Serial and UART Tutorial
Table of Contents
	1. The UART: What it is and how it works	1.1. Synchronous Serial Transmission
	1.2. Asynchronous Serial Transmission
	1.3. Other UART Functions
	1.4. The RS232-C and V.24 Standards	1.4.1. RS232-C Bit Assignments (Marks and Spaces)
	1.4.2. RS232-C Break Signal
	1.4.3. RS232-C DTE and DCE Devices
	1.4.4. RS232-C Pin Assignments

	1.5. Bits, Baud and Symbols
	1.6. The IBM Personal Computer UART	1.6.1. National Semiconductor UART Family Tree
	1.6.2. The NS16550AF and the PC16550D are the same thing
	1.6.3. National Semiconductor Part Numbering System

	1.7. Other Vendors and Similar UARTs
	1.8. 8250/16450/16550 Registers
	1.9. Beyond the 16550A UART

	2. Configuring the sio driver	2.1. Digi International (DigiBoard) PC/8
	2.2. Boca 16
	2.3. Support for Cheap Multi-UART Cards

	3. Configuring the cy driver
	4. Configuring the si driver

Serial and UART Tutorial
Frank Durda
<uhclem@FreeBSD.org>

Revision: 44692Legal NoticeLast modified on 2014-04-29 02:46:48 by wblock.Abstract
This article talks about using serial hardware with FreeBSD.

 [

	 Split HTML
	
 /
 Single HTML
]
 1. The UART: What it is and how it works
Copyright © 1996 Frank Durda IV <uhclem@FreeBSD.org>, All Rights
 Reserved. 13 January 1996.
The Universal Asynchronous Receiver/Transmitter (UART)
	controller is the key component of the serial communications
	subsystem of a computer. The UART takes bytes of data and
	transmits the individual bits in a sequential fashion. At the
	destination, a second UART re-assembles the bits into complete
	bytes.
Serial transmission is commonly used with modems and for
	non-networked communication between computers, terminals and
	other devices.
There are two primary forms of serial transmission:
	Synchronous and Asynchronous. Depending on the modes that are
	supported by the hardware, the name of the communication
	sub-system will usually include a A if it
	supports Asynchronous communications, and a
	S if it supports Synchronous
	communications. Both forms are described below.
Some common acronyms are:
UART Universal Asynchronous Receiver/Transmitter

USART Universal Synchronous-Asynchronous
	 Receiver/Transmitter

1.1. Synchronous Serial Transmission
Synchronous serial transmission requires that the sender
	 and receiver share a clock with one another, or that the
	 sender provide a strobe or other timing signal so that the
	 receiver knows when to “read” the next bit of
	 the data. In most forms of serial Synchronous
	 communication, if there is no data available at a given
	 instant to transmit, a fill character must be sent instead
	 so that data is always being transmitted. Synchronous
	 communication is usually more efficient because only data
	 bits are transmitted between sender and receiver, and
	 synchronous communication can be more costly if extra wiring
	 and circuits are required to share a clock signal between
	 the sender and receiver.
A form of Synchronous transmission is used with printers
	 and fixed disk devices in that the data is sent on one set
	 of wires while a clock or strobe is sent on a different
	 wire. Printers and fixed disk devices are not normally
	 serial devices because most fixed disk interface standards
	 send an entire word of data for each clock or strobe signal
	 by using a separate wire for each bit of the word. In the
	 PC industry, these are known as Parallel devices.
The standard serial communications hardware in the PC
	 does not support Synchronous operations. This mode is
	 described here for comparison purposes only.
1.2. Asynchronous Serial Transmission
Asynchronous transmission allows data to be transmitted
	 without the sender having to send a clock signal to the
	 receiver. Instead, the sender and receiver must agree on
	 timing parameters in advance and special bits are added to
	 each word which are used to synchronize the sending and
	 receiving units.
When a word is given to the UART for Asynchronous
	 transmissions, a bit called the "Start Bit" is added to the
	 beginning of each word that is to be transmitted. The Start
	 Bit is used to alert the receiver that a word of data is
	 about to be sent, and to force the clock in the receiver
	 into synchronization with the clock in the transmitter.
	 These two clocks must be accurate enough to not have the
	 frequency drift by more than 10% during the transmission of
	 the remaining bits in the word. (This requirement was set
	 in the days of mechanical teleprinters and is easily met by
	 modern electronic equipment.)
After the Start Bit, the individual bits of the word of
	 data are sent, with the Least Significant Bit (LSB) being
	 sent first. Each bit in the transmission is transmitted for
	 exactly the same amount of time as all of the other bits,
	 and the receiver “looks” at the wire at
	 approximately halfway through the period assigned to each
	 bit to determine if the bit is a 1 or a
	 0. For example, if it takes two seconds
	 to send each bit, the receiver will examine the signal to
	 determine if it is a 1 or a
	 0 after one second has passed, then it
	 will wait two seconds and then examine the value of the next
	 bit, and so on.
The sender does not know when the receiver has
	 “looked” at the value of the bit. The sender
	 only knows when the clock says to begin transmitting the
	 next bit of the word.
When the entire data word has been sent, the transmitter
	 may add a Parity Bit that the transmitter generates. The
	 Parity Bit may be used by the receiver to perform simple
	 error checking. Then at least one Stop Bit is sent by the
	 transmitter.
When the receiver has received all of the bits in the
	 data word, it may check for the Parity Bits (both sender and
	 receiver must agree on whether a Parity Bit is to be used),
	 and then the receiver looks for a Stop Bit. If the Stop Bit
	 does not appear when it is supposed to, the UART considers
	 the entire word to be garbled and will report a Framing
	 Error to the host processor when the data word is read. The
	 usual cause of a Framing Error is that the sender and
	 receiver clocks were not running at the same speed, or that
	 the signal was interrupted.
Regardless of whether the data was received correctly or
	 not, the UART automatically discards the Start, Parity and
	 Stop bits. If the sender and receiver are configured
	 identically, these bits are not passed to the host.
If another word is ready for transmission, the Start Bit
	 for the new word can be sent as soon as the Stop Bit for the
	 previous word has been sent.
Because asynchronous data is “self
	 synchronizing”, if there is no data to transmit, the
	 transmission line can be idle.
1.3. Other UART Functions
In addition to the basic job of converting data from
	 parallel to serial for transmission and from serial to
	 parallel on reception, a UART will usually provide
	 additional circuits for signals that can be used to indicate
	 the state of the transmission media, and to regulate the
	 flow of data in the event that the remote device is not
	 prepared to accept more data. For example, when the device
	 connected to the UART is a modem, the modem may report the
	 presence of a carrier on the phone line while the computer
	 may be able to instruct the modem to reset itself or to not
	 take calls by raising or lowering one more of these
	 extra signals. The function of each of these additional
	 signals is defined in the EIA RS232-C standard.
1.4. The RS232-C and V.24 Standards
In most computer systems, the UART is connected to
	 circuitry that generates signals that comply with the EIA
	 RS232-C specification. There is also a CCITT standard named
	 V.24 that mirrors the specifications included in
	 RS232-C.
1.4.1. RS232-C Bit Assignments (Marks and Spaces)
In RS232-C, a value of 1 is called
	 a Mark and a value of
	 0 is called a Space.
	 When a communication line is idle, the line is said to be
	 “Marking”, or transmitting continuous
	 1 values.
The Start bit always has a value of
	 0 (a Space). The Stop Bit always has a
	 value of 1 (a Mark). This means that
	 there will always be a Mark (1) to Space (0) transition on
	 the line at the start of every word, even when multiple
	 word are transmitted back to back. This guarantees that
	 sender and receiver can resynchronize their clocks
	 regardless of the content of the data bits that are being
	 transmitted.
The idle time between Stop and Start bits does not
	 have to be an exact multiple (including zero) of the bit
	 rate of the communication link, but most UARTs are
	 designed this way for simplicity.
In RS232-C, the "Marking" signal (a
	 1) is represented by a voltage between
	 -2 VDC and -12 VDC, and a "Spacing" signal (a
	 0) is represented by a voltage between
	 0 and +12 VDC. The transmitter is supposed to send +12
	 VDC or -12 VDC, and the receiver is supposed to allow for
	 some voltage loss in long cables. Some transmitters in
	 low power devices (like portable computers) sometimes use
	 only +5 VDC and -5 VDC, but these values are still
	 acceptable to a RS232-C receiver, provided that the cable
	 lengths are short.
1.4.2. RS232-C Break Signal
RS232-C also specifies a signal called a
	 Break, which is caused by sending
	 continuous Spacing values (no Start or Stop bits). When
	 there is no electricity present on the data circuit, the
	 line is considered to be sending
	 Break.
The Break signal must be of a
	 duration longer than the time it takes to send a complete
	 byte plus Start, Stop and Parity bits. Most UARTs can
	 distinguish between a Framing Error and a Break, but if
	 the UART cannot do this, the Framing Error detection can
	 be used to identify Breaks.
In the days of teleprinters, when numerous printers
	 around the country were wired in series (such as news
	 services), any unit could cause a Break
	 by temporarily opening the entire circuit so that no
	 current flowed. This was used to allow a location with
	 urgent news to interrupt some other location that was
	 currently sending information.
In modern systems there are two types of Break
	 signals. If the Break is longer than 1.6 seconds, it is
	 considered a "Modem Break", and some modems can be
	 programmed to terminate the conversation and go on-hook or
	 enter the modems' command mode when the modem detects this
	 signal. If the Break is smaller than 1.6 seconds, it
	 signifies a Data Break and it is up to the remote computer
	 to respond to this signal. Sometimes this form of Break
	 is used as an Attention or Interrupt signal and sometimes
	 is accepted as a substitute for the ASCII CONTROL-C
	 character.
Marks and Spaces are also equivalent to
	 “Holes” and “No Holes” in paper
	 tape systems.
Note:
Breaks cannot be generated from paper tape or from
	 any other byte value, since bytes are always sent with
	 Start and Stop bit. The UART is usually capable of
	 generating the continuous Spacing signal in response to
	 a special command from the host processor.

