

(gdb) help starpu

5.9 The multiformat interface

It may be interesting to represent the same piece of data using two different data structures
: one that would only be used on CPUs, and one that would only be used on GPUs. This
can be done by using the multiformat interface. StarPU will be able to convert data from

30 StarPU Handbook

one data structure to the other when needed. Note that the heft scheduler is the only one
optimized for this interface. The user must provide StarPU with conversion codelets :� �
#define NX 1024

struct point array_of_structs[NX];

starpu_data_handle_t handle;

/*

* The conversion of a piece of data is itself a task, though it is created,

* submitted and destroyed by StarPU internals and not by the user. Therefore,

* we have to define two codelets.

* Note that for now the conversion from the CPU format to the GPU format has to

* be executed on the GPU, and the conversion from the GPU to the CPU has to be

* executed on the CPU.

*/

#ifdef STARPU_USE_OPENCL

void cpu_to_opencl_opencl_func(void *buffers[], void *args);

struct starpu_codelet cpu_to_opencl_cl = {

.where = STARPU_OPENCL,

.opencl_funcs = { cpu_to_opencl_opencl_func, NULL },

.nbuffers = 1,

.modes = { STARPU_RW }

};

void opencl_to_cpu_func(void *buffers[], void *args);

struct starpu_codelet opencl_to_cpu_cl = {

.where = STARPU_CPU,

.cpu_funcs = { opencl_to_cpu_func, NULL },

.nbuffers = 1,

.modes = { STARPU_RW }

};

#endif

struct starpu_multiformat_data_interface_ops format_ops = {

#ifdef STARPU_USE_OPENCL

.opencl_elemsize = 2 * sizeof(float),

.cpu_to_opencl_cl = &cpu_to_opencl_cl,

.opencl_to_cpu_cl = &opencl_to_cpu_cl,

#endif

.cpu_elemsize = 2 * sizeof(float),

...

};

starpu_multiformat_data_register(handle, 0, &array_of_structs, NX, &format_ops);
 	

Kernels can be written almost as for any other interface. Note that
STARPU MULTIFORMAT GET PTR shall only be used for CPU kernels. CUDA kernels
must use STARPU MULTIFORMAT GET CUDA PTR, and OpenCL kernels must use
STARPU MULTIFORMAT GET OPENCL PTR. STARPU MULTIFORMAT GET NX
may be used in any kind of kernel.

Chapter 5: Advanced Examples 31

� �
static void

multiformat_scal_cpu_func(void *buffers[], void *args)

{

struct point *aos;

unsigned int n;

aos = STARPU_MULTIFORMAT_GET_PTR(buffers[0]);

n = STARPU_MULTIFORMAT_GET_NX(buffers[0]);

...

}

extern "C" void multiformat_scal_cuda_func(void *buffers[], void *_args)

{

unsigned int n;

struct struct_of_arrays *soa;

soa = (struct struct_of_arrays *) STARPU_MULTIFORMAT_GET_CUDA_PTR(buffers[0]);

n = STARPU_MULTIFORMAT_GET_NX(buffers[0]);

...

}
 	
A full example may be found in examples/basic_examples/multiformat.c.

5.10 On-GPU rendering

Graphical-oriented applications need to draw the result of their computations, typically on
the very GPU where these happened. Technologies such as OpenGL/CUDA interoperability
permit to let CUDA directly work on the OpenGL buffers, making them thus immediately
ready for drawing, by mapping OpenGL buffer, textures or renderbuffer objects into CUDA.
To achieve this with StarPU, it simply needs to be given the CUDA pointer at registration,
for instance:� �
for (workerid = 0; workerid < starpu_worker_get_count(); workerid++)

if (starpu_worker_get_type(workerid) == STARPU_CUDA_WORKER)

break;

cudaSetDevice(starpu_worker_get_devid(workerid));

cudaGraphicsResourceGetMappedPointer((void**)&output, &num_bytes, resource);

starpu_vector_data_register(&handle, starpu_worker_get_memory_node(workerid), output, num_bytes / sizeof(float4), sizeof(float4));

starpu_insert_task(&cl, STARPU_RW, handle, 0);

starpu_data_unregister(handle);

cudaSetDevice(starpu_worker_get_devid(workerid));

cudaGraphicsUnmapResources(1, &resource, 0);

/* Now display it */
 	
5.11 More examples

More examples are available in the StarPU sources in the examples/ directory. Simple
examples include:

32 StarPU Handbook

incrementer/:
Trivial incrementation test.

basic_examples/:
Simple documented Hello world (as shown in Section 4.2 [Hello World],
page 9), vector/scalar product (as shown in Section 4.4 [Vector Scaling on an
Hybrid CPU/GPU Machine], page 14), matrix product examples (as shown
in Section 5.5 [Performance model example], page 25), an example using the
blocked matrix data interface, an example using the variable data interface,
and an example using different formats on CPUs and GPUs.

matvecmult/:
OpenCL example from NVidia, adapted to StarPU.

axpy/: AXPY CUBLAS operation adapted to StarPU.

fortran/: Example of Fortran bindings.

More advanced examples include:

filters/: Examples using filters, as shown in Section 5.4 [Partitioning Data], page 24.

lu/: LU matrix factorization, see for instance xlu_implicit.c

cholesky/:
Cholesky matrix factorization, see for instance cholesky_implicit.c.

Chapter 6: How to optimize performance with StarPU 33

6 How to optimize performance with StarPU

TODO: improve!

Simply encapsulating application kernels into tasks already permits to seamlessly support
CPU and GPUs at the same time. To achieve good performance, a few additional changes
are needed.

6.1 Data management

When the application allocates data, whenever possible it should use the starpu_malloc

function, which will ask CUDA or OpenCL to make the allocation itself and pin the cor-
responding allocated memory. This is needed to permit asynchronous data transfer, i.e.
permit data transfer to overlap with computations. Otherwise, the trace will show that the
DriverCopyAsync state takes a lot of time, this is because CUDA or OpenCL then reverts
to synchronous transfers.

By default, StarPU leaves replicates of data wherever they were used, in case they will
be re-used by other tasks, thus saving the data transfer time. When some task modifies
some data, all the other replicates are invalidated, and only the processing unit which ran
that task will have a valid replicate of the data. If the application knows that this data will
not be re-used by further tasks, it should advise StarPU to immediately replicate it to a
desired list of memory nodes (given through a bitmask). This can be understood like the
write-through mode of CPU caches.� �
starpu_data_set_wt_mask(img_handle, 1<<0);
 	

will for instance request to always automatically transfer a replicate into the main mem-
ory (node 0), as bit 0 of the write-through bitmask is being set.� �
starpu_data_set_wt_mask(img_handle, ~0U);
 	

will request to always automatically broadcast the updated data to all memory nodes.

6.2 Task submission

To let StarPU make online optimizations, tasks should be submitted asynchronously as
much as possible. Ideally, all the tasks should be submitted, and mere calls to starpu_

task_wait_for_all or starpu_data_unregister be done to wait for termination. StarPU
will then be able to rework the whole schedule, overlap computation with communication,
manage accelerator local memory usage, etc.

6.3 Task priorities

By default, StarPU will consider the tasks in the order they are submitted by the application.
If the application programmer knows that some tasks should be performed in priority (for
instance because their output is needed by many other tasks and may thus be a bottleneck
if not executed early enough), the priority field of the task structure should be set to
transmit the priority information to StarPU.

34 StarPU Handbook

6.4 Task scheduling policy

By default, StarPU uses the eager simple greedy scheduler. This is because it provides
correct load balance even if the application codelets do not have performance models. If your
application codelets have performance models (see Section 5.5 [Performance model example],
page 25 for examples showing how to do it), you should change the scheduler thanks to the
STARPU_SCHED environment variable. For instance export STARPU_SCHED=dmda . Use help
to get the list of available schedulers.

The eager scheduler uses a central task queue, from which workers draw tasks to work
on. This however does not permit to prefetch data since the scheduling decision is taken
late. If a task has a non-0 priority, it is put at the front of the queue.

The prio scheduler also uses a central task queue, but sorts tasks by priority (between
-5 and 5).

The random scheduler distributes tasks randomly according to assumed worker overall
performance.

The ws (work stealing) scheduler schedules tasks on the local worker by default. When
a worker becomes idle, it steals a task from the most loaded worker.

The dm (deque model) scheduler uses task execution performance models into account
to perform an HEFT-similar scheduling strategy: it schedules tasks where their termination
time will be minimal.

The dmda (deque model data aware) scheduler is similar to dm, it also takes into account
data transfer time.

The dmdar (deque model data aware ready) scheduler is similar to dmda, it also sorts
tasks on per-worker queues by number of already-available data buffers.

The dmdas (deque model data aware sorted) scheduler is similar to dmda, it also supports
arbitrary priority values.

The heft (HEFT) scheduler is similar to dmda, it also supports task bundles.

The pheft (parallel HEFT) scheduler is similar to heft, it also supports parallel tasks
(still experimental).

The pgreedy (parallel greedy) scheduler is similar to greedy, it also supports parallel
tasks (still experimental).

6.5 Performance model calibration

Most schedulers are based on an estimation of codelet duration on each kind of process-
ing unit. For this to be possible, the application programmer needs to configure a per-
formance model for the codelets of the application (see Section 5.5 [Performance model
example], page 25 for instance). History-based performance models use on-line calibra-
tion. StarPU will automatically calibrate codelets which have never been calibrated yet,
and save the result in ~/.starpu/sampling/codelets. The models are indexed by ma-
chine name. To share the models between machines (e.g. for a homogeneous cluster),
use export STARPU_HOSTNAME=some_global_name. To force continuing calibration, use
export STARPU_CALIBRATE=1 . This may be necessary if your application has not-so-stable
performance. StarPU will force calibration (and thus ignore the current result) until 10
(STARPU CALIBRATION MINIMUM) measurements have been made on each archi-
tecture, to avoid badly scheduling tasks just because the first measurements were not so

Chapter 6: How to optimize performance with StarPU 35

good. Details on the current performance model status can be obtained from the starpu_

perfmodel_display command: the -l option lists the available performance models, and
the -s option permits to choose the performance model to be displayed. The result looks
like:

$ starpu_perfmodel_display -s starpu_dlu_lu_model_22

performance model for cpu

hash size mean dev n

880805ba 98304 2.731309e+02 6.010210e+01 1240

b50b6605 393216 1.469926e+03 1.088828e+02 1240

5c6c3401 1572864 1.125983e+04 3.265296e+03 1240

Which shows that for the LU 22 kernel with a 1.5MiB matrix, the average execution
time on CPUs was about 11ms, with a 3ms standard deviation, over 1240 samples. It is a
good idea to check this before doing actual performance measurements.

A graph can be drawn by using the starpu_perfmodel_plot:

$ starpu_perfmodel_plot -s starpu_dlu_lu_model_22

98304 393216 1572864

$ gnuplot starpu_starpu_dlu_lu_model_22.gp

$ gv starpu_starpu_dlu_lu_model_22.eps

If a kernel source code was modified (e.g. performance improvement), the calibration
information is stale and should be dropped, to re-calibrate from start. This can be done by
using export STARPU_CALIBRATE=2.

Note: due to CUDA limitations, to be able to measure kernel duration, calibration
mode needs to disable asynchronous data transfers. Calibration thus disables data transfer
/ computation overlapping, and should thus not be used for eventual benchmarks. Note 2:
history-based performance models get calibrated only if a performance-model-based sched-
uler is chosen.

6.6 Task distribution vs Data transfer

Distributing tasks to balance the load induces data transfer penalty. StarPU thus needs
to find a balance between both. The target function that the dmda scheduler of StarPU
tries to minimize is alpha * T_execution + beta * T_data_transfer, where T_execution
is the estimated execution time of the codelet (usually accurate), and T_data_transfer is
the estimated data transfer time. The latter is estimated based on bus calibration before
execution start, i.e. with an idle machine, thus without contention. You can force bus re-
calibration by running starpu_calibrate_bus. The beta parameter defaults to 1, but it
can be worth trying to tweak it by using export STARPU_SCHED_BETA=2 for instance, since
during real application execution, contention makes transfer times bigger. This is of course
imprecise, but in practice, a rough estimation already gives the good results that a precise
estimation would give.

6.7 Data prefetch

The heft, dmda and pheft scheduling policies perform data prefetch (see Section 15.2.2.3
[STARPU PREFETCH], page 109): as soon as a scheduling decision is taken for a task,
requests are issued to transfer its required data to the target processing unit, if needeed,

36 StarPU Handbook

so that when the processing unit actually starts the task, its data will hopefully be already
available and it will not have to wait for the transfer to finish.

The application may want to perform some manual prefetching, for several reasons such
as excluding initial data transfers from performance measurements, or setting up an initial
statically-computed data distribution on the machine before submitting tasks, which will
thus guide StarPU toward an initial task distribution (since StarPU will try to avoid further
transfers).

This can be achieved by giving the starpu_data_prefetch_on_node function the handle
and the desired target memory node.

6.8 Power-based scheduling

If the application can provide some power performance model (through the power_model

field of the codelet structure), StarPU will take it into account when distributing tasks. The
target function that the dmda scheduler minimizes becomes alpha * T_execution + beta

* T_data_transfer + gamma * Consumption , where Consumption is the estimated task
consumption in Joules. To tune this parameter, use export STARPU_SCHED_GAMMA=3000

for instance, to express that each Joule (i.e kW during 1000us) is worth 3000us execution
time penalty. Setting alpha and beta to zero permits to only take into account power
consumption.

This is however not sufficient to correctly optimize power: the scheduler would simply
tend to run all computations on the most energy-conservative processing unit. To account
for the consumption of the whole machine (including idle processing units), the idle power
of the machine should be given by setting export STARPU_IDLE_POWER=200 for 200W, for
instance. This value can often be obtained from the machine power supplier.

The power actually consumed by the total execution can be displayed by setting export

STARPU_PROFILING=1 STARPU_WORKER_STATS=1 .

6.9 Profiling

A quick view of how many tasks each worker has executed can be obtained by setting export
STARPU_WORKER_STATS=1 This is a convenient way to check that execution did happen on
accelerators without penalizing performance with the profiling overhead.

A quick view of how much data transfers have been issued can be obtained by setting
export STARPU_BUS_STATS=1 .

More detailed profiling information can be enabled by using export STARPU_

PROFILING=1 or by calling starpu_profiling_status_set from the source code.
Statistics on the execution can then be obtained by using export STARPU_BUS_STATS=1

and export STARPU_WORKER_STATS=1 . More details on performance feedback are provided
by the next chapter.

6.10 CUDA-specific optimizations

Due to CUDA limitations, StarPU will have a hard time overlapping its own communications
and the codelet computations if the application does not use a dedicated CUDA stream for
its computations. StarPU provides one by the use of starpu_cuda_get_local_stream()
which should be used by all CUDA codelet operations. For instance:

Chapter 6: How to optimize performance with StarPU 37

� �
func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);

cudaStreamSynchronize(starpu_cuda_get_local_stream());
 	
StarPU already does appropriate calls for the CUBLAS library.

Unfortunately, some CUDA libraries do not have stream variants of kernels. That will
lower the potential for overlapping.

Chapter 7: Performance feedback 39

7 Performance feedback

7.1 On-line performance feedback

7.1.1 Enabling on-line performance monitoring

In order to enable online performance monitoring, the application can call starpu_

profiling_status_set(STARPU_PROFILING_ENABLE). It is possible to detect whether
monitoring is already enabled or not by calling starpu_profiling_status_get(). En-
abling monitoring also reinitialize all previously collected feedback. The STARPU_PROFILING
environment variable can also be set to 1 to achieve the same effect.

Likewise, performance monitoring is stopped by calling starpu_profiling_status_

set(STARPU_PROFILING_DISABLE). Note that this does not reset the performance counters
so that the application may consult them later on.

More details about the performance monitoring API are available in section Section 13.10
[Profiling API], page 91.

7.1.2 Per-task feedback

If profiling is enabled, a pointer to a starpu_task_profiling_info structure is put in the
.profiling_info field of the starpu_task structure when a task terminates. This struc-
ture is automatically destroyed when the task structure is destroyed, either automatically
or by calling starpu_task_destroy.

The starpu_task_profiling_info structure indicates the date when the task was sub-
mitted (submit_time), started (start_time), and terminated (end_time), relative to the
initialization of StarPU with starpu_init. It also specifies the identifier of the worker that
has executed the task (workerid). These date are stored as timespec structures which
the user may convert into micro-seconds using the starpu_timing_timespec_to_us helper
function.

It it worth noting that the application may directly access this structure from the call-
back executed at the end of the task. The starpu_task structure associated to the callback
currently being executed is indeed accessible with the starpu_get_current_task() func-
tion.

7.1.3 Per-codelet feedback

The per_worker_stats field of the struct starpu_codelet structure is an array of coun-
ters. The i-th entry of the array is incremented every time a task implementing the codelet
is executed on the i-th worker. This array is not reinitialized when profiling is enabled or
disabled.

7.1.4 Per-worker feedback

The second argument returned by the starpu_worker_get_profiling_info function is a
starpu_worker_profiling_info structure that gives statistics about the specified worker.
This structure specifies when StarPU started collecting profiling information for that worker
(start_time), the duration of the profiling measurement interval (total_time), the time
spent executing kernels (executing_time), the time spent sleeping because there is no

40 StarPU Handbook

task to execute at all (sleeping_time), and the number of tasks that were executed while
profiling was enabled. These values give an estimation of the proportion of time spent do
real work, and the time spent either sleeping because there are not enough executable tasks
or simply wasted in pure StarPU overhead.

Calling starpu_worker_get_profiling_info resets the profiling information associated
to a worker.

When an FxT trace is generated (see Section 7.2.1 [Generating traces], page 41), it is
also possible to use the starpu_top script (described in Section 7.2.4 [starpu-top], page 42)
to generate a graphic showing the evolution of these values during the time, for the different
workers.

7.1.5 Bus-related feedback

TODO

The bus speed measured by StarPU can be displayed by using the starpu_machine_

display tool, for instance:

StarPU has found :

3 CUDA devices

CUDA 0 (Tesla C2050 02:00.0)

CUDA 1 (Tesla C2050 03:00.0)

CUDA 2 (Tesla C2050 84:00.0)

from to RAM to CUDA 0 to CUDA 1 to CUDA 2

RAM 0.000000 5176.530428 5176.492994 5191.710722

CUDA 0 4523.732446 0.000000 2414.074751 2417.379201

CUDA 1 4523.718152 2414.078822 0.000000 2417.375119

CUDA 2 4534.229519 2417.069025 2417.060863 0.000000

7.1.6 StarPU-Top interface

StarPU-Top is an interface which remotely displays the on-line state of a StarPU application
and permits the user to change parameters on the fly.

Variables to be monitored can be registered by calling the starpu_top_add_data_

boolean, starpu_top_add_data_integer, starpu_top_add_data_float functions, e.g.:� �
starpu_top_data *data = starpu_top_add_data_integer("mynum", 0, 100, 1);
 	

The application should then call starpu_top_init_and_wait to give its name and wait
for StarPU-Top to get a start request from the user. The name is used by StarPU-Top to
quickly reload a previously-saved layout of parameter display.� �
starpu_top_init_and_wait("the application");
 	

The new values can then be provided thanks to starpu_top_update_data_boolean,
starpu_top_update_data_integer, starpu_top_update_data_float, e.g.:� �
starpu_top_update_data_integer(data, mynum);
 	

Chapter 7: Performance feedback 41

Updateable parameters can be registered thanks to starpu_top_register_parameter_

boolean, starpu_top_register_parameter_integer, starpu_top_register_

parameter_float, e.g.:� �
float alpha;

starpu_top_register_parameter_float("alpha", &alpha, 0, 10, modif_hook);
 	
modif_hook is a function which will be called when the parameter is being modified, it

can for instance print the new value:� �
void modif_hook(struct starpu_top_param *d) {

fprintf(stderr,"%s has been modified: %f\n", d->name, alpha);

}
 	
Task schedulers should notify StarPU-Top when it has decided when a task will be

scheduled, so that it can show it in its Gantt chart, for instance:� �
starpu_top_task_prevision(task, workerid, begin, end);
 	

Starting StarPU-Top and the application can be done two ways:

• The application is started by hand on some machine (and thus already waiting for
the start event). In the Preference dialog of StarPU-Top, the SSH checkbox should
be unchecked, and the hostname and port (default is 2011) on which the application
is already running should be specified. Clicking on the connection button will thus
connect to the already-running application.

• StarPU-Top is started first, and clicking on the connection button will start the ap-
plication itself (possibly on a remote machine). The SSH checkbox should be checked,
and a command line provided, e.g.:

ssh myserver STARPU_SCHED=heft ./application

If port 2011 of the remote machine can not be accessed directly, an ssh port bridge
should be added:

ssh -L 2011:localhost:2011 myserver STARPU_SCHED=heft ./application

and "localhost" should be used as IP Address to connect to.

