FreeBSD Quickstart Guide for Linux® Users
Table of Contents
	1. Introduction
	2. Default Shell
	3. Packages and Ports: Adding Software in FreeBSD	3.1. Packages
	3.2. Ports

	4. System Startup
	5. Network Configuration
	6. Firewall
	7. Updating FreeBSD
	8. procfs: Gone But Not Forgotten
	9. Common Commands
	10. Conclusion

FreeBSD Quickstart Guide for Linux® Users
John Ferrell

Revision: 52142Copyright © 2008 The FreeBSD Documentation Project
Legal NoticeLast modified on 2018-08-16 16:43:18 by bcr.Abstract
This document is intended to quickly familiarize
	intermediate to advanced Linux® users with the basics of
	FreeBSD.

 [

	 Split HTML
	
 /
 Single HTML
]
 1. Introduction
This document highlights some of the technical differences
 between FreeBSD and Linux® so that intermediate to advanced
 Linux® users can quickly familiarize themselves with the basics
 of FreeBSD.
This document assumes that FreeBSD is already installed. Refer
 to the
 Installing FreeBSD chapter of the FreeBSD Handbook for
 help with the installation process.
2. Default Shell
Linux® users are often surprised to find that
 Bash is not the default shell in
 FreeBSD. In fact, Bash is not included
 in the default installation. Instead, FreeBSD uses tcsh(1) as
 the default root shell, and the Bourne
	shell-compatible sh(1) as the default user
 shell. sh(1) is very similar to
 Bash but with a much smaller
 feature-set. Generally shell scripts written for sh(1)
 will run in Bash, but the reverse is
 not always true.
However, Bash and other shells
 are available for installation using the FreeBSD Packages
	and Ports Collection.
After installing another shell, use chsh(1) to change a
 user's default shell. It is recommended that the root user's default shell remain
 unchanged since shells which are not included in the base
 distribution are installed to
 /usr/local/bin. In the event of a problem,
 the file system where /usr/local/bin is
 located may not be mounted. In this case, root would not have access to
 its default shell, preventing root from logging in and fixing
 the problem.
3. Packages and Ports: Adding Software in FreeBSD
FreeBSD provides two methods for installing applications:
 binary packages and compiled ports. Each method has its own
 benefits:
Binary Packages
	Faster installation as compared to
	compiling large applications.
	Does not require an understanding of how to
	compile software.
	No need to install a compiler.

Ports
	Ability to customize installation options.
	Custom patches can be applied.