1.4.3. RS232-C DTE and DCE Devices
The RS232-C specification defines two types of
	 equipment: the Data Terminal Equipment (DTE) and the Data
	 Carrier Equipment (DCE). Usually, the DTE device is the
	 terminal (or computer), and the DCE is a modem. Across
	 the phone line at the other end of a conversation, the
	 receiving modem is also a DCE device and the computer that
	 is connected to that modem is a DTE device. The DCE
	 device receives signals on the pins that the DTE device
	 transmits on, and vice versa.
When two devices that are both DTE or both DCE must be
	 connected together without a modem or a similar media
	 translator between them, a NULL modem must be used. The
	 NULL modem electrically re-arranges the cabling so that
	 the transmitter output is connected to the receiver input
	 on the other device, and vice versa. Similar translations
	 are performed on all of the control signals so that each
	 device will see what it thinks are DCE (or DTE) signals
	 from the other device.
The number of signals generated by the DTE and DCE
	 devices are not symmetrical. The DTE device generates
	 fewer signals for the DCE device than the DTE device
	 receives from the DCE.
1.4.4. RS232-C Pin Assignments
The EIA RS232-C specification (and the ITU equivalent,
	 V.24) calls for a twenty-five pin connector (usually a
	 DB25) and defines the purpose of most of the pins in that
	 connector.
In the IBM Personal Computer and similar systems, a
	 subset of RS232-C signals are provided via nine pin
	 connectors (DB9). The signals that are not included on
	 the PC connector deal mainly with synchronous operation,
	 and this transmission mode is not supported by the UART
	 that IBM selected for use in the IBM PC.
Depending on the computer manufacturer, a DB25, a DB9,
	 or both types of connector may be used for RS232-C
	 communications. (The IBM PC also uses a DB25 connector
	 for the parallel printer interface which causes some
	 confusion.)
Below is a table of the RS232-C signal assignments in
	 the DB25 and DB9 connectors.
	DB25 RS232-C Pin	DB9 IBM PC
		 Pin	EIA Circuit Symbol	CCITT Circuit Symbol	Common
		 Name	Signal Source	Description
	1	-	AA	101	PG/FG	-	Frame/Protective Ground
	2	3	BA	103	TD	DTE	Transmit Data
	3	2	BB	104	RD	DCE	Receive Data
	4	7	CA	105	RTS	DTE	Request to Send
	5	8	CB	106	CTS	DCE	Clear to Send
	6	6	CC	107	DSR	DCE	Data Set Ready
	7	5	AV	102	SG/GND	-	Signal Ground
	8	1	CF	109	DCD/CD	DCE	Data Carrier Detect
	9	-	-	-	-	-	Reserved for Test
	10	-	-	-	-	-	Reserved for Test
	11	-	-	-	-	-	Reserved for Test
	12	-	CI	122	SRLSD	DCE	Sec. Recv. Line Signal Detector
	13	-	SCB	121	SCTS	DCE	Secondary Clear to Send
	14	-	SBA	118	STD	DTE	Secondary Transmit Data
	15	-	DB	114	TSET	DCE	Trans. Sig. Element Timing
	16	-	SBB	119	SRD	DCE	Secondary Received Data
	17	-	DD	115	RSET	DCE	Receiver Signal Element Timing
	18	-	-	141	LOOP	DTE	Local Loopback
	19	-	SCA	120	SRS	DTE	Secondary Request to Send
	20	4	CD	108.2	DTR	DTE	Data Terminal Ready
	21	-	-	-	RDL	DTE	Remote Digital Loopback
	22	9	CE	125	RI	DCE	Ring Indicator
	23	-	CH	111	DSRS	DTE	Data Signal Rate Selector
	24	-	DA	113	TSET	DTE	Trans. Sig. Element Timing
	25	-	-	142	-	DCE	Test Mode

