
UMFPACK Version 5.0 Quick Start Guide

Timothy A. Davis
Dept. of Computer and Information Science and Engineering

Univ. of Florida, Gainesville, FL

May 5, 2006

Abstract

UMFPACK is a set of routines for solving unsymmetric sparse linear systems, Ax = b,
using the Unsymmetric-pattern MultiFrontal method and direct sparse LU factorization. It is
written in ANSI/ISO C, with a MATLAB interface. UMFPACK relies on the Level-3 Basic
Linear Algebra Subprograms (dense matrix multiply) for its performance. This code works on
Windows and many versions of Unix (Sun Solaris, Red Hat Linux, IBM AIX, SGI IRIX, and
Compaq Alpha). This is a “quick start” guide for Unix users of the C interface.

UMFPACK Version 5.0, Copyright c©1995-2006 by Timothy A. Davis. All Rights Reserved.
Refer to the UMFPACK User Guide for the License. See
http://www.cise.ufl.edu/research/sparse/umfpack for the code and full documentation.

1 Overview

UMFPACK is a set of routines for solving systems of linear equations, Ax = b, when A is sparse
and unsymmetric. The sparse matrix A can be square or rectangular, singular or non-singular,
and real or complex (or any combination). Only square matrices A can be used to solve Ax = b
or related systems. Rectangular matrices can only be factorized.

UMFPACK is a built-in routine in MATLAB used by the forward and backslash operator, and
the lu routine. The following is a short introduction to Unix users of the C interface of UMFPACK.

The C-callable UMFPACK library consists of 32 user-callable routines and one include file.
Twenty-eight of the routines come in four versions, with different sizes of integers and for real
or complex floating-point numbers. This Quick Start Guide assumes you are working with real
matrices (not complex) and with int’s as integers (not long’s). Refer to the User Guide for
information about the complex and long integer versions. The include file umfpack.h must be
included in any C program that uses UMFPACK.

For more details, see: A column pre-ordering strategy for the unsymmetric-pattern multifrontal
method, Davis, T. A., ACM Trans. Math. Software, vol 30. no 2, 2004, pp. 165-195, and Algorithm
832: UMFPACK, an unsymmetric-pattern multifrontal method, same issue, pp. 196-199.

2 Primary routines, and a simple example

Five primary UMFPACK routines are required to factorize A or solve Ax = b. An overview
of the primary features of the routines is given in Section 5. Additional routines are available
for passing a different column ordering to UMFPACK, changing default parameters, manipulating

1

sparse matrices, getting the LU factors, save and loading the LU factors from a file, computing the
determinant, and reporting results. See the User Guide for more information.

• umfpack di symbolic:

Pre-orders the columns of A to reduce fill-in and performs a symbolic analysis. Returns an
opaque Symbolic object as a void * pointer. The object contains the symbolic analysis and
is needed for the numerical factorization.

• umfpack di numeric:

Numerically scales and then factorizes a sparse matrix PAQ, PRAQ, or PR−1AQ into the
product LU, where P and Q are permutation matrices, R is a diagonal matrix of scale factors,
L is lower triangular with unit diagonal, and U is upper triangular. Requires the symbolic
ordering and analysis computed by umfpack di symbolic. Returns an opaque Numeric ob-
ject as a void * pointer. The object contains the numerical factorization and is used by
umfpack di solve.

• umfpack di solve:

Solves a sparse linear system (Ax = b, ATx = b, or systems involving just L or U), using
the numeric factorization computed by umfpack di numeric.

• umfpack di free symbolic:

Frees the Symbolic object created by umfpack di symbolic.

• umfpack di free numeric:

Frees the Numeric object created by umfpack di numeric.

The matrix A is represented in compressed column form, which is identical to the sparse matrix
representation used by MATLAB. It consists of three arrays, where the matrix is m-by-n, with nz
entries:

int Ap [n+1] ;

int Ai [nz] ;

double Ax [nz] ;

All nonzeros are entries, but an entry may be numerically zero. The row indices of entries in
column j are stored in Ai[Ap[j] ... Ap[j+1]-1]. The corresponding numerical values are stored
in Ax[Ap[j] ... Ap[j+1]-1].

No duplicate row indices may be present, and the row indices in any given column must be
sorted in ascending order. The first entry Ap[0] must be zero. The total number of entries in the
matrix is thus nz = Ap[n]. Except for the fact that extra zero entries can be included, there is
thus a unique compressed column representation of any given matrix A.