7.2 Off-line performance feedback

7.2.1 Generating traces with FxT

StarPU can use the FxT library (see https://savannah.nongnu.org/projects/fkt/) to
generate traces with a limited runtime overhead.

You can either get a tarball:

% wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz

or use the FxT library from CVS (autotools are required):

% cvs -d :pserver:anonymous@cvs.sv.gnu.org:/sources/fkt co FxT

% ./bootstrap

42 StarPU Handbook

Compiling and installing the FxT library in the $FXTDIR path is done following the
standard procedure:

% ./configure --prefix=$FXTDIR

% make

% make install

In order to have StarPU to generate traces, StarPU should be configured with the --

with-fxt option:

$./configure --with-fxt=$FXTDIR

Or you can simply point the PKG_CONFIG_PATH to $FXTDIR/lib/pkgconfig and pass
--with-fxt to ./configure

When FxT is enabled, a trace is generated when StarPU is terminated by calling starpu_
shutdown()). The trace is a binary file whose name has the form prof_file_XXX_YYY where
XXX is the user name, and YYY is the pid of the process that used StarPU. This file is saved
in the /tmp/ directory by default, or by the directory specified by the STARPU_FXT_PREFIX
environment variable.

7.2.2 Creating a Gantt Diagram

When the FxT trace file filename has been generated, it is possible to generate a trace in
the Paje format by calling:

% starpu_fxt_tool -i filename

Or alternatively, setting the STARPU_GENERATE_TRACE environment variable to 1 before
application execution will make StarPU do it automatically at application shutdown.

This will create a paje.trace file in the current directory that can be inspected with
the ViTE trace visualizing open-source tool. More information about ViTE is available at
http://vite.gforge.inria.fr/. It is possible to open the paje.trace file with ViTE by
using the following command:

% vite paje.trace

7.2.3 Creating a DAG with graphviz

When the FxT trace file filename has been generated, it is possible to generate a task
graph in the DOT format by calling:

$ starpu_fxt_tool -i filename

This will create a dag.dot file in the current directory. This file is a task graph described
using the DOT language. It is possible to get a graphical output of the graph by using the
graphviz library:

$ dot -Tpdf dag.dot -o output.pdf

7.2.4 Monitoring activity

When the FxT trace file filename has been generated, it is possible to generate a activity
trace by calling:

$ starpu_fxt_tool -i filename

This will create an activity.data file in the current directory. A profile of the applica-
tion showing the activity of StarPU during the execution of the program can be generated:

Chapter 7: Performance feedback 43

$ starpu_top activity.data

This will create a file named activity.eps in the current directory. This picture is
composed of two parts. The first part shows the activity of the different workers. The green
sections indicate which proportion of the time was spent executed kernels on the processing
unit. The red sections indicate the proportion of time spent in StartPU: an important
overhead may indicate that the granularity may be too low, and that bigger tasks may be
appropriate to use the processing unit more efficiently. The black sections indicate that the
processing unit was blocked because there was no task to process: this may indicate a lack
of parallelism which may be alleviated by creating more tasks when it is possible.

The second part of the activity.eps picture is a graph showing the evolution of the
number of tasks available in the system during the execution. Ready tasks are shown in
black, and tasks that are submitted but not schedulable yet are shown in grey.

7.3 Performance of codelets

The performance model of codelets (described in Section 5.5 [Performance model example],
page 25) can be examined by using the starpu_perfmodel_display tool:

$ starpu_perfmodel_display -l

file: <malloc_pinned.hannibal>

file: <starpu_slu_lu_model_21.hannibal>

file: <starpu_slu_lu_model_11.hannibal>

file: <starpu_slu_lu_model_22.hannibal>

file: <starpu_slu_lu_model_12.hannibal>

Here, the codelets of the lu example are available. We can examine the performance of
the 22 kernel (in micro-seconds):

$ starpu_perfmodel_display -s starpu_slu_lu_model_22

performance model for cpu

hash size mean dev n

57618ab0 19660800 2.851069e+05 1.829369e+04 109

performance model for cuda_0

hash size mean dev n

57618ab0 19660800 1.164144e+04 1.556094e+01 315

performance model for cuda_1

hash size mean dev n

57618ab0 19660800 1.164271e+04 1.330628e+01 360

performance model for cuda_2

hash size mean dev n

57618ab0 19660800 1.166730e+04 3.390395e+02 456

We can see that for the given size, over a sample of a few hundreds of execution, the
GPUs are about 20 times faster than the CPUs (numbers are in us). The standard deviation
is extremely low for the GPUs, and less than 10% for CPUs.

The starpu_regression_display tool does the same for regression-based performance
models. It also writes a .gp file in the current directory, to be run in the gnuplot tool,
which shows the corresponding curve.

44 StarPU Handbook

The same can also be achieved by using StarPU’s library API, see Section 13.9 [Perfor-
mance Model API], page 89 and notably the starpu_load_history_debug function. The
source code of the starpu_perfmodel_display tool can be a useful example.

7.4 Theoretical lower bound on execution time

See Section 5.6 [Theoretical lower bound on execution time], page 27 for an example on
how to use this API. It permits to record a trace of what tasks are needed to complete the
application, and then, by using a linear system, provide a theoretical lower bound of the
execution time (i.e. with an ideal scheduling).

The computed bound is not really correct when not taking into account dependencies,
but for an application which have enough parallelism, it is very near to the bound computed
with dependencies enabled (which takes a huge lot more time to compute), and thus provides
a good-enough estimation of the ideal execution time.

[Function]void starpu_bound_start (int deps , int prio)
Start recording tasks (resets stats). deps tells whether dependencies should be
recorded too (this is quite expensive)

[Function]void starpu_bound_stop (void)
Stop recording tasks

[Function]void starpu_bound_print_dot (FILE *output)
Print the DAG that was recorded

[Function]void starpu_bound_compute (double *res , double *integer_res , int
integer)

Get theoretical upper bound (in ms) (needs glpk support detected by configure

script)

[Function]void starpu_bound_print_lp (FILE *output)
Emit the Linear Programming system on output for the recorded tasks, in the lp
format

[Function]void starpu_bound_print_mps (FILE *output)
Emit the Linear Programming system on output for the recorded tasks, in the mps
format

[Function]void starpu_bound_print (FILE *output , int integer)
Emit statistics of actual execution vs theoretical upper bound. integer permits to
choose between integer solving (which takes a long time but is correct), and relaxed
solving (which provides an approximate solution).

Chapter 8: Tips and Tricks to know about 45

8 Tips and Tricks to know about

8.1 How to initialize a computation library once for each
worker?

Some libraries need to be initialized once for each concurrent instance that may run on the
machine. For instance, a C++ computation class which is not thread-safe by itself, but for
which several instanciated objects of that class can be used concurrently. This can be used
in StarPU by initializing one such object per worker. For instance, the libstarpufft example
does the following to be able to use FFTW.

Some global array stores the instanciated objects:� �
fftw_plan plan_cpu[STARPU_NMAXWORKERS];
 	

At initialisation time of libstarpu, the objects are initialized:� �
int workerid;

for (workerid = 0; workerid < starpu_worker_get_count(); workerid++) {

switch (starpu_worker_get_type(workerid)) {

case STARPU_CPU_WORKER:

plan_cpu[workerid] = fftw_plan(...);

break;

}

}
 	
And in the codelet body, they are used:� �

static void fft(void *descr[], void *_args)

{

int workerid = starpu_worker_get_id();

fftw_plan plan = plan_cpu[workerid];

...

fftw_execute(plan, ...);

}
 	
Another way to go which may be needed is to execute some code from the workers them-

selves thanks to starpu_execute_on_each_worker. This may be required by CUDA to
behave properly due to threading issues. For instance, StarPU’s starpu_helper_cublas_
init looks like the following to call cublasInit from the workers themselves:

46 StarPU Handbook

� �
static void init_cublas_func(void *args STARPU_ATTRIBUTE_UNUSED)

{

cublasStatus cublasst = cublasInit();

cublasSetKernelStream(starpu_cuda_get_local_stream());

}

void starpu_helper_cublas_init(void)

{

starpu_execute_on_each_worker(init_cublas_func, NULL, STARPU_CUDA);

}
 	

Chapter 9: StarPU MPI support 47

9 StarPU MPI support

The integration of MPI transfers within task parallelism is done in a very natural way by
the means of asynchronous interactions between the application and StarPU. This is imple-
mented in a separate libstarpumpi library which basically provides "StarPU" equivalents of
MPI_* functions, where void * buffers are replaced with starpu_data_handle_ts, and all
GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI. The user has to use the
usual mpirun command of the MPI implementation to start StarPU on the different MPI
nodes.

An MPI Insert Task function provides an even more seamless transition to a distributed
application, by automatically issuing all required data transfers according to the task graph
and an application-provided distribution.

9.1 The API

9.1.1 Compilation

The flags required to compile or link against the MPI layer are then accessible with the
following commands:

% pkg-config --cflags libstarpumpi-1.0 # options for the compiler

% pkg-config --libs libstarpumpi-1.0 # options for the linker

Also pass the --static option if the application is to be linked statically.

9.1.2 Initialisation

[Function]int starpu_mpi_initialize (void)
Initializes the starpumpi library. This must be called between calling starpu_init

and other starpu_mpi functions. This function does not call MPI_Init, it should be
called beforehand.

[Function]int starpu_mpi_initialize_extended (int *rank , int
*world_size)

Initializes the starpumpi library. This must be called between calling starpu_init

and other starpu_mpi functions. This function calls MPI_Init, and therefore should
be prefered to the previous one for MPI implementations which are not thread-safe.
Returns the current MPI node rank and world size.

[Function]int starpu_mpi_shutdown (void)
Cleans the starpumpi library. This must be called between calling starpu_mpi func-
tions and starpu_shutdown. MPI_Finalize will be called if StarPU-MPI has been
initialized by calling starpu_mpi_initialize_extended.

9.1.3 Communication

[Function]int starpu_mpi_send (starpu data handle t data_handle , int dest ,
int mpi_tag , MPI Comm comm)

[Function]int starpu_mpi_recv (starpu data handle t data_handle , int
source , int mpi_tag , MPI Comm comm , MPI Status *status)

48 StarPU Handbook

[Function]int starpu_mpi_isend (starpu data handle t data_handle ,
starpu mpi req *req , int dest , int mpi_tag , MPI Comm comm)

[Function]int starpu_mpi_irecv (starpu data handle t data_handle ,
starpu mpi req *req , int source , int mpi_tag , MPI Comm comm)

[Function]int starpu_mpi_isend_detached (starpu data handle t
data_handle , int dest , int mpi_tag , MPI Comm comm , void
(*callback)(void *), void *arg)

[Function]int starpu_mpi_irecv_detached (starpu data handle t
data_handle , int source , int mpi_tag , MPI Comm comm , void
(*callback)(void *), void *arg)

[Function]int starpu_mpi_wait (starpu mpi req *req , MPI Status *status)

[Function]int starpu_mpi_test (starpu mpi req *req , int *flag , MPI Status
*status)

[Function]int starpu_mpi_barrier (MPI Comm comm)

[Function]int starpu_mpi_isend_detached_unlock_tag (starpu data handle t
data_handle , int dest , int mpi_tag , MPI Comm comm , starpu tag t tag)

When the transfer is completed, the tag is unlocked

[Function]int starpu_mpi_irecv_detached_unlock_tag (starpu data handle t
data_handle , int source , int mpi_tag , MPI Comm comm , starpu tag t
tag)

[Function]int starpu_mpi_isend_array_detached_unlock_tag (unsigned
array_size , starpu data handle t *data_handle , int *dest , int
*mpi_tag , MPI Comm *comm , starpu tag t tag)

Asynchronously send an array of buffers, and unlocks the tag once all of them are
transmitted.

[Function]int starpu_mpi_irecv_array_detached_unlock_tag (unsigned
array_size , starpu data handle t *data_handle , int *source , int
*mpi_tag , MPI Comm *comm , starpu tag t tag)

Chapter 9: StarPU MPI support 49

9.2 Simple Example

� �
void increment_token(void)

{

struct starpu_task *task = starpu_task_create();

task->cl = &increment_cl;

task->handles[0] = token_handle;

starpu_task_submit(task);

}
 	� �
int main(int argc, char **argv)

{

int rank, size;

starpu_init(NULL);

starpu_mpi_initialize_extended(&rank, &size);

starpu_vector_data_register(&token_handle, 0, (uintptr_t)&token, 1, sizeof(unsigned));

unsigned nloops = NITER;

unsigned loop;

unsigned last_loop = nloops - 1;

unsigned last_rank = size - 1;
 	

50 StarPU Handbook

� �
for (loop = 0; loop < nloops; loop++) {

int tag = loop*size + rank;

if (loop == 0 && rank == 0)

{

token = 0;

fprintf(stdout, "Start with token value %d\n", token);

}

else

{

starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag,

MPI_COMM_WORLD, NULL, NULL);

}

increment_token();

if (loop == last_loop && rank == last_rank)

{

starpu_data_acquire(token_handle, STARPU_R);

fprintf(stdout, "Finished : token value %d\n", token);

starpu_data_release(token_handle);

}

else

{

starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1,

MPI_COMM_WORLD, NULL, NULL);

}

}

starpu_task_wait_for_all();
 	� �
starpu_mpi_shutdown();

starpu_shutdown();

if (rank == last_rank)

{

fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);

STARPU_ASSERT(token == nloops*size);

}
 	

Chapter 9: StarPU MPI support 51

9.3 MPI Insert Task Utility

To save the programmer from having to explicit all communications, StarPU provides an
"MPI Insert Task Utility". The principe is that the application decides a distribution of
the data over the MPI nodes by allocating it and notifying StarPU of that decision, i.e. tell
StarPU which MPI node "owns" which data. All MPI nodes then process the whole task
graph, and StarPU automatically determines which node actually execute which task, as
well as the required MPI transfers.

[Function]int starpu_data_set_tag (starpu data handle t handle , int tag)
Tell StarPU-MPI which MPI tag to use when exchanging the data.

[Function]int starpu_data_get_tag (starpu data handle t handle)
Returns the MPI tag to be used when exchanging the data.

[Function]int starpu_data_set_rank (starpu data handle t handle , int
mpi_rank)

Tell StarPU-MPI which MPI node "owns" a given data, that is, the node which will
always keep an up-to-date value, and will by default execute tasks which write to it.

[Function]int starpu_data_get_rank (starpu data handle t handle)
Returns the last value set by starpu_data_set_rank.

[Function]void starpu_mpi_insert_task (MPI Comm comm , struct
starpu codelet *cl , ...)

Create and submit a task corresponding to cl with the following arguments. The
argument list must be zero-terminated.

The arguments following the codelets are the same types as for the function starpu_

insert_task defined in Section 5.7 [Insert Task Utility], page 28. The extra argument
STARPU_EXECUTE_ON_NODE followed by an integer allows to specify the MPI node to
execute the codelet. It is also possible to specify that the node owning a specific
data will execute the codelet, by using STARPU_EXECUTE_ON_DATA followed by a data
handle.

The internal algorithm is as follows:

1. Find out whether we (as an MPI node) are to execute the codelet because we
own the data to be written to. If different nodes own data to be written to,
the argument STARPU_EXECUTE_ON_NODE or STARPU_EXECUTE_ON_DATA has to be
used to specify which MPI node will execute the task.

2. Send and receive data as requested. Nodes owning data which need to be read
by the task are sending them to the MPI node which will execute it. The latter
receives them.

3. Execute the codelet. This is done by the MPI node selected in the 1st step of
the algorithm.

4. In the case when different MPI nodes own data to be written to, send written
data back to their owners.

The algorithm also includes a cache mechanism that allows not to send data twice to
the same MPI node, unless the data has been modified.

52 StarPU Handbook

[Function]void starpu_mpi_get_data_on_node (MPI Comm comm ,
starpu data handle t data_handle , int node)

todo

Here an stencil example showing how to use starpu_mpi_insert_task. One first needs
to define a distribution function which specifies the locality of the data. Note that that
distribution information needs to be given to StarPU by calling starpu_data_set_rank.� �
/* Returns the MPI node number where data is */

int my_distrib(int x, int y, int nb_nodes) {

/* Block distrib */

return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;

// /* Other examples useful for other kinds of computations */

// /* / distrib */

// return (x+y) % nb_nodes;

// /* Block cyclic distrib */

// unsigned side = sqrt(nb_nodes);

// return x % side + (y % side) * size;

}
 	
Now the data can be registered within StarPU. Data which are not owned but will be

needed for computations can be registered through the lazy allocation mechanism, i.e. with
a home_node set to -1. StarPU will automatically allocate the memory when it is used for
the first time.

One can note an optimization here (the else if test): we only register data which will
be needed by the tasks that we will execute.� �

unsigned matrix[X][Y];

starpu_data_handle_t data_handles[X][Y];

for(x = 0; x < X; x++) {

for (y = 0; y < Y; y++) {

int mpi_rank = my_distrib(x, y, size);

if (mpi_rank == my_rank)

/* Owning data */

starpu_variable_data_register(&data_handles[x][y], 0,

(uintptr_t)&(matrix[x][y]), sizeof(unsigned));

else if (my_rank == my_distrib(x+1, y, size) || my_rank == my_distrib(x-1, y, size)

|| my_rank == my_distrib(x, y+1, size) || my_rank == my_distrib(x, y-1, size))

/* I don’t own that index, but will need it for my computations */

starpu_variable_data_register(&data_handles[x][y], -1,

(uintptr_t)NULL, sizeof(unsigned));

else

/* I know it’s useless to allocate anything for this */

data_handles[x][y] = NULL;

if (data_handles[x][y])

starpu_data_set_rank(data_handles[x][y], mpi_rank);

}

}
 	
Now starpu_mpi_insert_task() can be called for the different steps of the application.

Chapter 9: StarPU MPI support 53

� �
for(loop=0 ; loop<niter; loop++)

for (x = 1; x < X-1; x++)

for (y = 1; y < Y-1; y++)

starpu_mpi_insert_task(MPI_COMM_WORLD, &stencil5_cl,

STARPU_RW, data_handles[x][y],

STARPU_R, data_handles[x-1][y],

STARPU_R, data_handles[x+1][y],

STARPU_R, data_handles[x][y-1],

STARPU_R, data_handles[x][y+1],

0);

starpu_task_wait_for_all();
 	
I.e. all MPI nodes process the whole task graph, but as mentioned above, for each task,

only the MPI node which owns the data being written to (here, data_handles[x][y]) will
actually run the task. The other MPI nodes will automatically send the required data.

9.4 MPI Collective Operations

[Function]int starpu_mpi_scatter_detached (starpu data handle t
*data_handles , int count , int root , MPI Comm comm)

Scatter data among processes of the communicator based on the ownership of the
data. For each data of the array data handles, the process root sends the data to the
process owning this data. Processes receiving data must have valid data handles to
receive them.

[Function]int starpu_mpi_gather_detached (starpu data handle t
*data_handles , int count , int root , MPI Comm comm)

Gather data from the different processes of the communicator onto the process root.
Each process owning data handle in the array data handles will send them to the
process root. The process root must have valid data handles to receive the data.

54 StarPU Handbook

� �
if (rank == root)

{

/* Allocate the vector */

vector = malloc(nblocks * sizeof(float *));

for(x=0 ; x<nblocks ; x++)

{

starpu_malloc((void **)&vector[x], block_size*sizeof(float));

}

}

/* Allocate data handles and register data to StarPU */

data_handles = malloc(nblocks*sizeof(starpu_data_handle_t *));

for(x = 0; x < nblocks ; x++)

{

int mpi_rank = my_distrib(x, nodes);

if (rank == root) {

starpu_vector_data_register(&data_handles[x], 0, (uintptr_t)vector[x],

blocks_size, sizeof(float));

}

else if ((mpi_rank == rank) || ((rank == mpi_rank+1 || rank == mpi_rank-1))) {

/* I own that index, or i will need it for my computations */

starpu_vector_data_register(&data_handles[x], -1, (uintptr_t)NULL,

block_size, sizeof(float));

}

else {

/* I know it’s useless to allocate anything for this */

data_handles[x] = NULL;

}

if (data_handles[x]) {

starpu_data_set_rank(data_handles[x], mpi_rank);

}

}

/* Scatter the matrix among the nodes */

starpu_mpi_scatter_detached(data_handles, nblocks, root, MPI_COMM_WORLD);

/* Calculation */

for(x = 0; x < nblocks ; x++) {

if (data_handles[x]) {

int owner = starpu_data_get_rank(data_handles[x]);

if (owner == rank) {

starpu_insert_task(&cl, STARPU_RW, data_handles[x], 0);

}

}

}

/* Gather the matrix on main node */

starpu_mpi_gather_detached(data_handles, nblocks, 0, MPI_COMM_WORLD);
 	

Chapter 10: StarPU FFT support 55

10 StarPU FFT support

StarPU provides libstarpufft, a library whose design is very similar to both fftw and cufft,
the difference being that it takes benefit from both CPUs and GPUs. It should however be
noted that GPUs do not have the same precision as CPUs, so the results may different by
a negligible amount

float, double and long double precisions are available, with the fftw naming convention:

1. double precision structures and functions are named e.g. starpufft_execute

2. float precision structures and functions are named e.g. starpufftf_execute

3. long double precision structures and functions are named e.g. starpufftl_execute

The documentation below uses names for double precision, replace starpufft_ with
starpufftf_ or starpufftl_ as appropriate.