1.5. Bits, Baud and Symbols
Baud is a measurement of transmission speed in
	 asynchronous communication. Because of advances in modem
	 communication technology, this term is frequently misused
	 when describing the data rates in newer devices.
Traditionally, a Baud Rate represents the number of bits
	 that are actually being sent over the media, not the amount
	 of data that is actually moved from one DTE device to the
	 other. The Baud count includes the overhead bits Start, Stop
	 and Parity that are generated by the sending UART and
	 removed by the receiving UART. This means that seven-bit
	 words of data actually take 10 bits to be completely
	 transmitted. Therefore, a modem capable of moving 300 bits
	 per second from one place to another can normally only move
	 30 7-bit words if Parity is used and one Start and Stop bit
	 are present.
If 8-bit data words are used and Parity bits are also
	 used, the data rate falls to 27.27 words per second, because
	 it now takes 11 bits to send the eight-bit words, and the
	 modem still only sends 300 bits per second.
The formula for converting bytes per second into a baud
	 rate and vice versa was simple until error-correcting modems
	 came along. These modems receive the serial stream of bits
	 from the UART in the host computer (even when internal
	 modems are used the data is still frequently serialized) and
	 converts the bits back into bytes. These bytes are then
	 combined into packets and sent over the phone line using a
	 Synchronous transmission method. This means that the Stop,
	 Start, and Parity bits added by the UART in the DTE (the
	 computer) were removed by the modem before transmission by
	 the sending modem. When these bytes are received by the
	 remote modem, the remote modem adds Start, Stop and Parity
	 bits to the words, converts them to a serial format and then
	 sends them to the receiving UART in the remote computer, who
	 then strips the Start, Stop and Parity bits.
The reason all these extra conversions are done is so
	 that the two modems can perform error correction, which
	 means that the receiving modem is able to ask the sending
	 modem to resend a block of data that was not received with
	 the correct checksum. This checking is handled by the
	 modems, and the DTE devices are usually unaware that the
	 process is occurring.
By striping the Start, Stop and Parity bits, the
	 additional bits of data that the two modems must share
	 between themselves to perform error-correction are mostly
	 concealed from the effective transmission rate seen by the
	 sending and receiving DTE equipment. For example, if a
	 modem sends ten 7-bit words to another modem without
	 including the Start, Stop and Parity bits, the sending modem
	 will be able to add 30 bits of its own information that the
	 receiving modem can use to do error-correction without
	 impacting the transmission speed of the real data.
The use of the term Baud is further confused by modems
	 that perform compression. A single 8-bit word passed over
	 the telephone line might represent a dozen words that were
	 transmitted to the sending modem. The receiving modem will
	 expand the data back to its original content and pass that
	 data to the receiving DTE.
Modern modems also include buffers that allow the rate
	 that bits move across the phone line (DCE to DCE) to be a
	 different speed than the speed that the bits move between
	 the DTE and DCE on both ends of the conversation. Normally
	 the speed between the DTE and DCE is higher than the DCE to
	 DCE speed because of the use of compression by the
	 modems.
Because the number of bits needed to describe a byte
	 varied during the trip between the two machines plus the
	 differing bits-per-seconds speeds that are used present on
	 the DTE-DCE and DCE-DCE links, the usage of the term Baud to
	 describe the overall communication speed causes problems and
	 can misrepresent the true transmission speed. So Bits Per
	 Second (bps) is the correct term to use to describe the
	 transmission rate seen at the DCE to DCE interface and Baud
	 or Bits Per Second are acceptable terms to use when a
	 connection is made between two systems with a wired
	 connection, or if a modem is in use that is not performing
	 error-correction or compression.
Modern high speed modems (2400, 9600, 14,400, and
	 19,200bps) in reality still operate at or below 2400 baud,
	 or more accurately, 2400 Symbols per second. High speed
	 modem are able to encode more bits of data into each Symbol
	 using a technique called Constellation Stuffing, which is
	 why the effective bits per second rate of the modem is
	 higher, but the modem continues to operate within the
	 limited audio bandwidth that the telephone system provides.
	 Modems operating at 28,800 and higher speeds have variable
	 Symbol rates, but the technique is the same.
1.6. The IBM Personal Computer UART
Starting with the original IBM Personal Computer, IBM
	 selected the National Semiconductor INS8250 UART for use in
	 the IBM PC Parallel/Serial Adapter. Subsequent generations
	 of compatible computers from IBM and other vendors continued
	 to use the INS8250 or improved versions of the National
	 Semiconductor UART family.
1.6.1. National Semiconductor UART Family Tree
There have been several versions and subsequent
	 generations of the INS8250 UART. Each major version is
	 described below.
INS8250 -> INS8250B
 \
 \
 \-> INS8250A -> INS82C50A
 \
 \
 \-> NS16450 -> NS16C450
 \
 \
 \-> NS16550 -> NS16550A -> PC16550D
	INS8250
	This part was used in the original IBM PC and
		 IBM PC/XT. The original name for this part was the
		 INS8250 ACE (Asynchronous Communications Element)
		 and it is made from NMOS technology.
The 8250 uses eight I/O ports and has a one-byte
		 send and a one-byte receive buffer. This original
		 UART has several race conditions and other
		 flaws. The original IBM BIOS includes code to work
		 around these flaws, but this made the BIOS dependent
		 on the flaws being present, so subsequent parts like
		 the 8250A, 16450 or 16550 could not be used in the
		 original IBM PC or IBM PC/XT.

	INS8250-B
	This is the slower speed of the INS8250 made
		 from NMOS technology. It contains the same problems
		 as the original INS8250.

	INS8250A
	An improved version of the INS8250 using XMOS
		 technology with various functional flaws
		 corrected. The INS8250A was used initially in PC
		 clone computers by vendors who used
		 “clean” BIOS designs. Because of the
		 corrections in the chip, this part could not be used
		 with a BIOS compatible with the INS8250 or
		 INS8250B.

	INS82C50A
	This is a CMOS version (low power consumption)
		 of the INS8250A and has similar functional
		 characteristics.

	NS16450
	Same as NS8250A with improvements so it can be
		 used with faster CPU bus designs. IBM used this
		 part in the IBM AT and updated the IBM BIOS to no
		 longer rely on the bugs in the INS8250.

	NS16C450
	This is a CMOS version (low power consumption)
		 of the NS16450.

	NS16550
	Same as NS16450 with a 16-byte send and receive
		 buffer but the buffer design was flawed and could
		 not be reliably be used.

	NS16550A
	Same as NS16550 with the buffer flaws
		 corrected. The 16550A and its successors have become
		 the most popular UART design in the PC industry,
		 mainly due to its ability to reliably handle higher
		 data rates on operating systems with sluggish
		 interrupt response times.

	NS16C552
	This component consists of two NS16C550A CMOS
		 UARTs in a single package.

	PC16550D
	Same as NS16550A with subtle flaws
		 corrected. This is revision D of the 16550 family
		 and is the latest design available from National
		 Semiconductor.