Here is a simple main program, umfpack simple.c, that illustrates the basic usage of UMF-
PACK.

#include <stdio.h>

#include "umfpack.h"

int n = 5 ;

int Ap [] = {0, 2, 5, 9, 10, 12} ;

int Ai [] = { 0, 1, 0, 2, 4, 1, 2, 3, 4, 2, 1, 4} ;

2

double Ax [] = {2., 3., 3., -1., 4., 4., -3., 1., 2., 2., 6., 1.} ;

double b [] = {8., 45., -3., 3., 19.} ;

double x [5] ;

int main (void)

{

double *null = (double *) NULL ;

int i ;

void *Symbolic, *Numeric ;

(void) umfpack_di_symbolic (n, n, Ap, Ai, Ax, &Symbolic, null, null) ;

(void) umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, null, null) ;

umfpack_di_free_symbolic (&Symbolic) ;

(void) umfpack_di_solve (UMFPACK_A, Ap, Ai, Ax, x, b, Numeric, null, null) ;

umfpack_di_free_numeric (&Numeric) ;

for (i = 0 ; i < n ; i++) printf ("x [%d] = %g\n", i, x [i]) ;

return (0) ;

}

The Ap, Ai, and Ax arrays represent the matrix

A =

2 3 0 0 0
3 0 4 0 6
0 −1 −3 2 0
0 0 1 0 0
0 4 2 0 1

 .

and the solution is x = [1 2 3 4 5]T. The program uses default control settings and does not return
any statistics about the ordering, factorization, or solution (Control and Info are both (double
*) NULL).

For routines to manipulate a simpler “triplet-form” data structure for your sparse matrix A,
refer to the UMFPACK User Guide.

3 Synopsis of primary C-callable routines

The matrix A is m-by-n with nz entries. The optional umfpack di defaults routine loads the
default control parameters into the Control array. The settings can then be modified before
passing the array to the other routines. Refer to Section 5 for more details.

#include "umfpack.h"

int status, sys, n, m, nz, Ap [n+1], Ai [nz] ;

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], Ax [nz], X [n], B [n] ;

void *Symbolic, *Numeric ;

status = umfpack_di_symbolic (m, n, Ap, Ai, Ax, &Symbolic, Control, Info) ;

status = umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ;

status = umfpack_di_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ;

umfpack_di_free_symbolic (&Symbolic) ;

umfpack_di_free_numeric (&Numeric) ;

umfpack_di_defaults (Control) ;

4 Installation

You will need to install both UMFPACK v5.0 and AMD v2.0 to use UMFPACK. Note that UMF-
PACK v5.0 cannot use AMD v1.2 or earlier. The UMFPACK and AMD subdirectories must be placed

3

side-by-side within the same parent directory. AMD is a stand-alone package that is required by
UMFPACK. UMFPACK can be compiled without the BLAS but your performance will be much
less than what it should be.

System-dependent configurations are in the UFconfig/UFconfig.mk file. The default settings
will work on most systems, except that UMFPACK will be compiled so that it does not use the
BLAS. Sample configurations are provided for Linux, Sun Solaris, SGI IRIX, IBM AIX, and the
DEC/Compaq Alpha.

To compile and install both packages, go to the UMFPACK directory and type make. This will
compile the libraries (AMD/Lib/libamd.a and UMFPACK/Lib/libumfpack.a). A demo of the AMD
ordering routine will be compiled and tested in the AMD/Demo directory, and five demo programs will
then be compiled and tested in the UMFPACK/Demo directory. The outputs of these demo programs
will then be compared with output files in the distribution. Expect to see a few differences, such
as residual norms, compile-time control settings, and perhaps memory usage differences. The
AMD and MATLAB mexFunctions for use in MATLAB will also be compiled. If you do not have
MATLAB, type make lib instead.

If you compile UMFPACK and AMD and then later change the UFconfig/UFconfig.mk file
then you should type make purge and then make to recompile.

Here are the various parameters that you can control in your UFconfig/UFconfig.mk file:

• CC = your C compiler, such as cc.

• RANLIB = your system’s ranlib program, if needed.

• CFLAGS = optimization flags, such as -O.

• UMFPACK CONFIG = configuration settings, for the BLAS, memory allocation routines, and
timing routines.