If an application installation does not require any
 customization, installing the package is sufficient. Compile
 the port instead whenever an application requires customization
 of the default options. If needed, a custom package can be
 compiled from ports using make
 package.
A complete list of all available ports and packages can
 be found here.
3.1. Packages
Packages are pre-compiled applications, the FreeBSD
	equivalents of .deb files on
	Debian/Ubuntu based systems and .rpm
	files on Red Hat/Fedora based systems. Packages are
	installed using pkg. For example,
	the following command installs
	Apache 2.4:
pkg install apache24
For more information on packages refer to section 5.4 of
	the FreeBSD Handbook: Using
	 pkgng for Binary Package Management.
3.2. Ports
The FreeBSD Ports Collection is a framework of
	Makefiles and patches specifically
	customized for installing applications from source on FreeBSD.
	When installing a port, the system will fetch the source code,
	apply any required patches, compile the code, and install the
	application and any required dependencies.
The Ports Collection, sometimes referred to as the ports
	tree, can be installed to /usr/ports
	using portsnap(8). Detailed instructions for installing
	the Ports Collection can be found in section
	 5.5 of the FreeBSD Handbook.
To compile a port, change to the port's directory and
	start the build process. The following example installs
	Apache 2.4 from the Ports
	Collection:
cd /usr/ports/www/apache24
make install clean
A benefit of using ports to install software is the
	ability to customize the installation options. This example
	specifies that the mod_ldap module
	should also be installed:
cd /usr/ports/www/apache24
make WITH_LDAP="YES" install clean
Refer to Using
	 the Ports Collection for more information.
4. System Startup
Many Linux® distributions use the SysV init system, whereas
 FreeBSD uses the traditional BSD-style init(8). Under the
 BSD-style init(8), there are no run-levels and
 /etc/inittab does not exist. Instead,
 startup is controlled by rc(8) scripts. At system boot,
 /etc/rc reads
 /etc/rc.conf and
 /etc/defaults/rc.conf
 to determine which services are to be started. The specified
 services are then started by running the corresponding service
 initialization scripts located in
 /etc/rc.d/ and
 /usr/local/etc/rc.d/. These scripts are
 similar to the scripts located in
 /etc/init.d/ on Linux® systems.
The scripts found in /etc/rc.d/ are for
 applications that are part of the “base” system,
 such as cron(8), sshd(8), and syslog(3). The
 scripts in /usr/local/etc/rc.d/ are for
 user-installed applications such as
 Apache and
 Squid.
Since FreeBSD is developed as a complete operating system,
 user-installed applications are not considered to be part of
 the “base” system. User-installed applications
 are generally installed using Packages
	or Ports. In order to keep them separate from the base
 system, user-installed applications are installed under
 /usr/local/. Therefore, user-installed
 binaries reside in /usr/local/bin/,
 configuration files are in /usr/local/etc/,
 and so on.
Services are enabled by adding an entry for the service in
 /etc/rc.conf . The system defaults are
 found in /etc/defaults/rc.conf and these
 default settings are overridden by settings in
 /etc/rc.conf. Refer to rc.conf(5) for
 more information about the available entries. When installing
 additional applications, review the application's install
 message to determine how to enable any associated
 services.
The following entries in /etc/rc.conf
 enable sshd(8), enable Apache
	2.4, and specify that
 Apache should be started with
 SSL.
enable SSHD
sshd_enable="YES"
enable Apache with SSL
apache24_enable="YES"
apache24_flags="-DSSL"
Once a service has been enabled in
 /etc/rc.conf, it can be started without
 rebooting the system:
service sshd start
service apache24 start
If a service has not been enabled, it can be started from
 the command line using onestart:
service sshd onestart
5. Network Configuration
Instead of a generic ethX identifier
 that Linux® uses to identify a network interface, FreeBSD uses the
 driver name followed by a number. The following output from
 ifconfig(8) shows two Intel® Pro 1000 network
 interfaces (em0 and
 em1):
% ifconfig
em0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 options=b<RXCSUM,TXCSUM,VLAN_MTU>
 inet 10.10.10.100 netmask 0xffffff00 broadcast 10.10.10.255
 ether 00:50:56:a7:70:b2
 media: Ethernet autoselect (1000baseTX <full-duplex>)
 status: active
em1: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 options=b<RXCSUM,TXCSUM,VLAN_MTU>
 inet 192.168.10.222 netmask 0xffffff00 broadcast 192.168.10.255
 ether 00:50:56:a7:03:2b
 media: Ethernet autoselect (1000baseTX <full-duplex>)
 status: active
An IP address can be assigned to an
 interface using ifconfig(8). To remain persistent across
 reboots, the IP configuration must be
 included in /etc/rc.conf. The following
 /etc/rc.conf entries specify the hostname,
 IP address, and default gateway:
hostname="server1.example.com"
ifconfig_em0="inet 10.10.10.100 netmask 255.255.255.0"
defaultrouter="10.10.10.1"
Use the following entries to instead configure an interface
 for DHCP:
hostname="server1.example.com"
ifconfig_em0="DHCP"
6. Firewall
FreeBSD does not use Linux®
 IPTABLES for its firewall. Instead,
 FreeBSD offers a choice of three kernel level firewalls:
	PF
	IPFILTER
	IPFW