1.6.2. The NS16550AF and the PC16550D are the same thing
National reorganized their part numbering system a few
	 years ago, and the NS16550AFN no longer exists by that
	 name. (If you have a NS16550AFN, look at the date code on
	 the part, which is a four digit number that usually starts
	 with a nine. The first two digits of the number are the
	 year, and the last two digits are the week in that year
	 when the part was packaged. If you have a NS16550AFN, it
	 is probably a few years old.)
The new numbers are like PC16550DV, with minor
	 differences in the suffix letters depending on the package
	 material and its shape. (A description of the numbering
	 system can be found below.)
It is important to understand that in some stores, you
	 may pay $15(US) for a NS16550AFN made in 1990 and in
	 the next bin are the new PC16550DN parts with minor fixes
	 that National has made since the AFN part was in
	 production, the PC16550DN was probably made in the past
	 six months and it costs half (as low as $5(US) in
	 volume) as much as the NS16550AFN because they are readily
	 available.
As the supply of NS16550AFN chips continues to shrink,
	 the price will probably continue to increase until more
	 people discover and accept that the PC16550DN really has
	 the same function as the old part number.
1.6.3. National Semiconductor Part Numbering System
The older NSnnnnnrqp part
	 numbers are now of the format
	 PCnnnnnrgp.
The r is the revision
	 field. The current revision of the 16550 from National
	 Semiconductor is D.
The p is the package-type
	 field. The types are:
	"F"	QFP	(quad flat pack) L lead type
	"N"	DIP	(dual inline package) through hole straight lead
		 type
	"V"	LPCC	(lead plastic chip carrier) J lead type

The g is the product grade
	 field. If an I precedes the
	 package-type letter, it indicates an
	 “industrial” grade part, which has higher
	 specs than a standard part but not as high as Military
	 Specification (Milspec) component. This is an optional
	 field.
So what we used to call a NS16550AFN (DIP Package) is
	 now called a PC16550DN or PC16550DIN.
1.7. Other Vendors and Similar UARTs
Over the years, the 8250, 8250A, 16450 and 16550 have
	 been licensed or copied by other chip vendors. In the case
	 of the 8250, 8250A and 16450, the exact circuit (the
	 “megacell”) was licensed to many vendors,
	 including Western Digital and Intel. Other vendors
	 reverse-engineered the part or produced emulations that had
	 similar behavior.
In internal modems, the modem designer will frequently
	 emulate the 8250A/16450 with the modem microprocessor, and
	 the emulated UART will frequently have a hidden buffer
	 consisting of several hundred bytes. Because of the size of
	 the buffer, these emulations can be as reliable as a 16550A
	 in their ability to handle high speed data. However, most
	 operating systems will still report that the UART is only a
	 8250A or 16450, and may not make effective use of the extra
	 buffering present in the emulated UART unless special
	 drivers are used.
Some modem makers are driven by market forces to abandon
	 a design that has hundreds of bytes of buffer and instead
	 use a 16550A UART so that the product will compare favorably
	 in market comparisons even though the effective performance
	 may be lowered by this action.
A common misconception is that all parts with
	 “16550A” written on them are identical in
	 performance. There are differences, and in some cases,
	 outright flaws in most of these 16550A clones.
When the NS16550 was developed, the National
	 Semiconductor obtained several patents on the design and
	 they also limited licensing, making it harder for other
	 vendors to provide a chip with similar features. Because of
	 the patents, reverse-engineered designs and emulations had
	 to avoid infringing the claims covered by the patents.
	 Subsequently, these copies almost never perform exactly the
	 same as the NS16550A or PC16550D, which are the parts most
	 computer and modem makers want to buy but are sometimes
	 unwilling to pay the price required to get the genuine
	 part.
Some of the differences in the clone 16550A parts are
	 unimportant, while others can prevent the device from being
	 used at all with a given operating system or driver. These
	 differences may show up when using other drivers, or when
	 particular combinations of events occur that were not well
	 tested or considered in the Windows® driver. This is because
	 most modem vendors and 16550-clone makers use the Microsoft
	 drivers from Windows® for Workgroups 3.11 and the Microsoft®
	 MS-DOS® utility as the primary tests for compatibility with
	 the NS16550A. This over-simplistic criteria means that if a
	 different operating system is used, problems could appear
	 due to subtle differences between the clones and genuine
	 components.
National Semiconductor has made available a program
	 named COMTEST that performs
	 compatibility tests independent of any OS drivers. It
	 should be remembered that the purpose of this type of
	 program is to demonstrate the flaws in the products of the
	 competition, so the program will report major as well as
	 extremely subtle differences in behavior in the part being
	 tested.
In a series of tests performed by the author of this
	 document in 1994, components made by National Semiconductor,
	 TI, StarTech, and CMD as well as megacells and emulations
	 embedded in internal modems were tested with COMTEST. A
	 difference count for some of these components is listed
	 below. Because these tests were performed in 1994, they may
	 not reflect the current performance of the given product
	 from a vendor.
It should be noted that COMTEST normally aborts when an
	 excessive number or certain types of problems have been
	 detected. As part of this testing, COMTEST was modified so
	 that it would not abort no matter how many differences were
	 encountered.
	Vendor	Part Number	Errors (aka "differences" reported)
	National	(PC16550DV)	0
	National	(NS16550AFN)	0
	National	(NS16C552V)	0
	TI	(TL16550AFN)	3
	CMD	(16C550PE)	19
	StarTech	(ST16C550J)	23
	Rockwell	Reference modem with internal 16550 or an
		 emulation (RC144DPi/C3000-25)	117
	Sierra	Modem with an internal 16550
		 (SC11951/SC11351)	91

Note:
To date, the author of this document has not found any
	 non-National parts that report zero differences using the
	 COMTEST program. It should also be noted that National
	 has had five versions of the 16550 over the years and the
	 newest parts behave a bit differently than the classic
	 NS16550AFN that is considered the benchmark for
	 functionality. COMTEST appears to turn a blind eye to the
	 differences within the National product line and reports
	 no errors on the National parts (except for the original
	 16550) even when there are official erratas that describe
	 bugs in the A, B and C revisions of the parts, so this
	 bias in COMTEST must be taken into account.

It is important to understand that a simple count of
	 differences from COMTEST does not reveal a lot about what
	 differences are important and which are not. For example,
	 about half of the differences reported in the two modems
	 listed above that have internal UARTs were caused by the
	 clone UARTs not supporting five- and six-bit character
	 modes. The real 16550, 16450, and 8250 UARTs all support
	 these modes and COMTEST checks the functionality of these
	 modes so over fifty differences are reported. However,
	 almost no modern modem supports five- or six-bit characters,
	 particularly those with error-correction and compression
	 capabilities. This means that the differences related to
	 five- and six-bit character modes can be discounted.
Many of the differences COMTEST reports have to do with
	 timing. In many of the clone designs, when the host reads
	 from one port, the status bits in some other port may not
	 update in the same amount of time (some faster, some slower)
	 as a real NS16550AFN and COMTEST looks
	 for these differences. This means that the number of
	 differences can be misleading in that one device may only
	 have one or two differences but they are extremely serious,
	 and some other device that updates the status registers
	 faster or slower than the reference part (that would
	 probably never affect the operation of a properly written
	 driver) could have dozens of differences reported.
COMTEST can be used as a screening tool to alert the
	 administrator to the presence of potentially incompatible
	 components that might cause problems or have to be handled
	 as a special case.
If you run COMTEST on a 16550 that is in a modem or a
	 modem is attached to the serial port, you need to first
	 issue a ATE0&W command to the modem so that the modem
	 will not echo any of the test characters. If you forget to
	 do this, COMTEST will report at least this one
	 difference:
Error (6)...Timeout interrupt failed: IIR = c1 LSR = 61
1.8. 8250/16450/16550 Registers
The 8250/16450/16550 UART occupies eight contiguous I/O
	 port addresses. In the IBM PC, there are two defined
	 locations for these eight ports and they are known
	 collectively as COM1 and COM2. The makers of PC-clones and
	 add-on cards have created two additional areas known as COM3
	 and COM4, but these extra COM ports conflict with other
	 hardware on some systems. The most common conflict is with
	 video adapters that provide IBM 8514 emulation.
COM1 is located from 0x3f8 to 0x3ff and normally uses
	 IRQ 4. COM2 is located from 0x2f8 to 0x2ff and normally uses
	 IRQ 3. COM3 is located from 0x3e8 to 0x3ef and has no
	 standardized IRQ. COM4 is located from 0x2e8 to 0x2ef and has
	 no standardized IRQ.
A description of the I/O ports of the 8250/16450/16550
	 UART is provided below.
	I/O Port	Access Allowed	Description
	+0x00	write (DLAB==0)	Transmit Holding Register
		 (THR).
Information written to this port are
		 treated as data words and will be transmitted by the
		 UART.