Only complex numbers are supported at the moment.

The application has to call starpu_init before calling starpufft functions.

Either main memory pointers or data handles can be provided.

1. To provide main memory pointers, use starpufft_start or starpufft_execute. Only
one FFT can be performed at a time, because StarPU will have to register the data
on the fly. In the starpufft_start case, starpufft_cleanup needs to be called to
unregister the data.

2. To provide data handles (which is preferrable), use starpufft_start_handle (pre-
ferred) or starpufft_execute_handle. Several FFTs Several FFT tasks can be sub-
mitted for a given plan, which permits e.g. to start a series of FFT with just one plan.
starpufft_start_handle is preferrable since it does not wait for the task completion,
and thus permits to enqueue a series of tasks.

10.0.1 Compilation

The flags required to compile or link against the FFT library are accessible with the following
commands:

% pkg-config --cflags libstarpufft-1.0 # options for the compiler

% pkg-config --libs libstarpufft-1.0 # options for the linker

Also pass the --static option if the application is to be linked statically.

10.0.2 Initialisation

[Function]void * starpufft_malloc (size t n)
Allocates memory for n bytes. This is preferred over malloc, since it allocates pinned
memory, which allows overlapped transfers.

[Function]void * starpufft_free (void *p)
Release memory previously allocated.

[Function]struct starpufft_plan * starpufft_plan_dft_1d (int n , int
sign , unsigned flags)

Initializes a plan for 1D FFT of size n. sign can be STARPUFFT_FORWARD or STARPUFFT_
INVERSE. flags must be 0.

56 StarPU Handbook

[Function]struct starpufft_plan * starpufft_plan_dft_2d (int n , int m ,
int sign , unsigned flags)

Initializes a plan for 2D FFT of size (n, m). sign can be STARPUFFT_FORWARD or
STARPUFFT_INVERSE. flags must be 0.

[Function]struct starpu_task * starpufft_start (starpufft plan p , void *in ,
void *out)

Start an FFT previously planned as p, using in and out as input and output. This only
submits the task and does not wait for it. The application should call starpufft_
cleanup to unregister the data.

[Function]struct starpu_task * starpufft_start_handle (starpufft plan p ,
starpu data handle t in , starpu data handle t out)

Start an FFT previously planned as p, using data handles in and out as input and
output (assumed to be vectors of elements of the expected types). This only submits
the task and does not wait for it.

[Function]void starpufft_execute (starpufft plan p , void *in , void *out)
Execute an FFT previously planned as p, using in and out as input and output. This
submits and waits for the task.

[Function]void starpufft_execute_handle (starpufft plan p ,
starpu data handle t in , starpu data handle t out)

Execute an FFT previously planned as p, using data handles in and out as input and
output (assumed to be vectors of elements of the expected types). This submits and
waits for the task.

[Function]void starpufft_cleanup (starpufft plan p)
Releases data for plan p, in the starpufft_start case.

[Function]void starpufft_destroy_plan (starpufft plan p)
Destroys plan p, i.e. release all CPU (fftw) and GPU (cufft) resources.

Chapter 11: C Extensions 57

11 C Extensions

If the GCC used to compile StarPU provides a plug-in support1, StarPU will then build a
plug-in for the GNU Compiler Collection (GCC), which defines extensions to languages of
the C family (C, C++, Objective-C) that make it easier to write StarPU code.

The plug-in can be disabled by configuring with --disable-gcc-extensions.

Those extensions include syntactic sugar for defining tasks and their implementations,
invoking a task, and manipulating data buffers. Use of these extensions can be made
conditional on the availability of the plug-in, leading to valid C sequential code when the
plug-in is not used (see Section 11.3 [Conditional Extensions], page 60).

This section does not require detailed knowledge of the StarPU library.

Note: as of StarPU 1.0.0rc1, this is still an area under development and subject to
change.

11.1 Defining Tasks

The StarPU GCC plug-in views tasks as “extended” C functions:

1. tasks may have several implementations—e.g., one for CPUs, one written in OpenCL,
one written in CUDA;

2. tasks may have several implementations of the same target—e.g., several CPU imple-
mentations;

3. when a task is invoked, it may run in parallel, and StarPU is free to choose any of its
implementations.

Tasks and their implementations must be declared. These declarations are annotated
with attributes (see Section “Attribute Syntax” in Using the GNU Compiler Collection
(GCC)): the declaration of a task is a regular C function declaration with an additional task
attribute, and task implementations are declared with a task_implementation attribute.

The following function attributes are provided:

task Declare the given function as a StarPU task. Its return type must be void, and
it must not be defined—instead, a definition will automatically be provided by
the compiler.

Under the hood, declaring a task leads to the declaration of the corresponding
codelet (see Section 1.2.1 [Codelet and Tasks], page 3). If one or more task
implementations are declared in the same compilation unit, then the codelet
and the function itself are also defined; they inherit the scope of the task.

Scalar arguments to the task are passed by value and copied to the target device
if need be—technically, they are passed as the cl_arg buffer (see Section 13.6
[Codelets and Tasks], page 82).

Pointer arguments are assumed to be registered data buffers—the buffers

argument of a task (see Section 13.6 [Codelets and Tasks], page 82); const-
qualified pointer arguments are viewed as read-only buffers (STARPU_R), and
non-const-qualified buffers are assumed to be used read-write (STARPU_RW). In

1 This feature is only available for GCC 4.5 and later.

58 StarPU Handbook

addition, the output type attribute can be as a type qualifier for output pointer
or array parameters (STARPU_W).

task_implementation (target, task)

Declare the given function as an implementation of task to run on target. target
must be a string, currently one of "cpu", "opencl", or "cuda".

Here is an example:� �
#define __output __attribute__ ((output))

static void matmul (const float *A, const float *B,

__output float *C,

size_t nx, size_t ny, size_t nz)

__attribute__ ((task));

static void matmul_cpu (const float *A, const float *B,

__output float *C,

size_t nx, size_t ny, size_t nz)

__attribute__ ((task_implementation ("cpu", matmul)));

static void

matmul_cpu (const float *A, const float *B, __output float *C,

size_t nx, size_t ny, size_t nz)

{

size_t i, j, k;

for (j = 0; j < ny; j++)

for (i = 0; i < nx; i++)

{

for (k = 0; k < nz; k++)

C[j * nx + i] += A[j * nz + k] * B[k * nx + i];

}

}
 	
A matmult task is defined; it has only one implementation, matmult_cpu, which runs on
the CPU. Variables A and B are input buffers, whereas C is considered an input/output
buffer.

CUDA and OpenCL implementations can be declared in a similar way:� �
static void matmul_cuda (const float *A, const float *B, float *C,

size_t nx, size_t ny, size_t nz)

__attribute__ ((task_implementation ("cuda", matmul)));

static void matmul_opencl (const float *A, const float *B, float *C,

size_t nx, size_t ny, size_t nz)

__attribute__ ((task_implementation ("opencl", matmul)));
 	
The CUDA and OpenCL implementations typically either invoke a kernel written in CUDA
or OpenCL (for similar code, see Section A.3 [CUDA Kernel], page 114, and see Section A.4
[OpenCL Kernel], page 114), or call a library function that uses CUDA or OpenCL under
the hood, such as CUBLAS functions:

Chapter 11: C Extensions 59

� �
static void

matmul_cuda (const float *A, const float *B, float *C,

size_t nx, size_t ny, size_t nz)

{

cublasSgemm (’n’, ’n’, nx, ny, nz,

1.0f, A, 0, B, 0,

0.0f, C, 0);

cudaStreamSynchronize (starpu_cuda_get_local_stream ());

}
 	
A task can be invoked like a regular C function:� �

matmul (&A[i * zdim * bydim + k * bzdim * bydim],

&B[k * xdim * bzdim + j * bxdim * bzdim],

&C[i * xdim * bydim + j * bxdim * bydim],

bxdim, bydim, bzdim);
 	
This leads to an asynchronous invocation, whereby matmult’s implementation may run in
parallel with the continuation of the caller.

The next section describes how memory buffers must be handled in StarPU-GCC code.

11.2 Registered Data Buffers

Data buffers such as matrices and vectors that are to be passed to tasks must be registered.
Registration allows StarPU to handle data transfers among devices—e.g., transferring an in-
put buffer from the CPU’s main memory to a task scheduled to run a GPU (see Section 1.2.2
[StarPU Data Management Library], page 4).

The following pragmas are provided:

#pragma starpu register ptr [size]

Register ptr as a size-element buffer. When ptr has an array type whose size
is known, size may be omitted.

#pragma starpu unregister ptr

Unregister the previously-registered memory area pointed to by ptr. As a side-
effect, ptr points to a valid copy in main memory.

#pragma starpu acquire ptr

Acquire in main memory an up-to-date copy of the previously-registered mem-
ory area pointed to by ptr, for read-write access.

#pragma starpu release ptr

Release the previously-register memory area pointed to by ptr, making it avail-
able to the tasks.

As a substitute for the register and unregister pragmas, the heap_allocated variable
attribute offers a higher-level mechanism:

heap_allocated

This attributes applies to local variables with an array type. Its effect is to au-
tomatically allocate and register the array’s storage on the heap, using starpu_
malloc under the hood (see Section 13.3.2 [Basic Data Library API], page 69).

60 StarPU Handbook

The heap-allocated array is automatically freed and unregistered when the vari-
able’s scope is left, as with automatic variables2.

The following example illustrates use of the heap_allocated attribute:

extern void cholesky(unsigned nblocks, unsigned size,

float mat[nblocks][nblocks][size])

__attribute__ ((task));

int

main (int argc, char *argv[])

{

#pragma starpu initialize

/* ... */

int nblocks, size;

parse_args (&nblocks, &size);

/* Allocate an array of the required size on the heap,

and register it. */

float matrix[nblocks][nblocks][size]

__attribute__ ((heap_allocated));

cholesky (nblocks, size, matrix);

#pragma starpu shutdown

/* MATRIX is automatically freed upon return. */

return EXIT_SUCCESS;

}

11.3 Using C Extensions Conditionally

The C extensions described in this chapter are only available when GCC and its StarPU
plug-in are in use. Yet, it is possible to make use of these extensions when they are
available—leading to hybrid CPU/GPU code—and discard them when they are not
available—leading to valid sequential code.

To that end, the GCC plug-in defines a C preprocessor macro when it is being used:

[Macro]STARPU_GCC_PLUGIN
Defined for code being compiled with the StarPU GCC plug-in. When defined, this
macro expands to an integer denoting the version of the supported C extensions.

2 This is achieved by using the cleanup attribute (see Section “Variable Attributes” in Using the GNU
Compiler Collection (GCC))

Chapter 11: C Extensions 61

The code below illustrates how to define a task and its implementations in a way that
allows it to be compiled without the GCC plug-in:� �
/* The macros below abstract over the attributes specific to

StarPU-GCC and the name of the CPU implementation. */

#ifdef STARPU_GCC_PLUGIN

define __task __attribute__ ((task))

define CPU_TASK_IMPL(task) task ## _cpu

#else

define __task

define CPU_TASK_IMPL(task) task

#endif

#include <stdlib.h>

static void matmul (const float *A, const float *B, float *C,

size_t nx, size_t ny, size_t nz) __task;

#ifdef STARPU_GCC_PLUGIN

static void matmul_cpu (const float *A, const float *B, float *C,

size_t nx, size_t ny, size_t nz)

__attribute__ ((task_implementation ("cpu", matmul)));

#endif

static void

CPU_TASK_IMPL (matmul) (const float *A, const float *B, float *C,

size_t nx, size_t ny, size_t nz)

{

/* Code of the CPU kernel here... */

}

int

main (int argc, char *argv[])

{

/* The pragmas below are simply ignored when StarPU-GCC

is not used. */

#pragma starpu initialize

float A[123][42][7], B[123][42][7], C[123][42][7];

#pragma starpu register A

#pragma starpu register B

#pragma starpu register C

/* When StarPU-GCC is used, the call below is asynchronous;

otherwise, it is synchronous. */

matmul (A, B, C, 123, 42, 7);

#pragma starpu wait

#pragma starpu shutdown

return EXIT_SUCCESS;

}
 	

62 StarPU Handbook

Note that attributes such as task are simply ignored by GCC when the StarPU plug-
in is not loaded, so the __task macro could be omitted altogether. However, gcc -Wall

emits a warning for unknown attributes, which can be inconvenient, and other compilers
may be unable to parse the attribute syntax. Thus, using macros such as __task above is
recommended.

Chapter 12: SOCL OpenCL Extensions 63

12 SOCL OpenCL Extensions

SOCL is a extension that aims at implementing the OpenCL standard on top of StarPU. It
allows to gives a (relatively) clean and standardized API to StarPU. By allowing OpenCL
applications to use StarPU transparently, it provides users with the latest StarPU enhance-
ments without any further development, and allows these OpenCL applications to easily
fall back to another OpenCL implementation.

This section does not require detailed knowledge of the StarPU library.

Note: as of StarPU 1.0.0rc1, this is still an area under development and subject to
change.

TODO

Chapter 13: StarPU Basic API 65

13 StarPU Basic API

13.1 Initialization and Termination

[Function]int starpu_init (struct starpu conf *conf)
This is StarPU initialization method, which must be called prior to any other StarPU
call. It is possible to specify StarPU’s configuration (e.g. scheduling policy, number
of cores, ...) by passing a non-null argument. Default configuration is used if the
passed argument is NULL.

Upon successful completion, this function returns 0. Otherwise, -ENODEV indicates
that no worker was available (so that StarPU was not initialized).

[Data type]struct starpu_conf
This structure is passed to the starpu_init function in order to configure StarPU.
When the default value is used, StarPU automatically selects the number of pro-
cessing units and takes the default scheduling policy. This parameter overwrites the
equivalent environment variables.

sched_policy_name (default = NULL)
This is the name of the scheduling policy. This can also be specified with
the STARPU_SCHED environment variable.

sched_policy (default = NULL)
This is the definition of the scheduling policy. This field is ignored if
sched_policy_name is set.

ncpus (default = -1)
This is the number of CPU cores that StarPU can use. This can also be
specified with the STARPU_NCPUS environment variable.

ncuda (default = -1)
This is the number of CUDA devices that StarPU can use. This can also
be specified with the STARPU_NCUDA environment variable.

nopencl (default = -1)
This is the number of OpenCL devices that StarPU can use. This can
also be specified with the STARPU_NOPENCL environment variable.

nspus (default = -1)
This is the number of Cell SPUs that StarPU can use. This can also be
specified with the STARPU_NGORDON environment variable.

use_explicit_workers_bindid (default = 0)
If this flag is set, the workers_bindid array indicates where the differ-
ent workers are bound, otherwise StarPU automatically selects where to
bind the different workers unless the STARPU_WORKERS_CPUID environ-
ment variable is set. The STARPU_WORKERS_CPUID environment variable
is ignored if the use_explicit_workers_bindid flag is set.

66 StarPU Handbook

workers_bindid[STARPU_NMAXWORKERS]

If the use_explicit_workers_bindid flag is set, this array indicates
where to bind the different workers. The i-th entry of the workers_

bindid indicates the logical identifier of the processor which should
execute the i-th worker. Note that the logical ordering of the CPUs
is either determined by the OS, or provided by the hwloc library
in case it is available. When this flag is set, the Section 15.2.1.5
[STARPU WORKERS CPUID], page 108 environment variable is
ignored.

use_explicit_workers_cuda_gpuid (default = 0)
If this flag is set, the CUDA workers will be attached to the CUDA de-
vices specified in the workers_cuda_gpuid array. Otherwise, StarPU
affects the CUDA devices in a round-robin fashion. When this flag is
set, the Section 15.2.1.6 [STARPU WORKERS CUDAID], page 109 en-
vironment variable is ignored.

workers_cuda_gpuid[STARPU_NMAXWORKERS]

If the use_explicit_workers_cuda_gpuid flag is set, this array contains
the logical identifiers of the CUDA devices (as used by cudaGetDevice).

use_explicit_workers_opencl_gpuid (default = 0)
If this flag is set, the OpenCL workers will be attached to the OpenCL de-
vices specified in the workers_opencl_gpuid array. Otherwise, StarPU
affects the OpenCL devices in a round-robin fashion.

workers_opencl_gpuid[STARPU_NMAXWORKERS]

todo

calibrate (default = 0)
If this flag is set, StarPU will calibrate the performance models when
executing tasks. If this value is equal to -1, the default value is used.
The default value is overwritten by the STARPU_CALIBRATE environment
variable when it is set.

single_combined_worker (default = 0)
By default, StarPU creates various combined workers according to the
machine structure. Some parallel libraries (e.g. most OpenMP imple-
mentations) however do not support concurrent calls to parallel code.
In such case, setting this flag makes StarPU only create one combined
worker, containing all the CPU workers. The default value is overwritten
by the STARPU_SINGLE_COMBINED_WORKER environment variable when it
is set.

[Function]int starpu_conf_init (struct starpu conf *conf)
This function initializes the conf structure passed as argument with the default values.
In case some configuration parameters are already specified through environment
variables, starpu_conf_init initializes the fields of the structure according to the
environment variables. For instance if STARPU_CALIBRATE is set, its value is put in
the .ncuda field of the structure passed as argument.

Chapter 13: StarPU Basic API 67

Upon successful completion, this function returns 0. Otherwise, -EINVAL indicates
that the argument was NULL.

[Function]void starpu_shutdown (void)
This is StarPU termination method. It must be called at the end of the application:
statistics and other post-mortem debugging information are not guaranteed to be
available until this method has been called.

13.2 Workers’ Properties

[DataType]enum starpu_archtype
The different values are:

STARPU_CPU_WORKER

STARPU_CUDA_WORKER

STARPU_OPENCL_WORKER

STARPU_GORDON_WORKER

[Function]unsigned starpu_worker_get_count (void)
This function returns the number of workers (i.e. processing units executing StarPU
tasks). The returned value should be at most STARPU_NMAXWORKERS.

[Function]int starpu_worker_get_count_by_type (enum starpu archtype
type)

Returns the number of workers of the given type indicated by the argument. A
positive (or null) value is returned in case of success, -EINVAL indicates that the type
is not valid otherwise.

[Function]unsigned starpu_cpu_worker_get_count (void)
This function returns the number of CPUs controlled by StarPU. The returned value
should be at most STARPU_MAXCPUS.

[Function]unsigned starpu_cuda_worker_get_count (void)
This function returns the number of CUDA devices controlled by StarPU. The re-
turned value should be at most STARPU_MAXCUDADEVS.

[Function]unsigned starpu_opencl_worker_get_count (void)
This function returns the number of OpenCL devices controlled by StarPU. The
returned value should be at most STARPU_MAXOPENCLDEVS.

[Function]unsigned starpu_spu_worker_get_count (void)
This function returns the number of Cell SPUs controlled by StarPU.

[Function]int starpu_worker_get_id (void)
This function returns the identifier of the current worker, i.e the one associated to the
calling thread. The returned value is either -1 if the current context is not a StarPU
worker (i.e. when called from the application outside a task or a callback), or an
integer between 0 and starpu_worker_get_count() - 1.

68 StarPU Handbook

[Function]int starpu_worker_get_ids_by_type (enum starpu archtype type ,
int *workerids , int maxsize)

This function gets the list of identifiers of workers with the given type. It fills the
workerids array with the identifiers of the workers that have the type indicated in the
first argument. The maxsize argument indicates the size of the workids array. The
returned value gives the number of identifiers that were put in the array. -ERANGE is
returned is maxsize is lower than the number of workers with the appropriate type: in
that case, the array is filled with the maxsize first elements. To avoid such overflows,
the value of maxsize can be chosen by the means of the starpu_worker_get_count_
by_type function, or by passing a value greater or equal to STARPU_NMAXWORKERS.

[Function]int starpu_worker_get_devid (int id)
This functions returns the device id of the given worker. The worker should be
identified with the value returned by the starpu_worker_get_id function. In the
case of a CUDA worker, this device identifier is the logical device identifier exposed
by CUDA (used by the cudaGetDevice function for instance). The device identifier of
a CPU worker is the logical identifier of the core on which the worker was bound; this
identifier is either provided by the OS or by the hwloc library in case it is available.

[Function]enum starpu_archtype starpu_worker_get_type (int id)
This function returns the type of processing unit associated to a worker. The worker
identifier is a value returned by the starpu_worker_get_id function). The returned
value indicates the architecture of the worker: STARPU_CPU_WORKER for a CPU core,
STARPU_CUDA_WORKER for a CUDA device, STARPU_OPENCL_WORKER for a OpenCL
device, and STARPU_GORDON_WORKER for a Cell SPU. The value returned for an invalid
identifier is unspecified.