• LIB = your libraries, such as -lm or -lblas.

• RM = the command to delete a file.

• MV = the command to rename a file.

• MEX = the command to compile a MATLAB mexFunction.

• F77 = the command to compile a Fortran program (optional).

• F77FLAGS = the Fortran compiler flags (optional).

• F77LIB = the Fortran libraries (optional).

The UMFPACK CONFIG string can include combinations of the following; most deal with how the
BLAS are called:

• -DNBLAS if you do not have any BLAS at all.

• -DNSUNPERF if you are on Solaris but do not have the Sun Performance Library.

• -DLONGBLAS if your BLAS takes non-int integer arguments.

• -DBLAS INT = the integer used by the BLAS.

4

• -DBLAS NO UNDERSCORE for controlling how C calls the Fortran BLAS. This is set automati-
cally for Windows, Sun Solaris, SGI Irix, Red Hat Linux, Compaq Alpha, and AIX (the IBM
RS 6000).

• -DGETRUSAGE if you have the getrusage function.

• -DNPOSIX if you do not have the POSIX-compliant sysconf and times routines.

• -DNRECIPROCAL controls a trade-off between speed and accuracy. This is off by default (speed
preferred over accuracy) except when compiling for MATLAB.

When you compile your program that uses the C-callable UMFPACK library, you need to
add the both UMFPACK/Lib/libumfpack.a and AMD/Lib/libamd.a libraries, and you need to tell
your compiler to look in the directories UMFPACK/Include and AMD/Include for include files. See
UMFPACK/Demo/Makefile for an example. You do not need to directly include any AMD include
files in your program, unless you directly call AMD routines. You only need the

#include "umfpack.h"

statement, as described in Section 3.

5

5 The primary UMFPACK routines

5.1 umfpack di symbolic

int umfpack_di_symbolic

(

int n_row,

int n_col,

const int Ap [],

const int Ai [],

const double Ax [],

void **Symbolic,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

Purpose:

Given nonzero pattern of a sparse matrix A in column-oriented form,

umfpack_di_symbolic performs a column pre-ordering to reduce fill-in

(using COLAMD or AMD) and a symbolic factorization. This is required

before the matrix can be numerically factorized with umfpack_di_numeric.

For the following discussion, let S be the submatrix of A obtained after

eliminating all pivots of zero Markowitz cost. S has dimension

(n_row-n1-nempty_row) -by- (n_col-n1-nempty_col), where

n1 = Info [UMFPACK_COL_SINGLETONS] + Info [UMFPACK_ROW_SINGLETONS],

nempty_row = Info [UMFPACK_NEMPTY_ROW] and

nempty_col = Info [UMFPACK_NEMPTY_COL].

Returns:

The status code is returned. See Info [UMFPACK_STATUS], below.

Arguments:

int n_row ; Input argument, not modified.

int n_col ; Input argument, not modified.

A is an n_row-by-n_col matrix. Restriction: n_row > 0 and n_col > 0.

int Ap [n_col+1] ; Input argument, not modified.

Ap is an integer array of size n_col+1. On input, it holds the

"pointers" for the column form of the sparse matrix A. Column j of

the matrix A is held in Ai [(Ap [j]) ... (Ap [j+1]-1)]. The first

entry, Ap [0], must be zero, and Ap [j] <= Ap [j+1] must hold for all

j in the range 0 to n_col-1. The value nz = Ap [n_col] is thus the

total number of entries in the pattern of the matrix A. nz must be

greater than or equal to zero.

int Ai [nz] ; Input argument, not modified, of size nz = Ap [n_col].

The nonzero pattern (row indices) for column j is stored in

Ai [(Ap [j]) ... (Ap [j+1]-1)]. The row indices in a given column j

must be in ascending order, and no duplicate row indices may be present.

Row indices must be in the range 0 to n_row-1 (the matrix is 0-based).

double Ax [nz] ; Optional input argument, not modified.

6

The numerical values of the sparse matrix A. The nonzero pattern (row

indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and

the corresponding numerical values are stored in

Ax [(Ap [j]) ... (Ap [j+1]-1)]. Used only by the 2-by-2 strategy to

determine whether entries are "large" or "small". You do not have to

pass the same numerical values to umfpack_di_numeric. If Ax is not

present (a (double *) NULL pointer), then any entry in A is assumed to

be "large".

void **Symbolic ; Output argument.

