Introduction to NanoBSD
Table of Contents
	1. Introduction to NanoBSD
	2. NanoBSD Howto	2.1. The Design of NanoBSD
	2.2. Building a NanoBSD Image
	2.3. Customizing a NanoBSD Image	2.3.1. Configuration Options
	2.3.2. Custom Functions
	2.3.3. Adding Packages
	2.3.4. Configuration File Example

	2.4. Updating NanoBSD	2.4.1. Using ftp(1)
	2.4.2. Using ssh(1)
	2.4.3. Using nc(1)

	Index

List of Examples
	1. Making Persistent Changes to
	 /etc/resolv.conf

Introduction to NanoBSD
Daniel Gerzo

Revision: 52722Copyright © 2006 The FreeBSD Documentation Project
Legal NoticeLast modified on 2018-12-24 19:45:39 by crees.Abstract
This document provides information about the
	NanoBSD tools, which can be used to
	create FreeBSD system images for embedded applications, suitable
	for use on a Compact Flash card (or other mass storage
	medium).

 [

	 Split HTML
	
 /
 Single HTML
]
 1. Introduction to NanoBSD
NanoBSD is a tool currently
 developed by Poul-Henning Kamp <phk@FreeBSD.org>. It creates a FreeBSD system image for
 embedded applications, suitable for use on a Compact Flash card
 (or other mass storage medium).
It can be used to build specialized install images, designed
 for easy installation and maintenance of systems commonly called
 “computer appliances”. Computer appliances have
 their hardware and software bundled in the product, which means
 all applications are pre-installed. The appliance is plugged
 into an existing network and can begin working (almost)
 immediately.
The features of NanoBSD
 include:
	Ports and packages work as in FreeBSD — Every single
	 application can be installed and used in a
	 NanoBSD image, the same way as in
	 FreeBSD.

	No missing functionality — If it is possible to do
	 something with FreeBSD, it is possible to do the same thing
	 with NanoBSD, unless the specific
	 feature or features were explicitly removed from the
	 NanoBSD image when it was
	 created.

	Everything is read-only at run-time — It is safe
	 to pull the power-plug. There is no necessity to run
	 fsck(8) after a non-graceful shutdown of the
	 system.

	Easy to build and customize — Making use of just
	 one shell script and one configuration file it is possible
	 to build reduced and customized images satisfying any
	 arbitrary set of requirements.

2. NanoBSD Howto
2.1. The Design of NanoBSD
Once the image is present on the medium, it is possible to
	boot NanoBSD. The mass storage
	medium is divided into three parts by default:
	Two image partitions: code#1
	 and code#2.

	The configuration file partition, which can be mounted
	 under the /cfg directory
	 at run time.

These partitions are normally mounted read-only.
The /etc and
	/var directories are
	md(4) (malloc) disks.
The configuration file partition persists under the
	/cfg directory. It
	contains files for /etc
	directory and is briefly mounted read-only right after the
	system boot, therefore it is required to copy modified files
	from /etc back to the
	/cfg directory if changes
	are expected to persist after the system restarts.
Example 1. Making Persistent Changes to
	 /etc/resolv.conf
vi /etc/resolv.conf
[...]
mount /cfg
cp /etc/resolv.conf /cfg
umount /cfg

Note:
The partition containing
	 /cfg should be mounted
	 only at boot time and while overriding the configuration
	 files.
Keeping /cfg mounted at all times
	 is not a good idea, especially if the
	 NanoBSD system runs off a mass
	 storage medium that may be adversely affected by a large
	 number of writes to the partition (like when the filesystem
	 syncer flushes data to the system disks).