[Function]void starpu_worker_get_name (int id , char *dst , size t maxlen)
This function allows to get the name of a given worker. StarPU associates a unique
human readable string to each processing unit. This function copies at most the
maxlen first bytes of the unique string associated to a worker identified by its identifier
id into the dst buffer. The caller is responsible for ensuring that the dst is a valid
pointer to a buffer of maxlen bytes at least. Calling this function on an invalid
identifier results in an unspecified behaviour.

[Function]unsigned starpu_worker_get_memory_node (unsigned workerid)
This function returns the identifier of the memory node associated to the worker
identified by workerid.

13.3 Data Library

This section describes the data management facilities provided by StarPU.

We show how to use existing data interfaces in Section 13.4 [Data Interfaces], page 72,
but developers can design their own data interfaces if required.

13.3.1 Introduction

Data management is done at a high-level in StarPU: rather than accessing a mere list
of contiguous buffers, the tasks may manipulate data that are described by a high-level
construct which we call data interface.

Chapter 13: StarPU Basic API 69

An example of data interface is the "vector" interface which describes a contiguous data
array on a spefic memory node. This interface is a simple structure containing the number
of elements in the array, the size of the elements, and the address of the array in the
appropriate address space (this address may be invalid if there is no valid copy of the array
in the memory node). More informations on the data interfaces provided by StarPU are
given in Section 13.4 [Data Interfaces], page 72.

When a piece of data managed by StarPU is used by a task, the task implementation is
given a pointer to an interface describing a valid copy of the data that is accessible from
the current processing unit.

Every worker is associated to a memory node which is a logical abstraction of the ad-
dress space from which the processing unit gets its data. For instance, the memory node
associated to the different CPU workers represents main memory (RAM), the memory node
associated to a GPU is DRAM embedded on the device. Every memory node is identified
by a logical index which is accessible from the starpu_worker_get_memory_node function.
When registering a piece of data to StarPU, the specified memory node indicates where the
piece of data initially resides (we also call this memory node the home node of a piece of
data).

13.3.2 Basic Data Library API

[Function]int starpu_malloc (void **A , size t dim)
This function allocates data of the given size in main memory. It will also try to pin
it in CUDA or OpenCL, so that data transfers from this buffer can be asynchronous,
and thus permit data transfer and computation overlapping. The allocated buffer
must be freed thanks to the starpu_free function.

[Function]int starpu_free (void *A)
This function frees memory which has previously allocated with starpu_malloc.

[Data Type]enum starpu_access_mode
This datatype describes a data access mode. The different available modes are:

STARPU_R: read-only mode.
STARPU_W: write-only mode.
STARPU_RW: read-write mode. This is equivalent to STARPU_R|STARPU_W.
STARPU_SCRATCH: scratch memory. A temporary buffer is allocated for the task, but
StarPU does not enforce data consistency, i.e. each device has its own buffer,
independently from each other (even for CPUs). This is useful for temporary
variables. For now, no behaviour is defined concerning the relation with
STARPU R/W modes and the value provided at registration, i.e. the value of the
scratch buffer is undefined at entry of the codelet function, but this is being
considered for future extensions.
STARPU_REDUX reduction mode.

[Data Type]starpu_data_handle_t
StarPU uses starpu_data_handle_t as an opaque handle to manage a piece of data.
Once a piece of data has been registered to StarPU, it is associated to a starpu_data_
handle_t which keeps track of the state of the piece of data over the entire machine,
so that we can maintain data consistency and locate data replicates for instance.

70 StarPU Handbook

[Function]void starpu_data_register (starpu data handle t *handleptr ,
uint32 t home_node , void *interface , struct starpu data interface ops
*ops)

Register a piece of data into the handle located at the handleptr address. The interface
buffer contains the initial description of the data in the home node. The ops argument
is a pointer to a structure describing the different methods used to manipulate this
type of interface. See [struct starpu data interface ops], page 97 for more details on
this structure.

If home_node is -1, StarPU will automatically allocate the memory when it is used
for the first time in write-only mode. Once such data handle has been automatically
allocated, it is possible to access it using any access mode.

Note that StarPU supplies a set of predefined types of interface (e.g. vector or matrix)
which can be registered by the means of helper functions (e.g. starpu_vector_data_
register or starpu_matrix_data_register).

[Function]void starpu_data_unregister (starpu data handle t handle)
This function unregisters a data handle from StarPU. If the data was automatically
allocated by StarPU because the home node was -1, all automatically allocated buffers
are freed. Otherwise, a valid copy of the data is put back into the home node in the
buffer that was initially registered. Using a data handle that has been unregistered
from StarPU results in an undefined behaviour.

[Function]void starpu_data_unregister_no_coherency (starpu data handle t
handle)

This is the same as starpu data unregister, except that StarPU does not put back a
valid copy into the home node, in the buffer that was initially registered.

[Function]void starpu_data_invalidate (starpu data handle t handle)
Destroy all replicates of the data handle. After data invalidation, the first access to
the handle must be performed in write-only mode. Accessing an invalidated data in
read-mode results in undefined behaviour.

[Function]void starpu_data_set_wt_mask (starpu data handle t handle ,
uint32 t wt_mask)

This function sets the write-through mask of a given data, i.e. a bitmask of nodes
where the data should be always replicated after modification.

[Function]int starpu_data_prefetch_on_node (starpu data handle t handle ,
unsigned node , unsigned async)

Issue a prefetch request for a given data to a given node, i.e. requests that the data
be replicated to the given node, so that it is available there for tasks. If the async
parameter is 0, the call will block until the transfer is achieved, else the call will
return as soon as the request is scheduled (which may however have to wait for a task
completion).

[Function]starpu_data_handle_t starpu_data_lookup (const void *ptr)
Return the handle associated to ptr ptr.

Chapter 13: StarPU Basic API 71

[Function]int starpu_data_request_allocation (starpu data handle t
handle , uint32 t node)

todo

[Function]void starpu_data_query_status (starpu data handle t handle , int
memory_node , int *is_allocated , int *is_valid , int *is_requested)

Query the status of the handle on the specified memory node.

[Function]void starpu_data_advise_as_important (starpu data handle t
handle , unsigned is_important)

This function allows to specify that a piece of data can be discarded without impacting
the application.

[Function]void starpu_data_set_reduction_methods (starpu data handle t
handle , struct starpu codelet *redux_cl , struct starpu codelet *init_cl)

todo

13.3.3 Access registered data from the application

[Function]int starpu_data_acquire (starpu data handle t handle , enum
starpu access mode mode)

The application must call this function prior to accessing registered data from main
memory outside tasks. StarPU ensures that the application will get an up-to-date
copy of the data in main memory located where the data was originally registered,
and that all concurrent accesses (e.g. from tasks) will be consistent with the access
mode specified in themode argument. starpu_data_releasemust be called once the
application does not need to access the piece of data anymore. Note that implicit data
dependencies are also enforced by starpu_data_acquire, i.e. starpu_data_acquire
will wait for all tasks scheduled to work on the data, unless that they have not been
disabled explictly by calling starpu_data_set_default_sequential_consistency_
flag or starpu_data_set_sequential_consistency_flag. starpu_data_acquire
is a blocking call, so that it cannot be called from tasks or from their callbacks (in
that case, starpu_data_acquire returns -EDEADLK). Upon successful completion,
this function returns 0.

[Function]int starpu_data_acquire_cb (starpu data handle t handle , enum
starpu access mode mode , void (*callback)(void *), void *arg)

starpu_data_acquire_cb is the asynchronous equivalent of starpu_data_release.
When the data specified in the first argument is available in the appropriate access
mode, the callback function is executed. The application may access the requested
data during the execution of this callback. The callback function must call starpu_
data_release once the application does not need to access the piece of data anymore.
Note that implicit data dependencies are also enforced by starpu_data_acquire_cb

in case they are enabled. Contrary to starpu_data_acquire, this function is non-
blocking and may be called from task callbacks. Upon successful completion, this
function returns 0.

72 StarPU Handbook

[Macro]STARPU_DATA_ACQUIRE_CB (starpu data handle t handle , enum
starpu access mode mode , code)

STARPU_DATA_ACQUIRE_CB is the same as starpu_data_acquire_cb, except that the
code to be executed in a callback is directly provided as a macro parameter, and the
data handle is automatically released after it. This permits to easily execute code
which depends on the value of some registered data. This is non-blocking too and
may be called from task callbacks.

[Function]void starpu_data_release (starpu data handle t handle)
This function releases the piece of data acquired by the application either by starpu_

data_acquire or by starpu_data_acquire_cb.

13.4 Data Interfaces

13.4.1 Registering Data

There are several ways to register a memory region so that it can be managed by StarPU.
The functions below allow the registration of vectors, 2D matrices, 3D matrices as well as
BCSR and CSR sparse matrices.

[Function]void starpu_void_data_register (starpu data handle t *handle)
Register a void interface. There is no data really associated to that interface, but it
may be used as a synchronization mechanism. It also permits to express an abstract
piece of data that is managed by the application internally: this makes it possible to
forbid the concurrent execution of different tasks accessing the same "void" data in
read-write concurrently.

[Function]void starpu_variable_data_register (starpu data handle t
*handle , uint32 t home_node , uintptr t ptr , size t size)

Register the size-byte element pointed to by ptr, which is typically a scalar, and
initialize handle to represent this data item.� �
float var;

starpu_data_handle_t var_handle;

starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
 	
[Function]void starpu_vector_data_register (starpu data handle t *handle ,

uint32 t home_node , uintptr t ptr , uint32 t count , size t size)
Register the count size-byte elements pointed to by ptr and initialize handle to rep-
resent it.� �
float vector[NX];

starpu_data_handle_t vector_handle;

starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,

sizeof(vector[0]));
 	

Chapter 13: StarPU Basic API 73

[Function]void starpu_matrix_data_register (starpu data handle t *handle ,
uint32 t home_node , uintptr t ptr , uint32 t ld , uint32 t nx , uint32 t ny ,
size t size)

Register the nxxny 2D matrix of size-byte elements pointed by ptr and initialize
handle to represent it. ld specifies the number of extra elements present at the end
of each row; a non-zero ld adds padding, which can be useful for alignment purposes.� �
float *matrix;

starpu_data_handle_t matrix_handle;

matrix = (float*)malloc(width * height * sizeof(float));

starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,

width, width, height, sizeof(float));
 	
[Function]void starpu_block_data_register (starpu data handle t *handle ,

uint32 t home_node , uintptr t ptr , uint32 t ldy , uint32 t ldz , uint32 t nx ,
uint32 t ny , uint32 t nz , size t size)

Register the nxxnyxnz 3D matrix of size-byte elements pointed by ptr and initialize
handle to represent it. Again, ldy and ldz specify the number of extra elements
present at the end of each row or column.� �
float *block;

starpu_data_handle_t block_handle;

block = (float*)malloc(nx*ny*nz*sizeof(float));

starpu_block_data_register(&block_handle, 0, (uintptr_t)block,

nx, nx*ny, nx, ny, nz, sizeof(float));
 	
[Function]void starpu_bcsr_data_register (starpu data handle t *handle ,

uint32 t home_node , uint32 t nnz , uint32 t nrow , uintptr t nzval , uint32 t
*colind , uint32 t *rowptr , uint32 t firstentry , uint32 t r , uint32 t c ,
size t elemsize)

This variant of starpu_data_register uses the BCSR (Blocked Compressed Sparse
Row Representation) sparse matrix interface. TODO

[Function]void starpu_csr_data_register (starpu data handle t *handle ,
uint32 t home_node , uint32 t nnz , uint32 t nrow , uintptr t nzval , uint32 t
*colind , uint32 t *rowptr , uint32 t firstentry , size t elemsize)

This variant of starpu_data_register uses the CSR (Compressed Sparse Row Rep-
resentation) sparse matrix interface. TODO

[Function]void * starpu_data_get_interface_on_node (starpu data handle t
handle , unsigned memory_node)

Return the interface associated with handle on memory node.

13.4.2 Accessing Data Interfaces

Each data interface is provided with a set of field access functions. The ones using a void

* parameter aimed to be used in codelet implementations (see for example the code in
Section 4.3.1 [Source code of Vector Scaling], page 12).

74 StarPU Handbook

[Data Type]enum starpu_data_interface_id
The different values are:

STARPU_MATRIX_INTERFACE_ID

STARPU_BLOCK_INTERFACE_ID

STARPU_VECTOR_INTERFACE_ID

STARPU_CSR_INTERFACE_ID

STARPU_BCSR_INTERFACE_ID

STARPU_VARIABLE_INTERFACE_ID

STARPU_VOID_INTERFACE_ID

STARPU_MULTIFORMAT_INTERFACE_ID

STARPU_NINTERFACES_ID : number of data interfaces

13.4.2.1 Handle

[Function]void * starpu_handle_to_pointer (starpu data handle t handle ,
uint32 t node)

Return the pointer associated with handle on node node or NULL if handle’s interface
does not support this operation or data for this handle is not allocated on that node.

[Function]void * starpu_handle_get_local_ptr (starpu data handle t
handle)

Return the local pointer associated with handle or NULL if handle’s interface does not
have data allocated locally

[Function]enum starpu_data_interface_id
starpu_get_handle_interface_id (starpu data handle t handle)

Return the unique identifier of the interface associated with the given handle.

13.4.2.2 Variable Data Interfaces

[Function]size_t starpu_variable_get_elemsize (starpu data handle t
handle)

Return the size of the variable designated by handle.

[Function]uintptr_t starpu_variable_get_local_ptr (starpu data handle t
handle)

Return a pointer to the variable designated by handle.

[Macro]STARPU_VARIABLE_GET_PTR (void *interface)
Return a pointer to the variable designated by interface.

[Macro]STARPU_VARIABLE_GET_ELEMSIZE (void *interface)
Return the size of the variable designated by interface.

13.4.2.3 Vector Data Interfaces

[Function]uint32_t starpu_vector_get_nx (starpu data handle t handle)
Return the number of elements registered into the array designated by handle.

[Function]size_t starpu_vector_get_elemsize (starpu data handle t handle)
Return the size of each element of the array designated by handle.

Chapter 13: StarPU Basic API 75

[Function]uintptr_t starpu_vector_get_local_ptr (starpu data handle t
handle)

Return the local pointer associated with handle.

[Macro]STARPU_VECTOR_GET_PTR (void *interface)
Return a pointer to the array designated by interface, valid on CPUs and CUDA
only. For OpenCL, the device handle and offset need to be used instead.

[Macro]STARPU_VECTOR_GET_DEV_HANDLE (void *interface)
Return a device handle for the array designated by interface, to be used on OpenCL.
the offset documented below has to be used in addition to this.

[Macro]STARPU_VECTOR_GET_OFFSET (void *interface)
Return the offset in the array designated by interface, to be used with the device
handle.

[Macro]STARPU_VECTOR_GET_NX (void *interface)
Return the number of elements registered into the array designated by interface.

[Macro]STARPU_VECTOR_GET_ELEMSIZE (void *interface)
Return the size of each element of the array designated by interface.

13.4.2.4 Matrix Data Interfaces

[Function]uint32_t starpu_matrix_get_nx (starpu data handle t handle)
Return the number of elements on the x-axis of the matrix designated by handle.

[Function]uint32_t starpu_matrix_get_ny (starpu data handle t handle)
Return the number of elements on the y-axis of the matrix designated by handle.

[Function]uint32_t starpu_matrix_get_local_ld (starpu data handle t
handle)

Return the number of extra elements present at the end of each row of the matrix
designated by handle.

[Function]uintptr_t starpu_matrix_get_local_ptr (starpu data handle t
handle)

Return the local pointer associated with handle.

[Function]size_t starpu_matrix_get_elemsize (starpu data handle t handle)
Return the size of the elements registered into the matrix designated by handle.

[Macro]STARPU_MATRIX_GET_PTR (void *interface)
Return a pointer to the matrix designated by interface, valid on CPUs and CUDA
devices only. For OpenCL devices, the device handle and offset need to be used
instead.

[Macro]STARPU_MATRIX_GET_DEV_HANDLE (void *interface)
Return a device handle for the matrix designated by interface, to be used on OpenCL.
The offset documented below has to be used in addition to this.

76 StarPU Handbook

[Macro]STARPU_MATRIX_GET_OFFSET (void *interface)
Return the offset in the matrix designated by interface, to be used with the device
handle.

[Macro]STARPU_MATRIX_GET_NX (void *interface)
Return the number of elements on the x-axis of the matrix designated by interface.

[Macro]STARPU_MATRIX_GET_NY (void *interface)
Return the number of elements on the y-axis of the matrix designated by interface.

[Macro]STARPU_MATRIX_GET_LD (void *interface)
Return the number of extra elements present at the end of each row of the matrix
designated by interface.

[Macro]STARPU_MATRIX_GET_ELEMSIZE (void *interface)
Return the size of the elements registered into the matrix designated by interface.

13.4.2.5 Block Data Interfaces

[Function]uint32_t starpu_block_get_nx (starpu data handle t handle)
todo

[Function]uint32_t starpu_block_get_ny (starpu data handle t handle)
todo

[Function]uint32_t starpu_block_get_nz (starpu data handle t handle)
todo

[Function]uint32_t starpu_block_get_local_ldy (starpu data handle t
handle)

todo

[Function]uint32_t starpu_block_get_local_ldz (starpu data handle t
handle)

todo

[Function]uintptr_t starpu_block_get_local_ptr (starpu data handle t
handle)

todo

[Function]size_t starpu_block_get_elemsize (starpu data handle t handle)
todo

[Macro]STARPU_BLOCK_GET_PTR (void *interface)
todo

[Macro]STARPU_BLOCK_GET_DEV_HANDLE (void *interface)
todo

[Macro]STARPU_BLOCK_GET_OFFSET (void *interface)
todo

Chapter 13: StarPU Basic API 77

[Macro]STARPU_BLOCK_GET_NX (void *interface)
todo

[Macro]STARPU_BLOCK_GET_NY (void *interface)
todo

[Macro]STARPU_BLOCK_GET_NZ (void *interface)
todo

[Macro]STARPU_BLOCK_GET_LDY (void *interface)
todo

[Macro]STARPU_BLOCK_GET_LDZ (void *interface)
todo

[Macro]STARPU_BLOCK_GET_ELEMSIZE (void *interface)
todo

13.4.2.6 BCSR Data Interfaces

[Function]uint32_t starpu_bcsr_get_nnz (starpu data handle t handle)
todo

[Function]uint32_t starpu_bcsr_get_nrow (starpu data handle t handle)
todo

[Function]uint32_t starpu_bcsr_get_firstentry (starpu data handle t
handle)

todo

[Function]uintptr_t starpu_bcsr_get_local_nzval (starpu data handle t
handle)

todo

[Function]uint32_t * starpu_bcsr_get_local_colind (starpu data handle t
handle)

todo

[Function]uint32_t * starpu_bcsr_get_local_rowptr (starpu data handle t
handle)

todo

[Function]uint32_t starpu_bcsr_get_r (starpu data handle t handle)
todo

[Function]uint32_t starpu_bcsr_get_c (starpu data handle t handle)
todo

[Function]size_t starpu_bcsr_get_elemsize (starpu data handle t handle)
todo

78 StarPU Handbook

13.4.2.7 CSR Data Interfaces

[Function]uint32_t starpu_csr_get_nnz (starpu data handle t handle)
Return the number of non-zero values in the matrix designated by handle.

[Function]uint32_t starpu_csr_get_nrow (starpu data handle t handle)
Return the size of the row pointer array of the matrix designated by handle.

[Function]uint32_t starpu_csr_get_firstentry (starpu data handle t
handle)

todo

[Function]uintptr_t starpu_csr_get_local_nzval (starpu data handle t
handle)

Return a local pointer to the non-zero values of the matrix designated by handle.

[Function]uint32_t * starpu_csr_get_local_colind (starpu data handle t
handle)

Return a local pointer to the column index of the matrix designated by handle.

[Function]uint32_t * starpu_csr_get_local_rowptr (starpu data handle t
handle)

Return a local pointer to the row pointer array of the matrix designated by handle.

[Function]size_t starpu_csr_get_elemsize (starpu data handle t handle)
Return the size of the elements registered into the matrix designated by handle.

[Macro]STARPU_CSR_GET_NNZ (void *interface)
Return the number of non-zero values in the matrix designated by interface.

[Macro]STARPU_CSR_GET_NROW (void *interface)
Return the size of the row pointer array of the matrix designated by interface.

[Macro]STARPU_CSR_GET_NZVAL (void *interface)
Return a pointer to the non-zero values of the matrix designated by interface.

[Macro]STARPU_CSR_GET_COLIND (void *interface)
Return a pointer to the column index of the matrix designated by interface.