	+0x00	read (DLAB==0)	Receive Buffer Register (RBR).
Any
		 data words received by the UART form the serial link are
		 accessed by the host by reading this
		 port.

	+0x00	write/read (DLAB==1)	Divisor Latch LSB (DLL)
This value
		 will be divided from the master input clock (in the IBM
		 PC, the master clock is 1.8432MHz) and the resulting
		 clock will determine the baud rate of the UART. This
		 register holds bits 0 thru 7 of the
		 divisor.

	+0x01	write/read (DLAB==1)	Divisor Latch MSB (DLH)
This value
		 will be divided from the master input clock (in the IBM
		 PC, the master clock is 1.8432MHz) and the resulting
		 clock will determine the baud rate of the UART. This
		 register holds bits 8 thru 15 of the
		 divisor.

	+0x01	write/read (DLAB==0)		Interrupt Enable Register
			 (IER)
The 8250/16450/16550 UART
			 classifies events into one of four categories.
			 Each category can be configured to generate an
			 interrupt when any of the events occurs. The
			 8250/16450/16550 UART generates a single external
			 interrupt signal regardless of how many events in
			 the enabled categories have occurred. It is up to
			 the host processor to respond to the interrupt and
			 then poll the enabled interrupt categories
			 (usually all categories have interrupts enabled)
			 to determine the true cause(s) of the
			 interrupt.

	Bit 7	Reserved, always 0.
	Bit 6	Reserved, always 0.
	Bit 5	Reserved, always 0.
	Bit 4	Reserved, always 0.
	Bit 3	Enable Modem Status Interrupt (EDSSI). Setting
			this bit to "1" allows the UART to generate an
			interrupt when a change occurs on one or more of the
			status lines.
	Bit 2	Enable Receiver Line Status Interrupt (ELSI)
			Setting this bit to "1" causes the UART to generate
			an interrupt when the an error (or a BREAK signal)
			has been detected in the incoming data.
	Bit 1	Enable Transmitter Holding Register Empty
			Interrupt (ETBEI) Setting this bit to "1" causes the
			UART to generate an interrupt when the UART has room
			for one or more additional characters that are to be
			transmitted.
	Bit 0	Enable Received Data Available Interrupt
			(ERBFI) Setting this bit to "1" causes the UART to
			generate an interrupt when the UART has received
			enough characters to exceed the trigger level of the
			FIFO, or the FIFO timer has expired (stale data), or
			a single character has been received when the FIFO
			is disabled.

	+0x02	write		FIFO Control Register (FCR)
			(This port does not exist on the 8250 and 16450
			UART.)
	Bit 7	Receiver Trigger Bit #1
	Bit 6	Receiver Trigger Bit
			#0
These two bits control at what
			point the receiver is to generate an interrupt
			when the FIFO is active.

	 	7	6	How many words are received
			before an interrupt is generated
	 	0	0	1
	 	0	1	4
	 	1	0	8
	 	1	1	14
	Bit 5	Reserved, always 0.
	Bit 4	Reserved, always 0.
	Bit 3	DMA Mode Select. If Bit 0 is
			set to "1" (FIFOs enabled), setting this bit changes
			the operation of the -RXRDY and -TXRDY signals from
			Mode 0 to Mode 1.
	Bit 2	Transmit FIFO Reset. When a
			"1" is written to this bit, the contents of the FIFO
			are discarded. Any word currently being transmitted
			will be sent intact. This function is useful in
			aborting transfers.
	Bit 1	Receiver FIFO Reset. When a
			"1" is written to this bit, the contents of the FIFO
			are discarded. Any word currently being assembled
			in the shift register will be received
			intact.
	Bit 0	16550 FIFO Enable. When set,
			both the transmit and receive FIFOs are enabled.
			Any contents in the holding register, shift
			registers or FIFOs are lost when FIFOs are enabled
			or disabled.

	+0x02	read		Interrupt Identification
			Register
	Bit 7	FIFOs enabled. On the
			8250/16450 UART, this bit is zero.
	Bit 6	FIFOs enabled. On the
			8250/16450 UART, this bit is zero.
	Bit 5	Reserved, always 0.
	Bit 4	Reserved, always 0.
	Bit 3	Interrupt ID Bit #2. On the
			8250/16450 UART, this bit is zero.
	Bit 2	Interrupt ID Bit #1
	Bit 1	Interrupt ID Bit #0.These
			three bits combine to report the category of
			event that caused the interrupt that is in
			progress. These categories have priorities,
			so if multiple categories of events occur at
			the same time, the UART will report the more
			important events first and the host must
			resolve the events in the order they are
			reported. All events that caused the current
			interrupt must be resolved before any new
			interrupts will be generated. (This is a
			limitation of the PC architecture.)
	 	2	1	0	Priority	Description
	 	0	1	1	First	Received Error (OE, PE, BI, or
			FE)
	 	0	1	0	Second	Received Data Available
	 	1	1	0	Second	Trigger level identification
			(Stale data in receive buffer)
	 	0	0	1	Third	Transmitter has room for more
			words (THRE)
	 	0	0	0	Fourth	Modem Status Change (-CTS, -DSR,
			-RI, or -DCD)
	Bit 0	Interrupt Pending Bit. If this
			bit is set to "0", then at least one interrupt is
			pending.