2.2. Building a NanoBSD Image
A NanoBSD image is built using
	a simple nanobsd.sh shell script, which
	can be found in the
	/usr/src/tools/tools/nanobsd
	directory. This script creates an image, which can be copied
	on the storage medium using the dd(1) utility.
The necessary commands to build a
	NanoBSD image are:
cd /usr/src/tools/tools/nanobsd [image: 1]
sh nanobsd.sh [image: 2]
cd /usr/obj/nanobsd.full [image: 3]
dd if=_.disk.full of=/dev/da0 bs=64k [image: 4]
	[image: 1]
	Change the current directory to the base directory of
	 the NanoBSD build
	 script.

	[image: 2]
	Start the build process.

	[image: 3]
	Change the current directory to the place where the
	 built images are located.

	[image: 4]
	Install NanoBSD onto the
	 storage medium.

2.3. Customizing a NanoBSD Image
This is probably the most important and most interesting
	feature of NanoBSD. This is also
	where you will be spending most of the time when
	developing with NanoBSD.
Invocation of the following command will force the
	nanobsd.sh to read its configuration from
	myconf.nano located in the current
	directory:
sh nanobsd.sh -c myconf.nano
Customization is done in two ways:
	Configuration options

	Custom functions

2.3.1. Configuration Options
With configuration settings, it is possible to configure
	 options passed to both the
	 buildworld and
	 installworld stages of the
	 NanoBSD build process, as well as
	 internal options passed to the main build process of
	 NanoBSD. Through these options
	 it is possible to cut the system down, so it will fit on as
	 little as 64MB. You can use the configuration options to
	 trim down FreeBSD even more, until it will consists of just the
	 kernel and two or three files in the userland.
The configuration file consists of configuration
	 options, which override the default values. The most
	 important directives are:
	NANO_NAME — Name of build
	 (used to construct the workdir names).

	NANO_SRC — Path to the
	 source tree used to build the image.

	NANO_KERNEL — Name of
	 kernel configuration file used to build kernel.

	CONF_BUILD — Options passed
	 to the buildworld stage of
	 the build.

	CONF_INSTALL — Options
	 passed to the installworld
	 stage of the build.

	CONF_WORLD — Options passed
	 to both the buildworld and
	 the installworld stage of the
	 build.

	FlashDevice — Defines what
	 type of media to use. Check
	 FlashDevice.sub for more
	 details.

2.3.2. Custom Functions
It is possible to fine-tune
	 NanoBSD using shell functions in
	 the configuration file. The following example illustrates
	 the basic model of custom functions:
cust_foo () (
	echo "bar=baz" > \
		${NANO_WORLDDIR}/etc/foo
)
customize_cmd cust_foo
A more useful example of a customization function is the
	 following, which changes the default size of the
	 /etc directory from 5MB to 30MB:
cust_etc_size () (
	cd ${NANO_WORLDDIR}/conf
	echo 30000 > default/etc/md_size
)
customize_cmd cust_etc_size
There are a few default pre-defined customization
	 functions ready for use:
	cust_comconsole — Disables
	 getty(8) on the VGA devices (the
	 /dev/ttyv* device nodes) and
	 enables the use of the COM1 serial port as the system
	 console.

	cust_allow_ssh_root — Allow
	 root to login
	 via sshd(8).

	cust_install_files —
	 Installs files from the
	 nanobsd/Files
	 directory, which contains some useful scripts for system
	 administration.

2.3.3. Adding Packages
Packages can be added to a
	 NanoBSD image using a custom
	 function. The following function will install all the
	 packages located in
	 /usr/src/tools/tools/nanobsd/packages:
install_packages () (
mkdir -p ${NANO_WORLDDIR}/packages
cp /usr/src/tools/tools/nanobsd/packages/* ${NANO_WORLDDIR}/packages
cp $(which pkg-static) ${NANO_WORLDDIR}/
chroot ${NANO_WORLDDIR} sh -c 'cd packages; /pkg-static add *;cd ..;'
rm -rf ${NANO_WORLDDIR}/packages ${NANO_WORLDDIR}/pkg-static
)
customize_cmd install_packages
2.3.4. Configuration File Example
A complete example of a configuration file for building
	 a custom NanoBSD image can
	 be:
NANO_NAME=custom
NANO_SRC=/usr/src
NANO_KERNEL=MYKERNEL
NANO_IMAGES=2