[Macro]STARPU_CSR_GET_ROWPTR (void *interface)
Return a pointer to the row pointer array of the matrix designated by interface.

[Macro]STARPU_CSR_GET_FIRSTENTRY (void *interface)
todo

[Macro]STARPU_CSR_GET_ELEMSIZE (void *interface)
Return the size of the elements registered into the matrix designated by interface.

Chapter 13: StarPU Basic API 79

13.5 Data Partition

13.5.1 Basic API

[Data Type]struct starpu_data_filter
The filter structure describes a data partitioning operation, to be given to the starpu_
data_partition function, see [starpu data partition], page 79 for an example. The
different fields are:

filter_func

This function fills the child_interface structure with interface
information for the id-th child of the parent father_interface (among
nparts). void (*filter_func)(void *father_interface, void*

child_interface, struct starpu_data_filter *, unsigned id,

unsigned nparts);

nchildren

This is the number of parts to partition the data into.

get_nchildren

This returns the number of children. This can be used instead of
nchildren when the number of children depends on the actual data
(e.g. the number of blocks in a sparse matrix). unsigned (*get_

nchildren)(struct starpu_data_filter *, starpu_data_handle_t

initial_handle);

get_child_ops

In case the resulting children use a different data interface, this
function returns which interface is used by child number id.
struct starpu_data_interface_ops *(*get_child_ops)(struct

starpu_data_filter *, unsigned id);

filter_arg

Some filters take an addition parameter, but this is usually unused.

filter_arg_ptr

Some filters take an additional array parameter like the sizes of the parts,
but this is usually unused.

[Function]void starpu_data_partition (starpu data handle t
initial_handle , struct starpu data filter *f)

This requests partitioning one StarPU data initial handle into several subdata ac-
cording to the filter f , as shown in the following example:� �
struct starpu_data_filter f = {

.filter_func = starpu_vertical_block_filter_func,

.nchildren = nslicesx,

.get_nchildren = NULL,

.get_child_ops = NULL

};

starpu_data_partition(A_handle, &f);
 	

80 StarPU Handbook

[Function]void starpu_data_unpartition (starpu data handle t root_data ,
uint32 t gathering_node)

This unapplies one filter, thus unpartitioning the data. The pieces of data are collected
back into one big piece in the gathering node (usually 0).� �
starpu_data_unpartition(A_handle, 0);
 	

[Function]int starpu_data_get_nb_children (starpu data handle t handle)
This function returns the number of children.

[Function]starpu_data_handle_t starpu_data_get_child
(starpu data handle t handle , unsigned i)

todo

[Function]starpu_data_handle_t starpu_data_get_sub_data
(starpu data handle t root_data , unsigned depth , ...)

After partitioning a StarPU data by applying a filter, starpu_data_get_sub_data
can be used to get handles for each of the data portions. root data is the parent
data that was partitioned. depth is the number of filters to traverse (in case several
filters have been applied, to e.g. partition in row blocks, and then in column blocks),
and the subsequent parameters are the indexes. The function returns a handle to the
subdata.� �
h = starpu_data_get_sub_data(A_handle, 1, taskx);
 	

[Function]starpu_data_handle_t starpu_data_vget_sub_data
(starpu data handle t root_data , unsigned depth , va list pa)

This function is similar to starpu_data_get_sub_data but uses a va list for the
parameter list.

[Function]void starpu_data_map_filters (starpu data handle t root_data ,
unsigned nfilters , ...)

todo

[Function]void starpu_data_vmap_filters (starpu data handle t root_data ,
unsigned nfilters , va list pa)

todo

13.5.2 Predefined filter functions

This section gives a partial list of the predefined partitioning functions. Examples on how
to use them are shown in Section 5.4 [Partitioning Data], page 24. The complete list can
be found in starpu_data_filters.h .

Chapter 13: StarPU Basic API 81

13.5.2.1 Partitioning BCSR Data

[Function]void starpu_canonical_block_filter_bcsr (void
*father_interface , void *child_interface , struct starpu data filter *f ,
unsigned id , unsigned nparts)

TODO

[Function]void starpu_vertical_block_filter_func_csr (void
*father_interface , void *child_interface , struct starpu data filter *f ,
unsigned id , unsigned nparts)

TODO

13.5.2.2 Partitioning BLAS interface

[Function]void starpu_block_filter_func (void *father_interface , void
*child_interface , struct starpu data filter *f , unsigned id , unsigned
nparts)

This partitions a dense Matrix into horizontal blocks.

[Function]void starpu_vertical_block_filter_func (void
*father_interface , void *child_interface , struct starpu data filter *f ,
unsigned id , unsigned nparts)

This partitions a dense Matrix into vertical blocks.

13.5.2.3 Partitioning Vector Data

[Function]void starpu_block_filter_func_vector (void
*father_interface , void *child_interface , struct starpu data filter *f ,
unsigned id , unsigned nparts)

Return in *child_interface the idth element of the vector represented by fa-
ther interface once partitioned in nparts chunks of equal size.

[Function]void starpu_vector_list_filter_func (void *father_interface ,
void *child_interface , struct starpu data filter *f , unsigned id , unsigned
nparts)

Return in *child_interface the idth element of the vector represented by fa-
ther interface once partitioned into nparts chunks according to the filter_arg_ptr
field of *f .

The filter_arg_ptr field must point to an array of nparts uint32_t elements, each
of which specifies the number of elements in each chunk of the partition.

[Function]void starpu_vector_divide_in_2_filter_func (void
*father_interface , void *child_interface , struct starpu data filter *f ,
unsigned id , unsigned nparts)

Return in *child_interface the idth element of the vector represented by fa-
ther interface once partitioned in two chunks of equal size, ignoring nparts. Thus, id
must be 0 or 1.

82 StarPU Handbook

13.5.2.4 Partitioning Block Data

[Function]void starpu_block_filter_func_block (void *father_interface ,
void *child_interface , struct starpu data filter *f , unsigned id , unsigned
nparts)

This partitions a 3D matrix along the X axis.

13.6 Codelets and Tasks

This section describes the interface to manipulate codelets and tasks.

[Data Type]struct starpu_codelet
The codelet structure describes a kernel that is possibly implemented on various
targets. For compatibility, make sure to initialize the whole structure to zero.

where (optional)
Indicates which types of processing units are able to execute the codelet.
STARPU_CPU|STARPU_CUDA for instance indicates that the codelet is im-
plemented for both CPU cores and CUDA devices while STARPU_GORDON
indicates that it is only available on Cell SPUs. If the field is unset, its
value will be automatically set based on the availability of the XXX_funcs
fields defined below.

cpu_func (optional)
This field has been made deprecated. One should use instead the cpu_

funcs field.

cpu_funcs (optional)
Is an array of function pointers to the CPU implementations of the
codelet. It must be terminated by a NULL value. The functions proto-
type must be: void cpu_func(void *buffers[], void *cl_arg). The
first argument being the array of data managed by the data management
library, and the second argument is a pointer to the argument passed
from the cl_arg field of the starpu_task structure. If the where field is
set, then the cpu_funcs field is ignored if STARPU_CPU does not appear
in the where field, it must be non-null otherwise.

cuda_func (optional)
This field has been made deprecated. One should use instead the cuda_

funcs field.

cuda_funcs (optional)
Is an array of function pointers to the CUDA implementations of the
codelet. It must be terminated by a NULL value. The functions must be
host-functions written in the CUDA runtime API. Their prototype must
be: void cuda_func(void *buffers[], void *cl_arg);. If the where

field is set, then the cuda_funcs field is ignored if STARPU_CUDA does not
appear in the where field, it must be non-null otherwise.

opencl_func (optional)
This field has been made deprecated. One should use instead the opencl_
funcs field.

Chapter 13: StarPU Basic API 83

opencl_funcs (optional)
Is an array of function pointers to the OpenCL implementations of the
codelet. It must be terminated by a NULL value. The functions prototype
must be: void opencl_func(void *buffers[], void *cl_arg);. If the
where field is set, then the opencl_funcs field is ignored if STARPU_

OPENCL does not appear in the where field, it must be non-null otherwise.

gordon_func (optional)
This field has been made deprecated. One should use instead the gordon_
funcs field.

gordon_funcs (optional)
Is an array of index of the Cell SPU implementations of the codelet within
the Gordon library. It must be terminated by a NULL value. See Gordon
documentation for more details on how to register a kernel and retrieve
its index.

nbuffers Specifies the number of arguments taken by the codelet. These arguments
are managed by the DSM and are accessed from the void *buffers[] ar-
ray. The constant argument passed with the cl_arg field of the starpu_
task structure is not counted in this number. This value should not be
above STARPU_NMAXBUFS.

modes Is an array of enum starpu_access_mode. It describes the required access
modes to the data neeeded by the codelet (e.g. STARPU_RW). The number
of entries in this array must be specified in the nbuffers field (defined
above), and should not exceed STARPU_NMAXBUFS. If unsufficient, this
value can be set with the --enable-maxbuffers option when configuring
StarPU.

model (optional)
This is a pointer to the task duration performance model associated to
this codelet. This optional field is ignored when set to NULL.

TODO

power_model (optional)
This is a pointer to the task power consumption performance model asso-
ciated to this codelet. This optional field is ignored when set to NULL. In
the case of parallel codelets, this has to account for all processing units
involved in the parallel execution.

TODO

[Data Type]struct starpu_task
The starpu_task structure describes a task that can be offloaded on the various pro-
cessing units managed by StarPU. It instantiates a codelet. It can either be allocated
dynamically with the starpu_task_create method, or declared statically. In the
latter case, the programmer has to zero the starpu_task structure and to fill the
different fields properly. The indicated default values correspond to the configuration
of a task allocated with starpu_task_create.

84 StarPU Handbook

cl Is a pointer to the corresponding struct starpu_codelet data structure.
This describes where the kernel should be executed, and supplies the
appropriate implementations. When set to NULL, no code is executed
during the tasks, such empty tasks can be useful for synchronization
purposes.

buffers This field has been made deprecated. One should use instead the handles
field to specify the handles to the data accessed by the task. The access
modes are now defined in the mode field of the struct starpu_codelet

structure.

handles Is an array of starpu_data_handle_t. It specifies the handles to the
different pieces of data accessed by the task. The number of entries in
this array must be specified in the nbuffers field of the struct starpu_

codelet structure, and should not exceed STARPU_NMAXBUFS. If unsuffi-
cient, this value can be set with the --enable-maxbuffers option when
configuring StarPU.

cl_arg (optional; default: NULL)
This pointer is passed to the codelet through the second argument of the
codelet implementation (e.g. cpu_func or cuda_func). In the specific
case of the Cell processor, see the cl_arg_size argument.

cl_arg_size (optional, Cell-specific)
In the case of the Cell processor, the cl_arg pointer is not directly given
to the SPU function. A buffer of size cl_arg_size is allocated on the
SPU. This buffer is then filled with the cl_arg_size bytes starting at
address cl_arg. In this case, the argument given to the SPU codelet is
therefore not the cl_arg pointer, but the address of the buffer in local
store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
codelets, where the cl_arg pointer is given as such.

callback_func (optional) (default: NULL)
This is a function pointer of prototype void (*f)(void *) which specifies
a possible callback. If this pointer is non-null, the callback function is
executed on the host after the execution of the task. The callback is
passed the value contained in the callback_arg field. No callback is
executed if the field is set to NULL.

callback_arg (optional) (default: NULL)
This is the pointer passed to the callback function. This field is ignored
if the callback_func is set to NULL.

use_tag (optional) (default: 0)
If set, this flag indicates that the task should be associated with the tag
contained in the tag_id field. Tag allow the application to synchronize
with the task and to express task dependencies easily.

tag_id This fields contains the tag associated to the task if the use_tag field was
set, it is ignored otherwise.

Chapter 13: StarPU Basic API 85

synchronous

If this flag is set, the starpu_task_submit function is blocking and re-
turns only when the task has been executed (or if no worker is able to
process the task). Otherwise, starpu_task_submit returns immediately.

priority (optional) (default: STARPU_DEFAULT_PRIO)
This field indicates a level of priority for the task. This is an integer
value that must be set between the return values of the starpu_sched_

get_min_priority function for the least important tasks, and that of
the starpu_sched_get_max_priority for the most important tasks (in-
cluded). The STARPU_MIN_PRIO and STARPU_MAX_PRIO macros are pro-
vided for convenience and respectively returns value of starpu_sched_
get_min_priority and starpu_sched_get_max_priority. Default pri-
ority is STARPU_DEFAULT_PRIO, which is always defined as 0 in order to
allow static task initialization. Scheduling strategies that take priorities
into account can use this parameter to take better scheduling decisions,
but the scheduling policy may also ignore it.

execute_on_a_specific_worker (default: 0)
If this flag is set, StarPU will bypass the scheduler and directly affect this
task to the worker specified by the workerid field.

workerid (optional)
If the execute_on_a_specific_worker field is set, this field indicates
which is the identifier of the worker that should process this task (as
returned by starpu_worker_get_id). This field is ignored if execute_
on_a_specific_worker field is set to 0.

detach (optional) (default: 1)
If this flag is set, it is not possible to synchronize with the task by the
means of starpu_task_wait later on. Internal data structures are only
guaranteed to be freed once starpu_task_wait is called if the flag is not
set.

destroy (optional) (default: 1)
If this flag is set, the task structure will automatically be freed, either after
the execution of the callback if the task is detached, or during starpu_

task_wait otherwise. If this flag is not set, dynamically allocated data
structures will not be freed until starpu_task_destroy is called explic-
itly. Setting this flag for a statically allocated task structure will result
in undefined behaviour.

predicted (output field)
Predicted duration of the task. This field is only set if the scheduling
strategy used performance models.

[Function]void starpu_task_init (struct starpu task *task)
Initialize task with default values. This function is implicitly called by starpu_task_

create. By default, tasks initialized with starpu_task_init must be deinitialized
explicitly with starpu_task_deinit. Tasks can also be initialized statically, using
the constant STARPU_TASK_INITIALIZER.

86 StarPU Handbook

[Function]struct starpu_task * starpu_task_create (void)
Allocate a task structure and initialize it with default values. Tasks allocated dynam-
ically with starpu_task_create are automatically freed when the task is terminated.
This means that the task pointer can not be used any more once the task is submit-
ted, since it can be executed at any time (unless dependencies make it wait) and thus
freed at any time. If the destroy flag is explicitly unset, the resources used by the
task have to be freed by calling starpu_task_destroy.

[Function]void starpu_task_deinit (struct starpu task *task)
Release all the structures automatically allocated to execute task. This is called
automatically by starpu_task_destroy, but the task structure itself is not freed.
This should be used for statically allocated tasks for instance.

[Function]void starpu_task_destroy (struct starpu task *task)
Free the resource allocated during starpu_task_create and associated with task.
This function can be called automatically after the execution of a task by setting the
destroy flag of the starpu_task structure (default behaviour). Calling this function
on a statically allocated task results in an undefined behaviour.

[Function]int starpu_task_wait (struct starpu task *task)
This function blocks until task has been executed. It is not possible to synchronize
with a task more than once. It is not possible to wait for synchronous or detached
tasks.

Upon successful completion, this function returns 0. Otherwise, -EINVAL indicates
that the specified task was either synchronous or detached.

[Function]int starpu_task_submit (struct starpu task *task)
This function submits task to StarPU. Calling this function does not mean that the
task will be executed immediately as there can be data or task (tag) dependencies
that are not fulfilled yet: StarPU will take care of scheduling this task with respect
to such dependencies. This function returns immediately if the synchronous field of
the starpu_task structure was set to 0, and block until the termination of the task
otherwise. It is also possible to synchronize the application with asynchronous tasks
by the means of tags, using the starpu_tag_wait function for instance.

In case of success, this function returns 0, a return value of -ENODEV means that there
is no worker able to process this task (e.g. there is no GPU available and this task is
only implemented for CUDA devices).

[Function]int starpu_task_wait_for_all (void)
This function blocks until all the tasks that were submitted are terminated.

[Function]struct starpu_task * starpu_get_current_task (void)
This function returns the task currently executed by the worker, or NULL if it is
called either from a thread that is not a task or simply because there is no task being
executed at the moment.

[Function]void starpu_display_codelet_stats (struct starpu codelet *cl)
Output on stderr some statistics on the codelet cl.

Chapter 13: StarPU Basic API 87

[Function]int starpu_task_wait_for_no_ready (void)
This function waits until there is no more ready task.

13.7 Explicit Dependencies

[Function]void starpu_task_declare_deps_array (struct starpu task *task ,
unsigned ndeps , struct starpu task *task_array [])

Declare task dependencies between a task and an array of tasks of length ndeps. This
function must be called prior to the submission of the task, but it may called after
the submission or the execution of the tasks in the array, provided the tasks are still
valid (ie. they were not automatically destroyed). Calling this function on a task
that was already submitted or with an entry of task array that is not a valid task
anymore results in an undefined behaviour. If ndeps is null, no dependency is added.
It is possible to call starpu_task_declare_deps_array multiple times on the same
task, in this case, the dependencies are added. It is possible to have redundancy in
the task dependencies.

[Data Type]starpu_tag_t
This type defines a task logical identifer. It is possible to associate a task with a unique
“tag” chosen by the application, and to express dependencies between tasks by the
means of those tags. To do so, fill the tag_id field of the starpu_task structure with
a tag number (can be arbitrary) and set the use_tag field to 1.

If starpu_tag_declare_deps is called with this tag number, the task will not be
started until the tasks which holds the declared dependency tags are completed.

[Function]void starpu_tag_declare_deps (starpu tag t id , unsigned ndeps , ...)
Specify the dependencies of the task identified by tag id. The first argument specifies
the tag which is configured, the second argument gives the number of tag(s) on which
id depends. The following arguments are the tags which have to be terminated to
unlock the task.

This function must be called before the associated task is submitted to StarPU with
starpu_task_submit.

Because of the variable arity of starpu_tag_declare_deps, note that the last argu-
ments must be of type starpu_tag_t: constant values typically need to be explicitly
casted. Using the starpu_tag_declare_deps_array function avoids this hazard.� �
/* Tag 0x1 depends on tags 0x32 and 0x52 */

starpu_tag_declare_deps((starpu_tag_t)0x1,

2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
 	
[Function]void starpu_tag_declare_deps_array (starpu tag t id , unsigned

ndeps , starpu tag t *array)
This function is similar to starpu_tag_declare_deps, except that its does not take
a variable number of arguments but an array of tags of size ndeps.

88 StarPU Handbook

� �
/* Tag 0x1 depends on tags 0x32 and 0x52 */

starpu_tag_t tag_array[2] = {0x32, 0x52};

starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
 	
[Function]void starpu_tag_wait (starpu tag t id)

This function blocks until the task associated to tag id has been executed. This
is a blocking call which must therefore not be called within tasks or callbacks, but
only from the application directly. It is possible to synchronize with the same tag
multiple times, as long as the starpu_tag_remove function is not called. Note that
it is still possible to synchronize with a tag associated to a task which starpu_task

data structure was freed (e.g. if the destroy flag of the starpu_task was enabled).

[Function]void starpu_tag_wait_array (unsigned ntags , starpu tag t *id)
This function is similar to starpu_tag_wait except that it blocks until all the ntags
tags contained in the id array are terminated.

[Function]void starpu_tag_remove (starpu tag t id)
This function releases the resources associated to tag id. It can be called once the
corresponding task has been executed and when there is no other tag that depend on
this tag anymore.

[Function]void starpu_tag_notify_from_apps (starpu tag t id)
This function explicitly unlocks tag id. It may be useful in the case of applications
which execute part of their computation outside StarPU tasks (e.g. third-party li-
braries). It is also provided as a convenient tool for the programmer, for instance to
entirely construct the task DAG before actually giving StarPU the opportunity to
execute the tasks.

13.8 Implicit Data Dependencies

In this section, we describe how StarPUmakes it possible to insert implicit task dependencies
in order to enforce sequential data consistency. When this data consistency is enabled on
a specific data handle, any data access will appear as sequentially consistent from the
application. For instance, if the application submits two tasks that access the same piece
of data in read-only mode, and then a third task that access it in write mode, dependencies
will be added between the two first tasks and the third one. Implicit data dependencies are
also inserted in the case of data accesses from the application.

[Function]void starpu_data_set_default_sequential_consistency_flag
(unsigned flag)

Set the default sequential consistency flag. If a non-zero value is passed, a sequential
data consistency will be enforced for all handles registered after this function call,
otherwise it is disabled. By default, StarPU enables sequential data consistency. It
is also possible to select the data consistency mode of a specific data handle with the
starpu_data_set_sequential_consistency_flag function.

[Function]unsigned
starpu_data_get_default_sequential_consistency_flag (void)

Return the default sequential consistency flag

Chapter 13: StarPU Basic API 89

[Function]unsigned
starpu_data_set_default_sequential_consistency_flag (void)

This function returns the current default sequential consistency flag.

