Independent Verification of IPsec Functionality in FreeBSD
Table of Contents
	1. The Problem
	2. The Solution	2.1. MUST
	2.2. Tcpdump

	3. The Experiment
	4. Caveat
	5. IPsec---Definition
	6. Installing IPsec
	7. src/sys/i386/conf/KERNELNAME
	8. Maurer's Universal Statistical Test (for block size=8
 bits)

Independent Verification of IPsec Functionality in FreeBSD
David Honig
<honig@sprynet.com>

Revision: 52227Legal NoticeLast modified on 2018-09-06 01:30:47 by ebrandi.Abstract
You installed IPsec and it seems to be working. How do you
 know? I describe a method for experimentally verifying that IPsec is
 working.

 [

	 Split HTML
	
 /
 Single HTML
]
 1. The Problem
First, lets assume you have
 installed IPsec. How do you know
 it is working? Sure, your
 connection will not work if it is misconfigured, and it will work
 when you finally get it right. netstat(1) will list it.
 But can you independently confirm it?
2. The Solution
First, some crypto-relevant info theory:
	Encrypted data is uniformly distributed, i.e., has maximal
	 entropy per symbol;

	Raw, uncompressed data is typically redundant, i.e., has
	 sub-maximal entropy.

Suppose you could measure the entropy of the data to- and
 from- your network interface. Then you could see the difference
 between unencrypted data and encrypted data. This would be true
 even if some of the data in “encrypted mode” was
 not encrypted---as the outermost IP header must be if the
 packet is to be routable.
2.1. MUST
Ueli Maurer's “Universal Statistical Test for Random
	Bit Generators”(
	MUST) quickly measures the entropy
	of a sample. It uses a compression-like algorithm. The code is given below for a variant
	which measures successive (~quarter megabyte) chunks of a
	file.
2.2. Tcpdump
We also need a way to capture the raw network data. A
	program called tcpdump(1) lets you do this, if you have
	enabled the Berkeley Packet Filter
	interface in your kernel's config
	file.
The command:
tcpdump -c 4000 -s 10000 -w dumpfile.bin
will capture 4000 raw packets to
 dumpfile.bin. Up to 10,000 bytes per
 packet will be captured in this example.
3. The Experiment
Here is the experiment:
	Open a window to an IPsec host and another window to an
	 insecure host.

	Now start capturing
	 packets.

	In the “secure” window, run the UNIX®
	 command yes(1), which will stream the y
	 character. After a while, stop this. Switch to the
	 insecure window, and repeat. After a while, stop.

	Now run MUST on the
	 captured packets. You should see something like the
	 following. The important thing to note is that the secure
	 connection has 93% (6.7) of the expected value (7.18), and
	 the “normal” connection has 29% (2.1) of the
	 expected value.
% tcpdump -c 4000 -s 10000 -w ipsecdemo.bin
% uliscan ipsecdemo.bin

Uliscan 21 Dec 98
L=8 256 258560
Measuring file ipsecdemo.bin
Init done
Expected value for L=8 is 7.1836656
6.9396 --
6.6177 ---
6.4100 ---
2.1101 -----------------
2.0838 -----------------
2.0983 -----------------

4. Caveat
This experiment shows that IPsec does
 seem to be distributing the payload data
 uniformly, as encryption should. However,
 the experiment described here cannot
 detect many possible flaws in a system (none of which do I have
 any evidence for). These include poor key generation or
 exchange, data or keys being visible to others, use of weak
 algorithms, kernel subversion, etc. Study the source; know the
 code.
5. IPsec---Definition
Internet Protocol security extensions to IPv4; required for
 IPv6. A protocol for negotiating encryption and authentication
 at the IP (host-to-host) level. SSL secures only one application
 socket; SSH secures only a login;
 PGP secures only a specified file or
 message. IPsec encrypts everything between two hosts.
6. Installing IPsec
Most of the modern versions of FreeBSD have IPsec support
 in their base source. So you will need to include the
 IPSEC option in your kernel config and, after
 kernel rebuild and reinstall, configure IPsec connections using
 setkey(8) command.
A comprehensive guide on running IPsec on FreeBSD is
 provided in FreeBSD
 Handbook.
7. src/sys/i386/conf/KERNELNAME
This needs to be present in the kernel config file in order
 to capture network data with tcpdump(1). Be sure
 to run config(8) after adding this, and rebuild and
 reinstall.
device	bpf
8. Maurer's Universal Statistical Test (for block size=8
 bits)
You can find the same code at
 this link.
/*
 ULISCAN.c ---blocksize of 8