**Symbolic is the address of a (void *) pointer variable in the user’s

calling routine (see Syntax, above). On input, the contents of this

variable are not defined. On output, this variable holds a (void *)

pointer to the Symbolic object (if successful), or (void *) NULL if

a failure occurred.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control

settings are used. Only the primary parameters are listed below:

Control [UMFPACK_STRATEGY]: This is the most important control

parameter. It determines what kind of ordering and pivoting

strategy that UMFPACK should use. It is new to Version 4.1

There are 4 options:

UMFPACK_STRATEGY_AUTO: This is the default. The input matrix is

analyzed to determine how symmetric the nonzero pattern is, and

how many entries there are on the diagonal. It then selects one

of the following strategies. Refer to the User Guide for a

description of how the strategy is automatically selected.

UMFPACK_STRATEGY_UNSYMMETRIC: Use the unsymmetric strategy. COLAMD

is used to order the columns of A, followed by a postorder of

the column elimination tree. No attempt is made to perform

diagonal pivoting. The column ordering is refined during

factorization. This strategy was the only one provided with

UMFPACK V4.0.

In the numerical factorization, the

Control [UMFPACK_SYM_PIVOT_TOLERANCE] parameter is ignored. A

pivot is selected if its magnitude is >=

Control [UMFPACK_PIVOT_TOLERANCE] (default 0.1) times the

largest entry in its column.

UMFPACK_STRATEGY_SYMMETRIC: Use the symmetric strategy (new to

Version 4.1). In this method, the approximate minimum degree

ordering (AMD) is applied to A+A’, followed by a postorder of

the elimination tree of A+A’. UMFPACK attempts to perform

diagonal pivoting during numerical factorization. No refinement

of the column preordering is performed during factorization.

In the numerical factorization, a nonzero entry on the diagonal

is selected as the pivot if its magnitude is >= Control

[UMFPACK_SYM_PIVOT_TOLERANCE] (default 0.001) times the largest

entry in its column. If this is not acceptable, then an

off-diagonal pivot is selected with magnitude >= Control

7

[UMFPACK_PIVOT_TOLERANCE] (default 0.1) times the largest entry

in its column.

UMFPACK_STRATEGY_2BY2: a row permutation P2 is found that places

large entries on the diagonal. The matrix P2*A is then

factorized using the symmetric strategy, described above.

Refer to the User Guide for more information.

Control [UMFPACK_2BY2_TOLERANCE]: a diagonal entry S (k,k) is

considered "small" if it is < tol * max (abs (S (:,k))), where S a

submatrix of the scaled input matrix, with pivots of zero Markowitz

cost removed.

Control [UMFPACK_SCALE]: This parameter is new to V4.1. See

umfpack_numeric.h for a description. Only affects the 2-by-2

strategy. Default: UMFPACK_SCALE_SUM.

double Info [UMFPACK_INFO] ; Output argument, not defined on input.

Contains statistics about the symbolic analysis. If a (double *) NULL

pointer is passed, then no statistics are returned in Info (this is not

an error condition). The entire Info array is cleared (all entries set

to -1) and then the following statistics are computed (only the

primary statistics are listed):

Info [UMFPACK_STATUS]: status code. This is also the return value,

whether or not Info is present.

UMFPACK_OK

Each column of the input matrix contained row indices

in increasing order, with no duplicates. Only in this case

does umfpack_di_symbolic compute a valid symbolic factorization.

For the other cases below, no Symbolic object is created

(*Symbolic is (void *) NULL).

UMFPACK_ERROR_n_nonpositive

n is less than or equal to zero.

UMFPACK_ERROR_invalid_matrix

Number of entries in the matrix is negative, Ap [0] is nonzero,

a column has a negative number of entries, a row index is out of

bounds, or the columns of input matrix were jumbled (unsorted

columns or duplicate entries).

UMFPACK_ERROR_out_of_memory

Insufficient memory to perform the symbolic analysis. If the

analysis requires more than 2GB of memory and you are using

the 32-bit ("int") version of UMFPACK, then you are guaranteed

to run out of memory. Try using the 64-bit version of UMFPACK.

UMFPACK_ERROR_argument_missing

One or more required arguments is missing.

UMFPACK_ERROR_internal_error

8

Something very serious went wrong. This is a bug.

Please contact the author (davis@cise.ufl.edu).