	+0x03	write/read		Line Control Register
			 (LCR)
	Bit 7	Divisor Latch Access Bit
			 (DLAB). When set, access to the data
			 transmit/receive register (THR/RBR) and the
			 Interrupt Enable Register (IER) is disabled. Any
			 access to these ports is now redirected to the
			 Divisor Latch Registers. Setting this bit, loading
			 the Divisor Registers, and clearing DLAB should be
			 done with interrupts disabled.
	Bit 6	Set Break. When set to "1",
			 the transmitter begins to transmit continuous
			 Spacing until this bit is set to "0". This
			 overrides any bits of characters that are being
			 transmitted.
	Bit 5	Stick Parity. When parity is
			 enabled, setting this bit causes parity to always be
			 "1" or "0", based on the value of Bit 4.
	Bit 4	Even Parity Select (EPS). When
			 parity is enabled and Bit 5 is "0", setting this bit
			 causes even parity to be transmitted and expected.
			 Otherwise, odd parity is used.
	Bit 3	Parity Enable (PEN). When set
			 to "1", a parity bit is inserted between the last
			 bit of the data and the Stop Bit. The UART will
			 also expect parity to be present in the received
			 data.
	Bit 2	Number of Stop Bits (STB). If
			 set to "1" and using 5-bit data words, 1.5 Stop Bits
			 are transmitted and expected in each data word. For
			 6, 7 and 8-bit data words, 2 Stop Bits are
			 transmitted and expected. When this bit is set to
			 "0", one Stop Bit is used on each data word.
	Bit 1	Word Length Select Bit #1
			 (WLSB1)
	Bit 0	Word Length Select Bit #0
			 (WLSB0)
	 	Together these
			 bits specify the number of bits in each data
			 word.
	 	1	0	Word
			 Length
	 	0	0	5 Data
			 Bits
	 	0	1	6 Data
			 Bits
	 	1	0	7 Data
			 Bits
	 	1	1	8 Data
			 Bits

	+0x04	write/read		Modem Control Register
			 (MCR)
	Bit 7	Reserved, always 0.
	Bit 6	Reserved, always 0.
	Bit 5	Reserved, always 0.
	Bit 4	Loop-Back Enable. When set to "1", the UART
			 transmitter and receiver are internally connected
			 together to allow diagnostic operations. In
			 addition, the UART modem control outputs are
			 connected to the UART modem control inputs. CTS is
			 connected to RTS, DTR is connected to DSR, OUT1 is
			 connected to RI, and OUT 2 is connected to
			 DCD.
	Bit 3	OUT 2. An auxiliary output that the host
			 processor may set high or low. In the IBM PC serial
			 adapter (and most clones), OUT 2 is used to
			 tri-state (disable) the interrupt signal from the
			 8250/16450/16550 UART.
	Bit 2	OUT 1. An auxiliary output that the host
			 processor may set high or low. This output is not
			 used on the IBM PC serial adapter.
	Bit 1	Request to Send (RTS). When set to "1", the
			 output of the UART -RTS line is Low
			 (Active).
	Bit 0	Data Terminal Ready (DTR). When set to "1",
			 the output of the UART -DTR line is Low
			 (Active).

	+0x05	write/read		Line Status Register
			 (LSR)
	Bit 7	Error in Receiver FIFO. On the 8250/16450
			 UART, this bit is zero. This bit is set to "1" when
			 any of the bytes in the FIFO have one or more of the
			 following error conditions: PE, FE, or BI.
	Bit 6	Transmitter Empty (TEMT). When set to "1",
			 there are no words remaining in the transmit FIFO
			 or the transmit shift register. The transmitter is
			 completely idle.
	Bit 5	Transmitter Holding Register Empty (THRE).
			 When set to "1", the FIFO (or holding register) now
			 has room for at least one additional word to
			 transmit. The transmitter may still be transmitting
			 when this bit is set to "1".
	Bit 4	Break Interrupt (BI). The receiver has
			 detected a Break signal.
	Bit 3	Framing Error (FE). A Start Bit was detected
			 but the Stop Bit did not appear at the expected
			 time. The received word is probably
			 garbled.
	Bit 2	Parity Error (PE). The parity bit was
			 incorrect for the word received.
	Bit 1	Overrun Error (OE). A new word was received
			 and there was no room in the receive buffer. The
			 newly-arrived word in the shift register is
			 discarded. On 8250/16450 UARTs, the word in the
			 holding register is discarded and the newly- arrived
			 word is put in the holding register.
	Bit 0	Data Ready (DR) One or more words are in the
			 receive FIFO that the host may read. A word must be
			 completely received and moved from the shift
			 register into the FIFO (or holding register for
			 8250/16450 designs) before this bit is set.

	+0x06	write/read		Modem Status Register
			 (MSR)
	Bit 7	Data Carrier Detect (DCD). Reflects the state
			 of the DCD line on the UART.
	Bit 6	Ring Indicator (RI). Reflects the state of the
			 RI line on the UART.
	Bit 5	Data Set Ready (DSR). Reflects the state of
			 the DSR line on the UART.
	Bit 4	Clear To Send (CTS). Reflects the state of the
			 CTS line on the UART.
	Bit 3	Delta Data Carrier Detect (DDCD). Set to "1"
			 if the -DCD line has changed state one more
			 time since the last time the MSR was read by the
			 host.
	Bit 2	Trailing Edge Ring Indicator (TERI). Set to
			 "1" if the -RI line has had a low to high transition
			 since the last time the MSR was read by the
			 host.
	Bit 1	Delta Data Set Ready (DDSR). Set to "1" if the
			 -DSR line has changed state one more time
			 since the last time the MSR was read by the
			 host.
	Bit 0	Delta Clear To Send (DCTS). Set to "1" if the
			 -CTS line has changed state one more time
			 since the last time the MSR was read by the
			 host.

	+0x07	write/read	Scratch Register (SCR). This register performs no
		 function in the UART. Any value can be written by the
		 host to this location and read by the host later
		 on.

1.9. Beyond the 16550A UART
Although National Semiconductor has not offered any
	 components compatible with the 16550 that provide additional
	 features, various other vendors have. Some of these
	 components are described below. It should be understood
	 that to effectively utilize these improvements, drivers may
	 have to be provided by the chip vendor since most of the
	 popular operating systems do not support features beyond
	 those provided by the 16550.
	ST16650
	By default this part is similar to the NS16550A, but an
		 extended 32-byte send and receive buffer can be optionally
		 enabled. Made by StarTech.

	TIL16660
	By default this part behaves similar to the NS16550A,
		 but an extended 64-byte send and receive buffer can be
		 optionally enabled. Made by Texas Instruments.

	Hayes ESP
	This proprietary plug-in card contains a 2048-byte send
		 and receive buffer, and supports data rates to
		 230.4Kbit/sec. Made by Hayes.

In addition to these “dumb” UARTs, many vendors
	 produce intelligent serial communication boards. This type of
	 design usually provides a microprocessor that interfaces with
	 several UARTs, processes and buffers the data, and then alerts the
	 main PC processor when necessary. Because the UARTs are not
	 directly accessed by the PC processor in this type of
	 communication system, it is not necessary for the vendor to use
	 UARTs that are compatible with the 8250, 16450, or the 16550 UART.
	 This leaves the designer free to components that may have better
	 performance characteristics.
2. Configuring the sio driver
The sio driver provides support
	for NS8250-, NS16450-, NS16550 and NS16550A-based EIA RS-232C
	(CCITT V.24) communications interfaces. Several multiport
	cards are supported as well. See the sio(4) manual page
	for detailed technical documentation.
2.1. Digi International (DigiBoard) PC/8
Contributed by Andrew Webster <awebster@pubnix.net>. 26 August
	 1995.
Here is a config snippet from a machine with a Digi
	 International PC/8 with 16550. It has 8 modems connected to
	 these 8 lines, and they work just great. Do not forget to
	 add options COM_MULTIPORT or it will not
	 work very well!
device sio4 at isa? port 0x100 flags 0xb05
device sio5 at isa? port 0x108 flags 0xb05
device sio6 at isa? port 0x110 flags 0xb05
device sio7 at isa? port 0x118 flags 0xb05
device sio8 at isa? port 0x120 flags 0xb05
device sio9 at isa? port 0x128 flags 0xb05
device sio10 at isa? port 0x130 flags 0xb05
device sio11 at isa? port 0x138 flags 0xb05 irq 9
The trick in setting this up is that the MSB of the
	 flags represent the last SIO port, in this case 11 so flags
	 are 0xb05.
2.2. Boca 16
Contributed by Don Whiteside <whiteside@acm.org>. 26 August
	 1995.
The procedures to make a Boca 16 port board with FreeBSD
	 are pretty straightforward, but you will need a couple
	 things to make it work:
	You either need the kernel sources installed so you
		can recompile the necessary options or you will need
		someone else to compile it for you. The 2.0.5 default
		kernel does not come with
		multiport support enabled and you will need to add a
		device entry for each port anyways.