PF is developed by the OpenBSD
 project and ported to FreeBSD. PF was
 created as a replacement for IPFILTER
 and its syntax is similar to that of
 IPFILTER.
 PF can be paired with altq(4) to
 provide QoS features.
This sample PF entry allows
 inbound SSH:
pass in on $ext_if inet proto tcp from any to ($ext_if) port 22
IPFILTER is the firewall
 application developed by Darren Reed. It is not specific to
 FreeBSD and has been ported to several operating systems including
 NetBSD, OpenBSD, SunOS, HP/UX, and Solaris.
The IPFILTER syntax to allow
 inbound SSH is:
pass in on $ext_if proto tcp from any to any port = 22
IPFW is the firewall developed
 and maintained by FreeBSD. It can be paired with dummynet(4)
 to provide traffic shaping capabilities and simulate different
 types of network connections.
The IPFW syntax to allow inbound
 SSH would be:
ipfw add allow tcp from any to me 22 in via $ext_if
7. Updating FreeBSD
There are two methods for updating a FreeBSD system: from
 source or binary updates.
Updating from source is the most involved update method, but
 offers the greatest amount of flexibility. The process involves
 synchronizing a local copy of the FreeBSD source code with the FreeBSD
 Subversion servers. Once the local
 source code is up-to-date, a new version of the kernel and
 userland can be compiled.
Binary updates are similar to using yum
 or apt-get to update a Linux® system. In
 FreeBSD, freebsd-update(8) can be used fetch new binary
 updates and install them. These updates can be scheduled using
 cron(8).
Note:
When using cron(8) to schedule updates, use
	freebsd-update cron in the crontab(1)
	to reduce the possibility of a large number of machines all
	pulling updates at the same time:
0 3 * * * root /usr/sbin/freebsd-update cron

For more information on source and binary updates, refer to
 the
	chapter on updating in the FreeBSD Handbook.
8. procfs: Gone But Not Forgotten
In some Linux® distributions, one could look at
 /proc/sys/net/ipv4/ip_forward to determine
 if IP forwarding is enabled. In FreeBSD,
 sysctl(8) is instead used to view this and other system
 settings.
For example, use the following to determine if
 IP forwarding is enabled on a FreeBSD
 system:
% sysctl net.inet.ip.forwarding
net.inet.ip.forwarding: 0
Use -a to list all the system
 settings:
% sysctl -a | more
If an application requires procfs, add the following entry
 to /etc/fstab:
proc /proc procfs rw,noauto 0 0
Including noauto will prevent
 /proc from being automatically mounted at
 boot.
To mount the file system without rebooting:
mount /proc
9. Common Commands
Some common command equivalents are as follows:
	Linux® command (Red Hat/Debian)	FreeBSD equivalent	Purpose
	yum install
		 package /
		apt-get install
		 package	pkg install
		 package	Install package from remote repository
	rpm -ivh
		 package /
		dpkg -i
		 package	pkg add
		 package	Install local package
	rpm -qa
		/ dpkg -l	pkg info	List installed packages
	lspci	pciconf	List PCI devices
	lsmod	kldstat	List loaded kernel modules
	modprobe	kldload
		/ kldunload	Load/Unload kernel modules
	strace	truss	Trace system calls

10. Conclusion
This document has provided an overview of FreeBSD. Refer to
 the FreeBSD Handbook
 for more in-depth coverage of these topics as well as the many
 topics not covered by this document.
OEBPS/trademarks.xhtml
FreeBSD is a registered trademark of
 the FreeBSD Foundation.

Linux is a registered trademark of
 Linus Torvalds.

Intel, Celeron, Centrino, Core, EtherExpress, i386,
 i486, Itanium, Pentium, and Xeon are trademarks or registered
 trademarks of Intel Corporation or its subsidiaries in the United
 States and other countries.

Red Hat, RPM, are trademarks or
 registered trademarks of Red Hat, Inc. in the United States and
 other countries.

UNIX is a registered trademark of The
 Open Group in the United States and other countries.

Many of the designations used by
 manufacturers and sellers to distinguish their products are claimed
 as trademarks. Where those designations appear in this document,
 and the FreeBSD Project was aware of the trademark claim, the
 designations have been followed by the “™” or the
 “®” symbol.