 1 Oct 98
 1 Dec 98
 21 Dec 98 uliscan.c derived from ueli8.c

 This version has // comments removed for Sun cc

 This implements Ueli M Maurer's "Universal Statistical Test for Random
 Bit Generators" using L=8

 Accepts a filename on the command line; writes its results, with other
 info, to stdout.

 Handles input file exhaustion gracefully.

 Ref: J. Cryptology v 5 no 2, 1992 pp 89-105
 also on the web somewhere, which is where I found it.

 -David Honig
 honig@sprynet.com

 Usage:
 ULISCAN filename
 outputs to stdout
*/

#define L 8
#define V (1<<L)
#define Q (10*V)
#define K (100 *Q)
#define MAXSAMP (Q + K)

#include <stdio.h>
#include <math.h>

int main(argc, argv)
int argc;
char **argv;
{
 FILE *fptr;
 int i,j;
 int b, c;
 int table[V];
 double sum = 0.0;
 int iproduct = 1;
 int run;

 extern double log(/* double x */);

 printf("Uliscan 21 Dec 98 \nL=%d %d %d \n", L, V, MAXSAMP);

 if (argc < 2) {
 printf("Usage: Uliscan filename\n");
 exit(-1);
 } else {
 printf("Measuring file %s\n", argv[1]);
 }

 fptr = fopen(argv[1],"rb");

 if (fptr == NULL) {
 printf("Can't find %s\n", argv[1]);
 exit(-1);
 }

 for (i = 0; i < V; i++) {
 table[i] = 0;
 }

 for (i = 0; i < Q; i++) {
 b = fgetc(fptr);
 table[b] = i;
 }

 printf("Init done\n");

 printf("Expected value for L=8 is 7.1836656\n");

 run = 1;

 while (run) {
 sum = 0.0;
 iproduct = 1;

 if (run)
 for (i = Q; run && i < Q + K; i++) {
 j = i;
 b = fgetc(fptr);

 if (b < 0)
 run = 0;

 if (run) {
 if (table[b] > j)
 j += K;

 sum += log((double)(j-table[b]));

 table[b] = i;
 }
 }

 if (!run)
 printf("Premature end of file; read %d blocks.\n", i - Q);

 sum = (sum/((double)(i - Q))) / log(2.0);
 printf("%4.4f ", sum);

 for (i = 0; i < (int)(sum*8.0 + 0.50); i++)
 printf("-");

 printf("\n");

 /* refill initial table */
 if (0) {
 for (i = 0; i < Q; i++) {
 b = fgetc(fptr);
 if (b < 0) {
 run = 0;
 } else {
 table[b] = i;
 }
 }
 }
 }
}
OEBPS/trademarks.xhtml
FreeBSD is a registered trademark of
 the FreeBSD Foundation.

Motif, OSF/1, and UNIX are
 registered trademarks and IT DialTone and The Open Group are
 trademarks of The Open Group in the United States and other
 countries.

Many of the designations used by
 manufacturers and sellers to distinguish their products are claimed
 as trademarks. Where those designations appear in this document,
 and the FreeBSD Project was aware of the trademark claim, the
 designations have been followed by the “™” or the
 “®” symbol.