	Two, you will need to know the interrupt and IO
	 setting for your Boca Board so you can set these options
	 properly in the kernel.

One important note — the actual UART chips for the
	 Boca 16 are in the connector box, not on the internal board
	 itself. So if you have it unplugged, probes of those ports
	 will fail. I have never tested booting with the box
	 unplugged and plugging it back in, and I suggest you do not
	 either.
If you do not already have a custom kernel
	 configuration file set up, refer to Kernel
	 Configuration chapter of the FreeBSD Handbook for
	 general procedures. The following are the specifics for the
	 Boca 16 board and assume you are using the kernel name
	 MYKERNEL and editing with vi.
	Add the line

	
options COM_MULTIPORT

	 to the config file.

	Where the current device
	 sion lines are, you
	 will need to add 16 more devices. The
	 following example is for a Boca Board with an interrupt
	 of 3, and a base IO address 100h. The IO address for
	 Each port is +8 hexadecimal from the previous port, thus
	 the 100h, 108h, 110h... addresses.
device sio1 at isa? port 0x100 flags 0x1005
device sio2 at isa? port 0x108 flags 0x1005
device sio3 at isa? port 0x110 flags 0x1005
device sio4 at isa? port 0x118 flags 0x1005
…
device sio15 at isa? port 0x170 flags 0x1005
device sio16 at isa? port 0x178 flags 0x1005 irq 3
The flags entry must be changed
	 from this example unless you are using the exact same
	 sio assignments. Flags are set according to
	 0xMYY
	 where M indicates the minor
	 number of the master port (the last port on a Boca 16)
	 and YY indicates if FIFO is
	 enabled or disabled(enabled), IRQ sharing is used(yes)
	 and if there is an AST/4 compatible IRQ control
	 register(no). In this example,
 flags
	 0x1005
 indicates that the master port
	 is sio16. If I added another board and assigned sio17
	 through sio28, the flags for all 16 ports on
	 that board would be 0x1C05, where
	 1C indicates the minor number of the master port. Do
	 not change the 05 setting.

	Save and complete the kernel configuration,
	 recompile, install and reboot. Presuming you have
	 successfully installed the recompiled kernel and have it
	 set to the correct address and IRQ, your boot message
	 should indicate the successful probe of the Boca ports
	 as follows: (obviously the sio numbers, IO and IRQ could
	 be different)
sio1 at 0x100-0x107 flags 0x1005 on isa
sio1: type 16550A (multiport)
sio2 at 0x108-0x10f flags 0x1005 on isa
sio2: type 16550A (multiport)
sio3 at 0x110-0x117 flags 0x1005 on isa
sio3: type 16550A (multiport)
sio4 at 0x118-0x11f flags 0x1005 on isa
sio4: type 16550A (multiport)
sio5 at 0x120-0x127 flags 0x1005 on isa
sio5: type 16550A (multiport)
sio6 at 0x128-0x12f flags 0x1005 on isa
sio6: type 16550A (multiport)
sio7 at 0x130-0x137 flags 0x1005 on isa
sio7: type 16550A (multiport)
sio8 at 0x138-0x13f flags 0x1005 on isa
sio8: type 16550A (multiport)
sio9 at 0x140-0x147 flags 0x1005 on isa
sio9: type 16550A (multiport)
sio10 at 0x148-0x14f flags 0x1005 on isa
sio10: type 16550A (multiport)
sio11 at 0x150-0x157 flags 0x1005 on isa
sio11: type 16550A (multiport)
sio12 at 0x158-0x15f flags 0x1005 on isa
sio12: type 16550A (multiport)
sio13 at 0x160-0x167 flags 0x1005 on isa
sio13: type 16550A (multiport)
sio14 at 0x168-0x16f flags 0x1005 on isa
sio14: type 16550A (multiport)
sio15 at 0x170-0x177 flags 0x1005 on isa
sio15: type 16550A (multiport)
sio16 at 0x178-0x17f irq 3 flags 0x1005 on isa
sio16: type 16550A (multiport master)
If the messages go by too fast to see,

	
dmesg | more

	 will show you the boot messages.

	Next, appropriate entries in
	 /dev for the devices must be made
	 using the /dev/MAKEDEV
	 script. This step can be omitted if you are running
	 FreeBSD 5.X with a kernel that has devfs(5)
	 support compiled in.
If you do need to create the /dev
	 entries, run the following as root:
cd /dev
./MAKEDEV tty1
./MAKEDEV cua1
(everything in between)
./MAKEDEV ttyg
./MAKEDEV cuag
If you do not want or need call-out devices for some
	 reason, you can dispense with making the
	 cua* devices.

	If you want a quick and sloppy way to make sure the
	 devices are working, you can simply plug a modem into
	 each port and (as root)

echo at > ttyd*

	 for each device you have made. You
	 should see the RX lights flash for each
	 working port.