[Function]void starpu_data_set_sequential_consistency_flag
(starpu data handle t handle , unsigned flag)

Sets the data consistency mode associated to a data handle. The consistency mode
set using this function has the priority over the default mode which can be set with
starpu_data_set_sequential_consistency_flag.

13.9 Performance Model API

[Data Type]enum starpu_perf_archtype
Enumerates the various types of architectures. CPU types range within
STARPU CPU DEFAULT (1 CPU), STARPU CPU DEFAULT+1 (2 CPUs), ...
STARPU CPU DEFAULT + STARPU MAXCPUS - 1 (STARPU MAXCPUS
CPUs). CUDA types range within STARPU CUDA DEFAULT (GPU number 0),
STARPU CUDA DEFAULT + 1 (GPU number 1), ..., STARPU CUDA DEFAULT
+ STARPU MAXCUDADEVS - 1 (GPU number STARPU MAXCUDADEVS
- 1). OpenCL types range within STARPU OPENCL DEFAULT (GPU
number 0), STARPU OPENCL DEFAULT + 1 (GPU number 1), ...,
STARPU OPENCL DEFAULT + STARPU MAXOPENCLDEVS - 1 (GPU number
STARPU MAXOPENCLDEVS - 1).

STARPU_CPU_DEFAULT

STARPU_CUDA_DEFAULT

STARPU_OPENCL_DEFAULT

STARPU_GORDON_DEFAULT

[Data Type]struct starpu_perfmodel
contains all information about a performance model. At least the type and symbol

fields have to be filled when defining a performance model for a codelet. If not
provided, other fields have to be zero.

type is the type of performance model. STARPU_HISTORY_BASED, STARPU_

REGRESSION_BASED, STARPU_NL_REGRESSION_BASED: No other fields
needs to be provided, this is purely history-based. STARPU_PER_ARCH:
per_arch has to be filled with functions which return the cost in
micro-seconds. STARPU_COMMON: cost_function has to be filled with a
function that returns the cost in micro-seconds on a CPU, timing on
other archs will be determined by multiplying by an arch-specific factor.

symbol is the symbol name for the performance model, which will be used as file
name to store the model.

cost_model

This field is deprecated. Use instead the cost_function field.

cost_function

Used by STARPU_COMMON: takes a task and implementation number, and
must return a task duration estimation in micro-seconds.

90 StarPU Handbook

per_arch Used by STARPU_PER_ARCH: array of struct starpu_per_arch_

perfmodel structures.

size_base

Used by STARPU_HISTORY_BASED and STARPU_*REGRESSION_BASED. If
not NULL, takes a task and implementation number, and returns the
size to be used as index for history and regression.

[Data Type]struct starpu_per_arch_perfmodel
contains information about the performance model of a given arch.

cost_model

This field is deprecated. Use instead the cost_function field.

cost_function

Used by STARPU_PER_ARCH, must point to functions which take a task,
the target arch and implementation number (as mere conveniency, since
the array is already indexed by these), and must return a task duration
estimation in micro-seconds.

list Used by STARPU_HISTORY_BASED and STARPU_NL_REGRESSION_BASED,
records all execution history measures.

regression

Used by STARPU_HISTORY_REGRESION_BASED and STARPU_NL_

REGRESSION_BASED, contains the estimated factors of the regression.

size_base: Same as in struct perfmodel, but per-arch, in
case it depends on the architecture-specific implementation.

[Function]int starpu_load_history_debug (const char *symbol , struct
starpu perfmodel *model)

loads a given performance model. The model structure has to be completely zero,
and will be filled with the information saved in ~/.starpu.

[Function]void starpu_perfmodel_debugfilepath (struct starpu perfmodel
*model , enum starpu perf archtype arch , char *path , size t maxlen)

returns the path to the debugginf information for the performance model.

[Function]void starpu_perfmodel_get_arch_name (enum starpu perf archtype
arch , char *archname , size t maxlen)

returns the architecture name for arch.

[Function]void starpu_force_bus_sampling (void)
forces sampling the bus performance model again.

[Function]enum starpu_perf_archtype starpu_worker_get_perf_archtype
(int workerid)

returns the architecture type of a given worker.

[Function]int starpu_list_models (FILE *output)
prints a list of all performance models on output.

[Function]void starpu_print_bus_bandwidth (FILE *f)
prints a matrix of bus bandwidths on f .

Chapter 13: StarPU Basic API 91

13.10 Profiling API

[Function]int starpu_profiling_status_set (int status)
Thie function sets the profiling status. Profiling is activated by passing STARPU_

PROFILING_ENABLE in status. Passing STARPU_PROFILING_DISABLE disables profiling.
Calling this function resets all profiling measurements. When profiling is enabled, the
profiling_info field of the struct starpu_task structure points to a valid struct

starpu_task_profiling_info structure containing information about the execution
of the task.

Negative return values indicate an error, otherwise the previous status is returned.

[Function]int starpu_profiling_status_get (void)
Return the current profiling status or a negative value in case there was an error.

[Function]void starpu_set_profiling_id (int new_id)
This function sets the ID used for profiling trace filename

[Data Type]struct starpu_task_profiling_info
This structure contains information about the execution of a task. It is accessible from
the .profiling_info field of the starpu_task structure if profiling was enabled. The
different fields are:

submit_time

Date of task submission (relative to the initialization of StarPU).

start_time

Date of task execution beginning (relative to the initialization of StarPU).

end_time Date of task execution termination (relative to the initialization of
StarPU).

workerid Identifier of the worker which has executed the task.

[Data Type]struct starpu_worker_profiling_info
This structure contains the profiling information associated to a worker. The different
fields are:

start_time

Starting date for the reported profiling measurements.

total_time

Duration of the profiling measurement interval.

executing_time

Time spent by the worker to execute tasks during the profiling measure-
ment interval.

sleeping_time

Time spent idling by the worker during the profiling measurement inter-
val.

executed_tasks

Number of tasks executed by the worker during the profiling measurement
interval.

92 StarPU Handbook

[Function]int starpu_worker_get_profiling_info (int workerid , struct
starpu worker profiling info *worker_info)

Get the profiling info associated to the worker identified by workerid, and reset the
profiling measurements. If the worker info argument is NULL, only reset the counters
associated to worker workerid.

Upon successful completion, this function returns 0. Otherwise, a negative value is
returned.

[Data Type]struct starpu_bus_profiling_info
TODO. The different fields are:

start_time

TODO

total_time

TODO

transferred_bytes

TODO

transfer_count

TODO

[Function]int starpu_bus_get_profiling_info (int busid , struct
starpu bus profiling info *bus_info)

todo

[Function]int starpu_bus_get_count (void)
TODO

[Function]int starpu_bus_get_id (int src , int dst)
TODO

[Function]int starpu_bus_get_src (int busid)
TODO

[Function]int starpu_bus_get_dst (int busid)
TODO

[Function]double starpu_timing_timespec_delay_us (struct timespec *start ,
struct timespec *end)

TODO

[Function]double starpu_timing_timespec_to_us (struct timespec *ts)
TODO

[Function]void starpu_bus_profiling_helper_display_summary (void)
TODO

[Function]void starpu_worker_profiling_helper_display_summary (void)
TODO

Chapter 13: StarPU Basic API 93

13.11 CUDA extensions

[Function]cudaStream_t * starpu_cuda_get_local_stream (void)
This function gets the current worker’s CUDA stream. StarPU provides a stream for
every CUDA device controlled by StarPU. This function is only provided for conve-
nience so that programmers can easily use asynchronous operations within codelets
without having to create a stream by hand. Note that the application is not forced
to use the stream provided by starpu_cuda_get_local_stream and may also create
its own streams. Synchronizing with cudaThreadSynchronize() is allowed, but will
reduce the likelihood of having all transfers overlapped.

[Function]const struct cudaDeviceProp *
starpu_cuda_get_device_properties (unsigned workerid)

This function returns a pointer to device properties for worker workerid (assumed to
be a CUDA worker).

[Function]void starpu_helper_cublas_init (void)
This function initializes CUBLAS on every CUDA device. The CUBLAS library must
be initialized prior to any CUBLAS call. Calling starpu_helper_cublas_init will
initialize CUBLAS on every CUDA device controlled by StarPU. This call blocks until
CUBLAS has been properly initialized on every device.

[Function]void starpu_helper_cublas_shutdown (void)
This function synchronously deinitializes the CUBLAS library on every CUDA device.

13.12 OpenCL extensions

13.12.1 Writing OpenCL kernels

[Function]void starpu_opencl_display_error (const char *func , const char
*file , int line , const char *msg , cl int status)

todo

[Function]size_t starpu_opencl_get_global_mem_size (int devid)
todo

[Function]void starpu_opencl_get_context (int devid , cl context *context)
todo

[Function]void starpu_opencl_get_device (int devid , cl device id *device)
todo

[Function]void starpu_opencl_get_queue (int devid , cl command queue
*queue);

todo

[Function]void starpu_opencl_get_current_context (cl context *context)
todo

94 StarPU Handbook

[Function]void starpu_opencl_get_current_queue (cl command queue
*queue)

todo

[Function]int starpu_opencl_set_kernel_args (cl int *err , cl kernel
*kernel , ...)

Sets the arguments of a given kernel. The list of arguments must be given as (size t
size of the argument, cl mem * pointer to the argument). The last argument must
be 0. Returns the number of arguments that were successfully set. In case of failure,
err is set to the error returned by OpenCL.

13.12.2 Compiling OpenCL kernels

Source codes for OpenCL kernels can be stored in a file or in a string. StarPU provides
functions to build the program executable for each available OpenCL device as a cl_program
object. This program executable can then be loaded within a specific queue as explained
in the next section. These are only helpers, Applications can also fill a starpu_opencl_

program array by hand for more advanced use (e.g. different programs on the different
OpenCL devices, for relocation purpose for instance).

[Data Type]struct starpu_opencl_program
todo

[Function]int starpu_opencl_load_opencl_from_file (char
*source_file_name , struct starpu opencl program *opencl_programs ,
const char* build_options)

This function compiles an OpenCL source code stored in a file.

[Function]int starpu_opencl_load_opencl_from_string (char
*opencl_program_source , struct starpu opencl program
opencl_programs , const char build_options)

This function compiles an OpenCL source code stored in a string.

[Function]int starpu_opencl_unload_opencl (struct starpu opencl program
*opencl_programs)

This function unloads an OpenCL compiled code.

13.12.3 Loading OpenCL kernels

[Function]int starpu_opencl_load_kernel (cl kernel *kernel ,
cl command queue *queue , struct starpu opencl program
*opencl_programs , char *kernel_name , int devid)

TODO

[Function]int starpu_opencl_release_kernel (cl kernel kernel)
TODO

13.12.4 OpenCL statistics

[Function]int starpu_opencl_collect_stats (cl event event)
This function allows to collect statistics on a kernel execution. After termination of the
kernels, the OpenCL codelet should call this function to pass it the even returned by

Chapter 13: StarPU Basic API 95

clEnqueueNDRangeKernel, to let StarPU collect statistics about the kernel execution
(used cycles, consumed power).

13.13 Cell extensions

nothing yet.

13.14 Miscellaneous helpers

[Function]int starpu_data_cpy (starpu data handle t dst_handle ,
starpu data handle t src_handle , int asynchronous , void
(*callback_func)(void*), void *callback_arg)

Copy the content of the src handle into the dst handle handle. The asynchronous
parameter indicates whether the function should block or not. In the case of an
asynchronous call, it is possible to synchronize with the termination of this operation
either by the means of implicit dependencies (if enabled) or by calling starpu_task_

wait_for_all(). If callback func is not NULL, this callback function is executed after
the handle has been copied, and it is given the callback arg pointer as argument.

[Function]void starpu_execute_on_each_worker (void (*func)(void *), void
*arg , uint32 t where)

This function executes the given function on a subset of workers. When calling this
method, the offloaded function specified by the first argument is executed by every
StarPU worker that may execute the function. The second argument is passed to the
offloaded function. The last argument specifies on which types of processing units
the function should be executed. Similarly to the where field of the struct starpu_

codelet structure, it is possible to specify that the function should be executed
on every CUDA device and every CPU by passing STARPU_CPU|STARPU_CUDA. This
function blocks until the function has been executed on every appropriate processing
units, so that it may not be called from a callback function for instance.

Chapter 14: StarPU Advanced API 97

14 StarPU Advanced API

14.1 Defining a new data interface

14.1.1 Data Interface API

[Data Type]struct starpu_data_interface_ops
Defines the per-interface methods.

int {ram,cuda,opencl,spu}_to_{ram,cuda,opencl,spu}(void *src_interface,

unsigned src_node, void *dst_interface, unsigned dst_node);

These sixteen functions define how to copy data from the src interface in-
terface on the src node node to the dst interface interface on the dst node
node. They return 0 on success.

int (*ram_to_cuda_async)(void *src_interface, unsigned src_node, void

*dst_interface, unsigned dst_node, cudaStream_t stream);

Define how to copy data from the src interface interface on the src node
node (in RAM) to the dst interface interface on the dst node node (on a
CUDA device), using the given stream. Return 0 on success.

int (*cuda_to_ram_async)(void *src_interface, unsigned src_node, void

*dst_interface, unsigned dst_node, cudaStream_t stream);

Define how to copy data from the src interface interface on the src node
node (on a CUDA device) to the dst interface interface on the dst node
node (in RAM), using the given stream. Return 0 on success.

int (*cuda_to_cuda_async)(void *src_interface, unsigned src_node, void

*dst_interface, unsigned dst_node, cudaStream_t stream);

Define how to copy data from the src interface interface on the src node
node (on a CUDA device) to the dst interface interface on the dst node
node (on another CUDA device), using the given stream. Return 0 on
success.

int (*ram_to_opencl_async)(void *src_interface, unsigned src_node, void

dst_interface, unsigned dst_node, / cl_event * */ void *event);

Define how to copy data from the src interface interface on the src node
node (in RAM) to the dst interface interface on the dst node node (on
an OpenCL device), using event, a pointer to a cl event. Return 0 on
success.

int (*opencl_to_ram_async)(void *src_interface, unsigned src_node, void

dst_interface, unsigned dst_node, / cl_event * */ void *event);

Define how to copy data from the src interface interface on the src node
node (on an OpenCL device) to the dst interface interface on the
dst node node (in RAM), using the given event, a pointer to a cl event.
Return 0 on success.

98 StarPU Handbook

int (*opencl_to_opencl_async)(void *src_interface, unsigned src_node,

void *dst_interface, unsigned dst_node, /* cl_event * */ void *event);

Define how to copy data from the src interface interface on the src node
node (on an OpenCL device) to the dst interface interface on the
dst node node (on another OpenCL device), using the given event, a
pointer to a cl event. Return 0 on success.

[Data Type]struct starpu_data_copy_methods

Per-interface data transfer methods.

void (*register_data_handle)(starpu_data_handle_t handle, uint32_t

home_node, void *data_interface);

Register an existing interface into a data handle.

starpu_ssize_t (*allocate_data_on_node)(void *data_interface, uint32_t

node);

Allocate data for the interface on a given node.

void (*free_data_on_node)(void *data_interface, uint32_t node);

Free data of the interface on a given node.

const struct starpu_data_copy_methods *copy_methods;

ram/cuda/spu/opencl synchronous and asynchronous transfer methods.

void * (*handle_to_pointer)(starpu_data_handle_t handle, uint32_t

node);

Return the current pointer (if any) for the handle on the given node.

size_t (*get_size)(starpu_data_handle_t handle);

Return an estimation of the size of data, for performance models.

uint32_t (*footprint)(starpu_data_handle_t handle);

Return a 32bit footprint which characterizes the data size.

int (*compare)(void *data_interface_a, void *data_interface_b);

Compare the data size of two interfaces.

void (*display)(starpu_data_handle_t handle, FILE *f);

Dump the sizes of a handle to a file.

int (*convert_to_gordon)(void *data_interface, uint64_t *ptr,

gordon_strideSize_t *ss);

Convert the data size to the spu size format. If no SPUs are used, this
field can be seto NULL.

enum starpu_data_interface_id interfaceid;

An identifier that is unique to each interface.

size_t interface_size;

The size of the interface data descriptor.

14.1.2 An example of data interface

TODO See src/datawizard/interfaces/vector_interface.c for now.

Chapter 14: StarPU Advanced API 99

14.2 Multiformat Data Interface

[Data Type]struct starpu_multiformat_data_interface_ops
todo. The different fields are:

cpu_elemsize

the size of each element on CPUs,

opencl_elemsize

the size of each element on OpenCL devices,

cuda_elemsize

the size of each element on CUDA devices,

cpu_to_opencl_cl

pointer to a codelet which converts from CPU to OpenCL

opencl_to_cpu_cl

pointer to a codelet which converts from OpenCL to CPU

cpu_to_cuda_cl

pointer to a codelet which converts from CPU to CUDA

cuda_to_cpu_cl

pointer to a codelet which converts from CUDA to CPU

[Function]void starpu_multiformat_data_register (starpu data handle t
*handle , uint32 t home_node , void *ptr , uint32 t nobjects , struct
starpu multiformat data interface ops *format_ops);

Register a piece of data that can be represented in different ways, depending upon
the processing unit that manipulates it. It allows the programmer, for instance, to
use an array of structures when working on a CPU, and a structure of arrays when
working on a GPU.

nobjects is the number of elements in the data. format ops describes the format.

14.3 Task Bundles

[Data Type]starpu_task_bundle_t
Opaque structure describing a list of tasks that should be scheduled on the same
worker whenever it’s possible. It must be considered as a hint given to the scheduler
as there is no guarantee that they will be executed on the same worker.

[Function]void starpu_task_bundle_create (starpu task bundle t *bundle)
Factory function creating and initializing bundle, when the call returns, memory
needed is allocated and bundle is ready to use.

[Function]int starpu_task_bundle_insert (starpu task bundle t bundle ,
struct starpu task *task)

Insert task in bundle. Until task is removed from bundle its expected length and data
transfer time will be considered along those of the other tasks of bundle. This function
mustn’t be called if bundle is already closed and/or task is already submitted.

100 StarPU Handbook

[Function]int starpu_task_bundle_remove (starpu task bundle t bundle ,
struct starpu task *task)

Remove task from bundle. Of course task must have been previously inserted bundle.
This function mustn’t be called if bundle is already closed and/or task is already
submitted. Doing so would result in undefined behaviour.

[Function]void starpu_task_bundle_close (starpu task bundle t bundle);
Inform the runtime that the user won’t modify bundle anymore, it means no more
inserting or removing task. Thus the runtime can destroy it when possible.

14.4 Task Lists

[Data Type]struct starpu_task_list
Stores a double-chained list of tasks

[Function]void starpu_task_list_init (struct starpu task list *list)
Initialize a list structure

[Function]void starpu_task_list_push_front (struct starpu task list *list ,
struct starpu task *task)

Push a task at the front of a list

[Function]void starpu_task_list_push_back (struct starpu task list *list ,
struct starpu task *task)

Push a task at the back of a list

[Function]struct starpu_task * starpu_task_list_front (struct
starpu task list *list)

Get the front of the list (without removing it)

[Function]struct starpu_task * starpu_task_list_back (struct
starpu task list *list)

Get the back of the list (without removing it)

[Function]int starpu_task_list_empty (struct starpu task list *list)
Test if a list is empty

[Function]void starpu_task_list_erase (struct starpu task list *list , struct
starpu task *task)

Remove an element from the list

[Function]struct starpu_task * starpu_task_list_pop_front (struct
starpu task list *list)

Remove the element at the front of the list

[Function]struct starpu_task * starpu_task_list_pop_back (struct
starpu task list *list)

Remove the element at the back of the list

[Function]struct starpu_task * starpu_task_list_begin (struct
starpu task list *list)

Get the first task of the list.

Chapter 14: StarPU Advanced API 101

[Function]struct starpu_task * starpu_task_list_end (struct
starpu task list *list)

Get the end of the list.

[Function]struct starpu_task * starpu_task_list_next (struct starpu task
*task)

Get the next task of the list. This is not erase-safe.

14.5 Defining a new scheduling policy

TODO

A full example showing how to define a new scheduling policy is available in the StarPU
sources in the directory examples/scheduler/.

14.5.1 Scheduling Policy API

[Data Type]struct starpu_machine_topology
TODO

[Data Type]struct starpu_sched_policy
This structure contains all the methods that implement a scheduling policy. An
application may specify which scheduling strategy in the sched_policy field of the
starpu_conf structure passed to the starpu_init function. The different fields are:

init_sched

Initialize the scheduling policy.

deinit_sched

Cleanup the scheduling policy.

push_task

Insert a task into the scheduler.

push_task_notify

Notify the scheduler that a task was pushed on a given worker. This
method is called when a task that was explicitely assigned to a worker
becomes ready and is about to be executed by the worker. This method
therefore permits to keep the state of of the scheduler coherent even when
StarPU bypasses the scheduling strategy.

pop_task (optional)
Get a task from the scheduler. The mutex associated to the worker is
already taken when this method is called. If this method is defined as
NULL, the worker will only execute tasks from its local queue. In this
case, the push_task method should use the starpu_push_local_task

method to assign tasks to the different workers.

pop_every_task

Remove all available tasks from the scheduler (tasks are chained by the
means of the prev and next fields of the starpu task structure). The
mutex associated to the worker is already taken when this method is
called. This is currently only used by the Gordon driver.