CONF_BUILD='
WITHOUT_KLDLOAD=YES
WITHOUT_NETGRAPH=YES
WITHOUT_PAM=YES
'

CONF_INSTALL='
WITHOUT_ACPI=YES
WITHOUT_BLUETOOTH=YES
WITHOUT_FORTRAN=YES
WITHOUT_HTML=YES
WITHOUT_LPR=YES
WITHOUT_MAN=YES
WITHOUT_SENDMAIL=YES
WITHOUT_SHAREDOCS=YES
WITHOUT_EXAMPLES=YES
WITHOUT_INSTALLLIB=YES
WITHOUT_CALENDAR=YES
WITHOUT_MISC=YES
WITHOUT_SHARE=YES
'

CONF_WORLD='
WITHOUT_BIND=YES
WITHOUT_MODULES=YES
WITHOUT_KERBEROS=YES
WITHOUT_GAMES=YES
WITHOUT_RESCUE=YES
WITHOUT_LOCALES=YES
WITHOUT_SYSCONS=YES
WITHOUT_INFO=YES
'

FlashDevice SanDisk 1G

cust_nobeastie() (
	touch ${NANO_WORLDDIR}/boot/loader.conf
	echo "beastie_disable=\"YES\"" >> ${NANO_WORLDDIR}/boot/loader.conf
)

customize_cmd cust_comconsole
customize_cmd cust_install_files
customize_cmd cust_allow_ssh_root
customize_cmd cust_nobeastie
2.4. Updating NanoBSD
The update process of NanoBSD
	is relatively simple:
	Build a new NanoBSD image,
	 as usual.

	Upload the new image into an unused partition of a
	 running NanoBSD
	 appliance.
The most important difference of this step from the
	 initial NanoBSD installation is
	 that now instead of using _.disk.full
	 (which contains an image of the entire disk), the
	 _.disk.image image is installed
	 (which contains an image of a single system
	 partition).

	Reboot, and start the system from the newly installed
	 partition.

	If all goes well, the upgrade is finished.

	If anything goes wrong, reboot back into the previous
	 partition (which contains the old, working image), to
	 restore system functionality as fast as possible. Fix any
	 problems of the new build, and repeat the process.

To install new image onto the running
	NanoBSD system, it is possible to
	use either the updatep1 or
	updatep2 script located in the
	/root directory, depending from which
	partition is running the current system.
According to which services are available on host serving
	new NanoBSD image and what type of
	transfer is preferred, it is possible to examine one of these
	three ways:
2.4.1. Using ftp(1)
If the transfer speed is in first place, use this
	 example:
ftp myhost
get _.disk.image "| sh updatep1"
2.4.2. Using ssh(1)
If a secure transfer is preferred, consider using this
	 example:
ssh myhost cat _.disk.image.gz | zcat | sh updatep1
2.4.3. Using nc(1)
Try this example if the remote host is not running
	 neither ftpd(8) or sshd(8) service:
	At first, open a TCP listener on host serving the
	 image and make it send the image to client:
myhost# nc -l 2222 < _.disk.image
Note:
Make sure that the used port is not blocked to
		receive incoming connections from
		NanoBSD host by
		firewall.

	Connect to the host serving new image and execute
	 updatep1 script:
nc myhost 2222 | sh updatep1

Index
N
	NanoBSD, Introduction to NanoBSD
	

OEBPS/trademarks.xhtml
FreeBSD is a registered trademark of
 the FreeBSD Foundation.

Many of the designations used by
 manufacturers and sellers to distinguish their products are claimed
 as trademarks. Where those designations appear in this document,
 and the FreeBSD Project was aware of the trademark claim, the
 designations have been followed by the “™” or the
 “®” symbol.