2.3. Support for Cheap Multi-UART Cards
Contributed by Helge Oldach
	 <hmo@sep.hamburg.com>, September
	 1999
Ever wondered about FreeBSD support for your 20$
	 multi-I/O card with two (or more) COM ports, sharing IRQs?
	 Here is how:
Usually the only option to support these kind of boards
	 is to use a distinct IRQ for each port. For example, if
	 your CPU board has an on-board COM1
	 port (aka sio0–I/O address
	 0x3F8 and IRQ 4) and you have an extension board with two
	 UARTs, you will commonly need to configure them as
	 COM2 (aka
	 sio1–I/O address 0x2F8 and
	 IRQ 3), and the third port (aka
	 sio2) as I/O 0x3E8 and IRQ 5.
	 Obviously this is a waste of IRQ resources, as it should be
	 basically possible to run both extension board ports using a
	 single IRQ with the COM_MULTIPORT
	 configuration described in the previous sections.
Such cheap I/O boards commonly have a 4 by 3 jumper
	 matrix for the COM ports, similar to the following:
 o o o *
Port A |
 o * o *
Port B |
 o * o o
IRQ 2 3 4 5
Shown here is port A wired for IRQ 5 and port B wired
	 for IRQ 3. The IRQ columns on your specific board may
	 vary—other boards may supply jumpers for IRQs 3, 4, 5,
	 and 7 instead.
One could conclude that wiring both ports for IRQ 3
	 using a handcrafted wire-made jumper covering all three
	 connection points in the IRQ 3 column would solve the issue,
	 but no. You cannot duplicate IRQ 3 because the output
	 drivers of each UART are wired in a “totem
	 pole” fashion, so if one of the UARTs drives IRQ 3,
	 the output signal will not be what you would expect.
	 Depending on the implementation of the extension board or
	 your motherboard, the IRQ 3 line will continuously stay up,
	 or always stay low.
You need to decouple the IRQ drivers for the two UARTs,
	 so that the IRQ line of the board only goes up if (and only
	 if) one of the UARTs asserts a IRQ, and stays low otherwise.
	 The solution was proposed by Joerg Wunsch
	 <j@ida.interface-business.de>: To solder up a
	 wired-or consisting of two diodes (Germanium or
	 Schottky-types strongly preferred) and a 1 kOhm resistor.
	 Here is the schematic, starting from the 4 by 3 jumper field
	 above:
 Diode
 +---------->|-------+
 / |
 o * o o | 1 kOhm
Port A +----|######|-------+
 o * o o | |
Port B `-------------------+ ==+==
 o * o o | Ground
 \ |
 +--------->|-------+
IRQ 2 3 4 5 Diode
The cathodes of the diodes are connected to a common
	 point, together with a 1 kOhm pull-down resistor. It is
	 essential to connect the resistor to ground to avoid
	 floating of the IRQ line on the bus.
Now we are ready to configure a kernel. Staying with
	 this example, we would configure:
standard on-board COM1 port
device sio0 at isa? port "IO_COM1" flags 0x10
patched-up multi-I/O extension board
options COM_MULTIPORT
device sio1 at isa? port "IO_COM2" flags 0x205
device sio2 at isa? port "IO_COM3" flags 0x205 irq 3
Note that the flags setting for
	 sio1 and
	 sio2 is truly essential; refer to
	 sio(4) for details. (Generally, the
	 2 in the "flags" attribute refers to
	 sio2 which holds the IRQ, and you
	 surely want a 5 low nibble.) With kernel
	 verbose mode turned on this should yield something similar
	 to this:
sio0: irq maps: 0x1 0x11 0x1 0x1
sio0 at 0x3f8-0x3ff irq 4 flags 0x10 on isa
sio0: type 16550A
sio1: irq maps: 0x1 0x9 0x1 0x1
sio1 at 0x2f8-0x2ff flags 0x205 on isa
sio1: type 16550A (multiport)
sio2: irq maps: 0x1 0x9 0x1 0x1
sio2 at 0x3e8-0x3ef irq 3 flags 0x205 on isa
sio2: type 16550A (multiport master)
Though /sys/i386/isa/sio.c is
	 somewhat cryptic with its use of the “irq maps”
	 array above, the basic idea is that you observe
	 0x1 in the first, third, and fourth
	 place. This means that the corresponding IRQ was set upon
	 output and cleared after, which is just what we would
	 expect. If your kernel does not display this behavior, most
	 likely there is something wrong with your wiring.
3. Configuring the cy driver
Contributed by Alex Nash. 6 June
 1996.
The Cyclades multiport cards are based on the
	cy driver instead of the usual
	sio driver used by other multiport
	cards. Configuration is a simple matter of:
	Add the cy device to your
	 kernel configuration (note that your irq and iomem
	 settings may differ).
device cy0 at isa? irq 10 iomem 0xd4000 iosiz 0x2000

	Rebuild and install the new kernel.

	Make the device nodes by typing (the following
	 example assumes an 8-port board)[1]:
cd /dev
for i in 0 1 2 3 4 5 6 7;do ./MAKEDEV cuac$i ttyc$i;done

	If appropriate, add dialup entries to
	 /etc/ttys by duplicating serial
	 device (ttyd) entries and using
	 ttyc in place of
	 ttyd. For example:
ttyc0 "/usr/libexec/getty std.38400" unknown on insecure
ttyc1 "/usr/libexec/getty std.38400" unknown on insecure
ttyc2 "/usr/libexec/getty std.38400" unknown on insecure
…
ttyc7 "/usr/libexec/getty std.38400" unknown on insecure

	Reboot with the new kernel.

[1] You can omit this part if you are running FreeBSD 5.X
		 with devfs(5).

4. Configuring the si driver
Contributed by Nick Sayer <nsayer@FreeBSD.org>. 25 March
	1998.
The Specialix SI/XIO and SX multiport cards use the
	si driver. A single machine can have
	up to 4 host cards. The following host cards are
	supported:
	ISA SI/XIO host card (2 versions)

	EISA SI/XIO host card

	PCI SI/XIO host card

	ISA SX host card

	PCI SX host card

Although the SX and SI/XIO host cards look markedly
	different, their functionality are basically the same. The
	host cards do not use I/O locations, but instead require a 32K
	chunk of memory. The factory configuration for ISA cards
	places this at 0xd0000-0xd7fff. They also
	require an IRQ. PCI cards will, of course, auto-configure
	themselves.
You can attach up to 4 external modules to each host
	card. The external modules contain either 4 or 8 serial
	ports. They come in the following varieties:
	SI 4 or 8 port modules. Up to 57600 bps on each port
	 supported.

	XIO 8 port modules. Up to 115200 bps on each port
	 supported. One type of XIO module has 7 serial and 1 parallel
	 port.

	SXDC 8 port modules. Up to 921600 bps on each port
	 supported. Like XIO, a module is available with one parallel
	 port as well.

To configure an ISA host card, add the following line to
	your kernel configuration file, changing the numbers as
	appropriate:
device si0 at isa? iomem 0xd0000 irq 11
Valid IRQ numbers are 9, 10, 11, 12 and 15 for SX ISA host
	cards and 11, 12 and 15 for SI/XIO ISA host cards.
To configure an EISA or PCI host card, use this line:
device si0
After adding the configuration entry, rebuild and
	install your new kernel.
Note:
The following step, is not necessary if you are using
 devfs(5) in FreeBSD 5.X.

After rebooting with the new kernel, you need to make the
	device nodes in /dev. The MAKEDEV script
	will take care of this for you. Count how many total ports
	you have and type:
cd /dev
./MAKEDEV ttyAnn cuaAnn
(where nn is the number of
	ports)
If you want login prompts to appear on these ports, you
	will need to add lines like this to
	/etc/ttys:
ttyA01 "/usr/libexec/getty std.9600" vt100 on insecure
Change the terminal type as appropriate. For modems,
	dialup or
	unknown is fine.
OEBPS/trademarks.xhtml
FreeBSD is a registered trademark of
 the FreeBSD Foundation.

Microsoft, IntelliMouse, MS-DOS,
 Outlook, Windows, Windows Media and Windows NT are either
 registered trademarks or trademarks of Microsoft Corporation in the
 United States and/or other countries.

Many of the designations used by
 manufacturers and sellers to distinguish their products are claimed
 as trademarks. Where those designations appear in this document,
 and the FreeBSD Project was aware of the trademark claim, the
 designations have been followed by the “™” or the
 “®” symbol.