102 StarPU Handbook

post_exec_hook (optional)
This method is called every time a task has been executed.

policy_name

Name of the policy (optional).

policy_description

Description of the policy (optional).

[Function]void starpu_worker_set_sched_condition (int workerid ,
pthread cond t *sched_cond , pthread mutex t *sched_mutex)

This function specifies the condition variable associated to a worker When there is
no available task for a worker, StarPU blocks this worker on a condition variable.
This function specifies which condition variable (and the associated mutex) should
be used to block (and to wake up) a worker. Note that multiple workers may use
the same condition variable. For instance, in the case of a scheduling strategy with
a single task queue, the same condition variable would be used to block and wake up
all workers. The initialization method of a scheduling strategy (init_sched) must
call this function once per worker.

[Function]void starpu_sched_set_min_priority (int min_prio)
Defines the minimum priority level supported by the scheduling policy. The default
minimum priority level is the same as the default priority level which is 0 by con-
vention. The application may access that value by calling the starpu_sched_get_

min_priority function. This function should only be called from the initialization
method of the scheduling policy, and should not be used directly from the application.

[Function]void starpu_sched_set_max_priority (int max_prio)
Defines the maximum priority level supported by the scheduling policy. The default
maximum priority level is 1. The application may access that value by calling the
starpu_sched_get_max_priority function. This function should only be called from
the initialization method of the scheduling policy, and should not be used directly from
the application.

[Function]int starpu_sched_get_min_priority (void)
Returns the current minimum priority level supported by the scheduling policy

[Function]int starpu_sched_get_max_priority (void)
Returns the current maximum priority level supported by the scheduling policy

[Function]int starpu_push_local_task (int workerid , struct starpu task
*task , int back)

The scheduling policy may put tasks directly into a worker’s local queue so that it
is not always necessary to create its own queue when the local queue is sufficient. If
back not null, task is put at the back of the queue where the worker will pop tasks
first. Setting back to 0 therefore ensures a FIFO ordering.

[Function]int starpu_worker_can_execute_task (unsigned workerid , struct
starpu task *task , unsigned nimpl)

Check if the worker specified by workerid can execute the codelet. Schedulers need
to call it before assigning a task to a worker, otherwise the task may fail to execute.

Chapter 14: StarPU Advanced API 103

[Function]double starpu_timing_now (void)
Return the current date in s

[Function]double starpu_task_expected_length (struct starpu task *task ,
enum starpu perf archtype arch , unsigned nimpl)

Returns expected task duration in s

[Function]double starpu_worker_get_relative_speedup (enum
starpu perf archtype perf_archtype)

Returns an estimated speedup factor relative to CPU speed

[Function]double starpu_task_expected_data_transfer_time (uint32 t
memory_node , struct starpu task *task)

Returns expected data transfer time in s

[Function]double starpu_data_expected_transfer_time
(starpu data handle t handle , unsigned memory_node , enum
starpu access mode mode)

Predict the transfer time (in s) to move a handle to a memory node

[Function]double starpu_task_expected_power (struct starpu task *task ,
enum starpu perf archtype arch , unsigned nimpl)

Returns expected power consumption in J

[Function]double starpu_task_expected_conversion_time (struct starpu task
*task , enum starpu perf archtype arch , unsigned nimpl)

Returns expected conversion time in ms (multiformat interface only)

14.5.2 Source code� �
static struct starpu_sched_policy dummy_sched_policy = {

.init_sched = init_dummy_sched,

.deinit_sched = deinit_dummy_sched,

.push_task = push_task_dummy,

.push_prio_task = NULL,

.pop_task = pop_task_dummy,

.post_exec_hook = NULL,

.pop_every_task = NULL,

.policy_name = "dummy",

.policy_description = "dummy scheduling strategy"

};
 	
14.6 Expert mode

[Function]void starpu_wake_all_blocked_workers (void)
todo

[Function]int starpu_progression_hook_register (unsigned (*func)(void
*arg), void *arg)

todo

104 StarPU Handbook

[Function]void starpu_progression_hook_deregister (int hook_id)
todo

Chapter 15: Configuring StarPU 105

15 Configuring StarPU

15.1 Compilation configuration

The following arguments can be given to the configure script.

15.1.1 Common configuration

15.1.1.1 --enable-debug

Enable debugging messages.

15.1.1.2 --enable-fast

Do not enforce assertions, saves a lot of time spent to compute them otherwise.

15.1.1.3 --enable-verbose

Augment the verbosity of the debugging messages. This can be disabled at runtime by
setting the environment variable STARPU_SILENT to any value.

% STARPU_SILENT=1 ./vector_scal

15.1.1.4 --enable-coverage

Enable flags for the gcov coverage tool.

15.1.2 Configuring workers

15.1.2.1 --enable-maxcpus=<number>

Define the maximum number of CPU cores that StarPU will support, then available as the
STARPU_MAXCPUS macro.

15.1.2.2 --disable-cpu

Disable the use of CPUs of the machine. Only GPUs etc. will be used.

15.1.2.3 --enable-maxcudadev=<number>

Define the maximum number of CUDA devices that StarPU will support, then available as
the STARPU_MAXCUDADEVS macro.

15.1.2.4 --disable-cuda

Disable the use of CUDA, even if a valid CUDA installation was detected.

15.1.2.5 --with-cuda-dir=<path>

Specify the directory where CUDA is installed. This directory should notably contain
include/cuda.h.

15.1.2.6 --with-cuda-include-dir=<path>

Specify the directory where CUDA headers are installed. This directory should notably
contain cuda.h. This defaults to /include appended to the value given to --with-cuda-

dir.

106 StarPU Handbook

15.1.2.7 --with-cuda-lib-dir=<path>

Specify the directory where the CUDA library is installed. This directory should notably
contain the CUDA shared libraries (e.g. libcuda.so). This defaults to /lib appended to
the value given to --with-cuda-dir.

15.1.2.8 --disable-cuda-memcpy-peer

Explicitely disable peer transfers when using CUDA 4.0

15.1.2.9 --enable-maxopencldev=<number>

Define the maximum number of OpenCL devices that StarPU will support, then available
as the STARPU_MAXOPENCLDEVS macro.

15.1.2.10 --disable-opencl

Disable the use of OpenCL, even if the SDK is detected.

15.1.2.11 --with-opencl-dir=<path>

Specify the location of the OpenCL SDK. This directory should notably contain
include/CL/cl.h (or include/OpenCL/cl.h on Mac OS).

15.1.2.12 --with-opencl-include-dir=<path>

Specify the location of OpenCL headers. This directory should notably contain CL/cl.h

(or OpenCL/cl.h on Mac OS). This defaults to /include appended to the value given to
--with-opencl-dir.

15.1.2.13 --with-opencl-lib-dir=<path>

Specify the location of the OpenCL library. This directory should notably contain the
OpenCL shared libraries (e.g. libOpenCL.so). This defaults to /lib appended to the value
given to --with-opencl-dir.

15.1.2.14 --enable-gordon

Enable the use of the Gordon runtime for Cell SPUs.

15.1.2.15 --with-gordon-dir=<path>

Specify the location of the Gordon SDK.

15.1.2.16 --enable-maximplementations=<number>

Define the number of implementations that can be defined for a single kind of device. It is
then available as the STARPU_MAXIMPLEMENTATIONS macro.

15.1.3 Advanced configuration

15.1.3.1 --enable-perf-debug

Enable performance debugging through gprof.

15.1.3.2 --enable-model-debug

Enable performance model debugging.

Chapter 15: Configuring StarPU 107

15.1.3.3 --enable-stats

Enable statistics.

15.1.3.4 --enable-maxbuffers=<nbuffers>

Define the maximum number of buffers that tasks will be able to take as parameters, then
available as the STARPU_NMAXBUFS macro.

15.1.3.5 --enable-allocation-cache

Enable the use of a data allocation cache to avoid the cost of it with CUDA. Still experi-
mental.

15.1.3.6 --enable-opengl-render

Enable the use of OpenGL for the rendering of some examples.

15.1.3.7 --enable-blas-lib=<name>

Specify the blas library to be used by some of the examples. The library has to be ’atlas’
or ’goto’.

15.1.3.8 --disable-starpufft

Disable the build of libstarpufft, even if fftw or cuFFT is available.

15.1.3.9 --with-magma=<path>

Specify where magma is installed. This directory should notably contain
include/magmablas.h.

15.1.3.10 --with-fxt=<path>

Specify the location of FxT (for generating traces and rendering them using ViTE). This
directory should notably contain include/fxt/fxt.h.

15.1.3.11 --with-perf-model-dir=<dir>

Specify where performance models should be stored (instead of defaulting to the current
user’s home).

15.1.3.12 --with-mpicc=<path to mpicc>

Specify the location of the mpicc compiler to be used for starpumpi.

15.1.3.13 --with-goto-dir=<dir>

Specify the location of GotoBLAS.

15.1.3.14 --with-atlas-dir=<dir>

Specify the location of ATLAS. This directory should notably contain include/cblas.h.

15.1.3.15 --with-mkl-cflags=<cflags>

Specify the compilation flags for the MKL Library.

108 StarPU Handbook

15.1.3.16 --with-mkl-ldflags=<ldflags>

Specify the linking flags for the MKL Library. Note that the http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/
website provides a script to determine the linking flags.

15.1.3.17 --disable-gcc-extensions

Disable the GCC plug-in. It is by default enabled if the GCC compiler provides a plug-in
support.

15.1.3.18 --disable-socl

Disable the SOCL extension. It is by default enabled if a valid OpenCL installation is
found.

15.2 Execution configuration through environment variables

Note: the values given in starpu_conf structure passed when calling starpu_init will
override the values of the environment variables.

15.2.1 Configuring workers

15.2.1.1 STARPU_NCPUS – Number of CPU workers

Specify the number of CPU workers (thus not including workers dedicated to control accel-
eratores). Note that by default, StarPU will not allocate more CPU workers than there are
physical CPUs, and that some CPUs are used to control the accelerators.

15.2.1.2 STARPU_NCUDA – Number of CUDA workers

Specify the number of CUDA devices that StarPU can use. If STARPU_NCUDA is lower than
the number of physical devices, it is possible to select which CUDA devices should be used
by the means of the STARPU_WORKERS_CUDAID environment variable. By default, StarPU
will create as many CUDA workers as there are CUDA devices.

15.2.1.3 STARPU_NOPENCL – Number of OpenCL workers

OpenCL equivalent of the STARPU_NCUDA environment variable.

15.2.1.4 STARPU_NGORDON – Number of SPU workers (Cell)

Specify the number of SPUs that StarPU can use.

15.2.1.5 STARPU_WORKERS_CPUID – Bind workers to specific CPUs

Passing an array of integers (starting from 0) in STARPU_WORKERS_CPUID specifies on which
logical CPU the different workers should be bound. For instance, if STARPU_WORKERS_CPUID
= "0 1 4 5", the first worker will be bound to logical CPU #0, the second CPU worker will
be bound to logical CPU #1 and so on. Note that the logical ordering of the CPUs is either
determined by the OS, or provided by the hwloc library in case it is available.

Note that the first workers correspond to the CUDA workers, then come the OpenCL
and the SPU, and finally the CPU workers. For example if we have STARPU_NCUDA=1,
STARPU_NOPENCL=1, STARPU_NCPUS=2 and STARPU_WORKERS_CPUID = "0 2 1 3", the CUDA

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

Chapter 15: Configuring StarPU 109

device will be controlled by logical CPU #0, the OpenCL device will be controlled by logical
CPU #2, and the logical CPUs #1 and #3 will be used by the CPU workers.

If the number of workers is larger than the array given in STARPU_WORKERS_CPUID, the
workers are bound to the logical CPUs in a round-robin fashion: if STARPU_WORKERS_CPUID
= "0 1", the first and the third (resp. second and fourth) workers will be put on CPU #0
(resp. CPU #1).

This variable is ignored if the use_explicit_workers_bindid flag of the starpu_conf
structure passed to starpu_init is set.

15.2.1.6 STARPU_WORKERS_CUDAID – Select specific CUDA devices

Similarly to the STARPU_WORKERS_CPUID environment variable, it is possible to select which
CUDA devices should be used by StarPU. On a machine equipped with 4 GPUs, set-
ting STARPU_WORKERS_CUDAID = "1 3" and STARPU_NCUDA=2 specifies that 2 CUDA workers
should be created, and that they should use CUDA devices #1 and #3 (the logical ordering
of the devices is the one reported by CUDA).

This variable is ignored if the use_explicit_workers_cuda_gpuid flag of the starpu_
conf structure passed to starpu_init is set.

15.2.1.7 STARPU_WORKERS_OPENCLID – Select specific OpenCL devices

OpenCL equivalent of the STARPU_WORKERS_CUDAID environment variable.

This variable is ignored if the use_explicit_workers_opencl_gpuid flag of the starpu_
conf structure passed to starpu_init is set.

15.2.2 Configuring the Scheduling engine

15.2.2.1 STARPU_SCHED – Scheduling policy

Choose between the different scheduling policies proposed by StarPU: work random, steal-
ing, greedy, with performance models, etc.

Use STARPU_SCHED=help to get the list of available schedulers.

15.2.2.2 STARPU_CALIBRATE – Calibrate performance models

If this variable is set to 1, the performance models are calibrated during the execution. If
it is set to 2, the previous values are dropped to restart calibration from scratch. Setting
this variable to 0 disable calibration, this is the default behaviour.

Note: this currently only applies to dm, dmda and heft scheduling policies.

15.2.2.3 STARPU_PREFETCH – Use data prefetch

This variable indicates whether data prefetching should be enabled (0 means that it is
disabled). If prefetching is enabled, when a task is scheduled to be executed e.g. on a GPU,
StarPU will request an asynchronous transfer in advance, so that data is already present on
the GPU when the task starts. As a result, computation and data transfers are overlapped.
Note that prefetching is enabled by default in StarPU.

110 StarPU Handbook

15.2.2.4 STARPU_SCHED_ALPHA – Computation factor

To estimate the cost of a task StarPU takes into account the estimated computation time
(obtained thanks to performance models). The alpha factor is the coefficient to be applied
to it before adding it to the communication part.

15.2.2.5 STARPU_SCHED_BETA – Communication factor

To estimate the cost of a task StarPU takes into account the estimated data transfer time
(obtained thanks to performance models). The beta factor is the coefficient to be applied
to it before adding it to the computation part.

15.2.3 Miscellaneous and debug

15.2.3.1 STARPU_SILENT – Disable verbose mode

This variable allows to disable verbose mode at runtime when StarPU has been configured
with the option --enable-verbose.

15.2.3.2 STARPU_LOGFILENAME – Select debug file name

This variable specifies in which file the debugging output should be saved to.

15.2.3.3 STARPU_FXT_PREFIX – FxT trace location

This variable specifies in which directory to save the trace generated if FxT is enabled. It
needs to have a trailing ’/’ character.

15.2.3.4 STARPU_LIMIT_GPU_MEM – Restrict memory size on the
GPUs

This variable specifies the maximum number of megabytes that should be available to the
application on each GPUs. In case this value is smaller than the size of the memory of
a GPU, StarPU pre-allocates a buffer to waste memory on the device. This variable is
intended to be used for experimental purposes as it emulates devices that have a limited
amount of memory.

15.2.3.5 STARPU_GENERATE_TRACE – Generate a Paje trace when
StarPU is shut down

When set to 1, this variable indicates that StarPU should automatically generate a Paje
trace when starpu shutdown is called.

Appendix A: Full source code for the ’Scaling a Vector’ example 111

Appendix A Full source code for the ’Scaling a
Vector’ example

A.1 Main application
/*

* This example demonstrates how to use StarPU to scale an array by a factor.

* It shows how to manipulate data with StarPU’s data management library.

* 1- how to declare a piece of data to StarPU (starpu_vector_data_register)

* 2- how to describe which data are accessed by a task (task->handles[0])

* 3- how a kernel can manipulate the data (buffers[0].vector.ptr)

*/

#include <starpu.h>

#include <starpu_opencl.h>

#define NX 2048

extern void scal_cpu_func(void *buffers[], void *_args);

extern void scal_sse_func(void *buffers[], void *_args);

extern void scal_cuda_func(void *buffers[], void *_args);

extern void scal_opencl_func(void *buffers[], void *_args);

static struct starpu_codelet cl = {

.where = STARPU_CPU | STARPU_CUDA | STARPU_OPENCL,

/* CPU implementation of the codelet */

.cpu_funcs = { scal_cpu_func, scal_sse_func, NULL },

#ifdef STARPU_USE_CUDA

/* CUDA implementation of the codelet */

.cuda_funcs = { scal_cuda_func, NULL },

#endif

#ifdef STARPU_USE_OPENCL

/* OpenCL implementation of the codelet */

.opencl_funcs = { scal_opencl_func, NULL },

#endif

.nbuffers = 1,

.modes = { STARPU_RW }

};

#ifdef STARPU_USE_OPENCL

struct starpu_opencl_program programs;

#endif

int main(int argc, char **argv)

{

/* We consider a vector of float that is initialized just as any of C

* data */

float vector[NX];

unsigned i;

for (i = 0; i < NX; i++)

vector[i] = 1.0f;

fprintf(stderr, "BEFORE : First element was %f\n", vector[0]);

/* Initialize StarPU with default configuration */

starpu_init(NULL);

#ifdef STARPU_USE_OPENCL

starpu_opencl_load_opencl_from_file(

112 StarPU Handbook

"examples/basic_examples/vector_scal_opencl_kernel.cl", &programs, NULL);

#endif

/* Tell StaPU to associate the "vector" vector with the "vector_handle"

* identifier. When a task needs to access a piece of data, it should

* refer to the handle that is associated to it.

* In the case of the "vector" data interface:

* - the first argument of the registration method is a pointer to the

* handle that should describe the data

* - the second argument is the memory node where the data (ie. "vector")

* resides initially: 0 stands for an address in main memory, as

* opposed to an adress on a GPU for instance.

* - the third argument is the adress of the vector in RAM

* - the fourth argument is the number of elements in the vector

* - the fifth argument is the size of each element.

*/

starpu_data_handle_t vector_handle;

starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,

NX, sizeof(vector[0]));

float factor = 3.14;

/* create a synchronous task: any call to starpu_task_submit will block

* until it is terminated */

struct starpu_task *task = starpu_task_create();

task->synchronous = 1;

task->cl = &cl;

/* the codelet manipulates one buffer in RW mode */

task->handles[0] = vector_handle;

/* an argument is passed to the codelet, beware that this is a

* READ-ONLY buffer and that the codelet may be given a pointer to a

* COPY of the argument */

task->cl_arg = &factor;

task->cl_arg_size = sizeof(factor);

/* execute the task on any eligible computational ressource */

starpu_task_submit(task);

/* StarPU does not need to manipulate the array anymore so we can stop

* monitoring it */

starpu_data_unregister(vector_handle);

#ifdef STARPU_USE_OPENCL

starpu_opencl_unload_opencl(&programs);

#endif

/* terminate StarPU, no task can be submitted after */

starpu_shutdown();

fprintf(stderr, "AFTER First element is %f\n", vector[0]);

return 0;

}

Appendix A: Full source code for the ’Scaling a Vector’ example 113

A.2 CPU Kernel
#include <starpu.h>

#include <xmmintrin.h>

/* This kernel takes a buffer and scales it by a constant factor */

void scal_cpu_func(void *buffers[], void *cl_arg)

{

unsigned i;

float *factor = cl_arg;

/*

* The "buffers" array matches the task->handles array: for instance

* task->handles[0] is a handle that corresponds to a data with

* vector "interface", so that the first entry of the array in the

* codelet is a pointer to a structure describing such a vector (ie.

* struct starpu_vector_interface *). Here, we therefore manipulate

* the buffers[0] element as a vector: nx gives the number of elements

* in the array, ptr gives the location of the array (that was possibly

* migrated/replicated), and elemsize gives the size of each elements.