Info [UMFPACK_SIZE_OF_UNIT]: the number of bytes in a Unit,

for memory usage statistics below.

Info [UMFPACK_SYMBOLIC_PEAK_MEMORY]: the amount of memory (in Units)

required for umfpack_di_symbolic to complete. This count includes

the size of the Symbolic object itself, which is also reported in

Info [UMFPACK_SYMBOLIC_SIZE].

Info [UMFPACK_NUMERIC_SIZE_ESTIMATE]: an estimate of the final size (in

Units) of the entire Numeric object (both fixed-size and variable-

sized parts), which holds the LU factorization (including the L, U,

P and Q matrices).

Info [UMFPACK_PEAK_MEMORY_ESTIMATE]: an estimate of the total amount of

memory (in Units) required by umfpack_di_symbolic and

umfpack_di_numeric to perform both the symbolic and numeric

factorization. This is the larger of the amount of memory needed

in umfpack_di_numeric itself, and the amount of memory needed in

umfpack_di_symbolic (Info [UMFPACK_SYMBOLIC_PEAK_MEMORY]). The

count includes the size of both the Symbolic and Numeric objects

themselves. It can be a very loose upper bound, particularly when

the symmetric or 2-by-2 strategies are used.

Info [UMFPACK_FLOPS_ESTIMATE]: an estimate of the total floating-point

operations required to factorize the matrix. This is a "true"

theoretical estimate of the number of flops that would be performed

by a flop-parsimonious sparse LU algorithm. It assumes that no

extra flops are performed except for what is strictly required to

compute the LU factorization. It ignores, for example, the flops

performed by umfpack_di_numeric to add contribution blocks of

frontal matrices together. If L and U are the upper bound on the

pattern of the factors, then this flop count estimate can be

represented in MATLAB (for real matrices, not complex) as:

Lnz = full (sum (spones (L))) - 1 ; % nz in each col of L

Unz = full (sum (spones (U’)))’ - 1 ; % nz in each row of U

flops = 2*Lnz*Unz + sum (Lnz) ;

The actual "true flop" count found by umfpack_di_numeric will be

less than this estimate.

Info [UMFPACK_LNZ_ESTIMATE]: an estimate of the number of nonzeros in

L, including the diagonal. Since L is unit-diagonal, the diagonal

of L is not stored. This estimate is a strict upper bound on the

actual nonzeros in L to be computed by umfpack_di_numeric.

Info [UMFPACK_UNZ_ESTIMATE]: an estimate of the number of nonzeros in

U, including the diagonal. This estimate is a strict upper bound on

the actual nonzeros in U to be computed by umfpack_di_numeric.

Info [UMFPACK_SYMBOLIC_TIME]: The CPU time taken, in seconds.

Info [UMFPACK_STRATEGY_USED]: The ordering strategy used:

UMFPACK_STRATEGY_SYMMETRIC, UMFPACK_STRATEGY_UNSYMMETRIC, or

UMFPACK_STRATEGY_2BY2.

9

5.2 umfpack di numeric

int umfpack_di_numeric

(

const int Ap [],

const int Ai [],

const double Ax [],

void *Symbolic,

void **Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

Purpose:

Given a sparse matrix A in column-oriented form, and a symbolic analysis

computed by umfpack_di_symbolic, the umfpack_di_numeric routine performs the

numerical factorization, PAQ=LU, PRAQ=LU, or P(R\A)Q=LU, where P and Q are

permutation matrices (represented as permutation vectors), R is the row

scaling, L is unit-lower triangular, and U is upper triangular. This is

required before the system Ax=b (or other related linear systems) can be

solved. umfpack_di_numeric can be called multiple times for each call to

umfpack_di_symbolic, to factorize a sequence of matrices with identical

nonzero pattern. Simply compute the Symbolic object once, with

umfpack_di_symbolic, and reuse it for subsequent matrices.

umfpack_di_numeric safely detects if the pattern changes, and sets an

appropriate error code.

Returns:

The status code is returned. See Info [UMFPACK_STATUS], below.

Arguments:

int Ap [n_col+1] ; Input argument, not modified.

This must be identical to the Ap array passed to umfpack_di_symbolic.

The value of n_col is what was passed to umfpack_di_symbolic (this is

held in the Symbolic object).

int Ai [nz] ; Input argument, not modified, of size nz = Ap [n_col].

This must be identical to the Ai array passed to umfpack_di_symbolic.

double Ax [nz] ; Input argument, not modified, of size nz = Ap [n_col].

The numerical values of the sparse matrix A. The nonzero pattern (row

indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and

the corresponding numerical values are stored in

Ax [(Ap [j]) ... (Ap [j+1]-1)].

void *Symbolic ; Input argument, not modified.

The Symbolic object, which holds the symbolic factorization computed by

umfpack_di_symbolic. The Symbolic object is not modified by

umfpack_di_numeric.

void **Numeric ; Output argument.

10

**Numeric is the address of a (void *) pointer variable in the user’s

calling routine (see Syntax, above). On input, the contents of this

variable are not defined. On output, this variable holds a (void *)

pointer to the Numeric object (if successful), or (void *) NULL if

a failure occurred.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control

settings are used. Only the primary parameters are listed below:

Control [UMFPACK_PIVOT_TOLERANCE]: relative pivot tolerance for

threshold partial pivoting with row interchanges. In any given

column, an entry is numerically acceptable if its absolute value is

greater than or equal to Control [UMFPACK_PIVOT_TOLERANCE] times

the largest absolute value in the column. A value of 1.0 gives true

partial pivoting. If less than or equal to zero, then any nonzero

entry is numerically acceptable as a pivot (this is changed from

Version 4.0). Default: 0.1.

Smaller values tend to lead to sparser LU factors, but the solution

to the linear system can become inaccurate. Larger values can lead

to a more accurate solution (but not always), and usually an

increase in the total work.

Control [UMFPACK_SYM_PIVOT_TOLERANCE]: This parameter is new to V4.1.

If diagonal pivoting is attempted (the symmetric or symmetric-2by2

strategies are used) then this parameter is used to control when the

diagonal entry is selected in a given pivot column. The absolute

value of the entry must be >= Control [UMFPACK_SYM_PIVOT_TOLERANCE]

times the largest absolute value in the column. A value of zero

will ensure that no off-diagonal pivoting is performed, except that

zero diagonal entries are not selected if there are any off-diagonal

nonzero entries.

If an off-diagonal pivot is selected, an attempt is made to restore

symmetry later on. Suppose A (i,j) is selected, where i != j.

If column i has not yet been selected as a pivot column, then

the entry A (j,i) is redefined as a "diagonal" entry, except that

the tighter tolerance (Control [UMFPACK_PIVOT_TOLERANCE]) is

applied. This strategy has an effect similar to 2-by-2 pivoting

for symmetric indefinite matrices. If a 2-by-2 block pivot with

nonzero structure

i j

i: 0 x

j: x 0

is selected in a symmetric indefinite factorization method, the

2-by-2 block is inverted and a rank-2 update is applied. In

UMFPACK, this 2-by-2 block would be reordered as

j i

i: x 0

j: 0 x

In both cases, the symmetry of the Schur complement is preserved.

Control [UMFPACK_SCALE]: This parameter is new to V4.1. Version 4.0

11

did not scale the matrix. Note that the user’s input matrix is

never modified, only an internal copy is scaled.

There are three valid settings for this parameter. If any other

value is provided, the default is used.

UMFPACK_SCALE_NONE: no scaling is performed.

UMFPACK_SCALE_SUM: each row of the input matrix A is divided by

the sum of the absolute values of the entries in that row.

The scaled matrix has an infinity norm of 1.

UMFPACK_SCALE_MAX: each row of the input matrix A is divided by

the maximum the absolute values of the entries in that row.

In the scaled matrix the largest entry in each row has

a magnitude exactly equal to 1.

Scaling is very important for the "symmetric" strategy when

diagonal pivoting is attempted. It also improves the performance

of the "unsymmetric" strategy.

Default: UMFPACK_SCALE_SUM.

double Info [UMFPACK_INFO] ; Output argument.

Contains statistics about the numeric factorization. If a

(double *) NULL pointer is passed, then no statistics are returned in

Info (this is not an error condition). The following statistics are

computed in umfpack_di_numeric (only the primary statistics are listed):

Info [UMFPACK_STATUS]: status code. This is also the return value,

whether or not Info is present.

UMFPACK_OK

Numeric factorization was successful. umfpack_di_numeric

computed a valid numeric factorization.