*/

struct starpu_vector_interface *vector = buffers[0];

/* length of the vector */

unsigned n = STARPU_VECTOR_GET_NX(vector);

/* get a pointer to the local copy of the vector : note that we have to

* cast it in (float *) since a vector could contain any type of

* elements so that the .ptr field is actually a uintptr_t */

float *val = (float *)STARPU_VECTOR_GET_PTR(vector);

/* scale the vector */

for (i = 0; i < n; i++)

val[i] *= *factor;

}

void scal_sse_func(void *buffers[], void *cl_arg)

{

float *vector = (float *) STARPU_VECTOR_GET_PTR(buffers[0]);

unsigned int n = STARPU_VECTOR_GET_NX(buffers[0]);

unsigned int n_iterations = n/4;

__m128 *VECTOR = (__m128*) vector;

__m128 FACTOR __attribute__((aligned(16)));

float factor = *(float *) cl_arg;

FACTOR = _mm_set1_ps(factor);

unsigned int i;

for (i = 0; i < n_iterations; i++)

VECTOR[i] = _mm_mul_ps(FACTOR, VECTOR[i]);

unsigned int remainder = n%4;

if (remainder != 0)

{

unsigned int start = 4 * n_iterations;

for (i = start; i < start+remainder; ++i)

{

vector[i] = factor * vector[i];

}

114 StarPU Handbook

}

}

A.3 CUDA Kernel
#include <starpu.h>

#include <starpu_cuda.h>

static __global__ void vector_mult_cuda(float *val, unsigned n,

float factor)

{

unsigned i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n)

val[i] *= factor;

}

extern "C" void scal_cuda_func(void *buffers[], void *_args)

{

float *factor = (float *)_args;

/* length of the vector */

unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);

/* local copy of the vector pointer */

float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);

unsigned threads_per_block = 64;

unsigned nblocks = (n + threads_per_block-1) / threads_per_block;

vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);

cudaStreamSynchronize(starpu_cuda_get_local_stream());

}

A.4 OpenCL Kernel

A.4.1 Invoking the kernel
#include <starpu.h>

#include <starpu_opencl.h>

extern struct starpu_opencl_program programs;

void scal_opencl_func(void *buffers[], void *_args)

{

float *factor = _args;

int id, devid, err;

cl_kernel kernel;

cl_command_queue queue;

cl_event event;

/* length of the vector */

unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);

/* OpenCL copy of the vector pointer */

cl_mem val = (cl_mem)STARPU_VECTOR_GET_DEV_HANDLE(buffers[0]);

id = starpu_worker_get_id();

devid = starpu_worker_get_devid(id);

err = starpu_opencl_load_kernel(&kernel, &queue, &programs, "vector_mult_opencl",

Appendix A: Full source code for the ’Scaling a Vector’ example 115

devid);

if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);

err = clSetKernelArg(kernel, 0, sizeof(val), &val);

err |= clSetKernelArg(kernel, 1, sizeof(n), &n);

err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);

if (err) STARPU_OPENCL_REPORT_ERROR(err);

{

size_t global=n;

size_t local;

size_t s;

cl_device_id device;

starpu_opencl_get_device(devid, &device);

err = clGetKernelWorkGroupInfo (kernel, device, CL_KERNEL_WORK_GROUP_SIZE,

sizeof(local), &local, &s);

if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);

if (local > global) local=global;

err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0,

NULL, &event);

if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);

}

clFinish(queue);

starpu_opencl_collect_stats(event);

clReleaseEvent(event);

starpu_opencl_release_kernel(kernel);

}

A.4.2 Source of the kernel
__kernel void vector_mult_opencl(__global float* val, int nx, float factor)

{

const int i = get_global_id(0);

if (i < nx) {

val[i] *= factor;

}

}

Appendix B: GNU Free Documentation License 117

Appendix B GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

118 StarPU Handbook

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix B: GNU Free Documentation License 119

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

120 StarPU Handbook

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix B: GNU Free Documentation License 121

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

122 StarPU Handbook

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix B: GNU Free Documentation License 123

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

124 StarPU Handbook

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Function Index 125

Function Index

starpu_bcsr_data_register 73
starpu_bcsr_get_c . 77
starpu_bcsr_get_elemsize 77
starpu_bcsr_get_firstentry 77
starpu_bcsr_get_local_colind 77
starpu_bcsr_get_local_nzval 77
starpu_bcsr_get_local_rowptr 77
starpu_bcsr_get_nnz . 77
starpu_bcsr_get_nrow . 77
starpu_bcsr_get_r . 77
starpu_block_data_register 73
starpu_block_filter_func 81
starpu_block_filter_func_block 82
starpu_block_filter_func_vector 81
STARPU_BLOCK_GET_DEV_HANDLE 76
starpu_block_get_elemsize 76
STARPU_BLOCK_GET_ELEMSIZE 77
STARPU_BLOCK_GET_LDY . 77
STARPU_BLOCK_GET_LDZ . 77
starpu_block_get_local_ldy 76
starpu_block_get_local_ldz 76
starpu_block_get_local_ptr 76
starpu_block_get_nx . 76
STARPU_BLOCK_GET_NX . 77
starpu_block_get_ny . 76
STARPU_BLOCK_GET_NY . 77
starpu_block_get_nz . 76
STARPU_BLOCK_GET_NZ . 77
STARPU_BLOCK_GET_OFFSET . 76
STARPU_BLOCK_GET_PTR . 76
starpu_bound_compute . 44
starpu_bound_print . 44
starpu_bound_print_dot . 44
starpu_bound_print_lp . 44
starpu_bound_print_mps . 44
starpu_bound_start . 44
starpu_bound_stop . 44
starpu_bus_get_count . 92
starpu_bus_get_dst . 92
starpu_bus_get_id . 92
starpu_bus_get_profiling_info 92
starpu_bus_get_src . 92
starpu_bus_profiling_helper_display_summary

. 92
starpu_canonical_block_filter_bcsr 81
starpu_conf_init . 66
starpu_cpu_worker_get_count 67
starpu_csr_data_register 73
STARPU_CSR_GET_COLIND . 78
starpu_csr_get_elemsize . 78
STARPU_CSR_GET_ELEMSIZE . 78
starpu_csr_get_firstentry 78
STARPU_CSR_GET_FIRSTENTRY 78
starpu_csr_get_local_colind 78
starpu_csr_get_local_nzval 78

starpu_csr_get_local_rowptr 78
starpu_csr_get_nnz . 78
STARPU_CSR_GET_NNZ . 78
starpu_csr_get_nrow . 78
STARPU_CSR_GET_NROW . 78
STARPU_CSR_GET_NZVAL . 78
STARPU_CSR_GET_ROWPTR . 78
starpu_cuda_get_device_properties 93
starpu_cuda_get_local_stream 93
starpu_cuda_worker_get_count 67
starpu_data_acquire . 71
starpu_data_acquire_cb . 71
STARPU_DATA_ACQUIRE_CB . 72
starpu_data_advise_as_important 71
starpu_data_cpy . 95
starpu_data_expected_transfer_time 103
starpu_data_get_child . 80
starpu_data_get_default_sequential_

consistency_flag . 88
starpu_data_get_interface_on_node 73
starpu_data_get_nb_children 80
starpu_data_get_rank . 51
starpu_data_get_sub_data 80
starpu_data_get_tag . 51
starpu_data_invalidate . 70
starpu_data_lookup . 70
starpu_data_map_filters . 80
starpu_data_partition . 79
starpu_data_prefetch_on_node 70
starpu_data_query_status 71
starpu_data_register . 70
starpu_data_release . 72
starpu_data_request_allocation 71
starpu_data_set_default_sequential_

consistency_flag . 88, 89
starpu_data_set_rank . 51
starpu_data_set_reduction_methods 71
starpu_data_set_sequential_consistency_flag

. 89
starpu_data_set_tag . 51
starpu_data_set_wt_mask . 70
starpu_data_unpartition . 80
starpu_data_unregister . 70
starpu_data_unregister_no_coherency 70
starpu_data_vget_sub_data 80
starpu_data_vmap_filters 80
starpu_display_codelet_stats 86
starpu_execute_on_each_worker 95
starpu_force_bus_sampling 90
starpu_free . 69
STARPU_GCC_PLUGIN . 60
starpu_get_current_task . 86
starpu_get_handle_interface_id 74
starpu_handle_get_local_ptr 74
starpu_handle_to_pointer 74

126 StarPU Handbook

starpu_helper_cublas_init 93
starpu_helper_cublas_shutdown 93
starpu_init . 65
starpu_insert_task . 28
starpu_list_models . 90
starpu_load_history_debug 90
starpu_malloc . 69
starpu_matrix_data_register 73
STARPU_MATRIX_GET_DEV_HANDLE 75
starpu_matrix_get_elemsize 75
STARPU_MATRIX_GET_ELEMSIZE 76
STARPU_MATRIX_GET_LD . 76
starpu_matrix_get_local_ld 75
starpu_matrix_get_local_ptr 75
starpu_matrix_get_nx . 75
STARPU_MATRIX_GET_NX . 76
starpu_matrix_get_ny . 75
STARPU_MATRIX_GET_NY . 76
STARPU_MATRIX_GET_OFFSET 76
STARPU_MATRIX_GET_PTR . 75
starpu_mpi_barrier . 48
starpu_mpi_gather_detached 53
starpu_mpi_get_data_on_node 52
starpu_mpi_initialize . 47
starpu_mpi_initialize_extended 47
starpu_mpi_insert_task . 51
starpu_mpi_irecv . 48
starpu_mpi_irecv_array_detached_unlock_tag

. 48
starpu_mpi_irecv_detached 48
starpu_mpi_irecv_detached_unlock_tag 48
starpu_mpi_isend . 48
starpu_mpi_isend_array_detached_unlock_tag

. 48
starpu_mpi_isend_detached 48
starpu_mpi_isend_detached_unlock_tag 48
starpu_mpi_recv . 47
starpu_mpi_scatter_detached 53
starpu_mpi_send . 47
starpu_mpi_shutdown . 47
starpu_mpi_test . 48
starpu_mpi_wait . 48
starpu_multiformat_data_register 99
starpu_opencl_collect_stats 94
starpu_opencl_display_error 93
starpu_opencl_get_context 93
starpu_opencl_get_current_context 93
starpu_opencl_get_current_queue 94
starpu_opencl_get_device 93
starpu_opencl_get_global_mem_size 93
starpu_opencl_get_queue . 93
starpu_opencl_load_kernel 94
starpu_opencl_load_opencl_from_file 94
starpu_opencl_load_opencl_from_string 94
starpu_opencl_release_kernel 94
starpu_opencl_set_kernel_args 94
starpu_opencl_unload_opencl 94
starpu_opencl_worker_get_count 67

starpu_perfmodel_debugfilepath 90
starpu_perfmodel_get_arch_name 90
starpu_print_bus_bandwidth 90
starpu_profiling_status_get 91
starpu_profiling_status_set 91
starpu_progression_hook_deregister 104
starpu_progression_hook_register 103
starpu_push_local_task . 102
starpu_sched_get_max_priority 102
starpu_sched_get_min_priority 102
starpu_sched_set_max_priority 102
starpu_sched_set_min_priority 102
starpu_set_profiling_id . 91
starpu_shutdown . 67
starpu_spu_worker_get_count 67
starpu_tag_declare_deps . 87
starpu_tag_declare_deps_array 87
starpu_tag_notify_from_apps 88
starpu_tag_remove . 88
starpu_tag_wait . 88
starpu_tag_wait_array . 88
starpu_task_bundle_close 100
starpu_task_bundle_create 99
starpu_task_bundle_insert 99
starpu_task_bundle_remove 100
starpu_task_create . 86
starpu_task_declare_deps_array 87
starpu_task_deinit . 86
starpu_task_destroy . 86
starpu_task_expected_conversion_time 103
starpu_task_expected_data_transfer_time

. 103
starpu_task_expected_length 103
starpu_task_expected_power 103
starpu_task_init . 85
starpu_task_list_back . 100
starpu_task_list_begin . 100
starpu_task_list_empty . 100
starpu_task_list_end . 101
starpu_task_list_erase . 100
starpu_task_list_front . 100
starpu_task_list_init . 100
starpu_task_list_next . 101
starpu_task_list_pop_back 100
starpu_task_list_pop_front 100
starpu_task_list_push_back 100
starpu_task_list_push_front 100
starpu_task_submit . 86
starpu_task_wait . 86
starpu_task_wait_for_all 86
starpu_task_wait_for_no_ready 87
starpu_timing_now . 103
starpu_timing_timespec_delay_us 92
starpu_timing_timespec_to_us 92
starpu_variable_data_register 72
starpu_variable_get_elemsize 74
STARPU_VARIABLE_GET_ELEMSIZE 74
starpu_variable_get_local_ptr 74

Function Index 127

STARPU_VARIABLE_GET_PTR . 74
starpu_vector_data_register 72
starpu_vector_divide_in_2_filter_func 81
STARPU_VECTOR_GET_DEV_HANDLE 75
starpu_vector_get_elemsize 74
STARPU_VECTOR_GET_ELEMSIZE 75
starpu_vector_get_local_ptr 75
starpu_vector_get_nx . 74
STARPU_VECTOR_GET_NX . 75
STARPU_VECTOR_GET_OFFSET 75
STARPU_VECTOR_GET_PTR . 75
starpu_vector_list_filter_func 81
starpu_vertical_block_filter_func 81
starpu_vertical_block_filter_func_csr 81
starpu_void_data_register 72
starpu_wake_all_blocked_workers 103
starpu_worker_can_execute_task 102
starpu_worker_get_count . 67
starpu_worker_get_count_by_type 67
starpu_worker_get_devid . 68
starpu_worker_get_id . 67

starpu_worker_get_ids_by_type 68
starpu_worker_get_memory_node 68
starpu_worker_get_name . 68
starpu_worker_get_perf_archtype 90
starpu_worker_get_profiling_info 92
starpu_worker_get_relative_speedup 103
starpu_worker_get_type . 68
starpu_worker_profiling_helper_display_

summary . 92
starpu_worker_set_sched_condition 102
starpufft_cleanup . 56
starpufft_destroy_plan . 56
starpufft_execute . 56
starpufft_execute_handle 56
starpufft_free . 55
starpufft_malloc . 55
starpufft_plan_dft_1d . 55
starpufft_plan_dft_2d . 56
starpufft_start . 56
starpufft_start_handle . 56

Datatype Index 129

Datatype Index

E
enum starpu_access_mode . 69
enum starpu_archtype . 67
enum starpu_data_interface_id 74
enum starpu_perf_archtype 89

S
starpu_data_handle_t . 69
starpu_tag_t . 87
starpu_task_bundle_t . 99
struct starpu_bus_profiling_info 92
struct starpu_codelet . 82
struct starpu_conf . 65

struct starpu_data_copy_methods 98
struct starpu_data_filter 79
struct starpu_data_interface_ops 97
struct starpu_machine_topology 101
struct starpu_multiformat_data_interface_ops

. 99
struct starpu_opencl_program 94
struct starpu_per_arch_perfmodel 90
struct starpu_perfmodel . 89
struct starpu_sched_policy 101
struct starpu_task . 83
struct starpu_task_list . 100
struct starpu_task_profiling_info 91
struct starpu_worker_profiling_info 91

	Preface
	Introduction to StarPU
	Motivation
	StarPU in a Nutshell
	Codelet and Tasks
	StarPU Data Management Library
	Glossary
	Research Papers

	Installing StarPU
	Downloading StarPU
	Getting Sources
	Optional dependencies

	Configuration of StarPU
	Generating Makefiles and configuration scripts
	Running the configuration

	Building and Installing StarPU
	Building
	Sanity Checks
	Installing

	Using StarPU
	Setting flags for compiling and linking applications
	Running a basic StarPU application
	Kernel threads started by StarPU
	Enabling OpenCL

	Basic Examples
	Compiling and linking options
	Hello World
	Required Headers
	Defining a Codelet
	Submitting a Task
	Execution of Hello World

	Manipulating Data: Scaling a Vector
	Source code of Vector Scaling
	Execution of Vector Scaling

	Vector Scaling on an Hybrid CPU/GPU Machine
	Definition of the CUDA Kernel
	Definition of the OpenCL Kernel
	Definition of the Main Code
	Execution of Hybrid Vector Scaling

	Advanced Examples
	Using multiple implementations of a codelet
	Enabling implementation according to capabilities
	Task and Worker Profiling
	Partitioning Data
	Performance model example
	Theoretical lower bound on execution time
	Insert Task Utility
	Debugging
	The multiformat interface
	On-GPU rendering
	More examples

	How to optimize performance with StarPU
	Data management
	Task submission
	Task priorities
	Task scheduling policy
	Performance model calibration
	Task distribution vs Data transfer
	Data prefetch
	Power-based scheduling
	Profiling
	CUDA-specific optimizations

	Performance feedback
	On-line performance feedback
	Enabling on-line performance monitoring
	Per-task feedback
	Per-codelet feedback
	Per-worker feedback
	Bus-related feedback
	StarPU-Top interface

	Off-line performance feedback
	Generating traces with FxT
	Creating a Gantt Diagram
	Creating a DAG with graphviz
	Monitoring activity

	Performance of codelets
	Theoretical lower bound on execution time

	Tips and Tricks to know about
	How to initialize a computation library once for each worker?

	StarPU MPI support
	The API
	Compilation
	Initialisation
	Communication

	Simple Example
	MPI Insert Task Utility
	MPI Collective Operations

	StarPU FFT support
	Compilation
	Initialisation
	C Extensions
	Defining Tasks
	Registered Data Buffers
	Using C Extensions Conditionally

	SOCL OpenCL Extensions
	StarPU Basic API
	Initialization and Termination
	Workers' Properties
	Data Library
	Introduction
	Basic Data Library API
	Access registered data from the application

	Data Interfaces
	Registering Data
	Accessing Data Interfaces
	Handle
	Variable Data Interfaces
	Vector Data Interfaces
	Matrix Data Interfaces
	Block Data Interfaces
	BCSR Data Interfaces
	CSR Data Interfaces

	Data Partition
	Basic API
	Predefined filter functions
	Partitioning BCSR Data
	Partitioning BLAS interface
	Partitioning Vector Data
	Partitioning Block Data

	Codelets and Tasks
	Explicit Dependencies
	Implicit Data Dependencies
	Performance Model API
	Profiling API
	CUDA extensions
	OpenCL extensions
	Writing OpenCL kernels
	Compiling OpenCL kernels
	Loading OpenCL kernels
	OpenCL statistics

	Cell extensions
	Miscellaneous helpers

	StarPU Advanced API
	Defining a new data interface
	Data Interface API
	An example of data interface

	Multiformat Data Interface
	Task Bundles
	Task Lists
	Defining a new scheduling policy
	Scheduling Policy API
	Source code

	Expert mode

	Configuring StarPU
	Compilation configuration
	Common configuration
	--enable-debug
	--enable-fast
	--enable-verbose
	--enable-coverage

	Configuring workers
	--enable-maxcpus=<number>
	--disable-cpu
	--enable-maxcudadev=<number>
	--disable-cuda
	--with-cuda-dir=<path>
	--with-cuda-include-dir=<path>
	--with-cuda-lib-dir=<path>
	--disable-cuda-memcpy-peer
	--enable-maxopencldev=<number>
	--disable-opencl
	--with-opencl-dir=<path>
	--with-opencl-include-dir=<path>
	--with-opencl-lib-dir=<path>
	--enable-gordon
	--with-gordon-dir=<path>
	--enable-maximplementations=<number>

	Advanced configuration
	--enable-perf-debug
	--enable-model-debug
	--enable-stats
	--enable-maxbuffers=<nbuffers>
	--enable-allocation-cache
	--enable-opengl-render
	--enable-blas-lib=<name>
	--disable-starpufft
	--with-magma=<path>
	--with-fxt=<path>
	--with-perf-model-dir=<dir>
	--with-mpicc=<path to mpicc>
	--with-goto-dir=<dir>
	--with-atlas-dir=<dir>
	--with-mkl-cflags=<cflags>
	--with-mkl-ldflags=<ldflags>
	--disable-gcc-extensions
	--disable-socl

	Execution configuration through environment variables
	Configuring workers
	STARPU_NCPUS -- Number of CPU workers
	STARPU_NCUDA -- Number of CUDA workers
	STARPU_NOPENCL -- Number of OpenCL workers
	STARPU_NGORDON -- Number of SPU workers (Cell)
	STARPU_WORKERS_CPUID -- Bind workers to specific CPUs
	STARPU_WORKERS_CUDAID -- Select specific CUDA devices
	STARPU_WORKERS_OPENCLID -- Select specific OpenCL devices

	Configuring the Scheduling engine
	STARPU_SCHED -- Scheduling policy
	STARPU_CALIBRATE -- Calibrate performance models
	STARPU_PREFETCH -- Use data prefetch
	STARPU_SCHED_ALPHA -- Computation factor
	STARPU_SCHED_BETA -- Communication factor

	Miscellaneous and debug
	STARPU_SILENT -- Disable verbose mode
	STARPU_LOGFILENAME -- Select debug file name
	STARPU_FXT_PREFIX -- FxT trace location
	STARPU_LIMIT_GPU_MEM -- Restrict memory size on the GPUs
	STARPU_GENERATE_TRACE -- Generate a Paje trace when StarPU is shut down

	Full source code for the 'Scaling a Vector' example
	Main application
	CPU Kernel
	CUDA Kernel
	OpenCL Kernel
	Invoking the kernel
	Source of the kernel

	GNU Free Documentation License
	Function Index
	Datatype Index