UMFPACK_WARNING_singular_matrix

Numeric factorization was successful, but the matrix is

singular. umfpack_di_numeric computed a valid numeric

factorization, but you will get a divide by zero in

umfpack_di_solve. For the other cases below, no Numeric object

is created (*Numeric is (void *) NULL).

UMFPACK_ERROR_out_of_memory

Insufficient memory to complete the numeric factorization.

UMFPACK_ERROR_argument_missing

One or more required arguments are missing.

UMFPACK_ERROR_invalid_Symbolic_object

Symbolic object provided as input is invalid.

UMFPACK_ERROR_different_pattern

12

The pattern (Ap and/or Ai) has changed since the call to

umfpack_di_symbolic which produced the Symbolic object.

Info [UMFPACK_NUMERIC_SIZE]: the actual final size (in Units) of the

entire Numeric object, including the final size of the variable

part of the object. Info [UMFPACK_NUMERIC_SIZE_ESTIMATE],

an estimate, was computed by umfpack_di_symbolic. The estimate is

normally an upper bound on the actual final size, but this is not

guaranteed.

Info [UMFPACK_PEAK_MEMORY]: the actual peak memory usage (in Units) of

both umfpack_di_symbolic and umfpack_di_numeric. An estimate,

Info [UMFPACK_PEAK_MEMORY_ESTIMATE], was computed by

umfpack_di_symbolic. The estimate is normally an upper bound on the

actual peak usage, but this is not guaranteed. With testing on

hundreds of matrix arising in real applications, I have never

observed a matrix where this estimate or the Numeric size estimate

was less than the actual result, but this is theoretically possible.

Please send me one if you find such a matrix.

Info [UMFPACK_FLOPS]: the actual count of the (useful) floating-point

operations performed. An estimate, Info [UMFPACK_FLOPS_ESTIMATE],

was computed by umfpack_di_symbolic. The estimate is guaranteed to

be an upper bound on this flop count. The flop count excludes

"useless" flops on zero values, flops performed during the pivot

search (for tentative updates and assembly of candidate columns),

and flops performed to add frontal matrices together.

Info [UMFPACK_LNZ]: the actual nonzero entries in final factor L,

including the diagonal. This excludes any zero entries in L,

although some of these are stored in the Numeric object. The

Info [UMFPACK_LU_ENTRIES] statistic does account for all

explicitly stored zeros, however. Info [UMFPACK_LNZ_ESTIMATE],

an estimate, was computed by umfpack_di_symbolic. The estimate is

guaranteed to be an upper bound on Info [UMFPACK_LNZ].

Info [UMFPACK_UNZ]: the actual nonzero entries in final factor U,

including the diagonal. This excludes any zero entries in U,

although some of these are stored in the Numeric object. The

Info [UMFPACK_LU_ENTRIES] statistic does account for all

explicitly stored zeros, however. Info [UMFPACK_UNZ_ESTIMATE],

an estimate, was computed by umfpack_di_symbolic. The estimate is

guaranteed to be an upper bound on Info [UMFPACK_UNZ].

Info [UMFPACK_NUMERIC_TIME]: The CPU time taken, in seconds.

13

5.3 umfpack di solve

int umfpack_di_solve

(

int sys,

const int Ap [],

const int Ai [],

const double Ax [],

double X [],

const double B [],

void *Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

Purpose:

Given LU factors computed by umfpack_di_numeric (PAQ=LU, PRAQ=LU, or

P(R\A)Q=LU) and the right-hand-side, B, solve a linear system for the

solution X. Iterative refinement is optionally performed. Only square

systems are handled. Singular matrices result in a divide-by-zero for all

systems except those involving just the matrix L. Iterative refinement is

not performed for singular matrices.

In the discussion below, n is equal to n_row and n_col, because only

square systems are handled.

Returns:

The status code is returned. See Info [UMFPACK_STATUS], below.

Arguments:

int sys ; Input argument, not modified.

Defines which system to solve. (’) is the linear algebraic transpose.

sys value system solved

UMFPACK_A Ax=b

UMFPACK_At A’x=b

UMFPACK_Pt_L P’Lx=b

UMFPACK_L Lx=b

UMFPACK_Lt_P L’Px=b

UMFPACK_Lt L’x=b

UMFPACK_U_Qt UQ’x=b

UMFPACK_U Ux=b

UMFPACK_Q_Ut QU’x=b

UMFPACK_Ut U’x=b

Iterative refinement can be optionally performed when sys is any of

the following:

UMFPACK_A Ax=b

UMFPACK_At A’x=b

For the other values of the sys argument, iterative refinement is not

performed (Control [UMFPACK_IRSTEP], Ap, Ai, and Ax are ignored).

14

int Ap [n+1] ; Input argument, not modified.

int Ai [nz] ; Input argument, not modified.

double Ax [nz] ; Input argument, not modified.

If iterative refinement is requested (Control [UMFPACK_IRSTEP] >= 1,

Ax=b or A’x=b is being solved, and A is nonsingular), then

these arrays must be identical to the same ones passed to

umfpack_di_numeric. The umfpack_di_solve routine does not check the

contents of these arguments, so the results are undefined if Ap, Ai, Ax,

are modified between the calls the umfpack_di_numeric and

umfpack_di_solve. These three arrays do not need to be present (NULL

pointers can be passed) if Control [UMFPACK_IRSTEP] is zero, or if a

system other than Ax=b or A’x=b is being solved, or if A is

singular, since in each of these cases A is not accessed.

double X [n] ; Output argument.

The solution to the linear system, where n = n_row = n_col is the

dimension of the matrices A, L, and U.

double B [n] ; Input argument, not modified.

The right-hand side vector, b, stored as a conventional array of size n

(or two arrays of size n for complex versions). This routine does not

solve for multiple right-hand-sides, nor does it allow b to be stored in

a sparse-column form.

void *Numeric ; Input argument, not modified.

Numeric must point to a valid Numeric object, computed by

umfpack_di_numeric.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control

settings are used.

Control [UMFPACK_IRSTEP]: The maximum number of iterative refinement

steps to attempt. A value less than zero is treated as zero. If

less than 1, or if Ax=b or A’x=b is not being solved, or

if A is singular, then the Ap, Ai, and Ax arguments are not

accessed. Default: 2.

double Info [UMFPACK_INFO] ; Output argument.

Contains statistics about the solution factorization. If a

(double *) NULL pointer is passed, then no statistics are returned in

Info (this is not an error condition). The following statistics are

computed in umfpack_di_solve (only the primary statistics are listed):

Info [UMFPACK_STATUS]: status code. This is also the return value,

whether or not Info is present.

UMFPACK_OK

The linear system was successfully solved.

UMFPACK_WARNING_singular_matrix

15

A divide-by-zero occurred. Your solution will contain Inf’s

and/or NaN’s. Some parts of the solution may be valid. For

example, solving Ax=b with

A = [2 0] b = [1] returns x = [0.5]

[0 0] [0] [Inf]

UMFPACK_ERROR_out_of_memory

Insufficient memory to solve the linear system.

UMFPACK_ERROR_argument_missing

One or more required arguments are missing. The B and X

arguments are always required. Info and Control are not

required. Ap, Ai and Ax are required if Ax=b or

A’x=b is to be solved, the (default) iterative

refinement is requested, and the matrix A is nonsingular.

UMFPACK_ERROR_invalid_system

The sys argument is not valid, or the matrix A is not square.

UMFPACK_ERROR_invalid_Numeric_object

The Numeric object is not valid.

Info [UMFPACK_SOLVE_FLOPS]: the number of floating point operations

performed to solve the linear system. This includes the work

taken for all iterative refinement steps, including the backtrack

(if any).

Info [UMFPACK_SOLVE_TIME]: The time taken, in seconds.

16

5.4 umfpack di free symbolic

void umfpack_di_free_symbolic

(

void **Symbolic

) ;

Purpose:

Deallocates the Symbolic object and sets the Symbolic handle to NULL.

Arguments:

void **Symbolic ; Input argument, deallocated and Symbolic is

set to (void *) NULL on output.

5.5 umfpack di free numeric

void umfpack_di_free_numeric

(

void **Numeric

) ;

Purpose:

Deallocates the Numeric object and sets the Numeric handle to NULL.

Arguments:

void **Numeric ; Input argument, deallocated and Numeric is

set to (void *) NULL on output.

5.6 umfpack di defaults

void umfpack_di_defaults

(

double Control [UMFPACK_CONTROL]

) ;

Purpose:

Sets the default control parameter settings.

Arguments:

double Control [UMFPACK_CONTROL] ; Output argument.

Control is set to the default control parameter settings.

17

